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Abstract

As the adoption of electronic health records (EHRs) increases, so do the opportuni-
ties to improve patient care using these data. Applied to high-dimensional EHR data,
machine learning techniques can help identify complex relationships between patient co-
variates and outcomes. However, in order to augment clinical care these models must
generalize to (i.e., perform well on) never-before-seen data. In healthcare settings, gener-
alization performance is often hindered by limited training data. Though clinical data are
high dimensional, there is often a limited number of examples that can be used for train-
ing, due to low incidence rates of the outcomes of interest. To address this challenge, we
develop and evaluate methods that combine deep learning techniques with knowledge
about the task structure to improve sample efficiency.

Throughout this dissertation, we augment learning algorithms by exploiting known
task structure pertaining to i) invariances, ii) signal dynamics, and address challenges
associated with iii) class imbalance driven low homophily. First, different types of tem-
poral invariances (e.g., phase invariance) are present in clinical time-series tasks. How-
ever, such invariances may vary across tasks. We propose a novel approach, ‘Sequence
Transformer Networks’ that learns to recognize and exploit task-specific invariances, re-
ducing intra-class variance and improving performance. Second, risk factors for a given
adverse outcome may change as a patient’s admission progresses. Though techniques
like recurrent neural networks (RNNs) should in theory be able to capture such time
varying dynamics, when training data are limited performance can suffer. We propose a
novel RNN-based architecture in which we relax weight sharing over time to capture time-
varying relationships. Finally, graph neural networks (GNNs) are a popular method for
learning feature representations from graphs but are often evaluated on tasks with graphs
presenting high homophily (or high similarity among connected nodes). In fact, GNNs
are known to do poorly in low homophily settings. In clinical tasks, high class imbal-
ance leads to asymmetrical homophily: high homophily with respect to the majority class
and on average, but low homophily with respect to the minority class of interest. We
address class imbalance driven low homophily by evaluating an attention-based mecha-
nism against recently proposed methods for dealing with low homophily in general. By
adapting techniques to better leverage task structure such as class imbalance driven low
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homophily, we are able to improve sample efficiency and predictive performance on tasks
such as estimating the risk for adverse patient outcomes.
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Chapter 1

Introduction

The electronic health record (EHR) contains vast amounts of data that have the potential
to improve multiple facets of patient care from predicting future diagnoses using longi-
tudinal patient data [1] to estimating patient risk for in-hospital mortality [2]. However,
it is difficult for humans to gather meaningful or actionable conclusions that leverage
the entirety of the EHR. These data consist of thousands of longitudinal time series (e.g.,
medications, vitals, diagnosis, patient locations) across hundreds if not thousands of ad-
missions. The heterogeneity and scale of the data make it difficult for clinicians to draw
useful or actionable conclusions. We are interested in the development, evaluation and
application of algorithms that learn to distill clinical time-series data into patient spe-
cific risk estimates for adverse outcomes (e.g., infection, mortality, exposure).

There are many technical challenges that arise when applying machine learning to
EHR data for patient risk stratification. In this dissertation, we explore challenges that
arise when the amount of training data are limited. Within an EHR system, though there
are potentially thousands of hospital admissions each year and thousands of features rep-
resenting all the medications and procedures, the outcome of interest (e.g., hospital asso-
ciated infections) may occur a relatively small number of times. Moreover, labelling data
for complex outcomes such as severity of disease often requires manual chart review re-
sulting in even smaller sample sizes. Limited or highly unbalanced training data make it
difficult to learn models that generalize, especially when using deep learning approaches.
Though deep learning has recently been heralded for its ability to adapt to tasks with
minimal domain knowledge, it relies on large sample sizes to learn complex relationships
and prevent overfitting. To address the limited data issue we present task structures often
found in clinical tasks and propose ways to adapt machine learning methods to exploit
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and address these structures. Figure 1.1 summarizes the task structures and informed
approaches that will be addressed in this dissertation.

Throughout this dissertation we use predicting patient risk for adverse outcomes from
structural EHR data as our motivating application. We focus specifically on the tasks of
predicting in-hospital mortality, acute respiratory failure, shock (i.e., inadequate perfu-
sion of blood oxygen to organs or tissues), and risk of hospital onset Clostridioides difficile
infection (CDI). These tasks have high clinical relevance. ARF contributes to over 380,000
deaths in the US per year [3] and represents a challenging prediction task due to its multi-
factorial etiology. Shock refers to the inadequate perfusion of blood oxygen to organs or
tissues and can result in severe organ dysfunction and death when not recognized and
treated immediately [4]. CDI is one of the most common healthcare associated infections
in the United States [5] and is known for lingering on hospital surfaces [6]. All three of
these conditions are upstream events that contribute to patient risk of in-hospital mor-
tality, our fourth prediction task. The ability to identify patients at risk of developing
ARF, shock or CDI could facilitate timely intervention, preventing irreversible damage
and yielding better patient outcomes.

EHR Data
Temporal Invariance
Temporal Conditional Shift
Graph Homophily

Task Specific Structure

Sequence Transformer
Relaxed Weight Sharing
Attention Based GNNs

Informed Approach

FIGURE 1.1: Structure of the dissertation’s contributions summarized by the
task specific structure and the corresponding informed approach.

1.1 Challenges and Opportunities

To overcome challenges associated with a paucity of training data, we present prob-
lem settings commonly found in healthcare tasks and propose new deep learning ap-
proaches that consider known structure about these settings. We leverage task struc-
tures such as (1) temporal invariances and (2) signal dynamics and address challenges
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associated with (3) low task homophily. These architectures aim to exploit these struc-
tures in a way that leads to improved generalization performance. We briefly introduce
each of these task structures and motivate our proposed solutions, in turn, below.

FIGURE 1.2: Invariances are transformations that, when applied to the data,
do not change the task-specific meaning of the data. An example is shown
with respect to object detection of a dog in an image: the image on the right
has been shifted but still contains a dog. This task is, to an extent, shift in-

variant.

Temporal invariances. Invariances are transformations that, when applied to the data,
do not change the task-specific meaning of the data [7]. An example of shift invariance
with respect to object detection in images can be seen in Figure 1.2. In healthcare, when
classifying chest X-rays, pneumonia may be recognized based on the presences of infil-
trates or white spots in the lungs and not necessarily the precise location of those white
spots [8]. These represent a type of spatial invariance. In our work, we aim to exploit
temporal invariances with the goal of reducing intra-class variation and improve general-
ization performance. There are some obvious temporal invariances that exist in clinical
data e.g., the phase invariance of electrocardiogram (ECG) waveforms (i.e., the precise
location of the arrhythmia in the ECG reading does not change the interpretation of the
arrhythmia [9], [10]). However, the exact parameters of such transformations are gener-
ally unknown beforehand and many temporal invariances are likely to be task specific. In
contrast to previous work that aligns signals based on some known invariance [11]–[13],
our approach, presented in Chapter 3 aims to learn how to best align signals [14]. We

3



propose a method to learn the parameterizations for multiple task specific temporal in-
variances directly from the data. The learned invariances are used to align patient signals
and reduce input variance prior to classification.

Signal dynamics. Patient risk stratification tasks often exhibit a specific type of signal
dynamic known as temporal conditional shift [15], [16]. Temporal conditional shift arises
when the dynamics between covariates and outcome change over time. For example,
what contributes to patient risk for a particular adverse outcome at the beginning of a
hospital admission may differ from what contributes to risk at the end of the admission
[17]. We could train individual models for each time period but this would require de-
termining an appropriate delineation between periods and reduce sample efficiency by
not leveraging the similarities between sequential tasks. Given sufficient data and model
capacity, models such as recurrent neural networks (RNNs), have the potential to learn
these dynamics. However, when training data are limited, it may be difficult for models
to adapt, especially if they share parameters across time steps as is the case in RNN archi-
tectures. In Chapter 4, we propose a novel, RNN-based architecture that relaxes weight
sharing by smoothly interpolating between multiple sets of weights.

Low graph homophily When modeling infectious disease transmission dynamics, one
often represents the hospital as a graph. One important aspect when learning represen-
tations from graphs is the degree of homophily in the graph. Homophily refers to when
the nodes in a graph are connected to other nodes of the same class or of similar charac-
teristics [18]. If we represent the hospital as a graph, with patients as nodes and edges
connecting co-located patients, we would expect there to be high homophily with respect
to infection status. Homophily can be measured by the fraction of intra-class edges in a
graph. The majority of nodes are not infected, therefore the majority of edges will con-
nect two uninfected nodes. However, if we only consider the edges involving an infected
node, we are likely to observe the opposite: low homophily. Due to the sheer number of
uninfected patients, infected patients are likely to have many uninfected neighbors.

Low homophily can cause challenges when applying graph neural networks (GNNs),
a popular and successful class of models for learning representations from graph data
[19], to low homophily graphs [20]. To date GNNs have been largely benchmarked on
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data sets with high homophily and often make architectural decisions based on the as-
sumption of high homophily [20]. While our scenario only has low homophily with re-
spect to the minority class, many common architectural assumptions (i.e., mean aggrega-
tion, pooling) can be detrimental for similar reasons: most neighbors are unlike the ego
node and most neighbors are not relevant to the ego node’s prediction. However, exist-
ing methods for improving GNN performance under low homophily may not help to the
same degree due to the asymmetrical difference in setting. In order to better adapt to this
problem scenario, we propose using an attention-based solution. In Chapter 5, we ex-
plore the use of graph attention networks [21] to learn pairwise importance of neighbors
in order to focus on the few but highly influential contagious neighbors.

1.2 Contributions

To address the limited data challenges that arise when learning from EHR data, we present
a series of contributions in this dissertation, summarized here:

• Learning temporal invariances.: In Chapter 3, we propose sequence transformer
networks, an end-to-end trainable network that learns parameters for patient and
task specific temporal transformations directly from the data. These transformations
are used to leverage temporal invariances and align patient signals before classifi-
cation [14]. When evaluated on the task of predicting in-hospital mortality using
MIMIC III data [22], we show our proposed approach leads to better generaliza-
tion performance. Our results suggest that a variety of valuable invariances can be
efficiently learned directly from the data. While we demonstrate the utility of the
proposed approach in the context of temporal invariances in clinical time series we
hypothesize that such techniques apply more broadly. Since publication, a similar
approach has been applied to activity detection from joint position data [23].

• Efficiently learning time varying covariates. In Chapter 4, we present and explore
the setting of temporal conditional shift that considers the scenario of a time-varying
relationship between covariates and outcomes. We show evidence for temporal
conditional shift on three clinically relevant tasks. We propose mixture of LSTMs
to relax LSTM weight sharing across time steps. When evaluated on synthetic and
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real-world data exhibiting temporal conditional shift dynamics, our method outper-
forms baseline methods (e.g., LSTM, HyperLSTM [24]), demonstrating the benefits
of relaxed weight sharing [16]. We also show that the mixture of LSTMs model
can adapt to settings with limited training data and learn meaningful, time-varying
relationships.

• Addressing class imbalance driven low homophily. In Chapter 5, we present and
explore the setting of class imbalance driven low homophily. In this setting, we
compare an attention-based aggregation mechanism to recently proposed solutions
to low homophily. Overall, attention proves to be an effective mechanism for ad-
dressing low homophily in the minority class. In addition, we demonstrate that
GNNs are able to learn useful representations for predicting transmission events
in both real clinical data and across a variety of synthetic networks [25]. Such a
data-driven approach can outperform approaches based on potentially flawed ex-
pert knowledge.

Creating accurate risk estimators from EHR data presents technical machine learning
challenges, but if appropriately addressed has the potential to improve clinical decision
making. In this dissertation, we characterize and present problem settings commonly
found in healthcare and present novel approaches to improve the generalization per-
formance of deep models trained using EHR data.
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Chapter 2

Background

In this chapter, we present a high-level overview of the clinical and technical background
relevant to this dissertation. In the first section, we focus on the clinical background for
our work, including applications and clinical tasks. In the second section, we cover topics
relating to machine learning. More detailed notation and background is presented on a
chapter-by-chapter basis for material specific to subsets of the dissertation.

2.1 EHR Clinical Time Series

Throughout this dissertation we use EHR data for real world evaluations of our meth-
ods as well as motivation for developing them. In this section, we briefly review our
motivation, what is contained in the EHR, and some special considerations for design-
ing clinical tasks using EHR data. Since the early 1990’s, the use of EHR in hospitals has
grown, driven by developments in technology, the affordability of data storage and the
limitation of paper records [26]. Then the Patient Protection and Affordable Care Act of
2010, mandated that all healthcare practitioners use EHRs [27], furthering adoption. As
EHR data become available at more and more institutions, so does the potential impact
of methods that leverage the EHR to improve patient care.

The structured contents of the EHR contain data types such as medications, vitals, lab-
oratory results, procedures, locations, demographics, etc. These range from time-varying
data (e.g., vitals, medications) to time-invariant data such as height. These data tend to
be sparse and irregularly sampled [28]. For example, time stamps for procedures indicate
when they occur and are not limited to set intervals. The administration of drugs has a
long tail distribution resulting in sparse features. Beyond the structured contents, EHR
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can contain free text such as doctors notes and patient correspondences. However in this
dissertation we will focus entirely on the structured contents.

When designing clinical tasks using EHR data, considerations must be given to ac-
commodate the time-varying and snapshot nature of the EHR. The hospital setting is
constantly changing, from EHR vendor to hospital protocols. This is reflected in the EHR.
For example, one may use laboratory results to identify outcomes of interest. However,
the protocols surrounding ordering laboratory tests can change, along with the false pos-
itive rate of the test [29]. Therefore, although there may be decades of data, it may be
useful to focus on only the most recent years. EHR data seldom contain the whole picture
because they are limited to the time period the patient is in the hospital. For example,
if the patient visits another hospital, information about that visit is not readily available
and this would limit studies involving recurrence [30]. Lastly, the most crucial consider-
ation is the clinical relevance of a task. It is not uncommon to discuss a machine learning
for healthcare paper with a clinician only to conclude that the great performance of the
model is useless because the task itself is not useful [31]. In order to develop methods for
clinical time series, it is important to understand the clinical and physiological processes
that underlie the data generation process and to solve clinically relevant problems using
accurate evaluations.

2.2 Clinical Tasks

In this section, we review the datasets and clinical tasks used to develop and evaluate our
methods.

2.2.1 Clinical Datasets

We used data from adult, inpatient visits from University of Michigan Hospitals (UM)
and MIMIC III [22]. Using the UM dataset facilitates collaboration with clinicians at UM
and the potential for developing models that can be implemented in a real hospital set-
ting. MIMIC III is a large, de-identified, publicly available EHR dataset from Beth Israel
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Deaconess Medical Center in Boston, Massachusetts and is useful for comparing perfor-
mance across different published models. We explain each dataset in detail below along
with common preprocessing techniques that we used to process each institution’s data.

University of Michigan Hospitals (UM)

We focus on adult inpatient admissions to the University of Michigan Hospitals that
started and ended during the 4-year period between January 1, 2016, and January 1, 2020.
We focus on inpatient visits because they contain denser features and are less impacted by
data censoring. This resulted in 268,645 admissions before any additional exclusion crite-
ria. This study population is majority white (81.49%) and female (52.52%) with a median
age of 58 years and a median length of stay of 3 days.

MIMIC III

The majority of MIMIC III consists of adult patient visits from critical care units from 2001
to 2012. We considered adult admissions with a single, unique ICU visit. This excludes
patients with transfers between different ICUs. Patients without labels or observations in
the ICU were excluded. We focused on patients who remained in the ICU for at least 48
hours. Using the full 48 hours allows us to focus on the temporal trends that are more
likely to be present in longer visits and a longer time frame for capturing time varying
dynamics. This resulted in 21,139 admissions before any additional exclusion criteria.

Preprocessing Techniques

For UM we considered all the structured contents of the EHR. For MIMIC III we extracted
17 physiological features (e.g., heart rate, respiratory rate, Glasgow coma scale, see Ap-
pendix A.1) using the same feature extraction procedure as detailed in [2]1. We briefly
describe some of the common aspects of the feature extraction process here. All categori-
cal data (e.g., medications, Glasgow coma scale) were mapped to one-hot feature vectors
that indicate if medication A was administered, or if the Glasgow coma verbal score is
confused, etc. Continuous values were either mean normalized or mapped to reference

1https://github.com/YerevaNN/mimic3-benchmarks
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ranges (e.g., "normal", "high") and quintiles. Data were resampled uniformly, once per
hour for MIMIC III with carry-forward imputation and once per day for UM without
imputation. Separate mask features were used to indicate imputed or missing values.

2.2.2 Clinical Outcomes

We consider four different outcomes: acute respiratory failure (ARF), Shock, Clostridium
(Clostridioides) difficile infection (CDI) and in-hospital mortality. We define each outcome
in turn below.

• ARF. ARF contributes to over 380,000 deaths in the US per year [3] and represents a
challenging prediction task due to its multi-factorial etiology. ARF is defined as the
need for respiratory support with positive pressure mechanical ventilation [3], [32].

• Shock. Shock refers to the inadequate perfusion of blood oxygen to organs or tissues
and can result in severe organ dysfunction and death when not recognized and
treated immediately [4].

• Clostridium (Clostridioides) difficile infection (CDI). CDI is one of the most com-
mon healthcare associated infections (HAI) in the United States [5]. There are an es-
timated 293,300 cases in the US yearly and furthermore, it contributes to increased
hospital stay length, higher readmission rate, increased cost per visit and risk of
mortality [33]. One of the reasons CDI is so infectious is because it is spread through
spores which can survive on contaminated surfaces up to 5 months [6] and cannot
be killed using commonly used disinfectants [34]. However, with respect to the hos-
pital population, incidence rates can be low, leading to high class imbalance. During
the study period at University of Michigan, 1.04% of admissions were positive for
CDI.

• In-hospital Mortality. All of these conditions are upstream events that contribute
to our fourth prediction task, in-hospital mortality. The ability to identify patients at
risk of developing ARF, shock or contracting CDI could facilitate improved patient
triage, timely intervention, preventing irreversible damage and ultimately better
patient outcomes.
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2.3 Deep Learning for Time Series

In this section, we review some deep learning methods that are commonly used for time-
series classification. We will reference these methods throughout the dissertation.

2.3.1 Problem Setup & Notation

In Chapters 3 and 4 we consider a supervised learning setup in which we aim to learn
a mapping from patient time series to outcome. More formally, given time-series data
X = [x1, x2, ..., xT], representing patient covariates over time, where xt ∈ Rd, we consider
the task of predicting a sequence of outcomes y = [y1, y2, ..., yT], where yt ∈ R for t ∈
[1, 2, 3, ..., T]. Throughout this dissertation we use capitalization to denote matrix notation
and bold to denote vectors.

