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Abstract

From the spread of disease across a population to the dispersion of vehicular traffic

in cities, many real-world processes are driven by lots of small components that in-

teract in simple ways at small scales to produce nontrivial large-scale effects. Probing

the fundamental mechanisms that govern such systems— broadly called “complex

systems”—is crucial for control, design, and intervention relevant to these processes.

Networks, mathematical objects composed of nodes attached in pairs by edges, pro-

vide a very useful representation of such systems, and thus modelling networks is

of critical importance for understanding real-world complex systems. In this thesis,

I examine two different aspects of network modelling: (1) characterizing structure

in networks with metadata, and (2) developing scalable, accurate, and interpretable

inference techniques for real-world network data.

I approach the problem of characterizing structure in networkswithmetadata from

two different perspectives. First, I discuss new measures for characterizing the struc-

ture of signed networks with positive and negative edge signs representing amity

and enmity respectively. Signed networks are hypothesized to display structural reg-

ularity (balance) as a result of certain configurations of edge signs being more com-

mon than others—for instance, the friend of my enemy should be my enemy. I show

that we can develop intuitive measures of balance in signed networks that capture

xiii



long-range correlations, demonstrating that real networks are indeed significantly

balanced using these measures, and that these measures can be used to impute miss-

ing data. Second, I move on to explore how we can measure diversity at multiple

scales in networks with node metadata that take the form of distributions. I detail a

general information theoretic framework for this task, illustrating new insights it can

give us through example applications involving demographic data across spatially

contiguous regions.

With regards to inference, I first describe a new message passing algorithm for

fast approximate inference in probabilistic graphical models on networks with short

loops. I derive a self-consistent set of message passing equations using a decomposi-

tion of the network into generalized neighborhoods surrounding each node, and ex-

tend these equations to compute thermodynamic quantities of interest in spin systems

including the specific heat and entropy. I then outline an information theoretic clus-

tering algorithm to summarize posterior distributions over community labellings by

identifying representative partitions. I cluster sampled community partitions around

representative “modal” partitions using an efficient algorithm based on theminimum

description length principle, finding that a variety of distinct modal partitions with

different interpretations exist for example networks.

Altogether, these contributions allow for new insights about real-world network

data that are obscured by existing measures and methods, and provide a toolkit for

researchers to explore the properties of a wide variety of complex systems in an ef-

ficient and principled manner. The work in this thesis is intentionally motivated by

very fundamental principles, and so provides a starting point for a variety of future

domain- and application-specific optimizations.

xiv



Chapter 1.

Introduction

When we analyze a real-world system—physical, biological, social, technological,

or otherwise—we commonly find that pairwise relationships between distinct fun-

damental units in the system drive its structure and dynamics. Magnetic phenom-

ena in materials are governed by correlations between the dipole moments of pairs

of atomic spins. Cellular processes in an organism are mediated by interactions be-

tween pairs of proteins. Ideas and diseases spread through a population via contacts

between pairs of people. Electric power is transmitted across countries between pairs

of power stations. And goods are exchanged between pairs of nations in international

trade. The list goes on and on. A network, which in its most basic form is a collec-

tion of individual units, or nodes, that are linked together with pairwise connections,

or edges, captures precisely this notion of pairwise dependence between entities, and

networks are thus a useful representation of a variety of real-world systems. As a re-

sult, there has been a huge effort to expand the set of theoretical tools for analyzing

networks over the last few decades [1–14], and network science has influenced an ar-

ray of fields as diverse as neuroscience, finance, economics, archaeology, education,
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political science, and medicine [15–27].

Despite the numerous theoretical advances in networkmodelling over recent years,

there aremany practical applications for which existing network analysis tools are not

sufficient. In many cases, we want to use as much information as is available to us in

our analysis of a system, and the data we can obtain generally includes much more

about the system than just the structural topology that we can represent with nodes

and edges. In most situations, we can augment these nodes and edges withmetadata,

which we can couple to the topology of the system’s underlying network to refine our

understanding of its function. In the first half of this thesis, I will focus on methods

andmeasures I have developed that allowus to incorporatemetadata into our analysis

of networks, bringing new insights to a variety of phenomena.

In addition to metadata, another property of real systems that precludes the appli-

cation of existing network analysis techniques is the sheer scale of the data they pro-

duce. In most early applications of network-style analysis [28–30], the datasets were

collected by hand and rarely exceeded a few hundred nodes. For such data, many

standard algorithmic techniques such as matrix inversion or complete enumeration

of shortest paths are feasible. Nowadays, with the World Wide Web and other digital

technologies contributing massive, rich datasets with networks of sizes in the hun-

dreds of thousands to millions, and even billions, to be studied [31–33], these tried

and true methods are rendered useless for many practical applications of interest.

Moreover, due to the inherently high dimensionality of network data, even for small

networks it is challenging to intuitively grasp the complex output of many network

analysis tools (for example, Bayesian posterior distributions over community struc-

tures, as we will discuss in Chapter 5). In the second half of this thesis, I will discuss

two methods I have developed to enable scalable, interpretable inference with real

2



network data, helping to close the gap between the theory and application of network

analysis.

But before we delve into more detailed results, I will give a brief overview of some

basic definitions, measures, models, and inference methods involved in the theoreti-

cal analysis of networks. The purpose of this chapter is to facilitate a smooth transition

into more sophisticated methods by reviewing relevant foundational concepts in net-

work science. This being said, it is not meant to be a comprehensive introduction to

network analysis, for which there are thorough, dedicated texts [1, 2]. First, we will

go over some definitions.

1.1. Network definitions and representations

As mentioned, the most elementary form of a network consists of a set of 𝑛 nodes,

whichwe denotewith 𝑉 , connected in pairs by 𝑚 edges, the set of whichwe denote 𝐸.

These node and edge sets can be combined into a single mathematical object, a graph,

denoted by 𝐺 = (𝑉 , 𝐸). Rather than focusing on the entire graph 𝐺, it is sometimes

easier to only consider a subset of the nodes 𝑉 and edges 𝐸, which we refer to as

a subgraph of 𝐺. Associated with the graph 𝐺 is an 𝑛 × 𝑛 adjacency matrix 𝐀 that

encodes the positions of the edges 𝐸 in terms of the nodes in 𝑉 that they connect.

More concretely, the entry 𝐴𝑖𝑗 of the adjacency matrix is given by

𝐴𝑖𝑗 =
⎧{
⎨{⎩

1, node 𝑖 ∈ 𝑉 is connected to node 𝑗 ∈ 𝑉 by edge (𝑖, 𝑗) ∈ 𝐸,

0, otherwise.
(1.1)
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In this case, we do not endow the edges in 𝐸 with any direction—the tie (𝑖, 𝑗) is mu-

tual and equivalent to (𝑗, 𝑖)—or weight—the graph and its corresponding adjacency

matrix simply denote the existence of edge (𝑖, 𝑗)—and so the network is considered

undirected and unweighted. An example of an undirected, unweighted graph is shown

in Fig. 1.1A.

We can augment a graph 𝐺 with additional information in any number of ways,

the most common being directions, weights, and/or types for the edges. For directed

graphs, the edge (𝑖, 𝑗) and non-zero 𝐴𝑖𝑗 denote the existence of an edge pointing from

node 𝑖 to node 𝑗. (Some people prefer the reverse notation, that is to let 𝐴𝑖𝑗 indicate the

presence or absence of an edge from 𝑗 to 𝑖.) For weighted edges, the adjacency matrix

𝐀 is no longer binary, and 𝐴𝑖𝑗 encodes the weight of the edge between nodes 𝑖 and

𝑗. (In some case it is convenient to use a separate matrix to denote the edge weights,

in addition to a binary adjacency matrix to encode the existence of an edge.) We can

adjust our notation for the edge set 𝐸 to accommodate these additional features by

extending each tuple (𝑖, 𝑗) to include the attributes for the edge (𝑖, 𝑗). Examples of a

weighted, directed network and an undirected networkwithmultiple edges types are

shown in Fig. 1.1B and Fig. 1.1C respectively.

In this thesis we will also make mention of bipartite networks, which consist of two

sets of nodes, call them 𝑃 and 𝑅, such that edges only run between sets 𝑃 and 𝑅—

that is, any edge has one incident node in set 𝑃 and one in set 𝑅. A projection of

this bipartite graph onto set 𝑅 then consists only of nodes in set 𝑅, and two nodes

are connected if and only if they shared at least one common neighbor in set 𝑃 in

the original, un-projected network (and vice-versa for projection onto set 𝑃 ). Such

a representation is commonly used, for instance, in modelling collaboration patterns

among researchers. In this case, set 𝑅 might be the researchers, set 𝑃 the research

4



papers, and an edge runs between researcher 𝑟 ∈ 𝑅 and paper 𝑝 ∈ 𝑃 if researcher 𝑟
was on paper 𝑝. The projection of this network onto the researchers is then the “one-

mode” network of researchers 𝑅 such that an edge connects researchers 𝑟 ∈ 𝑅 and

𝑠 ∈ 𝑅 if and only if researcher 𝑟 and researcher 𝑠 collaborated on at least one paper

𝑝 ∈ 𝑃 . Likewise, the projection of this network onto the papers 𝑃 is the one-mode

network of papers 𝑃 such that an edge connects papers 𝑝 ∈ 𝑃 and 𝑞 ∈ 𝑃 if and only

if there was at least one researcher 𝑟 ∈ 𝑅 who was on both paper 𝑝 and paper 𝑞.
Other common extensions of basic graphs that are used in network modelling in-

clude graphs with scalar or vector attributes for the nodes, graphs with self-edges

(edges connecting nodes with themselves), multilayer networks with multiple edge

types and possible interaction between network layers [34–36], hypergraphs in which

a single edge may connect more than two nodes [37], and networks of simplicial com-

plexes that can represent nested sets of ties with multiple dimensionalities [38].

In terms of nomenclature, one generally uses the term “network” to refer to a sys-

temof interest that can be representedmathematicallywith a graph, although inmany

contexts the terms “network” and “graph” are used interchangeably. However, net-

work science and graph theory are quite distinct subject areas in terms of their re-

search focuses [39]. Graph theory involves the rigorous proof of mathematical prop-

erties of graphs, which commonly requires the graph to have symmetries and other

idealized features that are not present in real-world data. On the other hand, network

science primarily focuses on quantifying and modelling the structure and dynamics

seen in real-world network data, which often does not have nice analytical properties.

That being said, network science does borrow many ideas from graph theory, partic-

ularly for its formal analytical results [1]. The research I present in this thesis is much

better classified under network science than graph theory.
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Aorange =

0 0 1 0 0
0 0 1 0 0
1 1 0 0 1
0 0 0 0 0
0 0 1 0 0A =

0 0 1 0 0
0 0 1 0 0
1 1 0 1 1
0 0 1 0 0
0 0 1 0 0

A =

0 0 1 0 0
0 0 5 0 0
3 0 0 0 4
0 0 2 0 0
0 0 0 0 0

Agreen =

0 0 0 0 0
0 0 0 0 0
0 0 0 1 1
0 0 1 0 0
0 0 1 0 0

Fig. 1.1. Examples of graphs and their corresponding adjacency matrices. (A) An
undirected, unweighted graph on five nodes 𝑉 = {0, 1, 2, 3, 4} with four edges
𝐸 = {(0, 2), (1, 2), (2, 3), (2, 4)}. (B) A directed, weighted graph on the same five
nodes, with five (weighted) edges 𝐸 = {(0, 2, 1), (2, 0, 3), (1, 2, 5), (3, 2, 2), (2, 4, 4)}.
(C) An undirected network on the same five nodes with five edges 𝐸 =
{(0, 2, orange), (1, 2, orange), (2, 3, green), (2, 4, green), (2, 4, orange)}, along with the
adjacency matrices associated with the green and orange edges.
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1.2. Structural properties of real-world networks

Armed with the definitions above, we can now define measures that capture dif-

ferent aspects of the structure of networks, such as how central a node is or how nat-

urally the network breaks up into subgroups of tightly connected nodes. Empirical

measurements of these quantities can aid in summarizing the complex structure of

a network, as well as provide insight into the principles underlying its organization

and function. The observed values of many of these properties differ substantially

in real-world networks from what one would expect in simple idealized models of

graphs, which has inspired a huge research effort to develop models that accurately

capture key structural characteristics of real networks.

1.2.1. Degrees

Perhaps the simplest statistic one may be interested in when analyzing a network

is the degree of a node, or how many connections it has to other nodes. The degree

is a very intuitive proxy for the importance of a node, as nodes that are more well

connected may play a more active or central role in the function of the network. The

degree 𝑘𝑖 of a node 𝑖 in an undirected, unweighted network is given by

𝑘𝑖 =
𝑛

∑
𝑗=1

𝐴𝑖𝑗 = |𝜕𝑖|, (1.2)

where 𝜕𝑖 ⊆ 𝑉 is the set of nodes that are connected to 𝑖 by an edge, also known as

its neighborhood. For notational convenience, we will assume henceforth that summa-

tions over node indices are over the entire set 𝑉 of 𝑛 nodes, and so we will omit the

limits. When the network is undirected and unweighted, 𝑘𝑖 is the total number of

7



edges incident to node 𝑖.
There are many common alternative measures to degree that encode slightly differ-

ent information and can be applied to weighted and directed networks. For example,

for directed networks itmakes sense to assign two separate degree values to each node

𝑖, an in-degree, 𝑘𝑖𝑛
𝑖 = ∑𝑗 𝐴𝑗𝑖, and an out-degree, 𝑘𝑜𝑢𝑡

𝑖 = ∑𝑗 𝐴𝑖𝑗, which count respec-

tively the number of edges pointing towards node 𝑖 and the number of edges pointing

outwards from node 𝑖. For weighted networks, one can assign a strength value to each

node 𝑖, equal to the sum of the weights of the edges incident on node 𝑖 (which can be

extended to in- and out-strengths for directed, weighted graphs in a manner analo-

gous to the degrees).

We can gain insight into the global structure of a network by looking at its empirical

degree distribution 𝑃𝑘, the fraction of nodes that have degree 𝑘. Since each node can

only have one degree value (we are only considering undirected networks here), 𝑃𝑘

is a properly normalized probability mass function over the non-negative integers.

From this we can compute the average degree,

⟨𝑘⟩ =
∞

∑
𝑘=0

𝑘𝑃𝑘 = 2𝑚
𝑛 , (1.3)

and the degree variance,

⟨𝑘2⟩ − ⟨𝑘⟩2 =
∞

∑
𝑘=0

𝑘2𝑃𝑘 − ⟨𝑘⟩2, (1.4)

which are both useful quantities for understanding the large-scale organization of the

network. If the average degree ⟨𝑘⟩ is large, then we know that the network has a high

density of edges, and so the typical node is highly connected. On the other hand, if the
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degree variance is large, we know that there is a high level of variation in connectivity

among nodes: some nodes are much more well connected than others.

There are two characteristic properties associated with the degree distributions of

many real-world networks which are critical for a wide range of observed function-

alities in these systems. The first is sparsity, or that a vanishing fraction of possible

connections are present in the network as it grows. Technically, there are (𝑛
2) ∼ O(𝑛2)

possible connections in an undirected graph (where ∼ O(⋅) indicates Big O notation

[40]), and so we only require that 𝑚 ∼ o(𝑛2) grows at less than this rate to have

sparsity. However, in most cases, when we say that a network is “sparse”, we are

indicating that 𝑚 ∼ O(𝑛), or that the average degree ⟨𝑘⟩ ∼ O(1) is roughly constant.

Of course, one cannot rigorously determine based on a single observation of a net-

work at one particular instance in time how exactly the number of edges scales with

the number of nodes, and so “sparsity” is not really a rigorous concept for networks

in many cases. But roughly speaking, if the average degree ⟨𝑘⟩ is much less than the

size of the network 𝑛, we say in practice that the network is sparse. The sparsity of

a network has very important effects on its functionality, since the majority of node

pairs are not connected by an edge, and more complex paths need to be utilized in

order for anything to traverse through the network. (Surprisingly, however, many

real networks display a ’small-world’ property, where on average we can hop from

one node to another in a number of steps that is much much smaller than the size of

the system [29, 41, 42].) This sparsity also becomes critical for modelling and analyz-

ing real networks, as it allows us to make various analytical approximations [1] and

generally improves performance of graph algorithms.

The second characteristic observed empirically in the degree distributions of many

real-world networks is that they have heavy tails, or that their tails are not exponentially
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bounded (unlike Binomial or Poisson distributions, which describe the degree distri-

butions of networks generated by purely random placement of edges; more on this to

follow). Practically, this means that althoughmost nodesmay have quite low degrees,

there are a non-negligible number of nodes that have an extremely high number of

connections. These “hubs” play a critical role in the global connectivity of the net-

work, allowing networks with heavy-tailed degree distributions to be more resilient

to random node failures [43], have short path lengths for navigation between nodes

[44], and respond well to simple immunization strategies [45, 46], among other ad-

vantages [9].

In many cases, these observed heavy-tailed degree distributions (approximately)

follow the power-law form

𝑃𝑘 ∼ 𝑘−𝛾, (1.5)

for some exponent 𝛾, a distribution which permits simple analytical treatment and

has interesting theoretical properties. In fact, many networks display power-law de-

gree distributions with 𝛾 ∈ (2, 3), in which case the corresponding degree variance

(Eq. 1.4) is infinite! (Of course, this divergence cannot be observed in the degree dis-

tribution of a real network, but it has interesting implications for theoretical models

of networks. In practice, one normally assumes that there is an exponential cutoff

to the degree distribution that permits the empirically observed finite moments.) In

part, empirically observed power-lawdegree distributionswerewhat attracted a huge

wave of physicists to study networks in the late 2000’s [47, 48], although this property

had garnered interest from scientists decades earlier in bibliometric studies [49, 50]. It

is currently a highly debated topic whether or not real degree distributions rigorously
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follow the power-law form [51–53], but for practical purposes, it is the heavy-tailed

nature of the degree distribution that has an important impact on the structure and

function of real networks. Examples of networks with power law degree distributions

of varying exponents 𝛾 are shown in Fig. 1.2A. For 𝛾 = 3 (moderate degree variance),

we can see that there are a few nodes of moderately high degree, while for 𝛾 = 2 (high

degree variance) there are a number of nodeswithmoderately high degrees and a few

with extremely high degrees.

