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Abstract 

 

Infrastructure systems (IS) play a vital role in supporting the well-being of our society. A grand 

challenge confronting IS managers is existing asset management methods are falling short in 

ensuring safe and reliant IS components.  Recent technological advances in the field of sensing 

and information technology have created opportunities to explore new approaches to managing IS 

components based on the use of data as quantitative evidence of structural performance and health.  

In tandem, advances in data science and machine learning (ML) have resulted in new data-driven 

analytical tools for efficiently processing large volumes of data. This dissertation explores the 

creation of data-driven analytical frameworks that extract information from the data generated by 

structural monitoring systems to help make better asset management decisions centered on 

structural performance and health.  A challenge of assessing performance and health of IS 

components is the large variability such systems have in their environmental and operational 

conditions (EOCs). Hence, the overarching goal of the dissertation is to develop data-driven 

analytical frameworks that identify EOC for data normalization that improve structural 

performance assessments. First, the thesis explores new approaches to handling EOCs during the 

data normalization stage of structural health monitoring (SHM) algorithmic frameworks.  The 

thesis proposes the extraction of EOC Sensitive Features (EOCSFs) from structural response data 

with EOCSFs used for data normalization. Unsupervised clustering of EOCSFs are used to 

establish EOC clusters during training to ensure damage sensitive features (DSFs) extracted from 

response data of the structure in an unknown state are fairly compared to DSFs of the healthy 



 xvii 

structure operating in the same EOC state. To normalize test data, a novel soft assignment approach 

is also proposed to account for the uncertainties associated with assigning an EOCSF to a given 

EOC cluster.  These innovations are shown to outperform traditional hard assignment using EOCs 

inferred from measurements taken independently of the structure. Wind turbines that experience 

wide EOC variability are used as an illustrative example. Second, the dissertation challenges the 

assumption of independence and identical distribution traditionally applied to condition 

assessments of a structure over prolonged observation periods. A novel approach to training 

Hidden Markov Models (HMM) to track structural deterioration with state dependencies under 

varying EOCs is proposed. The Z24 Bridge SHM testbed is adopted to validate the efficacy of the 

method to assessing the condition of a structure based on past observations of structural condition. 

Finally, in the last part of this dissertation, two ML-based frameworks are applied for EOCs 

identification and response assessment of highway bridges. First, an encoder is trained to extract 

truck weight characteristics from bridge response to truck traffic using training data collected from 

a cyber-physical system (CPS) architecture that links bridge responses with measured vehicular 

weights. Next, a sequence-to-sequence (Seq2Seq) model is used to forecast the response of one 

bridge to a truck given the response of another bridge to the same load.  The Seq2Seq model 

enables the estimation of bridge responses in a highway network by using the response of  limited 

number of instrumented bridges. It is shown that by normalizing the input observations based on 

vehicle load type, the predictive performance of the Seq2Seq model is increased. In summary, the 

thesis breaks new ground in advancing data-driven frameworks that can automate the conversion 

of IS monitoring data into valuable information for a plethora of IS applications.  
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Chapter 1.  

Introduction

 

1.1 Introduction 

Infrastructure systems (IS) play a vital role in the well-being of any society and serve as the 

backbone of a healthy economy (Tomer et al., 2021). IS constitute a broad range of inter-connected 

subsystems including transportation systems, energy utilities, water and wastewater systems, and 

even by most recent definitions, telecommunication (e.g. broadband) systems. To ensure that IS 

can support the development and well-being of society, approaches to maintaining the physical 

well-being of IS are of the needed including vigilant inspection by visual means. Although 

transformative changes are occurring in terms of new technologies and methods useful for efficient 

management of IS, management methods in practice today have been slow to evolve at the same 

pace (Tang et al., 2018). The challenge that confronts IS stakeholders (e.g. engineers, stakeholders, 

managers, policy-makers) is that the infrastructure management strategies of the twentieth century 

are failing to ensure adequate maintenance of IS jeopardizing their ability to meet the demands 

society imposes on them. For instance, the American Society of Civil Engineers (ASCE) in 2021 

has given a grade of “C-” to the United States infrastructure in its latest Report Card for America’s 

Infrastructure (ASCE, 2021). According to this report for example, more than 46,000 of America’s 

bridges are considered structurally deficient and an estimated $125 billion dollars is needed for 

bridge repairs. Other alerting statistics is that water mains break once every two minutes, while 
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56% of the nation’s ports are rated as in poor to mediocre conditions; similar statistics are faced in 

almost all other categories evaluated by ASCE. According to McKinsey & Company, there is a 

backlog of more than $2 trillion dollars on public-infrastructure investing needed to improve the 

condition of the nation’s IS (McKinsey Global Institute, 2020). As such, tremendous attention has 

been devoted by the civil engineering community to re-envisioning the management methods used 

for IS over the past few years.  

Visual inspection methods to IS management have been used, both informally and 

formally, over hundreds of years. Visual inspection is defined as a method of human inspectors 

visually looking at the surfaces of a structure looking for obvious signs of deterioration (e.g., rust, 

cracks, spalling). Inspector judgement is then used to interpret the impact such deterioration might 

have on the performance and safety of the structure. The bridge reengineering community has one 

of the more advanced visual inspection frameworks (Agdas et al., 2016). However, recent studies 

focused on assessing the accuracy of visual inspection methods have focused wide variability in 

rating scores given by well-trained inspectors (e.g. 95% of rating scores vary by 2 points out of 9) 

when evaluating the same structure (Agrawal et al., 2021; FHWA, 2001). While visual inspection 

has a good track record, these findings underscore the subjectivity introduced by the inspector. 

The rapid progression of sensing technology in the mid- to late-twentieth century created new 

approaches to quantitatively measuring structural condition by non-destructive testing (NDT) 

methods including acoustic emissions, ultrasonic, Eddy currents, and radiography, just to name a 

few (Maierhofer et al., 2010). Such methods are excellent at providing a detailed and accurate 

assessment of structural condition but require expensive equipment and trained technicians to 

operate. They are also local inspection methods making the decision of where to apply often 

challenging with high uncertainty. Alternatively, structural health monitoring (SHM) emerged in 
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the 1990’s and continues to be an area of active research. SHM defers from NDT in that it aims to 

install permanent sensors in a structure; it also aims to automate the processing of data to ensure 

limited human subjectivity can be introduced in its processes. SHM is already finding practical 

use in a variety of structures including bridges (Seo et al., 2016) and wind turbines (Ciang et al., 

2008). 

Second, innovative approaches are being explored to provide additional resources for the 

construction and maintenance of IS. While technologies like SHM provide an approach to assess 

structural conditions, financing innovations is still needed to close financing gaps in IS as pointed 

out by ASCE (ASCE, 2021). Public-Private Partnerships (PPPs) are one such example wherein 

public entities, as the owners and custodians of the IS, join private entities to collaborate on IS 

projects. The private sector agent often finances and/or plays the role of IS maintainer. Despite 

doubts, PPPs are becoming a prevalent practice in North America and are expected to result in 

increased efficiency and value-for-money, potentials for sharing project risks between public and 

private entities, as well as reduced delays and cost overruns (Verweij et al., 2017). Moreover, 

research efforts are being extended to explore even more novel and innovative approaches to 

financing real-world IS projects. For instance, Ashuri et. al. (2012) proposed an innovative 

approach of using options theory to price a common form of implementing PPPs for highway 

projects which are referred to as build-operate-transfer projects (Ashuri et al., 2012). In addition 

to such valuable application-oriented efforts, fundamental research has also been conducted to 

adjust the existing pricing models for IS projects. By considering market and non-market risks 

along with the fact that investors are loss-averse, Espinoza et. al. (2020) developed a more 

appropriate framework for assessing value of IS projects (Espinoza et al., 2020). Many of the 

emerging approaches to financing infrastructure projects are embracing data in their design. One 
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stark example is using structural response data to assess user fees based on the extent of consumed 

life a user has imposed on the structure. Such methods are gaining traction in highway bridges and 

roads as a new approach to tolling traffic for their use of highway IS asset (Gungor et al., 2018, 

2019). 

Condition assessment and financing of IS using data are just one example of what is 

possible for improving the management of IS using data. While IS data can be used for a wide 

variety of other purposes (e.g. control of IS performance), the focus of this dissertation will be on 

monitoring and assessing the performance of structural components of IS. By taking advantage of 

recent advances in infrastructure monitoring technologies, along with recent advances in artificial 

intelligence (AI) and Machine Learning (ML), this dissertation aims to contribute data-driven 

solutions to addressing the most pressing challenges for structural assessment and management. 

Figure 1–1 indicates the scope of the thesis. In the remainder of this chapter, the advances in the 

 

Figure 1-1. Description of the scope of the dissertation. 
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field of SHM are first described in greater detail. Second, the goal and objectives of the dissertation 

are described in detail, with the chapter concluding with an outline of the dissertation. 

 

1.2  “Intelligent” Infrastructure Systems 

1.2.1 Sensors in Infrastructure Systems 

The emergence of “intelligent” IS dates back to 1940s when early accelerometers were first used 

to monitor the vibration of critical structures like long span bridges (e.g. Golden Gate Bridge) 

(Vincent, 1958). The intent of instrumenting IS components with monitoring systems was to gain 

better understanding of the behavior of structures exposed to extreme loads such as earthquakes 

and strong winds. Instrumentation of long span bridges occurred following the collapse of the 

Tacoma Narrows Bridge in 1940 where the problem of wind-induced vibration of suspension 

bridges became self-evident (Abdel-Ghaffar & Scalan, 1985). The seismic monitoring of structures 

in particular was a strong driver of the adoption of sensors for monitoring structural assets (Wang 

et al., 2014). Such monitoring systems are based on trigger-based data acquisition systems that 

record when a large seismic event is detected. Today through California’s Strong Motion 

Instrumentation Program, 650 ground-response stations have been installed in California with over 

170 buildings, 60 bridges and 20 dams being instrumented since 1972 (CSMIP, 2021). The 

monitoring of IS under extreme loading conditions is not limited to seismic events. Numerous 

buildings and bridges have been also instrumented for monitoring the structural response to 

extreme wind loads. For example, the Akashi Kaikyo Bridge in Japan was instrumented during its 

construction in the early 1990’s to monitor the bridge response to wind loads given the massive 

size of the bridge (i.e., it was the largest suspension bridge in the world at the time of its 

construction) (Kashima et al., 2001). Another example is the Wind and Structural Health 
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Monitoring Systems (WASHMS) installed in Hong Kong suspension bridges beginning with the 

Tsing Ma Bridge in 1999 and later the Kap Shui Mun Bridge and Ting Kay Bridge (Ni & Wong, 

2012; K.-Y. Wong & Ni, 2009; K. Y. Wong, 2004). These bridge monitoring systems have been 

vital to deciding when to close the bridges due to extreme wind responses during typhoons. 

Similarly, offshore structures have been instrumented to assess their response to wave load (Fugro, 

2021). The primary motivator for most of these monitoring systems was to collect response data 

from large-scale and critical structures under extreme loads. The cost and complexity of installing 

these monitoring systems (Lynch & Loh, 2006) were justified by the importance of the structure 

and the value of the data to be collected. However, by the late 1990’s, sensing technologies would 

begin to go through a transformation making high performance sensors cheaper and easier to 

install. These changes would ultimately make sensors available to a wide range of structures (i.e., 

not just large or critical structures) and for a wide range of purposes (i.e., SHM). 

 

1.2.2 Advances in Sensing Technology 

A key factor preventing earlier adoption of permanent monitoring systems for civil IS has been 

their high costs (Wang et al., 2014). Costs on the order of thousands of dollars per channel placed 

many opportunities to deploy monitoring systems out of reach. These costs had been driven by 

expensive sensors (e.g. force balance accelerometers), wired communication systems, and multi-

channel data acquisition systems. By the late 1990’s, the landscape was changing quickly and 

dramatically with sensing technologies rapidly evolving into lower cost yet high performance 

solutions. These trends have continued to the modern day there by opening structural monitoring 

to a wide array of IS applications including SHM and “smart”, cyber-enabled infrastructure (e.g., 

connected vehicles interacting with road-side sensors). 
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Perhaps the most significant of the advances in sensing to occur in the 1990’s was the 

ability to fabricate sensors using the same methods as those used to fabricate integrated electronics. 

Silicon was recognized as a potential material enabling the development of cost-effective, batch-

fabricated and high-performance sensors and actuators (Petersen, 1982). The development of 

microelectromechanical systems (MEMS) was key to sensor miniaturization while driving sensor 

costs per unit to a low level (Liu, 2012). For instance, studies in the literature have shown that 

MEMS-based accelerometers are an order of magnitude cheaper when compared to traditional 

piezoelectric and force-balanced accelerometers (Bedon et al., 2018; Evans et al., 2014). MEMS 

sensors are also smaller than non-MEMS counterparts. Most importantly, their performance has 

compared well to traditional sensors. As a result, MEMS sensors are found in a wide variety of 

applications including sensing in cars (e.g., accelerometers for airbag deployments), cell phones 

(e.g., accelerometers to assess the phone orientation), etc. Similarly, MEMS sensors are 

increasingly common in IS monitoring applications. 

The development of digital data acquisition (DAQ) systems was another key factor 

enabling the adoption of sensors. Compared to the Golden Gate Bridge monitoring system of the 

1940’s and 1950’s where Hall accelerometers utilized pen and a rotating drum to record the sensor 

readings (Wang et al., 2014), the introduction of digital electronics and computers provided an 

essential tool for efficient data collection and storage. By designing DAQs with digital electronics 

and microprocessors, the DAQ industry could ride the trends of the broader electronics industry 

including use of faster processors (as defined by Moore’s Law) with reducing cost. Today, 

standard DAQ solutions are very accessible to a broad range of users including IS stakeholders. 

While DAQ technology has improved, the vast majority of DAQs use wires to communicate sensor 
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data to the external DAQ platform. It has been these wires that have kept monitoring solutions a 

high cost alternative to traditional visual inspection of IS. 

To address the limitations imposed on IS monitoring by wired DAQ architectures, the use 

of wireless telemetry was introduced to SHM systems in the late 1990s by Straser et. al. (1998) 

(Straser et al., 1998). Wireless sensor networks (WSNs) were proposed to reduce the 

instrumentation cost through eliminating the need for wiring and making the monitoring system 

deployment process less labor intensive (and thereby lower cost). WSNs enabled the deployment 

of dense arrays of network and showed potentials for distributed actuation and control. By the 

early 2000’s there were numerous WSNs deployed in IS for SHM applications (Lynch & Loh, 

2006; Lynch, 2007). A wide variety of innovative wireless sensors have been proposed for SHM 

and validation of these wireless sensors have been done at full-scale using traditional IS including 

bridges, buildings, wind turbines, and ships (Häckell et al., 2016; Jang et al., 2010; Johnson et al., 

2018; Kurata et al., 2005; Pakzad, 2010; Pakzad et al., 2008). With low system costs and easy-to-

deploy, modular installations, the ability to instrument infrastructure and to acquire a large volume 

of data. Today, the challenge of extracting value from IS monitoring data remains. Especially, how 

to us IS response data to infer the condition and performance of infrastructure remains an open 

research question in the SHM field. 

 

1.2.3 SHM 

Preserving integrity of physical components of IS is of outmost importance when it comes to their 

safe and cost-efficient management. In recent years, there has been increasing demand on 

preserving IS assets and gaining the most usage out of them rather than building new infrastructure 

components due to growing finance gaps in infrastructure renewal in most mature economies like 
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the United States (Soga & Schooling, 2016). The need to “do more with less” is demanding new 

approaches to how civil engineers manage IS assets. One approach is structural health monitoring 

where sensor data is used to assess IS asset performance and structural conditions. 

The rapid advancement and adoption of sensing technology in IS applications has led to 

the creation of the field of structural health monitoring (SHM). Formally, SHM is the defined as 

the practice of strategies implemented for damage identification within structural systems (Worden 

et al., 2007). In this context, damage is defined as changes within the structural system (i.e. 

materials, geometry, and/or boundary conditions), that adversely affects both the local and global 

performance of the system (Worden et al., 2007). SHM can be performed on five different 

hierarchical levels: 1) damage detection, 2) localization, 3) classification, 4) assessment and 5) 

prediction (Farrar & Worden, 2012; Rytter, 1993). As is self-evident, each of these levels requires 

the output of all the previous ones. For instance, to locate damage in the structure, first the damage 

needs to be detected. Consequently, SHM algorithms remain underdeveloped primarily for the first 

few levels including detection and localization of its occurrence. Guiding the development of SHM 

algorithms, irrespective of the level considered are a set of seven fundamental axioms as first 

formalized by Worden et. al (2007). Perhaps the most significant of them all is Axiom II. Axiom 

II of SHM states that for damage assessment, a comparison between two system states is needed 

(Worden et al., 2007). Consequently, the comparison performed by SHM can be done either by 

using model-based approaches which require high fidelity physical models of the structure, or 

data-driven approaches which rely on statistical models built from measured structure response 

data (Farrar & Worden, 2012; Tibaduiza et al., 2013). 

The earliest SHM algorithms grew out of the modal analysis field and largely relied on 

modal properties of structures within a model-based approach. Modal methods that compared 
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modal characteristics (e.g., frequency, damping, mode shape) were convenient due to the readily 

accessible accelerometers that could easily record structural vibration. An excellent literature 

review of vibration-based SHM was offered by Sohn et. al. (Sohn et al., 2003) but some notable 

examples are provided here. Williams and Messina (1999) developed an SHM framework by 

analyzing a correlation coefficient that compared changes in a structure’s modal frequencies with 

predictions obtained from a frequency-sensitive finite element model (Williams & Messina, 1999). 

Chaudhari and Maiti (1999) used the Frobenius technique to develop a mechanical model for 

computing the transverse vibration of a geometrically segmented beam with and without cracks 

along the beam’s normal axis (Chaudhari & Maiti, 1999). The cracked section was modeled as a 

rotational spring and the model showed high accuracy for both locating the crack and estimating 

the size of the crack. Leutenegger et al. (1999) attempted to locate and assess the length of fatigue 

cracks in transversely vibrating beams using the relationships between crack length and resonant 

frequencies evaluated by a mechanical model of the cracked beam (Leutenegger et al., 1999). 

Model-based approaches are dependent on a structure’s geometry and material 

composition, and possess the additional challenge of modeling uncertainties within their 

operational environment (Ying et al., 2013). An especially challenging aspect of model-based 

SHM methods is that their properties are often sensitive to both damage and the environment, 

making such methods difficult to apply in real-worlds settings. Consequently, data-driven SHM 

was proposed in response to the challenges and today is well established as the main approach to 

SHM. Earlier implementations of data-driven SHM consisted of two key steps following data 

acquisition. First, damage sensitive features (DSFs) were extracted from structural response data 

and then statistical models were built to discriminate between the response from undamaged and 

damaged structures. Sohn et al. (2003) have gathered a valuable and insightful summary of the 
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SHM literature by the early 2000’s when the pivot to data-driven SHM was occurring (Sohn et al., 

2003). Early implementations of data-driven SHM relied on statistical pattern recognition 

techniques for making a decision on the state of the structure (Sohn et al., 2001). Statistical process 

control charts (Sohn et al., 2000) and the well-known F-test (Sohn & Farrar, 2001) are amongst 

other decision rules used in early data-driven SHM applications. The portfolio of data-driven 

methods has only expanded over the past two decades with a wide range of algorithmic approaches 

emerging including the use of machine learning (ML). While these methods are improving the 

capabilities of SHM methods, such methods can still be challenges by changes in the operational 

environment that affect the features used in structural health assessments. 

The SHM community was quick to realize the challenging nature of SHM in that the extent 

of complicated interactions between different structural components and the structure and the 

environment render well-known elementary pattern recognition techniques ineffective for SHM. 

As a result, SHM practitioners resorted to more complicated Signal Processing (SP) and Machine 

Learning (ML) techniques for data-driven SHM. Needless to say that the rapid progress, which is 

still on-going, in the fields of signal processing and artificial intelligence (AI) has been a major 

contributor to development of sophisticated ML-based SHM frameworks. In the next subsection, 

a more detailed review of the more recent ML-based SHM frameworks is presented. However, 

prior to doing so, another important concept that has had revolutionary impact on IS monitoring 

and management, will be introduced in the next subsection. 

 

1.2.4 Cyber-Physical Systems 

The current phase of “intelligent” IS is the concept of Cyber-Physical System (CPS) were first 

formalized by the National Science Foundation (NSF) in 2006 (Lee & Seshia, 2016). Later in 
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2007, it was recognized as a paramount and promising research direction in the field of networking 

and information technologies by President’s Council of Advisors on Science and Technology 

(PCAST) (Gunes et al., 2014; Krogh et al., 2008). Rajkumar et al. (2010) formally define CPS as 

“physical and engineered systems whose operations are monitored, coordinated, controlled and 

integrated by a computing and communication core” (Rajkumar et al., 2010). Although this is one 

definition for CPS, it must be mentioned that other definitions of CPS exist within the scientific 

community (Gunes et al., 2014). Clearly, monitoring and control systems have been in existence 

for decades but these systems would not be considered as CPS. To be a CPS solution, accessible 

computing that can be scaled up to a large volume of data is an essential design feature. The current 

base of computing resources now available upon demand in “clouds” is driving CPS solutions. 

Specifically, through utilizing cloud computing, CPS solutions in IS applications can be created to 

perform data-driven monitoring and control services in real-time. Consequently, IS managers, 

owners and users can benefit significantly by embracing CPS architectures. The integration of 

communication and cloud computing have already had transformative benefits for IS stakeholders. 

Perhaps the most prominent example of using CPS architecture for enhancing IS services 

are connected and autonomous vehicles (CAVs). CAVs possess large computational and storage 

power and utilize vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications to 

enhance their operations (Rawat et al., 2015). Sensors in the CAV and roadside transit their data o 

each other and the roadside infrastructure. As higher levels of autonomy are sought, the use of 

cloud computing will increase to analyze large volumes of CAV data. Placing these computational 

services into the control loops that control CAVs in effect close the loop within the CPS 

architecture. In addition to CAVs, the transportation infrastructure (e.g. bridges) have been 

transformed by embracing CPS solutions. Intelligent transportation systems augment CPS to 
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existing transportation infrastructure to achieve real-time (or near real-time) traffic monitoring and 

control (Moller & Vakilzadian, 2016; Zeng et al., 2019). Other CPS examples beyond 

transportation infrastructure include smart energy grids (Khaitan et al., 2015; Seshia et al., 2017), 

smart water networks (Eggimann et al., 2017; Kerkez et al., 2016) and smart heating, ventilation 

and air-conditioning systems (Schmidt & Åhlund, 2018). 

 

1.3 Knowledge Gaps and Technical Challenge of Intelligent Infrastructure Systems 

As data-driven structural assessment methods grew in popularity there are a number of notable 

challenges that emerge. This section will highlight a number of notable challenge that exist in 

intelligent infrastructure that affect their implementations in real-world IS. First, the role of 

environmental and operational conditions (EOCs) in the SHM paradigm is presented; EOCs often 

manifest is structural monitoring data in a manner that can mask change in the data associated with 

structural deterioration. Second, the underlying assumption of observation independence of many 

data-driven assessment methods is explored. Specially, such assumptions may limit the 

applicability of such approaches when deterioration and damage are a one way process (i.e., 

structures generally do not “heal” or get better). 

 

1.3.1 The Role of EOCs on Data-Driven Decision Processes for SHM 

Civil IS are typically massive and complex engineered systems that are exposed to very large loads 

including gravity and lateral loads. They also are exposed to their natural, ambient environments 

which can change the temperature of the structure. 

An important challenge in the application of data-driven approaches to SHM for structures 

operating in the real-world conditions is the fact that benign variations in environmental and 
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operational conditions (EOCs) under which the structure is operating can influence structure 

behavior (Cross et al., 2012). EOC variation often result in changes in a structural system behavior 

that would be considered “normal” (i.e., still part of the range of response of a healthy structure). 

Given the aforementioned Axiom II of SHM (Worden et al., 2007), this presents challenges when 

comparing a structure at two separate instances in time. A change in feature observed between 

these two points of observation could be due to damage, EOC variations alone (i.e., structure is 

undamaged), or both. For example, the variations in EOCs could alter the response of a healthy 

structure in a manner that response features exceed levels which engineers consider normal 

conditions (under static EOC scenario) and hence lead to false positive alarms. Alternatively, 

variations in EOCs could mask the effects of structure damage and render the data-driven approach 

less sensitive (or in the worst case, insensitive) to structural damage states which results in false 

negative situations (Cross et al., 2012). This calls for removing the influences of EOCs from 

structural response data by a process known as EOCs data normalization (Sohn, 2007). An 

important challenge that remains as SHM transitions from research to practice is the development 

of robust EOCs data normalization methods (Figueiredo et al., 2014; Figueiredo et al., 2011). As 

a result, this issue has received significant attention within the SHM community over the past two 

decades.  

Prior to discussing the different methods for EOCs data normalization, it is worth taking a 

deeper look at the philosophical significance of EOCs data normalization. A key point that must 

be stated is that at the very core, EOCs affect the structural system by either affecting the load, or 

more commonly how the system responds to a given load. The three pillars of solid mechanics are 

the equations that define systems equilibrium, compatibility of displacements (and strains), and 

the constitutive relations of the materials used in the structure that map stress to strain (Vekstein, 
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2020). Variations in EOCs manifest both in the equilibrium equations and constitutive 

relationships. For example, for a wind turbine tower, wind conditions (an EOC that is often 

characterized by wind speed and direction) affect the drag force applied to the tower. Additionally, 

by exciting the blades and power transmission systems within the nacelle, wind conditions also 

affect the load that is applied to the tower by the nacelle. These EOC-structure relationships would 

naturally manifest in the equilibrium equations used to model the turbine system. Another vivid 

example for how EOCs could affect the constitutive relations is through affecting the modulus of 

elasticity. For concrete, which is a frequently used material within civil engineering structures, the 

modulus of elasticity is dependent on temperature (Fanella, 2016). Moreover, temperature 

variations can affect the global response characteristics of a structure; for example, bridge modal 

frequencies are very well documented to be temperature dependent (Zhou & Yi, 2014). Finally, 

variations in temperature, can indirectly result in a mechanical loading on many statically 

indeterminate structures. 

Consequently, by applying EOCs-based data normalization techniques for data-driven 

structural assessment methods like SHM, the practitioner is in essence attempting to account for 

the fact that the system is uniquely responding under different loading conditions. By normalizing 

the data with respect to EOCs, the goal is to compare newly observed responses to a specific 

baseline response in the same EOC state, such that any variations between the two responses can 

be attributed to structural damage (and not EOCs). It must be re-iterated that what distinguishes 

the varied response caused by change in EOCs from those of damage, is the fact that variations 

caused by EOCs are reversible. 

One way to classify EOC data normalization methods is based on the extent that these 

methodologies use measured EOCs (Sohn, 2007). A general approach for cases were full 
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knowledge of EOCs is available is to regress damage sensitive features (DSFs) against EOCs to 

establish a relationship between these two parameter sets. Incoming datasets are then compared to 

the relationship and deviations from normal conditions can be evaluated base on the EOCs value. 

This approach requires an accurate and complete set of EOCs measurements to be available for 

the regression approach. Nonetheless, this approach has been implemented on structures such as 

wind turbines (Yampikulsakul et al., 2014) and bridges (Peeters & De Roeck, 2001; Steenackers 

& Guillaume, 2005). 

Unfortunately, for most SHM applications, exact knowledge of EOCs is not readily 

available. In most field applications of SHM, traditionally, disproportionate attention is often given 

to selecting sensors that provide structural response data with sensors for EOCs data often 

receiving secondary attention. For example, there are cases were measurement of the complete set 

of EOCs is impractical. Also, the measured set of EOCs (if even measured) might not accurately 

capture the full range of EOCs influencing the response of the structure. In some other cases, the 

EOC data available might be those published by the site operator or weather stations which 

typically report EOCs in a statistical fashion with EOC parameters averaged over extended 

observation periods (e.g., minutes, hours) that are too large compared to the dynamics of the 

structure. 

A growing number of methods have emerged to perform EOCs data normalization without 

the use of EOCs measurements and are solely reliant on structural response data. To remove the 

effects of EOCs variations, methods within this class use a diverse set of techniques and tools such 

as principal component analysis (Cross et al., 2012; Oh & Sohn, 2009; Tibaduiza et al., 2013), 

auto-associative neural networks (Figueiredo et al., 2011; Sohn, Worden, et al., 2001), singular 

value decomposition (Gomez Gonzalez, 2016; Figueiredo et al., 2011), factor analysis (Gomez 
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Gonzalez, 2016), robust regression and outlier detection (Dervilis et al., 2015; Dervilis et al., 2015) 

and cointegration (Cross et al., 2012; Cross et al., 2011; Cross & Worden, 2012; Worden et al., 

2014; Zolna et al., 2015). Fundamentally speaking, these methods attempt to compensate for 

variations of EOCs by: 1) projecting the data to space where changes in DSFs caused by EOCs 

variations are clearly distinguishable from those caused by structural damage alone, or 2) selecting 

DSFs that are established to be insensitive to EOCs variations (Sohn, 2007). 

A third class of methodologies aim at clustering the available dataset into smaller groups 

with each group having similar EOCs characteristics. Such methodologies incorporate an 

additional knowledge of EOCs for data normalization and are suitable for scenarios were the SHM 

practitioner deems the EOCs dataset, albeit incomplete and imperfect, worthy of integration into 

the broader SHM analysis framework. An important and well-established method within this class, 

is the Three-Tier Modular Framework developed by Häckell (Häckell, 2015). After its 

establishment, this framework has been applied for EOCs data normalization to numerous 

structures including multi-degree of freedom structures, small-scale research wind turbines, and 

utility grade wind turbines and their various subcomponents (Bahrami et al., 2017; Häckell, 2015; 

Häckell et al., 2016; Tsiapoki et al., 2018). It must be emphasized that there exists several other 

methodologies that attempt to group datasets with similar EOCs together, by using certain features 

of structural response data (Sohn & Farrar, 2001; Sohn et al., 2001) or in some other cases, by 

clustering in the DSFs space rather than clustering in the EOCs space (Figueiredo et al., 2014; 

Silva et al., 2016). Since these methods do not use EOCs data directly, they fall under the second 

class of methods introduced previously. Needless to say, one could combine the two spaces and 

perform clustering in a hybrid space consisting of both the EOCs and DSFs if necessary. Each of 

the previously mentioned classes of methods have their own advantages and disadvantages. 
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1.3.2 Assumptions of Independence and Identical Distribution 

The  underlying assumption that dominates data-driven SHM applications is that the observations 

of the system (i.e. structural response records) are independent and identically distributed (i.i.d.). 