2.3.2 Recurrent Neural Networks (RNNs) and Long Short Term Mem-

ory Networks (LSTMs)

RNNs are known for their convenient application to tasks involving time-series data [35].
RNN models have two main traits that contribute to this characterization. First, a RNN
model consists of a set of equations, commonly referred to as a RNN cell, that are applied
to each time step’s input. This allows RNNs to naturally and efficiently accommodate
variable length sequences as the cell can be applied repeatedly for additional time steps
without learning additional parameters. Second, RNN models have a memory compo-
nent that is updated at each time step. This memory component informs output as well
as how the memory is updated. This allows RNNs to leverage information from any
previously seen input and produce outputs that are dynamic and capture temporal de-
pendencies.

LSTMs, one of the most common RNN architectures, are often applied to health data,
in part because these data frequently consist of time series and LSTMs can (with enough
data) capture complex temporal dynamics [2], [28], [36]. In Chapter 4, we will explore an
extension of LSTMs that relaxes weight sharing across time steps.
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FIGURE 2.1: Visualization of a standard LSTM cell [37]

A standard LSTM cell, which is depicted in Figure 2.1, is described formally below,

it = σ(Wi[ht−1, xt] + bi) (2.1)

C̃t = tanh(Wc̃[ht−1, xt] + bc̃) (2.2)

f t = σ(Wf [ht−1, xt] + b f ) (2.3)

Ct = it ∗ C̃t + f t ∗ Ct−1 (2.4)

ot = σ(Wo[ht−1, xt] + bo) (2.5)

ht = ot ∗ tanh(Ct) (2.6)

ŷt = Wyht + b (2.7)

where ∗ represents element-wise multiplication. In an LSTM cell there are two memory
components: the hidden state (ht) and the cell state (Ct). The size of the memory is deter-
mined by dhidden as ht, ht−1 C̃t, Ct, Ct−1 ∈ Rdhidden . C̃t acts as the update to the cell state
that is combined with the old cell state (Ct−1) to produce the new cell state (Ct). it, f t, and
ot are referred to as gates. They control the flow of information and due to the sigmoid
function (σ(·)) in each of their equations, the value of each of their elements is within the
range [0, 1]. All W ∈ Rdhidden×(dhidden+d) and b ∈ Rdhidden with the exception of equation 2.7
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where Wy ∈ Rdhidden and b ∈ R.

2.3.3 Convolutional Neural Networks (CNNs)

Convolutional neural networks are a popular deep learning method in computer vision.
They are known for learning hierarchical feature representations and efficiently learning
location invariant patterns. This is achieved through the use of filters that detect certain
patterns in the image. Filters are smaller than the input size resulting in efficient weight
sharing that takes advantage of the spatial invariance of images. As the filter is passed
over the entire image, it finds certain patterns regardless of the pattern’s location within
the image. Each layer builds upon the outputs of previous filters, resulting in more and
more complex patterns being detected in subsequent layers of the network.

In recent years, there has been an increase in research exploring the use of 1-dimensional
CNNs in previously RNN dominated tasks in natural language processing and healthcare
[11], [12], [38]. We apply CNNs in our time-series classification task in Chapter 3. CNNs
allow for parallel computation while RNNs are limited to sequential calculation due to
their architecture. This results in much faster training times of CNNs vs RNNs for similar
performance [39]. However, CNNs are a less natural fit for time-series analysis and there
are many compromises used to retain RNN qualities in CNNs. For example, RNNs can
retain memory over the whole input sequence. In CNNs, the field of vision or the range
of memory is controlled by the depth of the CNN network, which is determined before
training. Therefore, one has to know the longest sequence that will be encountered by the
model beforehand.

2.4 Deep Learning for Networks

In Chapter 5 we explore the application of graph neural networks (GNNs), a deep learn-
ing method for learning representations from graph or network data.
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2.4.1 Problem Setup & Notation

We define graph G by a tuple (V , E) that consists of a set of nodes (V) and a set of edges
(E ). Each node (v ∈ V) is associated with a feature vector xv ∈ Rd. All nodes in V can be
represented via a design matrix X ∈ Rn×d, where |V| = n. E can be represented using
an adjacency matrix A ∈ {0, 1}n×n, where each element Ai,j = 1 if there exists an edge
between vi and vj and 0 otherwise.

2.4.2 Graph Neural Networks

Graph neural networks (GNNs) are a popular method for learning feature representations
directly from graph data [19]. These models assume that there exists some neighborhood
around the ego node that contains the necessary information for a given task. GNNs
use a message passing system to calculate an ego node’s representation that incorporates
messages from all nodes in this neighborhood. Message passing is done iteratively and in
a hierarchical manner using network layers. This is illustrated in Figure 2.2. Specifically,
at each layer k, function f (k) is applied to learn an intermediary representation r(k)v ∈ Rdk

of node v:

r(k)v = f (k)(r(k−1)
v , {r(k−1)

u : u ∈ N(v)}; θ(k)) (2.8)

Here θ(k) are the parameters of f (k) and N(v) is some definition of a neighborhood (i.e.,
first degree neighbors). N(v) does not need to encompass all relevant nodes for node v’s
prediction. As f is applied iteratively, the receptive field goes beyond those neighbors
that are directly in N(v), to include neighbors of neighbors, neighbors of neighbors of
neighbors, etc. At the first layer r(0)v = xv and at the final layer, output r(K)v is used to
calculate the final prediction (ŷv). In the case of a classification task, this may be ŷv =

arg max(log softmax(r(K)v θ)).
One specific type of GNN that is commonly used is the Graph Convolutional Net-

work (GCN) [40]. At each layer, the GCN uses the previous layer’s representation as
the "message" (i.e., r(k−1)

u ) and aggregates all the messages from the ego’s neighborhood
(N(v)) using a normalized average. This aggregated message is transformed to become
the ego’s new representation r(k)v . The update function f (k) is defined as:
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FIGURE 2.2: Visualization of a GNN’s kth layer where N(v) is defined as the
first degree neighbors of node v and G = (V , E) where V = {A, B, C} and
E = {(A, B), (A, C)}. The figure depicts how messages are passed between
neighboring nodes between model layers. In this example the messages are

the previous layer’s representations (rk−1).
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R(k) = f (k)(A, R(k−1)) = ReLU(D−
1
2 AD−

1
2 R(k−1)θ(k)), (2.9)

Here we represent the matrix of stacked intermediary representations as R(k) ∈ Rn×dk

and D is the diagonal node degree matrix of A. In this formula, the R(k−1) represents
the "messages", D−

1
2 AD−

1
2 represents the weights for the normalized average, and the

ReLU() and θ(k) represent the transformation.
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Chapter 3

Sequence Transformer Networks

3.1 Introduction

Clinical time-series data consist of a wide variety of repeated measurements/observations,
from vitals (e.g., heart rate) and laboratory results to locations within a hospital [28],
[41], [42]. These data vary not only in the information they encode, but also in sam-
pling rate and number of measurements. Analogous to how certain tasks in computer
vision exhibit spatial invariances, invariances frequently arise in clinical tasks involving
time-series data. These invariances describe a set of transformations that, when applied
to the data, magnify task-relevant similarities between examples. For example, phase
invariance relates to a transformation that shifts a signal, resulting in an alignment in
phase. Such transformations can be particularly useful when processing periodic signals
e.g., electrocardiogram waveforms [10].

Preprocessing techniques like dynamic time warping are commonly used to exploit
warping invariances and align time-series data, facilitating relevant comparisons [43],
[44]. However, their computational complexity (e.g., DTW involves solving an optimiza-
tion problem for each new example) may be a factor leading to their limited use within
more general settings. In addition, such approaches require a priori knowledge of the
types of invariances that are present in one’s data. Due to the varied nature of clinical
time-series data and their associated prediction tasks, we expect that many such tasks
involve multiple invariances that may not be known beforehand. This and the fact that

The following is an adaptation of previously published work [14].
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these invariances are likely task specific, are some of the main roadblocks in efficiently
exploiting these invariances.

Our Approach. To addresses these challenges, we propose Sequence Transformer Net-
works, an approach for learning task-specific invariances related to amplitude, offset, and
scale invariances directly from the data. Our approach consists of an end-to-end trainable
framework designed to capture temporal and magnitude invariances. Applied to clini-
cal time-series data, Sequence Transformer Networks learn input- and task-dependent
transformations. In contrast to data augmentation approaches, our proposed approach
makes limited assumptions about the presence of invariances in the data. Learned trans-
formations can be efficiently applied to new input data, leading to an improvement in
overall predictive performance. We demonstrate the utility of the proposed approach
in the context of predicting in-hospital mortality given 48 hours of data collected in the
intensive care unit (ICU). Relative to a baseline that does not incorporate any transforma-
tions, Sequence Transformer Networks result in significant improvements in predictive
performance. Our main contributions can be summarized as follows:

• We propose the use of Sequence Transformer Networks, an end-to-end trainable
framework designed to capture temporal and magnitude invariances.

• On a real data task, we evaluate the relative contribution of each individual com-
ponent of Sequence Transformer Networks towards the overall performance of the
network.

• We present visualizations of the types of learned invariances and investigate the
effects of Sequence Transformer Networks on intra-class signal similarity.

Organization. The remainder of the chapter is organized as follows. First, we give a
background on how previous work has leveraged invariances. Then, we present our
proposed method: Sequence Transformer Networks. Next, we describe our clinical task
and evaluation details. Finally, we present results on a clinical task demonstrating the
utility of levering learned invariances from time series data.
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3.2 Background

Tasks involving time-series data may exhibit a number of different invariances. We re-
fer the reader to the following paper for an in-depth discussion of types of invariances
present in time-series data [45], but for completeness include a summary of common
invariances in Table 3.1. To exploit these invariances, researchers often turn to neural net-
works. In particular, one-dimensional (1D) convolutional neural networks (CNNs), by
design, efficiently exploit phase invariance. This property, in addition to their computa-
tional efficiency achieved by weight sharing, has led to their successful application to a
variety of tasks involving sequential data [13], [38], [46]–[48], and more specifically clini-
cal time-series data [11], [12], [49], [50]. Recognizing that clinical time-series data exhibit
other types of invariance, beyond phase invariance, we propose augmenting CNNs to
explicitly account for task-irrelevant variation.

In other domains, to exploit invariances researchers either i) augment their training
data by applying a variety of transformations or ii) modify the neural network architec-
ture. The first approach is most popular in domains where it is straightforward to gener-
ate realistic training examples (e.g., natural images). Common image invariances include
rotation, scale, translation and warping. Such transformations are easily applied to ex-
isting images to create additional, realistic training examples. While less common in the
healthcare domain, there have been successful examples of data augmentation for health
data. For example, [51] augmented multivariate time-series data collected from a wear-
able sensor placed on a person’s wrist in order to improve monitoring of patients with
Parkinson’s disease. The authors applied transformations such as noise and rotations, se-
lected based on the task. However, in general it is not straightforward to apply such data
augmentation schemes to clinical data because of the large number of potential invari-
ances. Moreover, clinical time-series data extracted from electronic health records often
consist of high-dimensional data measuring many different aspects of a patient’s health.
This increases the complexity of identifying reasonable transformations and makes a
brute-force search over possible transformations computationally intractable.

Our work is more in-line with the second approach that does not rely on additional
data. Instead, the architectures are modified to exploit a particular invariance [11]–[13],
[46], [52], [53]. For example, in [11] and [12], the authors tackle warping by using multiple
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filter sizes. More specifically, three different sized filters were used to capture a range
of long- and short-term temporal patterns. These different resolutions corresponded to
separate convolutional layers, combined at the final fully connected layer. [13] propose an
additional preprocessing step, in which they resample and smooth their input in order to
capture multiscale patterns and remove noise. Transformed versions of the inputs were
treated as additional channels to the original image. Similar to [11], [12], this method
incorporates a local convolution stage that looks at each type of transformation (none,
smoothing, down-sampling) independently before combining. Both of these works are
geared toward specific invariances, in this case scale invariance, and require the user to
determine the different filter sizes or sampling rates.

Recognizing the difficulty in identifying potential invariances or transformation a pri-
ori, we focus on learning the invariances directly from the data. Our proposed approach
extends work by [54], in which a spatial transformer network is used to learn spatial in-
variances directly from the data. In [54], the parameters of a spatial transformer network
are learned jointly with the parameters of a CNN. The transformer network applies a
learned set of transformations including affine transformations tailored to each input be-
fore passing it through a CNN. Since we focus on clinical time-series, and not images,
we adapt the set of possible transformations. Specifically, our proposed method tack-
les amplitude and offset invariances (which we will refer to as magnitude invariance),
phase invariance, and uniform scale invariance, and learns input-specific transformation
parameters directly from the data. We describe the details of our approach in the next
section.

3.3 Methods

3.3.1 Problem Setup

We consider the application of 1D CNNs to clinical time-series data for predicting a spe-
cific outcome. Formally, given a set of n labeled examples consisting of d features mea-
sured at T time steps (X ∈ Rn×d×T) and the outcome labels y ∈ {0, 1}n, our goal is to
learn a mapping from {x(i)

t }T
t=1 to y(i), where x(i)

t ∈ Rd and i ∈ {1 · · · n} is an index into
the ith sample. The d features may consist of both time-varying and time-invariant data.
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TABLE 3.1: A list of possible invariances summarized from [45]. Any number
or combination of invariances may arise in clinical time-series data, or time-

series data in general.

Invariance Description

Amplitude

A transformation of the amplitude of the time
series. This can occur when the scale or unit of
measurement of two time series differs (e.g., tem-
perature in Celsius vs. Fahrenheit).

Offset

A transformation that uniformly in-
creases/decreases the value of a time series.
For example, two patients may have different
resting heart rates.

Local Scaling (“Warping”)

A transformation that locally stretches or warps
the duration of the time series. Local warping
is often referenced in conjunction with Dynamic
Time Warping (DTW), a good, established mea-
sure of similarity between time series with local
scaling invariance.

Uniform Scaling

A transformation that globally stretches the du-
ration of the time series. For example, when
resting heart rates differ between patients, the
progression of the same temporal pattern may
be consistently slower in one patient versus an-
other.

Phase
A transformation that shifts the start time of a
time series. This occurs in periodic signals such
as heartbeat and blood pressure waveforms.

Occlusion
A transformation that randomly removes data.
This can arise when measurements are irregu-
larly sampled or missing.

Noise

A transformation that adds or removes noise.
For example, many single point sensors are sus-
ceptible to noise that might not be indicative of
the whole body’s condition but indicative of that
sensor’s particular location.
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We represent each feature as a set of T measurements. For time-varying data for which we
do not have a measurement at time t, we carry forward the most recent value. For time-
invariant data, we copy the measurement across all T time-steps as in [36]. Additional
details pertaining to the specific dataset used through our experiments can be found in
Section 3.4.

3.3.2 Sequence Transformer

Applied to time-series data, 1D convolutions inherently capture some invariance in the
data. In particular, CNNs are capable of efficiently handling phase invariance (i.e., the use
of a filter slid along the temporal dimension allows for variability in the starting point
of temporal patterns.) CNNs also handle noise invariance, to a degree. Max pooling
coupled with multiple layers allows the model to smooth the inputs and learn higher-
level abstractions.

However, there are other types of invariances that we would like to consider, in partic-
ular temporal invariance such as scaling, in addition to magnitude invariance related to
the amplitude and offset of the signal. Figure 3.1 shows examples of these types of invari-
ances on a sine wave. Due to the inherent differences between these types of invariances,
we address them separately in the two subsections that follow. For simplicity, in this
section, methods are presented in terms of a univariate signal, but later our experiments
focus on a multivariate application.

Temporal Transformations

To capture invariance related to warping and scaling, we begin by learning to transform
data along the temporal dimension. As in [54], this stage consists of two separate pieces
i) learning the transformation parameters and ii) mapping those transformations in terms
of discrete data points. We discuss each, in turn, below.

Transformation Network. We begin by learning a transformation that takes points from
the original input (i.e., the source) and maps them to a new temporal location in the tar-
get. Since we only consider linear transformations along the temporal axis, we respect
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FIGURE 3.1: Examples of the types of transformations/invariances that can
be learned by a Sequence Transformer Network applied to a sine wave. θ1:
scaling invariance, θ0: phase invariance, φ1: amplitude invariance, φ0: offset
invariance. The dashed line represents the original signal and the blue lines
represent potential transformations of the signal. While CNNs can efficiently
exploit phase invariance, Sequence Transformers can augment other types of

architectures facilitating the capture of other types of invariances.
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the ordering of values, but can stretch, compress, flip and/or shift the signal (across the
temporal axis).

t = θ(i)

(
t′

1

)
=
(

θ
(i)
1 θ

(i)
0

)(t′

1

)
(3.1)

Equation (3.3.2) gives a mapping between the transformed time point t′ and origi-
nal time point t. Given a univariate time-series {x(i)t }T

t=1, t represents the tth position
along the temporal axis of the time-series. We learn a linear temporal transformation
θ(i) ∈ Rn×2 that applies to these indices. Specifically, we generate t′ for t′ = 1, ..., T′. T′

represents the length of the transformed sequence and can be set to any positive integer.
Here, for convenience, we set T = T′. The transformation parameters θ(i) are learned via
a two-layer CNN that is fed inputs {x(i)t }T

t=1. Network architecture details are outlined
in Figure 3.2. Given a particular position, t′, in the target time series, we compute the
corresponding position in the original time series and set xt′ to refer to xt=θ1t′+θ0 .

Discrete Mapping. Since θ1t′ + θ0 for t′ = 1, ..., T′ is not guaranteed to map to a positive
integer (i.e., an index), we require an additional step to apply the learned transformation.
We complete the mapping using linear sampling, in which we take an average over the
two nearest neighbors (one from left, one from the right) weighted by the distance from
the original transformed point.

Magnitude Transformations

In order to adapt to amplitude and offset invariance, we propose an additional learned
transformation, one that is applied to the values instead of the coordinates. Given the

temporally transformed inputs {x(i)
t′
}

T
′

t′=1
, we apply the following linear transformation:

Signals are padded by the last known value so there is no edge case where a point has only one neigh-
bor.
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x
′(i)
t′

= φ(i) · x(i)
t′

=
(

φ
(i)
1 φ

(i)
0

)
·
(

x(i)
t′

1

)
(3.2)

This allows us to shift, flip, stretch, and compress the signal along its magnitude. Since
this transformation applies directly to the values of the signal, we do not require a dis-
crete mapping component. It should be noted that the transformation, φ(i) ∈ Rn×2 is a
function of x, thus it can vary from example to example.