1.2.2. Walks

Going beyond the immediate neighborhood of a node, we can compute quantities

related towalks in the network, which consist of traversals of the nodes along the edges

connecting them. For example, a walk of length 3 in the network shown in Fig. 1.1A

might consist of starting at node 2, moving to node 1 along edge (1, 2), moving back

to node 2 along this same edge, and thenmoving to node 4 along the edge (2, 4). Note

that in a walk we can traverse through a given node or edge multiple times, as in this

example. This is in contrast to a path in a graph, in which all nodes (and consequently

edges) are distinct. An undirected network is called connected if there is at least one

path between all pairs of nodes in the network. In a network there may be lots of

ways to walk from a source node 𝑖 to a target node 𝑗 in 𝑙 steps. In this example, for

instance, we could have instead gone across edge (0, 2) to node 0 in the first step,

then back to node 2 and finally to node 4, a walk which would have also consisted

of 𝑙 = 3 steps with start node 2 and end node 4. In any such walk, we are traversing

an edge at each step, and so require that for the sequence of 𝑙 + 1 visited nodes in

the walk, {𝑖, 𝑝1, 𝑝2, ..., 𝑝𝑙−1, 𝑗}, each consecutive pair of nodes (𝑝𝑡, 𝑝𝑡+1) has a common
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edge, or equivalently that 𝐴𝑝𝑡,𝑝𝑡+1
= 1. Therefore, such a sequence of nodes comprises

a possible walk from 𝑖 to 𝑗 if and only if 𝐴𝑖𝑝1
𝐴𝑝1𝑝2

⋅ ⋅ ⋅ 𝐴𝑝𝑙−2𝑝𝑙−1
𝐴𝑝𝑙−1𝑗 = 1. Summing

over all possible sets of intermediate nodes gives us the number of possible walks

along the network from 𝑖 to 𝑗 of length 𝑙, thus

# of walks of length 𝑙 between 𝑖 and 𝑗 = ∑
𝑝1,𝑝2,...,𝑝𝑙−1

𝐴𝑖𝑝1
𝐴𝑝1𝑝2

⋅ ⋅ ⋅ 𝐴𝑝𝑙−2𝑝𝑙−1
𝐴𝑝𝑙−1𝑗

= (𝐀𝑙)𝑖𝑗. (1.6)

Using the same concept, we can count the number of closed walks (walks that start

and end at the same node) of a given length 𝑙 with powers of the adjacency matrix.

Letting 𝑖 = 𝑗 in Eq. 1.6 and summing over all nodes 𝑖, we get

# of closed walks of length 𝑙 = Tr(𝐀𝑙). (1.7)

Note that this expression counts connected subgraphs of 𝐺 multiple times, as it ac-

counts for all possible ways in which we could traverse a given set of adjacent edges.

For instance, if we want to count the number of triangles in the network, we need to

use a modified expression, Tr(𝐀3)/6, which divides out the 3! = 6 redundant traver-

sal orders of each triangle that are counted in Eq. 1.7. We distinguish closed walks

from a similar concept, simple cycles, which are the subset of closed walks that do not

visit any node twice, other than the start/end node, which is visited exactly twice.

Counting simple cycles is perhaps more informative about network structure as they

do not contain redundant edges. However, simple cycles are much more difficult to

count than closedwalks (the exception being triangles, aswe have shown), and so typ-

ically when constructing network measures one uses counts of closed walks instead
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(see Ch. 2 for an example).

For undirected networks, it is useful to consider the diagonalization of the symmet-

ric matrix 𝐀

𝐀 = 𝐔𝚲𝐔−1, (1.8)

where 𝐔 is an orthogonal matrix whose 𝑘-th column is the 𝑘-th eigenvector of 𝐀, and

𝚲 is a diagonalmatrix of the (real) eigenvalues {𝜆𝑘}𝑛
𝑘=1 of 𝐀. We can thenwrite Eq. 1.7

as

# of closed walks of length 𝑙 = Tr(𝐔𝚲𝑙𝐔−1) = Tr(𝚲𝑙) = ∑
𝑘

𝜆𝑙
𝑘. (1.9)

Eq. 1.9 demonstrates that we can recover important information about the topology

of a network from the eigenvalues of its adjacency matrix. In fact, there is an entire

branch of graph theory, spectral graph theory, devoted to understanding the spectra of

the matrices associated with graphs [54].

1.2.3. Clustering

Of the types of simple cycles present in networks, triangles are perhaps the most

important, as they point to the tendency of links to form in a transitive manner—if

𝑖 and 𝑗 are connected, and 𝑗 and 𝑘 are connected, is it likely that 𝑖 and 𝑘 are also

connected? The most straightforward measure of this tendency is aptly called the

transitivity of the network, and is given by

𝑇 = # of paths of length 2 that are part of a triangle
# of paths of length 2 = Tr(𝐀3)

∑𝑖 𝑘𝑖(𝑘𝑖 − 1). (1.10)
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Eq. 1.10 quantifies precisely the intuitive notion of transitivity we have mentioned: of

all the paths (non-self overlapping walks) of length 2, it tells us in what fraction the

start and endpoints are also connected. The transitivity is one measure on which we

base the claim that a network is “clustered”. Examples of networkswith varying levels

of transitivity are shown in Fig. 1.2B. We can see that the network with low clustering

(𝑇 = 0.03) appears more or less like a random ball of edges, while the network with

higher clustering (𝑇 = 0.24) has a visibly high density of triangles.

As one may expect, real social networks display a high level of transitivity [55, 56],

as it is likely that if persons 𝑖 and 𝑗 are acquainted, and persons 𝑗 and 𝑘 are acquainted,

that persons 𝑖 and 𝑘 will also be acquainted. The extent to which social networks in

the real-world are clustered is actually quite remarkable: it is not uncommon for these

networks to have values of 𝑇 around 0.5 or higher [1]. For comparison, consider the

situation where one picks friends at random from the population. If I pick 𝑐 friends at

random, and each of my friends does the same, the probability that two of my friends

are themselves friends is 𝑐/(𝑛−1). For a sparse network, 𝑐 ≪ 𝑛, and so the transitivity

in this case is expected to be vanishingly small for a large network. This is of course a

very rough approximation, for one due to the fact that people can have very different

numbers of friends, but one would expect that even a more refined model of this sort

would produce a transitivity that is well below the observed values of ∼ 0.5 in real

networks. This high level of clustering has a profound impact on the function of real

networks, in particular their resilience to epidemics [57, 58]which tend to spreadmore

quickly with greater clustering.

An alternative measure for assessing the level of clustering in a network is based on

the local clustering coefficient [42], which counts what fraction of pairs of a given node

𝑖’s neighbors are themselves connected. There are 𝑘𝑖(𝑘𝑖 −1)/2 possible edges between
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the neighbors of 𝑖, and so this measure takes the form

𝐶𝑖 = # of pairs of neighbors of 𝑖 that are connected
𝑘𝑖(𝑘𝑖 − 1)/2 . (1.11)

To assess the global level of clustering in a similar manner as in Eq. 1.10, we can take

the average of these local clustering coefficients, thus

𝐶 = 1
𝑛 ∑

𝑖
𝐶𝑖. (1.12)

Since Eq. 1.12weights each node equallywhen taking the average, it tends to be domi-

nated by contributions from low degree nodes, and somay give significantly different

results than Eq. 1.10 on the same network. We thus cannot use these measures inter-

changeably; rather, we can use themboth to get amultifaceted picture of the clustering

in a network.

1.2.4. Community structure

The degree quantifies the extent to which individual nodes are highly connected,

and the various measures of clustering quantify the extent to which networks are

tightly connected at the small scale (the level of triangles). But what about the larger

scale connectivity structure of a network? One way of tackling this question is to

identify natural divisions of a network into modules, called communities, in a process

called community detection. In the most common case, which we will focus on here,

community detection consists of partitioning the node set𝑉 into disjoint groups (com-

munities) such that there is a high density of connections within communities and a

sparser level of connectivity between communities. This partition of the nodes in the
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network can be represented by a community assignment vector 𝐠, such that 𝑔𝑖 is the

group to which node 𝑖 is assigned. Many standard methods for community detection

then typically proceed by identifying the partition 𝐠 of the network that maximizes

some objective (or “quality”) function 𝑄(𝐠), which assesses how good the partition is

according to some set of criteria.

One natural way to measure the quality of a partition is the compute themodularity

of the partition, which quantifies the extent to which the density of edges within the

communities of the partition exceeds what we would expect in a comparable network

with edges rewired completely at random [59]. The modularity 𝑄(𝐠) of a network

partition 𝐠 is given by

𝑄(𝐠) = 1
2𝑚 ∑

𝑖𝑗
(𝐴𝑖𝑗 − 𝑘𝑖𝑘𝑗

2𝑚 ) 𝛿𝑔𝑖,𝑔𝑗
, (1.13)

where 𝛿𝑥,𝑦 is the Kronecker delta symbol which equals 1 when 𝑥 = 𝑦 and 0 otherwise.

This serves the function of restricting the sum to be only over pairs of nodes 𝑖, 𝑗 that

are in the same community. Looking at the summand, we can see two contributions.

The left hand term 𝐴𝑖𝑗 indicates the presence/absence of an edge between 𝑖 and 𝑗,
with an increase of 1 to the modularity for each present within-community edge. The

right hand term 𝑘𝑖𝑘𝑗/(2𝑚) indicates the number of edges we would expect to see

between nodes 𝑖 and 𝑗 if the graph were rewired completely random while fixing

the degree of each node, and this quantity is subtracted from the modularity. This

enforces the idea that the presence of within-community edges that are highly likely

based on pure chance provides little evidence for the quality of a partition. On the

other hand, the presence of an unlikely edge within a group will less heavily penalize

the modularity, and so the contribution of the summand 𝐴𝑖𝑗 − 𝑘𝑖𝑘𝑗/(2𝑚) is greater.
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Examples of networks with varying levels of modularity are shown in Fig. 1.2C. The

graphwith lowermodularity (𝑄 = 0.19) clearly has some level of division between the

two groups, but it is not very clear. On the other hand, the graphwith highmodularity

(𝑄 = 0.49) has very well defined group structure, with dense connectvity within the

groups and only a few edges between the groups.

We can see that 𝑘𝑖𝑘𝑗/(2𝑚) is (approximately) the expected number of edges be-

tween 𝑖 and 𝑗 under random rewiring—or, if 𝑘𝑖𝑘𝑗 < 2𝑚 as is usually the case, the

probability that there is an edge between 𝑖 and 𝑗–using the following argument. In

a model where each node 𝑖 has the same degree 𝑘𝑖 but the edges in the graph are

rewired at random, we can think of this node as contributing 𝑘𝑖 “stubs”, which will

bematched up randomlywith other nodes’ stubs to create the edges. Generating a re-

alization of this model, called the configuration model in the network science literature,

consists of picking pairs of stubs at random and adding an edge between their cor-

responding nodes until we exhaust all 2𝑚 stubs. This specific procedure will create

networks that in general have both edges from nodes to themselves as well as multi-

ple edges between nodes, but one can show that the probability of this happening is

generally very small [1] and there are more sophisticated algorithms that attempt to

overcome this problem [60]. As we rewire the network, there will be 𝑘𝑖 chances for

node 𝑖 to connect to node 𝑗, each of which will be successful with a probability of ap-

proximately 𝑘𝑗/(2𝑚), and so 𝑘𝑖𝑘𝑗/(2𝑚) gives the expected number of edges between

𝑖 and 𝑗 resulting from this rewiring process.

Once we have a quality function 𝑄(𝐠) for a partition 𝐠, we proceed by attempting

to maximize 𝑄 over all possible partitions 𝐠. Unfortunately, in most practical ap-

plications we cannot exhaustively check 𝑄 on all these partitions, as their number

increases exponentially with the size 𝑛 of the network. As an example to illustrate
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how difficult exhaustive enumeration of these partitions is, consider a network with

𝑛 = 50 nodes (which is very small compared to the thousands or more we see in

typical real networks) that we want to divide into 𝐾 = 10 groups. There are approx-

imately 1050/10! ≈ 2.6 × 1043 ways we can partition these 50 nodes into 10 groups.

The fastest supercomputer in the world (at the time of writing this thesis) can execute

around 5 × 1017 operations per second, and so it would take roughly 5 × 1025 seconds

for this supercomputer to exhaustively check 𝑄 on all partitions 𝐠 of this network,

which is around 100 million times the age of the universe! In practice, one thus re-

sorts to a variety of optimization techniques to maximize 𝑄(𝐠), including ones based

on greedy heuristics, spectral clustering, and sampling among other methods [61].

It has been found that many real networks divide quite naturally into communi-

ties [59], with values of high modularity and other related objective functions. This

has a number of implications. For one, the communities in a network may repre-

sent functional sub-units of a system with high levels of internal communication and

comparatively weak interdependence. Additionally, as with clustering, community

structure impacts spreading processes on networks such as epidemics [62]. The ex-

istence of community structure in a network can also aid in data recovery tasks such

as link prediction or network denoising [63], due to the information it gives about the

likelihood of observing certain edges. Finally, the modules inferred by community

detection may be of interest simply because they are likely to group similar nodes

together, which aids in machine learning tasks such as topic modelling [64].
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γ = 2γ = 3

Q = 0.19 Q = 0.49

T = 0.03 T = 0.24

Fig. 1.2. Network properties illustrated with synthetic example graphs. (A) Graphs
with power law degree distributions of different exponents 𝛾, generated from the
Chung-Lu model [65]. The size of a node is proportional to its degree. (B) Graphs
with different transitivity values 𝑇 , generated from the Holme-Kim model [66]. (C)
Graphswith differentmodularities 𝑄, generated from the stochastic blockmodel [67].
Community assignments are indicated with red and yellow.
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1.3. Statistical models of network structure

1.3.1. Graph models

Now that we have reviewed some key structural characteristics of real networks,

we can begin to discuss how to model networks with these properties. As with math-

ematical modelling endeavors in other scientific disciplines, a critical element of most

graph models is the presence of randomness. These graph models allow us to incor-

porate uncertainty into our description of a network’s origins and predicted behavior,

generate synthetic network data for analysis, and fit real network data with well un-

derstood statistical estimation procedures.

We have already seen the appearance of a graph model in Sec. 1.2.4, the configura-

tion model, for motivating the modularity measure of community structure. In this

case, the model serves the purpose of a null model to which we can compare the topol-

ogy of a real network. However, there are numerous other choices of graph models

one can use for this purpose [68–70], which preserve different characteristics of the

network and can be used to determine whether or not a given structural feature in

a real network is a by-product of fixing a different aspect of the network’s structure.

In the case of modularity, we want to see how much the connectivity within the net-

work’s assigned communities differs from the expected connectivity in a null model

where degrees are fixed. As we will see, graph models are useful in many ways be-

yond just functioning as null models of network structure.

The configuration model is one of the simplest graph models, as it only requires

that we specify the degree of each node. This allows all other aspects of the topology

to vary completely at random subject to this constraint. However, we can specify

even less information about the network by simply fixing the average degree ⟨𝑘⟩ =
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2𝑚/𝑛. We can generate a network with a fixed number of nodes 𝑛 and average degree

⟨𝑘⟩ by placing edges completely at random between 𝑚 = ⟨𝑘⟩𝑛/2 pairs of nodes 𝑖, 𝑗,
of which there are (𝑛

2) in total. This called the Erdős-Renyi model, a cornerstone of

random graph modelling since its creation in the late 1950’s [71]. At the same time,

a very similar model for networks was introduced by Gilbert [72] that instead fixes

the expected number of edges by placing an edge independently at random in each of

the (𝑛
2) possible locations with probability 𝑝. Both networks together are colloquially

referred to as random graphs, and have served as the foundation for a wide variety of

more sophisticated graph models. Though both models are equivalent in the limit

𝑛 → ∞, the latter model introduced by Gilbert is typically the version that is used in

calculations as it permits simple analytical analysis [1, 8].

Combining aspects of the Gilbert model and the configuration model is the Chung-

Lumodel [65], which assigns a variable 𝜃𝑖 to each node 𝑖 and generates a random graph

with separate connection probabilities 𝜃𝑖𝜃𝑗/(∑𝑖 𝜃𝑖) for each pair of nodes 𝑖, 𝑗. In ex-

pectation, we have 𝑘𝑖 = 𝜃𝑖, and so we can specify 𝜽 to match the degree distribution

of a reference network when generating from the Chung-Lu model. The Chung-Lu

model is generally more analytically tractable than the configuration model, and so it

is preferred in most computations, just as the Gilbert model is preferred to the Erdős-

Renyi model.

Despite their simple, elegant formulations and easy analytical treatment, random

graphs and the configuration/Chung-Lu models are not very useful for most appli-

cations of graph modelling, as they do not capture the unique properties of real net-

works discussed in Sec. 1.2. For instance, since every edge in the random graph is

placed independently with probability 𝑝, the probability 𝑃𝑘 that a node in a random
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graph has degree 𝑘 is given by the binomial probability

𝑃𝑘 = (𝑛 − 1
𝑘 )𝑝𝑘(1 − 𝑝)𝑛−1−𝑘. (1.14)

The degree thus follow a binomial distribution, which is tightly peaked about itsmean

value 𝑝(𝑛−1). On the other hand, asmentioned in Sec. 1.2.1, real networks tend to dis-

play highly heterogeneous (or heavy-tailed) degree distributions, and so the random

graph model fails to capture this critical property. The configuration and Chung-

Lu models are slightly better, as we specify the entire degree distribution (exactly or

in expectation) as part of the model, but even these models have major drawbacks.