This stems from the fact that many of the data-driven methods (e.g., pattern classification and 

machine learning) used for SHM applications have been developed outside of the SHM arena. In 

most cases, these powerful models have gained a reputation from showing superb performance on 

a set of applications not necessarily related to structural engineering and dynamics. For many such 

applications, the assumption that the observations are i.i.d. is indeed valid. However, it is obvious 

that for SHM applications, the i.i.d. assumption is an idealization of the problem that jeopardizes 

the performance of algorithms based on it. To be more specific, the statistical independence in 

time is an over-simplified assumption for SHM applications as both the state of the structure under 

consideration and the variations in EOCs poses sequential relationships. An attractive tool for 

modeling the sequential nature of observations has been the Hidden Markov Models (Bishop, 

2006; Zaidi et al., 2011). As for the dependence of states of a structure, in the absence of any 

maintenance actions, the state of the structure is only expected to deteriorate. However, for most 

SHM applications, a large enough dataset of data from the damaged state is often not available as 

most structural damage is repaired at the onset of detection in the interest of safety and cost 

considerations. The lack of data of the structure in a damaged state can render ML-based 

approaches to learning sequential relationships very difficult due to lack of training data. Clearly 

needed are methods of data-driven modeling of the sequential nature of structural deterioration 

based on a limited set of observations of the structure in its damaged state. 

 



 19 

1.3.3 CPS-Enabled Infrastructure Monitoring and Assessment 

The potential of IS monitoring data extend far beyond serving as the basis of sophisticated 

computational models for structural assessment. The field is blessed with shrewd implementations 

and innovations that provide opportunities for unlocking the potentials of data-driven methods for 

a wide range of IS-relevant applications. Specifically, the augmentation of communication and 

computation with physical structures through CPS frameworks has enabled exciting new 

approaches to monitoring (and even controlling) system performance. Due to the availability of 

computational resources that scale to the data generated by sensors in a CPS framework, novel 

data sources that require processing to extract information can be now included. In IS applications, 

tremendous excitement surrounds the use of cameras to observe the loads imposed on some 

structures or to assess the structural conditions of the system. Computer vision (CV) algorithms 

are rapidly evolving including a new generation of ML-based algorithms ideally suited for object 

detection. The majority of CV-based techniques this are designed to automatically process large 

volumes of pictures and/or video feeds to extract valuable information to be used later. Specific to 

IS applications, CV has been applied to detect damage, measure structural displacement, and to 

assess human use of IS (Spencer et al., 2019). Other uses of CV in IS applications include its use 

for flood mapping and monitoring (Arshad et al., 2019), to track vehicles in intelligent traffic 

management systems (Osman et al., 2017) and to inspect wind turbines using drones (Shihavuddin 

et al., 2019). 

An important utility of automated image processing capabilities of CV is to extract a set of 

information for IS application that was unavailable before. One such example is the use of CV to 

extract information about a structure’s EOCs, especially the loads imposed on a structure. This is 

a major advancement because in some cases, traditional sensing technologies (e.g., discrete sensors 
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like accelerometers) are not applicable. One such example is the work of Hou et. al. (2019) where 

a cyber-physical system along a highway corridor includes a CV system that can automatically 

identify and re-identify vehicles crossing bridges monitored by SHM systems (Hou, 2020; Hou et 

al., 2019). A single-stage object detector called YOLO is embedded into road-side camera systems 

with graphical processing units (GPUs) included to automate the detection of large trucks. The 

bridge SHM systems are triggered to collect bridge response data when a truck approaching a 

bridge is detected. Also, a second level convolutional neural network (CNN) is trained to identify 

(so called reidentification) the same truck at multiple bridges to link one bridge response to another 

from the same truck load. As a result of this work, a unique dataset is created consisting of pairs 

of bridge responses to the same truck. Furthermore, by reidentifying vehicles at a weigh-in-motion 

(WIM) station in the same corridor, Hou. et. al. (2019) managed to build a large dataset consisting 

of bridge responses to key vehicle weight and geometric features such as vehicle axle spacing and 

axle weight distributions. Such datasets are extremely valuable as, to the best of the author’s 

knowledge, it is one of the very few (if not only) dataset that contains pairs of bridge responses 

along with the corresponding load information derived from truck properties (including their 

weight) collected under routine operations. It is anticipated that with the increase of deployed 

monitoring systems on highway corridors, similar systems will be employed resulting in similar 

datasets that includes structure responses with the loads inducing them. With increased attention 

being paid to self-driving trucks and cars with wireless connectivity, vehicle-to-infrastructure 

(V2I) interactions will be possible offering and alternative approach to CV for vehicle load 

monitoring (Elliott et al., 2019).  

Numerous motivations exist for focusing on highway corridors when exploring deployed 

CPS architecture that can collect both structural response data but also EOC data. From the 
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viewpoint of analyzing characteristics of traffic flow, CPS-enabled highway corridors are 

frequently explored (D’Angelo et al., 1999; Song et al., 2018; Yao et al., 2017). Modeling the flow 

of traffic has direct relevance on structural assessments by guarantying the number and speed of 

vehicles loading on asset like a bridge. Additionally, when outsourcing highway maintenance 

operations to private entities, highway corridors are also one of the most common IS types being 

managed by private contractors under PPP contracts (Duncan et al., 2014). 

The introduction of cameras and CV into CPS-enabled highway corridors enables the 

opportunity to more broadly apply ML- and deep learning (DL)-based data processing techniques 

for solving existing challenges with highway corridor management. A key challenge is to forecast 

the complex interactions between truck loads and highway bridges which dominate the strain 

response of bridges to moving loads. Accurate response forecasting is key to enabling better 

understanding of vehicle-bridge dynamic interactions (VBI). VBI has received significant 

attention over the past few years and the body of literature allocated to VBI has been ever 

increasing since the widespread adoption of numerical models (Ding et al., 2010; Elhattab et al., 

2016; González et al., 2008; Zhang et al., 2018; Zhao & Uddin, 2014). While VBI remains an 

active area of research, it is widely recognized that numerical models have limitations. Data from 

operational bridges could be invaluable for advancing new VBI modeling approaches. 

With a high number of bridges now instrumented to measure their response to traffic loads, 

use of the bridge response data for estimating truck properties has also received significant 

attention; this problem is commonly known as bridge weigh-in-motion (BWIM). State 

Departments of Transportation (DOTs) in the US operate weigh-in-motion (WIM) stations across 

their highway networks to assess traffic volumes and total carried weightage on their roads. WIM 

stations measure valuable traffic information that can be used for future highway design and 
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planning. More importantly, WIM station information is also used to determine the share of 

funding that each state receives from the federal government. WIM station sensors are buried 

underneath the highway pavement and record truck weight and geometry characteristics as they 

pass over the embedded sensor. Consequently, WIM stations are expensive to install and often 

challenging to maintain. This has been the main motivation for considering BWIM as bridges are 

already being instrumented for structural monitoring. Thus, by developing BWIM solutions, 

researchers hope to take full advantage of existing instrumentation systems to derive more value 

from the data collected. Additionally, bridge sensors are often easier to maintain and repair 

compared to WIM sensors that have accessibility issues due to being buried underneath the road 

surface. Consequently, over the past decade, BWIM solutions have evolved towards using simpler 

bridge instrumentation by using more complex data analytics tools. Early BWIM solutions 

deployed axle detectors (such as laser sensor) on bridge road surfaces (Hou, 2020). However, 

recent BWIM methods rely on sensors measuring bridge responses alone. Many such methods use 

sophisticated models relying on a broad range of tools ranging from the fields of signal processing 

to optimization and DL (Pan et al., 2018; Wu et al., 2020; Y. Zhou et al., 2021).  

With the existing opportunities for applying DL-based techniques to recently available 

bridge response data, two major gaps within the literature are prevalent; first is the bridge response 

forecasting over an entire truck population and second, implementation of BWIM models using 

real-world data. In this context, the diverse set of trucks traversing the bridges act as a broad EOC 

set dominating the response of bridges. Consequently, the application of DL-based models must 

be done with diligent focus devoted to the effects of EOCs on the performance of the data-driven 

models themselves. This would be akon to the aforementioned data normalization methods 

previously described for SHM applications. 



 23 

1.4 Research Goal and Objectives 

The overarching goal of this dissertation is to contribute to solving challenges in applying data-

driven techniques for structural monitoring and assessment of IS assets. The key concept linking 

all these contributions is the focus on EOCs data normalization when applying data-driven 

techniques in this application domain. The dissertation aims to develop data-driven analytical 

frameworks that explicitly extract EOCs parameters to improve structural performance 

assessments. To accomplish this goal, the dissertation has three main objectives. First, it proposes 

a methodology for estimating features that heavily correlate with EOCs (also known as EOC 

sensitive features, or EOCSFs) from measured structural responses for IS scenarios where proper 

knowledge of EOCs are not available. Second, by employing the basic laws of probability and by 

building on previously proposed damage detection frameworks, new frameworks are explored to 

overcome the shortfalls of prior SHM frameworks and increase the damage detection performance. 

Finally, by using the unique dataset constructed by Hou et. al. (2019) and using the computation 

capabilities of DL-based time series analysis models, two solutions are proposed for better 

highway corridor management using bridge monitoring data: bridge-to-bridge response 

forecasting and BWIM. These methods consider the effects of EOCs on the performance of the 

DL-based models adopted. Two types of IS assets will be explored in the dissertation: wind 

turbines and highway bridges (in a CPS architecture). Both see major loads as part of their EOC 

profile yet there are challenges to fully measuring these EOCs as will be described later. The 

following paragraphs highlight key research objectives inherent to the dissertation. 

The first objective of this dissertation is to propose a framework for systematically 

searching for EOCSFs when EOCs data is not available at the IS asset location. The term EOCs 

Sensitive Features (EOCSFs) is intentionally given to highlight the contrast between these features 
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and previously described Damage Sensitive Features (DSFs). To determine EOCSFs, a mechanical 

model of a structure (in this dissertation’s case, a wind turbine) is built to enable simulating the 

response of the structure under varying EOCs. The benefit of conducting simulations is having 

complete control over the variations of EOCs. Regression models are used to explore the 

relationships between potential EOCSFs and EOCs using the simulated data and the degree to 

which these features correlate to EOCs. It is desirable for EOCSFs to be as insensitive to structural 

damage as possible since the EOCs data normalization stage must not depend on the structural 

status of the structure. Hence, the sensitivity of the EOCSFs to structural damage will be evaluated. 

To do so, the real-world damage scenario must be mimicked in the simulated model and the 

EOCSFs-EOCs relations are tested again using the regression model. It is recommended to search 

for alternative EOCSFs should a potential EOCSF show high sensitivity to structural damage. 

The second objective of this dissertation is to propose EOC-aware damage detection 

frameworks for enhancing the performance of the existing SHM systems for real-world 

applications. Specifically, two innovative damage detection techniques are explored based on 

relaxing the limitations and idealized assumptions underlying the previously used damage 

detection frameworks. First, a Gaussian Mixture Model (GMM)-based probabilistic assignment 

approach is considered for EOC data normalization. Rather than considering the observations in 

one cluster and comparing the DSFs of that observation with the DSFs of the same EOC class, the 

DSFs of each observation is compared to all other EOCs classes. However, when combining the 

results, higher weight is given to sample if they are from EOC classes that the particular 

observation has a higher likelihood of belonging to. Compared to previously used data 

normalization approaches, the proposed method will take advantage of the entirety of the training 
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dataset while consciously favoring the results from “more similar” EOCs classes. The efficacy of 

this approach will be shown on wind turbine systems. 

The second damage detection technique proposed is to relax the i.i.d. assumption existing 

within the majority of ML-based damage detection frameworks in practice. As such, a sequential 

damage detection framework using Hidden Markov Models (HMM) is proposed under varying 

EOCs. Rather than looking at individual observations, the HMM-based damage detection 

framework takes in sequences of structural responses measured at different instances. The HMM 

assigns likelihoods of observation to each sequence and all observations in a sequence that have a 

significantly low likelihood are labeled as damaged. Conversely, if the likelihood of observation 

for that sequence isn’t low, the entire observation set is then labeled as undamaged. To evaluate 

the capabilities of the proposed SHM framework, its performance is compared with other damage 

detection frameworks that rely on the i.i.d. assumption. This damage detection technique will be 

explored using a bridge system with a controlled damage evolution process. 

The third and final objective of this dissertation is to develop exclusive data-driven models 

for solving existing challenges within the practice of highway infrastructure asset management by 

utilizing DL models. Specifically, the novelty of this part of the work is to expand beyond the 

current unit for analysis, which is a single bridge, and utilize the unique and state-of-the-art dataset 

collected by Hou et. al. (2019) to propose models for corridor monitoring applications. Two 

models are developed, one for joint bridge response modeling (i.e., prediction) and the other for 

BWIM applications. There are two reasons for resorting to DL-based models given these datasets. 

First, the carefully designed complexities and nonlinear transformations imbedded within these 

models result in superior performance compared to their shallower counterparts. Second, the 
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unique architecture of these DL models makes them suitable for expanding to offer corridor 

monitoring applications with ease. 

The first DL model to be explored, namely a sequence-to-sequence (Seq2Seq) model which 

is used to enable joint bridge response forecasting. This is done by forecasting the response of a 

downstream bridge to a given truck by using the response of an upstream bridge that has responded 

to the same truck. Such a solution has two goals: the first is to enable bridge response forecasting 

with limited instrumentation. Specifically, the approach is well suited for permanently 

instrumenting one bridge and deploying temporary instrumentations on other bridges across the 

corridor to gather enough data for training the DL-based predictive models. By doing so, an 

important step is taken towards transitioning from the existing highway financing models that 

mainly rely on fuel tax to models that quantify how much each vehicular user consumes of the 

infrastructure’s life and charge for that consumed life. The second goal is to use the response of 

the bridge to previous similar trucks for controlling connected and automated trucks by prescribing 

trajectories so as to minimize the bridge consumed life and maximize the life span of the existing 

bridges. The key operational condition influencing the performance of the proposed data-driven 

model is the characteristics of the vehicle passing through the corridor. Next, using the bridge 

response data from the corridor, along with corresponding WIM station information for the truck, 

a DL-based model is developed for the BWIM problem.  

 

1.5 Dissertation Outline 

Figure 1–2 shows the outline of this dissertation. In Chapter 2, the framework for estimating 

EOCSFs is developed. The structure of interest is the tower of a small scale experimental wind 

turbine located at the Los Alamos National Laboratory (LANL). To simulate the turbine’s 
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response, three pieces of software are used to develop a mechanical model for the LANL turbine. 

First, a model is developed in the FAST (Jonkman & Buhl Jr., 2005) simulation platform to model 

the dynamic response of the wind turbine to wind input. Realistic response scenarios are simulated 

by generating wind profiles using TurbSim (Jonkman & Kilcher, 2012). Finally, a model is 

developed in MATLAB to simulate the response of the tower to the nacelle loads as evaluated by 

FAST. While FAST has a built-in feature to compute the tower response, a MATLAB model is 

developed for higher accuracy (by considering more structural modes than FAST’s default number 

of modes) and higher flexibility for implementing different damage scenarios. Gaussian Process 

Regression is used to evaluate the relationships between the proposed EOCSFs and EOCs under 

undamaged and damaged towers. Furthermore, the GMM-based damage detection framework is 

developed in this chapter and the performance of the EOCSFs, as well as the proposed damage 

detection framework, is tested on both the simulated dataset and the experimental dataset from the 

LANL wind turbine. 

Chapter 3 of this dissertation explores the sequential relations amongst observations for 

SHM applications. A sequential outlier detection framework using Hidden Markov Models is 

proposed for damage detection under varying EOCs. To evaluate the capabilities of the proposed 

SHM framework, the performance of the proposed framework is compared with other damage 

detection frameworks that rely on the i.i.d. assumption. The proposed frameworks are 

implemented on the well-known Z-24 bridge dataset. This dataset is extremely valuable for SHM 

applications as it is one of the very few available that contain measurements from the bridge while 
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realistic and common damage scenarios are physically implemented on numerous structural 

components of the bridge over a prolonged period of observation time. 

In Chapter 4, an Auto-Encoder is used for BWIM. A Finite Element model for simulating 

the response of the bridge to truck traffic is developed to first enable analyzing the performance of 

the Encoder under ideal scenarios. The same approach is used for BWIM on the experimental data 

collected by Hou et. al. (2019). This data is from the I-275 highway corridor located in southeast 

Michigan. The measurement system consists of two instrumented bridges, namely the Newburg 

Road Bridge (NRB) and the Telegraph Road Bridge (TRB), a WIM station and four roadside traffic 

cameras.  

In Chapter 5, a Seq2Seq model is trained for joint bridge response forecasting. Specifically, 

the response of a bridge to the same truck is used to forecast the response of another bridge to that 

identical. The experimental dataset from Chapter 4 is used to train the Seq2Seq model. Two 

 

Figure 1-2. Thesis Outline. 
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distinct problems are solved; the first one, the NRB response is used as the input to the model to 

forecast the TRB response and in the other one, the direction of forecasting is reversed. The 

detailed description of the signal pre-processing techniques for removing noise, isolating the 

bridge free vibration and isolating observations with a single truck is included in this chapter. In 

this chapter. It will be observed that by focusing on one vehicle class only, the performance of the 

forecasting framework is enhanced. This suggests that the operational condition of interest that has 

the most significant impact on the model performance is the type of vehicle travelling over the 

bridges. 

This dissertation concludes by listing the key findings, along with the directions of future 

work in Chapter 6. 
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Chapter 2.  

Two Methods for Better EOCs Data Normalization for SHM: Use of EOCs-

Sensitive Features and Soft Assignment

 

2.1 Introduction 

Wind power is amongst the fastest growing renewable energy sources. An important step in 

enhancing the marketability of wind power is optimizing the operation and maintenance costs of wind 

turbines (Byon & Ding, 2010). A key tool for optimizing the maintenance costs of wind turbines is 

the implementation of a comprehensive condition-monitoring system, capable of providing diagnostic 

information on the health of turbine subsystems and informing maintenance crew to trends that could 

potentially lead to turbine failure (Walford, 2006). Consequently, wind turbine condition monitoring 

systems and strategies have received significant attention over the past years. Reviews of such 

strategies can be found in the literature (Ciang et al., 2008; García Márquez et al., 2012). Of primary 

importance amongst all turbine monitoring systems are the structural health monitoring (SHM) 

systems as structural damage is capable of inducing catastrophic damage to the integrity of the wind 

turbines (Ciang et al., 2008). 

Variations in EOCs play a significant role in the structural response of a wind turbine. Specifically 

speaking, wind speed and wind direction in particular, are the main drivers of the turbine blades which 

in turn run the turbine in the nacelle. As a result, the response of each component within the turbine 

is significantly influenced by EOCs. In chapter 1 of this dissertation, the importance of EOCs data 

normalization for SHM along with a review of existing approaches to EOCs data normalization were 
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thoroughly discussed. In this chapter, two solutions for better EOCs data normalization for wind 

turbines is pursued. 

First, for the case of imperfect EOCs, we seek features from structure’s response that enhance the 

efficiency of data normalization. The basic premise of this approach is that for SHM applications of 

interest, one, the measured structure response data has much higher quality compared to the available 

EOCs data and two, EOCs variations leave a trace in the structure response data. This would enable 

exploring features from structure response data that are sensitive to EOCs (as opposed to structural 

damage), which from here on, would be referred to as EOC sensitive features or in short, EOCSFs. 

The first assumption is valid for most practical field measurements used for SHM as discussed before. 

The second assumption is reasonable as well since if the variations in EOCs are capable of adversely 

influencing the performance of the SHM practice, they are expected to have meaningful signatures in 

the measured structure response. The EOCSFs used for data normalization must be as insensitive to 

structural damage as possible because the data normalization procedure used for SHM must be 

independent of the damage status of structure. Our approach to find EOCSFs is first to build a 

mechanical model for the structure and use the simulation environment, where full knowledge of and 

control over EOCs is available, to extract EOCSFs from structure response data. Next, the sensitivity 

of EOCSFs to structural damage are evaluated to ensure that data normalization stage would not suffer 

from the dependence of EOCSFs on structural damage. 

The second contribution of this chapter is to introduce a novel data normalization approach to 

enable all clusters to contribute when deciding on the status of an observation. Partitioning the entire 

dataset into a finite number of smaller clusters has two short-comings inherent in its nature. First, 

many datasets could lie within the boundaries of two clusters. In the traditionally used clustering 

approach, they are forced to be assigned to one and only one cluster despite having high probability 
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of belonging to another clusters as well. This could cause errors both within the training and testing 

stages. The second issue is that within the traditional clustering approach, only a single cluster is used 

to decide whether an observation is damaged or not. Thus, this approach tends to limit itself in the 

decision making process to smaller subset of data available and hence appears to be sub-optimal as it 

does not take full advantage of the entire valuable training dataset available. These two issues 

especially become important when the size of dataset is relatively large and samples are well-spread 

over the entire span of observation. Our solution for overcoming these two limitations of clustering 

approach, is to design a new EOCs data normalization methodology that enables all clusters to play a 

role in deciding on the status of an observation. 

The efficiency of the two proposed solutions of this research are evaluated using an experimental 

dataset measured from a small-scale wind turbine located at LANL and a simulated dataset for the 

same turbine. For the purpose of this work, small scale wind turbines are perfect structures as their 

structural response is driven by loads that depend heavily on EOCs (i.e. wind properties) and they do 

not possess the large inertia of utility grade wind turbines within their dynamic response. 

The rest of this chapter is organized as follows: next section presents the methodology and 

theoretical background of this work. Section 3 introduces the experimental dataset and familiarizes 

the reader with the shortcomings of this dataset collected under typical field situations. Additionally, 

it introduces the simulation datasets and why and how they were generated.  Finally, in section 4 the 

results of implementing the damage detection framework with the two proposed solutions are shown. 

The chapter concludes by summarizing key findings. 

2.2 Theory and Methodology 

This section of the chapter is devoted to describing the research methodology and the theoretical 

background. 
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In this chapter, two assignment approaches of data normalization for structural health 

monitoring are presented. The first approach is hard assignment approach which uses features 

from structural response to help yield more accurate estimates of the effects of EOCs on the 

structural response and overcome the lack of high quality EOCs data. The second approach is 

soft assignment approach for data normalization. 

2.2.1 Damage Detection Framework 

The damage detection framework used within this study is called the three-tier modular framework 

(Häckell, 2015; Häckell et al., 2016). As it appears by the name, the three-tier framework consists 

of three main tiers. At the training stage, the training dataset is normalized with respect to the 

EOCs in the first tier. This is done by dividing the dataset into smaller classes such that the data 

instances within each class have similar EOCs. In the second tier, DSFs, also known as condition 

parameters (CPs), are extracted for each observation. Ultimately, in the third tier, decisions 

boundaries are established for damage detection using pre-determined probabilistic models and 

significance levels. At the testing stage, in the data normalization tier (first tier), the incoming 

observations are assigned to the classes to which they have the most similar EOCs. DSFs are 

extracted in the second tier and compared to decision limits and labeled as damaged or undamaged 

in the last tier. 

This three-tier framework has been utilized previously for various SHM applications 

including the LANL small scale wind turbine which is the subject of this study (Häckell et al., 

2016). This proposed framework is pure data-driven machine learning which is only trained by 

undamaged data without any underlying mechanical model of the structure. Since it is a challenge 

to identify when a structure under service change its status, we emphasize that the framework is 

only trained by undamaged data to meet the needs in real-world, because, in general, the structures 
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under services can only provide undamaged information. Furthermore, it is desired that the 

framework could detect damaged observations without presenting those observations to the 

training stage in the proposed framework. In other words, all the training data are from the 

undamaged observations to train the framework with unsupervised learning implementation. In 

the testing stage, the trained framework is evaluated using a mixture of damaged and undamaged 

datasets to determine the existence of damage. It is worth mentioning that according to axiom III 

of SHM (Farrar & Worden, 2012; Rytter, 1993) further identifying the type of damage present and 

damage severity requires supervised learning. 

In summary, this framework has two key advantages that makes it an outstanding option 

for this research. First, it introduces a systematic approach to EOCs data normalization utilizing 

novel machine learning technique within the context of SHM. Secondly, it is highly modular which 

provides the practice of SHM and damage detection with high level of flexibility. This framework 

enables the SHM engineer to put different pieces into place at each module to create a new damage 

detection system and the best combination can be selected for the specific application by evaluating 

different options. 

2.2.1.1 K-means Clustering 

K-means is a clustering algorithms that aims at partitioning an N observations {𝒐1, 𝒐2, … , 𝒆𝑁} 

into a predetermined K number of clusters with the nearest mean by minimizing the following 

objective function (Bishop, 2006): 

𝐽 = ∑ ∑ 𝑟𝑛𝑘||𝒆𝑛 − 𝝓𝑘||2

𝐾

𝑘=1

𝑁

𝑛=1

 Eq. 2-1 

𝝓𝑘 =
∑ 𝑟𝑛𝑘𝒆𝑛𝑛

∑ 𝑟𝑛𝑘𝑛
 Eq. 2-2 
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where 𝝓𝑘 is the center of 𝑘th cluster, || ∙ || represents the Euclidian distance between two points, 

and 𝑟𝑛𝑘 is a binary variable whose value is 1, if 𝒆𝑛 belongs to the 𝑘th cluster, otherwise, the value 

is zero (note that each observation must be assigned to one and only one cluster).  

In general, an iterative approach is utilized to chase the best partition by alternating 

between two steps: (1) assignment step, initial 𝝓𝑘 values are assumed and the objective function 

is minimized with respect to 𝑟𝑛𝑘, by assigning each observation to the appropriate cluster; (2) 

updating step, 𝑟𝑛𝑘 values are assumed to be constant and the objective function is minimized with 

respect to 𝝓𝑘. For the first step, for the 𝑛th observation, to minimize the objective function one has 

to assign that observation to cluster with smallest ||𝒆𝑛 − 𝝓𝑘|| value (i.e. cluster with the closest 

center). For the second step, by evaluating 𝜕𝐽/𝜕𝝓𝑘 and setting it to zero, it can be shown that the 

objective function is minimized by selecting (Bishop, 2006): 𝝓𝑘 is effectively the mean of the 

observations assigned to the 𝑘th cluster. For this reason, the algorithm is called K-means. 

It is noted that different objective functions and different measures for distance of Equation 

2-1 would result in a different formula for updating in Equation 2-2. These two steps of assigning 

observations to closest cluster and updating the cluster center correspond respectively to the 

expectation and maximization steps of an algorithm known as expectation-maximization (EM) 

(Dempster; N. M., 1977). This iterative procedure is continued until no further change in the cluster 

assignment is observed. Since after each iteration the value of the objective function decreases the 

procedure is guaranteed to converge (Bishop, 2006). In addition, multiple random initial values of 

𝝓𝑘 are generated to have a higher chance of reaching the global minimum instead of a local one.  

Within this study, K-means clustering is carried out in the EOC space to group the 

observations with similar EOCs together. This is done either by clustering using features that are 
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direct measure of EOCs (such as wind speed and wind direction) or features that are shown to 

correlate with EOCs. 

2.2.1.2 Vector-Autoregressive Models (VAR) 

The DSFs used in this work are extracted from time-series of the vibration record based on residues 

of vector autoregressive (VAR) models. VAR model is an extension of the autoregressive (AR) 

model which enable the extraction of scalar DSFs from time series consisting of multiple 

measurements channels. 

To extract the DSFs, a VAR model is fitted to an undamaged dataset. Then, the trained 

model is employed to describe a test dataset whose state is unknown. When a new dataset comes 

into the model, a decision is made compared to the distribution of the undamaged dataset. If the 

error is low, then the new dataset can be described by the undamaged model relatively accurately 

and hence the test data is concluded to be undamaged as well. In contrary, a large error implies the 

test dataset is from a damaged state because the undamaged model cannot describe the test dataset 

accurately.  

In mathematical forms, suppose 𝒛𝟏[𝑡] ∈ ℝ𝑀×1 (𝑡 = 1, 2, … , 𝑇𝑧1
) is an 𝑀 × 1 vector 

representing measurements from the 𝑀 sensors installed on the structure in the reference 

undamaged state. Then the VAR model is fitted as: 

𝒛𝟏[𝑡] = 𝒘 + ∑ 𝑨𝑝𝒛𝟏[𝑡 − 𝑝]

𝑃

𝑝=1

+ 𝜺[𝑡] Eq. 2-3 

where 𝑝 + 1 ≤ 𝑡 ≤ 𝑇𝑧1
, 𝑨𝑝 ∈ ℝ𝑀×𝑀 is the weighting coefficient matrix, 𝒘 is ℝ𝑀×1 vector used to 

capture the bias of the model, 𝜺 represents the error of model in describing the measurements, and 

𝑃 is the order of VAR model. Once the model order is selected, the remaining model parameters 
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are determined by a least-squares approach. The code developed by Schneider and Neumaier 

(Schneider & Neumaier, 2001)is used to fit the VAR models to the reference datasets. 

Suppose 𝒛𝟐[𝑡] (𝑡 = 1, 2, … , 𝑇𝑧2
) represents the time series of a test dataset. To find the 

DSFs, the same model is also used to describe its time series: 

�̂�𝟐[𝑡] = 𝒘 + ∑ 𝑨𝑝𝒛𝟐[𝑡 − 𝑝]

𝑃

𝑝=1

 Eq. 2-4 

where �̂�𝟐 represents the estimate of the 𝒛𝟐 time series using the VAR model. The error, 𝝐[𝑡], is the 

difference between the actual time series and the estimated time series: 

𝝐[𝑡] = 𝒛𝟐[𝑡] − �̂�𝟐[𝑡] Eq. 2-5 

It is noted that the length of time series from testing dataset, 𝑇𝑧2
, might be different from that of 

𝒛𝟏, but the size of these vectors must be the same (i.e., 𝒛𝟐[𝑡] ∈ ℝ𝑀×1 should be an 𝑀 × 1 vector 

as well). 