Sequence Transformer

We refer to the temporal transformation combined with the magnitude transformation as
a Sequence Transformer (Figure 3.2). The Sequence Transformer computes both the θ and
φ transformation parameters based on the input and applies them to the signal.
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FIGURE 3.2: The architecture of a Sequence Transformer. Inputs {xt}T
t=1

(shown as univariate for illustration purpose) are fed into a Transformation
Network that outputs transformation parameters θ and φ. Convolutional
and maxpool layers are annotated with the number of outputted channels
(omitted for maxpool), filter size and stride. Fully connected layers (FC) are
annotated with the number of neurons. The temporal transformation is ap-
plied via discrete mapping and the magnitude transformation is applied via
linear transformation. The output {x′t′}T

′

t′=1
represents the transformed in-

puts.
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While we presented this approach in the context of a univariate signal, the technique
generalizes to multivariate signals. In a multivariate setting, the Transformation Net-
work outlined in Figure 3.2 takes as input {xt}T

t=1, where xt ∈ Rd. The Transformation
Network then estimates [θ, φ], based these data and the underlying model parameters.
Although the model parameters are consistent across all examples, the resulting trans-
formation parameters (i.e., θ ∈ Rn×2 and φ ∈ Rn×2) are specific to each example. This
transformation is then applied to all signals in the input (note that temporal transforma-
tions have no effect on time-invariant data, but these signals can still be transformed in a
meaningful way).

3.4 Experimental Setup

In this section, we describe our dataset and prediction task, the baseline CNN architecture
and implementation details.

3.4.1 Dataset & Prediction Task

To measure the utility of the proposed approach on a real dataset, we consider a standard
sequence-level classification task: predicting in-hospital mortality based on the first 48
hours of data collected during an intensive care unit visit. We use data from MIMIC III
[22]. As in [2], we consider adult admissions with a single, unique ICU visit. This excludes
patients with transfers between different ICUs. Patients without labels or observations in
the ICU were excluded, as were patients who died or were discharged before 48 hours.
After applying exclusion criteria, our final dataset included 21,139 patient admissions and
2,797 deaths.

We used the same feature extraction procedure as detailed in [2]. Code to generate
these data are publicly available. For completeness, we briefly describe the feature ex-
traction process here. For each admission, we extracted 17 features (e.g., heart rate, res-
piratory rate, Glasgow coma scale) from the first 48 hours of their ICU visit. We applied
mean normalization and discretization, resulting in 59 features. Sampling rates were set
uniformly to once per hour using carry-forward imputation. Mask features, indicating

https://github.com/YerevaNN/mimic3-benchmarks
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if a value had been imputed resulted in an additional 17 features. After preprocessing,
each example was represented by d = 76 time-series of length T = 48 and a binary label
indicating whether or not the patient died during the remainder of the hospital visit.

Given these data, the goal is to learn a mapping from the features to the probabil-
ity of in-hospital mortality, resulting in a single prediction per patient admission. We
measured performance by calculating the area under the receiver operating characteristic
curve (AUROC) and the area under the precision recall curve (AUPR). We randomly split
the data into training (70%), validation (15%), and testing (15%): 14,681 (1,987 deaths) in
training, 3,222 (436 deaths) in validation and 3,236 (374 deaths) in test. We learned model
parameters and selected hyperparameters using training and validation data and eval-
uated model performance using held-out test data. Specifics on hyperparameter search
are presented in Section 3.4.3. We generated empirical 95% confidence intervals by boot-
strapping the test set.

3.4.2 Baseline CNN Architecture

As a baseline with which to compare, we considered a CNN without any additional Se-
quence Transformer. We compared the discriminative performance of a CNN with origi-
nal inputs to a CNN with inputs transformed via the Sequence Transformer. We referred
to the first method as our Baseline CNN. The second is our proposed method: Sequence
Transformer Networks. The only difference between this baseline and our proposed ap-
proach is the Sequence Transformer (Figure 3.3). Both models feed either the original
or transformed example into a standard 1D CNN. For this CNN, we used the two layer
CNN described in Figure 3.3. The CNN consists of two 1D convolutional and pooling
layers followed by a single, hidden, fully connected layer.

In addition to considering a baseline consisting of no transformations, we also consid-
ered networks that used either i) temporal transformations only or ii) magnitude trans-
formations only. This allowed us to measure the marginal contribution of each transfor-
mation in the Sequence Transformer.
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FIGURE 3.3: The architecture of the CNN. Baseline CNN inputs ({xt}T
t=1)

or Sequence Transformer inputs ({x′}T
′

t′=1
) are fed into a standard CNN that

outputs our in-hospital mortality prediction. Here, the admission indexing
i is omitted for simplicity. Convolutional and maxpool layers are annotated
with the number of outputted channels (omitted for maxpool), 1D filter size
and stride. Fully connected layers (FC) are annotated with the number of

neurons.

3.4.3 Implementation Details

We optimized the following hyperparameters: network depth, number of neurons in the
final fully connected hidden layer, batch size, and dropout rate. We trained twenty mod-
els with randomly selected hyperparameters, for at most 10 epochs. Hyperparameters
were randomly chosen from predefined sets of values. Batch size was randomly selected
from: 8, 15, 30. The rate of dropout was randomly selected from: 0, .1, .2, . . . , .9. We tested
CNN architectures of depth 2, 3 and 4. Finally, the number of neurons in the final fully
connected hidden layer was randomly chosen from: 50, 100, 250 and 500. The settings
that led to the best performance on the validation data are shown in Figure 3.3.

Since these hyperparameters were tuned for our Baseline CNN using the original in-
put, we also considered a model tuned to the transformed signal. The resulting optimal
hyperparameters were largely unchanged, except that we found that a dropout rate of 0.2
(vs. 0.3) worked better for Sequence Transformer Networks. The optimal batch size for
both models was 15.

During model training, we included gradient clipping. This consisted of a reduced
slope from 1 to .01 outside of a reasonable range of transformation parameter values. In
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practice, we set this range to [−2, 2]. We found this implementation detail to be important.
Without it, we witnessed quick increases in the value of the transformation parameters
that led to unrecoverable model states.

3.5 Experiments & Results

We present the performance of the Baseline CNN, which takes as input untransformed
signals as described in Section 3.4.2, vs. Sequence Transformer Networks. We further
break down the Sequence Transformer into its two parts: temporal and magnitude trans-
formations and evaluate their individual contributions. Finally, we investigate the learned
transformations through a series of visualizations and analyze the effect of Sequence
Transformer Networks on intra-class signal similarity. In our experiments, we seek to
answer the following questions:

• Question 1: Are Sequence Transformer Networks able to learn useful transforma-
tions directly from the data? (Table 3.2, Section 3.5.3)

• Question 2: Are the two types of learned transformations (temporal and magnitude)
complementary? (Table 3.2)

• Question 3: What kind of transformations are being learned? (Section 3.5.2)

3.5.1 CNN Baseline vs Sequence Transformer Networks

Our proposed method, Sequence Transformer Networks, outperforms the Baseline CNN,
in terms of both AUROC and AUPR, on the task of predicting in-hospital mortality using
data from the first 48 hours (Table 3.2).

Compared to the Baseline CNN, Sequence Transformer Networks incorporates a sec-
ondary, transformation network. However, the improvement in performance is not due
to the additional complexity of the model. For both models, we tuned the depth of the
CNN architecture. In both cases, the best CNN, determined by validation performance
and presented in the results, had a network depth of 2. Therefore a deeper network alone
is not sufficient for increasing performance.
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TABLE 3.2: Test performance for the task of predicting in-hospital mortality.
Relative to the baseline performance, transforming the input before feeding
it into the CNN results in consistent improvements in both the area under
the receiver operating characteristics curve (AUROC) and the area under the

precision recall curve (AUPR).

Method AUROC (95% CI) AUPR (95% CI)

Baseline CNN 0.838 (0.820, 0.859) 0.445 (0.393, 0.495)
Sequence Transformer Networks 0.851 (0.833, 0.871) 0.476 (0.424, 0.527)

Temporal Transformations Only 0.846 (0.827, 0.867) 0.452 (0.393, 0.500)
Magnitude Transformations Only 0.846 (0.826, 0.867) 0.463 (0.408, 0.516)

(A) (B)

FIGURE 3.4: Sequence Transformer Networks: Temporal Transformations
Only. (a) Visualization of temporal transformation parameters applied to the
test set. Note that θ1 ≥ 0 indicates signal compression, while θ0 ≤ 0 indi-
cates shifting the signal forward in time. (b) A random test patient’s normal-
ized diastolic blood pressure before and after θ transformation (θ1 = 1.19,
θ0 = −0.03). In addition to signal compression and shifting, the network

smooths the signal.
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Since the Sequence Transformer consists of two transformations, we further break
down the performance increase into: temporal transformations and magnitude trans-
formations. In Table 3.2, we see that both types of transformations lead to marginal im-
provements over the baseline. Moreover, their combination appears to be complementary,
though the difference is small.

(A) (B)

FIGURE 3.5: Sequence Transformer Networks: Magnitude Transformations
Only. (a) Visualization of magnitude transformation parameters applied to
the test set. Note that φ1 ≤ 1 indicates signal value compression, while φ0 ≤ 0
indicates a downward shift. (b) A random test patient’s normalized diastolic

blood pressure before and after φ transformation (φ1 = 0.78, φ0 = −0.04).

3.5.2 Learned Temporal and Magnitude Transformations

In this section, we qualitatively explore what the Sequence Transformer has learned. Fig-
ure 3.4 summarizes the transformation learned using a network that employs only tem-
poral transformations. Recall that the transformation depends on the input. Figure 3.4a
shows the empirical distribution of the two temporal transformation parameters (θ1, θ0).
Each point represents a temporal transformation learned for a specific patient admission
in the test set. In this case, most of the data occur around θ1 = 1.19 and θ0 = −0.03. Es-
sentially, the network learns to compress the original signal (θ1 ≥ 1) and shift the signal
forward in time (θ0 ≤ 0) by various degrees. In doing so, the network learns how to align
the time-series data from different patient admissions. Figure 3.4b shows the original and
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the temporally transformed normalized diastolic blood pressure for a randomly selected
patient in the test set. In line with the results shown in the previous figure, the signal
is compressed along the x-axis and shifted forward in time. In Figure 3.4b, though the
signal is moved forward in time, it is not clipped, but rather compressed. This suggests
that θ0 is helping to center the signals. The sudden drop off at θ1 = 2 is most likely due to
the gradient clipping, since that is where it begins to take effect. In addition, we observe
a smoothing effect that is due, in part, to the the linear interpolation.

Figure 3.5, shows the same type of plots as Figure 3.4 but for a network that includes
only magnitude transformations. We observe that the signal is, on average, shifted down
and compressed. Similar to the temporal transformations, the magnitude transformations
help align signals. Amplitude and offset invariances have a clinical significance for many
features in this dataset including blood pressure, heart rate, respiratory rate and temper-
ature. We hypothesize that these transformations help account for different physiological
baselines.

Finally, we visualize the output of the Sequence Transformer, which learns temporal,
amplitude and offset invariances together (Figure 3.6). In Figures 3.6a and 3.6b, each
point represents a transformation learned for a specific patient in the test set. We see that
the network, on average, compresses the signal and shifts it slightly back in time. In the
temporal transformation only network (Figure 3.4), the network shifted signals forward
in time. This suggests that the direction of the shift is less important than the overall
alignment of the different patients. For magnitude transformations, the network on aver-
age compresses the signal and shifts it down. These learned transformation trends align
with the magnitude transformation trends learned separately (Figure 3.5). In Figure 3.6c
we illustrate the transformations applied to a random test patient’s normalized diastolic
blood pressure.

3.5.3 Increasing Intra-Class Similarity

Sequence Transformer Networks have the ability to learn transformations that reduce
label independent variations in the signal. By reducing irrelevant variance, transformed
signals from patients with similar outcomes then appear more similar. We investigate this
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(A) (B) (C)

FIGURE 3.6: Sequence Transformer Networks (a) Visualizations of tempo-
ral transformation parameters applied to the test set. On average, network
compresses and shifts signals backwards in time. (b) Visualizations of mag-
nitude transformation parameters applied to the test set. On average signal
values are compressed and shifted down. (c) The learned network smooths
and shifts the normalized diastolic blood pressure to the left bottom direc-
tion of the frame for a randomly selected patient using the transformations:

θ1 = 1.33, θ0 = 0.14, φ1 = 0.86 and φ0 = −0.05.

property by analyzing the intra-class Euclidean pairwise distance. On each dataset (orig-
inal vs. transformed), we calculated the Euclidean pairwise distance between admissions
labeled positive and the Euclidean pairwise distance between those labeled negative.

The transformed dataset had on average lower pairwise intra-class distances com-
pared to the original (untransformed) data (positive: 28.2 vs. 34.9 and negative: 26.3 vs.
31.8). We hypothesize that this increase in intra-class similarity contributes to the overall
improved discriminative performance of the Sequential Transformer Network over the
Baseline CNN.

3.6 Summary and Conclusions

In this chapter, we proposed the use of an end-to-end trainable method for exploiting in-
variances in clinical time-series data. Building off of ideas first presented in the context of
transforming images, we extended the capabilities of CNNs to capture temporal, ampli-
tude, and shift invariances. In general, such invariances may be task dependent (i.e., may
depend on the outcome of interest or the population studied). Given the large number of
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possible clinical tasks, techniques that automatically learn to exploit invariances based on
the data have a clear advantage over preprocessing techniques.

We demonstrated that this method leads to improved discriminative performance
over the Baseline CNN, on the task of predicting in-hospital-morality from multivariate
clinical time-series data collected during the first 48 hours of an ICU admission. Though
the difference in performance is small, the improvement is evident across both AUROC
and AUPR.

The proposed approach is not without limitation. More specifically, in its current form
the Sequence Transformer applies the same transformation across all features within an
example, instead of learning feature-specific transformations. Despite this limitation, the
learned transformations still lead to an increase in intra-class similarity. In conclusion,
we are encouraged by these preliminary results. Overall, this work represents a starting
point on which others can build off of. In particular, we hypothesize that the ability to
capture local invariances and feature-specific invariances could lead to further improve-
ments in performance. Since publication, more recent work [23] has looked at capturing
local invariances by learning resampling/warping functions directly from the data.
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Chapter 4

Temporal Conditional Shift

4.1 Introduction

Recurrent neural networks (RNNs) capture temporal dependencies between past inputs
x1:t−1 and output yt, in addition to the relationship between current input xt and yt. Their
successful application to date is due in part to their explicit parameter sharing over time
[2], [55]. However, while advantageous in many settings, such parameter sharing could
hinder the ability of the model to accurately capture time-varying relationships, i.e., tasks
that exhibit temporal conditional shift.

In healthcare, temporal condition shift may arise in clinical prediction tasks when the
factors that put a patient at risk for a particular adverse outcome at the beginning of a
hospital visit differ from those that put a patient at risk at the end of their stay. Fail-
ure to recognize conditional shift when building risk stratification models could lead to
temporal biases in learned models; models may capture the average trend at the cost of
decreased performance at specific points in time. This could be especially detrimental to
models deployed and evaluated in real time.

More formally, conditional shift refers to the change in the conditional distribution
P(Y = y|X = x) across tasks. In particular, we consider temporal conditional shift, i.e.,
the setting in which the relationship between x and y is a function of both x and time
(yt = f (x, t; θt)). We hypothesize that RNN’s complete sharing of parameters across time
steps makes it difficult to accurately model temporal conditional shift. To address this,
one could jointly learn a different cell for each time step, but such an architecture may

The following is an adaptation of previously published work [16].
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easily lead to overfitting. More importantly, such an approach does not leverage the fact
that many relationships are shared, at least in part, across time.

Our Approach. On synthetic data, in which we can control the amount of conditional
shift, we explore the trade-offs in performance between models that share parameters
across time versus models that do not. Beyond synthetic data, we illustrate the pres-
ence of temporal conditional shift in real clinical prediction tasks. To tackle this issue, we
propose a novel RNN framework based on a mixture approach that relaxes parameter
sharing over time, without sacrificing generalization performance. Applied to three clini-
cally relevant patient risk stratification tasks, our proposed approach leads to significantly
better performance relative to a long short-term memory network (LSTM). Moreover, the
proposed approach can help shed light on task relatedness across time. Our main contri-
butions can be summarized as follows:

• We formalize the problem setting of temporal conditional shift.

• We illustrate the presence of temporal conditional shift in three clinically relevant
tasks.

• We propose a novel approach for relaxed parameter sharing within an RNN frame-
work.

• We explore situations in which relaxed parameter sharing can help.

In theory, given enough data, RNNs should be able to accurately model relationships
governed by temporal conditional shift. However, oftentimes in clinical applications, we
have a limited amount of data to learn from. Going forward, researchers should check
for the presence of conditional shift by comparing the proposed approach with an LSTM.
If conditional shift is detected, then one may be able to more accurately model temporal
dynamics through relaxed parameter sharing.

In the previous chapter, we looked at exploiting invariances. While invariances and
temporal conditional shift may seem to be contradictory concepts, they are actually com-
plementary. Exploiting invariances can be seen as a preprocessing step where we learn
transformations that better align clinical time series across patients. In the temporal con-
ditional shift problem setting, we assume that the time series are already well aligned
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and instead explore how to model the changing relationship between X and Y within a
sequence.

Organization. The remainder of the chapter is organized as follows. First, we give a
background on temporal conditional shift and existing methods for adapting to this set-
ting. Then, we present methods by which one can relax parameter sharing in LSTMs,
including our proposed approach mixLSTM. Next, we describe our clinical tasks and base-
lines. Finally, we examine the relationship between temporal conditional shift and shared
weights and the benefits of relaxed weight sharing in this context.

4.2 Background

We focus on developing techniques that can handle temporal conditional shift, a type of
data shift that commonly occurs in tasks involving clinical time-series data. There are
two main types of data shift: i) covariate shift and ii) conditional shift. Covariate shift
is the scenario where P(X = x) varies across datasets [56], [57], e.g., the distributions
of patient demographics may differ across study populations. In contrast, conditional
shift, our main focus, occurs when P(Y = y|X = x) changes [15], [58], e.g., two hospitals
may have similar patient populations, but different factors could drive patient risk due
to differences in clinical protocols. In conditional shift, the relationship between input x
and output y has shifted. This can occur independently of a change in population. For
some time, the study of data shift has driven research in the fields of domain adaptation,
transfer learning, and multitask learning [59]–[62].