For one, like the random graph, they produce networks with a vanishing transitivity

(Eq. 1.10) as the network becomes large [1]. Since the clustered nature of real networks

plays such a major role in their function, this shortcoming is quite significant.

There are countless alternative graph models that attempt to improve on the ran-

dom graph and configuration/Chung-Lumodels by capturing key structural features

present in real networks. Two highly influential network models emerging in the

late 1990’s, the Barabási-Albert model [47] and the Watts-Strogatz model [42], laid the

groundwork for many such models. The Barabási-Albert model—based on the Price

model from decades earlier developed for directed citation networks [49]—aims to

model the formation of the heavy-tailed (more specifically power law) degree dis-

tributions that the random graph fails to produce. In brief, this model posits that

preferential attachment (also known as cumulative advantage or the Matthew effect [73])

causes the heterogeneous degree distributions we see in real networks through a net-

work growth process where newly added nodes connect to existing nodes in pro-

portion to their degree. On the other hand, the Watts-Strogatz model provides an
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explanation for the simultaneously high levels of clustering and short path lengths

seen in real networks, the first feature not found in either the random graph or the

configuration/Chung-Lumodels. In theWatts-Strogatzmodel, the network begins as

a regular lattice (with a high degree of clustering but long path lengths), then edges

are rewired at random to introduce shortcuts, which reduces the average path length

but maintains a high level of clustering so long as only a small fraction of edges are

rewired.

Common to both the Barabási-Albert and Watts-Strogatz models, however, is the

lack of a mechanism explaining the existence of communities in networks. The foun-

dational model addressing this issue is the stochastic block model (SBM) [67], which

in its most common form takes as input a partition 𝐠 of the nodes and generates a

network by placing edges independently at random between nodes with a proba-

bility 𝜔𝑔𝑖𝑔𝑗
that only depends on the group (or “block”) assignments of the nodes.

(We will analyze this model in more detail soon.) Like the Gilbert model of random

graphs—which is just the SBM with a single community—the SBM permits simple

analytical treatment, which has made it popular as a model to fit to real network data.

This is in contrast with the Barabási-Albert and Watts-Strogatz models, which are

largely used as network null models in practice. Due to their similar constructions,

the standard SBM faces many of the same shortcomings as the random graph, and

consequently there have been a number of proposed extensions to this model which

make it more suitable for practical applications. These include generalizations with

multiple group memberships for each node [74], hierarchical block structures [75],

and weighted edges [76] among others. Perhaps the most significant extension to the

SBM is the “degree-corrected” SBM (DCSBM) [77], which combines the Chung-Lu

model and SBM by proposing connection probabilities proportional to 𝜃𝑖𝜃𝑗𝜔𝑔𝑖𝑔𝑗
, with
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a vector of parameters 𝜽 that control the degrees of the nodes.

With the advent of a broad array of networkmodels in the 2000’s and 2010’s, largely

inspired by themodels we have described, the focus of the theoretical network science

community in recent years has shifted to themodelling ofmore sophisticated andflex-

ible representations of the structure and dynamics of networked systems—including

temporal networks, multilayer networks, and hypergraphs, among others—-as well

as the problem of model estimation, or fitting network models to data. We describe in

the next section the Bayesian paradigm for inference with network data, a powerful

framework that is the basis for much of the modern research in statistical network

estimation.

1.3.2. Bayesian inference of community structure

Bayesian statistics is an extremely broad area with methods for addressing prob-

lems in regression, interval estimation, clustering, data imputation, density estima-

tion, and many other statistical tasks [78]. Common to all these methods is that un-

certainties in inferences are quantified using probabilities that express belief about an

event, and these probabilities are updated from an initial prior belief upon observing

data. Here we discuss the specific application of Bayesian inference to community

detection, but note that there are a number of other network inference tasks for which

Bayesian inference provides a principled, robust solution [79–83].

Assume we have an observed network 𝐺 consisting of 𝑛 nodes, and we would like

to find a division of these nodes into disjoint communities. As before, we represent a

community division with a length 𝑛 vector 𝐠 such that 𝑔𝑖 is the label of the commu-

nity to which 𝑖 belongs. In the Bayesian framework, we assume that 𝐺 was created
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using some statistical generative model 𝑃(𝐺|𝐠, 𝜽), which depends on an underlying

partition 𝐠 and other model parameters 𝜽. For example, if we assume that 𝐺 was

generated from an SBM with some partition 𝐠, then the parameters 𝜽 are the matrix

of connection probabilities 𝝎, such that 𝜔𝑔𝑖𝑔𝑗
is the probability of placing an edge be-

tween nodes 𝑖 and 𝑗. 𝑃(𝐺|𝐠, 𝜽) is called themodel likelihood in the context of inference.

Using Bayes’ rule, we can then find the posterior distribution

𝑃(𝐠, 𝜽|𝐺) = 𝑃(𝐺|𝐠, 𝜽)𝑃 (𝐠, 𝜽)
𝑃(𝐺) . (1.15)

𝑃(𝐠, 𝜽) is a prior distribution that quantifies our beliefs about what values 𝐠 and 𝜽
may take, before observing 𝐺. In many cases, we take this to be an uninformative

distribution with high variance, to assume little information about the partition and

model parameters. However, in other circumstances a stronger prior is necessary ei-

ther to avoid issues during the model fit or to constrain the posterior to be consistent

with domain expertise. The denominator,

𝑃(𝐺) = ∑
𝐠

∫ 𝑃(𝐺|𝐠, 𝜽)𝑃 (𝐠, 𝜽)𝑑𝜽, (1.16)

is a normalization constant called themodel evidence. The posterior distribution (Eq. 1.15)

is the fundamental object of interest in Bayesian inference, as it quantifies our degree

of belief about each possible configuration of the model variables 𝐠, 𝜽, taking into ac-

count both our prior beliefs (through 𝑃(𝐠, 𝜽)) and the data (through 𝑃(𝐺|𝐠, 𝜽)). By

having a full probability distribution over these variables at our disposal, we can con-

struct estimates (with uncertainties) of these quantities, compute expectation values

of functions of these variables, or draw samples.
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For many network models and prior choices, 𝑃(𝐺|𝐠, 𝜽) and 𝑃(𝐠, 𝜽) take tractable

analytical forms. (Notably, network models that represent a sequential growth pro-

cess, similar to the Barabási-Albert model, do not in general have trivially tractable

likelihoods, as we must account for the order in which the nodes arrived which is

not available with a single static network. Efficient computational approximations

and analytical results for these types of models have become of increased interest

[84, 85].) The crucial component of the posterior distribution that makes Bayesian

inference difficult is the model evidence (Eq. 1.16), as we typically cannot perform

the integrations/summations necessary to evaluate the expression. Even using nu-

merical methods, the dimensionalities of these integrations/summations are usually

too high to compute 𝑃(𝐺) to any reasonable degree of accuracy. Not all hope is lost,

however, as there is a suite of mathematical and computational tools that have been

developed to tackle precisely the problem of estimating the posterior distribution in

Eq. 1.15. (See Appendix A for details on a few common techniques and an example

calculation.) These methods will return either point estimates or samples of 𝐠 and 𝜽,
which can be further examined to gain an understanding of the community structure

of the network.

1.4. Contributions of this thesis

In this chapter, I briefly reviewed key definitions, measures, and models for net-

works, which will provide a foundation for the research I present in the upcoming

chapters. In the remainder of the thesis, I will discuss my work developing novel

measures and methods for network analysis, which are aimed at addressing two pri-

mary objectives: to characterize structure in networks with metadata (Chapters 2 and
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3), and to develop scalable, accurate, and interpretable inference techniques for real-

world network data (Chapters 4 and 5).

In Chapter 2, I present my work on signed networks, in which edges can be either

positive (friendship, trust, alliance) or negative (dislike, distrust, conflict). Early lit-

erature in graph theory theorized that such networks should display “structural bal-

ance,” meaning that certain configurations of positive and negative edges are favored

and others are disfavored. I propose two measures of balance in signed networks

based on the established notions of weak and strong balance, and compare their per-

formance on a range of taskswith each other andwith previously proposedmeasures.

In particular, I ask whether real-world signed networks are significantly balanced by

these measures compared to an appropriate null model, finding that indeed they are,

by all the measures studied. I also test the ability to predict unknown signs in oth-

erwise known networks by maximizing balance. In a series of cross-validation tests

I find that these measures are able to predict signs substantially better than chance.

This chapter is based on work published with George Cantwell and Mark Newman

in Physical Review E [86].

In Chapter 3, I return to the topic of incorporating metadata into measures of net-

work structure, this time in the context of spatial networks of socioeconomic data. To

mitigate issues associated with traditional spatial measures of inequality and segre-

gation, I develop an information theoretic approach based on the generalized Jensen-

Shannon divergence for quantifying variation in distributions of socioeconomic at-

tributes across spatial networks of adjacent regions. I apply my methodology in a

series of experiments to study the network of neighboring census tracts in the conti-

nental US, quantifying the decay in two-point distributional correlations across the

network, examining the county-level socioeconomic disparities induced from the ag-
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gregation of tracts, and constructing an algorithm for the division of a city into homo-

geneous clusters. This chapter is based on work published in a single-author paper

in Physical Review Research [87].

In Chapter 4, I switch gears and discuss methods for statistical inference with net-

work data, addressing the serious shortcoming of belief propagation (see Appendix

A) performing poorly in the common case of networks that contain short loops. Here,

I provide a solution to this long-standing problem, deriving a belief propagation

method that allows for fast calculation of probability distributions in systems with

short loops, potentially with high density, as well as giving expressions for the en-

tropy and partition function, which are notoriously difficult quantities to compute.

Using the Isingmodel as an example, I show that this approach gives excellent results

on both real and synthetic networks, improving substantially on standard message

passing methods. I also discuss potential applications of this method to a variety of

other problems. This chapter is based on work published with George Cantwell and

Mark Newman in Science Advances [88].

In Chapter 5, I continue with this inference theme by presenting a method for iden-

tifying representative community divisions of networks. Techniques for detecting

community structure in networks typically aim to identify a single best partition of

network nodes into communities, often by optimizing an objective function such as

modularity. However, in real-world applications there are typically many competi-

tive partitions with objective scores close to that of the global optimum and the true

community structure is more properly represented by an entire set of high-scoring

partitions than by just the single optimum. Such a set can be difficult to interpret

since its size can easily run to hundreds or thousands of partitions. In this chapter

I present a solution to this problem in the form of an efficient method that clusters
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similar partitions into groups and then identifies an archetypal partition as a repre-

sentative of each group. The result is a succinct, human-readable summary of the

form and variety of community structure in any network. I demonstrate the method

on a range of example networks. This chapter is based on work with Mark Newman

that is currently under review [89].

In Chapter 6, I conclude the thesis by reflecting on thiswork and discussing avenues

for future research in these areas.
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Chapter 2.

Balance in Signed Networks

As discussed in Sec. 1.1, a network in its simplest form consists of a collection of

nodes joined together in pairs by edges, but many networks have additional features

as well. The first primary goal of this thesis is to characterize structure in networks

with metadata, and in this chapter we consider one case of particular interest, that

of signed networks, meaning networks in which the edges are either positive or nega-

tive [1, 90, 91]. Themost common example is a social network that represents patterns

of both amity and enmity among a group of individuals: positive edges represent

friendship, negative ones animosity. As we will see, quantifying the interplay of the

topology and edge sign metadata in these networks can provide us with a wealth of

insight into the nature of conflict and resolution in social systems, as well as tech-

niques for inferring missing data.
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2.1. Introduction

Studies of signed networks go back at least to the classic work of Harary in the

1950s, who argued, largely on formal rather than empirical grounds, that certain pat-

terns of signs should be more common than others—the enemy of my enemy should

be my friend, for example [90]. Networks that display such regularities are said to be

structurally balanced, or just balanced for short. A natural question to ask is whether real

signed networks are in fact balanced. Despite a considerable amount of research on

this issue, however, the jury is still out. Some researchers have claimed that real net-

works are balanced, at least partially, while others have claimed that they are not [92–

94].

There are two primary reasons for the disagreement. First, there is more than one

proposed definition of structural balance in networks. Cartwright and Harary [95]

proposed that a network is balanced if all closed loops in the network contain an even

number of negative edges. This condition, which we will refer to as strong balance, is

a stringent one that is rarely if ever completely satisfied in real networks. As we will

see, however, one can define measures of partial balance that quantify how close a

network comes to Cartwright and Harary’s ideal.

Strong balance is an attractive formulation in part because of a theorem due to

Harary [90], which says that any network displaying perfect strong balance is clus-

terable, meaning its nodes can be divided into some number of disjoint sets such that

all edges within sets are positive and all edges between sets are negative. Thus strong

balance provides a possible theoretical basis for insularity or cliquishness in social

networks: if networks naturally display strong balance, then they also naturally di-

vide into communities such that people like members of their own community and
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dislike members of other communities.

While strong balance is a sufficient condition for clusterability, however, it turns

out that it is not a necessary one, as shown by Davis [96], who demonstrated that

for a network to be clusterable in the sense above, one requires only a lesser form of

structural balance, namely that there be no closed loops in the network with exactly

one negative edge. We will refer to this condition as weak balance. Weakly balanced

networks are a superset of strongly balanced ones—every strongly balanced network

is necessarily also weakly balanced—but weak balance alone is enough to explain

insularity in networks and division into antagonistic communities.

Alternatively, causality might run in the opposite direction: if a population is in-

trinsically divided into two or more antagonistic factions—Montagues and Capulets,

Roundheads and Cavaliers, Hatfields and McCoys—then by definition the resulting

network will be balanced. Indeed, if there are exactly two factions then the network

will be strongly balanced, since every closed loop must traverse negative edges be-

tween the factions an even number of times. If there are three or more factions then

the network will, in general, be only weakly balanced.

Thuswe have two competing notions of what it means for a network to be balanced.

It is in part the lack of consensus about which of the two to adopt that makes it hard

to say whether real networks are in fact balanced or not.

The second reason for the lack of agreement is that in order to say whether a net-

work is balancedwe need to specify the scale onwhich balance is to be assessed. Even

if we can agree on a measure of balance, how do we knowwhether the observed level

is high or low? A natural approach is to compare the level to what we would expect

on the basis of chance, i.e., to the level in some kind of null model, but it is by no

means universally agreed what form such a null model should take.
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In this chapter we do several things. First, we consider a number of possible mea-

sures of both strong and weak balance. Some of the measures we discuss have been

proposed previously; some we propose here for the first time. Second, we consider

possible null models against which to compare levels of balance, choosing one we

believe to be appropriate for the questions we are interested in. Third, we use our

measures and our null model to quantify structural balance in real-world signed net-

works, finding that the networks we consider are indeed significantly more balanced,

at least according to our measures, than we would expect on the basis of chance.

The presence of structural balance in networks is interesting in its own right, for the

hints it gives us about the growth and function of social networks. But we can also

use our knowledge of balance to perform other tasks. As an example, we demonstrate

how it can be used to make predictions of the signs of unobserved edges. By simply

assigning edges the choice of sign that makes the overall network most balanced, we

show that we can predict the correct value of missing edge signs in test networks

substantially better than chance. As a corollary, this also gives us some insight about

which are the best measures of balance: all of the measures we consider perform

well in the sign prediction task, but the measure based the weak notion of balance

appears to perform somewhat better, perhaps indicating that weak balance is a better

description of the behavior of real-world networks than strong balance.

There has been a significant amount of previouswork to define and study structural

balance in signed networks [97], including methods and metrics motivated by spin

glasses [92, 98–100] and dynamical systems [101, 102], spectral methods [103–105],

and Harary’s “line index” of imbalance [106], as well as walk-based approaches [94,

107–110], of which our own proposedmethods can be considered an example. Rather

than giving a comprehensive review of all of these approaches, we focus here primar-
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ily on the walk-based approaches, several of which share features with our meth-

ods [94, 108–110], although there are some crucial differences as well. Perhaps the

approach most similar to ours is that of Singh and Adhikari [110], who propose a

measure of balance motivated by the notion of strong balance that accounts for the

lesser effect of long loops on social tension. We propose two similar measures, one

for strong balance and one for weak, though with a different choice of weighting for

short and long loops. Another important difference between our work and that of

Singh and Adhikari lies in the choice of null model, for which they use ensembles of

networks where positive, negative, and non-edges are placed randomly. By contrast,

in our work we randomize only the signs of the edges and not their positions, which

we argue is essential for proper quantification of statistically significant balance in

networks.

2.2. Methods

Real-world signed networks are rarely, if ever, perfectly balanced, so to study bal-

ance in such networks we need a way to quantify exactly how balanced they are. Fol-

lowing previous authors, we consider measures that quantify the number of closed

loops in a network that violate either the strong or the weak notion of balance, mean-

ing respectively that they have either an odd number of negative edges (strong bal-

ance) or exactly one negative edge (weak balance).

This alone, however, is not enough to define a practical measure because of an-

other feature of networks, that the number of closed loops of a given length increases

rapidly with length. If one were simply to count closed loops, the count would be

dominated by the longest loops in the network solely because they are more numer-
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ous. It seems unlikely, however, that long loops play much of a role in real-world

issues of balance. Few people really care if a friend of a friend of a friend is an en-

emy or not. Realistically, we expect that it is the short loops, not the long ones, that

dominate network balance. The second defining feature of the measures we consider,

therefore, is that they weight short loops more heavily than long ones.