The coefficient of determination of the VAR model is termed (Copeland, 1997) : 

𝑅2 =
1

𝑀
∑ (1 − √

∑ (𝑧2𝑚
[𝑡] − �̂�2𝑚

[𝑡])2𝑇𝑧2
𝑡=𝑃+1

∑ (𝑧2𝑚
[𝑡] − 𝑧2̅𝑚

)2𝑇𝑧2
𝑡=𝑃+1

)

𝑀

𝑚=1

 Eq. 2-6 

where 𝑧2𝑚
[𝑡] represents the 𝑚th component of the vector 𝒛𝟐[𝑡]. Additionally, 𝑧2̅𝑚

 is the time 

average of the measurements 𝑧2𝑚
[𝑡] with 𝑡 ranging from 1 to 𝑇𝑧2

. The first DSF of this work is 

based on 𝑅2, which is defined as: 

𝐷𝑆𝐹𝑅2
= (1 − 𝑅2)

𝑇𝑧2
− 1

𝑇𝑧2
− 𝑃 − 1

 Eq. 2-7 

It is noted that 𝑅2 approaches unity for perfect fit so 𝐷𝑆𝐹𝑅2
 as defined above, attains small 

values for measurements from an undamaged structure and tends to be larger for damaged datasets. 
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The second DSF is based on the M-test by Box (Box & Box, 2011) and compares the consistency 

of the estimated covariance matrix of the fitted model to test dataset with that of a single, or 

potentially many reference datasets. The estimate of covariance matrix is defined as: 

�̂�𝑧2
=

1

𝑇𝑧2
− 𝑃 − 1

∑ 𝝐[𝑡]𝝐[𝑡]∗

𝑇𝑧2

𝑡=𝑃+1

 Eq. 2-8 

where 𝝐[𝑡]∗ represents the Hermitian transpose of the 𝝐[𝑡]. This DSF, termed 𝐷𝑆𝐹𝑀 is defined as: 

𝐷𝑆𝐹𝑀 = (�̃� − 𝐺) ln|𝚿| − ∑(𝑡�̃� − 1) ln|𝚿𝑔|

𝐺

𝑔=1

 Eq. 2-9 

where �̃� = ∑ 𝑡�̃�
𝐺
𝑔=1 , G is the number of reference datasets, 𝑡�̃� = 𝑇𝑔 − 𝑃 − 1, 𝑇𝑔 is the total number 

of time instances in the 𝑔th dataset, and 𝚿 is the pooled covariance matrix of the test dataset and 

the other 𝐺 − 1 reference datasets given as: 

𝚿 =
1

�̃� − 𝐺
∑(𝑀 − 1)𝚿𝑔

𝐺

𝑔=1

 Eq. 2-10 

For a more detailed description of the DSFs and their derivation, the reader is referred to (Häckell, 

Moritz W.; Rolfes, 2013; Häckell, 2015). 

 

2.2.1.3 Decision Boundaries and Hypothesis Testing 

As mentioned previously, the three-tier framework is trained only using undamaged data. Hence 

this can be thought of as testing the null hypothesis that the observation is coming from a structure 

in undamaged conditions. For the damage detection problem, rejecting the null hypothesis would 

result in accepting the only alternative hypothesis which states the observation from damaged 

structure. The ultimate goal of training is to set decision boundaries on DSF values. If the DSF 

corresponding to an observation is within the boundaries, that observation is labeled as 
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undamaged; otherwise, it is labeled damaged. To set the decision boundaries, a known distribution 

is fitted to the training DSFs and boundaries are set by selecting a threshold (i.e., an 𝛼 value, also 

known as significance level). After completing the training stage, for each observation in testing 

stage the following procedure is conducted. Suppose 𝑠 is the state of the structure associated with 

observation 𝒐 during hypothesis testing (which for the problem at hand, could be either undamaged 

or damaged). Then by comparing it to the distribution corresponding to undamaged training 

datasets, if 𝑃(𝑠 = 𝑈𝐷) < 𝛼 then 𝒐 is labeled damaged. It is labeled undamaged if otherwise 

(𝑃(𝑠 = 𝑈𝐷) ≥ 𝛼). Ideally, we seek to achieve a framework that correctly labels all damaged and 

undamaged observations in the testing stage. However, for most of the applications, when damage 

is not in critically high levels, that is not achievable and there would be false classification (e.g., 

labeling an observation as damaged when in fact it is undamaged). 

It is emphasized that the threshold is selected by the engineer implementing the framework 

and is dependent on the consequences of misclassifying the observations. Misclassifying an 

undamaged observation as damaged would result in a structure being taken out of service for 

further inspection unnecessarily which results in loss of revenue and misclassifying a damaged 

observation could result in severe damage to the structure or loss of life (Farrar & Worden, 2012). 

It is up to the engineer to take into account these consequences when selecting the threshold for 

damage detection. For SHM applications, when structure is in good conditions, typically the 

threshold is selected so that most healthy datasets fall within the correct boundaries. 
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2.2.2 Soft Assignment for Data Normalization 

2.2.2.1 Notion of Soft Assignment 

The aforementioned approach for data classification has two inherent shortcomings: Firstly, by 

clustering the data and only comparing each new observation with the closest cluster, we cannot 

get the full benefits of the entirely valuable training dataset. Secondly, this all-or-none binary 

assignment cannot precisely describe the data near the boundaries, because a slightly change might 

cause the data point falling into another cluster. 

To overcome these challenges, a soft assignment approach is proposed to generate the 

possibility of the observation belonging to each cluster instead of assigning it to one and only one 

cluster for define decision boundaries in the three-tier framework. Suppose the entire training 

dataset is broken into 𝐾 mutually exclusive and collectively exhaustive clusters 𝐶1, 𝐶2, … , 𝐶𝐾, and 

∑ 𝑃(𝒐 ∈ 𝐶𝑘) ≡ 1𝐾
𝑘=1 . When new observation, 𝑜, with state, 𝑠, comes in the testing stage, the 

probability that 𝒉 is undamaged can be expressed as: 

𝑃(𝑠 = 𝑈𝐷) = ∑ 𝑃(s = 𝑈𝐷, 𝒐 ∈ 𝐶𝑘)

𝐾

𝑘=1

 Eq. 2-11 

𝑃(s = 𝑈𝐷, 𝒐 ∈ 𝐶𝑘) = 𝑃(s = 𝑈𝐷|𝒐 ∈ 𝐶𝑘)𝑃(𝒐 ∈ 𝐶𝑘) Eq. 2-12 

Combining Equation 2-11 and Equation 2-12: 

𝑃(𝑠 = 𝑈𝐷) = ∑ 𝑃(s = 𝑈𝐷|𝒐 ∈ 𝐶𝑘)𝑃(𝒐 ∈ 𝐶𝑘)

𝐾

𝑘=1

 Eq. 2-13 

Equation 2-13 introduces the notion of soft assignments in data normalization. To label the 

observation, 𝒐, the possibility of undamaged, 𝑃(𝑠 = 𝑈𝐷), is compared to the confidence interval, 

𝛼, similar to the aforementioned method of hypothesis testing. If 𝑃(𝑠 = 𝑈𝐷) < 𝛼 then 𝒐 is labeled 

damaged, otherwise, labeled as undamaged. 
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The advantage of using this proposed soft assignment is the fact that it resolves the 

previously mentioned shortcomings associated with hard assignment clustering approach. This is 

done by the term 𝑃(𝒐 ∈ 𝐶𝑘) present on the right hand side of Equation 2-13. When performing 

hard assignment, 𝑃(𝒐 ∈ 𝐶𝑘) has a one-out-of-𝐾 representation meaning that it is one for exactly 

one of the values of 1 ≤ 𝑘 ≤ 𝐾 and zero for all others. In other words, dataset 𝒐 is assigned to one 

and only one cluster and it is assumed that there is zero probability of 𝒐 belonging to other clusters. 

However, relaxing that constraint results in resolution of the previously mentioned shortcomings. 

The main drawback of this approach is that it is computationally more expensive compared to the 

hard assignment approach since for each observation, one has to compute 𝑃(𝑠 = 𝑈𝐷|𝒐 ∈ 𝐶𝑘) for 

all 𝐾 clusters, while in the hard assignment approach, one has to compute 𝑃(𝑠 = 𝑈𝐷|𝒐 ∈ 𝐶𝑘) only 

for the cluster that 𝒐 is assigned to. Higher number of clusters would make this approach more 

expensive as well, however, typically for data normalization for SHM, the number of clusters is 

not considered to be very large. The term 𝑃(𝑠 = 𝑈𝐷|𝒐 ∈ 𝐶𝑘) is computed using the exact similar 

approach as in the hard assignment case, i.e. via assuming 𝒐 only belongs to the cluster under 

consideration. 

Towards computing 𝑃(𝑠 = 𝑈𝐷) using soft assignment, one could take different approach 

towards computing 𝑃(𝒐 ∈ 𝐶𝑘) but the important point is that this term is solely computed using 

the EOCs. The only constraint from a data normalization perspective is that these terms must be 

valid probabilities. In this work, we use Mixture of Gaussians for computing 𝑃(𝒐 ∈ 𝐶𝑘). A more 

complete detail for training the Mixture of Gaussians can be found in (Bishop, 2006), however, in 

the following subsection, an abstract derivation is presented to provide the reader with necessary 

background. 
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2.2.2.2 Gaussian Mixture Models 

Suppose an observation 𝒐 with an EOC feature vector of 𝒆 is available and there exist 𝐾 distinct 

cluster groups 𝐶1, 𝐶2, … , 𝐶𝐾 for the EOCs. Furthermore, the 𝑘th cluster, 𝐶𝑘 is assumed to follow a 

Gaussian distribution with mean vector, 𝝁𝑘, and covariance matrix, 𝚿𝑘 (Bishop, 2006). The 

probability of observation 𝒐 occurring can be expressed as: 

𝑃(𝒐) = ∑ 𝑃(𝒐, 𝒐 ∈ 𝐶𝑘)

𝐾

𝑘=1

= ∑ 𝑃(𝒐 ∈ 𝐶𝑘)𝑃(𝒐|𝒐 ∈ 𝐶𝑘)

𝐾

𝑘=1

 Eq. 2-14 

𝑃(𝒐|𝒐 ∈ 𝐶𝑘) = 𝒩(𝒐|𝝁𝑘 , 𝚿𝑘) Eq. 2-15 

Bayes’ theorem is employed to calculate 𝑃(𝒐 ∈ 𝐶𝑘|𝒐) in Equation 2-15: 

𝑃(𝒐 ∈ 𝐶𝑘|𝒐) =
𝜋𝑘𝒩(𝒐|𝝁𝑘, 𝚿𝑘)

∑ 𝜋𝑘𝒩(𝒐|𝝁𝑘, 𝚿𝑘)𝐾
𝑘=1

 Eq. 2-16 

where 𝒩(𝒆|𝝁𝑘, 𝚿𝑘) represents the Gaussian mixture probability distribution function, 𝜋𝑘 is the 

prior probability that the observation belongs to the 𝑘th cluster, 𝒐 ∈ 𝐶𝑘, and 𝑃(𝒐 ∈ 𝐶𝑘|𝒐) is the 

posterior probability that 𝒐 ∈ 𝐶𝑘 given the observation of 𝒐. 

So for a training dataset of 𝑶 = {𝒐1, 𝒐2, … , 𝒐𝑁} consisting of independent and identically 

distributed observation with EOC features {𝒆1, 𝒆2, … , 𝒆𝑁}, the logarithm of likelihood function can 

be expressed as: 

ln 𝑃(𝑶|𝝅, 𝝁, 𝚿) = ∑ ln {∑ 𝜋𝑘𝒩(𝒆𝒏|𝝁𝑘, 𝚿𝑘)

𝐾

𝑘=1

}
𝑁

𝑛=1
 Eq. 2-17 

and for each of the observations: 

𝑃(𝒐𝒏 ∈ 𝐶𝑘|𝑶) =
𝜋𝑘𝒩(𝒆𝒏|𝝁𝑘, 𝚿𝑘)

∑ 𝜋𝑘𝒩(𝒆𝒏|𝝁𝑘, 𝚿𝑘)𝐾
𝑘=1

 Eq. 2-18 

the term 𝑃(𝒐𝒏 ∈ 𝐶𝑘|𝑶) is known as the responsibility that cluster 𝐶𝑘 takes for observing 𝒐𝒏.  
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2.3 Description of the Dataset 

2.3.1 Experimental Dataset 

The subject structure of this study is a small-scale research wind turbine tower located at Los 

Alamos National Lab (LANL, Los Alamos, NM, USA). The wind turbine is a Whisper 500, 

manufactured by Southwest Windpower, Inc., with a nominal power of 3 kW (10.5 m/s wind 

speed) and two blades whose rotor diameter is 4.5 m, as shown in Figure 2-1. The Whisper 500 

wind turbine with the locations of sensor nodes and the damage scenario.. A 70 kg nacelle is placed 

at the top of the tower with a rotor whose nominal speed is 500 r/min (8.2 Hz). The wind turbine 

has a tail stabilizer which enables the turbine to follow the wind direction under normal operation 

and a furling mechanism that protects the turbine in high wind events by changing the rotor 

orientation. The EOCs data was recorded by a 46-m meteorological tower with four levels, TA-49 

station, located on the Pajarito Plateau in an open meadow (N 35.8133°, W 106.2993°, elevation 

214.58 m) . It records the environmental conditions every 15 minutes since June 24, 1987.  

The tower of the turbine is 12.2m tall made of steel with varying cross-sections. The tower 

is supported by two pins: one is located at the bottom of the structure and the other one located at 

about 4 m height from the bottom (almost one third of the tower). The bottom pin can be removed 

to tilt the turbine for maintenance and inspection purposes. Since it is impossible to create a 

physically damage on this experimental wind turbine tower, the damage scenario is introduced by 

replacing the bottom pin with a spring to mimic the loss of stiffness to create damaged datasets. 

Six wireless sensing nodes are mounted on the 0.72 m, 1.26 m, 2.86 m, 8.04 m, 9.18 m, and 10.23 

m of the tower to measure triaxial accelerations to generate datasets. Each sensing node consists 

of a Martlet wireless unit, a tri-axial accelerometer, a 5-V power control board, and an 

accelerometer connecting base board (Kane, 2014). While a triaxial accelerometer is used in the 
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sensing node, only the accelerations in the horizontal plane (x- and y- directions) are recorded for 

their significant values. In total, 12 channels of accelerations measured by six wireless nodes 

mounted at different locations along the tower are employed to describe the vibration of the wind 

turbine responded to the natural wind environment. The sampling frequency is 500 Hz, and the 

measured time duration is roughly 24 seconds. The measurements of all channels are transferred 

from each sensing node to a base station located closed to the turbine via 2.4 GHz IEEE 152. short-

range radio. Both the sensing nodes and the base station are powered by a battery bank. The whole 

Martlet sensing platform is designed and deployed in June 2013. The experimental datasets were 

collected on September 16-18, 2013, and the main wind direction is south which make the tower 

instead of the bolt/spring lean against the wind flow excitation. Total of 325 undamaged datasets 

are collected approximately every 5 minutes because the 12 channels of measurements require 

time to completely transfer the data. After manually introducing the aforementioned damaged 

scenario, another 42 samples are collected as the damaged datasets, which make the entire dataset 

consist of 367 observations (325 undamaged, and 42 damaged samples). 

  

Figure 2-1. The Whisper 500 wind turbine with the 

locations of sensor nodes and the damage scenario. 

Figure 2-2. Description of the methodology of generating 

simulation datasets. 
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While this dataset is a valuable experimental dataset for SHM, it also has two 

shortcomings: (a) The lack of appropriate information on EOCs for data normalization, because 

the EOCs data were provided by the meteorological tower with a lower rate (every 15 minutes) 

instead of directly measured by an embedded sensor. (b) the small size of the dataset (367 

samples); a higher number of data samples would help establish more confidence in hypotheses 

developed. 

These issues motivated the team to generate a simulated dataset for the LANL wind turbine. 

The numerical simulation could generate larger datasets and all parameters of interest (including 

EOCs) are fully known and available. In addition, the simulation has the capability of generating 

various damaged scenarios that are likely to happen but had not occurred during the three-day 

interval of experimentation in LANL. 

 

2.3.2 Simulation Dataset 

To overcome the shortcomings in the experimental datasets, a mechanical model is built for the 

turbine using FAST (fatigue, aerodynamics, structures, and turbulence) (Jonkman, J. M.; Buhl Jr., 

2005) software, a computer-aided engineering tool developed by national renewable energy lab 

(NREL) for simulating the coupled dynamic response of wind turbines. The FAST code is capable 

to simulate the coupled aerodynamic and structural dynamic model using controllable wind inflow 

data to analyze wind turbine response in the time domain. In addition, FAST can be linked to 

MATLAB enabling users to implement advanced controls and processing. The advantage of this 

model is that it enables the analysis of two- or three blade horizontal-axis wind turbines (HAWTs) 

within the virtual environment where all details of important parameters are available. The model 

is built by modifying a sample model for Test 17 in FAST version 7, which is also a small-scale 
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wind turbine similar to the Whisper 500 in LANL. Model updating is also implemented to align 

the model power curve as accurately as possible with that of the experimental turbine (Whisper 

500) provided by the manufacturer via changing both generator properties and model parameters. 

To excite the turbine, TurbSim (Jonkman & Kilcher, 2012), a stochastic turbulent-wind simulator 

also developed by NREL, is employed to provide a full-field flow environment that contains 

coherent turbulence. It uses a statistical model to generate time series of wind speed vectors in the 

interested space to affect wind turbine aeroelastic response and loading. Numerous different wind 

speed and direction time histories are generated by changing fluid dynamic features such as 

average wind speed and parameters pertaining to the random phase realizations of the wind speed 

spectra. Wind fields generated by TurbSim were fed to FAST to compute the dynamic response 

of the turbine model. 

Since the FAST is only capable of modeling cantilever wind turbine tower and the tower 

of LANL is supported by two pins, a mechanical model is developed in MATLAB to transfer the 

response of cantilever wind turbine to that of the two-pin tower for more accurate representation. 

The properties of the mechanical model in MATLAB is imported from the tower model built in 

FAST. Similar to the LANL experimental setup, the damage scenario is created by replacing the 

pin in the bottom to a spring. In addition, to minimize the potential effects of differences between 

these two models, model updating is also implemented to match their first modal frequencies. 

Considering the small motion of the tower, we assume that the dynamics of the tower does not 

affect the response of the nacelle to wind flow. Thus, the loads at the tower tip (nacelle) computed 

by FAST are fed to the MATLAB model to compute the response of the turbine tower supported 

by two pins. After the validation of the model created in MATLAB, the updated two-pin supported 

tower model is used in junction with FAST and TurbSim to generate the simulated dataset. A 
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variety of environmental conditions and key operational conditions such as rotor angular velocity 

and nacelle yaw angle are preset as input excitation. Structural response was computed using the 

combination of FAST and MATLAB models. The acceleration at the same locations as the sensors 

are recorded with a sampling frequency of 500 Hz (i.e., 0.002 s time interval as same as the 

experimental dataset). 

We emphasize that numerical models are not dedicated to a flawless expression nor a 

mirror image of experimental turbine. And the major mismatch should be contributed to the main 

rotor bearing of the LANL turbine (Chipka, J. B. et. al., 2013). While the inherent error exists, 

there are two main purposes for developing a numerical mechanical model: (a) objective is to find 

certain features from structures response that correlate with EOCs and the other one is to validate 

the hypotheses of this research on a large and diverse enough dataset, which might be very difficult 

to acquire when using experimental setups; (b) the mechanical model can be treated as a separate 

structure from that of LANL since the hypotheses are not specific to LANL wind turbine, but 

rather generalizable to all structures. As for the first objective, the model is used only to inform 

which potential structural response features do have strong correlations with EOCs. The 

inaccuracies associated with the model are within acceptable limits for this purpose, especially 

since there was a prior belief that these features would actually correlate with EOCs. If a 

mechanical model was to be used for an application that required the accurate representation of 

the system, such as for control purposes or estimating the remaining life of the structure, a more 

accurate model would have been necessary. 

Based on the mechanical model of LANL wind turbine, the relationships between the key 

EOCs and the undamaged structural response features are first studied in the simulations to pursue 

EOC sensitive parameters for assignments. Total of 1809 simulations are generated to simulate the 
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response of the undamaged tower for 80 seconds, with uniform distribution of wind speed and 

direction. Considering the initial disturbing caused by wind flow, the first 20 seconds are discarded 

to keep the remaining as stable responses to form the desired data set. According to the time 

duration measured in the experiments, each simulation is divided into two data samples with a 30-

second duration resulting in a total of 3618 data samples. 

After the study of exploring the EOC-sensitive features in the simulations, various wind 

speeds and directions are generated by the TurbSim based on the meteorological records from the 

TA-49 station to implement the damage detection framework. For the training stage, only the 

undamaged data samples are employed to train the three-tier framework. The total number of 

undamaged tower data samples for training is 1800 with a time duration of 30 seconds. For the 

testing stage, 1200 undamaged and 1200 damaged data samples are used to validate the proposed 

strategy. We emphasize that the 1200 damaged data samples are generated by setting three stiffness 

values of the springs in the tower as weak, moderate and strong to simulate different supporting 

from the pins in the tower of LANL wind turbine. The relationships of EOCs and structural 

response features from the undamaged/damaged datasets are also compared to evaluate the 

dependency of EOC sensitive features on the structural damages. 

 

2.4 Results and Discussions 

To extract the damage-sensitive features for clustering, large data sets should be normalized 

according to the EOCs. Thus, to obtain a better normalization, the most important procedure is to 

pursue EOCSFs which are ideally only related to EOCs and not depending on structural damaged 

states. 
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2.4.1 EOC-Sensitive Features 

There are two major EOCs influence the response of the wind turbine tower: rotor angular velocity 

and nacelle yaw angle which directly related to the wind speeds and wind directions according to 

the previous research (Bahrami, O. et. al., 2017). Thus, peak frequencies resulted from the rotor 

angular velocity and the acceleration energy ratio in the x- and y- directions affected by the nacelle 

yaw angle are two major EOCSFs. 

We emphasize that the EOCs are not limited by only two, more various EOCs could be 

considered for the same operating structure. The selections of influential EOCs from the infinitely 

combinations are based on the engineering judgement for the purposes of SHM. In this study, for 

this small-scale turbine in LANL that lack sophisticated control mechanisms used in utility grade 

wind turbines, rotor angular velocity strongly correlates with wind speed and nacelle yaw angle 

strongly correlates with wind direction. These operational conditions do represent the 

environmental conditions that influence the turbine as well. 

2.4.1.1 Peak Frequencies in Spectrograms 

Short-time Fourier transform (STFT) is used to build the spectrogram of acceleration in x-direction 

reveal the relationship between the rotor angular velocity and the transient peak frequencies. A 

1.024 s window (512 data points with a sample rate of 500 Hz) with a time step of 0.024 s is 

employed to capture the variations in the frequency content of the signals as time evolves. Since 

the transient peaks in all twelve acceleration channels are similar, only the spectrogram of CH. 11 

data (Sensor 6, x-direction acceleration response at 10.23 m) is shown in Figure 2-3 for the purpose 

of demonstration. Two general sets of frequency peaks were observed, one constant in time and 

the other time varying. The steady peaks are located at lower frequencies attributed to structural 

modal frequencies. As we can see in Figure 2-3 (a), the first peak frequency and the second peak 
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frequency around 2 Hz and 14 Hz, respectively, is independent to the rotor angular velocity which 

represent the natural modal vibration of the wind turbine tower. And the time varying peaks are 

higher frequencies related to the rotor angular velocity as shown in Figure 2-3 (b). The lowest 

three EOC-sensitive transient peak frequencies (second, third, and fourth peak frequency of 

transient peaks) are extracted from the spectrogram and averaged for the 30-second long 

acceleration records as shown in Figure 2-4. These two sets of frequency peaks can also be 

observed in the acceleration spectrogram of LANL wind turbine in the previous 

researches(Chipka, J. B. et al, 2013). Thus, to create the EOCSF corresponding to rotor angular 

velocity, only the lowest average EOC-sensitive peak frequency is calculated for the EOC-

normalization. In addition, for the experimental data sets, the EOCSF is simply calculated by the 

highest amplitude in the power spectral density (Fourier transform) of the acceleration records. 

 

2.4.1.2 Signal Energy Ratio 

As we mentioned, the nacelle orientation (nacelle yaw angle) is another important EOC which 

directly related to the wind direction. Considering the wind direction can cause different vibrations 

  

Figure 2-3. (a) Sample acceleration spectrogram. (b) Rotor angular velocity for the same dataset. 
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in two measured directions, the natural logarithm of the ratio of acceleration energy in x- and y-

directions is proposed to build an EOCSF to describe the nacelle orientation. The signal energy 

ratios in all six measurement locations was averaged over the time span to compute the final energy 

ratio (𝐸𝑅 as defined in Equation 2-19): 

𝐸𝑅 =  ln(
1

6
∑

𝐸𝑥𝑖

𝐸𝑦𝑖

6

𝑖=1

) Eq. 2-19 

𝐸𝑥𝑖
= ∑ |𝑥𝑖[𝑡]|2, 𝐸𝑦𝑖

= ∑ |𝑦𝑖[𝑡]|2 Eq. 2-20 

where 𝐸𝑥𝑖
 and 𝐸𝑦𝑖

 represent signal energy of the acceleration in x- and y-direction at the ith 

measurement location (𝑥𝑖[𝑡], and 𝑦𝑖[𝑡]) along the tower respectively (Poularikas & Ramadan, 

1998). Taking the average amongst all 6 measurement locations can reduce the variance to benefit 

the GPR-mean of the data points. Figure 2-5 shows the relationship between ER and average yaw 

angle for the simulation dataset.  

2.4.1.3 Features’ Sensitivity to Structural Damage 

Ideally, the EOCSFs are insensitive to structural damage for EOCs data normalization in damage 

detection framework. If structural damage varies EOCSFs, then it also affects the EOCs data 

  

Figure 2-4. Average peak frequencies and rotor 

angular velocity. 

Figure 2-5. Average signal energy ratio an average 

yaw angle. 
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normalization process that uses EOCSFs as the basis for data normalization. This could result in 

assignment of dataset to a group with different EOCs and potentially lead to false classification.  

To evaluate the sensitivity of the proposed EOCSFs to structural damage in the tower, the synthetic 

damaged datasets including three damaged levels were used. The aforementioned two features 

(peak frequencies and ER) are extracted from the damaged datasets. Meanwhile, GPR is employed 

to perform their mean values and 2𝜎 range in Figure 2-6 compared the previous undamaged case. 

The GPR calculations of EOCSFs from damaged dataset is shown in red, and undamaged ones are 

shown in green (only colorful online). As it can be seen, the damaged mean value has good 

agreement with the undamaged ones, and even the 2𝜎 ranges match each other as well. That 

indicates the proposed EOCSFs (peak frequencies and ER) remain insensitive to damage scenario, 

which can be used to reliably present the wind speed and wind direction. 

It is emphasized that in this study we only focus on the damage of the wind turbine tower 

instead of the damage in the blade or nacelle, etc., which might introduce more complex damaged 

scenarios causing instability of the EOCSFs. In the case of assuming that the damage only occurred 

  

(a) (b) 

Figure 2-6. Damage EOCSFs against the corresponding EOCs. (a) Average peak frequencies and (b) 

average signal energy ratio. 
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on the tower, the results above have validated the proposed EOCSFs are insensitive to various 

damage levels in the wind turbine tower. 

 

2.4.2 SHM Framework Application 

2.4.2.1 LANL Dataset 

The three-tier modular framework was implemented on the LANL dataset for damage detection. 

For EOCs data normalization, two sets of features were available. The first one was the wind 

statistics over the 15-minute intervals from the meteorological tower at LANL, which is labeled 

as long-averaged EOCs. The second EOCSF is labeled as structural features introduced in the 

previous sub-section which are extracted from structural response data with an approximately 30-

second length.  

217 undamaged datasets were randomly selected for training, and the remaining 108 

undamaged datasets and 42 damaged ones were used in the testing stage. In the EOCs data 

normalization stage, five to seven clusters were used for both the hard and soft assignment cases. 

When using long average EOCs, clustering was performed on a two-dimensional feature space 

consisting of averaged wind speed and averaged wind direction. When using structural features, 

the feature space for clustering consisted of the two previously introduced EOCSFs. 

In this chapter, receiver-operating-characteristics curves (ROC curves) are employed to 

evaluate the performance of the framework. ROC curves are plots of true positive (TP) rate versus 

false positive (FP) rate whose significance level is varied from 0 to 1. TP rate is the ratio of 

correctly classified damaged observations to the total number of damaged observations in the 

testing phase and the FP rate is the ratio of falsely classified undamaged observations to the total 

number of undamaged observation in the training stage. It is obvious that these rates are between 
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0 and 1 indicating that the ROC curve would be contained within a unit square. In the extreme case 

when α=0, all observations are labeled as undamaged which resulting in both TP and FP rates to 

be 0. Conversely, when α=1 all observations are labeled as damaged resulting in both TP and FP 

rates to be 1. Hence, the ROC curve begins from (0,0) and ends at (1,1). An ideal ROC curve 

would pass the point (0,1) (upper left corner of the unit square) which corresponds to a scenario 

where all observations are correctly classified an ROC curve that passes through the diagonal of 

the unit square corresponds to a random guess (Akobeng, 2007). The area under the curve (AUC) 

of ROC curves is a scalar that can be used to compare the two ROC curves (Akobeng, 2007): the 

higher the AUC, the better the performance of the algorithm. ROC curve essentially represents 

how well undamaged and damaged test statistics are separated from one another: the better the 

separation, the more the ROC curve is tending toward (0,1) and the higher AUC. 

Table 2-1. AUC values for DSF-1 for different clustering approaches and different number of clusters for LANL dataset. 

No. Clusters K-means 

Long Average 

K-means 

Features 

GMM 

Long Average 

GMM 

Features 

5 0.63 0.88 0.70 0.88 

6 0.80 0.88 0.81 0.86 

7 0.84 0.88 0.85 0.93 

 

Results of implementing the framework is shown in Figure 2-8 in the form of ROC-curves 

for the two DSFs. Table 2-1 and Table 2-2 show the AUC values for different number of clusters 

used. 

The results show significant improvement when using EOCSFs for clustering compared to 

long average EOCs. In addition, soft assignment (GMM) improves the AUC values when 
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compared to the hard assignment (K-means) approach when the same set of EOCs are used for 

data normalization. 

Table 2-2. AUC values for DSF 2 for different clustering approaches and different number of clusters for LANL dataset. 

No. Clusters K-means 

Long Average 

K-means 

Features 

GMM 

Long Average 

GMM 

Features 

5 0.72 0.79 0.77 0.84 

6 0.81 0.85 0.82 0.85 

7 0.81 0.87 0.83 0.88 

 

The ROC curves and AUC values presented previously are the results of one selection of 

training dataset. To evaluate the effects of using other training subsets, 49 more selections of 

training datasets were used for the undamaged datasets. For each selection of training datasets, the 

remainders of the undamaged observations and all the damaged observations were used in the 

testing stage. Overall, for the total 50 selections, 25 of the selections had 217 undamaged datasets 

in the training stage, and the other half selections used 200 undamaged datasets for training. The 

SHM framework was implemented and the AUCs were recorded for each selection. Figure 2-7 

shows the bar plots of AUC values for the 50 selections used as a function of number of clusters 

in the data normalization stage. 