Methods for dealing with conditional shift are largely driven by the problem setting.
Researchers have explored the use of pre-trained features [63], generalizable representa-
tions [64], [65], and applying importance re-weighting techniques [15]. In contrast to these
works, we focus on techniques for tackling conditional shift in which the shift is driven
by changes in time. In this setting, there is no clear distinction between tasks, because
the change occurs gradually. Though related, this differs from ‘data drift’ (i.e., the setting
in which relationships change longitudinally) since we consider time on a local/relative
scale as opposed to a global/absolute scale [66], [67]. That is, instead of focusing on dif-
ferences between 2018 and 2019, we focus on changes within an admission or a patient.
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Though such local shift is expected to occur [68], [69], it is often overlooked when model-
ing patient risk.

In the linear setting, past work has explored the use of multitask learning to model
the temporal evolution of risk factors within a patient admission, where each day corre-
sponds to a different model, but models are learned jointly [17]. Related, [69] proposed
a variation to Cox regression analysis, studying different time windows separately and
using time specific hazard ratios.

Nonlinear methods designed to explicitly deal with temporal conditional shift have
more recently been explored, focusing primarily on modifications to RNN architectures
[24], [70], especially LSTMs. For example, [24] proposed an extension to LSTMs, Hyper-
network, that relaxes parameter sharing by learning an auxiliary network that sets the
primary network’s parameters at each time step. Specifically, the auxiliary network can
change the primary network’s parameters through a scalar multiplier. Similar to Hyper-
networks, we also consider a variation on the LSTM, in part because LSTMs are com-
monly applied to clinical time-series [2], [28], [36]. However, in contrast to previously
proposed modifications for handling conditional shift, we impose fewer restrictions on
how parameters can be modified at each time step.

Mixture of experts models are commonly used for multitask learning and conditional
computation [71]–[76]. By framing conditional shift as a multitask problem, we can ex-
ploit the large body of work in mixture of experts. [71] proposed a two-step approach in
which first, a hidden Markov model (HMM) learns a segmentation of the time series, so
that each segment is assigned to an expert, and second, the learned experts are mixed at
the segmentation boundaries. [74] stacked experts to form a deep mixture of experts; [75]
mixed the parameters of fully connected layers, stacking them to account for differences
in the training and test sets in audio processing tasks; and [72] learned a gating function
to mix the output of experts in a multitask learning setting. The methods proposed by
[76] are particularly related. The authors learn coefficients for mixing convolution pa-
rameters, increasing parameter sharing across layers of a convolutional neural network
(CNN). Building on these approaches, we investigate the utility of a mixture of LSTMs.
At each time step, we apply the learned mixing coefficients to form a combined LSTM
cell. This facilitates end-to-end learning and allows more than two experts to flexibly
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contribute to any time step’s prediction. Our setting differs from [76] as the mixing coef-
ficients are a) constrained to belong to a simplex, b) learned for each time step instead of
each layer, and c) applied to LSTM cells instead of CNN filters.

4.3 Methods

In this section, we describe extensions to LSTMs that facilitate learning in the presence
of temporal conditional shift. Building off of an LSTM architecture, we present two vari-
ations that relax parameter sharing across time: shiftLSTM and mixLSTM. The first ap-
proach, shiftLSTM, represents a simple baseline in which different parameters are learned
for different time steps (i.e., separate LSTM cells for different time periods). The second
approach, mixLSTM, addresses the shortcomings of this simple baseline through a mixture
approach. But first, we formalize the problem setting of temporal conditional shift and
review the architecture of an LSTM.

4.3.1 Problem Setup - Temporal Conditional Shift & LSTMs

Given time-series data representing patient covariates over time, X = [x1, x2, ..., xT] where
xt ∈ Rd, we consider the task of predicting a sequence of outcomes y = [y1, y2, ..., yT],
where yt ∈ R for t ∈ [1, 2, 3, ..., T]. We consider a scenario in which the relationship
between x1:t and yt varies over time, i.e., yt = f (x1:t, t; θt), where θt represent model
parameters at time t. Because t is measured with respect to a patient-specific fiducial
marker, we restrict ourselves to conditional shift within a patient-specific time scale (e.g.,
within an admission).

In the sequence-to-sequence setting described above, LSTMs take as input time-varying
patient covariates and output a prediction at each time step. Dynamics are captured in
part through a cell state Ct that is maintained over time. A standard LSTM cell is de-
scribed below, where ∗ represents element-wise multiplication. Here, ht and C̃t represent
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shiftLSTM-2

mixLSTM-2
LSTM t1
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(B)

FIGURE 4.1: An illustrative plot comparing LSTM, shfitLSTM, and mixLSTM,
with 4 time steps. Each square denotes an LSTM cell. Cells with the same
color share the same weights. Arrows denote transitions between time steps.
(a) shiftLSTM-2 is similar to an LSTM, except it uses different cells for the
first two time steps compared to the last two. (b) mixLSTM-2 has two inde-
pendent underlying cells, and at each time step, it generates a new cell by
mixing a convex combination of the underlying cells. For illustrative pur-
poses, the weights at each time step are drawn from sequential locations on
the continuum, but in reality, the weight combination is independent of rela-

tive position of the time step.

the hidden state and the update to the cell state, respectively.

it = σ(Wi[ht−1, xt] + bi) (4.1)

C̃t = tanh(Wc̃[ht−1, xt] + bc̃) (4.2)

f t = σ(Wf [ht−1, xt] + b f ) (4.3)

Ct = it ∗ C̃t + f t ∗ Ct−1 (4.4)

ot = σ(Wo[ht−1, xt] + bo) (4.5)

ht = ot ∗ tanh(Ct) (4.6)

ŷt = Wyht + by (4.7)

Importantly, each of the learned parameters W and b in equations (1)-(3), (5) and (7) do
not vary with time. To capture time-varying dynamics, the hidden and cell states (ht, Ct)
must indirectly model conditional shift.
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4.3.2 Relaxed Parameter Sharing in LSTMs

We hypothesize that in settings where the amount of training data is limited – this is
often the case in health applications – an approach that more directly models conditional
shift through time-varying parameters will outperform a standard LSTM. To this end, we
explore two variations on the LSTM: the shiftLSTM and the mixLSTM, illustrated in Figure
4.1.

shiftLSTM - learning abrupt transitions

As a baseline, we consider an approach that naïvely minimizes parameter sharing across
cells, by learning different parameters W (t) and b(t) at each time step t, instead of the
time-invariant parameters in equations (1)-(3), (5), and (7). This mimics a feed-forward
network, with the hidden state and cell state propagating forward at each time step, but
computes the output sequentially. This naïve approach to relaxed parameter sharing as-
sumes no shared relationships across time. As a result, its capacity is significantly greater
than that of an LSTM. Given the same hidden state size, the number of parameters scales
linearly with the number of time steps. We hypothesize that this naïve approach will
result in overfitting and poor generalization, in settings with limited data. To strike a
balance between the two extremes, complete sharing and no sharing, we explore a varia-
tion of this approach that assumes parameters are shared across a subset of adjacent time
steps: shiftLSTM-K.

shiftLSTM-K. This approach sequentially combines K different LSTM cells over time, re-
sulting in different model parameters every dT/Ke time steps (Figure 4.1a). K ∈ {1, ..., T}
is a hyperparameter, with shiftLSTM-1 being no different than an LSTM with complete
parameter sharing, and shiftLSTM-T corresponding to different parameters at each time
step. All parameters are learned jointly using backpropagation.

mixLSTM - learning smooth transitions

As described above, the shiftLSTM approach is restricted to sharing parameters within a
certain number of contiguous time steps. This not only leads to a substantial increase in
the number of parameters, but also results in possibly abrupt transitions. We hypothesize
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that changes in health data, and risk factors specifically, are gradual. To allow for smooth
transitions in time, we propose a mixture-based approach: mixLSTM-K (Figure 4.1b).

mixLSTM-K. Given K independent LSTM cells with the same architecture, let W (k) and
b(k) represent the kth model’s weight parameters from equations (1)-(3), (5) and (7). The
parameters of the resulting mixLSTM at time step t are

W t =
K

∑
k=1

λ
(k)
t W (k), bt =

K

∑
k=1

λ
(k)
t b(k) (4.8)

where λ = {λ(k)
t : t = 1 . . . T, k = 1 . . . K} are the mixing coefficients and each λ

(k)
t

represents the relevance of the kth model for time step t. The mixing coefficients are learn-
able parameters (initialized randomly) and are constrained such that ∑k λ

(k)
t = 1 and

λ
(k)
t ≥ 0. Similar to above, K is also a hyperparameter, but here it can take on any positive

integer value. Note that for every K, all possible shiftLSTM-K models can be learned by
mixLSTM-K.

By mixing models, instead of abruptly transitioning from one model to another, mixLSTM
can learn to share parameters over time. Moreover, though we do not constrain the mix-
ing coefficients to change smoothly, their continuous nature allows for smooth transitions.
We verify these properties in our experiments.

4.4 Experimental Setup

We explore the effects of temporal conditional shift in both synthetic and real data. Here,
we describe i) these datasets, ii) several baselines to which we compare our proposed
approach, and iii) the details of our experimental setup.

4.4.1 Synthetic Data

We begin by considering a scenario in which we can control the extent of conditional shift
in the problem. This allows us to test model performance in a setting where the amount
of temporal conditional shift is known. Specifically, we consider a multitask variation
of the ‘copy memory task’ [77], with input sequence {x1, . . . , xT}, xt ∈ Rd, and output
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sequence {yl+1, . . . , yT}, yt ∈ R (we start generating output once we have accumulated
l values). The output at each time step is some predetermined, weighted combination
of inputs from the previous l time steps, described by two probability vectors, w(l)

t ∈ Rl

and w(d)
t ∈ Rd, which are used for weighting the l time steps and d feature dimensions

respectively. The parameters change gradually at every time step t, such that each time
step’s weighting (or task) is similar to the task from the previous time step. The parameter
δ controls amount of change between temporally adjacent tasks. The generation process
of these parameters is described below, followed by the generation process of the datasets.
Here,

[
xt−l, . . . , xt−1

]ᵀ ∈ Rl×d is the concatenation of the previous l inputs at time step
t. Inputs are generated to be sparse. Renormalize(v) refers to a renormalization process
that ensures the weights in every wt vector are positive and sum to 1. This is done every
time step to ensure that the effect of δ does not diminish as t increases.

Procedure SampleWeights(T, l,
m):

wl+1 ∼ Uniform(0, 1) ∈ Rm

wl+1 = Renormalize(wl+1)

for t ∈ {l + 2, . . . , T} do
∆t ∼ Uniform(−δ, δ) ∈ Rm

wt =

Renormalize(wt−1 + ∆t)

end
return wl+1, . . . , wT

w(d)
l+1, . . . , w(d)

T =
SampleWeights(T, l, d)

w(l)
l+1, . . . , w(l)

T =
SampleWeights(T, l, l)

Procedure SampleData(T, w(l)
l+1:T,

w(d)
l+1:T):
for t ∈ {1, . . . , T},
i ∈ {1, . . . , d} do

zi ∼ Bernoulli(0.1) # for
sparse inputs

xi ∼ Uniform(0, 100)
xt[i] = zixi

end
for t ∈ {l + 1, . . . , T} do

yt =

w(l)
t

ᵀ[
xt−l, . . . , xt−1

]ᵀw(d)
t

end
return {x1, . . . , xT},
{yl+1, . . . , yT}

Our goal is then to learn to predict {yl+1, . . . , yT} based on input from the current and
all preceding time steps. For each δ ∈ {0.0, 0.1, 0.2, 0.3, 0.4}, we generated five sets of
temporal weights, and then used each set to create five different synthetic dataset tasks
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where T = 30, d = 3, and l = 10. These twenty-five tasks were kept the same throughout
experiments involving synthetic data. Train, validation and test sets all had size N =

1, 000 unless otherwise specified.

4.4.2 Clinical Prediction Tasks

In addition to exploring conditional shift in synthetic data, we sought to test our hypothe-
ses using real clinical data from MIMIC-III [22]. Below we describe the three clinical pre-
diction tasks of interest, in addition to their corresponding study populations, patient
covariates, and evaluation criteria.

Outcomes

Throughout the first 48 hours of each ICU visit, we sought to make predictions regarding
a patient’s risk of experiencing three different outcomes: acute respiratory failure (ARF),
shock, and in-hospital mortality, each described in turn below.

ARF. Acute respiratory failure is defined as the need for respiratory support with positive
pressure mechanical ventilation [3], [32]. Onset time of ARF was determined by either the
documented receipt of invasive mechanical ventilation (ITEMID: 225792) or non-invasive
mechanical ventilation (ITEMID: 225794) as recorded in the PROCEDURESEVENTS_MV table,
or documentation of positive end-expiratory pressure (PEEP) (ITEMID: 220339) in the
CHARTEVENTS table, whichever occurs earlier. Ventilator records and PEEP settings that
are explicitly marked as ERROR did not count as an event.

Shock. Shock is defined as inadequate perfusion of blood oxygen to organs or tissues [4],
and is characterized by receipt vasopressor therapy. Onset time of shock was determined
by the earliest administration of vasopressors [78]. Using the INPUTEVENTS_MV table, we
considered the following vasopressors:

• norepinephrine (ITEMID: 221906),
• epinephrine (ITEMID: 221289),
• dopamine (ITEMID: 221662),
• vasopressin (ITEMID: 222315), and
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• phenylephrine (ITEMID: 221749).

Drug administration records with the status of REWRITTEN, incorrect units, or non-positive
amounts/durations did not count towards an event.

In-hospital mortality. As in [2], the time of in-hospital mortality was determined by
comparing patient date of death (DOD column) from the PATIENTS table with hospital ad-
mission and discharge times from the ADMISSIONS table.

Cohort Selection

We considered adult admissions with a single, unique ICU visit. This excludes patients
with transfers between different ICUs. Patients without labels or observations in the ICU
were excluded. Since we are interested in how relationships between covariates and out-
come change over time, we focused our analysis on patients who remained in the ICU for
at least 48 hours. In addition, for ARF and shock prediction tasks, patients who experi-
enced the event of interest before 48 hours were excluded. Using the full 48 hours allows
us to focus on temporal trends that are more likely to be present in longer visits. Table
4.1 shows the number of admissions and positive labels for the three tasks after applying
exclusion criteria.

TABLE 4.1: We considered three clinical prediction tasks. The study popula-
tion varied in size across tasks, as did the fraction of positive cases (i.e., the

portion of patients who experienced the outcome of interest.)

Task Number of ICU admissions (%positive)

ARF 3,789 ( 6.01%)
shock 5,481 ( 5.98%)

in-hospital mortality 21,139 (13.23%)

Data Extraction and Feature Choices

We used the same feature extraction procedure as detailed in [2]. For completeness, we
briefly describe the feature extraction process here. For each ICU admission, we extracted

https://github.com/YerevaNN/mimic3-benchmarks
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17 physiological features (e.g., heart rate, respiratory rate, Glasgow coma scale, see Table
A.1 in Appendix A.1) from the first 48 hours of their ICU visit. We applied mean nor-
malization for continuous values and mapped categorical values to binary features using
one-hot encoding, resulting in 59 features. We resampled the time series with a uniform
sampling rate of once per hour with carry-forward imputation. Mask features, indicating
if a value had been imputed resulted in 17 additional features. After preprocessing, each
example was represented by d = 76 time-series (see Table A.2 in Appendix A.1 for the
complete list of features) of length T = 48 and three binary labels indicating whether
or not the patient developed ARF, developed shock or died during the remainder of the
hospital stay.

Evaluation

Given these data, the goal was to learn a mapping from the features to a sequence of
probabilities for each outcome: ARF, shock or in-hospital mortality. We split the data
into training, validation, and test as in [2]. We used target replication when training the
model [28]. For example, if a patient eventually developed ARF, then every hour of the
first 48 hours is labeled as positive (negative otherwise). We used the validation set for
hyperparameter tuning, and report model performance as evaluated on the held-out test
set. Since we consider a sequence-to-sequence setting, each model makes a prediction for
every hour during the first 48 hours. These predictions were evaluated based on whether
or not at least one prediction exceeds a given threshold. This threshold was swept across
all ranges to generate a receiver operating characteristics curve (ROC) and precision-recall
curve (PR). This resembles how the model is likely to be used in practice. With the goal
of making early predictions, as soon as the real-time risk score exceeds some specified
threshold, clinicians could be alerted to a patient’s increased risk of the outcome. It should
be noted that this differs from the evaluation used in [2] where a single prediction was
made during the 48-hour period. We report performance in terms of the area under the
ROC and PR curves (AUROC, AUPR), computing 95% confidence intervals using 1,000
bootstrapped samples of the test set.
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4.4.3 Baselines for Comparison

In addition to the approaches with relaxed parameter sharing described in the Section 4.3,
we considered a number of baselines, which are described below.

NN. A non-recurrent, feed-forward neural network with one hidden layer. The same net-
work is applied independently at every time step to generate the prediction for that time
step. This model has complete parameter sharing but no recurrent structure to capture
temporal dynamics, and thus is a simpler model than LSTMs and less likely to over-
fit. This model serves as a simple baseline, but highlights the complexity of the tasks in
terms of temporal dynamics.

NN+t. Similar to NN but with an additional input feature x̂t =
t
T ∈ R at every time step,

representing the relative temporal position. Given time as an input, this model has the
capacity to model temporal conditional shift but cannot leverage longitudinal trends.

LSTM. We considered a standard LSTM in which parameters are completely shared across
time. Synthetic tests used the default Pytorch v0.4.1 implementation (torch.nn.LSTM()).
In our experiments on the clinical data, we implemented an LSTM that employed orthog-
onal parameter initialization and layer normalization, in order to match the settings used
in the original HyperLSTM implementation (see below).

LSTM+t. shiftLSTM and mixLSTM intrinsically have an additional signal regarding the cur-
rent time step (captured through the use of time-specific parameters). In order to test
whether this was driving differences in performance, we tested LSTM+t, an LSTM with an
additional input feature x̂t =

t
T ∈ R at every time step, representing the relative temporal

position.

LSTM+TE. Given that positional encoding has recently been shown to provide an advan-
tage over simply providing position [79], we also explored adding a temporal encoding
as additional input features. We used a 24-dimensional encoding for each time step. We
tested encoding sizes of 12, 24, 36 and 48 on the in-hospital mortality task, and found
24 to result in the best validation performance. We calculated the temporal encoding as:
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TE(t,i) = sin
(

t
10000i/24

)
if i is even, and TE(t,i) = cos

(
t

10000(i−1)/24

)
if i is odd, where t rep-

resents the time step and i the position in the encoding indexed from 0.

HyperLSTM. First proposed by [24], this approach uses a smaller, auxiliary LSTM to modify
the parameters of a larger, primary LSTM at each time step. Since the parameters at each
time step are effectively different, this is a form of relaxed parameter sharing. As in the
original implementation, we used orthogonal parameter initialization and layer normal-
ization. The two networks were trained jointly using backpropagation.