2.2.1. Balance measures

Consider an undirected signed graph or network 𝐺. As defined in Sec. 1.2.2, a

closed walk in a such network is any path that begins and ends at the same node,

and a simple cycle is a closed walk that does not visit any node twice, other than

the start/end node, which is visited exactly twice. The strong definition of balance

then says that 𝐺 is a balanced network if, and only if, every simple cycle in 𝐺 has

an even number of negative signs. The weak definition of balance, by contrast, says

that a network is balanced if, and only if, it contains no simple cycles with exactly one

negative edge (meaning that any other number is fine). We can also say that individual

cycles are strongly or weakly balanced by the same criteria.

We can use these ideas to define a measure 𝐵(𝑧) of the level of imbalance in a net-

work thus:

𝐵(𝑧) =
∞

∑
𝑘=1

𝐼𝑘
𝑧𝑘 , (2.1)

where 𝐼𝑘 is the number of imbalanced simple cycles of length 𝑘 and 𝑧 > 1 is a free

parameter. This measure takes the form of a weighted count of imbalanced cycles in

which longer cycles get downweighted by a geometric factor 𝑧𝑘. Note that the sum

in (2.1) could in principle start at 𝑘 = 2 without changing the value of 𝐵(𝑧), since there

are no cycles of length one, but it will be convenient for subsequent developments to
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start at 𝑘 = 1.
We can define ameasure of this type for either theweak or strong notion of balance.

Let us look first at the weak version, meaning that 𝐼𝑘 will be the number of simple cy-

cles of length 𝑘 that contain exactly one negative edge. An immediate problem we

encounter with applying this measure is the difficulty of making practical estimates

of the number of simple cycles of a given length in an arbitrary network. There is no

elementary analytic approach for counting cycles, and numerical methods are ham-

pered by the very rapid increase of 𝐼𝑘 with 𝑘, which makes exhaustive enumeration

of cycles possible only for small 𝑘 and small networks. Instead, therefore, we approx-

imate the number of simple cycles by the number of closed walks, which is relatively

straightforward to compute. To count the number of weakly imbalanced closedwalks

of length 𝑘, we remove all the negatives edges from the network and then look at

the number of walks of length 𝑘 − 1 between the (former) endpoints of those edges.

Reinserting the negative edges again then closes the walks, creating loops of length

exactly 𝑘, each with exactly one negative edge.

Substituting closedwalks for simple cycles is a good approximationwhen the cycles

are short. Indeed, for cycles of length three it is exact: closed walks and simple cycles

are the same thing for length three. As the length increases the approximation gets

worse [111], but in practice this may not matter very much. The imbalance metric of

Eq. (2.1) discounts long loops, so the fact that our count is only approximate may not

make much difference.

To put the developments in mathematical terms, let us denote the structure of our

network by two 𝑛×𝑛 adjacencymatrices 𝐏 and 𝐍, for the positive and negative edges

respectively. Thus, matrix 𝐏 has elements 𝑃𝑖𝑗 = 1 if nodes 𝑖 and 𝑗 are connected

by a positive edge and 0 otherwise, and similarly 𝑁𝑖𝑗 = 1 if 𝑖 and 𝑗 are connected
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by a negative edge and 0 otherwise. Then our imbalance measure, which we will

denote 𝐵𝑊 (𝑧) with subscript 𝑊 to indicate weak balance, is given by

𝐵𝑊 (𝑧) = 1
2 ∑

𝑖𝑗
𝑁𝑖𝑗

∞
∑
𝑘=1

1
𝑧𝑘 [𝐏𝑘−1]𝑗𝑖 = 1

2 Tr[𝐍(𝑧𝐈 − 𝐏)−1], (2.2)

the factor of 1
2 compensating for the fact that the sum counts each loop twice, once in

each direction.

In fact, it will be convenient to introduce a rescaled parameter 𝛼 = 𝑧/𝜆𝑃 , where 𝜆𝑃

is the leading (most positive) eigenvalue of 𝐏. For 𝛼 > 1 this ensures that the sum

in (2.2) will converge, and we can write

𝐵𝑊 (𝛼) = 1
2 Tr[𝐍(𝛼𝜆𝑃 𝐈 − 𝐏)−1]. (2.3)

Another way to interpret the parameter 𝛼 is to write 𝛼−𝑘 = e−𝑘/𝑘0 , where 𝑘0 =
1/ ln𝛼 is a “decay length” that determines the length scale onwhich the contributions

from longer walks are discounted. Thus, for example, if we choose 𝛼 = 2, we have

𝑘0 = 1/ ln 2 ≃ 1.44 …, and three such decay lengths give us a 95% decay at distance a

little greater than 4.

An analogousmeasure𝐵𝑆(𝛼) can be defined for the strong notion of balance. Again

we approximate the number of imbalanced simple cycles by the number of closed

walks, which we can calculate as follows. Consider the matrix 𝐏 − 𝐍, which has

elements +1 for positive edges, −1 for negative edges, and 0 otherwise. The 𝑘th power

of this matrix counts walks of length 𝑘, times +1 if they contain an even number

of minus signs and −1 if odd. Thus the diagonal term [(𝐏 − 𝐍)𝑘]𝑖𝑖 is equal to the

number of balanced closed walks starting and ending at node 𝑖 minus the number of
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imbalanced ones. Summing over all 𝑖, we then have [111]

𝐵𝑘 − 𝐼𝑘 = 1
2𝑘 Tr[(𝐏 − 𝐍)𝑘], (2.4)

where 𝐵𝑘 and 𝐼𝑘 are the total number of balanced and imbalanced closed walks. The

initial factor of 1
2 again compensates for the fact that we count each loop in both di-

rections, and the factor of 1/𝑘 compensates for the fact that each loop is counted re-

peatedly starting from each of the 𝑘 points along its length.

Conversely, consider the matrix 𝐏 + 𝐍, which is simply the adjacency matrix of the

complete network, ignoring signs—every edge, positive or negative, is represent by a

+1 in this matrix. The total number of closed walks of length 𝑘, both balanced and

imbalanced, is given by

𝐵𝑘 + 𝐼𝑘 = 1
2𝑘 Tr[(𝐏 + 𝐍)𝑘]. (2.5)

Subtracting (2.4) from (2.5) and dividing by 2, we get an expression for the number of

imbalanced loops:

𝐼𝑘 = 1
4𝑘 Tr[(𝐏 + 𝐍)𝑘] − 1

4𝑘 Tr[(𝐏 − 𝐍)𝑘]. (2.6)

Substituting this into Eq. (2.1) then gives us our measure of strong imbalance:

𝐵𝑆(𝑧) = 1
4

∞
∑
𝑘=1

1
𝑘𝑧𝑘 Tr[(𝐏 + 𝐍)𝑘] − 1

4

∞
∑
𝑘=1

1
𝑘𝑧𝑘 Tr[(𝐏 − 𝐍)𝑘]. (2.7)

Making use of the matrix identity

∞
∑
𝑘=1

Tr𝐌𝑘

𝑘 = − log det(𝐈 − 𝐌), (2.8)
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this can also be written as

𝐵𝑆(𝑧) = 1
4 log det[𝑧𝐈 − (𝐏 − 𝐍)]

det[𝑧𝐈 − (𝐏 + 𝐍)], (2.9)

which is valid whenever the sums in (2.7) converge. As with 𝐵𝑊 (𝑧) it is convenient

to reparametrize this expression in terms of 𝛼 = 𝑧/𝜆∗, where 𝜆∗ is the larger of the

leading eigenvalues of 𝐏 + 𝐍 and 𝐏 − 𝐍, so that

𝐵𝑆(𝑧) = 1
4 log det[𝛼𝜆∗𝐈 − (𝐏 − 𝐍)]

det[𝛼𝜆∗𝐈 − (𝐏 + 𝐍)], (2.10)

which ensures convergence of the sums when 𝛼 > 1.

2.2.2. Previous measures of network balance

A number of previous researchers have also proposed measures of structural bal-

ance in networks. Estrada and Benzi [94] (henceforth EB) define a measure

𝐵EB = 1 − 𝐾
1 + 𝐾 , (2.11)

where

𝐾 = ∑𝑘 Tr[(𝐏 − 𝐍)𝑘]/𝑘!
∑𝑘 Tr[(𝐏 + 𝐍)𝑘]/𝑘! . (2.12)

The quantity𝐾 is in someways analogous to ourmeasure of strong imbalance, Eq. (2.9),

but it downweights longer loops by a larger factor 1/𝑘!, compared to the geometric

factor 1/𝑧𝑘 that we employ. This results in some elegant mathematical expressions

but has the disadvantage that there is no way to set the length scale on which loops

are discounted. EB also define their measure not by 𝐾 itself but by the formula (2.11),
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which can be interpreted as a ratio of weighted counts of unbalanced and balanced

loops.

Singh and Adhikari [110] (henceforth SA), in considering the measure of EB, ob-

ject to the weight factor 1/𝑘! and propose instead to use a geometric factor as we do,

defining a measure

𝐵SA(𝑧) = ∑𝑘 Tr[(𝐏 − 𝐍)𝑘]/𝑧𝑘

∑𝑘 Tr[(𝐏 + 𝐍)𝑘]/𝑧𝑘 . (2.13)

This is again somewhat analogous to Eq. (2.9), though it is not directly based on the

actual number of imbalanced loops, andmoreover appears to neglect the factor of 1/𝑘
that accounts for the 𝑘 possible starting points around a loop of length 𝑘.

We compare the performance of the four measures discussed here, our own mea-

sures 𝐵𝑊 and 𝐵𝑆 and the measures of EB and SA, on a number of problems concern-

ing balance in networks.

2.2.3. Null models

As discussed in Sec 2.1, measures of imbalance are difficult to employ on their own

because we lack a scale on which to calibrate their values. If we calculate a value of,

say, 𝐵𝑊 = 0.5 for a particular network how dowe know if that value is large or small?

One way to answer this question is to compare our numbers with values calculated

in an appropriate null model.

The broader question we are addressing in when calculatingmeasures of balance is

whether the arrangement of positive and negative edgeswithin a network is somehow

special, different fromwhatwewould expect on the basis of chance. Since our focus is

on the arrangement of signs within the larger network, and not on the arrangement of

edges per se, the natural null model to consider is one in which the signs in a network
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are randomized while keeping the locations of the edges fixed. In the particular null

model we consider here, we also keep the overall number of positive and negative

signs fixed, to make the randomized networks more directly comparable with the

original.

This nullmodel or ones similar to it have beenused in a number of previousworks [112–

114], but it is not the only possible choice [110, 115]. Singh and Adhikari [110], for ex-

ample, employ a null model in which both the signs and the positions of the edges are

randomized. This results in networks whose structure, in terms of edge placement, is

very different from that of the original network, which makes it difficult to know how

much of any observed difference in balance is due to the pattern of signs and how

much to the edge positions. One could also consider a model in which the edge posi-

tions are randomized but the signs on the edges are fixed, although this suffers from

the same problems as the model of Singh and Adhikari. The null model we employ

avoids these difficulties by randomizing the signs only.

Arguably, in many real-world situations—coworkers in an office, for instance, or

children in a school class—one indeed has no choice about who one interacts with, so

that the positions of the network edges are fixed. The only degree of freedom is the

nature of the interactions, whether they will be friendly or antagonistic. Amodel that

fixes the edge positions but varies their signs is thus a natural choice in such cases.

2.3. Results

As examples of the techniques introduced here, we consider their application to

two data sets, one from the field of international relations, representing positive and

negative ties between countries [116], and the other from sociology, representing ties
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between a group of university freshmen [117]. For both data sets we use ourmeasures

to quantify structural balance, and for the international relations data we also test our

ability to make predictions of the signs of unobserved edges.

The international relations data set contains many details of inter-country interac-

tions over a period of several decades, but here we focus on two aspects in particular:

alliances and wars. We construct a set of signed networks, one for each year in the 70-

year period from 1938–2008, inwhich nodes represent countries and two countries are

connected by a positive tie if they have a formal alliance in that year and a negative

tie if there is a militarized dispute between them. In the rare cases in which countries

have both an alliance and awar in the same year we take the corresponding edge to be

negative. (The same methodology was used previously in [118].) Only countries for

which we have data are included in our networks. The number of nodes ranges from

25 to 155 with a median of 105, and the number of edges ranges from 46 to 1230 with

a median of 615. The signs of the edges are predominantly positive—most countries

have good relations. The fraction of negative edges ranges from 1.8% to 45.1% with a

median of 5.5%. (The outliers with the largest number of negative edges all fall dur-

ing the Second World War. The median fraction of negative edges between 1940 and

1945 was 44%.)

The university freshman data set describes relationships between a group of first-

year students, all at the same university, and consists of networks collected at seven

different time points. At each time point the students were asked to rate their rela-

tionships with all other students in the group on a five-point scale of (1) “best friend”,

(2) “friendship”, (3) “friendly relationship”, (4) “neutral relationship”, or (5) “trou-

bled relationship”. Students could also say they did not know the person in question.

Further discussion of the scale can be found in [117]. We construct a set of signed
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networks, one for each time point, in which two students are connected by a positive

tie if each rates the other as a 3 or lower, and a negative tie if one or both rates the

other as a 5. Neutral relationships are not represented in the network, which means

that there is no difference in our representation between having a neutral relationship

and having no relationship at all. While this is not ideal, it seems like the best strat-

egy given that there is no principled way to decide whether a neutral edge should be

considered positive or negative. Of the seven networks constructed in this way, we

discard three because of sparse or missing data, leaving four that we analyze here.

The number of nodes in the networks is 34 at all time points and the number of edges

ranges from 174 to 227 with a median of 225.5. The fraction of negative edges ranges

from 12% to 14% with a median of 13%.

2.3.1. Balance relative to the null model

To quantify the level of balance in a network, we compute the ratio between the

value 𝐵 of each metric and the average value ⟨𝐵⟩ of the same metric on a selection of

randomized networks drawn from the null model described in Section 2.2.3:

𝜂 = 𝐵
⟨𝐵⟩. (2.14)

Figure 2.1 shows the values of this ratio as a function of time for the international re-

lations networks for the four balance metrics considered in this chapter, along with

the mean for the null model and an indication of the fluctuation of the results about

that mean (the bands shown are two standard deviations). As the figure shows, in

each case actual imbalance values, for all measures, are far below what would be ex-

pected for the null model. (An alternative way to represent the same results would
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be to compute a 𝑧-score, but we prefer the representation of Fig. 2.1 since it shows ex-

plicitly the size of the fluctuations in the null-model values.) Figure 2.2 shows results

from the same experiment performed on the university freshman networks.

For this calculation the metrics 𝐵𝑊 and 𝐵𝑆 are both computed with a parameter

value 𝛼 = 2, as discussed on Section 2.2.1, and we use the corresponding value for

the parameter in the metric of Singh and Adhikari (SA) [110] as well. (The metric

of Estrada and Benzi (EB) [94] has no free parameters.) We have also experimented

with a range of alternative parameter values, but find that the results do not depend

strongly on our choice.

Our goals here are two-fold. First, wewish to see if real networks are indeed unusu-

ally balanced relative to an appropriate null model. Second, if they are balanced in

this sense, we wish to see which of our notions of balance most clearly distinguishes

real networks from their null model counterparts. As Fig. 2.1 shows, all four metrics

give extremely low 𝜂 values relative to the null model, all of which would be statisti-

cally significant at the 𝑝 < 0.05 level in all years if we assume a normal distribution

within the null model. The most significant values occur during the World War II pe-

riod, specifically between 1940 and 1945, and this effect is especially pronounced for

the three metrics based on the strong notion of balance. As mentioned in the intro-

duction, strong balance is expected in cases where a network is divided into just two

main factions, which was the case duringWorldWar II. Note that, during this period,

𝜂 is actually greater than in other periods, but that the values for the null model have

a much lower standard deviation than in other years, making the results for the real

networks more statistically significant relative to the null model.

Figure 2.2 for the university networks shows similar behavior, although the 𝜂 values

are less extreme than those for the international relations networks. Thismight be due
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Fig. 2.1. Level of imbalance in the international relations networks for 1938–2008, as
measured by the ratio 𝜂 defined in Eq. (2.14), for each of the four balance measures
studied here. The dotted lines indicate the null model mean, which falls at 𝜂 = 1 by
definition, and the surrounding bands denote two standard deviations of the fluctu-
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to a lower level of factionalism for the students than for international relations, or to

measurement error, or a combination of both.

The university data set also lends itself to being represented as a weighted, directed

network, and one could consider generalizations of the methods presented here to

such networks, although this is outside the scope of the present work.

2.3.2. Sign prediction

Consider a situation in which we know the positions of the edges in a signed net-

work, but we know the signs of only some of the edges. The signs of the remain-

ing edges are missing from our data, perhaps because they were not measured or

recorded, or because our measurements are unreliable. Guha et al. [112], in studies of

trust in online communities, suggested that it should be possible, using the patterns

of known signs, to make predictions about the unknown ones, and in recent years

a number of authors have developed algorithms to do this [105, 108–110, 119, 120].

(Looking for correlations between signs is not the only way to perform prediction—

there are a whole range of network reconstruction algorithms that could be adapted

for signed networks [121]—but our focus here is specifically on the use of known signs

to predict unknown ones.)

Anatural approach is to start from the assumption that the network is balanced [110,

119]. Consider the simple case where a sign is missing from just a single edge in the

network and our goal is to guess the value of that sign given all the others. We as-

sume that the best guess for the missing sign is the one that will make the network

most balanced. This leaves open the question of which metric we should use to quan-

tify balance, which we address by performing a cross-validation study in which we
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artificially remove one sign from an otherwise complete network, then attempt to pre-

dict its value using each of our metrics in turn. Repeating this process for every edge

in the network, we measure the average success of our predictions for each metric.