As it can be seen, when using hard assignment, structural features yield higher AUC values 

compared to long average EOCs. Additionally, the variation in AUC values is less for structural 

features indicating a more reliable data normalization stage. Hence, features prove to be more 

promising for data normalization compared to the available long averages from meteorological 

tower. 
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When comparing soft assignment results with those of hard assignment, a general trend is 

that for long-averaged EOCs, soft assignment results have higher median AUCs than hard 

assignment. This is true for all DSF-cluster numbers except five clusters for 𝐷𝑆𝐹𝑀. For both DSFs, 

the median value for AUCs is higher for soft assignment for seven clusters and the rest have higher 

values for hard assignment. It is tough to evaluate the significance of the introduced soft 

assignment methodology on LANL dataset due to its small size. In the next subsection, the analysis 

would be performed on the larger and more diverse (in terms of variations in EOCs) simulation 

dataset. 

 

 

  

  

(a) (b) 

Figure 2-7. Statistics of AUC values for a) DSF-1 and b) DSF-2 for different realizations of the experimental data. 
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(a) (b) 

Figure 2-8. ROC curves for experimental dataset for a) DSF-1 and b) DSF-2 for 5, 6 and 7 EOC clusters. 
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2.4.2.2 Simulation Dataset 

Recall that the simulations were carried out for 200-seconds whose first 20 seconds was ignored 

to remove the influence of initial conditions imposed on simulations and the remaining 180 

seconds was divided into six individual observations each with a duration of 30 seconds. For the 

FAST simulation datasets, three sets of features were used for data normalization of EOCs: (1) the 

averaged yaw angle and rotor angular velocity over the 30-second interval of simulation termed 

actual average EOCs, (2) the EOCSFs introduced previously, which were again named structural 

response features, (3) averaged yaw angle and rotor angular velocity over the entire 200 seconds 

of simulations named as long average EOCs for its corresponding 30-second observations. The 

third one was used to imitate the situation in LANL whose EOCs can be only averaged over longer 

time intervals instead of using environmental conditions (those corresponding to wind statistics) 

and the averages of operational conditions. As it was aforementioned, wind statistics and 

operational conditions were highly correlated for simulations. Additionally, the introduced set of 

operational conditions is more influential on structural response compared to environmental 

conditions. Hence, the long-averaged EOCs introduced for simulation datasets are more likely to 

outperform those introduced for LANL datasets. The wind statistics generated by TurbSim were 

stationary, hence, the difference between the long average and actual average EOCs was not 

enormous. 

Three different levels of structural damage introduced previously were used to evaluate 

how the extent of damage influences the performance of the features for EOCs data normalization. 

Since the dataset was larger than the LANL dataset, higher number of clusters were required in 

the data normalization stage. Thus, 3-10, 13-16 and 19-21 clusters were used in the data-

normalization stage as show in Tables 2-3 to 2-8.  
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Tables 3 to 8 show the AUC values for the two DSFs used for different numbers of clusters 

used and the three different damage scenarios. Figure 2-9 to 2–12 show the ROC-curves for 8, 13, 

16 and 21 clusters for different damage levels. Only four ROC-curves per DSF are shown for each 

damage level due to the similarity of the ROC-curves to one another. Inside each plot, a 0.4 by 0.4 

square of the original plot is magnified to make the comparison of ROC curves easier in that region. 

When hard assignment is used for data normalization, actual features yield higher AUCs than 

structural response features and structural response features yield higher AUCs than long averages. 

This is consistent with what was expected and shown in the previous subsection. 

For all three sets of features used for EOCs data normalization, the soft assignment approach 

outperforms hard assignment. This is true for all number of clusters used for 𝐷𝑆𝐹𝑀 and for most 

number of clusters for 𝐷𝑆𝐹𝑅2
with the exception of few clusters for structural response features. For 

some number of clusters, especially for 𝐷𝑆𝐹𝑅2
, using soft assignment with long averages increases 

AUCs as much as using hard assignment with actual average EOCs highlighting the value of soft 

assignment approach. 
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Table 2-3. AUC values for DSF-1 for different clustering approaches and different number of clusters for simulation dataset with 

weak damage. 

  

 

No. 

Clusters 

K-means 

Actual 

Averages 

 

K-means 

Features 

K-means 

Long 

Averages 

GMM 

Actual 

Average 

 

GMM 

Features 

GMM 

Long 

Averages 

3 0.71 0.69 0.66 0.71 0.67 0.66 

4 0.68 0.67 0.65 0.68 0.70 0.70 

5 0.71 0.69 0.68 0.72 0.70 0.70 

6 0.70 0.67 0.70 0.72 0.72 0.69 

7 0.73 0.68 0.69 0.75 0.71 0.70 

8 0.72 0.70 0.68 0.72 0.69 0.72 

9 0.72 0.68 0.70 0.73 0.70 0.73 

10 0.73 0.68 0.69 0.76 0.71 0.71 

13 0.73 0.70 0.71 0.74 0.70 0.70 

14 0.73 0.70 0.69 0.75 0.70 0.70 

15 0.73 0.70 0.70 0.73 0.70 0.70 

16 0.73 0.69 0.70 0.73 0.71 0.72 

19 0.73 0.70 0.70 0.74 0.70 0.73 

20 0.74 0.71 0.70 0.74 0.70 0.73 

21 0.73 0.72 0.71 0.74 0.72 0.72 
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Table 2-4. AUC values for DSF-1 for different clustering approaches and different number of clusters for simulation dataset with 

moderate damage. 

 

  

 

No. 

Clusters 

K-means 

Actual 

Averages 

 

K-means 

Features 

K-means 

Long 

Averages 

GMM 

Actual 

Average 

 

GMM 

Features 

GMM 

Long 

Averages 

3 0.83 0.79 0.78 0.85 0.81 0.79 

4 0.80 0.78 0.80 0.80 0.82 0.81 

5 0.83 0.81 0.79 0.82 0.84 0.82 

6 0.81 0.82 0.81 0.84 0.83 0.82 

7 0.84 0.81 0.80 0.86 0.83 0.82 

8 0.83 0.83 0.80 0.85 0.84 0.84 

9 0.83 0.83 0.81 0.85 0.83 0.85 

10 0.84 0.80 0.80 0.86 0.84 0.84 

13 0.85 0.81 0.81 0.87 0.82 0.83 

14 0.84 0.82 0.81 0.85 0.81 0.82 

15 0.84 0.82 0.81 0.85 0.82 0.82 

16 0.84 0.81 0.81 0.84 0.82 0.83 

19 0.85 0.82 0.82 0.86 0.80 0.85 

20 0.85 0.83 0.82 0.85 0.82 0.86 

21 0.85 0.83 0.83 0.86 0.81 0.86 
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Table 2-5. AUC values for DSF-1 for different clustering approaches and different number of clusters for simulation dataset with 

strong damage. 

 

  

 

No. 

Clusters 

K-means 

Actual 

Averages 

 

K-means 

Features 

K-means 

Long 

Averages 

GMM 

Actual 

Average 

 

GMM 

Features 

GMM 

Long 

Averages 

3 0.87 0.84 0.83 0.89 0.85 0.83 

4 0.86 0.84 0.86 0.83 0.86 0.85 

5 0.88 0.86 0.84 0.88 0.87 0.87 

6 0.86 0.87 0.86 0.88 0.88 0.85 

7 0.89 0.87 0.84 0.90 0.88 0.87 

8 0.88 0.88 0.86 0.88 0.88 0.87 

9 0.88 0.88 0.86 0.89 0.87 0.88 

10 0.89 0.86 0.85 0.90 0.88 0.87 

13 0.90 0.87 0.87 0.90 0.87 0.87 

14 0.88 0.87 0.85 0.89 0.86 0.86 

15 0.88 0.87 0.86 0.90 0.86 0.87 

16 0.88 0.87 0.86 0.90 0.87 0.87 

19 0.89 0.87 0.87 0.91 0.87 0.89 

20 0.89 0.87 0.87 0.90 0.87 0.87 

21 0.89 0.88 0.87 0.90 0.87 0.89 
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Table 2-6. AUC values for DSF-2 for different clustering approaches and different number of clusters for simulation dataset with 

weak damage. 

 

  

 

No. 

Clusters 

K-means 

Long 

Averages 

 

K-means 

Features 

K-means 

Actual 

Averages 

GMM 

Long 

Average 

 

GMM 

Features 

GMM 

Actual 

Averages 

3 0.93 0.92 0.86 0.99 0.99 0.92 

4 0.94 0.88 0.87 0.98 0.96 0.91 

5 0.94 0.88 0.88 0.98 0.97 0.94 

6 0.95 0.94 0.90 0.98 0.97 0.94 

7 0.96 0.94 0.93 0.96 0.97 0.94 

8 0.97 0.93 0.93 0.96 0.96 0.94 

9 0.97 0.94 0.92 0.98 0.96 0.95 

10 0.97 0.96 0.93 0.99 0.98 0.94 

13 0.98 0.96 0.94 0.97 0.97 0.95 

14 0.97 0.96 0.92 0.96 0.97 0.95 

15 0.97 0.95 0.92 0.97 0.97 0.94 

16 0.98 0.92 0.93 0.98 0.96 0.96 

19 0.97 0.96 0.93 0.99 0.98 0.95 

20 0.98 0.96 0.94 0.99 0.98 0.96 

21 0.99 0.98 0.94 0.97 0.98 0.96 
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Table 2-7. AUC values for DSF-2 for different clustering approaches and different number of clusters for simulation dataset with 

moderate damage. 

 

  

 

No. 

Clusters 

K-means 

Long 

Averages 

 

K-means 

Features 

K-means 

Actual 

Averages 

GMM 

Long 

Average 

 

GMM 

Features 

GMM 

Actual 

Averages 

3 0.96 0.95 0.91 1.00 1.00 0.97 

4 0.97 0.93 0.92 0.99 0.98 0.96 

5 0.97 0.96 0.94 0.99 0.99 0.98 

6 0.98 0.95 0.95 0.99 0.99 0.97 

7 0.98 0.96 0.96 0.98 0.99 0.97 

8 0.98 0.97 0.95 0.98 0.99 0.97 

9 0.99 0.96 0.96 0.99 0.99 0.97 

10 0.98 0.98 0.97 1.00 0.99 0.97 

13 0.98 0.98 0.97 0.98 0.99 0.98 

14 0.98 0.98 0.96 0.98 0.98 0.98 

15 0.99 0.98 0.96 0.99 0.99 0.98 

16 0.99 0.96 0.97 0.98 0.98 0.98 

19 0.98 0.98 0.98 1.00 0.99 0.99 

20 0.99 0.98 0.97 0.99 0.99 0.99 

21 0.99 0.98 0.98 0.99 0.99 0.99 
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Table 2-8. Table 8. AUC values for DSF-2 for different clustering approaches and different number of clusters for simulation 

dataset with strong damage. 

 

 

No. 

Clusters 

K-means 

Long 

Averages 

 

K-means 

Features 

K-means 

Actual 

Averages 

GMM 

Long 

Average 

 

GMM 

Features 

GMM 

Actual 

Averages 

3 0.97 0.96 0.93 1.00 1.00 0.98 

4 0.98 0.95 0.93 0.99 0.99 0.98 

5 0.98 0.97 0.95 0.99 0.99 0.99 

6 0.98 0.97 0.96 0.99 0.99 0.98 

7 0.99 0.97 0.97 0.99 1.00 0.99 

8 0.99 0.98 0.96 0.98 1.00 0.98 

9 0.99 0.97 0.97 0.99 0.99 0.98 

10 0.99 0.98 0.97 1.00 1.00 0.98 

13 0.99 0.98 0.98 0.99 0.99 0.99 

14 0.99 0.98 0.97 0.99 0.99 0.99 

15 0.99 0.98 0.97 1.00 1.00 0.98 

16 0.99 0.97 0.98 1.00 0.99 0.99 

19 0.99 0.99 0.98 1.00 1.00 1.00 

20 1.00 0.99 0.98 0.99 1.00 0.99 

21 1.00 0.99 0.98 1.00 0.99 0.99 
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(a) (b) 

Figure 2-9. ROC curves for simulation dataset for DSF-1 for a) 8 and b) 13 EOC clusters for weak, moderate and 

strong levels of structural damage. 

 

 

  

  

  

(a) (b) 
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(a) (b) 

Figure 2-10. ROC curves for simulation dataset for DSF-1 for a) 16 and b) 21 EOC clusters for weak, moderate 

and strong levels of structural damage. 

 

 

  

  

  

(a) (b) 



 68 

 

  

  

  

  

(a) (b) 

Figure 2-11. ROC curves for simulation dataset for DSF-2 for a) 8 and b) 13 EOC clusters for weak, moderate and 

strong levels of structural damage. 

 



 69 

 

 

  

  

  

  

(a) (b) 

Figure 2-12. ROC curves for simulation dataset for DSF-2 for a)16 and b) 21 EOC clusters for weak, moderate 

and strong levels of structural damage. 
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2.5 Conclusion 

In this chapter, two approaches for increasing the efficiency of EOCs data normalization for SHM 

were introduced. First, for situations were accurate measures of EOCs is not available, a 

methodology to extract EOCSFs from structural response data was defined and organized. 

Following that methodology two EOCSFs, namely average rotor angular velocity and natural log 

of signal energy ratio were shown to correlate with two key influential EOCs, rotor angular 

velocity and nacelle yaw angle for the tower of a small scale wind turbine as the test structure. The 

insensitivity of EOCSFs to structural damage in the component of consideration was evaluated 

and the robustness of EOCSFs to structural damage was proved. Next, the features were used for 

EOCs data normalization and showed to increase the overall performance of damage detection for 

LANL dataset compared to the baseline average wind statistics available onsite. 

Second, a new approach for EOCs data normalization based on soft assignment was 

introduced to deal with the two main issues associated with clustering in EOCs data normalization. 

The methodology was proposed based on an alternative view of hypothesis testing. Gaussian 

Mixture Models were used to assign probabilities of dataset belonging to EOCs clusters. This 

approach was implemented on both the experimental and simulation datasets using different 

measures of EOCs for clustering and was shown to either over-perform or perform equally as good 

as the previously used hard assignment approach. The key advantage of the soft assignment 

approach lies in its capability to include the effects of EOCs variations in the probability of damage 

of the structure which can later be used for reliability analysis. 

 



Chapter 3.  

Hidden Markov Models for Sequential Damage Detection of Bridges

 

3.1 Introduction 

Data-driven damage detection frameworks have been established as a promising tool for structural 

health monitoring (SHM). First, advances in sensing technologies have reduced the cost of data 

collection. Consequently, valuable datasets have been collected over the past few years on different 

types of structures such as bridges (Jang et al., 2010; M. Kurata et al., 2011), pipelines (Inaudi & 

Glisic, 2010), wind turbines (Hackell et al., 2016), and retaining walls (Admassu et al., 2019) just 

to mention a few. Second, the availability of machine learning (ML) algorithms now enable the 

extraction of meaningful information from large sets of collected structural response data. 

Data-driven SHM methods do not rely on baseline physical models of the structure which can be 

difficult to acquire for complex structural systems. On the contrary, data-driven SHM frameworks 

only require observed data to be able to build decision boundaries (i.e.. known as training in the 

field of ML). An important practical capability of unsupervised SHM method is their ability to 

detect significant changes in the behavior of the structure without prior knowledge of potential 

damage scenarios. 

Hence, only data from the normal (undamaged) system is used during training of the model.  
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The problem of detecting changes in the observations when only data from the normal (i.e., 

undamaged) class is available during the training is referred to outlier detection or anomaly 

detection (AD) (Farrar & Worden, 2012). 

A common assumption in the majority of AD algorithms, is that observations are 

independent and identically distributed (i.i.d.). This assumption has enabled the application of 

numerous novel unsupervised ML techniques to SHM. However, it is well known that structural 

states are not independent; rather, sequential observations are dependent due to the one way 

transition from being undamaged to damaged. In this work we seek to relax the i.i.d. assumption 

by taking into account the sequential nature of the structural response during unsupervised AD 

classifier training. In particular, we use the hidden Markov model (HMM) to build a sequential 

classifier. HMM-based approaches have been proposed previously for SHM (M., Mollineax; R., 

2015; Zhou et al., 2007). The proposed methodology in this research differs from those previously 

mentioned in that the proposed HMM-based framework does not require observations from the 

damaged state during training.  

The proposed method is implemented on an experimental dataset from the widely used Z-

24 bridge dataset (Peeters & De Roeck, 2001). The remainder of this chapter is organized as 

follows. The HMM-based AD method is first introduced. Then the Z-24 bridge dataset is 

described. In the next section, a detailed description of the implementation of the HMM-based AD 

method and baseline i.i.d. methods are presented followed by a summary of the results of the 

methods applied to the Z-24 data. The chapter concludes with a summary of the key findings. 
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3.2 Theory 

3.2.1 Hidden Markov Models 

A brief description of the HMM is first introduced. For a more detailed description, interested 

readers  are referred to (Bishop, 2006). HMM is a well-known method for modelling sequential 

observations. When using HMM, observations are assumed to be emitted from a certain set of 

hidden states and the hidden states possess Markov properties (i.e. given the current state, the 

future state is independent of previous states). 

Let 𝑥𝑡 and 𝑧𝑡 denote the observation and the hidden state, respectively, at a certain time 

instance 𝑡 where 0 ≤ 𝑡 ≤ 𝑇. Then the Markov property can be expressed as follows: 

𝑝(𝑧𝑡+1|𝑧𝑡, 𝑧𝑡−1, … , 𝑧0) = 𝑝(𝑧𝑡+1|𝑧𝑡) Eq. 3-1 

where 𝑝 is the transition probabilities. 

The schematic of an HMM is shown in Figure 3-1. An HMM is described by three 

properties. First is the state transition probabilities. Suppose there are a total of 𝑁 hidden states 

(for simplicity, denote each unique state with numbers 1 to 𝑁). At each time instance, the hidden 

state can be only one of the 𝑁 hidden states. The dynamics of the model is governed by a matrix 

whose terms are transition probabilities: 𝑨(𝑖, 𝑗) = 𝑝(𝑧𝑡+1 = 𝑗|𝑧𝑡 = 𝑖) for 𝑖, 𝑗 = 1, 2, … , 𝑁. This 

matrix is referred to as the state transition matrix.  

The second important property of the HMM, is the distribution of the observations given 

the states, also known as emission probabilities. In this work, we assume that the emission 

probabilities are Gaussian: 

𝑝(𝑥𝑡|𝑧𝑡 = 𝑖) = 𝒩(𝑥𝑡|𝝁𝑖, 𝚺𝑖) Eq. 3-2 
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where 𝝁𝑖 and 𝚺𝑖 are the mean vectors and covariance matrices of the Gaussian distribution 

describing the emission probability of the i-th state respectively. Let 𝝓 denote the set containing 

all pairs of means and covariances. 

The final property of the HMM is the allocation of the initial state probabilities 𝜋𝑖 =

𝑝(𝑧0 = 𝑖). A vector containing all of the initial state probabilities can be denoted as 𝝅. The set of 

parameters 𝜽 = (𝝅, 𝑨, 𝝓) fundamentally defines the HMM. 

In order to find the best set of HMM parameters, 𝜽, for an observed dataset 𝑿 =

{𝑥0, 𝑥1, … , 𝑥𝑇} (given a set number of hidden states 𝑁) the HMM model is trained by maximizing 

the likelihood of the observed dataset: 

𝜽𝑀𝐿 = 𝑎𝑟𝑔𝑚𝑎𝑥𝜽(𝑝(𝑿|𝜽, 𝑁)) Eq. 3-3 

This can be done efficiently using the Baum-Welch algorithm also known as the forward-

backward-algorithm (Baum et al., 1972). In practice, the logarithm of the probabilities are used 

when working with HMM. This is due to the fact that as 𝑇 grows large, the probability 𝑝(𝑿) 

becomes small. 

 

 

Figure 3-0-1. Graphical representation of the HMM. The observed variable (gray circles) are emitted from states 

that are not observable (hidden). The hidden states possess Markov property. 

 



 75 

3.2.2 Damage Detection Using HMM 

Once the optimal model parameters 𝜽𝑀𝐿  have been determined, for any sequence of observations, 

the forward algorithm can be used to compute the probability of observing that sequence. 

Let 𝑿𝑙 = {𝑥𝑆+1, … , 𝑥𝑆+𝑙} be a sequence of observations of length 𝑙 for some 𝑆 ≥ 𝑇. We use 

𝑝(𝑿𝑙|𝜽𝑀𝐿) to make a decision on the state of the structure. If this probability is significantly lower 

than that observed during training, then it is implied that this sequence is coming from a damaged 

(i.e., not normal) structure. 

In this manner, a sequence of observations of size 𝑙 are used to compare the consistency of 

this sequence with those of the previous observations made during training. No constraint is set on 

the values of the state transition matrix. This method would outperform other AD frameworks that 

rely on an i.i.d. assumption when there are observations that may appear individually normal, yet 

when considered as a sequence, are inconsistent with the previously observed sequences. 

In the approach proposed here, one can think of the hidden states as different environmental 

and operational conditions (EOCs) that govern the response of the structure. As a structure 

responds under varying EOCs, this HMM framework considers the EOCs to decide if structural 

damage is present or not. Consequently, within this framework, it may occur that a sequence of 

length 𝑙 is labeled as undamaged when another formerly observed sequence of length 𝑙 was labeled 

as damaged. Hence, this framework cannot structurally reject the reversal of damage. To do so, 

when sufficient damaged sequences are observed, one can use the sequence of 𝑝(𝑿𝑙|𝜽𝑀𝐿) along 

with the Viterbi algorithm (Viterbi, 1967) to find the most likely point of transition of the system 

going from an undamaged state to a damaged state. 
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In contrast, it would be tempting to set the hidden states to be the levels of structural 

damage. Under such a configuration, one can enforce 𝐴(𝑖, 𝑗) = 0 for 𝑖 > 𝑗 to ensure that a 

transition to damage would only progress once in time and not be reversed.  

However, training such a model would require observations from the damaged state to be 

present during HMM training. Such a strategy would be applicable only if multiple structures that 

are identical are available and one (or some) of the structures has completed its life span with all 

possible damage cases observed. 

Rather than simply using 𝑝(𝑿𝑙|𝜽𝑀𝐿) as proposed herein, there exists more sophisticated 

methods for sequential AD. An example of such methods can be found in (Görnitz et al., 2015). 

 

3.3 Description of the Dataset 

The dataset used in this study is from the Z-24 bridge. This dataset is well known to SHM 

researchers and has been widely studied in the past (Figueiredo et al., 2014; Peeters & De Roeck, 

2001). The dataset consists of hourly measurements of both EOCs and structural responses over a 

duration of one year starting November 11th, 1997 and lasting until September 10th 1998. During 

the last month of the measurements, six different damage scenarios were inflicted on the bridge 

(i.e., settlement of pier, tilt of foundation, spalling of concrete, failure of concrete hinges, failure 

of anchor heads and failure of tendon wires). The bridge was demolished after the tests. The Z-24 

bridge is shown in Figure 3-2. 

The environmental measurement system (EMS) measured 53 different environmental 

conditions. The majority of these measurements consist of temperature measurements at numerous 

locations on the bridge as well as the ambient temperature; hence the measurements are heavily 



 77 

correlated.  In addition to temperature, other environmental variables such as relative humidity, 

wind (speed and direction) and precipitation were measured. 

The monitoring system also measured structural responses from eight accelerometers 

located on the bridge. These measurements were collected at a sampling frequency of 100 Hz but 

passed through a low-pass filter with a cut-off frequency of 30 Hz. The acceleration measurements 

were sampled every hour and each measurement persisted for roughly 11 minutes and contained 

roughly 650,000 data points. 

Modal frequencies of the structural response are the dominant structural response feature 

used for analyzing this dataset in the literature. In this work, modal frequencies are extracted using 

the N4SID algorithm (Van Overschee & De Moor, 2005) implemented in MATLAB. 

This algorithm can be implemented using MATLAB's n4sid command. The first modal 

frequency is selected as the damage sensitive feature (DSF) and used to detect structural damage 

in the bridge. 

The dataset prepared for this study contained 5,652 pairs of hourly environmental 

conditions and structural response measurements. For each observation, an average of the bridge 

 

Figure 3-2. The side view of the Z-24 bridge. 
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structural temperatures (measured on the beam webs) and the relative humidity were used to 

represent the EOCs. 

From the 5,652 pairs, the first 3,800 were used during the training and the remaining 1,852 

for model testing. The first 1,145 observations in the test dataset were undamaged and the last 707 

were from the damaged structure. For the purpose of this work, it is necessary to consider the 

observations in the temporal order that they were acquired. 

 

3.4 Analysis 

3.4.1 Three Tier Damage Detection Framework 

The performance of the proposed method is compared to two other well-known AD techniques 

which assume that the observations are i.i.d. First, the three-tier modular framework proposed in 

(Hackell et al., 2016) is used. 

This approach is a successful approach for EOCs data normalization and has been applied  

to numerous SHM problems (Bahrami et al. 2017; Hackell et al., 2016; Tsiapoki et al., 2018). A 

more detailed description of this framework is found in Chapter 2 of this dissertation. Here, the 

details of implementation adjusted for the Z-24 dataset is presented. 

First the training data is clustered into a smaller number of groups using k-means clustering 

carried out on the EOC feature space consisting of average relative humidty and average center 

web temperature. The distribution of the center web temperature is shown in Figure 3-3Figure. 

 

These two EOCs are standardized to remove the effect of differences in their magnitude 

scales. Within each cluster, during training DSFs (in this case first modal frequency) are used to 

build the normal region. Next, during the testing stage, each new observation is assigned to the 
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cluster with the most similar EOCs (in the case of k-means clustering, the cluster with the closest 

centroid).  

Once assigned to a cluster, the DSF is then compared to the normal region of its 

corresponding cluster. The observation is labeled as undamaged if its DSF lies inside the normal 

region of its corresponding cluster; otherwise, it is labeled as damaged. Note that the HMM 

framework takes care of EOC normalization by learning the hidden states. 

The results are evaluated for four different number of EOC clusters: namely 5, 6, 7, and 8 

clusters. To make a fair comparison, the HMM method is set up with the same number of hidden 

states as the number of clusters used in the three-tier damage detection methods.  

Going forward, the number of EOCs clusters and the number of hidden states can be used 

interchangeably. 

To build normal distributions for the DSFs within each EOC cluster, two methods are used. 

First is the One Class Support Vector Machine (OC-SVM) (Schölkopf et al., 2001). This method 

attempts to fit a tight boundary around the normal observations in training by taking advantage of 

 

Figure 3-3. Web temperature values for the Z-24 dataset. 
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the kernel trick. The required inputs for OC-SVM are the kernel type and its hyper-parameter. 

Here, a radial basis function kernel, given as 𝐾(𝑦𝑖, 𝑦𝑗) =  exp (−
1

2
||

𝑦𝑖−𝑦𝑗

2
||2), is used. Six 

different values for the hyper-parameter, namely 𝜆 = {0.1, 0.5, 1, 2, 5, 10} are explored and the 

results with the highest performance are reported. 

Note that selecting the optimal hyper-parameter for OC-SVM is still an open problem 

(Wang et al., 2018). 

The second method is the Elliptic Envelope (EE) technique which assumes that the data is 

Gaussian and fits an ellipse to the training data (Rousseeuw & Driessen, 1999). This is in contrast 

to the OC-SVM which assumes no specific type of distribution for the data. The performance of 

the EE method clearly deteriorates when the distribution of the DSFs are not Gaussian. However, 

as the results would show, assuming the modal frequencies in each EOC cluster are Gaussian is 

reasonable. The models are trained using built-in codes of a Python library named scikit learn 

(Pedregosa et al., 2011). 

For the HMM-based method proposed in this work, sequences of length 𝑙 = {5, 10, 20, 30} 

are used in the testing stage. Sequences have no overlap with the exception of the last two 

sequences for the undamaged (normal) and damaged datasets. This is done to accommodate all of 

the test datasets. For instance, when 𝑙 = 10, the 1,145 undamaged datasets are broken into 115 

sequences as follows: the first 114 sequences contain 10 sequential observations without any 

overlap. So the 114th sequence contains undamaged test data points 1,131 to 1,140. The 115th 

sequence contains undamaged test data points 1,136 to 1,145. This is done to ensure that all 

sequences have the same length and that they also include all the observation in the testing stage.  

To compare the performance of the different AD approaches, the receiver-operating 

characteristic (ROC) curve is used. The ROC curve is a plot of true positive rates versus false 
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positive rates as the decision boundaries are varied. The ROC curve is a popular tool in evaluating 

the performance of a classifier. 

Ideally, it is desired to achieve a true positive rate of one with a false positive rate of zero 

which corresponds to correctly labeling all undamaged and damaged datasets. Hence the more the 

ROC curve tends to the point (0, 1) the better the performance of the classifier. Area under the 

ROC curve (AUC) is a useful scalar metric to compare multiple ROC curves. An AUC of 1 

corresponds to an ideal classifier (correctly classifying all data) and an AUC of 0.5 corresponds to 

a completely random classifier. 
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3.4.2 Results and Discussions 

Three methods are compared: HMM, the three tier framework using OC-SVM and three tier 

framework using EE. Figure 3-4 shows the ROCs curves for different number of hidden state for 

the HMM-based and the two baseline methods (three tier implementation with OC-SVM and EE 

decision boundaries). For the HMM-based AD results shown in Figure 3-4, the length of the 

sequences is set to 𝑙 = 10. As can be seen, the HMM-based AD outperforms the two baseline 

methods. Amongst the two baseline methods, it appears that the EE method outperforms OC-SVM. 

The difference becomes more significant for 7 and 8 EOC clusters (or hidden states in HMM). 

  

  

Figure 3-4. ROC curves showing the performance of the three AD methods for four different number of hidden 

states/clusters. 
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Figure 3-5 shows the resulting AUC values for the four different sequence lengths used. 

The AUC values for the AD methods used can be found in Table 3-1. 

In the HMM method, it can be seen that as the length of the sequence increases, the 

performance of the HMM-based damage detection framework increases as well.  

 

Table 3-1. AUC values for HMM and baseline methods. 