4.4.4 Model Training & Implementation Details

The two non-LSTM baselines both used one hidden layer with ReLU activation and a soft-
max nonlinearity at the output layer. Except in the case of the LSTM applied to synthetic
data, LSTM models consisted of single-layer recurrent cells that were orthogonally ini-
tialized followed by a fully-connected layer and a softmax nonlinearity. For experiments
involving synthetic data, to compensate for the lower capacity of the LSTM compared
to mixLSTM and shiftLSTM which have multiple cells, we allowed it to use an additional
layer. Capacity was less of an issue in the experiments involving real data. We tuned the
size of the hidden state(s) in all methods based on validation performance.

We trained all models using the Adam optimizer [80] (Pytorch implementation) with
the default learning rate of 0.001. On synthetic data we aimed to minimize the mean
squared error (MSE) loss, and for the clinical prediction tasks, we aimed to minimize
the cross entropy loss with target replication. We used early stopping based on valida-
tion performance – MSE loss on synthetic data tasks, AUROC on real data tasks – with
a patience of 5 epochs. Models for synthetic datasets were trained with 40 random ini-
tializations/hyperparameter settings for a maximum of 30 epochs. We used a batch size
of 100 and performed a random search over hidden state sizes of {100, 150, 300, 500, 700,
900, 1100}. For learning models on clinical tasks, we used a batch size of 8, because it
was the optimal LSTM batch size setting used in the MIMIC-III benchmark paper on the
in-hospital mortality task [2]. When learning models for ARF and shock, we considered
20 random initializations, and trained for a maximum of 30 epochs. For LSTM models,
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we performed a random search over hidden state and auxiliary hidden states sizes of {25,
50, 75, 100, 125, 150}; for NN and NN+t, we performed a random search over the number
of hidden units in {25, 50, . . . , 1000}. When learning models for in-hospital mortality, we
considered 10 random initializations and trained for a maximum of 10 epochs, in part
because of the larger training set size. For LSTM models on this task, we performed a
random search over hidden state size {100, 150, 300, 500, 700} and the same auxiliary hid-
den state size search as for ARF and shock; for NN and NN+t, we considered the same range
of hyperparameters as for ARF and shock. To facilitate comparisons, the code for all of
our experiments is publicly available online.

4.5 Experiments & Results

We explore the trade-off between temporal conditional shift and shared weights and ex-
amine the utility of relaxed weight sharing in this setting. In our experiments, we seek to
answer the following questions:

• Question 1: What is the trade off between temporal conditional shift and the perfor-
mance of shared weight models (i.e., LSTM)?

• Question 2: Does temporal conditional shift exist in clinical tasks?
• Question 3: Does relaxed weight sharing (i.e., mixLSTM) improve model performance

on tasks with temporal conditional shift?
• Question 4: What time varying relationships are being captured by mixLSTM?
• Question 5: How robust is the performance of mixLSTM when training data is lim-

ited?

4.5.1 Exploring the Effects of Temporal Conditional Shift

Does parameter sharing hinder the ability of an LSTM to capture time-varying rela-
tionships? The data generation process described in Section 4.4.1 allows us to control the
amount of temporal conditional shift present in the task. Specifically, by increasing δ, we
increase the variability between two temporally adjacent tasks. This allows us to test the

https://gitlab.eecs.umich.edu/MLD3/MLHC2019_Relaxed_Parameter_Sharing
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effects of conditional shift on the performance of an LSTM. We hypothesize that because
the LSTM shares parameters over time, it will struggle to adapt to temporal conditional
shift. To test our hypothesis, we compare the performance of an LSTM with shiftLSTM

across a range of δ values (Figure 4.2a). Here, the shiftLSTM approach learns different sets
of parameters for each time step (30 in total). We observe a clear trend: as temporal con-
ditional shift increases, the performance of the LSTM decreases. In contrast, shiftLSTM
results in steady performance across the range of δ. At low δ ∈ {0, 0.1}, the LSTM out-
performs the shiftLSTM in terms of MSE on the test set. In this experiment, we limited
the amount of training data to 1,000 samples. Theoretically, given enough training data,
LSTM should be capable of accurately modeling time-varying relationships. To verify
this, we show that the test loss associated with the LSTM models approaches zero as the
training set size increases (Figure 4.2b). These results support our initial hypothesis that
in settings with limited data, temporal conditional shift negatively impacts LSTM perfor-
mance and that this impact is in part due to the sharing of parameters.

Is there any evidence of time-varying relationships in the three clinical prediction tasks
of interest? We tested for the presence of temporal conditional shift in three clinical pre-
diction tasks: ARF, shock, and in-hospital mortality. For these tasks, the underlying pa-
rameters that govern the amount of temporal conditional shift (e.g., δ) are unknown. In-
stead, we indirectly measure temporal conditional shift by applying shiftLSTM-K vary-
ing K from {1, 2, 3, 4, 8, 48}, where K = 1 is a standard LSTM, and K = 48 implies a
different set of parameters for each time step. Increasing the number of cells or K reduces
sharing. As the difference between sequential tasks increases, we expect the benefit of
learning different LSTM cells (less parameter sharing) to increase. Empirically, we ob-
serve that less parameter sharing results in better performance (Figure 4.3). This supports
our hypothesis that architectures for solving clinical prediction tasks could benefit from
relaxed parameter sharing.

4.5.2 Comparing the Proposed Approach to Baselines

In this section, we explore the performance of the proposed approach, mixLSTM, relative to
the other baselines. Again, we hypothesize that it will outperform the other approaches
due to a) smooth sharing of parameters and b) the ability to learn which cells to share.
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FIGURE 4.2: (A.1): LSTM performance decreases as conditional shift in-
creases. With increasing conditional shift, the time-varying architecture out-
performs the LSTM, suggesting that parameter sharing hurts LSTM perfor-
mance. (A.2) mixLSTM bridges the performance tradeoff between LSTM and
shiftLSTM. As conditional shift increases, mixLSTM’s ability to relax param-
eter sharing helps it increasingly outperform LSTM. By assuming that tasks
are unique but related it outperforms shiftLSTM. (B) This issue is only appar-
ent when training data are limited; LSTMs can adapt to temporal conditional
shift given enough training data. Error bars represent 95% confidence inter-

vals based on bootstrapped samples of the test set. δ was set to 0.3.
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FIGURE 4.3: As we increase parameter sharing by increasing T/K along the
x-axis, there is a drop in performance, supporting our hypothesis that tem-
poral conditional shift is present in our real data tasks. Error bars represent

the interquartile ranges based on bootstrapped samples of the test set.
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mixLSTM strikes a balance between complete parameter sharing (LSTM) and no parameter
sharing (shiftLSTM-48). In addition, compared to shiftLSTM, mixLSTM can share parame-
ters between distant time steps and learns how to accomplish this.

How does the proposed approach perform on synthetic data? mixLSTM has the abil-
ity to continuously interpolate between K independent cell parameters. In this instance,
mixLSTM-2 has 15 times fewer parameters relative to shiftLSTM-30. On the synthetic data
tasks, mixLSTM consistently outperforms shiftLSTM at all levels of temporal shift (Figure
4.2a). Moreover, mixLSTM outperforms LSTM at low δ, except when no temporal shift ex-
ist. This agrees with our intuition that smart sharing is better than no sharing (shiftLSTM)
and indiscriminate sharing (LSTM).

TABLE 4.2: Performance on ARF, shock, & mortality with 95% confidence in-
tervals. Though the differences are small, mixLSTM consistently outperforms
the other approaches across all tasks in terms of both AUROC and AUPR.

The number of test samples for each task is reported in parentheses.

ARF shock mortality
Model (n=549) (n=786) (n=3,236)

AUROC AUPR AUROC AUPR AUROC AUPR

NN 0.57 [0.45, 0.67] 0.05 [0.03, 0.10] 0.60 [0.52, 0.68] 0.08 [0.05, 0.12] 0.80 [0.77, 0.82] 0.39 [0.34, 0.44]
NN+t 0.58 [0.46, 0.68] 0.06 [0.03, 0.11] 0.56 [0.47, 0.64] 0.10 [0.05, 0.19] 0.79 [0.77, 0.82] 0.38 [0.33, 0.43]
LSTM 0.47 [0.35, 0.58] 0.04 [0.02, 0.07] 0.59 [0.49, 0.69] 0.09 [0.05, 0.16] 0.80 [0.78, 0.83] 0.39 [0.33, 0.43]
LSTM+t 0.42 [0.30, 0.54] 0.04 [0.02, 0.07] 0.62 [0.53, 0.70] 0.08 [0.05, 0.15] 0.81 [0.79, 0.83] 0.41 [0.36, 0.47]
LSTM+TE 0.48 [0.35, 0.61] 0.05 [0.03, 0.10] 0.60 [0.50, 0.69] 0.10 [0.06, 0.20] 0.82 [0.80, 0.85] 0.43 [0.38, 0.48]
HyperLSTM 0.57 [0.44, 0.68] 0.06 [0.03, 0.10] 0.63 [0.54, 0.72] 0.08 [0.05, 0.12] 0.82 [0.80, 0.84] 0.42 [0.37, 0.47]
shiftLSTM 0.61 [0.49, 0.70] 0.10 [0.03, 0.21] 0.61 [0.52, 0.70] 0.09 [0.05, 0.16] 0.81 [0.79, 0.84] 0.43 [0.37, 0.48]
mixLSTM 0.72 [0.62, 0.80] 0.15 [0.06, 0.27] 0.67 [0.58, 0.76] 0.10 [0.06, 0.16] 0.83 [0.81, 0.85] 0.45 [0.40, 0.50]

How does the proposed approach perform on the clinical prediction tasks? Applied to
the three clinical prediction tasks (with varying amounts of training data), mixLSTM con-
sistently performs the best (Table 4.2). The NN and NN+t models are simpler architectures
that outperform other LSTM-based baselines only under very low data settings (ARF).
Compared to the LSTM baseline, LSTM+t and LSTM+TE performed better given sufficient
training data, suggesting that having direct access to time either as a feature or a tempo-
ral encoding is beneficial. Relaxing parameter sharing further improves performance. As
shown earlier, shiftLSTM consistently improves performance over the standard LSTM.
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HyperLSTM, similar to mixLSTM, bridges the dichotomy of completely shared and
completely independent parameters, and outperforms both LSTM and shiftLSTM in some
cases but not consistently. mixLSTM outperforms all other baselines on all three tasks,
though the differences are not statistically significant in all cases. Both HyperLSTM and
mixLSTM achieve high performance and both models relax parameter sharing. This sup-
ports our hypothesis that relaxed parameter sharing is beneficial in some settings.

In these experiments, we selected K for each task based on validation performance,
testing K ∈ {2, 3, 4, 8, 48} for shiftLSTM and sweeping K from 2 to 4 for mixLSTM. For
shiftLSTM, K represents the optimal number of sequential tasks to segment the input
sequence into; the best K = 2, 2, 8 for ARF, shock, and mortality respectively. For mixLSTM,
K indicates the optimal number of operational or characteristic modes in the data; the best
K = 4, 4, 2, respectively. It appears that for shiftLSTM, the chosen K is correlated with
the amount of training data available. Both ARF and shock have significantly smaller
training set sizes compared to mortality. In contrast, mixLSTM learns more cells for ARF
and shock. This suggests that the structure of mixLSTM is better suited to the problem
setting than shiftLSTM, since it is able to train twice as many cells as shiftLSTM and
attain a higher test performance. The converse also supports this claim. mixLSTM is able to
train 1

4 the number of cells as shiftLSTM for mortality and still attain better performance.
The optimal K for mixLSTM appears to be less indicative of training set size, and more a
reflection of the true number of operational or characteristic modes in the data. When we
visualize the mixing ratios learned by mixLSTM-2 in later sections (Figure 4.5) we see that
while mortality smoothly interpolates between cell1 and cell2 as time passes, ARF and
shock both display an initial peak followed by a gradual interpolation. This suggests that
the dynamics are more complex for ARF and shock.

4.5.3 Robustness and Sensitivity Analyses

In this section, we further analyze mixLSTM, focusing on its robustness in settings when
training data are limited and investigate what it has learned in terms of mixing trends
and changing feature importance.
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Performance with Limited Training Data

Does the proposed approach still perform well when training data are limited? We
hypothesized that mixLSTM will continue to outperform LSTM, even when training data
are limited because mixLSTMs are better suited to problem settings exhibiting temporal
conditional shift. To test our hypothesis, we compared the performance of mixLSTM-2
and LSTM trained using different training set sizes for the task of predicting in-hospital
mortality. We chose to focus on the task of in-hospital mortality, since it had the most
training data (training set size = 14, 681). We subsampled the training set repeatedly for
N ∈ {250, 500, 2000, 5000, 8000, 11000}. The test set was held constant across all experi-
ments and K = 2 to limit the capacity of the model. mixLSTM consistently outperforms
LSTM across all ranges of training set sizes (Figure 4.4). As one might expect, differences
are subtle at smaller training set sizes, where an LSTM with complete parameter sharing
is likely more sample efficient and therefore more competitive.
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FIGURE 4.4: mixLSTM-2 is consistently better than LSTM at different training
set sizes. Error bars represent 95% confidence intervals bootstrapped from

the test set.

What has mixLSTM learned?

To dive deeper into what exactly the mixLSTM has learned, we visualize the learned mix-
ing coefficients and the most important features.
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Are mixLSTM’s learned mixing coefficients smooth? In our learning objective function,
mixLSTM’s mixing coefficients are not constrained to be smooth. However, we hypothe-
size that this behavior reflects the underlying dynamics in clinical data. Figure 4.5 plots
the mixing coefficients (λ(1)) over time for mixLSTM-2 on the three clinical prediction tasks.
Since there are only two independent cells (K = 2), we can infer λ(2) = 1− λ(1). The trend
indicates that one cell captures the dynamics associated with the beginning of a patient’s
stay, while the second cell captures the dynamics 48 hours into the stay.
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FIGURE 4.5: Visualization of the mixing coefficients learned by mixLSTM-2.
λ(1) is shown on the y-axis, while λ(2) can be inferred (λ(2) = 1− λ(1)). Al-
though not constrained to be smooth, we observe a smooth transition of mix-
ing coefficients between time steps, indicating that one cell is specialized for
the beginning of a patient’s ICU stay while the other is specialized for 48

hours into the ICU stay.

Does explicitly smoothing the mixing coefficients help? Based on patterns displayed in
Figure 4.5, we hypothesized that additional smoothing of the mixing coefficients could
aid classification performance. To test this hypothesis, we applied regularization based on
a similarity measure between models at consecutive time steps. Following [76], we used
the normalized cosine similarity as the similarity measure. For consecutive time steps t
and t + 1, this similarity score is st =

〈λt,λt+1〉
‖λt‖2‖λt+1‖2

where λt := [λ
(1)
t , · · · , λ

(K)
t ]. Denoting

L as the original loss function and α ∈ R+ as the regularization strength, we minimize
the regularized objective LR := L− α ∑T−1

t=1 st to encourage temporal smoothness.
Figure 4.6 illustrates the effect of temporal smoothness regularization on the model for

the mortality task. As expected, larger regularization strength encourages models to share
parameters. However, test performance drops monotonically as α increases. Additional
regularization likely results in lower model complexity and in some settings underfitting.
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Our result aligns with [76] in that while smoothness in patterns naturally arises, explicitly
encouraging smoothness through regularization hurts performance.
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FIGURE 4.6: Visualization of the mixing coefficients learned by mixLSTM-2
with different regularization strengths for the mortality task. λ(1) is shown
on the y-axis. λ(2) can be inferred (λ(2) = 1−λ(1)). As regularization strength
increase, mixing coefficients become smoother at the cost of lower perfor-

mance.

What time-varying relationships does the mixLSTM learn to recognize? When attempt-
ing to understand which features drive a model’s predictions, the focus is often put on
the importance of certain features. However, because mixLSTM was designed to and has
been shown to excel in situations with temporal conditional shift, we focus on identifying
the features whose influence changes over time. To identify such features, we must first
measure the effect of each feature at each time step. Here, we use the input gradient as
a proxy for feature importance and visualize importance over time [81]–[83] (Figure 4.7).
More specifically, we traversed the test set, accumulating the input gradient with respect
to the target class. One of the most noticeable patterns is the large amount of variation in
feature importance in the first 6 hours of an ICU admission. This pattern is most apparent
for the task of predicting shock (Figure 4.7b). This may reflect the significant physiologi-
cal changes a patient may experience at the beginning of their ICU stay as interventions
are administered in an effort to stabilize them.

We list the continuous features ranked by importance in Table 4.3. Feature importance
was calculated by summing importance over time and taking the absolute value. Here
positive importance values are associated with increased risk, while negative importance
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FIGURE 4.7: Input gradient based saliency map of mixLSTM-2 on three tasks.
Each plot shows a proxy of importance of each feature across time steps.
Some noticeable temporal patterns include high variability during the first
six hours, which may be a reflection of increased physiological change a pa-
tient may experience at the beginning of their ICU stay when interventions

are more frequent.

values are associated with protection. The color scheme reflects the overall direction of
association and the change over time. Dark red and dark green represent ‘risk’ and ‘pro-
tective’ factors that lead to increased and decreased risk over time, respectively; that is,
their effects become amplified over time. Light red and light green represent ‘risk’ and
‘protective’ factors that lead to decreased and increased risk over time, respectively; that
is, their effects diminish over time. For example, in all three tasks, ‘fraction of inspired
oxygen’ (indicative of whether or not a patient is on supplemental oxygen) is a risk factor
initially, and becomes more important over time. This suggests that if a patient is still on
high levels of oxygen 48 hours into their ICU admission, their risk is elevated for all three
outcomes. For ARF and shock a similar pattern holds for heart rate, where sustained
high heart rate is associated with greater risk over time. This suggests that some features,
when persistently abnormal, further amplify a patient’s risk.

It is important to note that interpreting neural networks, and LSTMs in particular,
remains an open challenge. Though the approach considered here is frequently used
for interpreting LSTMs, it relies on the local effect of a feature and thus ignores the global
trends [83]–[85]. Moreover, these methods merely identify associations and not causation.

Given the limitations of using input gradients to model the importance of discrete
features, we also investigated feature importance using a permutation based sensitivity
analysis [86], [87]. In the test set, we randomly permuted each covariate at each spe-
cific time period and measured predictive performance. By permuting each covariate in
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TABLE 4.3: Physiological data ranked by overall importance as identified by
mixLSTM-2 on ARF, shock, and mortality using input gradient. The table is
color coded. Light red denotes features that are initially risk factors, where
risk decreases over time. Dark red denotes features that are initially risk fac-
tors, but where risk increases over time. Light green denotes features that are
initially protective, but become less protective over time. Dark green denotes
features that are initially protective, and becomes more protective over time.