This “single edge” prediction test is arguably unrealistic—in most real-world sce-

narios there will be more than one sign missing from any incomplete data set, a point

that we discuss further in Section 2.3.3. It is, nonetheless, a good starting point by

virtue of being relatively computationally tractable for networks of the size consid-

ered here, which typically have a few hundred edges. We can just calculate directly

the value of each of our balance metrics for the two possible choices of each sign and

take the choice that gives the higher balance.

For larger network sizes this brute-force approach becomes more computationally

demanding, but with a little ingenuity the calculation can still be done. The calcula-

tion of our metrics 𝐵𝑊 and 𝐵𝑆 relies on the computation of either a matrix inverse

(for 𝐵𝑊 ) or a matrix determinant (for 𝐵𝑆), and there exist formulas that allow one to

quickly recalculate inverses and determinants when only a few elements of a matrix

are altered, as in this case. Consider, for instance, the weak balance measure 𝐵𝑊 de-

fined in Eq. (2.2). The primary computational task in evaluating this measure is the

calculation of the resolvent matrix 𝐑 = (𝑧𝐈 − 𝐏)−1. We can speed up this calculation

as follows. First, we directly compute 𝐑 for the original network and use it to evalu-

ate 𝐵𝑊 . This is a relatively slow operation: computing the inverse of an 𝑛 × 𝑛 matrix

takes O(𝑛3) time in a naive implementation, and modestly better in more complex

schemes. Then we consider in turn each edge in the network and compute the value

of 𝐵𝑊 when the sign of that edge is reversed. Reversing the sign of an edge between

nodes 𝑖 and 𝑗 alters the values of 𝑃𝑖𝑗 and 𝑃𝑗𝑖 by ±1, a change that we can write in the
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low-rank form

𝐏′ = 𝐏 ± 𝐔𝐕, (2.15)

where 𝐔 is an 𝑛 × 2 matrix with all elements zero except 𝑈𝑖1 = 𝑈𝑗2 = 1, and 𝐕 is a

2 × 𝑛 matrix with all elements zero except 𝑉1𝑗 = 𝑉2𝑖 = 1. Then the Woodbury matrix

identity [122] tells us that the new value of the resolvent 𝐑′ = (𝑧𝐈 − 𝐏′)−1 is given by

𝐑′ = 𝐑 ± 𝐑𝐔(𝐈 ∓ 𝐕𝐑𝐔)−1𝐕𝐑, (2.16)

which requires only the trivial inversion of the 2 × 2 matrix inside the brackets. Eval-

uation of thematrix products 𝐑𝐔 and 𝐕𝐑 and evaluation of the 𝑛2 elements of 𝐑′ all

take O(𝑛2) time, so the running time to calculate the new value of 𝐵𝑊 is also O(𝑛2),
a substantial improvement on the O(𝑛3) time needed to calculate it from scratch.

Similarly for the strong balance measure 𝐵𝑆 it is possible to evaluate the measure

rapidly upon the change of single sign. Thismeasure, defined in Eq. (2.9), involves the

calculation of the determinant of the matrix 𝐀 = 𝑧𝐈 − (𝐏 − 𝐍), whose value changes

upon the flip of a sign to

𝐀′ = 𝐀 ± 2𝐔𝐕, (2.17)

where 𝐔 and 𝐕 are as previously defined. (The determinant in the denominator of

Eq. (2.9) does not change when a sign is flipped, so there is no need to recalculate it.)

Then the matrix determinant lemma [123] states that the new value of the determinant

is related to the old one by

det(𝐀 ± 2𝐔𝐕) = det(𝐀)det(𝐈 ± 2𝐕𝐀−1𝐔). (2.18)
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Once one has the inverse 𝐀−1 this computation can be performed quickly. The 2 × 2
matrix 𝐈 ± 2𝐕𝐀−1𝐔 can be calculated in time O(𝑛2) and its determinant in constant

time, so again the overall calculation takes O(𝑛2) time. By contrast, calculating the

determinant directly from scratch takes O(𝑛3) time (or slightly better using the fastest

algorithms), so again we have a substantial improvement in speed over the direct cal-

culation. For the other balance metrics considered here (EB and SA) there are similar

shortcuts that can speed up calculations for larger networks, although wewill not use

them here.

Figure 2.3 shows the results of single-sign prediction calculations for our interna-

tional relations networks as a function of time, for each of our four measures of bal-

ance. The vertical axis in the figure measures the fraction of all signs predicted cor-

rectly, also known as the accuracy. By contrast with the results shown in Figs. 2.1

and 2.2, performance on this task clearly varies between the different balance met-

rics, and in particular the measure 𝐵𝑊 based on the weak notion of balance performs

significantly better than any of the strong balance measures.

One must be a little careful about these results, however, because, as mentioned

previously, positive edges outnumber negative ones by a wide margin in most cases.

This means that one can achieve quite high prediction accuracy simply by guessing

that every edge is positive. The magenta curve in Fig. 2.3 represents this baseline

level of accuracy and it is against this curve that the others should be judged. Thus,

for example, the measure of EB, which gave generally good performance in Fig. 2.1,

performs least well in terms of sign prediction accuracy and in some cases is actually

below the baseline estimate, particularly in the latter half of the data set. Meanwhile,

the weak balance measure 𝐵𝑊 substantially outperforms the other measures and the

baseline, and appears to give the best sign prediction performance of the measures
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considered.

Figure 2.4 shows an alternativemeasure of prediction performance, the normalized

mutual information [124]. Often used to quantify the success of community detection

algorithms on networks, normalizedmutual information (NMI) is an information the-

oretic measure that reflects the amount of information about the true signs of edges

that is contained in the predicted signs. If the predicted signs match the true signs

exactly, the NMI is 1; if there is no correlation between true and predicted signs it is

zero.

The (unnormalized)mutual information between true signs 𝑠𝑡 andpredicted signs 𝑠𝑝

is defined as

𝐼(𝑠𝑡; 𝑠𝑝) = ∑
𝑠𝑡=±1
𝑠𝑝=±1

𝑃(𝑠𝑡, 𝑠𝑝) log 𝑃(𝑠𝑡, 𝑠𝑝)
𝑃 (𝑠𝑡)𝑃 (𝑠𝑝). (2.19)

The joint probabilities 𝑃(𝑠𝑡 = ±1, 𝑠𝑝 = ±1) can be calculated straightforwardly by

simply counting the fraction of times in our tests that each of the four possible config-

urations of the true and predicted signs occurs, and similarly for the marginal prob-

abilities 𝑃(𝑠𝑡 = ±1) and 𝑃(𝑠𝑝 = ±1). The normalized mutual information is then

calculated by dividing the unnormalized value by the average of the entropy 𝐻(𝑠) =
− ∑𝑠 𝑃(𝑠) log𝑃(𝑠) of the two variables 𝑠𝑡 and 𝑠𝑝 [124]:

NMI = 𝐼(𝑠𝑡; 𝑠𝑝)
1
2 [𝐻(𝑠𝑡) + 𝐻(𝑠𝑝)] . (2.20)

This ensures that the normalized value falls between zero and one.

As shown in Fig. 2.4, the normalized mutual information for sign prediction using

all four of our balance measures is better than the baseline estimate made by simply

guessing that all edges have the majority positive sign—the latter automatically gets
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Fig. 2.3. Fraction of signs predicted correctly for each of the international relations
networks in the single sign prediction task, using each of the four balance measures
studied here.

an NMI of zero, since it is completely uncorrelated with the true signs of the edges.

Again the weak balance measure 𝐵𝑊 does best in most years, in some cases by a wide

margin.

Comparing our results from this section with those on overall balance from Sec-

tion 2.3.1, we see something of a mixed picture. Overall balance appears to be similar

for all metrics, except during the SecondWorldWar era, when therewere two primary

factions and the strong notion of balance seems to be favored. Our sign prediction re-

sults, on the other hand, seem to give a clear edge to the weak notion of balance, even

during the war years. What we can say with some clarity, however, is that these net-

works are more balanced than one would expect on the basis of chance, and one can

use this fact to predict the signs of edges with good accuracy.
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Fig. 2.4. Success in the single sign prediction task, as measured using normalized
mutual information, for each of the four balance measures studied here.

2.3.3. Prediction of multiple edge signs

In the calculations of the previous section, we tested our ability to predict a single

unknown sign in an otherwise known network. This single sign prediction challenge

has the advantage of being relatively computationally tractable, but, as we have ar-

gued, it is not entirely realistic. In real-world data sets it is likely that many signs

will be missing from our network simultaneously, not just one, and hence we need

a way to predict multiple signs simultaneously. We can approach the latter problem

in a similar manner to single edge prediction, by selecting the combination of signs

that gives the lowest imbalance, but the calculation rapidly becomes intractable as the

number 𝑘 of signs to be predicted becomes large, since there are 2𝑘 different combi-

nations of signs to test.

To get around this issue, we employ simulated annealing to optimize balance over
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sign configurations. We perform aMarkov chainMonte Carlo simulation inwhichwe

initially give randomvalues to all of the unknown signs, thenwe repeatedly select one

of them at random and consider flipping its value, from positive to negative or vice

versa. We can use any one of our imbalance metrics as an energy function and accept

or reject sign flips using a standard Metropolis–Hastings acceptance probability with

temperature 𝑇 . We then lower the temperature from a high initial value 𝑇0 according

to the exponential cooling schedule 𝑇 = 𝑇0 e−𝑡/𝜏 , where 𝑡 is the number of Monte

Carlo steps performed so far and 𝜏 is the annealing time-scale. The calculation ends

when the state of the system stops changing and we take the final state to be our

prediction of the unknown signs.

For the calculations presented here we use parameter values 𝑇0 = 0.1 and 𝜏 = 104

and run our calculations for 106 Monte Carlo steps. For each network studied, we

remove varying fractions of the signs and then attempt to predict those removed, re-

peating the entire calculation 100 times for each fraction. For the imbalance measures

used in this study the calculation can be sped up significantly by rapidly computing

the new energy value upon the flip of a sign using the Woodbury or matrix determi-

nant formulas again. Here we focus specifically on the measures 𝐵𝑊 and 𝐵𝑆. Since

these measures are constructed in an identical manner apart from the criteria they

use for balanced loops, they give us an opportunity to perform an apples-to-apples

comparison of strong and weak notions of balance, to see which gives better sign pre-

diction. Similar calculations would, however, certainly be possible for the EB and SA

metrics considered in previous sections.

Figures 2.5, 2.6, 2.7, and 2.8 show accuracy and NMI results from calculations for

three of our international relations networks, corresponding to the years 1944 (during

the SecondWorldWar, where 43% of signs are negative), 1950 (a few years afterward,
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Fig. 2.5. Fraction of signs predicted correctly in the multiple sign prediction task us-
ing the weak balance measure 𝐵𝑊 , as a function of the fraction of unknown signs
for the international relations networks in the years 1944, 1950, and 1980, along with
baseline levels derived by simply assuming all signs to be positive. Bands indicate 1𝜎
errors calculated from the distribution of values over 100 randomized repetitions of
the calculation.

where 13% of signs are negative), and 1980 (relative peace, where 5% of signs are

negative). Each plot shows three separate curves for the three networks, as a function

of the fraction of signs removed from the network. For the accuracy plots we also

show the baselines set by assuming that all unknown signs are positive. (For the NMI

plots the equivalent baselines are by definition at zero.)

As the fraction of signs removed gets larger (and hence the amount of information

remaining to learn from gets smaller) we naturally expect the performance of the al-

gorithm to fall off. Figures 2.5 and 2.6 show results for the weak balance measure 𝐵𝑊
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Fig. 2.6. Normalized mutual information for the multiple sign prediction task using
the weak balance measure 𝐵𝑊 , as a function of the fraction of unknown signs for
the international relations networks in the years 1944, 1950, and 1980. The baseline
level of normalized mutual information if we guess all signs to be positive is zero by
definition. Bands indicate 1𝜎 errors calculated from the distribution of NMI values
over 100 randomized repetitions of the calculation.

and reveal that predictions are reasonably accurate for all three years studied for frac-

tions of predicted signs up to about 50%, although the baseline accuracy for 1980 is so

high that it is comparable with the predictions. (This is simply because a very large

fraction of signs are positive in this network.) Normalized mutual information is also

well above the baseline level of zero for fractions of predicted signs up to about 50%.

Beyond the 50% mark, however, prediction accuracy rapidly falls to close to zero.

Figures 2.7 and 2.8 show the corresponding results for the strong balance mea-

sure 𝐵𝑆, and comparing the results for the twomeasures reveals an interesting overall
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Fig. 2.7. Fraction of signs predicted correctly in themultiple sign prediction task using
the strong balance measure 𝐵𝑆, as a function of the fraction of unknown signs for the
international relations networks in the years 1944, 1950, and 1980.

picture. Theweakmeasure does betterwhen predicting smaller numbers of signs, but

suddenly fails around the 50% mark, beyond which it does no better (in fact worse)

than chance. The strong measure, by contrast, does less well when fewer than 50% of

signs are removed, but manages at least modestly good performance well beyond the

50% point, thereby outperforming theweakmeasure in this regime (although it is still

not very good). These trends are especially clear in the 1944 network, for which ar-

guably the strongmeasure makes more sense since, as discussed earlier, international

relations were dominated by two main factions during that era.

The failure of the weak balance metric to predict unknown signs beyond about the

50% mark is particularly interesting. It arises through a competition between two
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different minima of the metric. One minimum approximately corresponds to the true

assignment of signs, and if the algorithm finds this minimum it will succeed, at least

partially, in the sign prediction task. The other minimum is a trivial one in which

all, or almost all, unknown signs are negative. If the fraction of unknown signs is

large enough, the latter state will contribute at least two negative signs to most closed

loops in the network, meaning that most loops are balanced (according to the weak

definition) and hence our imbalance score will approach its lowest possible value of

zero. As the fraction of unknown signs grows, there comes a point at which this trivial

minimum outcompetes the nontrivial one and the algorithm no longer predicts signs

with success any better than chance. This point—the discontinuitywe see in Fig. 2.6—

is in effect a zero-temperature first-order phase transition between competing ground

states. No similar argument applies to the strong balance measure, and hence we see

no sharp phase transition in that case.

Overall, we conclude that successful prediction of multiple edge signs is possible

using our balance measures, with the weak notion of balance again giving better per-

formance than the strong notion, at least up to the phase transition mentioned above,

beyond which the strong balance measure is a better choice. In the particular net-

works examined here, performance is stronger for the years 1944 and 1950 than for

1980, perhaps because of the starker conflicts and alliances during and immediately

after the war, compared with the relative peace of the early 1980s.

2.4. Conclusion

In this chapter, we have studied the phenomenon of structural balance in signed

networks, whereby some configurations of signed edges are more common than oth-
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Fig. 2.8. Normalized mutual information for the multiple sign prediction task using
the strong balance measure 𝐵𝑆, as a function of the fraction of unknown signs for the
international relations networks in the years 1944, 1950, and 1980.

ers. We have proposed two measures of structural balance based on previously hy-

pothesized notions of “weak” and “strong” balance and compared their performance

against each other and previously proposed measures in a number of tasks. Specifi-

cally, we have examined the behavior of the various measures on two distinct sets of

networks representing alliances and conflicts between countries during the 20th and

21st centuries, as well as university freshman cohort relationships, testing in the first

instance to see simply by which measures these networks are most balanced. We find

that all measures show a significant level of balance in all of the networks we study.

We further test our measures on the international relations data by comparing their

ability to predict unknown edge signs in a set of cross-validation experiments, in
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which we remove either a single sign or multiple signs from the network and attempt

to predict themissing sign(s) by choosing those values that maximize balance by each

of our metrics. We find that prediction of unknown signs is possible, with accuracy

substantially better than a random guess, and in particular that our measure based

on the weak notion of balance performs well in practice.
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Chapter 3.

Multiscalar Diversity in Networks

with Distributional Metadata

In this chapter, we return to discussing methods for characterizing structure in net-

works with metadata, this time looking at spatial networks with distribution-valued

metadata. Perhaps the most natural setting in which this type of data arises is when

analyzing socioeconomic data such as distributions of incomeor ethnicity across space,

and so we focus our attention on this application. We will see that approaching spa-

tial socioeconomic data from a network lens will reveal new patterns that are masked

by variability in spatial scales, and that this perspective can also provide results that

complement findings from more traditional spatial analysis.

3.1. Introduction

From analyzing demographic polling behavior [125], to epidemic vulnerability of

populations [126], to disparities in access to nutritious food [127], spatial data on social
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and economic attributes of populations is central to many problems in modern data-

driven science. In particular, assessing the extent to which socioeconomic properties

differ across regions of space is an important topic for understanding the spatial dy-

namics of production and consumption [128], the manifestation of segregation [129],

and the spatial decomposition of inequality [130]. There has thus been extensive re-

search to understand how socioeconomic indicators fluctuate across space, which has

involved the development of many sophisticated mathematical techniques to quan-

tify variation in spatial data.

A major challenge with these methods is determining the scale at which to probe

spatial variations, noting that populations tend to disperse heterogeneously across

space [131]. Extreme spatial inhomogeneity in population density causes inconsis-

tencies in interpretability of results based solely on distance, as the pace of economic

activity is largely determined by population [132], and space is primarily relevant

insofar as it relates to the number of “intervening opportunities” it provides eco-

nomic agents with [133]. As a result, various methods have been designed to ac-

count for heterogeneous populations in the analysis of spatial data, some of which

include density-equalizing maps [134] and methods based on dasymetric mapping

[135]. As an additional complication, there is no apriori way to aggregate regions of

space for statistical analysis (an issue that is more precisely quantified by the Modi-

fiable Areal Unit Problem, or MAUP for short) [136]. Consequently, finding suitable

scales for various problems in spatial analysis is an open problem that has received

extensive interest due the sensitivity of results to the chosen scale [137]. To make

matters worse, policy interventions take place at the level of artificial government-

designated boundaries, and so analysis that ignores these boundaries may be irrel-
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evant for certain implementation-driven studies [138]. Here, we assess relationships

between official boundaries (census tracts) in a network-based manner, circumvent-

ing the aforementioned spatial issues by considering topological distance rather than

geographic distance, which also allows for the development of insights at the scale of

regions designated for policy intervention.