No. States 

/Clusters 

HMM (Sequence Length) EE OC-SVM 

5 10 20 30 - - 

5 0.77 0.84 0.86 0.88 0.73 0.71 

6 0.77 0.80 0.86 0.87 0.73 0.71 

7 0.80 0.84 0.86 0.88 0.75 0.66 

8 0.80 0.84 0.86 0.87 0.75 0.66 

 

Moreover, when the length of the sequences decreases, the performance of the sequential 

AD framework converges to that of the two baseline AD frameworks. Such behavior is expected 

as the hidden structure is explored only within the sequences and the sequences are treated 

independently. On the contrary, increasing the length of the sequences results in fewer sequences 

being available during training and testing. For example, when 𝑙 =10 for the given dataset, there 

are 115 undamaged sequences are 71 damaged ones, whereas when 𝑙 = 30 there are 39 undamaged 

sequences and 24 damaged ones. Although it has not occurred here, reducing the number of 

sequences available for inference might have a negative impact on the performance of the 

framework. 

As it can be seen for the majority of the cases, the performance of the AD methods is not 

significantly influenced by the number of hidden states (with the exception of the OC-SVM for 7 
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and 8 clusters). An explanation for this can be found by referring back to Figure 3-3. An important 

observation is that only a few training observations have similar EOCs to those in the testing stage. 

Hence, the number of clusters that the training EOCs space is divided into doesn't significantly 

impact the clusters that the observations in the testing stage are assigned to. 

Additionally, rather than selecting the first 3,800 observations, if one were to randomly 

select 3,800 observations from the 4,945 undamaged observation for training, the EOCs space of 

that training dataset would have had more similarities with the testing dataset. This would have 

increased the performance of the AD methods as the training dataset would have been richer. 

This highlights a key issue when using data-driven SHM techniques for real-world 

applications. The testing dataset might have EOCs that are not observed during the training stage. 

This would be more prevalent at the beginning stages of data collection when the training dataset 

is still limited. In that case, it is important to keep track of the EOCs and compare them with that 

of the training dataset available. In that case, using insights from manual inspection of the structure 

 

Figure 3-5. HMM AUC values for different sequence lengths. 
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could be extremely helpful in building a more reliable and capable data-driven model for long-

term monitoring of the structure at hand. 

Prior to concluding, it is important to restate that the HMM based AD technique introduced 

in this work used sequences of observations for decision making and treated the sequences 

independently. 

Rather than doing so, one can explore the sequential structure of certain features of the 

sequences (an example of that feature could be the probabilities 𝑝(𝑿𝑙|𝜽𝑀𝐿), but other features 

could be explored as well). Furthermore, the sequences were intentionally forced to have no 

overlap (with the exception of the compromise made to include all observations in the testing 

stage). For example, one can choose overlapping sequences. 

 

3.5 Conclusion 

In this chapter, a sequential AD technique based on HMM was introduced. The proposed 

methodology relied solely on undamaged observations in the training stage. A maximum 

likelihood approach is taken for training the HMM and the set of parameters that result in highest 

probability for observing the training dataset is selected using scaled forward-backward algorithm. 

For inference, sequences of fixed length were used and the probability of those sequences was 

used for decision making. The proposed framework was implemented on the Z-24 dataset. 

Two baseline methods treating the observations as i.i.d. were used, namely OC-VM and 

EE for evaluating the performance of the proposed framework. To deal with variations in EOCs, 

first the training dataset was clustered via performing k-means clustering on a space consisting of 

two EOC features, namely standardized temperature of the center web and standardized relative 

humidity. Models were built for each cluster using the aforementioned OC-SVM and EE methods. 
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Each test observation was assigned to the cluster with the most similar EOCs and the built model 

was used for decision making. It was found that the proposed sequential framework outperforms 

the baseline models.
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Chapter 4.  

Deep Learning Based Bridge Weigh-in-Motion Using Encoders

 

4.1 Introduction 

With an unprecedented number of highway bridges instrumented with sensors for structural 

monitoring, Bridge WIM (BWIM) has emerged as a viable and cost-effective alternative to the 

traditional pavement-based WIM stations. Over the past decade, extensive studies have been 

conducted on BWIM technology (Yu et al., 2016; Zolghadri et al., 2016). With sensors (most 

commonly strain gauges) installed in bridges, bridge WIM methods rely on measured bridge 

responses (e.g., strain) to derive weights of passing trucks in real time. Existing bridge WIM 

methods are mainly based on Moses’s algorithm developed in 1979 (Moses, 1979). Assuming the 

linearity of bridge response, once a unit influence line is determined for the bridge, truck weight 

properties can be estimated through a least squares solution (Lydon et al., 2016; Moses, 1979). O’ 

Brien et. al. (2009) used a regularized solution to the least squares problem which resulted in 

increased accuracy without the need for additional instrumentation (O’Brien et al., 2009). A key 

limitation associated with this least squares approach is that the accuracy of such methods is 

heavily dependent upon the quality of the extracted UIL. Furthermore, for using UIL-based 

models, knowledge of vehicle speed, axle number and axle spacing is needed (He et al., 2017). 

To circumvent the demand for the knowledge of axle numbers of truck load for the BWIM 

problem, numerous methods have been proposed such as Wavelet domain analysis techniques 

(Chatterjee et al., 2006; Yu et al., 2017), virtual simply supported beam methods (He et al., 2017) 
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and optimization techniques such as Lasso regression (He et al., 2019; Pan et al., 2018). 

Additionally, ML-based techniques have been explored for solving BWIM problem. For instance, 

Kim et. al. (2009) used ANN for solving the BWIM problem on a dataset with three different types 

of trucks traversing a bridge (Kim et al., 2009). Similarly, convolutional neural networks (CNN) 

were used for identifying axle number, vehicle type and vehicle speed for UIL-based bridge WIM 

with a higher accuracy (Kawakatsu et al., 2018). 

In this chapter, a learning-based BWIM method is proposed taking advantage of the recent 

advances in recurrent neural networks (RNN). Leveraging a large volume of paired bridge 

response and WIM data, a bidirectional RNN model is trained to predict truck weight 

characteristics including axle weight, axle spacing, gross weight and travel lane with length-variant 

bridge strain responses as inputs. The proposed method is evaluated using simulation data obtained 

from finite element models and proven to be more accurate than the influence line-based bridge 

WIM method. Furthermore, the robustness of the method against measurement noise in the training 

labels is explored. The simulations are based on a computer vision-enabled cyber-physical system 

implemented as a test-bed along a 20-mile I-275 northbound highway corridor in Michigan. The 

dataset collected from this testbed is the subject of the study in Chapter 5 of this dissertation as 

well. 

 

4.2 Theoretical Background 

In this subsection, the theory used for DL-based BWIM is described. Specifically, encoders 

utilizing RNNs are trained to learn the predict truck properties from the time series responses 

corresponding to the same truck. Hence, the input to the encoder is the time series response of the 

bridge and the output is set truck properties. In this work, the focus is specifically on predicting 
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axle weights as it is one of the most influential parameters that impact the bridge response to the 

truck. Obviously, in order to predict the weight of each axle, first, the total number of axles on the 

truck will be determined. The idea is that the bridge response (i.e. the forced response followed by 

the free response), carries important information on the truck axle weight distribution, and in 

presence of sufficient training data, a DL-based model can learn to extract the parameters of 

interest from the bridge response sequence.  

 

4.2.1 RNN-Based Encoders 

The encoder in this research utilizes RNNs to extract important information from the input time 

series. Let 𝑋 = {𝑥[1], 𝑥[2], … , 𝑥[𝑇]} represent the input time series. An RNN is a nonlinear 

transformation that at each time instance 𝑘, uses the input at the same time instance, i.e. 𝑥[𝑘] along 

with the state from the previous time step, 𝒔[𝑘 − 1] to compute the state at current time step 𝒔[𝑘] 

(Goodfellow et al., 2016). In abstract mathematical form, the RNN can be expressed as 𝑠[𝑘] =

𝚽(𝑠[𝑘 − 1], 𝑥[𝑘]) where 𝚽 is used to represent the nonlinear transformation used. 

Note that the state of the RNN is a vector with different dimension (usually larger) than the 

input. In essence, the state of the RNN can be thought of as a unit capturing important information 

from the time series. Often times, the state is referred to as the hidden state, as it is not observed. 

To initiate the network, the value of state at time zero is selected in a pre-determined manner. The 

most common value for the state at time zero is a vector of zeros. 

In this research, long short-term memory (LSTM) networks are used as the RNN cell. The 

equations of LSTM cell are as follows (Paszke et al. 2017, Chung et al. 2014) as shown in Equation 

4-1 where 𝒉 and 𝒄 are called the hidden state and cell state, respectively. Furthermore, 𝒋, 𝒇, 𝒈, and 

𝒐 are referred to as the input, forget, cell and output gates, respectively. It should be noted that, at 
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each time step, two set of vectors are received from the previous time step, namely the hidden and 

cell states (𝒉 and 𝒄). Hence, from this point on, when the term hidden state is used for LSTM, it is 

intended to represent a concatenated vector of the 𝒉 and 𝒄 vectors and for consistency with the 

RNN literature, this concatenated vector is labeled 𝒉 and the dimension of this vector is referred 

to as the hidden dimension of the LSTM cell. The schematics of the LSTM cell is shown in Figure 

4-1. 

In this research, a bi-directional LSTM is used as the encoder. A bi-directional encoder 

consists of two sets of RNNs with LSTM cells, one passing the information forward in time, 

labeled as 𝚽𝑓 and referred to as the forward LSTM, and the other passing information backward 

in time, labeled 𝚽𝑏 and referred to as the backward LSTM. It is common practice to have the same 

hidden dimensions for the forward and backward LSTMs. Figure 4-2 shows the architecture of the 

model used in this chapter. 

 

 

Figure 4-1. Schematics of the LSTM cell. 
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4.2.2 Hidden State Aggregation 

The output of the encoder is truck axle weight distribution. Since the maximum number of axles 

permissible in the state of Michigan is 11, the output vector of the encoder has a maximum 

dimension of 11. Let 𝑑ℎ represent the common hidden dimension of each of the LSTMs. For each 

bridge response 𝑋 = {𝑥[1], 𝑥[2], … , 𝑥[𝑇]}, the sequence of hidden states generated will be of 

dimension 𝑇 × 2𝑑ℎ (the hidden vector will contain both the forward and backward hidden vectors). 

Thus, the hidden states are required to be aggregated into an 11dimension space. 

In this research, two approaches are taken to hidden dimension aggregation. In the first 

approach, a fully connected artificial neural network (ANN) is used. The ANN is applied to the 

last hidden vector. The second approach utilizes a max-pooling layer on the sequence of hidden 

states generated from the response and then applies a fully connected ANN to the output of the 

max-pooling layer. Figure 4-3 depicts the schematic application of aggregation modules to the 

sequence of hidden states. 

 

 

Figure 4-2. Schematic of the Encoder utilizing bi-directional LSTM cells and an aggregation module. The red cells represent the 

forward LSTMs and the blue cells represent the backward LSTMs. 
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4.3 Description of the Datasets 

As stated in Chapter 1, the dataset enabling the implementation of BWIM within this work is 

collected using an advanced computer vision-enabled monitoring system based on the CPS 

framework. In this subsection, this monitoring system is described in details to familiarize the 

reader with this system. Prior to implementing the DL-based method in this chapter, two other 

simulated dataset are generated for examining the viability of the proposed method on those 

 

(a) 

 

(b) 

Figure 4-3. Schematics of the aggregation module for a) fully connected ANN b) Max Pooling layer and fully connected 

aggregation modules. 
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idealized datasets. Each of the datasets are generated with a specific purpose in mind. These 

datasets are further described in this subsection. 

 

4.3.1 I-275 Monitoring System 

The experimental testbed is a 20-mile stretch of the I-275 highway corridor located in southeast 

Michigan. A CPS is installed consisting of four low-cost cameras for highway traffic monitoring, 

two sets of instrumented bridges (for which the instrumentation would be discussed in details), 

and a WIM station. The set of cameras and bridge instrumentations are operated by the Laboratory 

of Intelligent Systems and Technologies (LIST) and the WIM station is operated by Michigan 

DOT (MDOT). The purpose of this CPS architecture is to enable correlating the bridge responses 

to the trucks that induce the response through using camera feed as well as measuring truck 

weightage properties inducing the measured bridge responses using the WIM station. 

Two of the bridges are instrumented with wireless sensor nodes to measure the structural 

response of each bridge to highway traffic. The first bridge is the Telegraph Road Bridge (TRB) 

and the second bridge is the Newburg Road Bridge (NRB). Both bridges are built in 1973; TRB is 

instrumented for bridge SHM application since 2011 and NRB since 2016. TRB is a three span 

bridge with the middle span being connected to other two by a pin and hanger mechanism. NRB 

is a single-span bridge. The overall length of TRB is 224ft and the length of NRB is 105ft. Both 

bridges have a concrete-on-steel-plate girder super structure and each have 7 girders supporting 

three lanes of highway traffic. For detailed description of the bridges, interested readers are 

referred to (Hou, 2020; Hou et al., 2019). 

The bridge monitoring systems consist of three types of sensors, namely, strain gages, 

accelerometers and thermistors for temperature measurement. Narada WSN is used to establish 
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communication between the sensors and the base station installed on the bridge. The base station 

consists of three components: 1- an NVIDIA Jetson TX2 module single board computer, 2- an 

AT&T Velocity MF861 LTE modem for internet access and 3- a CC2420 IEE 802.15.4 RF 

transceiver used for establishing wireless communication between the Narada WSNs and the base 

station. A base station is installed on each of the two bridges and each base station communicates 

with the sensor nodes installed on the bridge through wireless connectivity established by Narada 

WSNs and with other components of the monitoring system as well as the main server located in 

LIST through internet connectivity. The base station is equipped with a 160W solar panel that 

charges a 12V 40 A-hr sealed lead acid (SLA) battery which powers the base station. At each 

WSN, up to four analog sensors can be interfaced with the Narada unit for structural monitoring. 

The next important component of the monitoring system is the set of traffic cameras. As 

mentioned previously, four traffic cameras are placed along the testbed of this study. Each traffic 

camera consists of the following five items: 1- a Logitech C930 webcam placed in a waterproof 

enclosure is used to monitor the highway traffic, 2- The operations of each camera is controlled 

and driven by an NVIDIA Jetson TX2 single board computer, 3- An AT&T Velocity MF861 LTE 

modem is used to provide internet connectivity, 4- a 160W solar panel is used to power the battery 

supplying the system with electricity and 5- a 12V 40 A-hr SLA battery is used within each camera 

system. As obvious, the modem, battery, and solar panel used for the cameras and base stations 

are the same. Additionally, each single board computer has an embedded integrated NVIDIA 

Pascal GPU and a hex-core ARMv8 64-bit CPU which enables real-time image processing on the 

node for vehicle detection. Overall, four traffic cameras are located across the corridor, one at the 

interchange between I-275 and I-75 (i.e., the entrance of the testbed), one at TRB, another at NRB 
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and the fourth located underneath the Pennsylvania Road Bridge where the WIM station is located. 

The components used in the base station and camera system is shown in Figure 4-4. 

The final component of the system is the WIM station located at the end (i.e., northern 

most point of the testbed) underneath the Pennsylvania Road Bridge. The WIM station is a two-

lane type II station with quartz sensors buried under the highway pavement at the slow and middle 

lane of the highway (i.e., right lane and middle lane). The WIM station communicates the collected 

data with a remote server operated and maintained by MDOT. With the help of MDOT technicians, 

this database is queried regularly to acquire WIM station data for the purpose of integration with 

data collected by the other components of the monitoring system. The measured weight records 

for the WIM station contains the following 9 attributes: 1) measurement time stamp, 2) Federal 

 
 

(a) (b) 

Figure 4-4. Components of the monitoring system in a) base station b) camera monitoring system. 
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Highway Administration (FHWA) vehicle class, 3) vehicle speed, 4) vehicle gross weight, 5) 

number of axles, 6) axle weights, 7) axle spacings, 8) vehicle direction and 9) vehicle lane 

assignment. 

 

4.3.2 Data Acquisition Process 

The data acquisition (DAQ) process consists of two steps; the first step is done in a real-time 

manner during DAQ and the second step is done in an offline manner after responses have been 

collected. 

The real-time DAQ process consists of numerous messages being exchanged through the 

internet between the camera and base stations installed across the corridor. An object detection 

algorithm named You Only Look Once (YOLO) (Redmon et al., 2016) is continuously running on 

the camera installed at the beginning of the corridor (i.e., at the intersection of I-75 and I-275 

highway corridor) for real-time truck detection through the traffic. Once a truck is detected by this 

camera, a message would be sent across the rest of the network triggering the DAQ processing. 

Consequently, this camera is also referred to as the trigger camera. 

The first message is sent from the trigger camera to TRB camera and TRB base station. 

Upon receiving the detection signal from the trigger camera, the TRB camera and base station will 

wait for 70s and then start the DAQ process at TRB. The TRB camera records highway video feed 

and the TRB base station records the responses measured by sensors installed on bridges. Both 

systems record the response for a duration of 100s. Next, the TRB camera sends a message to NRB 

camera and NRB base stations. The message commands the systems to collect data 330s after the 

trigger camera has detected the truck and both systems conduct DAQ for a durations of 120s (i.e., 

NRB camera records highway traffic and NRB base station collects bridge responses from WSNs 



 97 

installed on the bridges for a duration of 120s). Finally, NRB camera sends a message to the WIM 

camera effectively 810s after the truck detection to record highway traffic at WIM station for a 

duration of 360s. The time differences between the initiation of DAQ at different stations is 

calculated based on the physical distance between different station and an assumption that trucks 

are traveling at a speed of 60mph. The DAQ duration is increased from TRB to NRB and from 

NRB to WIM station to increase the chance of detecting the truck that is observed at the trigger 

camera. An alternative to triggering-based DAQ is DAQ at fixed time intervals (e.g., DAQ with 

in an hourly manner). As shown by Hou (2020) (Hou, 2020), triggering-based DAQ would 

increase the total number of trucks sampled within the response significantly. 

After the observations are collected by each of the stations, the cameras automatically send 

the video feeds to the LIST server in a daily manner and erase the feeds from local computers to 

provide storage for DAQ in next days. In contrast, the data is queried in a manual manner with 

lower frequency from TRB and NRB base stations. The reason behind this is that video feeds 

consume large volumes of memory storage on the NVIDIA Jetson TX2 computers and can 

potentially fill up the memory of these computers in a matter of few days. Hence the data is 

retracted automatically in a daily manner to ensure enough memory exists for DAQ everyday. In 

contrast, SHM records require very low storage volume and hence can be retracted with a higher 

frequency. 

After the datasets from cameras, base stations and the WIM station are all collected, the 

offline data processing step begins to identify and re-identify trucks across the corridor as well as 

extract the corresponding bridge responses and WIM station measurements corresponding to each 

truck load. The details of this process is outlined at (Hou et al., 2019). Here, a brief description is 

presented. A CV-based truck re-identification algorithm utilizing YOLO-v3 network and a triplet 
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network is used to identify and re-identify trucks across the three measurement stations. In other 

words, this re-identification framework is used to identify trucks and detect the same truck between 

the three pairs of camera stations, namely the TRB-NRB cameras, TRB-WIM station cameras and 

NRB-WIM station cameras. Based on the time stamps on the video feeds, the bridge responses to 

the trucks and the WIM station information corresponding to each truck is isolated as well. 

Consequently, three valuable sets of data are constructed: pairs of TRB and NRB bridge responses 

to the same truck load, TRB response to a truck load along with WIM station information and 

NRB response to a truck load along with WIM station information corresponding to that load. 

Needless to say that some trucks are re-identified across at least two of the three pairs of cameras 

resulting in a (obviously smaller sized) data sample consisting of pairs of TRB and NRB responses 

to the same truck load along with the WIM station properties of that truck. Figure 4-5 depicts a 

sample truck that is tracked across the monitoring testbed. 

This chapter utilizes NRB-WIM station pairs of trucks for the BWIM problem. In chapter 

5, time series forecasting models are used to link the pairs of bridge response to the same truck 

load. Additionally, the signal pre-processing techniques used for the experimental dataset is 

described in Chapter 5 in greater details. 
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4.3.3 Description of the Finite Element Model 

As a first step for both this chapter and the next chapter, a Finite Element (FE) model is developed 

to evaluate the viability of the proposed methods on a simulated environment prior to 

implementation on datasets collected from the real-world measurements. Here, the model used for 

generating this dataset is described in details. 

In this study, finite element (FE) models are created for both TRB and NRB in CSiBridge 

(Computers and Structures, 2011) according to the dimensions and properties of the bridges to 

evaluate the feasibility of the proposed Encoder model in this chapter and the Seq2Seq model that 

is used in the next chapter. Though, the results for the Seq2Seq model are not shown in this 

dissertation, they can be found at (Bahrami et al., 2021). Numerical simulations are carried out for 

both bridges using the same truck to imitate the scenario of monitoring a given truck passing 

through the highway corridor loading the TRB and NRB. 

 

Figure 4-5. Images of a sample truck identified and re-identified across the I-275 monitoring testbed. 
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For NRB, a total of 12,139 shell elements are used to model the reinforced slab (3,840) and 

steel girders (8,299), and a total of 1,020 brace elements are used to model the lateral bracings. 

The concrete has a Young's modulus of 3,155 ksi with a Poisson's ratio of 0.2. The girder steel has 

a Young's modulus of 27,000 ksi and a Poisson's ratio of 0.28. The Young's modulus for the rebar 

steel is 29,000 ksi. Unlike the TRB, NRB has two dominant modal frequencies: 4.0Hz and 5.8Hz. 

The model properties for both bridges have been fine-tuned by model updating, thus, their modal 

 

(a) 

 

(b) 

Figure 4-6. a) Schematic drawing for the NRB model, b) sensor locations for the bridge weigh-in-motion. 
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frequencies closely match those observed in the actual bridges. Figure 4-6 shows the description 

of the description of the FE model along with sensor locations used to record the bridge response. 

Bridge responses were generated by sampling truck properties from the set of WIM station 

measurements collected by the MDOT. Considering FHWA vehicle classes 1 to 3 represents 

lightweight vehicles, whose loads on the bridges are not of major interest. In addition, according 

to the local speed limit (70 mph for cars, and 60 mph for trucks), measurements with abnormal 

speeds are ignored. Thus, the measured WIM dataset is pruned to only consider trucks with a 

vehicle class between 4 to 13, and vehicle speeds between 40 to 85 mph.  

The simulation has a time step of 0.01 seconds (sampling frequency is 100 Hz). As it is 

evident, the strain response contains not only the forced response triggered by truck but also the 

free vibration response after the truck is off the bridge. Thus, each bridge response can be divided 

into two parts: (1) forced response whose duration and amplitude depend on truck speed and 

weights, and (2) free vibration response after the truck is off. To capture enough structural 

information of the bridges, the simulation duration is set to 3 seconds for NRB. This ensures at 

least four cycles of free vibration is recorded for each bridge. The description of the model used 

for TRB can be found at (Bahrami et al., 2021). 

In this chapter, the FE model for NRB is used to simulate bridge responses to truck traffic 

and the set of bridge strain responses along with the WIM station properties are used for evaluating 

the proposed methodology for the BWIM problem. A key point to be kept in mind is that here, 

truck WIM properties inducing bridge vibrations are assumed to be know precisely. This is an 

idealization of the real-world scenario where WIM station measurements actually contain 

measurement noise. For the WIM station used in I-275 corridor which is a Type II WIM station, 

the measurements maybe subject to up 15% relative error with respect to gross vehicle weight and 
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30% relative error with respect to axle weight (ASTM, 2017). As such, use of the simulated data 

is beneficial in that it enables the evaluation of the Encoder model along with different hidden state 

aggregation modules in an idealized scenario where exact WIM characteristics of the load are 

know, a scenario which is not achievable for real-world measurements. 

 

4.4 Results and Discussions 

 

The FE model described in section 4.3.3 is used to generate the simulated response dataset. A 

dataset consisting of 3,800 response sequences is generated by sampling WIM station information 

collected by MDOT. From these observations, 3,300 are used for training, 200 for validation and 

300 for testing. An important point evident within the dataset is that the data is imbalanced in terms 

of axle numbers for the trucks. Similar pattern is observed in Chapter 5 as well. This is due to the 

fact that some trucks are more common compared to others. For instance, the most common axle 

number for the trucks is 5, 2 and 11 axle trucks. As stated in section 4.3.3., since the duration 

simulation and sampling frequencies are 3s and 100Hz respectively, each generated time history 

contains 301 data points. 

To train the model, A stochastic optimizer known as the Adam optimizer (Kingma & Ba, 

2014) is used to train the models. The initial learning rate was selected to be 0.01, and was reduced 

after each epoch using the following relations: 

𝑙𝑒 = 𝑙0 × 0.96𝑒  Eq. 4-2 

where 𝑙𝑒 and 𝑙0 represent the learning rate at epoch 𝑒 and epoch zero respectively (i.e., 𝑙0 = 0.01). 

The reduction of learning rate is important in increasing the performance of the training for higher 

epochs. To ensure better convergence, a gradient clipping step is implemented to clip the gradient 
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to a maximum norm of 2. The hidden dimension is set to be equal to 512, and the mini-batch size 

of 20 is used for stochastic optimization. 

The loss function used is the L1-smooth loss function defined as: 

𝐿1𝑠𝑚𝑜𝑜𝑡ℎ(𝑥, 𝑦) =
1

𝑛
∑ 𝑧𝑖

𝑖
 

𝑧𝑖 = {

1

2
(𝑥𝑖 − 𝑦𝑖)

2     |𝑥𝑖 − 𝑦𝑖| < 1

|𝑥𝑖 − 𝑦𝑖| − 0.5              𝑜. 𝑡. 𝑤
 

Eq. 4-3 

where 𝑛 is the dimension of the two input vectors. The loss function is used on the set of 11-

dimension weight vectors, i.e., for an observation with predicted and label (i.e., actual) weight 

vectors 𝑤𝑝𝑟𝑒𝑑 and 𝑤𝑙𝑎𝑏𝑒𝑙, the loss function is 𝐿1𝑠𝑚𝑜𝑜𝑡ℎ(𝑤𝑝𝑟𝑒𝑑, 𝑤𝑙𝑎𝑏𝑒𝑙). 

The evaluation in this section includes two parts. Firstly, the accuracy of the three types of hidden 

state aggregation modules is investigated to select the best for real-world use. Secondly, the 

robustness of the proposed model against noises in training labels is tested for the selected model 

after the first stage. 

The accuracy of the model is evaluated with five metrics, namely average axle weight error, 

average vehicle gross weight error, 95th percentile of axle weight error, 95th percentile of vehicle 

gross weight error and axle number accuracy. For a specific kind of weight 𝑥𝑤 (i.e., axle weight 

or gross weight), the error, 𝑒, is defined as Equation 4-4: 

𝑒 =
|𝑥𝑤𝑝𝑟𝑒𝑑 − 𝑥𝑤𝑙𝑎𝑏𝑒𝑙|

𝑥𝑤𝑙𝑎𝑏𝑒𝑙
 Eq. 4-4 

The error is only calculated based on ground-truth labels and zero-value axle weight is not 

counted. For example, if the model predicts out 6 non-zero axle weights for a 5-axle truck the last 

axle weight is not calculated since the error will be infinite. The amplitude of the 95th percentile 

error is determined such that 95% of the calculated errors are smaller than this value. Regarding 
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the accuracy of axle number, for a specific truck, if the model predict the correct number of axles 

it counts one towards true positives and the final accuracy is calculated as the ratio of true positives 

over the total number of trucks. Apart from accuracy, we also compare the inference time to 

proceed a single sequence with the same length among three different variations. 

Three variations of the proposed model with different hidden state modules are trained and 

tested using the test dataset with the metrics described above. The results are shown in Table 4-1. 

It can be observed from the table that the max-pooling approach obtained the best performance in 

terms of accuracy. Both the 95th axle weight error (25.97%) and the 95th gross weight error 

(5.88%) meet the accuracy requirement of a Type II WIM station. Compared to the ground-truth 

labels, most of the negative samples with wrongly predicted axle numbers have a difference of 1. 

Based on the above outcome, the bidirectional LSTM model with the max-pooling aggregation 

module is selected for further analysis. 

Table 4-1. Test results for two types of hidden state aggregation. 

 Avg. axle 

weight error 

95th axle 

weight error 

Avg. gross 

weight error 

95th gross 

weight error 

axle no. 

accuracy 

Last step 13.86% 46.33% 3.35% 9.56% 65.67% 

Max pooling 7.56% 25.97% 1.66% 5.88% 89.00% 

 

Real-world WIM station measurements suffer a certain level of noises following a normal 

distribution (Prozzi & Hong, 2007). To test the robustness of the model against noisy training 

labels, Gaussian noises are randomly sampled to corrupt the training labels (i.e., axle weights). 

The mean of the Gaussian noise is always 0 and the noises are added in terms of relative error 

according to Equation 4-4. Five stages of noisiness levels are tested where the standard deviation 

of the Gaussian error distribution, 𝜎, is increased following the set {0, 0.0125, 0.025, 0.05, 0.1, 
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0.15} resulting in the 95th percentile error in axle weights being 0, 2.5%, 5%, 10%, 20% and 30%, 

respectively. It should be noted that even though the model is trained using noisy labels it is still 

tested using uncorrected test labels. The results of the experiment is shown in Table 4-2. 

Table 4-2. Testing results for the proposed Encoder model with training labels being corrupted with Gaussian noise. 

Noise Level (95th percentile) 0% 2.5% 5% 10% 20% 30% 

Avg. axle weight error 7.56% 8.27% 9.02% 9.48% 9.43% 10.09% 

95th axle weight error 25.97% 27.93% 30.41% 31.27% 29.76% 31.94% 

Avg. gross weight error 1.66% 1.63% 2.56% 2.57% 2.79% 2.95% 

95th gross weight error 5.88% 5.11% 8.62% 8.16% 9.68% 8.69% 

# axle accuracy 89.00% 87.67% 86.67% 86.67% 88.67% 88.67% 

 

It can be observed that with an increased level of noisiness, the accuracy of the model does 

not degrade much. With a 30% noisiness level, the accuracy of the model can still nearly satisfy 

the requirements of a Type II WIM station. As a result, it can be concluded that it is possible to 

train a model based on corrupted training data generated from a Type II WIM station to meet the 

same criterion for the same type of WIM station. Besides, it is very likely that better tuned 

parameters and more training data can help further improve model performance. 

 

4.5 Conclusions 

Real-time truck weight measurements such as gross weight and axle weight play an important role 

in the enforcement of highway truck size and weight regulations. The long-term statistics also 

provide a rational basis for freight transportation planning and highway asset management. 