ARF shock mortality

pH Respiratory rate Respiratory rate
Oxygen saturation Height Heart Rate
Weight Mean blood pressure Glucose
Respiratory rate Heart Rate Fraction inspired oxy-

gen
Fraction inspired oxy-
gen

Fraction inspired oxy-
gen

Height

Heart Rate pH Weight
Height Weight Systolic blood pressure
Glucose Glucose pH
Systolic blood pressure Oxygen saturation Mean blood pressure
Mean blood pressure Systolic blood pressure Diastolic blood pressure
Temperature Diastolic blood pressure Oxygen saturation
Diastolic blood pressure Temperature Temperature

turn, we destroy any information that a particular covariate provides. If performance
then drops significantly relative to a non-permuted baseline, we conclude the feature was
important. To prevent correlated variables from leaking information, we simultaneously
permuted variables with a correlation coefficient ≥ 0.95. We permuted grouped features
within periods of 12 hours to encourage consistency of perturbation along time. Fig-
ure 4.8 plots this measure of feature importance over time. Overall, we observe similar
trends to the input gradient analysis. In addition to there being greater variability in the
first part of the visit, we also observed significant changes in the importance of certain
features (measured by sum of importance across time). For example, for the task of pre-
dicting in-hospital mortality, respiratory rate is initially the most important feature, but
then temperature becomes more important as the patient state evolves. For ARF, a vari-
able pertaining to the Glasgow coma scale is initially most important, before yielding to
respiratory rate.
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FIGURE 4.8: Permutation based saliency map of mixLSTM-2 on three tasks.
Each plot shows AUROC degradation for permuting a feature. A larger de-
crease in AUROC means that the feature is more important with respect to
the prediction task. Some noticeable temporal patterns include an increased
variability during the first 12 hours which may be a reflection of increased
physiological change a patient may experience at the beginning of their ICU

stay when interventions are more frequent.

4.6 Summary and Conclusions

In this work, we present and explore the issue of temporal conditional shift in clinical
time-series data. In addition, we propose a mixture of LSTM model (mixLSTM) and demon-
strate that it effectively adapts to scenarios exhibiting temporal conditional shift, consis-
tently outperforming baselines on synthetic and clinical data tasks. We also show that the
mixLSTM model can adapt to settings with limited training data and learns meaningful,
time-varying relationships from the data.

While mixLSTM achieves consistently better performance on all tasks considered, we
note some important limitations. First, we only considered fixed-length datasets. It would
be beneficial to compare LSTM and mixLSTM’s ability to generalize to variable length data.
Second, our features are largely physiological (e.g., heart rate, temperature). We hypoth-
esize that other types of features such as medications may exhibit stronger time-varying
relationships. Third, while it is reasonable to set time zero as the time of ICU admission,
patients are admitted to the ICU at different points during the natural history of their ill-
ness. Future work should consider the alignment of patient time steps (e.g., learning an
optimal alignment prior to applying mixLSTM).
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Despite these limitations, our results suggest that temporal conditional shift is an im-
portant aspect of clinical time-series prediction and future work could benefit from con-
sidering this problem setting. Our proposed mixLSTM presents a strong starting point from
which future work can build off of.
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Chapter 5

Exploring Class Imbalance Driven Low
Homophily

5.1 Introduction

In modeling the spread of infectious disease, information about interactions among in-
dividuals is critical. However, the probability of a transmission event can depend on a
complex combination of several factors including: incubation period of the disease, prox-
imity of the interaction, duration of the interaction, among others [89]–[92]. In many
cases, it can be difficult to precisely model such complex relationships, especially when
aspects of the disease (e.g., incubation period) are unknown or vary. Thus in this paper,
we explore a data-driven approach to the problem of predicting transmission events in
which we leverage graph neural networks (GNNs). GNNs take as input networks that en-
code potential pathways for transmission (i.e., interactions) and information about who
is known to be infected. From these data GNNs aim to learn patterns of transmission.
Specifically, GNNs transform input data in the form of a graph into learned node rep-
resentations that summarize meaningful aspects of that node’s neighborhood [40], [93].
While they have proven useful across a number of domains [19], their application in the
context of modeling transmission dynamics in infectious disease has been limited [94]–
[96].

Common GNN architectural choices such as using weighted averaging for aggrega-
tion, rely on an assumption that the problem exhibits high homophily: connected nodes

The following is an adaptation of a workshop paper [88].
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are more likely to share similar outcomes (or labels) than unconnected nodes [19], [20].
When tasks instead exhibit low homophily (e.g., the WebKB dataset, which includes uni-
versity websites and the hyperlinks between them) GNNs fail to leverage the network
[97]. In such settings, GNNs are often outperformed by models that ignore the network
and only rely on node features [20]. In light of these limitations, researchers have recently
proposed a number of variations to the GNN architecture that specifically address the
issue of low homophily [20].

However, in modeling the spread of infectious disease, many infectious diseases tend
to have relatively low incidence rates with respect to the general population (e.g., 0.026
per 1000 hospitalized people in the case of hospital associated methicillin resistant Staphy-
lococcus aureus (MRSA) [98]). This leads to an interesting dichotomy where there is high
homophily on average, but low homophily with respect to the minority class. Most
nodes are uninfected and are connected to other uninfected nodes (i.e., high homophily).
However, even infected nodes are likely to be connected to uninfected nodes due to the
sheer number of uninfected nodes and the low probability of transmission (resulting in
low homophily with respect to minority infected class). While such tasks exhibit high ho-
mophily on average, we hypothesize that applying a generic GNN in such settings will
result in the same pitfalls of applying a generic GNN to a low homophily task. More-
over, given the potentially complex relationship among nodes and transmission events,
we require a GNN with a wide receptive field. The larger the receptive field, the more
neighbors and more interactions that are considered as potential transmission pathways.
However, this often translates into increased model depth or additional pooling or ag-
gregation, which can further exacerbate the negative repercussions of violating the ho-
mophily assumption.

Our Approach. Given that our task differs from the general low homophily setting, we
do not expect recently proposed architecture variations to apply. Thus, we propose an
attention-based solution to address the type of low homophily arising from class imbal-
ance. Self-attention can be used to learn the importance of any neighboring pair of nodes
with respect to a prediction task. Graph attention networks use this learned importance
to inform which neighboring nodes should most influence an ego node’s representation
[21]. We hypothesize that this will lead to improved performance in the presence of class
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imbalance by allowing the network to focus on the few but highly important infectious
individuals. Beyond addressing the issue of low homophily due to class imbalance, to
gain a deeper understanding of the scenarios in which GNNs can learn accurate data-
driven definition of transmission events, we evaluate the learned representations across
several different tasks based on synthetic networks. Our contributions are as follow:

• We present a graph-based prediction task focused on estimating exposure to and
transmission of infectious disease that exhibits high homophily overall, but low ho-
mophily in the minority class.

• We demonstrate the failure of generic GNNs in such settings.

• We compare the ability of an attention-based mechanism to address the class imbal-
ance driven low homophily problem to recently proposed solutions.

• We demonstrate that GNNs are able to learn useful representations for predicting
transmission events in both real clinical data and across a variety of synthetic net-
works.

Organization. The remainder of the chapter is organized as follows. First, we give a
background on modeling disease transmission and graph neural networks. Then, we
present our problem setting and the attention mechanism along with other GNN vari-
ants that have been proposed to deal with low homophily. Next, we describe our syn-
thetic and clinical datasets and evaluation details. Finally, we present results on clinical
and synthetic data, comparing different methods of handling low homophily as well as
comparing a data-driven graph based approach to learning transmission dynamics to an
expert-defined notion of colonization pressure.

5.2 Background & Related Work

Here, we review relevant background and related work, highlighting differences with our
work. First, we describe how exposure to infectious pathogens is commonly modeled in
the literature and second, we describe GNNs and some of the known shortcomings.
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5.2.1 Modeling Disease Transmission

Accurately modeling the transmission of infectious diseases in a hospital setting is a com-
plex task. There are many ways an infectious disease can be transmitted in a hospital.
Common vectors include patients, healthcare workers and the physical environment [89],
[90]. There is evidence that pathogens can linger in the environment for extended periods
of time [91], [92]. In addition, not all human spreaders are necessarily symptomatic [99].

To date, researchers commonly model transmission events based on exposure to the
pathogen. Exposure is often estimated at a population or aggregate level [100]–[102].
However, by definition, this ignores the specific interactions an individual has with those
around them. Another popular estimation method relies on the concept of colonization
pressure [17], [42], [103]–[106]. Colonization pressure approximates a patient’s expo-
sure to an infectious pathogen as a function of the proportion of known infected pa-
tients/patient days within a specific location over a period of time. E.g., one might
compute the colonization pressure of a given unit as the proportion of infected patients
identified within that unit during the preceding t days, where t can vary. Although it
is generally accepted that colonization pressure is correlated with patient risk and has
been shown to be a transmission risk factor [104], [105], how long an infected patient
contributes to the colonization pressure of a unit can vary [103].

Because information about the incubation period of an infection, prevalence of la-
tent spreaders, etc., may be unknown [107], we consider a data-driven solution that does
not rely on such assumptions. Along these lines, prior work has proposed techniques
for identifying asymptomatic but colonized spreaders resulting in better estimates of ex-
posure [108]. However, it is limited to capturing transmission pathways that occur via
co-location at the same time step. This simplifies the spatiotemporal complexity of the
problem and ignores pathways such as transmission by neighbors of neighbors or trans-
mission via lingering pathogens in the hospital environment. Thus, in contrast to prior
work that has made restrictive assumptions in approximating exposure and estimating
transmission events, we aim to directly estimate the transmission dynamics from a graph
of patients and locations using GNNs. However, the application of GNNs is not straight-
forward because in many cases most of the individuals in a population will not become
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infected (i.e., healthcare-associated infections are relatively rare). For example, gastroin-
testinal infections caused by Clostridioides difficile, one of the most common healthcare as-
sociated infections, are associated with an incidence of approximately 1% or less in large
hospitals [42], [109].

5.2.2 Graph Neural Networks (GNNs)

GNNs are a type of neural network that takes graphs as inputs and outputs a low-
dimensional, learned representation that captures relevant network structures at the graph,
node or edge level [21], [40], [93], [110]. When broken down to its fundamental mechan-
ics, a GNN consists of two basic steps: i) representing the relationship between neigh-
boring nodes and ii) aggregating these representations (e.g., averaging) to update each
node’s representations [111]. This is repeated at each layer of the network resulting in
increasing levels of abstraction and larger receptive fields. Unlike other popular node
embedding techniques that incorporate random walks [112]–[114], GNNs do not rely on
random sampling, thus eliminating the possibility of missing an influential neighbor due
to chance.

However, to date, GNNs have largely been evaluated on tasks that exhibit high ho-
mophily. Furthermore, many benchmark tasks tend to be well balanced in terms of class
and GNNs can achieve decent performance using shallow models (3-4 layers). E.g., in
the Open Graph Benchmark [115] 75% of their binary node classification tasks (ogbn-
proteins) have a class balance greater than 7% and the benchmark analysis GNNs have
default depths of 2-3. This is not representative of the infectious disease setting where we
have higher class imbalance and potentially require large receptive fields to capture all
transmission pathways.

GNN performance is known to degrade in the presence of high class imbalance or
when increasing depth [20], [116], [117]. In general, class imbalance can bias the loss
function towards the majority class [118]. This is also true of GNNs. However, class im-
balance can also bias a GNN’s learned embeddings to overfit to the majority class nodes
due to architectural choices that assume high homophily tasks. Furthermore, as GNN
model depth increases, model training is known to suffer from vanishing gradient and
learned representations from oversmoothing. Oversmoothing is the phenomena where
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with increasing model depth, the learned representations of connected nodes will con-
verge to similar values [117]. Class imbalance can also affect prediction performance
through oversmoothing, as the converged representation will be more representative of
the majority class.

Recently, researchers have proposed approaches that address problems exhibiting low
homophily [20]. Simple modifications such as skip connections, residual connections and
using higher order neighborhoods can outperform existing popular models on tasks with
low homophily. Moreover, they conclude that such approaches outperform attention-
based mechanisms since they specifically deal with low homophily. In contrast, we hy-
pothesize that such approaches will not address low homophily when it arises in only
the minority class but propose a simple attention-based mechanism as a solution. We
formalize our problem setting and test this hypothesis in the sections that follow.

5.3 Methods

We consider the problem of estimating transmission events given information about in-
dividuals and their interactions. This corresponds to a task with high homophily overall,
but low homophily with respect to the minority class. We formalize our problem setup
and notation and then present details of a simple attention mechanism to address the
issue of class imbalance driven low homophily.

5.3.1 Problem Set Up & Notation

Given date time-stamped information pertaining to where patients are located in the hos-
pital and who is currently infected, we aim to estimate patient exposure and predict trans-
mission events (i.e., if and when a patient is exposed to enough of an infectious pathogen
that they themselves will develop an infection). We represent interactions among patients
and locations in a hospital using a graph G = (V , E), composed of a set of nodes V and
undirected edges E ⊆ V ×V . The graph is heterogeneous in that its nodes can correspond
to either patients or locations in the hospital, and its edges can represent either temporal
or spatial connections. We describe both V and E in the paragraphs that follow.
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Nodes (V): Each node v ∈ V represents a patient or location on a specific day: V =

{P ∪ L} where P is the set of nodes pertaining to patients indexed by i = 1, ..., P and
t = 1, ..., T and L is the set of nodes pertaining to locations indexed by j and t where
j = 1, ..., L and t = 1, ..., T. Here P and L are the number of patients and locations,
respectively and T represents the total number of time steps represented by the graph. L
includes location nodes repeated at each time point t. In contrast, P includes only patients
corresponding to the days in which the patient was in the hospital. Thus, |L| = LT
whereas |P| ≤ PT. We refer to the total number of nodes |V| = n.

For each patient node p ∈ P we have a corresponding feature vector, xp ∈ Rdpatient .
And for each location node l ∈ L, we have a corresponding feature vector xl ∈ Rdlocation .
These feature vectors encode information such as the node type (e.g., patient or location),
the time step, and current known infection status. To simplify implementation, we rep-
resent the feature vectors in the same d-dimensional space, in which redundant features
are removed and features that are specific to patients are set to zero for locations and vice
versa.

Edges (E ): Edges connect pairs of nodes. Depending on the type of node, edges cor-
respond to either ‘spatial’ connections or ‘temporal’ connections. Spatial edges exist be-
tween patient and location nodes and denote the presence of patients in a location and
(i.e., (pt, lt) ∈ E ) if the patient associated with node pt is in the location associated with
node lt at time t. Temporal edges connect nodes associated with the same entity (be it
a patient or location), over consecutive time steps: ∀p and l, (pt, pt+1), (lt, lt+1) ∈ E pro-
vided that pt+1, lt+1 ∈ V .

Neighborhoods (N(v)): Let u− v denote a sequences of nodes u = u1, u2, ..., uk = v
such that for every i ∈ {1, ..., k− 1}, (ui, ui+1) ∈ E . We define a neighborhood centered at
ego node v as the subset of nodes for which there exists a path to the ego node: N(v) =
{u|u− v ∈ E}. More specifically, we denote neighborhoods of varying locality (Nm(v))
as subsets of N(v) where there exists a path of length m between member node u and ego
node v. We represent neighborhoods using a neighborhood matrix Am, where entry u, v,
of the matrix is equal to 1 if u ∈ Nm(v) and equals zero otherwise. In the case m = 1, A1

is simply the adjacency matrix.
Outcome: We are interested in estimating if and when a patient is exposed to an in-

fectious pathogen such that transmission occurs. We frame this as a binary prediction task
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in which each patient is either exposed and experiences a transmission event or does not,
at each time step (yp ∈ {0, 1}). Once infected, a patient stays infected, therefore only one
label is necessary per patient. In observational data, we often have to use the proxy of
infection to determine if exposure resulted in transmission. In the case of synthetic data,
we have ground truth information pertaining to transmission and know exactly when ex-
posure resulted in transmission. We consider a dataset in which we observe patients for
T time steps, during which a subset of patients are exposed and subsequently become in-
fected. A patient node pt is labeled y = 1 if the patient becomes infected at that time step
t and labeled zero otherwise. We assume that y is a function of the features associated
with the nodes of that individual’s neighbors (which include neighbor infectious status)
for some definition of neighborhood.

Prediction Task: Given a graph G, we learn a mapping f : G → {0, 1}|P|. f takes
as input the design matrix X ∈ Rn×d where each row corresponds to a feature vector
associated with a different node and the neighborhood matrix Am ∈ {0, 1}n × {0, 1}n.
Where m, the locality of the neighborhood is determined by the user but is most typically
set to 1. Given these inputs, f outputs a P-dimensional vector of binary predictions, ŷ
associated with each patient node in the graph.

5.3.2 Graph Attention Networks (GAT) for Class Imbalance Driven Low

Homophily

We hypothesize that the basic GNN architecture will fail to accurately model transmis-
sion events when class imbalance is high. This leads to a scenario with high homophily
overall: most nodes remain uninfected, and the uninfected ego is similar to its uninfected
neighbors. However, for infected nodes, few neighbors are also infected. Thus, the sparse
signal from their few infected neighbors is potentially overwhelmed by the uninfected
nodes when using GNN architectures that assume all neighbors are relevant. Due to this
limitation, we explore a simple attention mechanism as a potential solution.

We consider a Graph Attention Network (GAT) with K layers [21]. Such an approach
assumes that there exists some neighborhood of size K around ego node v, such that the
outcome yv can be derived from the feature representations of the ego node v and its
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neighborhood of nodes. Each layer k = 1, ..., K of the GAT updates the learned represen-
tation of node v (r(k)v ∈ Rdk) via function f (k):

f (k) = ReLU(ATTN(A1, R(k−1); W(k))R(k−1)θ(k)), (5.1)

Here, R(k) is the (n× dk) matrix of learned representations, and W(k) and θ(k) are the
parameters of a learned linear transformation. At the first layer, k = 1, the input represen-
tation r(0)v = xv. Each layer of the GAT is parameterized by θ(k), each self attention layer of
the GAT is parameterized by W(k). These parameters are learned in an end-to-end manner
by minimizing the cross entropy loss between yv and ŷv = arg max(log softmax(r(K)v θ)).
Note that our input is n dimensional since we have both location and patient nodes. How-
ever, we only make predictions for patient nodes, such that ŷ is P dimensional.