Another important avenue of research investigates what measures to use to quan-

tify spatial disparities in population data. For nominal distributions, such as race or

religious affiliation, there are a wide variety of measures of qualitative variation that

take the form of segregation indices between disjoint groups [139]. Some of these in-

dices can also be used with ordinal or interval data such as population counts over

income brackets or education levels [129], but few of these measures have the flexi-

bility to accommodate all types of data on the same scale or generalize to more than

two regions. Measures based on information theory can also be effectively applied

to distributional socioeconomic data [140, 141], having the additional benefit of being

founded in fundamental statistical principles, and allowing in some cases an exten-

sion to multiple distributions. We develop here a novel approach based on the Gener-

alized Jensen-ShannonDivergence (GJSD) [142] to compare distributional data, which

has a number of advantages over other approaches, including flexibility for all distri-

butional data types and an intuitive theoretical interpretation.

We note other approaches proposed to analyze spatial data using networks or in-

formation theoretic principles, as there has been similar research in regional science,

economic and political geography, urban planning, and spatial analysis. There has

been extensive work on using spatial network methods in urban science [143, 144],
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with a focus oriented mostly towards the structure of urban form and the dynamics

of urban growth. Numerous methods based on spatial aggregation of neighboring

regions within the context of multiscalar diversity indices have been developed to

assess the spatial manifestation of diversity [145, 146], but rarely do these accommo-

date distributions or multiple data types. Additionally, there is a body of research

constructing spatial correlation and aggregation methods based on information theo-

retic measures [147, 148]. However, these analyses thus far have been limited primar-

ily to racial segregation and ecological diversity, and focus on relationships between

individual regional entitieswithin larger clusters rather thanmulti-distribution corre-

lations as in this study. Furthermore, these measures may not be as easily interpreted

in terms of a simple statistical process, in contrast to our method, and many of these

measures are not adaptable to all data types, which limits their capability in compar-

ative analysis.

In this chapter, we develop a novel approach for studying spatial variation in distri-

butional socioeconomic data based on regional adjacency networks and information

theory, and apply our methodology to the network of adjacent census tracts in the

continental US through a few experiments. We first examine two-point correlations in

our distributional distance measure with respect to path length across the adjacency

network, finding a universal decay pattern with similar scaling exponents and finite

size cutoffs across a variety of socioeconomic attributes. We also use this method-

ology to assess disparity with respect to various socioeconomic attributes across US

counties by generalizing our measure to the comparison of more than two regions,

finding high regional dependence and correlations in our measure for multiple vari-

ables. Finally, we discuss a new means for spatial aggregation of regions through
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community detection at multiple resolutions based on our measure, clustering the

census tract network for the city of Chicago into meaningful regions of homogeneous

socioeconomic characteristics at different cluster size scales. Our methods provide a

new means for analyzing spatial variation in all types of distributional data within

a universal framework that circumvents limitations in traditional spatial measures.

The results from our experiments point to new ways of thinking about how socioe-

conomic characteristics manifest across space, and can be applied to a wide range of

problems across the social sciences.

3.2. Methods

3.2.1. Census tract data and network construction

In order to study a wide variety of socioeconomic attributes at high spatial resolu-

tion, we use US Census data at the tract level from the American Community Survey

in 2018 [149, 150]. TheAmericanCommunity Survey continuously samplesUS house-

holds to collect data on various socioeconomic and demographic characteristics of the

population, and it is the largest survey at the household level that is conducted by the

Census Bureau. We choose to analyze data at the level of census tracts because they

encapsulate highly localized populations, represent officially designated regions rel-

evant for policy intervention [151, 152], and have roughly equal populations (the 25th
and 75th percentiles in terms of population are 2971 and 5572 for the set of tracts used

in the analysis). We aggregate distributional data on educational attainment, home

price, income, industry of occupation, and race in order to assess spatial variability

across a range of different variables. The techniques we develop can be adapted for
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continuous distributional data, but here we use the available binned data for housing

prices and incomes, leaving to future work the estimation of the full corresponding

continuous distributions, as this is a difficult problem on its own [153, 154].

In order to quantify variation in the discrete distribution of a variable 𝑋 across

tracts, we encode its possible values as a vector 𝑞𝑋, whichmay be nominal, ordinal, or

interval in nature depending on the variable 𝑋 being analyzed. For census tract 𝑖, we

denote its distributional vector of values for the variable 𝑋 as 𝑞(𝑖)
𝑋 , with the particular

value for an entry 𝑥 denoted 𝑞(𝑖)
𝑋 (𝑥). These tract distributional vectors are normalized,

and satisfy ∑𝑥 𝑞(𝑖)
𝑋 (𝑥) = 1 for all tracts 𝑖 and variables 𝑋, making 𝑞(𝑖)

𝑋 (𝑥) a probability

mass function over realizations 𝑥 of 𝑋. For example, if in census tract 5 there are 300
persons classified asAsian out of 1000 total persons, then 𝑞(5)

𝑟𝑎𝑐𝑒(𝐴𝑠𝑖𝑎𝑛) = 0.30. Details

on the variables analyzed are given in Table 3.1.

The nearest-neighbor network representation for census tracts is constructed with

TIGER shapefile data [155], and two tracts are neighbors in the network if they share

a common length of border or a corner. Only tracts in the continental USwere consid-

ered for this analysis in order to ensure a single connected component for two-point

correlation analyses. After removing tracts with corrupted or incomplete data, the

final network had 70, 201 nodes and 197, 841 edges (for an average degree of 5.6). The
overall goal in terms of practical relevance of the proposed methods is for local spa-

tially targeted interventions (e.g. at the scale of counties, cities, or neighborhoods,

with tracts as the fundamental subdivision), and so we are only presently interested

in relatively short range correlations, hence the choice to construct the underlying

network based on spatial adjacency. However, the method we present for comparing
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local distributions of socioeconomic variables can be applied to any pair of regions

(whether or not they are adjacent), which is in fact what is done for our two-point

correlation analysis, and so any network structure signifying a relationship between

two regions could be used in this framework. For instance, one could construct the

network based on population migration flows from region to region, which would

no longer necessarily have geographically localized edges, but could be used to see

whether or not people move homes between regions with similar or different socioe-

conomic properties.

As the analyses performed in this study are intentionally topological in nature,

rather than geographic, we do not focus on spatial dimensions. However, for better

contextualization of our results for those unfamiliar with the spatial extent of subdi-

visions within the US, we report summary statistics from our network dataset here.

For the subset of tracts used in the analysis, the distribution of land areas is heav-

ily right-skewed, with the tracts in the 10th percentile, median, and 90th percentile

having areas of 1.0 km2, 6.4 km2, and 269.2 km2 respectively. If we consider the set

of tracts kept in the filtered dataset, and construct their (potentially incomplete) as-

sociated counties, the distribution of land areas is also right-skewed, with the coun-

ties in the 10th percentile, median, and 90th percentile having areas of 953.0 km2,

1911.4 km2, and 4863.0 km2 respectively. The high level of heterogeneity we see in

the land area statistics at both the tract and county level further illustrates the util-

ity of an approach to socioeconomic correlations that is spatial scale-independent, as

adminstratively equivalent regions clearly can have drastically different sizes.
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3.2.2. Generalized Jensen-Shannon divergence

Due to its desirable properties as a distributional distance measure, which we dis-

cuss in more detail, the Generalized Jensen-Shannon Divergence (GJSD) has gained

popularity for applications across disciplines, from quantum physics [156], to ge-

nomics [157], and even to history [158]. For our purposes, the GJSD will allow us

to distinguish distributional data across census tracts in a meaningful way, which can

be understood in terms of the following process.

Suppose we have two spatial regions, region 1 and region 2, and we want to de-

termine how similar these regions are with respect to a socioeconomic variable 𝑋.

We assume that their respective populations 𝑛1 and 𝑛2 are known, as well as the dis-

tributions 𝑞(1)
𝑋 (𝑥) and 𝑞(2)

𝑋 (𝑥) defined in Sec. 3.1. One way to think about how the

populations in regions 1 and 2 differ in their composition of the attribute 𝑋 is to con-

sider the situation where there was no artificial line drawn between regions 1 and 2,
and instead we had just decided to consider them one single “super-region”. We can

then ask the question: How different is the distribution of 𝑋 across the population in

this super-region than in its individual sub-regions? Rather than naively comparing

the distributions 𝑞(1) and 𝑞(2) directly, this perspective accounts for the population

difference between the regions, and will also allow us to address in a natural way the

increase in regional homogeneity we get by separating these regions.

From an information theoretic perspective, we can quantify the homogeneity of at-

tribute 𝑋 within a population by its average information content (or surprisal), in other

words how unpredictable it is. For instance, if a population has relatively equal frac-
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tions of people from each race, it is difficult to guess what any given person’s race

is, and the amount of “information” we gain by finding out each person’s race is rel-

atively high on average. However, if nearly everyone is of a single race, it is very

easy to guess an individual’s race, and we are on average very “unsurprised” upon

each discovery of the race of a randomly selected individual in this population. For

our thought experiment, we can determine the homogeneity gain we achieve by sep-

arating regions 1 and 2 by computing how much the average information content of

attribute 𝑋 in the population is reduced after the split of the super-region.

The average information content of a random variable with probability distribution

𝑞(𝑥) is given by its entropy, 𝐻[𝑞(𝑥)], where 𝐻 is the Shannon entropy functional

𝐻[𝑞(𝑥)] = − ∑
𝑥

𝑞(𝑥) log 𝑞(𝑥) (3.1)

and log 𝑞(𝑥) is the information content of an observation of 𝑥 [159]. Thus, the average

information content of attribute 𝑋 in the super-region population is given by

𝐻 [𝑄(12)
𝑋 (𝑥)] = − ∑

𝑥
𝑄(12)

𝑋 (𝑥) log (𝑄(12)
𝑋 (𝑥)) , (3.2)

where

𝑄(12)
𝑋 (𝑥) = 𝑛1

𝑛1 + 𝑛2
𝑞(1)

𝑋 (𝑥) + 𝑛2
𝑛1 + 𝑛2

𝑞(2)
𝑋 (𝑥) (3.3)

is the empirical probability mass function of 𝑋 in the super-region. Now, if regions

1 and 2 are split, then we can associate to any individual in the super-region a label

𝑖 = 1, 2 denoting the region they are from, which will necessarily reduce our uncer-
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tainty about their value of 𝑋 on average. Then, in a random experiment to survey the

same population about 𝑋, we would know the region 𝑘 that each person we sample

is from, and thus the information content associated with each observation we make

is log 𝑞(𝑘)
𝑋 (𝑥) rather than log𝑄(12)

𝑋 (𝑥). The average information content 𝐻′ [𝑄(12)
𝑋 (𝑥)]

of 𝑋 after the regional split is then given by the weighted average

𝐻′ [𝑄(12)
𝑋 (𝑥)] = 𝑛1

𝑛1 + 𝑛2
𝐻[𝑞(1)

𝑋 (𝑥)] + 𝑛2
𝑛1 + 𝑛2

𝐻[𝑞(2)
𝑋 (𝑥)], (3.4)

and the reduction in average information content from splitting the regions is given

by the difference

𝐽 (12)
𝑋 = 𝐻 [𝑄(12)

𝑋 (𝑥)] − 𝐻′ [𝑄(12)
𝑋 (𝑥)] . (3.5)

Generalizing our argument to the merging of 𝑚 ≥ 2 regions, we have that the

reduction in average information content by the separation of 𝑚 adjacent regions is

given by

𝐽 (1,...,𝑚)
𝑋 = 𝐻 [𝑄(1,...,𝑚)

𝑋 (𝑥)] −
𝑚

∑
𝑘=1

𝜋𝑘𝐻[𝑞(𝑘)
𝑋 (𝑥)], (3.6)

where

𝜋𝑘 = 𝑛𝑘
∑𝑚

𝑘′=1 𝑛𝑘′
(3.7)

(with 𝑛𝑘 the population of region 𝑘) and

𝑄(1,...,𝑚)
𝑋 (𝑥) =

𝑚
∑
𝑘=1

𝜋𝑘𝑞(𝑘)
𝑋 (𝑥). (3.8)

70



We can recognize now that Eq. 3.6 is equivalent to the Generalized Jensen-Shannon Di-

vergence (GJSD), which is sometimes referred to as just the Jensen-Shannon Divergence

for 𝑚 = 2 [142].

Intuitively, if the distributions {𝑞(𝑘)} are all very similar, knowingwhich region that

a person is from does not reduce our uncertainty about their value of 𝑋 bymuch, and

𝐽 (1,..,𝑚) will be close to 0. On the other hand, if the {𝑞(𝑘)} are relatively different, then

we can reduce our uncertainty about a person’s value of 𝑋 by a lot by knowing which

region 𝑘 they are from, and 𝐽 (1,...,𝑚) will be higher.

We know that Eq. 3.6 is bounded below by 0 due to the concavity of entropy, and

this minimum is achieved when 𝑞(𝑘) = 𝑞(𝑘′) for all 𝑘, 𝑘′, as merging the regions does

not change our uncertainty about a person’s value of 𝑋 at all. On the other hand, the

maximum value 𝐽 (1,..,𝑚)
𝑚𝑎𝑥 that Eq. 3.6 can take is

𝐽 (1,...,𝑚)
𝑚𝑎𝑥 = −

𝑚
∑
𝑘=1

𝜋𝑘 log𝜋𝑘, (3.9)

which happens when the {𝑞(𝑘)} are entirely non-overlapping in their regions of non-

zero probability. We can see that this is the upper bound by rewriting Eq. 3.6 in a

more illuminating manner as

𝐽 (1,...,𝑚)
𝑋 = ∑

𝑥,𝑘
𝜋𝑘𝑞(𝑘)(𝑥) log[ 𝑞(𝑘)(𝑥)

∑𝑙 𝜋𝑙𝑞(𝑙)(𝑥)] , (3.10)

and noting that log [ 𝑞(𝑘)(𝑥)
∑𝑙 𝜋𝑙𝑞(𝑙)(𝑥)] ≤ log [ 1

𝜋𝑘
], with the equality holdingwhen 𝑞(𝑙)(𝑥) = 0

for all 𝑙 ≠ 𝑘, which is equivalent to the 𝑞’s having disjoint nonzero support. Eq. 3.9 is
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just the average uncertainty we have about which smaller region 𝑘 a randomly chosen

person from the super-region will come from.

We normalize Eq. 3.6 by the upper bound in Eq. 3.9 to enforce values to lie in [0, 1],
which allows us to compare tract similarities for regions with variable populations

𝑛𝑘. The final expression we use for distributional comparison across regions is then

𝐿(1,...,𝑚)
𝑋 = 𝐽 (1,...,𝑚)

𝑋
𝐽 (1,...,𝑚)

𝑚𝑎𝑥
. (3.11)

This measure is easily adapted to any discrete variable 𝑋, which can be nominal, or-

dinal, or interval in nature, allowing for the application of Eq. 3.11 to a wide variety

of problems. It can also be adapted to continuous distributions through approxima-

tions of the differential entropy. We note that for ordered data, Eq. 3.11 is only sen-

sitive to how much the probability mass changes between distributions of interest,

not to where it moves. In this sense, there are other appealing measures for com-

paring ordered data, such as variants of the earth-mover’s distance [160]. However,

Eq. 3.11 has a major advantage over such previous measures in that it can be used to

compare results across all types distributional data on the same scale, and can also

accommodate the inclusion of more than two distributions for comparison. In the

following section, we perform multiple experiments on the tract adjacency network

using Eq. 3.11, demonstrating new insights on spatial socioeconomic variability that

can be gained through our methodology.
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3.3. Results

3.3.1. Two-point correlations

Two-point correlation functions—a term used to refer generically to functions that

measure some type of average correlation between points in a system as a function

of the distance between them—are an invaluable tool for describing spatial data for

systems as diverse as galaxy clusters [161], turbulent fluids [162], and earthquakes

[163]. In more recent work, the concept of the two-point correlation function has been

extended to networks [164–166], where it refers to computing correlations between

the properties (in most cases, degree) of two nodes as a function of the shortest path

distance between them.

Here, in order to assess the “scale” at which socioeconomic properties vary across

the US, we compute a two-point correlation function for 𝐿𝑋 (Eq. 3.11) between cen-

sus tracts as a function of the number of network hops between them. The effective

distance we are concerned with is then consistent with policy-relevant boundaries

and roughly accounts for the heterogeneous population density across space (as tracts

have relatively similar populations as discussed earlier). In otherwords, the total pop-

ulation of neighbors at path distance 𝑙 or less from a focal tract is roughly the same for

all tracts, as the degree distribution of the analyzed network is highly homogeneous

as is characteristic of spatial networks in general.

In our case, the two-point correlation function 𝐶𝑋(𝑙) for socioeconomic attribute 𝑋
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as a function of (unweighted) network geodesic distance 𝑙 is given by

𝐶𝑋(𝑙) = 1
𝑛(𝑙) ∑

𝑖<𝑗
𝐿(𝑖𝑗)

𝑋 𝛿𝑑𝑖𝑗,𝑙, (3.12)

where 𝛿 is the Kronecker delta function, 𝑛(𝑙) is the number of node pairs separated

by shortest path distance 𝑙, and 𝑑𝑖𝑗 is the shortest path distance between tracts 𝑖 and
𝑗 in the adjacency network. 𝐶𝑋(𝑙) gives the average divergence 𝐿(𝑖𝑗)

𝑋 over all pairs of

nodes (𝑖, 𝑗) that are separated by 𝑙 hops.