Recently, the emergence of bridge WIM technology presents a more cost-effective alternative for 
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weighing trucks. With sensors installed in bridges, bridge WIM relies on measured bridge 

responses to derive weights of passing trucks in real time. In this study, a learning-based bridge 

WIM method is proposed. Utilizing a large simulated dataset consisting of paired bridge response 

and WIM data, a bidirectional LSTM network is trained to predict truck weight characteristics 

including axle weights and gross weight with bridge strain responses as inputs. The proposed 

method is evaluated using simulation data obtained from finite element models and proven to be 

sufficiently accurate for a type II WIM station. The robustness of the proposed method against 

sensing noises in training data is also investigated. 

For future work, the proposed methodology will be implemented on the experimental 

dataset from both the TRB and NRB. Additionally, the effects of more factors, such as ambient 

temperature, size of training dataset, sensor locations, sensing sampling rate, etc. on the accuracy 

of the bridge WIM system will be investigated.
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Chapter 5.  

A Sequence-to-Sequence Model for Joint Bridge Response Forecasting

 

5.1 Introduction 

Highway bridges are an integral part of the infrastructure system. As of now, the major source of 

funding for the highway infrastructure comes from the fuel tax revenues collected by the federal 

and state governments. However, this model is proven unsustainable for two reasons. First, the 

fuel efficiency of vehicles has constantly increased over the past years resulting in less fuel 

consumed and hence less revenue generated per vehicle-miles traveled. Second, the increase rate 

of infrastructure deterioration has resulted in higher demand for funding to maintain civil 

infrastructure systems. Consequently, there has been an increased attention on alternative 

financing mechanisms and models for the civil infrastructure systems. 

Rather than charging a flat rate from the fuel consumed, a recent focus has been on 

quantifying the cost of consumed infrastructure life by each vehicle and attempting to charge 

vehicles based on that cost. A recent implementation of such financing paradigm can be found in 

dynamic pricing of highway consumed life by over-weight vehicles. Numerous researchers have 

attempted to quantify the consumed life by over-weight/over-sized trucks and change the flat fee 

structure to a dynamically priced one (Gungor et al., 2018, 2019). 

In addition to determining the cost of consumed life for financing, bridge response 

forecasting can be used to better understand bridge response given to corridor loading patterns. 
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Such understanding can enhance highway asset management planning, an issue that is extremely 

important given the increased strain on infrastructure systems and limited funding for 

infrastructure asset management. Furthermore, accurate response forecasting can enable better 

understanding of vehicle-bridge dynamic interactions (VBI). VBI has received significant 

attention over the past few years and the body of literature allocated to VBI has been ever 

increasing since the widespread adoption of numerical models (Ding et al., 2010; Elhattab et al., 

2016; González et al., 2008; Zhang et al., 2018; Zhao & Uddin, 2014). The goal of such studies 

have been focused on better understanding of VBI and bridge dynamic response amplification can 

enhance the understanding of bridge response to truck traffic and can be used for a less 

conservative design of highway bridges. While numerical models provide reasonable 

approximation of bridge response, all such models have flaws when attempting to estimate bridge 

response to the large and extremely diverse set of truck population that a bridge would serve 

throughout its entire life span. Hence an accurate time series model can be developed to better 

study VBI and quantify the dynamic amplification response of the bridge under varying traffic 

load based on our knowledge of other bridge responses to the same truck load. 

Finally, in addition to the previously mentioned applications, accurate forecasting of bridge 

responses to a given truck load can be used to control connected and automated trucks when 

traveling over a bridge so as to regulate bridge response to truck traffic with the goal of maximizing 

the life span of the bridge by reducing the incremental damage implemented on the bridge from 

truck traffic. This can be done by allocating lane and speed trajectories to the trucks 

communicating with the infrastructure through vehicle-to-infrastructure (V2I) and vehicle-to-

everything (V2X) communication technologies. 
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An enabler of such ambitious goal is the recent advances in sensing and analytics tools 

available to civil engineers. Recent advances in sensing and wireless communication technologies 

have enabled civil engineers to monitor bridge responses and construct massive datasets in a cost-

effective manner. Furthermore, the field of artificial intelligence (AI) has undergone a recent boom 

and significant attention has been focused to this field lately. As such, numerous civil engineers 

have adopted AI and machine learning (ML) for solving pressing problems in this field. An 

important recent implementation of computer vision in civil engineering was to identify and re-

identify truck traffic in a corridor developed by Hou et al . By synchronizing video feed collected 

by cameras monitoring with bridge response monitoring systems on the bridges, Hou. et. al. 

managed to construct a valuable dataset containing the response of two highway bridges to the 

same truck along with the truck information measured by a weigh-in-motion station (WIMS) in 

the I-275 highway corridor in Michigan. 

In this work, we employ deep learning-based time series forecasting model to predict the 

response of one bridge to a given truck given the response of another bridge to the same truck. To 

do so, a certain deep learning architecture named sequence-to-sequence (Seq2Seq) model is used. 

Such model was initially developed for the purpose of neural machine translation (Sutskever et al. 

2014). Later on, the model was adopted for time series applications and proved to be efficient 

(Wilms et al. 2018, Salinas et al. 2019). Perhaps the most important characteristic of the Seq2Seq 

model is the capability to develop a complex mapping between an input and an output sequence. 

To do so, the input of the model is fed to an encoder to generate a context vector. In essence, the 

encoder attempts to condense all the information in the input into the context vector. Next, a 

decoder is used to unravel the output sequence using the context vector. Thus, sometimes this 

architecture is also referred to as the encoder-decoder architecture. 
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The rest of the chapter is organized as follows. In the next section, we will give a thorough 

description of the datasets used within this work along with techniques used for signal conditioning 

and processing. Next, we will provide a brief theoretical background on the encoder-decoder 

model. In the results and discussions subsection, we will show the results of deploying the 

proposed framework on the a real-world bridge response dataset. Finally, in the last section, we 

will conclude with the conclusions along with future directions of research. 

5.2 Description of the Dataset 

The dataset used within this chapter is collected by the same system as described in Chapter 

4. As such, the reader is referred to Chapter 4 for a detailed description of the monitoring system 

implemented in the I-275 highway corridor. However, the dataset used is the portion which 

consists of identified and re-identified trucks on TRB and NRB rather than between bridges and 

WIM stations (as it will be described later in the results sections, a portion of the dataset is also re-

identified on the WIM station and a subset of two bridge responses to the same load along with 

the corresponding WIM station information is gathered). In the remainder of this subsection, signal 

pre-processing techniques employed for selecting bridge responses to the trucks is described. The 

overall steps taken for signal pre-processing is shown in Figure 5-1. In the following subsections, 

each component of the pre-processing step will be described in further details. There are three 

lanes on each of the bridges, namely slow, middle and fast lanes. The total number of trucks 

identified on TRB and re-identified on NRB are shown in Table 5–1. As evident, the most frequent 

lane combination is the set of trucks that traverse through the middle lane of TRB and slow lane 

of NRB (the reason for this fact is that the slow lane of TRB is an entry ramp from the Telegraph 

road which is underneath the TRB to the I-275 corridor). Hence, in this research, only this 

combination of trucks is considered for the propose of joint bridge response forecasting. The 
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response of the bridge in TRB is measured by a sensor installed on a girder underneath the middle 

lane and the response of NRB is measured by a sensor installed on a girder underneath the slow 

lane. The location of sensors is intentionally selected so as to select the measure bridge responses 

exactly at the lane that the vehicles of interest are travelling on. The schematic location of sensors 

on the bridge is shown in Figure 5-2. 

There are three lanes on each of the bridges, namely slow, middle and fast lanes. The total 

number of trucks identified on TRB and re-identified on NRB are shown in Table 5–1. As evident, 

the most frequent lane combination is the set of trucks that traverse through the middle lane of 

 

Figure 5-1. Signal pre-processing steps for joint bridge response forecasting. 

 

Table 5-1. Frequency of re-identified vehicles for different truck lanes combinations on the I-275 highway. 

 TRB Slow TRB Middle TRB Fast 

NRB Slow 733 7664 434 

NRB Middle 80 2103 153 

NRB Fast 0 6 8 
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TRB and slow lane of NRB (the reason for this fact is that the slow lane of TRB is an entry ramp 

from the Telegraph road which is underneath the TRB to the I-275 corridor). Hence, in this 

research, only this combination of trucks is considered for the propose of joint bridge response 

forecasting. The response of the bridge in TRB is measured by a sensor installed on a girder 

underneath the middle lane and the response of NRB is measured by a sensor installed on a girder 

underneath the slow lane. The location of sensors is intentionally selected so as to select the 

measure bridge responses exactly at the lane that the vehicles of interest are travelling on. The 

schematic location of sensors on the bridge is shown in Figure 5-2. 

 

5.2.1 Baseline Removal 

As stated in the description of the monitoring system, the WSNs used for measuring bridge 

responses operate in a triggered manner. As such, when the system is triggered, a time-varying 

offset is introduced in the measurements which is the result of the transient response of capacitive 

elements in the measurement circuitry. To remove this time-varying offset, a baseline removal 

algorithm using asymmetrically reweighted penalized least squares (named arPLS for short), 

developed by Baek et. al. (Baek et al., 2015) is used . Initially introduced for removing varying 

background and noise for spectroscopy applications, arPLS has proven to be a capable and efficient 

tool for noise removal in other time series data as well. Additionally, this algorithm has been 

successfully implemented on the I-275 bridge response dataset as well. Here arPLS is used for 

baseline removal within the raw time series strain responses collected for TRB and NRB. There 

exists two key hyperparameters for arPLS. First is the smoothness parameter λ and the second 

parameter is the termination ratio when the changes in the selected weights for baseline removal 

are low enough for stopping the iterative algorithm. Within this work, 𝜆 = 1013 was used for both 
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TRB and NRB datasets. However, due to the differences in vibration characteristics of the two 

bridges, the termination ratios were selected to be 2 × 10−2 and 10−2 for NRB and TRB 

respectively. 

For the sake of conciseness, the details of the arPLS are not described here. However, in 

order to better understand the algorithm and the significance of the corresponding 

hyperparameters, the interested reader is referred to (Baek et al., 2015). 

5.2.2 Measurement Noise Removal 

In addition to the time varying background noise discussed in the previous subsection, there exists 

measurement noise in the form of high frequency, zero-mean random variations within the sensor 

 

(a) 

 

(b) 

Figure 5-2. Strain measurement locations on a) TRB and b) NRB. 
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readings due to imperfections within measurement instruments. To remove this undesirable noise, 

a low-pass filter is used. Based on the engineering judgement of the team, signal components with 

frequencies above 15Hz were considered to be due to measurement noise based on the 

understandings from the behavior of the bridges. Consequently, an elliptic filter was designed and 

implemented in MATLAB. The filter passband and stopband frequencies were set to 15Hz and 

20Hz respectively and passband and stopband attenuations were selected to be 1dB and 50dB 

respectively. The same filter was used for both TRB and NRB responses as the random 

measurement noise was expected to be identical for both bridges.  

 

5.2.3 Signal Decomposition 

When dealing with bridge response data, it is of high interest to decompose the bridge response 

time series into static and dynamic components. By definition, the static component of bridge 

response is caused only by the load of the truck while the dynamic component is a consequence of 

the dynamic interactions between the truck suspension system and the bridge. Consequently, the 

static response of the truck is only affected by the total truck weight and weight distribution on the 

truck. In contrast, the dynamic component of the response not only depends on the previous two 

factors, but also on other parameters such as truck’s speed, suspension system characteristics, tire 

conditions and surface conditions of the bridge. 

Ideally, the static response is achieved when the truck is passed through the bridge with 

near zero speed (also known as crawl speed). The dynamic truck response is the response of the 

bridge to a truck traveling at a given speed subtracted by the static response of the bridge to the 

same truck. 
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Thus, in order to decompose a bridge measurement into static and dynamic components, it 

is sufficient to know the bridge static response to the truck. Since for a given truck it is not possible 

to determine the actual static response defined previously, engineers attempt to estimate the static 

response by low-pass filtering the signal with a very low cutoff frequency. The cutoff frequency 

is selected such that it is well below the first modal frequency of the bridge. The rationale behind 

such approach is that by selecting a cutoff frequency well below the first mode of structural 

response, all dynamic components of the signal will be removed and hence the resulting output of 

the signal represents the component without any dynamics. While it is obvious that the estimated 

static response using such approach could deviate from the actual static response, the 

approximation errors are considered reasonable. 

For selecting the static component of the signal, a Butterworth filter is designed in 

MATLAB. For both TRB and NRB, a 10-th order filter was selected. The cutoff frequencies were 

selected to be 2Hz and 1.5Hz for NRB and TRB respectively. Note that the first modal frequencies 

for NRB and TRB were 4.0Hz and 2.17Hz respectively and hence the cutoff frequencies were 

selected to be below these modal frequencies. The dynamic component of the signal was extracted 

by subtracting the estimated static response from the actual measured bridge response (also known 

as mixed signal). A sample signal is decomposed into the corresponding static and dynamic 

components in Figure 5-3. 

 

5.3 Theory 

In this subsection, the theoretical background of the time series forecasting models used as well as 

the steps taken for training these models are discussed. 
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5.3.1 Seq2Seq Model 

The backbone of a Seq2Seq model is a recurrent neural network (RNN). An RNN can be viewed 

as a unit cell that is rolled over itself for a set number of times. At each time step, the cell takes an 

input 𝑥[𝑖], and the hidden state from the previous step ℎ[𝑖 − 1] and returns the current hidden state 

ℎ[𝑖]. The network aims at capturing sequential information within the data presented to it through 

the use of hidden states from the previous time steps. The main computation of the RNN is the 

unit cell 𝚽, where 𝚽𝐸 denotes the cell for the encoder and 𝚽𝐷 for the decoder. The RNN 

architecture is used to model an encoder whose design is optimized to output a low dimension 

context vector using input time series x[i]; the decoder uses the context vector to feed another RNN 

that outputs another time series y[i]. In this study, x and y correspond to responses of the two 

bridges to the same truck. The overall architecture of the Seq2Seq model used within this chapter 

is shown in Figure 5-4. 

  

(a) (b) 

Figure 5-3. Sample signal decomposition. a) represents the observed TRB response (after noise removal) along with the 

static response signal b)  the dynamic response signal. 
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Two different cell types are used in this study: namely gated recurrent unit (GRU) and 

LSTM cells. The brief descriptions of these two cell types are presented in this section. For more 

description of these cell types, interested readers are referred to (Chung et al. 2014) and (Malhotra 

et al. 2016) for details. The RNN cells apply a combination of linear matrix multiplications and 

non-linear transformations. The equations describing the GRU are given as (Paszke et al. 2017, 

Chung et al. 2014): 

𝒓[𝑖] = 𝜎(𝑾𝑥𝑟𝑥[𝑖] + 𝒃𝑥𝑟 + 𝑾ℎ𝑟𝒉[𝑖 − 1] + 𝒃ℎ𝑟) 

𝒛[𝑖] = 𝜎(𝑾𝑥𝑧𝑥[𝑖] + 𝒃𝑥𝑧 + 𝑾ℎ𝑧𝒉[𝑖 − 1] + 𝒃ℎ𝑧) 

𝒏[𝑖] = tanh(𝑾𝑥𝑛𝑥[𝑖] + 𝒃𝑥𝑛 + 𝒓[𝑖]⨀𝑾ℎ𝑛𝒉[𝑖 − 1] + 𝒃ℎ𝑛) 

𝒉[𝑖] = (1 − 𝒛[𝑖])⨀𝒏[𝑖] + 𝒛[𝑖]⨀𝒉[𝑖 − 1] 

Eq. 5-1 

where tanh is the hyperbolic tangent function, ⨀ represents the entrywise product, and 𝜎 

represents the sigmoid function defined as 𝜎(∙) = 1 (1 + exp(∙))⁄ . Additionally, the index 𝑖 

represents the time index to show how the current hidden state is related to both the current input 

and previous hidden state. 𝑥[𝑖] is the input at time 𝑖. The terms 𝒓[𝑖], 𝒛[𝑖], and 𝒏[𝑖] are termed the 

reset, update, and new gates, respectively. Finally, the  's and 𝑩 's are the weights and biases of the 

linear transformations. The schematic of the GRU cell is shown in Figure 5-5. The description of 

the LSTM cell can be found in section 4.2 and Equation 4-1 expresses the equations pertaining to 

that cell. 
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In summary, the functionality of this cell unit in the encoder RNN can be expressed by: 

𝒉[𝑖] = Φ(𝒙[𝑖], 𝒉[𝑖 − 1]) Eq. 5-2 

where 𝒙[𝑖], 𝒉[𝑖], and 𝒉[𝑖 − 1] are the input, hidden state at time 𝑖, and the hidden state at time 

𝑖 − 1, respectively. For the GRU cell, this hidden state is basically the 𝒉 vector in Equation 5-1. 

While for the LSTM cell, this hidden state is a concatenated vector of 𝒉 and 𝒄 vectors in Equation 

4-1. 

 

Figure 5-4. Seq2Seq model architecture. The Encoder condenses the information from the input signal into the context vector 

and the Decoder uses this vector to forecast the output response. 

 

 

Figure 5-5. Schematic representation of the GRU cell. 
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The Seq2Seq model used here consists of two different RNNs: one is the encoder 𝚽𝐸  and 

the second is the decoder 𝚽𝐷 (this structure is also referred to as an encoder-decoder architecture). 

The encoder takes the input time series and condenses the information into a fixed-length vector 

which is referred to as the context vector. The context vector is the last hidden state of the encoder 

but serves as the input on the decoder's side. On the decoder side, the encoder’s last hidden state 

(context vector) is fed in with the decoder then predicting the output using that context vector. For 

each time step, the decoder recurrent cell's output is used as the input to the cell at the next time 

step. This is in contrast to the encoder where the actual time series values are used at each time 

step. 

The dimensions of the hidden states of the encoder and the decoder have to be the same. 

Meanwhile, the dimensions of the hidden state of the decoder could be different than that of the 

output. Hence, a fully connected layer is used on the decoder side of the model. This layer acts as 

follows: let 𝒉𝒅[𝑖] be the decoder's hidden state at time step 𝑖; then, this hidden state is multiplied 

by a weight matrix 𝑾𝑑𝑎 such the product is a scalar. 

 

5.3.2 Training the Seq2Seq Model 

The Seq2Seq model is implemented in PyTorch (Paszke et al. 2017). This subsection contains 

technical details of the implementation and training the model using that software tool.  

A key feature within the Seq2Seq model is the dimension of the context vector in the last 

hidden state of the encoder. A set of three different hidden dimensions, namely �̂� = {32, 64, 128} 

for both cell types are iterated on and the one that results in highest performance is selected.  

To train the model, a stochastic gradient-based optimizer named Adam (Kingma & Ba 

2014) is. Similar to other stochastic gradient-based approaches, at each iteration, Adam takes a 
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subset of the training dataset (called a mini-batch) and approximates the gradient of the MSE with 

respect to the weights. The optimizer then takes a step using the gradient at that iteration. 

Consequently, the size of the mini-batches, referred to as the batch-size, is another important 

training feature (so called hyperparameter). Two different batch sizes, namely �̂� = {20, 50} are 

used and the one with best performance is selected.   

Epoch is another hyperparameter to be set. It refers to the number of times the entire set 

(consisting of multiple batches) is used to update the neural network. Here the dataset in training 

is 1500 observations divided into batches (with network weights updated after each batch). During 

an epoch the training will repeat the learning process on 15 batches when batch size is 100, 30 

times when batch size is 50, and so on. The number of epochs used during training will be 

described shortly. 

Another important hyperparameter set prior to training is the learning rate for the Adam 

optimizer. Adjusting the learning rate throughout training is critically important in achieving an 

optimal set of network weights.. Initially, the learning rate must be high to allow large enough 

steps towards the optimal weights but these steps must be gradually reduced to prevent 

overshooting a local minimum of the cost function. To adjust the learning rate, a built-in feature 

of PyTorch named ReduceLROnPlateau is used. This function keeps track of the MSE on the 

validation dataset used after each epoch to test the Seq2Seq model. If this value doesn't decrease 

for 10 epochs, it reduces the learning rate to a half of its previous value. It should be noted that it 

is up to the user to decide on the learning rate and the number of epochs to wait before reducing 

the rate. In this chapter, the initial learning rate is selected as 0.02.  

Overall, a maximum of 2,000 epochs are used for training the Seq2Seq model. However, 

it was realized that beyond a certain point, the model overfitted the training data where the error 
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on the validation dataset would not decrease (and may increase). Thus, to speed up the process of 

search for optimal hyperparameters, training was terminated if the validation error did not decrease 

for 70 epochs. For each value of hidden dimension and batch size, the set of weights that resulted 

in the minimum MSE on the validation dataset were stored. Additionally, a section of each plot 

has been magnified to depict the divergence of the training and validation errors. 

 

5.3.3 ARX Model 

To validate the capacity of the proposed encoder-decoder architecture, a linear ARX model is 

employed as a baseline model. The ARX model can be expressed as follows: 

𝑦′[𝜂] = 𝛼1𝜓[𝜂 − 1] + 𝛼2𝜓[𝜂 − 2] +··· +𝛼𝑝𝜓[𝜂 − 𝑝] + 𝛽0𝑥[𝜂 + 𝑘]

+ 𝛽1𝑥[𝜂 + 𝑘 − 1] +···        +𝛽𝑞𝑥[𝜂 + 𝑘 − 𝑞] 
Eq. 5-3 

where 𝑝 is the number of lags on the output (poles), 𝑞 is the number of lags on the input (zeros) 

and 𝑘 is the offset between the input and output. The set of parameters {𝛼1, ⋯ , 𝛼𝑝, 𝛽0, 𝛽1, ⋯ , 𝛽𝑞} 

are the weights in the ARX model. Here, 𝜓[𝜂] is the target (NRB's) response and 𝑦′[𝜂] is the 

ARX model forecasting NRB response at the 𝜂th time step, respectively. 

This model can be expressed in the form of multiplication of a matrix with the vector of 

weights as follows. For each time step 𝜂, the right-hand side of Equation (5) can be expressed as 

the inner product of a row vector 𝚯𝜂 = [𝜓[𝜂 − 1], 𝜓[𝜂 − 2], ⋯ , 𝜓[𝜂 − 𝑝], 𝑥[𝜂 + 𝑘], ⋯ , 𝑥[𝜂 +

𝑘 − 𝑞]] and a column vector being 𝒘′ = [𝛼1;  ⋯ ; 𝛼𝑝; 𝛽0; ⋯ ; 𝛽𝑞]. Let 𝚯 be a matrix whose rows 

are 𝚯𝑛vectors and let 𝒚′ be column vector whose elements are 𝑦′[𝜂]. Then the ARX model can be 

expressed as a matrix multiplication in the following form: 

 𝚯𝒘′ = 𝒚′ Eq. 5-4 
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To find the set of optimal weights, 𝒘′𝑜𝑝𝑡, for a selected set of model orders and offset, a 

regularized least-squares approach is taken (Golub et al. 1999). Let 𝝍 be a column vector 

containing all target variables constructed similar to 𝒚′. Then: 

𝒘′𝑜𝑝𝑡 = argmin𝒘′ (
1

2
‖𝚯𝒘′ − 𝝍‖2

2
+

𝜆

2
‖𝒘′‖2

2
) Eq. 5-5 

where 𝜆 is the regularization parameter and ‖∙‖2 represents the 𝑙-2 norm. The solution to 

Equation 5-5 is given by: 

𝒘′𝑜𝑝𝑡 = (𝚯𝑇𝚯 + 𝜆𝑰)−1𝚯𝑇𝝍 Eq. 5-6 

where 𝚯𝑇 representing the transpose of matrix 𝚯, and 𝑰 being the identity matrix with the 

appropriate size. Equation 5-6 is solved using Python's Numpy package (Van Der Walt et al. 2011). 

For training, the true values of the target sequence are used in the 𝝍 vector (𝝍 = 𝒚′). 

However, in the validation and testing stages, only the first 𝑝 values match the targets. For the 

remaining time steps, the forecast of the ARX model is used. This implementation is similar to 

that of the Seq2Seq model when the model forecast of the NRB response at previous time steps 

are used as opposed to the actual values of the target sequence. 

To find the optimal set of hyperparameters, a grid search similar to that of the Seq2Seq 

model was conducted. The values for 𝑝 and 𝑞 were from the set �̂� = {5, 10, ⋯ , 70}, the value for 

𝑘 was selected to be zero as the lengths of the two time series were equal, and the 𝜆 parameters 

were from Λ̂ = {0.01,0.1,0.5,1,2,5,10,100}. For each combination of hyperparameters, the ARX 

model was trained by using Equation 5-6 and the trained model was used on the validation dataset. 

The combination of hyper-parameters resulting in the lowest validation error were used in the 

model. 
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5.3.4 Regression-based Baseline 

Another baseline used within this work is based on linear regression. This method was suggested 

by Professor Byon during the pre-defense session. The rational of fitting the model is as follows. 

First a linear regression model is fitted to each input and target observation to related the truck 

response at each stage of the observation to the time. In essence, the coefficients of regression 

essentially capture important information contained with the response data and the response can 

be reconstructed using those regression coefficients. Similar to Equation 5-3, let 𝑥[𝜂] and 𝜓[𝜂] 

represent the response strain response for the input and target time series at time step 𝜂. 

Additionally, let 𝑡[𝜂] represent the time corresponding to time step 𝜂 (in this work, since responses 

are sampled at 100𝐻𝑧, simply 𝑡[𝜂] = 𝜂/100). Then: 

�̂�[𝜂] = 𝜗0 + 𝜗1𝑡[𝜂] + ⋯ + 𝜗𝜊𝑥
𝑡[𝜂]𝜊𝑥 Eq. 5-7 

and: 

�̂�[𝜂] = 𝜚0 + 𝜚1𝑡[𝜂] + ⋯ + 𝜚𝜊𝑦
𝑡[𝜂]𝜊𝑦 Eq. 5-8 

 

where �̂�[𝜂] and �̂�[𝜂] are the predicted input and target responses at time step 𝜂 through the 

regression models and 𝜊𝑥 and 𝜊𝑦 represent the order of regression models used for the input and 

target respectively. 

Note that the above models are fitted to one pair of observation corresponding to a single 

truck load. Let Ξ and Υ represent matrices containing the set of all regression coefficients 

corresponding to training inputs and targets, respectively. In other words, for the 𝜄-th sample in the 

training dataset, 𝜄-th row of Ξ is the vector of coefficients [𝜗0, 𝜗1, … , 𝜗𝜊𝑥
] and the 𝜄-th row of Υ is 

the vector of coefficients [𝜚0, 𝜚1, … , 𝜚𝜊𝑦
] fitted to the input and target observations respectively. 
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Another regression model is used to predict Υ using Ξ and hence relate the input and target 

observations to each other. Here, a linear regression model is used: 

Υ̂ = ΞΓ + ς Eq. 5-9 

where Γ is an 𝜊𝑥 × 𝜊𝑦 matrix and 𝜍 is the bias vector with a length of 𝜊𝑦. Note that whilst the above 

equation utilizes a linear model to relate the set of coefficients, other non-linear alternatives (such 

as an ANN) can be used to relate the set of regression coefficients. 

To train the model, least squares regression coefficients are extracted from each pair of 

input and target observation in the training dataset. Then, Ξ and Υ are constructed and Γ and ς in 

Equation 5-9 are found again by minimalizing the squared error. At this point, a model relating 

inputs and targets are constructed. For each validation/test observation, a linear regression model 

is fitted to the input response using Equation 5-7. Then Γ and ς found in Equation 5-9 are used to 

estimate the set of regression coefficients for the target response. Afterwards, the target response 

can be estimated using Equation 5-8. A grid search is conducted to find model orders 𝜊𝑥 and 𝜊𝑦 

that minimize the validation error. Figure 5-6 provides the schematic representation of this baseline 

model for better visualization. 

 

 

Figure 5-6. Schematic representation of the regression-based baseline model. The information content of each signal is 

captured in regression coefficients and another regression model is used to related these coefficient vectors. 
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5.3.5 A Note on the Baseline Models 

As it may have been noticed by now, there are stark differences between the baseline models and 

the proposed Seq2Seq model. Here, we highlight the differences and caution the reader to note 

that the superior performance of the Seq2Seq model in this context must not be interpreted as the 

superiority of Seq2Seq model over the ARX and Regression-based baselines as a whole and on all 

universal applications. 

In summary, the greatest two differences between the ARX and Seq2Seq models are: (1) 

the first 𝑝 terms of the predicted results in the ARX model match exactly that of the target values, 

whereas the Seq2Seq values are initiated with zeros and only the model forecasts are used from 

the very beginning, and (2) the encoder observes the entire input sequence and then passes the 

context vector to the decoder, whereas in the ARX model, at each time step, only a subset of the 

input observations are used. The regression-based model alleviates this matter through capturing 

the entire content of input and target responses within the regression coefficients. 

The key point to emphasize is that the goal of this chapter is to develop a model enabling 

the forecast of the response of the downstream bridge to a truck load using the response of the 

upstream bridge to the same load. Towards this end, the suitability of the Seq2Seq architecture for 

this problem must be considered a strong point of this model as opposed to being viewed as an 

unfair advantage over the proposed linear baseline models. None of the time series based models 

(both the Seq2Seq model and the baselines) are developed by the author. The author does not claim 

any credit for any of the models nor does the author claim general superiority of one over others. 

Whilst the author has attempted to utilize the linear baseline models to fullest capacity, there may 

well be other strategies to increase the performance of baseline models. Furthermore, alternative 

models can be proposed to relate the input and target time series, models either in time domain or 
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frequency domain and either linear or nonlinear. Any of these models might outperform the 

Seq2Seq model. That case would be even a more favorable occurrence, as the goal of the research 

is to forecast the response on the downstream bridge as accurately as possible. Due to suitable 

architecture, the Seq2Seq model is considered as the main model here. As it will become evident, 

the only disadvantage of the Seq2Seq model is the high computational cost of training the model. 

Once the model is trained, the inference of the target response for new observations will be very 

rapid. 

 

5.3.6 Error Metrics 

As stated previously, the loss function used for training the Seq2Seq model is the Mean Squared 

Error (MSE). The MSE is defined as follows: 

𝑀𝑆𝐸 =  
1

𝑛
∑(𝑦[𝑖] − �̂�[𝑖])2

𝑛

𝑖=1

 
Eq. 5-10 

 

 

In this research, the bridge responses have the unit of micro-strains (𝜇𝜀). Consequently, the MSE 

loss function has the unit of (𝜇𝜀2). While the MSE loss function contains important information, 

when reporting the performance of the model, the square root of the MSE loss value is reported to 

ensure that the reported metric has a unit of (𝜇𝜀) hoping to better enable the reader to judge the 

physical significance of the reported numbers. The square root of MSE is commonly known as the 

root MSE (RMSE). 