A self attention mechanism (ATTN) is applied to the input representations in order to
learn the pairwise importance of neighbors [21], [79]. This helps identify which neigh-
bors the model should pay more attention to. This is illustrated in Figure 5.1 (a). The
GAT updates each node’s representation by: (1) “ATTENTION" - calculating self attention
on R(k−1) (R(0) = X) in order to re-weight A1, (2) “AGGREGATE" - taking an attention
weighted average of their ego and neighbor representations (ATTN(A1, R(k−1); W(k))R(k−1),
and (3) “TRANSFORM" - applying a linear transformation followed by a nonlinear ReLU.
This process is applied multiple times via multiple attention blocks whose outputs are
then averaged (“AGG: MEAN"). We hypothesize that this will lead to improved perfor-
mance in the presence of class imbalance driven low homophily by allowing the network
to focus on the few but highly important, infected individuals that affect a patient’s out-
come. In our implementation, we use a scaled dot-product attention [79] in our multi-
headed attention, using the adjacency matrix as a mask.

5.4 Experimental Setup

Applied to both synthetic and clinical datasets, we evaluate GNNs equipped with a sim-
ple attention mechanism in terms of accuracy in estimating transmission of infectious
disease. We compare to several recently proposed approaches described below.
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FIGURE 5.1: Visualizations of the different GNN architectures and variants
described in Section 5.3. Unlike the basic GCN (b.), (c.) and (e.) contain
additional connections, (d.) has additional inputs and (a.) has additional at-
tention functions and attention blocks. These are to aid in understanding the
differences between the multiple architectures described and should not be
taken as literal representations of final GNN architectures described in exper-
imental results. Note, "AGGREGATE" is sometimes shortened to "AGG" due

to space limitations.

5.4.1 Comparisons

We compare the performance of an attention-based approach to a number of variations
on the GNN that were recently proposed to address low homophily [20].

Graph Convolutional Networks (GCN). A commonly used form of GNN, Graph
Convolutional Networks (GCN) can be formulated as [40]:

f (k) = ReLU(D−
1
2 A1D−

1
2 R(k−1)θ(k)) (5.2)

where D is the diagonal node degree matrix of A1 and D−
1
2 A1D−

1
2 is the symmetri-

cally normalized adjacency matrix and we will refer to it as Ã1 henceforth. This is further
illustrated in Figure 5.1 (b).

Separating ego vs neighbor representations (Ego vs. Neighbor). Often the ego rep-
resented is processed no differently than the representation of its neighbors. In this vari-
ation, the ego representation is passed in separately from the neighbor representation.
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More formally, Eqn. 5.2 is replaced with with Eqn. 5.3:

f (k) = ReLU([R(k−1)||ÃR(k−1)]θ(k)). (5.3)

Here the double vertical lines indicate a concatenation along the feature dimension. This
essentially introduces a skip-connection between the input and output of the aggrega-
tion step of the kth layer of the GNN (Figure 5.1 (c)). Such skip connections improve
performance in settings of low homophily by allowing the model to learn ego specific pa-
rameters and thereby process the representation of the ego separately from its dissimilar
neighbors.

Higher order neighborhoods (2nd Order Neighborhood). In this variation, we ex-
plore the impact of incorporating higher order neighborhoods in addition to N1(v). In
this setting, the update in Eqn 5.2 is replaced with the update in Eqn. 5.4:

R(k) = ReLU([Ã1R(k−1)||Ã2R(k−1)||...||ÃMR(k−1)]θ(k)) (5.4)

where Ãm refers to the symmetrically normalized neighborhood matrix associated
with the mth order neighborhood. An example network for m = 2 can be seen in Fig-
ure 5.1 (d). This allows the model to process representations of different order neigh-
borhoods separately and can help in scenarios of low homophily when different order
neighborhoods have higher levels of homophily [20].

Residual Connections (Residual). Residual connections provide a pathway for inter-
mediate level representations to directly impact the final representation (Figure 5.1 (e)).
This variant affects the final learned representation in the following manner:

ŷ = arg max(log softmax([R(0)||R(1)||...||R(K)]θ)) (5.5)

Each successive layer of a GNN increases the receptive field. Therefore, the output
of each layer represents a different level of locality. Residual connections separate out
representations at different levels of locality, thereby increasing the representative power
of models. Under scenarios of low homophily, this representation allows the model take
advantage of differences in label distribution at different localities.
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5.4.2 Datasets

We evaluate the proposed approach in the context of estimating pathogen exposure and
subsequent infection using both clinical and synthetic datasets.

Clinical Dataset. In our clinical data experiments, we utilize electronic health record
data from Michigan Medicine to predict hospital onset Clostridioides difficile infection (CDI).
One of the most common healthcare-associated infections, CDI is known to persist on hos-
pital surfaces for weeks [119]. Our study cohort includes all adult inpatient admissions
from 2016-2019 with a higher risk for hospital acquired CDI (i.e., a length of stay ≥ 7
days). This work was approved of by our institutional review board (IRB).

Our study population consists of 44,393 unique patients, in which 397 or 0.9% devel-
oped CDI (determined through a positive laboratory test [42]). In addition to these patient
data, we extract information pertaining to 135 unit locations. Although we consider both
patients and locations, it is the number of days that is the main driver of network size.
Given the potential size of the graph, for computational efficiency, we represent these
data using multiple graphs spanning 3 day time periods (T = 3). This results in graphs
with an average |V| = 1371 and an average |E | = 2097. As described in the problem
setup, each node in the graph is associated with a feature vector xv, encoding: (1) if the
node is a patient or a location, (2) the time step t, and (3) an indicator value for a positive
CDI lab result that linearly decays from 1 to 0 over the course of 30 days.

Although three days may seem limiting, current methods such as colonization pres-
sure rely solely on co-location (i.e., a graph of T = 1). Note that although the considered
interactions are limited to the current time step, patient history used in the calculation of
colonization pressure is not. By increasing T, we can capture more complex interactions
beyond co-location, such as exposure from yesterday’s neighbor’s neighbor or previous
occupants of a location.

When using synthetic data, we know exactly who became exposed to the pathogen
and when. For clinical data, this information in unavailable. Thus, we rely on a proxy:
infection status. We know that a patient must be both susceptible and exposed to become
infected. Relying on infection status will underestimate exposure, but is clinically relevant
nonetheless. Moreover, if exposed, we do not have ground truth on precisely when a
patient was exposed to the pathogen. Thus, we aim to make predictions at the patient
level, not the patient time-step level. Specifically, we aim to estimate if a patient was
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exposed in the first T time steps and as a result will develop an infection after time step
T. Every node associated with a patient during their hospital visit is labeled 1, and zero
otherwise.

Synthetic Network Dataset Experiments with synthetic data allow us to control the
transmission dynamics and access ground truth exposure. Using synthetic data, we eval-
uate to what extent GNNs can accurately learn useful representations of exposure as we
increase the complexity of the transmission dynamics. Synthetic hospital networks are
generated using a stochastic block model [120]. Networks consist of 10 sub-communities
of 5-20 patient nodes and a network represents a single hospital day (T = 1). In this
scenario, we simplify the problem setting and only consider patient nodes. Within a sub-
community, patient nodes share an edge with probability 0.5; across sub-communities
patient nodes share and edge with probability 0.01. These parameters were selected to
mimic how patients in similar units are more likely to interact with each other than pa-
tients of different units.

Each node is labelled according to yp ∼ Bernoulli(φp), where Φ is an aggregation
function and c (contribution to colonization pressure) is a function of their neighbors
infection status x and time of infection t, φp = Φ({c(xu, tu) : u ∈ Nm(p)∧ u 6= p}). In our
experiments, we explore different functions Φ and c (e.g., the mean of a linear decay).

20% of patients are randomly selected to have a positive infection status (xi = 1) which
results in a mean class imbalance of 5.2% and an edge homophily ratio of 0.13 when only
looking at edges involving the minority class. Each positive infection status is randomly
assigned an infection time t ∈ {T − 30, T − 29, ..., T}. This time step determines the pres-
sure an infected patient exerts on its neighbors. A patient whose positive status is asso-
ciated with 30 days prior to T is less influential than a patient whose status is associated
with 1 day prior to T. An infected patient’s influence decreases as they begin to be treated
and contact precautions are implemented. Patients who are known to be positive at the
time of prediction are excluded from evaluation. We generate 1000 networks for training
and 20 networks for validation and testing for each problem setting. This resulted in an
average of 118.5 nodes and 434.3 edges per graph. Additional details on data generation
can be found in Appendix B.2.
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5.4.3 Training & Evaluation Details

Most node classification benchmarks are set up as semi-supervised learning problems
on a single large graph G, whose nodes are split into train, validation and test. Instead,
we have multiple graphs that are split into training, validation and test. This prevents
information leakage from training to test as each graph covers a different time frame.

All models were trained using ADAM with a weighted cross entropy loss. Loss is
weighted based on the average class imbalance found in the training and validation sets
so that on average, each class equally influences the loss. Loss is regularized using a L2
loss with a 0.001 weight and dropout was applied during training with a rate of 0.01.

During training, we used a patience of 5 epochs for early stopping and for the learning
rate schedule. The first time 5 epochs pass without a decrease in the validation loss, the
learning rate is stepped down from the default 0.001 to 0.0001. After 5 epochs passes for
the second time without a decrease in the validation loss, training is stopped. We selected
the best model based on validation area under the receiver operating characteristics curve
(AUROC).

GNN hyperparameters were tuned using validation performance optimizing for AU-
ROC. For all GNNs, we searched over depths of {1, 2} for the synthetic task and {1, 2, 3, 4, 5}
for the clinical task. Twenty-four models were trained for each model architecture for
a maximum of 160 epochs for synthetic tests and 80 epochs for clinical tests. For the
GCN, the size of the hidden layers was set to the same value (d1 = d2 = ... = dK); we
searched over values of {100, 200, 400, 800}. For the GAT, the alpha parameter was set to
0.2 (the setting used in the original paper [21]), while the number of heads (swept over
values {1, 3, 5}) and hidden layer size (swept over values {50, 100, 200, 400}) was chosen
via validation performance. To reduce oversmoothing the learned node embeddings we
employed PairNorm [117].

Evaluation on Real-World Data. We split the data into consecutive three day peri-
ods represented by separate graphs. For each graph, time granularity is at the day level,
location granularity is at the unit level and T = 3. During implementation, although n es-
timates are generated, only those pertaining to a subset of our study population are used
in training and evaluation. Unused values are masked. Our study population consists of
two groups. The first group is used for training and evaluation and consists of a subset
of patient nodes who have been in the hospital for at least 7 days. These patients are
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more likely to be impacted by within hospital transmissions. The second group consists
of patients we think are likely to be spreaders: patients who are known to be positive
before the time of prediction, and patients with a recent history of CDI. We do not train
or evaluate on this second group. Given that we only have patient level labels, we also
evaluate at the patient level, such that no patient is represented more than once during
evaluation. We calculate the patient level AUROC by taking the maximum score for a
patient during their hospital stay: ŷi = max({ ˆyi,t : t = 1, ..., T}) [121]. This mimics a
realistic deployment where multiple scores are generated for each individual but once an
individual crosses a threshold they are deemed high risk and receive an intervention.

Evaluation Synthetic Networks. Similar to the clinical dataset evaluation, patients
known to be infected prior to T were included in the network but did not contribute to the
loss function during training or evaluation. Compared to the clinical dataset evaluation,
here we had access to ground truth for each time step. Thus, labels were evaluated at
each time step t.

5.5 Experiments & Results

In the context of modeling transmission events, we compare an attention-based approach
to several recently proposed variations on the GNN designed to handle tasks with low
homophily. We apply this attention-based approach to both clinical and synthetic datasets
in which the transmission dynamics vary, characterizing the settings in which a GNN can
accurately model transmission. In doing so, we aim to answer the following questions:

• Question 1: When applying GNNs, does an attention-based solution address the
issue of class imbalance-driven low homophily? (Section 5.5.1)

• Question 2: How does an attention-based solution compare or complement recently
proposed variations on the GNN in this setting? (Section 5.5.1)

• Question 3: Does a data-driven graph-based approach to learning transmission dy-
namics outperform an approach based on an expert-defined notion of colonization
pressure? (Section 5.5.2)

• Question 4: What types of transmission dynamics are readily learned by a graph-
based approach? (Section 5.5.2)
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5.5.1 GAT versus GCN (and other Variations)

Applied to held-out data from the clinical dataset, consisting of 12,343 patients in which
0.7% of the population is infected, the attention-based approaches significantly outper-
formed the base GCN: AUROC=0.715 (95% Confidence Interval [CI] 0.687-0.744) versus
0.684 (95% CI 0.659-0.710). Allowing the model to weight the importance of different
neighbors in a variable manner improved performance on this task in which only a small
fraction of an individual’s neighbors influence their outcome. This provides empirical
evidence that supports our hypothesis that an attention-based solution can help mitigate
class imbalance driven low homophily in GNNs (Q1).

TABLE 5.1: Performance of GNN architectural variants on predicting infec-
tious disease exposure in a clinical dataset. We find that GAT has the best test
AUROC, while a GCN+++ which incorporates all variations except attention
has the second best performance out of the tested GCN architectures. The
tested GCN architectures are known to improve performance under low ho-
mophily. However, an architecture like GAT that has a modified aggregation
function may be better suited for scenarios with class imbalance driven low

homophily. We see that GAT significantly outperform the GCN.

Model AUROC (95% Confidence Interval)
GAT 0.715 (0.688,0.742)
GCN (basic) 0.684 (0.659,0.710)
GCN + (Ego v. Neighbor) 0.696 (0.670,0.726)
GCN + (2nd Order Neighborhood) 0.681 (0.652,0.713)
GCN + (Residual) 0.706 (0.679,0.735)
GCN +++ 0.709 (0.682,0.737)

With respect to all of the variations we considered, performance ranged from 0.681 to
0.715 (Table 5.1). While differences are small, a few trends emerge. First, GAT statistically
significantly outperforms the GCN and outperforms all other variations. Although this
second difference is not always statistically significant, it is consistent (Q2).

Second, the augmented architectures (e.g., Ego v. Neighbor, 2nd Order Neighborhood)
generally improve predictive performance over the basic GCN performance except for
adding higher (2nd) order neighbors. In contrast to the other two variants (Ego v. Neigh-
bor (skip connection) and Residual), adding higher order neighbors does not necessarily
aid gradient flow during training [122]. The most beneficial single augmentation to the
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GCN was the addition of residual connections (e.g., 0.022 increase in AUROC). In addi-
tion to aiding gradient flow, residual connections provide more granularity with respect
to neighborhood locality. Output from different model depths are provided to the final
layer, and each layer’s output corresponds to different neighborhood sizes. This may be
especially beneficial to estimating exposure as likelihood of transmission decreases the
further away two nodes are from each other.

5.5.2 Learning Transmission Dynamics

Here, we further test the ability of the GAT to accurately model complex transmission
dynamics by comparing performance against hand-coded definitions of exposure in both
real-world and synthetic networks. Using the GAT, we compare the predictive utility of a
learned (or data-driven) definition of transmission to one based on an expert defined (or
hand-coded definition) of exposure. We also explored the other GNN variants, however
based on validation performance we proceed with GAT in all subsequent experiments
(see Appendix B.1 for validation performance).

Our hand-coded definition of exposure is informed by the infectious disease literature
and based on the notion of colonization pressure described earlier. More formally,

φ̂p = ∑
{u:u∈N2(p)∧u 6=p}

c(xu, tu), (5.6)

where N2(p) are neighbors of patient p who are known to be positive prior to or on
day t and c : Z2

+ → [0, 1], node u’s contribution to the colonization pressure, which
linearly decays over 14 days from the day of the positive test. We consider two neighbor-
hoods based on co-locations, at the unit and hospital level. This results in two estimates
of exposure. These estimates are then used as features in training a linear model to pre-
dict infection. For a fair comparison, the logistic regression is trained and tested using
a patient representation that concatenates data from all available time steps prior to the
time of prediction: [xi,1||, ..., ||xi,t] for prediction time t.
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FIGURE 5.2: AUROC of a learned definition of exposure (0.715) vs hand-
coded definition of exposure (0.654) at predicting risk of CDI. Results are
further broken down by the number of days before the CDI diagnosis. Both
models have better performance when diagnosis is made soon after the day

of prediction.

Results on Clinical Dataset

Applied to the held-out test set of 12,343 patients in which 84 tested positive for CDI, the
learned definition of exposure (GAT) achieves significantly higher discriminative perfor-
mance compared to the hand-coded definition 0.715 (95% CI: 0.688,0.742) vs 0.654 (95%
CI: 0.625,0.680). This provides strong empirical evidence in support of our hypothesis
that a data-driven graph-based approach can lead to improved estimates of exposure
compared to an expert-defined hand-coded estimate (Q3).

In our problem setting, we observed each patient for T time steps and then try to pre-
dict whether the patient will develop an infection after T. In a follow-up analysis, we
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TABLE 5.2: We compare the performance a learned-definition of exposure
(GAT) to exact (φ) and inexact hand-coded definitions of exposure (φ̂). When
the misspecified hard-coded definition either includes additional irrelevant
pathways or excludes relevant pathways (e.g., considering all known posi-
tive neighbors instead of just symptomatic neighbors or ignoring 2nd order
neighbors) a learned definition can perform significantly better than a hand-

coded definition of exposure.

AUROC (95% Confidence Interval)
Scenario Class

Imbalance
Homophily
Homophily+ True φ φ̂ GAT

φ: 1st & 2nd Order Neighbors
φ̂: 1st Order Neighbors

5% 0.765
0.092 0.751 (0.745, 0.756) 0.609 (0.601, 0.617) 0.694 (0.634,0.757)

φ: Mean
φ̂: Max 5% 0.774

0.117 0.851 (0.848, 0.854) 0.827 (0.824, 0.831) 0.739 (0.695,0.784)

φ: Decay Period 14 Days
φ̂: Decay Period 3 Days 5% 0.774

0.117 0.851 (0.848, 0.854) 0.663 (0.657, 0.669) 0.739 (0.695,0.784)

φ: Exponential Decay
φ̂: Linear Decay 3% 0.791

0.097 0.886 (0.883, 0.890) 0.881 (0.878, 0.885) 0.835 (0.786,0.887)

φ: Symptomatic Neighbors
φ̂: All known positives Neighbors 8% 0.869

0.249 0.986 (0.985, 0.986) 0.855 (0.852, 0.857) 0.927 (0.904,0.950)

measured predictive performance on subsets of the population based on when they de-
veloped the infection (e.g., soon after T or much later). In Figure 5.2, we sweep the a
cutoff corresponding to the maximum number of days after T before the patient becomes
infected. Intuitively, as we increase the temporal gap between observation and outcome,
we’d expect the task to become more difficult. I.e., patients who develop infection sooner
are likely easier to identify/predict because they are more likely to have been exposed
during the period used to predict the outcome: [1, T]. We see this evidenced by both the
GAT and logistic regression’s improved performance on patients with earlier test dates.
Estimating transmission, and in turn predicting infection, is only possible when the trans-
mission event(s) occurs in the observation window.