Calculating 𝐶𝑋(𝑙) exactly is difficult, as there are ∼ 2.5 billion pairs of tracts {𝑖, 𝑗}
in the network that contribute to the sum in Eq. 3.12 for a given 𝑋. We therefore opt

for a sampling procedure to compute 𝐶𝑋(𝑙) approximately, traversing nodes 𝑗 in the

network up to a distance 𝑙 = 20 starting at 1, 000 uniformly sampled focal tracts 𝑖,
then computing the sum in Eq. 3.12 over sampled focal tracts 𝑖 and traversed nodes

𝑗. A network distance of 𝑙 = 20 corresponds to a spatial distance of 200 km, varying

depending on the location of the central tract, and so captures spatial regions roughly

of size 160, 000 km2 (or about 2% of the land area of the continental US). Using this

distance cutoff thus restricts our analysis to relatively concentrated regions, which

may be more relevant for spatially targeted policy interventions.

In order to examine the scale over which correlations in each attribute decay, we

analyze how quickly 𝐶𝑋(𝑙) approaches its asymptotic value 𝐶𝑋(∞) from its initial

value 𝐶𝑋(1) as we increase 𝑙. 𝐶𝑋(∞) is estimated as the average value of 𝐿𝑋 over

10,000 tract pairs selected uniformly at random (which should draw primarily from

node pairs at distances much greater than 𝑙 = 20 based on the network structure).
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Taking inspiration from the form of two-point correlations in spin systems, we can

then fit the resulting data to the truncated power-law form

̃𝐶𝑋(𝑙) = 𝑙−𝛼𝑒−(𝑙−1)/𝛽, (3.13)

where

̃𝐶𝑋(𝑙) = 𝐶𝑋(∞) − 𝐶𝑋(𝑙)
𝐶𝑋(∞) − 𝐶𝑋(1), (3.14)

and we have rescaled 𝐶𝑋 → ̃𝐶𝑋 to account for the intercepts at 𝑙 = 1 and 𝑙 = ∞.

The scaling exponent 𝛼 in Eq. 3.13 quantifies the rate of decay in correlation in the

system as a function of distance (network hops), and the cutoff exponent 𝛽 determines

the distance scale (in terms of hops) over which correlation persists. A higher (more

positive) value of 𝛼 indicates a slower decay in correlations as we move away from a

given tract, and a higher value of 𝛽 indicates a longer distance over which tracts have

correlated distributions with this reference tract. To extract the exponents 𝛼 and 𝛽,
the following ordinary least-squares fit is performed

log ̃𝐶𝑋(𝑙) = −𝛼 log 𝑙 − (𝑙 − 1)
𝛽 + 𝜖𝑙, (3.15)

with 𝜖𝑙 a white noise process.

We plot the results of the fit in Fig. 3.1A, where we show the coefficient of deter-

mination 𝑟2, the scaling exponent 𝛼, and the cutoff exponent 𝛽 for the fit in Eq. 3.15

for each attribute. We can see that the curves for all attributes (apart from “industry”,

75



which due to autocorrelated residuals has been suspected to follow a different decay

form that we will not explore here) collapse quite well onto each other. This collapse

is not only an indication of a good fit, but can possibly lead us to consider a more

fundamental, attribute-independent mechanism behind the variation of different at-

tributes 𝑋 across regions, which we will discuss at the section’s closing.

To investigate a potential consequence of the striking similarity in the decay of ̃𝐶𝑋(𝑙)
across attributes 𝑋 studied in Fig. 3.1A, we examine the correlations between the

losses 𝐿(𝑖𝑗)
𝑋 and 𝐿(𝑖𝑗)

𝑋′ across edges (𝑖, 𝑗) for all pairs of attributes (𝑋, 𝑋′). Specifically,
we analyze the monotonic dependence between losses using Spearman correlation,

which relaxes the linearity assumption of Pearson correlation but also allows us to

test for the significance of observed correlations [167]. Specifically, we compute

𝜌 ({𝐿(𝑖𝑗)
𝑋 ∶ (𝑖, 𝑗) ∈ 𝐸}, {𝐿(𝑖𝑗)

𝑋′ ∶ (𝑖, 𝑗) ∈ 𝐸}) , (3.16)

where 𝐸 is the set of edges in the adjacency network, 𝜌 is the Spearman correlation

coefficient, and the arguments to 𝜌 describe the vectors of measurements being cor-

related. We plot the results as a correlation matrix in Fig. 3.1B, where we can see

relatively high correlations between most of the variables analyzed. The high correla-

tionswe see are consistent with associations seen in amultitude of previous economic

and sociological studies [168–171], although our framework has the added benefit of

using a single unified formalism to analyze all these associations. However, to get at

underlying universal mechanisms behind observed socioeconomic data, we must go

beyond solely demonstrating statistical associations between variables. The correla-

tions seen in Fig. 3.1B may actually just be an artifact of a more fundamental process
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determining the decays in Fig. 3.1A, and we can make some headway in uncovering

this process (or processes) using reasoning inspired by urban scaling.

Traditional urban scaling posits that a wide variety of characteristics 𝑌 in a city can

be predicted solely by the city’s population 𝑃 through relations of the form 𝑌 ∼ 𝑃 𝜂

for some exponent 𝜂 > 0, which in practice holds up for a large number of cities and

variables of interest [132]. The success of the urban scaling theory relies on a few key

factors that are associated with a growing city population: denser organization of

facilities and infrastructure, an accelerated pace of life, and increased interaction be-

tween agents and activities leading to specialization and innovation [172]. In practice,

the data 𝑌 for some city-level characteristic (such as new patents or number of gas sta-

tions) is fit versus city population 𝑃 for many different cities, yielding an estimate for

the exponent 𝜂 which we can interpret to gain an understanding of the fundamental

processes contributing to the scaling behavior of 𝑌 . For instance, if 𝜂 > 1 this says

that 𝑌 grows superlinearly with 𝑃 , which should be the case for quantities 𝑌 that

show increasing returns with population (e.g. indicators of innovation such as new

patents). On the other hand, 𝜂 < 1 indicates economies of scale, or characteristics 𝑌
that decrease in unit cost as we increase the city’s population (e.g. mobility-related

infrastructure such as the number of gas stations). Perhaps the most important take-

away from traditional urban scaling analysis is thatwhenwe can collapse the behavior

of a wide range of seemingly different socioeconomic systems into a single framework

with few parameters, these parameters can help us understand basic universal pro-

cesses underlying these superficially distinct variables.

We can use similar reasoning to interpret the results of Fig. 3.1A, except in this case
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rather than the absolute quantity of a socioeconomic indicatorwe are analyzing corre-

lations between distribution-valued quantities, and the fundamental covariate here is

network distance 𝑙 instead of population 𝑃 . Based on their homogeneous populations

and degrees, the total population in tracts at path distance 𝑙 or less from a focal tract

is very similar across tracts, and so 𝑙 reflects the total population included as we en-

circle a focal tract at greater and greater radii. As space is a factor for socioeconomic

processes mainly in that it provides a medium for interaction among people [173],

this distance 𝑙 may be a more fundamental quantity than standard spatial distance

in how it determines socioeconomic activity, and so we may be able to explain the

spatial variation in a wide variety of socioeconomic variables using simple functions

of 𝑙 such as Eq. 3.13. An alternative quantity to 𝑙 could be derived from literally trans-

forming space based on population to homogenize the population density, a concept

which has inspired numerous interesting and informative mapping methods [134].

However, we are ultimately constrained by the basic spatial units designated for data

aggregation (e.g. census tracts), and so here we treat these regions, hence 𝑙, as funda-
mental.

In the present case, we can see that the exponents 𝛽 determining the network cor-

relation cutoff scale are very similar for education, housing, income, and race, indi-

cating that correlations in these regional distributions are non-negligible over a uni-

versal distance scale of ∼ 30 hops. However, we see higher variation in the scaling

exponents 𝛼, with race and housing decaying at a slower rate across the network than

education and income. This suggests that perhaps the mechanisms that drive spatial

differences in racial composition and local real estate values operate over larger dis-

tances than the mechanisms behind income or educational variability, at least in the
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US.

The association between the spatial distributions of housing values and racial groups

has been noted in numerous studies that address “redlining” and other processes

that result in lower property values in neighborhoods with high minority popula-

tions [174]. The analyses in Fig. 3.1A may point to additional, more subtle mecha-

nisms behind this inequality due to a significant difference in the scaling exponents

for housing and race, as this observed discrepancy indicates that the scales overwhich

housing and racial regional similarity decay are quite different. It is known that home

values are also tied to local incomes, which in turn can result in high variability in

housing prices due to the relative flexibility of wages and mobility of workers com-

pared to supply-regulated housing [175]. Therefore, perhaps the interplay between

the long-range correlated racial composition of the population and the comparatively

short-range correlated income distributions plays a role in determining the moderate

decay exponent 𝛼 we see in the housing data. However, more definite conclusions

and practical intervention strategies require a more contextualized analysis in con-

junction with domain expertise.

3.3.2. County-level heterogeneity

To examine the regional diversity of a given socioeconomic variable, we employ

Eq. 3.11, this time to all the tracts comprising each county within our dataset. More

specifically, for each county we examine, we compute 𝐿(𝑡1,𝑡2,...)
𝑋 with 𝑡𝑘 the census

tracts within the county subdivision and 𝑋 the variable of interest. For notational

convenience, we will use the notation 𝐿(𝑐𝑜𝑢𝑛𝑡𝑦)
𝑋 from now on for this quantity. In or-
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Fig. 3.1. Universal patterns in tract similarity across attributes. (A) Fit results for the
two-point correlation functions 𝐶𝑋(𝑙) for attributes 𝑋 in Table 3.1, with 95% confi-
dence intervals around the scaling and cutoff exponents 𝛼 and 𝛽. The line 𝑦 = 𝑥
is plotted for reference, as a perfect scaling collapse maps all points onto this line.
Eq. 3.15 is deemed a poor fit for ̃𝐶𝑖𝑛𝑑𝑢𝑠𝑡𝑟𝑦 after a residual analysis, and so this re-
sult is omitted. (B) Spearman correlation matrix with respect to losses 𝐿(𝑖𝑗)

𝑋 across all
edges (𝑖, 𝑗), for all pairs of socioeconomic attributes used in our study. All correlations
are highly statistically significant at the 1% significance level, with standard errors of
∼ 0.001.

der to compare counties with varying numbers of constituent tracts on the same scale,

we normalize for potential biases from the number of included tracts by using a boot-

strapping procedure to compute z-scores for each county-level value 𝐿(𝑐𝑜𝑢𝑛𝑡𝑦)
𝑋 . To do

this, for all county sizes (number of constituent tracts) 𝐾 we compute the vectors 𝜇𝐾

and 𝜎𝐾, which are the sample mean and standard deviation of 𝐿(𝑡1,...,𝑡𝐾)
𝑋 over 100 ran-

dom samples of 𝐾 tracts 𝑡1, ..., 𝑡𝐾. Then, we calculate a standardized version of Eq.
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3.11, �̃�, for each county using

�̃�(𝑐𝑜𝑢𝑛𝑡𝑦)
𝑋 =

𝐿(𝑐𝑜𝑢𝑛𝑡𝑦)
𝑋 − 𝜇|𝑐𝑜𝑢𝑛𝑡𝑦|

𝜎|𝑐𝑜𝑢𝑛𝑡𝑦|
, (3.17)

where |𝑐𝑜𝑢𝑛𝑡𝑦| is the number of tracts within the county. We will refer to Eq. 3.17 as

a “disparity” measure, as higher values of �̃�(𝑐𝑜𝑢𝑛𝑡𝑦)
𝑋 indicate higher dissimilarity in a

county’s tract-level distributions of {𝑞(𝑡𝑘)
𝑋 } relative to what is expected in a random-

ized null model where the county’s tracts are chosen at random. In practice, we will

see that �̃� tends to be negative for most counties, and so in this case we should note

that values of greater magnitude indicate higher similarity in the county-aggregated

tracts than expected by chance.

As a first step in understanding county-level disparities across the US, we plot the

distribution of �̃�(𝑐𝑜𝑢𝑛𝑡𝑦)
𝑋 over all counties for each socioeconomic attribute 𝑋 in Fig.

3.2A as box-and-whisker plots. We can see that the distributions of all quantities tend

strongly towards negative values, indicating that most counties have greater similar-

ity in their tract-level distributions {𝑞(𝑡𝑘)
𝑋 } than expected in the null model. This is

consistent with the spatial autocorrelation at short scales we see in socioeconomic

variables in Fig. 3.1A, although these analyses in some sense provide a complimen-

tary viewpoint. Here, rather than assessing the scales over which distributions of so-

cioeconomic characteristics remain similar, as in Fig. 3.1, we are examining whether

artificially drawn administrative boundaries are effective at capturing the homogene-

ity in these attributes. As counties have size scalesmuch smaller than the area covered

up to the typical correlation cutoff scale 𝑙 ∼ 30 from any reference tract, we expect that

correlations between tract-level distributions will be relatively high within counties,
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and so in this sense these results should be unsurprising.

Looking at Fig. 3.2A, we do see something perhaps unexpected though: there are

lots of counties that are only slightlymore (and sometimes less) homogeneous in their

tract-level distributional data than we’d expect by chance. In particular, most of the

values of �̃�(𝑐𝑜𝑢𝑛𝑡𝑦)
𝑟𝑎𝑐𝑒 are in the interval [−2, 0], which means they are less than two stan-

dard deviations different in their disparity than expected with completely random-

ized tracts. This suggests that many counties in the US are relatively representative of

the whole US in terms of racial composition, whereas there are relatively few counties

with drastically different compositions. The same does not hold for housing though,

for which around 75% of the counties studied hadmore than two standard deviations

differentiating their disparity values from the null model expectation. This result in-

dicates that there are relatively few counties with distributions of housing values that

are diverse enough to reflect typical housing prices nationally.

To determine the association in the disparity values �̃�(𝑐𝑜𝑢𝑛𝑡𝑦)
𝑋 across counties, we

plot the corresponding Spearman correlation matrix using the results from all coun-

ties studied. Similarly to Eq. 3.16, we compute

𝜌 ({�̃�(𝑐1)
𝑋 ∶ 𝑐1 ∈ counties}, {�̃�(𝑐2)

𝑋 ∶ 𝑐2 ∈ counties}) . (3.18)

The Spearman correlation matrix in Eq. 3.18 is shown in Fig. 3.2B, where we can see

very high correlations between the within-county disparities, even higher than in the

values of 𝐿(𝑖𝑗)
𝑋 shown in Fig. 3.1B. These correlations are similar in sign and relative

magnitude (between attributes 𝑋) to those in Fig. 3.1B, but by aggregating tracts at

82



the county level rather than just assessing correlations over edges, we are effectively

reducing noise by smoothing out local fluctuations, and so we see a major increase

in the values of 𝜌. In other words, some individual edges (𝑖, 𝑗) may have very differ-

ent divergences 𝐿(𝑖𝑗)
𝑋 and 𝐿(𝑖𝑗)

𝑋′ , but the effect of these outlier pairwise relationships is

reduced when looking at distributions between tracts at the county-level. This noise

reduction is only possible because, as discussed, the scale at which we are analyzing

�̃�(𝑐𝑜𝑢𝑛𝑡𝑦)
𝑋 is smaller than the area associated with the correlation cutoff scales 𝛽 found

in Fig. 3.1A.

Finally, as a case study to visualize the geographic manifestation of these county-

level disparities, we plot a heatmap of �̃�(𝑐𝑜𝑢𝑛𝑡𝑦)
ℎ𝑜𝑢𝑠𝑖𝑛𝑔 across all counties studied in Fig. 3.2C.

Here we can immediately see an interesting pattern: the county-level disparity in

housing prices, when compared to the same number of randomly selected regions,

is actually much lower along the coasts and metropolitan areas than it is elsewhere.

Housingmarkets in coastal andmetropolitan regions are typically seen as having high

inequality due to the large variation in home and land values often seen in these ar-

eas [176, 177]. However, when assessed on a relative scale using distributions at the

granularity of census tracts, we see a different story. In this case, we see that these

coastal and metropolitan counties actually have quite similar distributions 𝑞(𝑡)
ℎ𝑜𝑢𝑠𝑖𝑛𝑔

across their constituent tracts 𝑡 relative to more inland and rural counties. The pri-

mary reason for this may be that the heterogeneity in housing prices in dense, urban

counties is primarily manifested at scales below our measurement precision: tracts

themselves have house price distributions with high variance, but tracts in a given

county tend to have relatively similar distributions. This is consistent with the low

rate of spatial decay in housing correlations seen in Fig. 3.1A, as most tracts are urban
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[178] and if most of the fluctuations persist at scales smaller than census tracts, wewill

see a relatively smooth correlation trend at larger scales. Due to the coarse binning

of housing values, however, there is also a potential confounding factor here in that

many of the home prices in expensive metropolitan and coastal regions fall into the

highest bin in the corresponding census data (> $1, 000, 000), and so variability due

to fluctuations above this price threshold are suppressed when using census data to

assess inequalities.

3.3.3. Regional clustering

As a final experiment using our measures, we detect communities at multiple size

scales in the census tract subnetwork within the city of Chicago—a frequently used

case study in socioeconomic diversity due to its rich history and abundance of avail-

able data [179, 180]—with the goal of constructing clusters that are relatively homo-

geneous with respect to each socioeconomic attribute. Optimal aggregation of spa-

tial regions according to various criteria has been a longstanding problem of interest,

and numerous approaches have been proposed to tackle this using networks with

edges weighted by an attribute representing regional similarity. This approach has

the added benefit that since community detection algorithms look for connected clus-

ters of nodes, the clusters detected naturally tend to be contiguous, and thus relevant

for spatially localized policy. Attributes used in previous studies include phone calls

between regions [181], commuting flows [182], taxi trips [183], and similarity between

individual within-region features like our own method [184].