Due to higher stiffness, the amplitude of NRB response is often smaller than that of TRB’s. 

Hence, to better compare the performance of the model when evaluating TRB and NRB 

observations, we use normalized root mean squared error (nRMSE) to compare model errors: 
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𝑛𝑅𝑀𝑆𝐸 =  
𝑅𝑀𝑆𝐸

𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛
 

Eq. 5-11 

 

where 𝑦𝑚𝑎𝑥 and 𝑦𝑚𝑖𝑛 are the maximum and minimum values of the recorded target values 

respectively. In addition to enabling better comparison between NRB and TRB, using nRMSE 

allows for better comparison between observations with different amplitudes. This is due to the 

fact that larger amplitudes of response (which are caused by heavier trucks) would have higher 

RMSE values. Such higher RMSE values are not solely caused by poor model performance as the 

scale of the observation also plays a role in the RMSE value. Hence by normalizing the RMSE 

values by the amplitude of the response, the intent is to remove the scale effects and have an 

indicator that is more correlated to the performance of the forecasting model. For reporting the 

performance on a population of observations, the average of nRMSE values for all observations is 

reported. 

Although MSE and average nRMSE values are the two main error metrics and performance 

indicators used within this work, it is worth mentioning that for time series forecasting 

applications, other metrics exist as well. One popular metric is mean absolute percentage error 

(MAPE) defined as: 

𝑀𝐴𝑃𝐸 =  
1

𝑛
∑ |

𝑦[𝑖] − �̂�[𝑖]

𝑦[𝑖]
|

𝑛

𝑖=1

 
Eq. 5-12 

 

as it is evident by the definition of MAPE, the forecasting error is normalized by the magnitude of 

the observation at each time step within that observation. As a result, it tends to penalize 

forecasting errors on time instances with smaller amplitudes more severely than errors on time 

instances with larger amplitudes. Consequently, an error on a time instance with a small amplitude 

response would have a higher impact on this metric compared to the same amount of error on a 
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time instance with larger amplitude response. However, an error on the peak response is more 

important than the error on a instance with small amplitude, such as that of bridge’s free vibration. 

This fact makes MAPE not a suitable metric for this research and hence the metrics used within 

this research are limited only to the MSE and average nRMSE values. 

 

5.4 Results and Discussions 

Here, the results of training different models are presented. A common theme when presenting the 

results is to report the RMSE values for training the models on the training and validation datasets. 

Then, the hyper-parameters resulting in the best performance (i.e., lowest RMSE on the validation 

dataset) is implemented on the test dataset. In addition to RMSE values, average nRMSE values 

are also reported. 

First, NRB’s response is taken as input to the model to forecast TRB’s response. Three 

different Seq2Seq models are trained, one for establishing forecasting model between static 

responses alone, the other for establishing forecasting relations between the dynamic responses 

alone and the final model is trained to forecast the actual response (i.e., sum of static and dynamic 

response). For the models trained on static and dynamic responses separately, the responses are 

combined and compared to the actual response. 
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The RMSE values for static and dynamic responses are presented in Table 5–2 and Table 

5-3 respectively. The RMSE values after combining the results of the separately trained models 

are shown in Table 5-4. Furthermore, RMSE values for training the combined responses are shown 

in Table 5-5. It can be observed that the Seq2Seq model performs better when it is used to forecast 

the combined response compared to when used to forecast static and dynamic responses separately. 

The best models are achieved with 𝑏 = 20 and 𝐻 = 64, and 𝑏 = 20 and 𝐻 = 256 for the GRU 

and LSTM cell types respectively. Note that for GRU and LSTM cell types, the best performances 

for training the models separately are achieved at a different batch size and hidden dimensions. 

For these models, the training and validation errors are plotted in Figure 5-7 as the training 

progresses. 

Table 5-3. Dynamic response forecasting RMSEs for forecasting TRB using NRB. 

  GRU Cell LSTM Cell 

H=32 H=64 H=128 H=32 H=64 H=128 

Training 

Errors 

b=20 3.30 3.04 3.23 3.30 3.29 2.93 

b=50 3.30 3.29 2.98 3.30 3.30 3.29 

Table 5-2. Static response forecasting RMSEs for forecasting TRB using NRB. 

  GRU Cell LSTM Cell 

H=32 H=64 H=128 H=32 H=64 H=128 

Training 

Errors 

b=20 13.91 2.61 2.52 1.95 2.72 1.78 

b=50 13.91 13.91 2.38 2.43 2.30 2.18 

Validation 

Errors 

b=20 14.36 2.47 2.28 2.24 3.38 2.21 

b=50 14.36 14.36 2.27 2.37 2.37 2.34 
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Validation 

Errors 

b=20 3.20 2.92 3.10 3.20 3.20 2.95 

b=50 3.20 3.20 2.90 3.20 3.20 3.20 

 

Table 5-4. Combined TRB forecasting RMSEs when static and dynamic components are forecasted separately. 

  GRU Cell LSTM Cell 

H=32 H=64 H=128 H=32 H=64 H=128 

Training 

Errors 

b=20 3.30 3.04 3.23 3.30 3.29 2.93 

b=50 3.30 3.29 2.98 3.30 3.30 3.29 

Validation 

Errors 

b=20 3.20 2.92 3.10 3.20 3.20 2.95 

b=50 3.20 3.20 2.90 3.20 3.20 3.20 

 

Table 5-5. Combined TRB forecasting RMSE when the actual signal is used without separating the static and dynamic 

components. 

  GRU Cell LSTM Cell 

  

Figure 5-7. TRB forecasting training and validation errors (MSE) for the Seq2Seq model for GRU (left) and LSTM (right) 

cell types. 
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H=32 H=64 H=128 H=32 H=64 H=128 

Training 

Errors 

b=20 3.30 3.04 3.23 3.30 3.29 2.93 

b=50 3.30 3.29 2.98 3.30 3.30 3.29 

Validation 

Errors 

b=20 3.20 2.92 3.10 3.20 3.20 2.95 

b=50 3.20 3.20 2.90 3.20 3.20 3.20 

 

After observing that the Seq2Seq model achieves the highest performance when used to 

forecast the total response (rather than forecasting static and dynamic components individually), 

the baseline ARX model is trained only on the total response data. The best set of hyper-parameters 

for the ARX model where 𝑝 = 𝑞 = 10 along with 𝜆 = 0.5. Additionally, for the regression-based 

baseline model, the best set of hyper-parameters were 𝑜𝑁𝑅𝐵 = 8 and 𝑜𝑇𝑅𝐵 = 16. 

Finally, the best models for the Seq2Seq models with GRU and LSTM cell types, along 

with the best baseline models were implemented on the test dataset. The results are shown in Table 

5-6. As it is evident, the Seq2Seq models out-perform their linear counterparts. 

Table 5-6. Model performance on the test dataset when forecasting TRB's response. 

 Seq2Seq: GRU 

(𝑏 = 20 , 𝐻 =

64) 

Seq2Seq: LSTM 

(𝑏 = 20 , 𝐻 =

256) 

ARX: 

𝑝 = 𝑞 = 10, 

𝜆 = 0.5 

Regression-

based Model 

𝑜𝑁𝑅𝐵 = 8, 

𝑜𝑇𝑅𝐵 = 16 

RMSE (𝜇𝜀) 3.10 3.06 6.40 5.56 

 

To better visualize the performance of the models, the forecasted response is plotted for 

four sample test datasets, named samples 1 to 4 respectively. Figure 5-9 represents the plots 
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indicating the performance of the Seq2Seq model in forecasting TRB responses. The sample trucks 

were intentionally selected so as to represent a wide range of vehicle weights. Table 5-7 provides 

a description of the characteristics of the sample trucks used. Moreover, the sample trucks are 

shown in Figure 5-8. 

Table 5-7. Description of properties for sample trucks used. 

 Sample 1 Sample 2 Sample 3 Sample 4 

Weight (kips) 25 47 75 152 

FHWA Class 5 9 9 13 

No. Axles 2 5 5 11 

 

Next, the direction forecasting is flipped and TRB responses are used to forecast NRB 

responses. Similar to the previous problem setting, three different Seq2Seq models are trained to 

  

(a) (b) 

  

(c) (d) 

Figure 5-8. Sample trucks used to evaluate the performance of the Seq2Seq model. Figures a) to d) represent samples 1 to 

4 respectively. 
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predict the static, dynamic and total responses respectively. Similar to the previous case of 

forecasting TRB, the models trained to forecast the combined response outperform those aimed at 

forecasting response individually. The results for forecasting the response are shown in Table 5-8. 

Similarly, the evolution of the loss function throughout training for the best models is shown in 

Figure 5-10. 

It can be observed that for the GRU cell type, the model with b=20 and H=256 results in 

the highest performance on the validation dataset. For the LSTM cell type, the model with b=50 

and H=128 results in the highest performance on the validation dataset. Additionally, the ARX 

model is implemented to forecast NRB’s response in a similar manner.  

The highest performance was achieved with p=q=65 and λ=5. Additionally, for the 

regression-based baseline model, the highest performance was achieved with 𝑜𝑇𝑅𝐵 = 4 and 

𝑜𝑁𝑅𝐵 = 8. The highest performing models were implemented on the test dataset and the results 

are indicated in Table 5-9. As it can be seen, the Seq2Seq mdel with LSTM cell type achieves the 

highest performance on the test dataset. 

Table 5-8. Combined forecasting results for using the response of TRB to forecast the response of NRB. 

  GRU Cell LSTM Cell 

H=32 H=64 H=128 H=32 H=64 H=128 

Training 

Errors 

b=20 3.35 2.53 3.09 3.02 3.21 3.11 

b=50 9.72 3.17 3.08 3.37 2.57 3.27 

Validation 

Errors 

b=20 2.89 2.63 2.59 2.78 2.77 2.89 

b=50 9.85 2.61 2.61 3.09 2.43 2.91 

 

Table 5-9. Model performance on the test dataset when forecasting NRB's response. 
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 Seq2Seq: GRU 

(𝑏 = 20 , 𝐻 =

256) 

Seq2Seq: LSTM 

(𝑏 = 20 , 𝐻 =

128) 

ARX: 

𝑝 = 𝑞 = 65, 

𝜆 = 5 

Regression-

based Model 

𝑜𝑇𝑅𝐵 = 4, 

𝑜𝑁𝑅𝐵 = 8 

RMSE (𝜇𝜀) 2.59 2.51 3.31 5.77 
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Figure 5-9. TRB forecasting results for 4 sample observations. 
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Figure 5-10. NRB forecasting training and validation errors (MSE) for the Seq2Seq model for GRU (left) and LSTM 

(right) cell types. 
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Thus far, the forecasting problem was solved without considering the effects of the types 

of trucks that are traversing the bridges. After this point, the focus of the research is to examine 

the effect of vehicle types on the performance of the forecasting models. An interesting point to 

keep in mind, is that the ratio of trucks traversing the bridges (and hence sampled within this 

  

  

Figure 5-11. NRB forecasting results for 4 sample observations. 
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dataset), is not uniform across all truck type. In fact, certain types of trucks are more common and 

certain types are rarer. Figure 5-12 shows the frequency of trucks used within this dataset for 

different vehicle classes and axle numbers. By vehicle class, it is referred to the standard truck 

classifications introduced by the Federal Highway Administration (FHWA). For the purpose of 

self-sufficiency and for the better visualization of vehicle classification, the original image 

describing vehicle classification by FHWA is provided in Figure 5-13.  As it can be seen, five axle 

trucks are the most common class of trucks observed. Additionally, trucks from FHWA class 9 are 

the most common class of trucks observed. FHWA class 9 trucks correspond to the standard five 

axle single trailer trucks. 

The main EOCs affecting the performance of the Seq2Seq model is the type of load that is 

traversing through the bridge. Using FHWA vehicle class to group observations together is a more 

effective manner of classification as trucks from one FHWA class tend to have more similarities 

compared to trucks with the same axle number. Hence, to explore the relationship between the 

Seq2Seq model performance and load type, the effects of vehicle class type on model performance 

  

(a) (b) 

Figure 5-12. Truck frequency in the dataset for a) different axle numbers and b) different FHWA vehicle classes. 
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is evaluated. The distribution of model error against different types of vehicle classes is indicated 

in Figure 5-14. 

Since the distribution of truck properties is heavily skewed towards one axle count and one 

FHWA vehicle class, to explore the effects of the type of vehicle load on the model performance, 

the focus is given to trucks from class 9 alone. 

Trucks from class 9 are separated to generate a new datasets with trucks from class 9 alone. 

The dataset consisted of a total of 1333 truck observations. From this dataset, 900 were used for 

training, 100 for validation and 333 for testing. 

For this case, focus is given to forecasting TRB’s response. Similar to the previous case of 

trucks from all classes, Seq2Seq models are trained with GRU and LSTM cell types. Since training 

 

Figure 5-13. Description of highway vehicle classification by FHWA (image source: FHWA). 
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for the total response proved to be the most effective version, the models are trained on the total 

response. The average nRMSE for class 9 is compared between the two cases in Table 5-10. 

Table 5-10. Average nRMSE values for class 9 trucks for models trained with the entire data and data from class 9 only. 

 GRU Cell LSTM Cell 

Type of Data Entire Data Class 9 Entire Data Class 9 

Average nRMSE 7.0% 6.3% 6.9% 6.2% 

 

As it can be observed, training models for one class of vehicle alone increases the 

performance of the Seq2Seq model. This increase is observed for both the GRU and LSTM cell 

types. This fact suggests that FHWA class impacts the performance of the Seq2Seq model and by 

focusing on solely one truck class, the performance of the Seq2Seq model can be increased. 

Note that due to scarcity of the data from other vehicle classes, it is difficult to train the 

Seq2Seq model for those classes separately. The model is expected to overfit the limited training 

data resulting in low training error but high validation and test errors. Consequently, to make 

 

Figure 5-14. Seq2Seq model performance for different truck classes. 

 



 141 

statements for other types of truck classes, and also on the optimal manner to normalize the data 

with respect to EOCs, more data from different truck classes and a wide range of EOCs is needed. 

 

5.5 Conclusion 

Two different time series forecasting frameworks were developed for joint bridge response 

forecasting in the I-275 highway corridor. The first framework used a Seq2Seq architecture and 

the second framework was developed using the ARX model. Both frameworks were implemented 

on an experimental dataset with 2558 pairs of trucks responses. For the Seq2Seq framework, two 

different RNN cell types, namely GRU and LSTM, were used. Two different directions of 

forecasting was explore, namely using NRB’s response to forecast TRB’s and vice versa. 

In both directions of forecasting, the Seq2Seq models outperformed the ARX model with 

a significant margin. Additionally, it was observed that LSTM cell type would result in a higher 

forecasting performance compared to the GRU cell type for both directions of forecasting, 

although the increased performance was much smaller compared to the gap with the ARX model 

indicating the superiority of the Seq2Seq model. 

Finally, the Seq2Seq model was trained on the most common type of truck in the dataset, 

which were trucks from class 9 and it was observed that the performance of the Seq2Seq model 

increased when focusing on one class of vehicles suggesting that proper EOCs data normalization 

would increase the performance of the forecasting framework.
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Chapter 6.  

Conclusion and Future Work 

 

6.1 Summary 

The overarching goal of this dissertation was to advance data-driven techniques for structural 

monitoring, performance assessment, and damage detection by explicitly considering the 

environmental and operational conditions (EOCs) that influence structural behavior. The specific 

focus on EOCs was motivated by the large role these external factors play in infrastructure system 

(IS) assets. For example, measurement of wind turbine structural responses is driven by the 

complex interactions that exist between the wind that drive the energy generation function of the 

mechanical turbine, and between the turbine in the nacelle and the turbine tower.  Similar, for 

bridges monitored with sensors, their responses are largely governed by large traffic loads that 

dynamically couple with the dynamics of the bridge.  In all of these cases, the EOCs are often not 

directly measured (e.g., traffic loads on bridges) or measured in indirect ways (e.g., use of a 

meteorological tower in relative proximity to the turbine). Nonetheless, understanding the 

influence of EOC on structural responses measured by structural monitoring is essential to 

ensuring data-driven algorithms can accomplish their mission with accuracy and precision.  

Specifically, what constitutes normal (healthy) behavior as a baseline must be considered in the 

context of the EOC which will influence these baselines. 

The thesis has three primary objectives. First, a framework for extracting EOC sensitive 

features, or EOCSFs, from structural response data was developed and validated on a wind turbine 
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dataset. In structures like wind turbines, it provides a basis for indirectly measuring EOCs without 

the need for EOC-specific sensors. Using EOCSFs, a novel data normalization approach was 

proposed for data-driven structural health monitoring based on unsupervised clustering of 

observation in the EOC space during training. A soft assignment approach is taken during testing 

to assign observations to more than one cluster with cluster assignment weighted by the probability 

of the observation belonging to the cluster. The result is a more efficient data normalization 

strategy that enhances the overall performance of damage detection methods based on EOCSFs 

combined with damage sensitive features (DSFs). The work is further enhanced by considering 

the sequential relationship between observations over time using Hidden Markov Models (HMM) 

that do not rely on assuming independent or identically distributed observations. The second 

objective was to consider the use of structural response data to estimate the loads of the EOC space 

for highway bridges using machine learning (ML) methods. Using encoder models, a data driven 

approach to training a model between bridge responses to trucks of known weight parameters (e.g., 

gross vehicular weight, axle weights) is explored to develop a bridge weigh in motion (BWIM) 

system capable to estimating these weight parameters using its response.  The third objective builds 

on the BWIM work to develop sequence-to-sequence (Seq2Seq) time series model to use one 

bridge response to predict that of another. Again, an EOC data normalization strategy is taken to 

enhance the predictive capabilities of these models. A Seq2Seq model has potential use in 

predicting bridge responses to control connected vehicles (e.g., by prescribing speed or lane to 

minimize dynamic amplifications of bridges) and to track long-term deterioration at bridges not 

monitored using the response of another bridge in the same corridor that is monitored.  

 



 144 

6.1.1 Key Intellectual Contributions 

In Chapter 2 of this dissertation, two major contributions to the body of knowledge of the SHM 

field were made. First and foremost, an approach for extracting EOCSFs was introduced. The 

process proposed consists of four key steps: first, developing a mechanical model for the structure 

of interest to model the response of the structure under a diverse set of EOCs (without requiring 

experimental setups to do so); second, use mechanical intuition to propose potential EOCSFs; 

third, model structural responses under varying EOCs to regress EOC-response relationships that 

will establish  potential EOCSFs; forth, explore the robustness of EOCSF under structural damage 

scenarios to assess their insensitivity to damage states. The rationale behind the last step is to 

ensure that when using EOCSFs for data normalization, the EOCs normalization phase is not 

affected by the presence of structural damage. The final set of EOCSFs, because they are derived 

from structural response data, will often be collected at data rates identical to the response data 

used to extract DSFs.  This gives them even greater utility during data normalization.  To validate 

the ability to extract EOCSFs from response data, a small-scale wind turbine system located at 

LANL was used as a testbed study.  For this specific structure, two key EOCs were considered to 

have the most influence on the behavior of the turbine structure: wind speed (which correlates to 

rotor angular velocities) and wind direction (which correlate to nacelle yaw angle). Two EOCSFs 

were hypothesized and validated to be sensitive to the EOC parameter sought but insensitive to 

damage.  Specifically, the frequencies of transient peaks manifest in the frequency domain of 

horizontal acceleration time histories were shown to correlate almost linearly with rotor angular 

velocity while the ratio of acceleration energy between two orthogonal horizontal directions was 

linearly related to the nacelle yaw angle. The effectiveness of these EOCSFs for data normalization 

were also proved using both simulated and experimental field data. Whilst these methods are 
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implemented and tested on a small scale wind turbine, the concept of EOCSFs are applicable to 

many other structures where global responses are strongly correlated to EOC parameters.   

Also in Chapter 2, a modular, three tier damage detection framework trained in an 

unsupervised fashion was proposed.  The framework specifically relies on clustering observations 

of a structural system to normalized the observations by EOC.  Previously, such frameworks relied 

on clustering EOCs in their EOC state space to define clusters to which observations of the 

structure in an unknown state would be compared.  To normalize, EOCs are used to make a hard, 

single-cluster assignment. This approach has two drawbacks: first, it assumes perfect certainty in 

the cluster assignment and second, the unknown state is assessed using a small subset of the 

training data available.  This dissertation introduces a novel approach to assignment by performing 

soft assignment where are observation is assigned to more than one cluster with the influence of 

the assigned cluster weighted by the probability of assignment.  In addition to acknowledging less 

than perfect certainty in a cluster assignment, it also allows a much large set of training data to be 

used as a baseline for comparative purposes. The proposed soft assignment framework utilized 

GMMs to assign probabilities of belonging to each of the EOCs clusters with a comparison of each 

testing observation made to the entire training dataset. Ultimately, using the law of total 

probability, the probability of observing a certain observation (with a given structural response 

under a specific set of EOCs) was computed with decisions on the state of the structure (i.e., health 

or damaged) made by this probability. The performance of the soft assignment data normalization 

methodology was compared to the traditional hard assignment approach; health assessments where 

soft assignment was used outperformed the hard assignment approach both on the simulated and 

experimental data proving the effectiveness of this approach. 
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In Chapter 3, the i.i.d. assumption of existing ML-based technique was relaxed by 

considering sequences of structural response data under varying EOCs for damage detection. 

Specifically, HMMs were used to assign probabilities to each sequence and sequences with a 

significantly lower likelihood compared to the sequences of data observed in training stage (i.e., 

sequences from the undamaged structure) are labeled as damaged. This proposed framework is 

tested on the Z-24 dataset, one of the fewest (if not the only) real-world bridge response datasets 

with actual physical damage introduced in a controlled manner in the structure. The proposed 

method where i.i.d. assumptions were not made were compared to two baseline damage detection 

methods which assume that incoming observations are i.i.d.; the proposed approach consistently 

outperformed the baseline methods. This provided strong evidence that there exists valuable 

information within sequences of structural observations and sequential damage detection 

frameworks can be extremely useful for real-world applications. Furthermore, analysis was 

conducted on the impact of the lengths of the sequences considered.  It was observed that the 

longer the length of the sequence, the higher the performance of the HMM-based damage detection 

framework (although this outcome must not be generalized given the fact that this framework is 

tested only on one dataset and example structure).  

The innovation of soft assignment during EOC data normalization and considering 

sequences of system oibservation without assuming i.i.d., the thesis makes a major contribution to 

the field of data-driven SHM by relaxing two of the most pressing limiting assumptions commonly 

used. Beyond relaxing these assumptions, the key point that is made by developing these methods 

in Chapters 2 and 3, is the fact that when utilizing a general purpose ML-based framework for 

structural damage detection, the end-user must understand the underlying assumptions of the 

methods used and be aware of the potential limitations those assumptions impose on the damage 
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detection framework. This work has attempted to set an example for doing so by clearly 

articulating these limiting assumptions and the steps taken to overcome these assumptions. 

Chapters 4 and 5 of this dissertation begin the transition from damage detection to 

structural assessment for management and decision making. In chapter 4, an encoder with bi-

directional LSTM cell is used to estimate truck weightage properties from highway bridge 

response. The importance of solving this problem was fully discussed in the introduction chapter 

as well as in chapter 4. Effectively, truck axle weight distribution constitutes a large portion of the 

EOCs dominating the force response of a bridge structure. Truck weight distribution is the main 

operational condition influencing the response of the bridge and hence in effect, this problem is 

extremely similar to extracting EOCSFs from structural response data. In contrast to the process 

utilized in chapter 2, the DL-based enables the extraction of this information from the structural 

response with minimal effort required for feature engineering. This chapter highlights the 

capability of non-linear DL-based models to learn complex patterns from the data with minimal 

interventions needed. Similar to the process in chapter 2, a mechanical model is also developed to 

simulate bridge response to highway traffic under the entire EOC space, though the use of the 

encoder for BWIM problem on experimental data would be less dependent on this model compared 

to the case of chapter 2 where the model was fully utilized in the feature selection process. 

Finally, following successful utilization of an Encoder in chapter 4, an Encoder-Decoder 

model with Seq2Seq architecture was used to forecast the response of a downstream bridge to a 

vehicle load given the response of an upstream bridge to the same load. Two cell types, namely 

LSTM and GRU, were explored as the RNN cells used within the Seq2Seq model. Furthermore, 

two baseline models based on traditional time series forecasting tools, i.e., an ARX model and a 

regression-based model, were developed for the purpose of bridge response prediction. It was 
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observed that the Seq2Seq model can accurately forecast bridge responses. The baseline models 

underperformed the Seq2Seq model, but still managed to provide helpful forecasting results. As it 

was pointed out, due to the unique nature of the problem, there were stark conceptual differences 

between the baseline models and the Seq2Seq model which was ideally suitable for this problem 

setting. The suitable structure of the Seq2Seq model for this problem must be interpreted as a 

strength of the Seq2Seq model. 

A key component of this chapter was the set of signal pre-processing steps taken to enable 

the successful implementation of the time series forecasting models. The backbone of all these 

steps was the intuition and the domain-specific knowledge of the mechanics of the bridge response 

to the traversing truck load. Specifically, three main steps were taken: 1- the length of each 

response was selected so as to contain both the forced response of the bridge to the load, as well 

as enough free vibration cycles following the trucks passage of the bridge. The bridge response 

sequences were manually processed to isolate and select truck responses that are far enough from 

other loads that ensure the response sequence to the current truck is not impacted by previous and 

next vehicles. 2- the free response of the TRB bridge was removed to ensure the previous loads do 

not adversely impact the performance of the time series forecasting models. 3- The response of the 

bridges was decomposed into static and dynamic components to evaluate the performance of the 

Seq2Seq model when forecasting these components. Although it was ultimately discovered that 

the performance of the model was higher when the bridge response was not separated, this 

separation provided valuable insights into the performance of time series models for future 

applications. Specifically, it was observed that using the response of the bridge with more 

complicated dynamics (i.e., NRB’s response, that had two major modal frequencies) to forecast 

the response of the simpler bridge (i.e., TRB’s response, that had one major modal frequency) 
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proved to yield more accurate forecasting results. As expected, the performance of the Seq2Seq 

model when forecasting the static component of the response was independent of the relative 

complexity of the dynamics of the input and output bridges. Since the static portion of the response 

dominated the overall response of the bridge, the performance of forecasting in either directions, 

i.e., from NRB to TRB (or the bridge with complex dynamics to the bridge with simpler dynamics) 

or from TRB to NRB (or the bridge with simpler dynamics to the bridge with more complicated 

dynamics) was similar, highlighting the robustness of the overall forecasting framework to the 

relative dynamic complexity of the two bridges. 

Lastly, it was highlighted that the EOC space of the problem is not uniform. A separate 

Seq2Seq model was trained for the most common class of truck loads (i.e., FHWA class 9) and it 

was observed that this would increase the performance of the Seq2Seq model. This observation 

effectively highlights the importance of EOCs data normalization in the application of data-driven 

models for structural assessment applications. 

The final point that is worth mentioning, is the evolution of data-driven techniques in this 

dissertation. Initially, chapter 2 began with shallow ML-based models and the models became 

deeper as the dissertation proceeded. The reason behind this evolution was the adoption of ML 

and DL-based methods by the field during the timespan of the development of this dissertation. 

As researchers and practitioners recognized the benefits of the AI-based methods and embraced it 

for structural engineering applications, this dissertation attempted to be at the forefront of this 

application hoping to enable the implementation and further advancement of AI-based methods 

for IS assessment under complex set of loads that impact these systems during the span of their 

normal operation. 
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6.2 Future Work 

6.2.1 Research Questions 

The major question to be answered following the research presented, is to quantify the financial 

gains from implementing improved ML-based methods for the proposed application. The norm in 

the ML and DL literature, is to compare the performance of the ML-based techniques to other 

models based on comparing certain performance metrics. Similarly, in this dissertation for 

example AUC was used in chapters 2 and 3 and the RMSE and average nRMSE were used in 

chapter 5 for comparing the performance of the proposed models. The models showed 

improvements in the order of 5-15% in terms of the metrics. Needless to say, that as obvious from 

the ML-literature a consistent 5% over-performance is extremely valuable. Especially given the 

fact that whence the computational intensive alternatives are developed and trained, 

implementation of the models is actually quite inexpensive. Another key item to keep in mind is 

that use of the proposed models is to only extract insights and patterns that are already present in 

the data. A large difference between baseline results and the proposed method could indicate a 

wrong or sub-optimal implementation of the baseline methods. The key point to keep in mind, is 

that from the perspective of stakeholders, the key question to answer is not how much a system 

outperforms others in terms of metrics used in the ML community, but rather, how much gain 

would the model have for the society. As such, it is extremely needed to utilize a systematic 

framework for quantifying financial gains from implementing better models compared to existing 

IS management and maintenance practices. This might not be as critical for ML-based models 

since the implementation of models is not significantly costly, but it could be extremely important 

for scenarios where two different hardware instrumentations are needed and one could result in 

higher performance on the quantitative metrics by a known threshold. 
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6.2.2 Broader Impact 

By solving pressing challenges in the application of ML-based methods for structural assessment 

applications, this dissertation fills an important gap in the path that the field of SHM and IS 

maintenance is expanding in. As such, this dissertation sets the stage for transformative changes 

to IS management practices and enables IS stakeholders to ensure the existing systems can meet 

the increasing demand on these systems and they continue to age. 

First, is using these methods for IS finance. The methods can set a great foundation for 

transitioning from the existing IS financing models to the more sustainable usage-based models 

that aim to charge each IS user based on the amount that user consumes the infrastructure. A low-

hanging fruit is using these models for developing usage-based fee structures for over-weight/over-

sized trucks traveling in the highway network. Another approach is to use for PPP contracts and 

sharing costs amongst different stakeholders. Finally, IS maintenance can be connected to IS 

finance by incorporating the already existing data-driven models for credit ratings that affect the 

interest rates that is set on bonds issued by the IS owners and hence encourage for better 

maintenance. 

By adopting innovative and more sustainable financing models, the data generated by the 

IS can be priced and hence traded. Consequently, research must be conducted to determine the 

value of information that the data generated by the IS has. For example, as observed in chapter 5, 

class 11 trucks are less common compared to class 9 trucks and hence recording the response from 

those trucks could be more informative and hence more valuable. Thus, it is worth the effort to 

quantify the value of information that these data contain for undertaking best strategies in IS 

instrumentation and data collection. Nonetheless, the possibility of selling IS data is itself a major 
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incentive for IS owners for instrumenting these systems which enables better monitoring and hence 

better maintenance of the IS assets.  