Still, the GAT-based definition of exposure performs well at predicting transmission
and subsequent infection, even without any additional information pertaining to patient
susceptibility. We are particularly encouraged by how it performs relative to the hand-
coded definition of exposure in estimating CDI cases in a 5-10 days horizon. Performance
of the hand-coded definition of exposure quickly degrades for longer horizons, whereas
the learned definition can accurately predict more difficult cases.
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Results on Synthetic Networks

In the experiments above, we based the hand-coded definition of exposure on definitions
commonly used in the infectious diseases literature [103]. However, the true underlying
transmission dynamics of CDI (and many other infectious diseases) are often unknown.
I.e., the hand-coded definition depends on assumptions which may or may not hold; it is
only an approximation, and perhaps a poor approximation given the associated predic-
tive performance.

Thus, in our final set of experiments, we explore the ability of the GAT to accurately
learn a definition of exposure when the transmission dynamics vary in complexity. We
use synthetic data because it allows us to control the true underlying transmission dy-
namics and explore an arbitrary degree of complexity. As a comparison, we also measure
the performance a perfect hand-coded definition exposure and an imperfect hand-coded
definition based on an incorrect assumption. For example, in one setting we assume a
transmission event is driven by maximum exposure, when in fact it is driven by average
exposure. Since in practice definitions of transmission dynamics are often approxima-
tions, this experiment helps us understand under what circumstances learning a defini-
tion of exposure could more accurate than an imperfect hand-coded definition.

We vary the complexity of the transmission dynamics and the accuracy of the pre-
defined exposure formulation as follows. Given our formulation of a patient’s exposure,
φp = Φ({c(xu, tu) : u ∈ N1(p) ∧ u 6= p}), we modify the aggregation function Φ, the cal-
culation of a neighbor’s contribution c and the definition of neighborhood N(p). We use
the true φ to perfectly estimate the underlying transmission dynamics and compare to an
inexact hand-coded formulation of exposure (φ̂). A positive patient is symptomatic with
a probability of 0.25, and the amount each patient contributes to the overall exposure of
others (c) is based on whether the individual is symptomatic. For the neighborhood defi-
nition we consider N1(p) vs N2(p). We quantify the effect of different types of (potentially
common) misspecifications against ground truth (φ vs φ̂): mean vs max aggregation (Φ),
and for the contribution calculation, we vary the decay over 14 vs 3 days (i.e., gradual ver-
sus quick decay), exponential vs linear decay, and contribution conditioned on neighbor
characteristics (symptomatic vs all positive patients).

For each scenario in Table 5.2, we measured class imbalance, edge homophily ratio
(the fraction of intra-class edges in a network), as well as a modified edge homophily ratio
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that only looks at edges involving the minority class (Homophily+). When calculating
homophily, we considered exposed patients and infected/spreading patients to belong
to the same class. Each scenario has high overall homophily, while the minority class
specific homophily ratio is low.

Compared to the performance of the hand-coded definitions, the performance of a
GAT approximates our ability to automatically learn an accurate data-driven definition
of exposure using only information about the patient network (i.e., who’s connected to
whom and patient characteristics). In the majority of scenarios, the GNN performs as
well as or better than the approximate hand-coded definition of exposure (Table 5.2). In
particular, in scenarios in which the hand-coded definition of exposure φ̂ has too many
pathways (e.g., including asymptomatic patients) or is missing pathways (e.g., those who
were positive more than 3 days ago and those who are only second order neighbors) the
GAT achieves a significantly higher AUROC (Q4). By simply incorporating all potential
pathways into the network, one can learn an accurate definition of exposure directly from
the data. This is especially important because both missing pathways and extraneous
pathways are detrimental. In cases in which all and only relevant pathways are included,
the hand-coded definition of exposure is closer to the true definition (e.g., max vs. mean
and linear vs. exponential) and the relative performance of the hand-coded definition
improves.

5.6 Summary and Conclusion

We investigate the application of GNNs to modeling the transmission of infectious dis-
ease. We highlight the challenge of class imbalance driven low homophily that arises
in such tasks and present a simple attention mechanism as a solution. While previous
work concluded that an attention based method would fail in scenarios with low ho-
mophily, we showed that when low homophily is driven by class imbalance, attention
can help performance and outperform previously proposed solutions. Moreover, such an
approach can effectively learn complex transmission dynamics. Overall, when estimating
disease transmission data-driven definitions of exposure present a promising alternative
to hand-coded definitions that rely on potentially inaccurate assumptions about which
transmission pathways to include vs exclude.
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Chapter 6

Conclusion

This dissertation addressed the challenges of small sample sizes when adapting machine
learning methods to tasks utilizing EHR data. There are vast amounts of data being col-
lected in the EHR. With the help of machine learning, these data have the potential to
provide great insight into patient specific risks and conditions. Deep learning has been
popular in the recent decade due to its ability to learn useful representations with mini-
mal prior knowledge. However, this is predicated on the availability of a large amount
of training examples. The EHR poses an interesting dichotomy between small and big
data: where within thousands of admissions, there may only be a handful of examples
for the outcome of interest. This poses issues for deep learning methods that rely on large
sample sizes to learn complex relationships without overfitting and in some cases may
rely on balanced data assumptions.

This dissertation builds on work spanning several fields, including time-series analy-
sis and inference on graphs. While there exists methods for adapting to known temporal
invariances [11], [12], this can be difficult when the potential invariances are not known
beforehand. Furthermore, while there exists methods that handle conditional shift, these
tend to focus on the multitask setting [15], [63]–[65]. When conditional shift is driven by
time, the distinction between tasks is less clear as the change in task happens gradually
over time. In addition, popular methods for handling time-series data, such as RNNs,
rely on shared weights across time steps. This can lead to poor adaptation to time vary-
ing dynamics driven by temporal conditional shift [16]. Finally, graph neural networks
are generally evaluated on tasks with high homophily and often make architectural as-
sumptions based on this underlying characteristic [20]. However, clinical tasks often ex-
hibit high class imbalance which results in an asymmetrical case of low homophily with
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respect to the minority class.
Building on this past work, our dissertation has contributed new deep learning ap-

proaches for learning useful representations from clinical time-series and graph data by
addressing task specific structure. In order to leverage temporal invariances, we pro-
posed Sequence Transformer Network, an end-to-end trainable network that learns and
applies patient and task specific transformations to reduce class independent signal varia-
tions (Chapter 3). In order to adapt to temporal conditional shift, we proposed a mixture
of LSTMs that relaxes weight sharing in LSTMs. This allows the direct modeling of time
varying signal dynamics, improving performance especially under constrained data set-
tings (Chapter 4). Finally, to address class imbalance driven low homophily using graph
neural networks, we evaluated the ability of attention-based aggregation against re-
cently proposed low homophily solutions (Chapter 5). Throughout this dissertation we
explored clinically relevant problem settings and proposed methods to best adapt popu-
lar deep learning methods to those settings.

There are several areas touched upon in this dissertation that could be interesting for
further examination. Here we outline a few possibilities.

First, our work on capturing invariances via the Sequence Transformer had limita-
tions. Namely it did not consider feature-specific transformations or local warping. Since
publication, more recent work has looked at capturing local warping [23]. However, fea-
ture specific transformations still presents the challenge of incorporating the benefits of
increased transformation flexibility while preserving valuable temporal relations between
events. Only applying certain transformations at the feature level (i.e., magnitude) or pro-
viding both original and transformed representations present potential routes for further
investigation.

Second, on our work estimating exposure using graph neural networks had some ar-
eas for potential future work. We used a network that captured both space and time
relationships by representing each patient and location at each time step using a separate
node. While this allowed us to capture transmission pathways that cut across space and
time, each additional time step considered significantly increased the network size and
therefore the required computational memory.

Second, whenever applying deep learning to critical tasks such as those involving pa-
tient care, there is always the question of accountability and assurance. Models are only
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as good as the data they are trained on and are liable to make decisions that perpetuate in-
equitable social norms [123] or identify patterns that are not robust or generalizable [124].
This is especially true when applying black box methods such as deep learning models
where it’s difficult to spot these issues. There is an ongoing field in model interpretabil-
ity that aims to help mitigate this problem as well as ever evolving best practices to help
researchers pose the right questions and obtain robust results [31], [125], [126]. However,
there is still much to be done in this area to ensure models are safe for deployment.

Finally, one major limitation of this dissertation is that we did not touch upon real time
evaluations or deployment efforts. The development of risk estimators provides benefits
such as insights into the data (i.e., patterns and dynamics present) and the identification
of useful cohorts and risk factors. However, it is through deployment that risk estima-
tors are able to aid real time clinical decision making. Post-development there are still
many considerations before deployment. One of the most important aspects is vetting
the model through prospective or real time evaluation. Retrospective evaluation is not
guaranteed to reflect performance during deployment due to factors such as data impu-
tation, data collation, retrospective additions, data leakage, etc. We are currently in the
process of prospectively evaluating one of our risk scores [42] at Michigan Medicine and
hope to publish results in the near future.

The main contributions of this dissertation are: 1) presenting and formalizing prob-
lem settings commonly found in clinical tasks and 2) addressing these problem settings
through the development of machine learning algorithms. We emphasized an overar-
ching problem in clinical tasks, namely limited training data. Limited data can lead to
reduced generalizability and robustness of deep learning models. We addressed this
through the development of novel methods that leveraged specific task structures. Highly
imbalanced data can lead to pitfalls when using generic deep learning models such as
GCNs. We addressed this issue by evaluating attention based and other architectural vari-
ants in this problem setting. Together, these contributions lead to improved predictive
performance when training with limited data; once incorporated into clinical decision-
making workflows such models could ultimately lead to improved patient care.
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Appendix A

Appendix for Chapter 4: Temporal
Conditional Shift

A.1 Details of Data & Features

TABLE A.1: The 17 physiological features extracted from MIMIC-III database,
the source tables, and the corresponding ITEMIDs

Index Variable Name Table(s) ITEMID(s)

1 Capillary refill rate CHARTEVENTS 3348, 115, 8377

2 Diastolic blood pressure CHARTEVENTS 8368, 220051, 225310, 8555, 8441, 220180, 8502,
8440, 8503, 8504, 8507, 8506, 224643

3 Fraction inspired oxygen CHARTEVENTS 3420, 223835, 3422, 189, 727
4 Glascow coma scale eye opening CHARTEVENTS 184, 220739
5 Glascow coma scale motor response CHARTEVENTS 454, 223901
6 Glascow coma scale total CHARTEVENTS 198,
7 Glascow coma scale verbal response CHARTEVENTS 723, 223900

8 Glucose CHARTEVENTS +
LABEVENTS

50931, 807, 811, 1529, 50809, 51478, 3745,
225664, 220621, 226537

9 Heart Rate CHARTEVENTS 221, 220045
10 Height CHARTEVENTS 226707, 226730, 1394

11 Mean blood pressure CHARTEVENTS 52, 220052, 225312, 224, 6702, 224322, 456,
220181, 3312, 3314, 3316, 3322, 3320

12 Oxygen saturation CHARTEVENTS +
LABEVENTS 834, 50817, 8498, 220227, 646, 220277

13 Respiratory rate CHARTEVENTS 618, 220210, 3603, 224689, 614, 651, 224422,
615, 224690

14 Systolic blood pressure CHARTEVENTS 51, 220050, 225309, 6701, 455, 220179, 3313,
3315, 442, 3317, 3323, 3321, 224167, 227243

15 Temperature CHARTEVENTS 3655, 677, 676, 223762, 3654, 678, 223761, 679

16 Weight CHARTEVENTS 763, 224639, 226512, 3580, 3693, 3581,
226531, 3582

17 pH CHARTEVENTS +
LABEVENTS

50820, 51491, 3839, 1673, 50831, 51094, 780,
1126, 223830, 4753, 4202, 860, 220274
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TABLE A.2: The 76 time-series features used as input to all the models.

Index Feature Name Type

0 Capillary refill rate->0.0 Binary
1 Capillary refill rate->1.0 Binary
2 Diastolic blood pressure Numeric
3 Fraction inspired oxygen Numeric
4 Glascow coma scale eye opening->To Pain Binary
5 Glascow coma scale eye opening->3 To speech Binary
6 Glascow coma scale eye opening->1 No Response Binary
7 Glascow coma scale eye opening->4 Spontaneously Binary
8 Glascow coma scale eye opening->None Binary
9 Glascow coma scale eye opening->To Speech Binary
10 Glascow coma scale eye opening->Spontaneously Binary
11 Glascow coma scale eye opening->2 To pain Binary
12 Glascow coma scale motor response->1 No Response Binary
13 Glascow coma scale motor response->3 Abnorm flexion Binary
14 Glascow coma scale motor response->Abnormal extension Binary
15 Glascow coma scale motor response->No response Binary
16 Glascow coma scale motor response->4 Flex-withdraws Binary
17 Glascow coma scale motor response->Localizes Pain Binary
18 Glascow coma scale motor response->Flex-withdraws Binary
19 Glascow coma scale motor response->Obeys Commands Binary
20 Glascow coma scale motor response->Abnormal Flexion Binary
21 Glascow coma scale motor response->6 Obeys Commands Binary
22 Glascow coma scale motor response->5 Localizes Pain Binary
23 Glascow coma scale motor response->2 Abnorm extensn Binary
24 Glascow coma scale total->11 Binary
25 Glascow coma scale total->10 Binary
26 Glascow coma scale total->13 Binary
27 Glascow coma scale total->12 Binary
28 Glascow coma scale total->15 Binary
29 Glascow coma scale total->14 Binary
30 Glascow coma scale total->3 Binary
31 Glascow coma scale total->5 Binary
32 Glascow coma scale total->4 Binary
33 Glascow coma scale total->7 Binary
34 Glascow coma scale total->6 Binary
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35 Glascow coma scale total->9 Binary
36 Glascow coma scale total->8 Binary
37 Glascow coma scale verbal response->1 No Response Binary
38 Glascow coma scale verbal response->No Response Binary
39 Glascow coma scale verbal response->Confused Binary
40 Glascow coma scale verbal response->Inappropriate Words Binary
41 Glascow coma scale verbal response->Oriented Binary
42 Glascow coma scale verbal response->No Response-ETT Binary
43 Glascow coma scale verbal response->5 Oriented Binary
44 Glascow coma scale verbal response->Incomprehensible sounds Binary
45 Glascow coma scale verbal response->1.0 ET/Trach Binary
46 Glascow coma scale verbal response->4 Confused Binary
47 Glascow coma scale verbal response->2 Incomp sounds Binary
48 Glascow coma scale verbal response->3 Inapprop words Binary
49 Glucose Numeric
50 Heart Rate Numeric
51 Height Numeric
52 Mean blood pressure Numeric
53 Oxygen saturation Numeric
54 Respiratory rate Numeric
55 Systolic blood pressure Numeric
56 Temperature Numeric
57 Weight Numeric
58 pH Numeric
59 mask->Capillary refill rate Binary
60 mask->Diastolic blood pressure Binary
61 mask->Fraction inspired oxygen Binary
62 mask->Glascow coma scale eye opening Binary
63 mask->Glascow coma scale motor response Binary
64 mask->Glascow coma scale total Binary
65 mask->Glascow coma scale verbal response Binary
66 mask->Glucose Binary
67 mask->Heart Rate Binary
68 mask->Height Binary
69 mask->Mean blood pressure Binary
70 mask->Oxygen saturation Binary
71 mask->Respiratory rate Binary
72 mask->Systolic blood pressure Binary
73 mask->Temperature Binary
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74 mask->Weight Binary
75 mask->pH Binary
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Appendix B

Appendix for Chapter 5: Exploring Class
Imbalance Driven Low Homophily

B.1 Validation Results for Real-World Data

Table B.1 presents validation performance for GNN architectural variants on the task of
prediction infectious disease exposure using clinical data.

TABLE B.1: Validation performance of GNN architectural variants on pre-
dicting infectious disease exposure in a clinical dataset. Rows are ordered to
mimic the ordering found in Table 5.1. We find that GAT has the best valida-

tion AUROC.

Model AUROC (95% Confidence Interval)
GAT 0.6624 (0.6377,0.6869)
GCN 0.6525 (0.6295,0.6771)
GCN Ego v. Neighbor 0.6505 (0.6290,0.6739)
GCN 2nd Order Neighborhood 0.6412 (0.6183,0.6630)
GCN Residual 0.6503 (0.6244,0.6743)
GCN All Variants 0.6516 (0.6295,0.6740)

B.2 Synthetic Data Generation

Graph Settings

• Number of blocks: 10
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• Size of blocks: a random variable following the discrete uniform distribution over
the set {5, 6, 7, ..., 20}.

• Intra-block probability of an edge: 0.5

• Inter-block probability of an edge: 0.01

• Probability of positive infection status: 0.2

• Maximum number of days prior to T for infection time: 30

• Decay Period: 14

Probability of Exposure for 1st and 2nd vs 1st Order Neighbors Experiment: Each patient
has a probability of exposure defined as φp = Φ({c(xu, tu) : u ∈ Nm(p)∧ u 6= p}), where:

• Φ = mean

• c(xu, tu) = 1xu ·
(

1−min(T − tu, d) 1
d

)
• d = Decay Period

• Nm(p) = First and second order neighborhood of p

Probability of Exposure for Mean vs Max, Decay Period 14 vs 3 Days Experiments: Each
patient has a probability of exposure defined as φp = Φ({c(xu, tu) : u ∈ Nm(p)∧ u 6= p}),
where:

• Φ = mean

• c(xu, tu) = 1xu ·
(

1−min(T − tu, d) 1
d

)
• d = Decay Period

• Nm(p) = First order neighborhood of p

Probability of Exposure for Exponential vs Linear Decay Experiment: Each patient has a
probability of exposure defined as φp = Φ({c(xu, tu) : u ∈ Nm(p) ∧ u 6= p}), where:

• Φ = mean
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• c(xu, tu) = 1xu ·max
(

0, 1− log(T−tu+1)
log(d)

)
• d = Decay Period

• Nm(p) = First order neighborhood of p

Probability of Exposure for Symptomatic vs All Known Positive Neighbors Experiment:
Each patient has a probability of exposure defined as φp = Φ({c(xu, tu) : u ∈ Nm(p)∧u 6=
p}), where:

• Φ = mean

• c(xu, tu) = 1xu∧su ·
(

1−min(T − tu, d) 1
d

)
• d = Decay Period

• su = Indicator for Symptomatic Cases

• su ∼ Binomial(p = 0.25)

• Nm(p) = First order neighborhood of p
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