 



 153 

Bibliography 

A. P., Dempster; N. M., L. D. B. R. (1977). Maximum Likelihood from Incomplete Data via the 

EM Algorithm. Journal of the Royal Statistical Society, 39(1), 1–38. 

https://doi.org/10.1115/1.3424485 

A Comprehensive Assessment of America’s Infrastructure. (2021). 

Abdel-Ghaffar, A., & Scalan, R. (1985). Ambient vibration studies of Golden Gate bridgeL I. 

Suspended Structure. Journal of Engineering Mechanics, 111(4), 463–482. 

Admassu, K., Lynch, J., Athanasopoulos-Zekkos, A., & Zekkos, D. (2019). Long-term wireless 

monitoring solution for the risk management of highway retaining walls. Proc. SPIE 10971, 

Nondestructive Characterization and Monitoring of Advanced Materials, Aerospace, Civil 

Infrastructure and Transportation, 1097103(April 2019), 1. 

https://doi.org/10.1117/12.2516081 

Agdas, D., Rice, J. A., Martinez, J. R., & Lasa, I. R. (2016). Comparison of Visual Inspection and 

Structural-Health Monitoring As Bridge Condition Assessment Methods. Journal of 

Performance of Constructed Facilities, 30(3). https://doi.org/10.1061/(asce)cf.1943-

5509.0000802 

Agrawal, A. K., Washer, G., Alampalli, S., Gong, X., & Cao, R. (2021). Evaluation of the 

Consistency of Bridge Inspection Ratings in New York State. Journal of Infrastructure 

Systems, 27(3), 04021016. https://doi.org/10.1061/(asce)is.1943-555x.0000622 

Akobeng, A. K. (2007). Understanding diagnostic tests 3: Receiver operating characteristic curves. 

Acta Paediatrica, International Journal of Paediatrics, 96(5), 644–647. 

https://doi.org/10.1111/j.1651-2227.2006.00178.x 

Ashuri, B., Kashani, H., Molenaar, K. R., Lee, S., & Lu, J. (2012). Risk-Neutral Pricing Approach 

for Evaluating BOT Highway Projects with Government Minimum Revenue Guarantee 

Options. Journal of Construction Engineering and Management, 138(4), 545–557. 

https://doi.org/10.1061/(asce)co.1943-7862.0000447 

ASTM. (2017). E1318-09. standard specification for highway weigh-in-motion (wim) systems with 

user requirements and test methods. 

Baek, S.-J., Park, A., Ahn, Y.-J., & Choo, J. (2015). Baseline correction using asymmetrically 

reweighted penalized least squares smoothing. The Analyst, 140(1), 250–257. 

https://doi.org/10.1039/c4an01061b 

Bahrami, O.; Tsiapoki, S.; Kane, M. B.; Lynch, J. P.; Rolfes, R. (2017). Extraction of 

Environmental and Operational Conditions of Wind Turbines using Tower Response Data 

for Structural Health Monitoring. Proceedings of Structural Health Monitoring, 1689–1699. 

Bahrami, O., Hou, R., Wang, W., & Lynch, J. P. (2021). Time series forecasting to jointly model 

bridge responses. Bridge Maintenance, Safety, Management, Life-Cycle Sustainability and 

Innovations, 299–307. https://doi.org/10.1201/9780429279119-37 

Baum, L. E., Petrie, T., Soules, G., & Weiss, N. (1972). A Maximization Technique Occurring in 

the Statistical Analysis of Probabilistic Functions of Markov Chains Author ( s ): Leonard E 

. Baum , Ted Petrie , George Soules , Norman Weiss Source : The Annals of Mathematical 



 154 

Statistics , Vol . 41 , No . 1 ( Feb. Institute of Mathematical Statistics Stable, 41(1), 164–171. 

Bedon, C., Bergamo, E., Izzi, M., & Noè, S. (2018). Prototyping and validation of MEMS 

accelerometers for structural health monitoring—the case study of the Pietratagliata cable-

stayed bridge. Journal of Sensor and Actuator Networks, 7(3). 

https://doi.org/10.3390/jsan7030030 

Bishop, C. M. (2006). Pattern Recognition and Machine Learning. In Springer. 

Box, A. G. E. P., & Box, B. Y. G. E. P. (2011). Biometrika Trust A General Distribution Theory 

for a Class of Likelihood Criteria. Biometrika, 36(3), 317–346. 

Byon, E., & Ding, Y. (2010). Season-dependent condition-based maintenance for a wind turbine 

using a partially observed markov decision process. IEEE Transactions on Power Systems, 

25(4), 1823–1834. https://doi.org/10.1109/TPWRS.2010.2043269 

Chatterjee, P., OBrien, E., Li, Y., & Gonz´alez, A. (2006). Wavelet domain analysis for 

identification of vehicle axles from bridge measurements. Computers and Structures, 84(28), 

1792–1801. 

Chaudhari, T. D., & Maiti, S. K. (1999). Crack detection in geometrically segmented beams. 

Damage Assessment of Structures, Proceedings of the International Conference on Damage 

Assessment of Structures (DAMAS 99), Dublin, Ireland, 343–353. 

https://doi.org/10.4028/www.scientific.net/kem.167-168.343 

Chipka, J. B.; Lisicki, A. R.; Nguyen, C. T; Taylor, S. G.; Ammerman, C. N; Farrar, C. R. . (2013). 

Experimental Characterization and Predictive Modeling of a Residential-Scale Wind Turbine. 

31 St Conference Proceedings of the Society for Experimental Mechanics Series, 39(4). 

https://doi.org/10.1007/978-1-4614-6555-3 

Ciang, C. C., Lee, J. R., & Bang, H. J. (2008). Structural health monitoring for a wind turbine 

system: A review of damage detection methods. Measurement Science and Technology, 

19(12). https://doi.org/10.1088/0957-0233/19/12/122001 

Copeland, K. A. F. (1997). Applied Linear Statistical Models. In Journal of Quality Technology 

(Vol. 29, Issue 2). https://doi.org/10.1080/00224065.1997.11979760 

CSMIP. (2021). California Geological Survey - About CSMIP (California Strong Motion 

Instrumentation Program). Department of Conservation, State of California. 

https://www.conservation.ca.gov/cgs/smip 

Ding, Y., Kong, S., Huang, J., & Xie, X. (2010). FEM analysis of vehicle-bridge vibration 

considering bridge deck’s vibration. 2010 International Conference on Mechanic Automation 

and Control Engineering, MACE2010, 1, 788–791. 

https://doi.org/10.1109/MACE.2010.5535836 

Eggimann, S., Mutzner, L., Wani, O., Schneider, M. Y., Spuhler, D., Moy De Vitry, M., Beutler, 

P., & Maurer, M. (2017). The Potential of Knowing More: A Review of Data-Driven Urban 

Water Management. Environmental Science and Technology, 51(5), 2538–2553. 

https://doi.org/10.1021/acs.est.6b04267 

Elhattab, A., Uddin, N., & OBrien, E. (2016). Drive-by bridge damage monitoring using Bridge 

Displacement Profile Difference. Journal of Civil Structural Health Monitoring, 6(5), 839–

850. https://doi.org/10.1007/s13349-016-0203-6 

Espinoza, D., Rojo, J., Cifuentes, A., & Morris, J. (2020). DNPV: a valuation methodology for 

infrastructure and Capital investments consistent with prospect theory. Construction 

Management and Economics, 38(3), 259–274. 

https://doi.org/10.1080/01446193.2019.1648842 

Evans, J. R., Allen, R. M., Chung, A. I., Cochran, E. S., Guy, R., Hellweg, M., & Lawrence, J. F. 



 155 

(2014). Performance of several low-cost accelerometers. Seismological Research Letters, 

85(1), 147–158. https://doi.org/10.1785/0220130091 

Farrar, C. R., & Worden, K. (2012). Structural Health Monitoring: A Machine Learning 

Perspective. In Structural Health Monitoring: A Machine Learning Perspective. 

https://doi.org/10.1002/9781118443118 

FHWA. (2001). Reliability of Visual Inspection for Highway Bridges. 

https://www.fhwa.dot.gov/publications/research/nde/01020.cfm 

Figueiredo, Eloi; Radu, Lucian; Worden, Keith; Farrar, C. R. (2014). A Bayesian approach based 

on a Markov-chain Monte Carlo method for damage detection under unknown sources of 

variability. Engineering Structures, 80, 1–10. 

Fugro. (2021). Fugro Offshore Structural Monitoring. 

García Márquez, F. P., Tobias, A. M., Pinar Pérez, J. M., & Papaelias, M. (2012). Condition 

monitoring of wind turbines: Techniques and methods. Renewable Energy, 46, 169–178. 

https://doi.org/10.1016/j.renene.2012.03.003 

González, A., Rattigan, P., OBrien, E. J., & Caprani, C. (2008). Determination of bridge lifetime 

dynamic amplification factor using finite element analysis of critical loading scenarios. 

Engineering Structures, 30(9), 2330–2337. https://doi.org/10.1016/j.engstruct.2008.01.017 

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press. 

http://www.deeplearningbook.org 

Görnitz, N., Braun, M., & Kloft, M. (2015). Hidden Markov anomaly detection. 32nd International 

Conference on Machine Learning, ICML 2015, 3, 1833–1842. 

Gunes, V., Peter, S., Givargis, T., & Vahid, F. (2014). A survey on concepts, applications, and 

challenges in cyber-physical systems. KSII Transactions on Internet and Information 

Systems, 8(12), 4242–4268. https://doi.org/10.3837/tiis.2014.12.001 

Gungor, O. E., Al-Qadi, I. L., & Mann, J. (2018). Detect and charge: Machine learning based fully 

data-driven framework for computing overweight vehicle fee for bridges. Automation in 

Construction, 96(September), 200–210. https://doi.org/10.1016/j.autcon.2018.09.007 

Gungor, O. E., Petit, A. M. A., Qiu, J., Zhao, J., Meidani, H., Wang, H., Ouyang, Y., Al-Qadi, I. 

L., & Mann, J. (2019). Development of an overweight vehicle permit fee structure for Illinois. 

Transport Policy, 82(June), 26–35. https://doi.org/10.1016/j.tranpol.2019.08.002 

Häckell, Moritz W.; Rolfes, R. (2013). Monitoring a 5MW offshore wind energy converter-

Condition parameters and triangulation based extraction of modal parameters. Mechanical 

Systems and Signal Processing, 40, 322–343. 

Häckell, M. W. (2015). A Holstic Evaluation Concept for Long-Term Structural Health 

Monitoring. Leibniz Universitat Hannover. 

Hackell, M. W., Rolfes, R., Kane, M. B., & Lynch, J. P. (2016). Three-Tier Modular Structural 

Health Monitoring Framework Using Environmental and Operational Condition Clustering 

for Data Normalization: Validation on an Operational Wind Turbine System. Proceedings of 

the IEEE, 104(8), 1632–1646. https://doi.org/10.1109/JPROC.2016.2566602 

He, W., Deng, L., Shi, H., Cai, C., & Yu, Y. (2017). Novel virtual simply supported beam method 

for detecting the speed and axles of moving vehicles on bridges. Journal of Bridge 

Engineering, 22(4). 

He, W., Ling, T., OBrien, E. J., & Deng, L. (2019). Virtual axle method for bridge weigh-inmotion 

systems requiring no axle detector. Journal of Bridge Engineering, 24(9). 

Hou, R. (2020). Bridge Structural Health Monitoring Using a Cyber-Physical System Framework. 

University of Michigan. 



 156 

Hou, R., Jeong, S., Law, K. H., & Lynch, J. P. (2019). Reidentification of trucks in highway 

corridors using convolutional neural networks to link truck weights to bridge responses. 

Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems, 

March 2019, 27. https://doi.org/10.1117/12.2515617 

Inaudi, D., & Glisic, B. (2010). Long-range pipeline monitoring by distributed fiber optic sensing. 

Journal of Pressure Vessel Technology, Transactions of the ASME, 132(1), 0117011–

0117019. https://doi.org/10.1115/1.3062942 

Jang, S., Jo, H., Cho, S., Mechitov, K., Rice, J. A., Sim, S. H., Jung, H. J., Yun, C. B., Spencer, B. 

F., & Agha, G. (2010). Structural health monitoring of a cable-stayed bridge using smart 

sensor technology: Deployment and evaluation. Smart Structures and Systems, 6(5–6), 439–

459. https://doi.org/10.12989/sss.2010.6.5_6.439 

Johnson, N. R., Lynch, J. P., & Collette, M. D. (2018). Response and fatigue assessment of high 

speed aluminium hulls using short-term wireless hull monitoring. Structure and 

Infrastructure Engineering, 14(5), 634–651. 

https://doi.org/10.1080/15732479.2017.1380676 

Jonkman, J. M.; Buhl Jr., M. L. (2005). FAST User’s Guide. In National Renewable Energy Lab. 

http://www.ncbi.nlm.nih.gov/pubmed/21564034 

Jonkman, B. J., & Kilcher, L. (2012). TurbSim User’s Guide. In National Renewable Energy 

Laboratory (Issue September). papers2://publication/uuid/0CDF5717-D4F8-4B8F-ABE8-

A0C02844D1DE 

Kane, M. B. (2014). Wirelessly Enabled Control of Cyber-Physical Infrastructure with 

Applications to Hydronic Systems. University of Michigan. 

Kashima, S., Yanaka, Y., Suzuki, S., & Mori, K. (2001). Monitoring the Akashi Kaikyo bridge: 

first experiences. Structural Engineering International, 11(2), 120–123. 

Kawakatsu, T., Aihara, K., Takasu, A., & Adachi, J. (2018). Deep sensing approach to single-

sensor vehicle weighing system on bridges,”. IEEE Sensors Journal, 19(1), 243–256. 

Kerkez, B., Gruden, C., Lewis, M., Montestruque, L., Quigley, M., Wong, B., Bedig, A., Kertesz, 

R., Braun, T., Cadwalader, O., Poresky, A., & Pak, C. (2016). Smarter stormwater systems. 

Environmental Science and Technology, 50(14), 7267–7273. 

https://doi.org/10.1021/acs.est.5b05870 

Khaitan, S. K., McCalley, J. D., Liu, C. C., & Eds. (2015). Cyber physical systems approach to 

smart electric power grid. Springer. 

Kim, S., Lee, J., Park, M. S., & Jo, B. W. (2009). Vehicle signal analysis using artificial neural 

networks for a bridge weigh-in-motion system,”. Sensors, 9(10), 7943–7956. 

Kingma, D. P., & Ba, J. L. (2014). Adam: A method for stochastic optimization. ArXiv Preprint 

ArXiv: 1412.6980. 

Krogh, B., Lee, E., Lee, I., Mok, A., Rajkumar, R., Sha, L. R., Vincentelli, A. S., Shin, K., 

Stankovic, J., & Sztipanovits, J. (2008). Cyber-Physical Systems, Executive Summary. 

http://iccps.acm.org/2011/_doc/CPS-Executive-Summary.pdf 

Kurata, M., Kim, J., Zhang, Y., Lynch, J. P., van der Linden, G. W., Jacob, V., Thometz, E., 

Hipley, P., & Sheng, L.-H. (2011). Long-term assessment of an autonomous wireless 

structural health monitoring system at the new Carquinez Suspension Bridge. Nondestructive 

Characterization for Composite Materials, Aerospace Engineering, Civil Infrastructure, and 

Homeland Security 2011, 7983(April 2011), 798312. https://doi.org/10.1117/12.880145 

Kurata, N., Spencer, B. F., & Ruiz-Sandoval, M. (2005). Risk monitoring of buildings with 

wireless sensor networks. Structural Control and Health Monitoring, 12(3–4), 315–327. 



 157 

https://doi.org/10.1002/stc.73 

Lee, E. A., & Seshia, S. A. (2016). Introduction to embedded systems: A cyber-physical systems 

approach. MIT Press. 

Leutenegger, T., Schlums, D. H., & Dual, J. (1999). Structural Testing of Fatigued Structures. 

Smart Structures and Integrated Systems, Proceedings of SPIE, 3668, 987–997. 

https://doi.org/10.1117/12.350775 

Liu, C. (2012). Foundations of MEMS. Pearson Education India. 

Lydon, M., Taylor, S. E., Robinson, D., Mufti, A., & Brien, E. (2016). Recent developments in 

bridge weigh in motion (b-wim). Journal of Civil Structural Health Monitoring, 6(1), 69–81. 

Lynch, J. P., & Loh, K. J. (2006). A Summary Review of Wireless Sensors and Sensor Networks 

for Structural Health Monitoring. The Shock and Vibration Digest, 38(2), 91–128. 

https://doi.org/10.1177/0583102406061499 

Lynch, Jerome Peter. (2007). An overview of wireless structural health monitoring for civil 

structures. Philosophical Transactions of the Royal Society A: Mathematical, Physical and 

Engineering Sciences, 365(1851), 345–372. https://doi.org/10.1098/rsta.2006.1932 

M., Mollineax; R., R. (2015). Structural health monitoring of progressive damage. Earthquake 

Engineering and Structural Dynamics, 44, 583–600. https://doi.org/10.1002/eqe.2562 

Maierhofer, C., Reinhardt, H.-W., & Dobmann, G. (2010). Non-Destructive Evaluation of 

Reinforced Concrete Structures: Non-Destructive Testing Methods. Elsevier. 

McKinsey Global Institute. (2020). Reimagining infrastructure in the United States: How to build 

better (Issue July). https://www.mckinsey.com/business-functions/operations/our-

insights/reimagining-infrastructure-in-the-united-states-how-to-build-better 

Moller, D. P. F., & Vakilzadian, H. (2016). Cyber-physical systems in smart transportation. IEEE 

International Conference on Electro Information Technology, 776–781. 

https://doi.org/10.1109/EIT.2016.7535338 

Moses, F. (1979). Weigh-in-motion system using instrumented bridges. Journal of Transportation 

Engineering, 105(3). 

Ni, Y. Q., & Wong, K. Y. (2012). Integrating Bridge Structural Health Monitoring and Condition-

Based Maintenance Management. 4th International Workshop on Civil Structural Health 

Monitoring, 6–8. 

O’Brien, E. J., Rowley, C., Gonz´alez, A., & Al., E. (2009). A regularised solution to the bridge 

weigh in motion equations. International Journal of Heavy Vehicle Systems, 16(3), 310–327. 

Pakzad, S. N. (2010). Development and deployment of large scale wireless sensor network on a 

long-span bridge. Smart Structures and Systems, 6(5–6), 525–543. 

https://doi.org/10.12989/sss.2010.6.5_6.525 

Pakzad, S. N., Fenves, G. L., Kim, S., & Culler, D. E. (2008). Design and Implementation of 

Scalable Wireless Sensor Network for Structural Monitoring. Journal of Infrastructure 

Systems, 14(1), 89–101. https://doi.org/10.1061/(asce)1076-0342(2008)14:1(89) 

Pan, C. D., Yu, L., Liu, H. L., Chen, Z. P., & Luo, W. F. (2018). Moving force identification based 

on redundant concatenated dictionary and weighted l1-norm regularization. Mechanical 

Systems and Signal Processing, 98, 32–49. https://doi.org/10.1016/j.ymssp.2017.04.032 

Pedregosa, Fabian; Varoquaux, Gael;Gramfort, Alexandre; Michel, Vincent; Bertrand, T. (2011). 

Sckit-learn: Machine Learning in Python. Journal of Machine Learning Research, 12, 2825–

2830. https://doi.org/10.1289/EHP4713 

Peeters, B., & De Roeck, G. (2001). One-year monitoring of the Z24-bridge: Environmental 

effectsversus damage events. Earthquake Engineering and Structural Dynamics, 30(2), 149–



 158 

171. https://doi.org/10.1002/1096-9845(200102)30:2<149::AID-EQE1>3.0.CO;2-Z 

Petersen, K. E. (1982). Silicon as a mechanical material. Proceedings of the IEEE, 70(5), 420–

457. https://doi.org/10.1109/9780470545263.sect1 

Poularikas, A. D., & Ramadan, Z. M. (1998). Discrete-time signal processing. In Prentice Hall 

(2nd ed.). https://doi.org/10.1201/9781315221946-2 

Prozzi, J. A., & Hong, F. (2007). Effect of weigh-in-motion system measurement errors on load-

pavement impact estimation. Journal of Transportation Engineering, 133(1), 1–10. 

https://doi.org/10.1061/(ASCE)0733-947X(2007)133:1(1) 

Rajkumar, R., Lee, I., Sha, L., & Stankovic, J. (2010). Cyber-physical systems: The next 

computing revolution. Proceedings - Design Automation Conference, 731–736. 

https://doi.org/10.1145/1837274.1837461 

Rawat, D. B., Bajracharya, C., & Yan, G. (2015). Towards intelligent transportation Cyber-

Physical Systems: Real-time computing and communications perspectives. 

SOUTHEASTCON, 1–6. https://doi.org/10.1109/SECON.2015.7132923 

Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-

time object detection. Proceedings of the IEEE Conference on Computer Vision and Pattern 

Recognition, 779–788. https://doi.org/10.1109/CVPR.2016.91 

Rousseeuw, P., & Driessen, K. (1999). A Fast Algorithm for the Minimum Covariance. 

Technometrics, 41(3), 212–223. 

Rytter, A. (1993). Vibrational Based Inspection of Civil Engineering Structures. Aalborg 

University. 

Schmidt, M., & Åhlund, C. (2018). Smart buildings as Cyber-Physical Systems: Data-driven 

predictive control strategies for energy efficiency. Renewable and Sustainable Energy 

Reviews, 90, 742–756. https://doi.org/10.1016/j.rser.2018.04.013 

Schneider, T., & Neumaier, A. (2001). Algorithm 808. ACM Transactions on Mathematical 

Software, 27(1), 58–65. https://doi.org/10.1145/382043.382316 

Schölkopf, B., Platt, J. C., Shawe-Taylor, J., Smola, A. J., & Williamson, R. C. (2001). Estimating 

the support of a high-dimensional distribution. Neural Computation, 13(7), 1443–1471. 

https://doi.org/10.1162/089976601750264965 

Seo, J., Hu, J. W., & Lee, J. (2016). Summary Review of Structural Health Monitoring 

Applications for Highway Bridges. Journal of Performance of Constructed Facilities, 30(4). 

https://doi.org/10.1061/(asce)cf.1943-5509.0000824 

Seshia, S. A., Hu, S., Li, W., & Zhu, Q. (2017). Design Automation of Cyber-Physical Systems: 

Challenges, Advances, and Opportunities. IEEE Transactions on Computer-Aided Design of 

Integrated Circuits and Systems, 36(9), 1421–1434. 

https://doi.org/10.1109/TCAD.2016.2633961 

Soga, K., & Schooling, J. (2016). Infrastructure sensing. Interface Focus, 6(4). 

https://doi.org/10.1098/rsfs.2016.0023 

Sohn, H., Czarnecki, A., & Farrar, C. R. (2000). Structural health monitoring using statistical 

process control. Journal of Structural Engineering, 126(11), 1356–1363. 

Sohn, H., & Farrar, C. R. (2001). Damage diagnosis using time series analysis of vibration signals. 

Smart Materials and Structures, 10(3), 446–451. https://doi.org/10.1088/0964-

1726/10/3/304 

Sohn, Hoon, Farrar, C. R., Hemez, F., & Czarnecki, J. (2003). A Review of Structural Health 

Monitoring Literature 1996 – 2001. 

Sohn, Hoon, Farrar, C. R., Hunter, N. F., & Worden, K. (2001). Structural health monitoring using 



 159 

statistical pattern recognition techniques. Journal of Dynamic Systems, Measurement and 

Control, Transactions of the ASME, 123(4), 706–711. https://doi.org/10.1115/1.1410933 

Straser, E. G., Kiremidjian, A. S., Meng, T. H., & Redlefsen, L. (1998). Modular, wireless network 

platform for monitoring structures. Proceedings of the International Modal Analysis 

Conference - IMAC, 1, 450–456. https://doi.org/10.1016/s0920-5489(99)91996-7 

Structures, C. and. (2011). CSI analysis reference manual for SAP2000, ETABS, SAFE, and 

CSiBridge. http://docs.csiamerica.com/manuals/etabs/Analysis Reference.pdf 

Tang, Y. T., Chan, F. K. S., O’Donnell, E. C., Griffiths, J., Lau, L., Higgitt, D. L., & Thorne, C. 

R. (2018). Aligning ancient and modern approaches to sustainable urban water management 

in China: Ningbo as a “Blue-Green City” in the “Sponge City” campaign. Journal of Flood 

Risk Management, 11(4), 1–14. https://doi.org/10.1111/jfr3.12451 

Tibaduiza, D. A., Torres-Arredondo, M. A., Mujica, L. E., Rodellar, J., & Fritzen, C. P. (2013). A 

study of two unsupervised data driven statistical methodologies for detecting and classifying 

damages in structural health monitoring. Mechanical Systems and Signal Processing, 41(1–

2), 467–484. https://doi.org/10.1016/j.ymssp.2013.05.020 

Tomer, A., Kane, J., & George, C. (2021). Rebuild with purpose, AN AFFIRMATIVE VISION FOR 

21ST CENTURY AMERICAN INFRASTRUCTURE (Issue April). 

Tsiapoki, S., Häckell, M. W., Grießmann, T., & Rolfes, R. (2018). Damage and ice detection on 

wind turbine rotor blades using a three-tier modular structural health monitoring framework. 

Structural Health Monitoring, 17(5), 1289–1312. 

https://doi.org/10.1177/1475921717732730 

Van Overschee, P., & De Moor, B. (2005). Two subspace algorithms for the identification of 

combined deterministic-stochastic systems. 311(I), 511–516. 

https://doi.org/10.1109/cdc.1992.371682 

Verweij, S., Teisman, G. R., & Gerrits, L. M. (2017). Implementing Public–Private Partnerships: 

How Management Responses to Events Produce (Un) Satisfactory Outcomes. Public Works 

Management and Policy, 22(2), 119–139. https://doi.org/10.1177/1087724X16672949 

Vincent, G. S. (1958). Golden gate bridge vibration studies. Journal of Structural Division, 

84(1817), 1–42. 

Viterbi, A. J. (1967). Error Bounds for Convolutional Codes and an Asymptotically Optimum 

Decoding Algorithm. IEEE Transactions on Information Theory, 13(2), 260–269. 

https://doi.org/10.1109/TIT.1967.1054010 

Walford, C. a. (2006). Wind turbine reliability: understanding and minimizing wind turbine 

operation and maintenance costs. In Global Energy Concepts, LLC (Issue March). 

http://prod.sandia.gov/techlib/access-control.cgi/2006/061100.pdf 

Wang, M. L., Lynch, J. P., & Sohn, H. (2014). Sensor Technologies for Civil Infrastructures, 

Volume 1: Sensing Hardware and Data Collection Methods for Performance Assessment. In 

Elsevier. https://doi.org/10.1533/9780857099136.1 

Wang, S., Liu, Q., Zhu, E., Porikli, F., & Yin, J. (2018). Hyperparameter selection of one-class 

support vector machine by self-adaptive data shifting. Pattern Recognition, 74, 198–211. 

https://doi.org/10.1016/j.patcog.2017.09.012 

Williams, E. J., & Messina, A. (1999). Applications of the multiple damage location assurance 

criterion. Proceedings of the International Conference on Damage Assessment of Structures 

(DAMAS 99), Dublin, Ireland, 256–264. 

https://doi.org/10.4028/www.scientific.net/kem.167-168.256 

Wong, K.-Y., & Ni, Y.-Q. (2009). Modular Architecture of SHM Systems for Cable-Supported 



 160 

Bridges. In Encyclopedia of Structural Health Monitoring (pp. 2089–2106). 

Wong, K. Y. (2004). Instrumentation and health monitoring of cable-supported bridges. Structural 

Control and Health Monitoring, 11(2), 91–124. https://doi.org/10.1002/stc.33 

Worden, K., Farrar, C. R., Manson, G., & Park, G. (2007). The fundamental axioms of structural 

health monitoring. Proceedings of the Royal Society A: Mathematical, Physical and 

Engineering Sciences, 463(2082), 1639–1664. https://doi.org/10.1098/rspa.2007.1834 

Ying, Y., Garrett, J. H., Oppenheim, I. J., Soibelman, L., Harley, J. B., Shi, J., & Jin, Y. (2013). 

Toward Data-Driven Structural Health Monitoring: Application of Machine Learning and 

Signal Processing to Damage Detection. Journal of Computing in Civil Engineering, 27(6), 

667–680. https://doi.org/10.1061/(asce)cp.1943-5487.0000258 

Yu, Y., Cai, C., & Deng, L. (2016). State-of-the-art review on bridge weigh-in-motion technology. 

Advances in Structural Engineering, 19(9), 1514–1530. 

Yu, Y., Cai, C., & Deng, L. (2017). Vehicle axle identification using wavelet analysis of bridge 

global responses. Journal of Vibration and Control, 23(17), 2830–2840. 

Zaidi, S. S. H., Aviyente, S., Salman, M., Shin, K. K., & Strangas, E. G. (2011). Prognosis of gear 

failures in dc starter motors using hidden Markov models. IEEE Transactions on Industrial 

Electronics, 58(5), 1695–1706. https://doi.org/10.1109/TIE.2010.2052540 

Zeng, T., Semiari, O., Saad, W., & Bennis, M. (2019). Joint Communication and Control for 

Wireless Autonomous Vehicular Platoon Systems. IEEE Transactions on Communications, 

67(11), 7907–7922. https://doi.org/10.1109/TCOMM.2019.2931583 

Zhang, Y., Zhao, H., & Lie, S. T. (2018). A nonlinear multi-spring tire model for dynamic analysis 

of vehicle-bridge interaction system considering separation and road roughness. Journal of 

Sound and Vibration, 436, 112–137. https://doi.org/10.1016/j.jsv.2018.08.039 

Zhao, Z., & Uddin, N. (2014). Determination of Dynamic Amplification Factors Using Site-

Specific B-WIM Data. Journal of Bridge Engineering, 19(1), 72–82. 

https://doi.org/10.1061/(asce)be.1943-5592.0000491 

Zhou, W., Kovvali, N., Papandreou-Suppappola, A., Cochran, D., & Chattopadhyay, A. (2007). 

Hidden Markov model based classification of structural damage. Proc. SPIE 6523, Modeling, 

Signal Processing, and Control for Smart Structures 2007, 6523(April 2007), 652311. 

https://doi.org/10.1117/12.716132 

Zolghadri, N., Halling, M. W., Johnson, N., & Barr, P. J. (2016). Field verification of simplified 

bridge weigh-in-motion techniques. Journal of Bridge Engineering, 21(10). 

  

 