In order to group the tract network into clusters that exhibit homogeneity with re-
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Fig. 3.2. County-level distributional disparity. (A) Distribution of �̃�𝑋 for all measures
𝑋, showing trends towards negative values indicating lower within-county disparity
than expected by chance in a randomized null model. Whiskers extend to the 5th and
95th percentiles. (B) Spearman correlation between county-level disparity measures
�̃�(𝑐𝑜𝑢𝑛𝑡𝑦)

𝑋 for all pairs of attributes, showing a high positive association between all
pairs of variables. All correlations are highly statistically significant at the 1% signifi-
cance level, with standard errors of ∼ 0.01. (C) Housing price disparities �̃�(𝑐𝑜𝑢𝑛𝑡𝑦)

ℎ𝑜𝑢𝑠𝑖𝑛𝑔 for
all counties in the continental United States. Values of �̃� indicate the degree to which
counties’within-county distributional similarity in housing values differs from expec-
tation (with more negative values associated with very high within-county similarity
compared to expected).

85



spect to attribute 𝑋, we use 𝐿(𝑖𝑗)
𝑋 to construct edgeweights 𝑤𝑖𝑗 for the network prior to

performing community detection. However, we cannot not use 𝐿(𝑖𝑗)
𝑋 for edge weights

directly, as community detection algorithms typically associate higher edge weight

with higher node similarity, and 𝐿(𝑖𝑗)
𝑋 is constructed so that lower values indicate

greater similarity across an edge (𝑖, 𝑗). We thus employ a common transformation

from the machine learning literature [185], which is to use an exponential kernel to

map the values 𝐿(𝑖𝑗)
𝑋 to their associated edge weights 𝑤𝑖𝑗 in the network. The weight

transformation can be written as

𝑤𝑖𝑗 = 𝑒−𝜔𝐿(𝑖𝑗)
𝑋 , (3.19)

where 𝜔 > 0 is a tunable parameter that determines how much differentiation in the

weightswewill have across edges in the network. Avalue of𝜔 ≈ 0 results in almost no

differentiation between edgeweights (𝑤𝑖𝑗 ≈ 1 for all edges), whereas𝜔 >> 1 results in

an exaggerated difference in edge weights between edges with lower 𝐿(𝑖𝑗)
𝑋 and edges

with higher 𝐿(𝑖𝑗)
𝑋 . Any kernel mapping the unit interval to decreasing non-negative

reals would suffice to construct the weights 𝑤𝑖𝑗, but we opt for the exponential func-

tion here because it is particularly simple and only has one tunable parameter. For the

experiments shown, we find a middle ground between the two extremes presented

for 𝜔, for each attribute-based clustering choosing a value of 𝜔 that results in a rela-

tively uniform distribution of edge weights across [0, 1]. More specifically, for each

attribute 𝑋 we numerically approximate the 𝜔 that maximizes the entropy of the as-

sociated distribution of edgeweights 𝑒−𝜔𝐿(𝑖𝑗)
𝑋 . Amore principledmethod for choosing

𝜔 based on the application of interest is a subject is left to future work, but here we use

this simple statistical procedure to avoid falling into one of the two cases presented,

86



where there is either no differentiation in the edge weights or only a handful of edges

matter.

In order to detect communities in the Chicago subnetwork, we aim to find the com-

munity division 𝐠 = {𝑔𝑖} in the subnetwork such that the weightedmodularity 𝑄𝛾(𝐠)
is approximately optimized. The modularity 𝑄𝛾(𝐠) that we use here is defined by

𝑄𝛾(𝐠) = 1
𝑊 ∑

𝑖𝑗
[𝛾𝑤𝑖𝑗 − 𝑠𝑖𝑠𝑗

𝑊 ] 𝛿𝑔𝑖,𝑔𝑗
, (3.20)

where 𝑊 is the sum of edgeweights in the network, 𝑠𝑖 = ∑𝑘 𝑤𝑖𝑘 is the sum ofweights

of edges attached to node 𝑖, and 𝛾 is a resolution parameter [186]. When 𝛾 = 1, Eq. 3.20
reduces to the standard modularity for weighted networks, but varying 𝛾 ≠ 1 allows

us to choose the importance given to 𝑤𝑖𝑗 relative to 𝑠𝑖𝑠𝑗
𝑊 (which is the approximate

expected weight of 𝑤𝑖𝑗 through random rewiring). In particular, the larger we make

𝛾, the more importance is given to the observed edge weights relative to the expected

weights, and the community partitions 𝐠 that maximize Eq. 3.20 will be larger. Thus,

by varying 𝜔 we can tune how much influence differences in 𝐿(𝑖𝑗)
𝑋 across edges have,

and by varying 𝛾 we can determine the characteristic cluster size. We use the Louvain

Algorithm [187], a greedy optimization method, to find the partition 𝐠 that approxi-

mately maximizes Eq. 3.20. There are numerous viable alternative methods but here

we opt for the Louvain algorithm as it is fast and straightforward to implement. It is

also important to note thatwe can perform regional aggregationwith𝐿(𝑖𝑗) in amanner

where clusters are not likely to be contiguous, for instance by constructing a matrix

from all pairwise values of 𝐿(𝑖𝑗) and performing one of variousmatrix-clustering tech-

niques [188]. However, here we are interested in constructing contiguous clusters of
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tracts in order to coarse grain the city into zones relevant for spatially targeted policy

intervention, and so we use community detection to encourage contiguity of the clus-

ters.

In Fig. 3.3 we show the results of our community detection analysis for the Chicago

census tract subnetwork. In Fig. 3.3A-3.3C, we show the community divisions ob-

tained for edge weights constructed using 𝐿(𝑖𝑗)
𝑖𝑛𝑐𝑜𝑚𝑒, at various resolutions 𝛾. We can

observe that increasing 𝛾 allows us to get a coarser view of the socioeconomic clus-

ters present in the city, and can allow for delineation of super-regions at a desired

scale. We also show the officially designated neighborhood boundaries (thick black

lines) for Chicago (https://data.cityofchicago.org/) in order to visualize the con-

sistencies and inconsistencies between our inferred communities and these officially

delineated regions. We can see that in the intermediate regime 𝛾 ∼ 0.1, some inferred

communities are consistent with neighborhood boundaries, but others deviate sig-

nificantly from these boundaries. This suggests that the officially designated neigh-

borhood regions are somewhat consistent with homogeneous socioeconomic clusters,

but there is room for improvement to these boundaries if the goal is to delineate so-

cioeconomically homogeneous zones within the city (at least regarding income). Of

course, there are numerous other factors, both socioeconomic and geographic, that

would need to be accounted for in addition to the factors we analyze in order to draw

effective policy-relevant boundaries in practice.

We also compute the Adjusted Mutual Information (AMI) between partitions ob-

tained using different attributes 𝑋 as well as the partition induced by the official

neighborhood boundaries, in order to assess the consistency in the regions we ob-
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tain when considering these different factors. As discussed in Sec. 2.3.2, the Mutual

Information 𝑀𝐼(𝐠(1), 𝐠(2)) is the amount of shared information (in an information

theoretic sense) between the partitions 𝐠(1) and 𝐠(2), or more intuitively, the statisti-

cal uncertainty in each independent partition minus the statistical uncertainty when

combined. More specifically, we have that

𝑀𝐼(𝐠(1), 𝐠(2)) = 𝐻[𝐩(1)] + 𝐻[𝐩(2)] − 𝐻[𝐩(12)] = ∑
𝑠,𝑡

𝑝(12)(𝑠, 𝑡) log [ 𝑝(12)(𝑠, 𝑡)
𝑝(1)(𝑠)𝑝(2)(𝑡)] ,

(3.21)

where 𝑝(1)(𝑠) is the fraction of nodes put into cluster 𝑠 under configuration 𝐠(1) (and

similarly for 𝑝(2)(𝑡)), and 𝑝(12)(𝑠, 𝑡) is the fraction of nodes simultaneously put into

group 𝑠 under configuration 𝐠(1) and 𝑡 under configuration 𝐠(2). One drawback to

using themutual information, however, is that it gives systematically higher values as

we increase the number of clusters, even for completely random cluster configurations

[189]. One proposed correction to this is to use the AMI, given by

𝐴𝑀𝐼(𝐠(1), 𝐠(2)) = 𝑀𝐼(𝐠(1), 𝐠(2)) − ⟨𝑀𝐼(𝐠(1), 𝐠(2))⟩
Max(𝐻[𝐩(1)], 𝐻[𝐩(2)]) − ⟨𝑀𝐼(𝐠(1), 𝐠(2))⟩, (3.22)

where ⟨𝑀𝐼(𝐠(1), 𝐠(2))⟩ is the expectation value of the mutual information in the null

model where the number of nodes in each community is fixed and communities are

generated randomly through permutations of labels. The AMI is equal to 0 if the par-

titions 𝐠(1) and 𝐠(2) share the amount of information we expect from random chance

purely based on the sizes of their communities, and 1 if the partitions are identical.

In Fig. 3.3D, we plot the average AMI over all pairs of partitions using the five so-
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cioeconomic attributes, as a function of the resolution parameter 𝛾. We can see that

there is a clear peak value of 𝛾 at which the five attributes share highly overlapping

partitions. In practice, this could be used as a heuristic to tune 𝛾 for selecting the size

scale of the clusters, if the goal is to select clusters that are highly homogeneous with

respect to multiple socioeconomic attributes. It is interesting to note the clear scale

sensitivity in this analysis: at certain scales, we can divide the city into zones that are

relatively socioeconomically homogeneous in all variables studied, but at other scales,

the city decomposes into regions with less overlap.

Fig. 3.3E shows the AMI matrix for the partitions obtained at 𝛾 ≈ 0.1, the peak

in Fig. 3.3D. We can see from this plot that all socioeconomic attributes are spatially

clustered in quite similar patterns at this scale, and that all have high correlation with

the official neighborhood boundaries as well. This is perhaps an endorsement for the

neighborhood boundaries, as these results suggest that the scale at which the neigh-

borhoods are drawn corresponds to the scale at which the socioeconomic clusters in

the city are most similar. Taken together, the results from Fig. 3.3D and 3.3E may

point to a new method for subdividing a city into different neighborhoods, which

can be constructed easily based on any socioeconomic attribute and at any size scale.

3.4. Conclusion

In this chapter, we propose a newmeasure for analyzing socioeconomic data across

spatial regions using concepts from network theory and information theory, which

accommodates all forms of distributional data, has a natural extension to the com-
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A B Cγ ≈ 0.01 γ ≈ 0.1 γ ≈ 1

D E

Fig. 3.3. Attribute-based regional clustering at multiple scales. (A)-(C) Clusters ob-
tained through weighted community detection for census tracts (thin black lines) in
Chicago with respect to income for various resolution parameters 𝛾, displaying vary-
ing characteristic size and association with neighborhood boundaries (thick black
lines). (D) Adjusted Mutual Information (AMI) between the partitions obtained by
our community detection algorithm, as a function of 𝛾 and averaged over all pairwise
combinations of the five studied socioeconomic variables. We see a clear peak value
of 𝛾 ≈ 0.1 at which the community divisions obtained through the five methods are
highly correlated (dashed vertical line). (E) AMImatrix between partitions computed
at this peak 𝛾 value, including the clusters obtained by grouping tracts by the neigh-
borhood they most overlap with, indicating a high correlation between all of these
partitions compared to what one expects by random chance based on their cluster
sizes.
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parison of more than two regions, and allows for policy-relevant analysis by consid-

ering officially delineated regions as fundamental spatial units. By analyzing spa-

tial data from a topological lens, we can approach regional analysis issues from a

relational perspective that avoids the longstanding issue of identifying appropriate

spatial scales. We apply our framework in a series of experiments using the ad-

jacency network of US census tracts to demonstrate the new insights we can gain

with our methodology. We first find a universal decay pattern in various socioeco-

nomic correlations as a function of path distance, as well as high statistical associa-

tion between distributional similarities in adjacent tracts. We then aggregate tract-

level distributions at the county level, finding again that distributional disparity mea-

sures are highly correlated, and also that there are relatively low levels of within-

county inequality compared to what one would expect by aggregation of random

tracts. Finally, we propose a clustering algorithm for regional aggregation into ho-

mogeneous socioeconomic clusters, finding that in practice the partitions obtained

by our methodology have high overlap with accepted neighborhood delineations, as

well as with each other across attributes. These applications illustrate the versatil-

ity of our methods, as well as the universality present in socioeconomic data when

analyzed with a unified framework.
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variable 𝑋 support {𝑥} of 𝑞𝑋 ACS codes

race

White
Black or African American

American Indian and Alaska Native
Asian

Native Hawaiian and Other Pacific Islander
Other

DP05, 0059PE - 0064PE

income

Less than 10,000
10,000 - 15,000
15,000 - 25,000
25,000 - 35,000
35,000 - 50,000
50,000 - 75,000
75,000 - 100,000
100,000 - 150,000
150,000 - 200,000

Greater than 200,000

DP03, 0052PE - 0061PE

industry

Agriculture, forestry, fishing and hunting, and mining
Construction
Manufacturing
Wholesale trade

Retail trade
Transportation and warehousing, and utilities

Information
Finance and insurance, and real estate and rental and leasing

Professional, scientific, management, and administrative services
Educational services, and health care and social assistance

Arts, entertainment, recreation, accommodation, and food services
Other services, except public administration

Public administration

DP03, 0033PE - 0045PE

housing (value)

Less than 50,000
50,000 - 100,000
100,000 - 150,000
150,000 - 200,000
200,000 - 300,000
300,000 - 500,000
500,000 - 1,000,000

Greater than 1,000,000

DP04, 0081PE - 0088PE

education

Less than 9th grade
9th to 12th grade, no diploma

High school graduate (includes equivalency)
Some college, no degree

Associate’s degree
Bachelor’s degree

Graduate or professional degree

DP02, 0059PE - 0065PE

Table 3.1: Information on American Community Survey distributional variables. For
each variable 𝑋, we show its support as well as the associated ACS variable codes
from https://api.census.gov/data/2018/acs/acs5/profile/variables.html.
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Chapter 4.

Belief Propagation for Networks with

Loops

In Chapters 2 and 3, we looked at how to characterize the structure of networks

with metadata on the nodes and/or edges, discussing specific applications in signed

networks and spatial networks with distribution-valued metadata. We now move

onto the second primary goal of this thesis: to develop scalable, accurate, and inter-

pretable inference techniques for real-world network data. In this chapter, we will

examine how to make efficient inferences in models where the underlying network

has many short loops, a case which is not typically handled well by simple approx-

imations like mean-field or standard belief propagation (see Appendix A for details

on belief propagation in the context of SBM inference). By developing a new belief

propagation method that accounts for the highly clustered structure of real networks

and is computationally efficient, we open up the possibility for statistical inference of

a variety of probabilistic models on large-scale real-world network data.
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4.1. Introduction

Phenomena of interest are oftenmodeled using probabilistic formulations that cap-

ture the probabilities of states of network nodes. Examples include the spread of epi-

demics throughnetworks of social contacts [190], cascading failures in power grids [191],

and the equilibrium behavior of spin models such as the Ising model [192]. Net-

works are also used to represent pairwise dependencies between variables in statis-

tical models that do not otherwise have a network component, as a convenient tool

for bookkeeping and visualization of model structure [193]. Such “graphical mod-

els,” which allow us to represent the conditional dependencies between variables in

a non-parametric manner, form the foundation for many modern machine learning

techniques [194]. Belief propagation can also be used independently of an explicit

graphical model, for example in machine learning tasks such as node classification

[195, 196], for which it is a popular technique due to its computational efficiency.

The solution of probabilistic models like this presents a challenge. Analytic meth-

ods such as those used for regular lattices do not generalize to the more complex

topologies of networks, and mean-field and other standard approximations often fail

to take crucial details of network structure into account. Numerical methods can be

successful but are computationally demanding on larger networks and sometimes

give results of poor accuracy. Message passing or “belief propagation” methods of-

fer an alternative and promising approach that straddles the line between analytic

and numerical techniques [197, 198]. Message passing works by deriving a set of self-

consistent equations satisfied by the variables or probabilities of interest and then

solving those equations by numerical iteration. The name “message passing” comes

from the fact that the equations can be thought of as representing messages passed
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between neighboring nodes in the network.

Standard formulations of message passing, however, have a crucial weakness: they

rely on the assumption that the states of the neighbors are uncorrelated with one

another, which is only true if the network contains no loops. Unfortunately, almost all

real-world networks do contain loops, and usually many of them [199], so standard

message passing can give quite poor results in practical situations. In this chapter

we propose a solution to this problem in the form of a new class of message passing

methods for probabilistic models on “loopy” networks. These methods open up a

host of possibilities for novel network calculations, many of which we discuss here.

The limitations of traditional message passing have been widely noted in the past

and a number of previous attempts have been made to remedy them. The only truly

loopless networks are trees, but standard message passing methods have been shown

to give good results on networks that satisfy the weaker condition of being “locally

tree-like,”meaning that local regions of the network take the formof trees even though

the network as a whole is not a tree. In effect, this means that the network can con-

tain long loops, but not short ones [1]. However, realistic networks often fail to sat-

isfy even this weaker condition and contain many short loops. Message passing has

been extended to certain classes of random graphs with short loops, such as Husimi

graphs [200–202] and other tree-like agglomerations of small loopy subgraphs [203,

204], but these techniques are not generally applicable to real-world networks. Al-

ternatively, one can incorporate the effect of loops by using a perturbative expansion

around the loopless case [205, 206], though this approach becomes progressively less

accurate as the number of loops increases and is therefore best suited to networks

with a low loop density, which rules out a large fraction of real networks, whose loop

density is often high [199, 207].
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Perhaps the best known extension of belief propagation, and the one most similar

to our own approach, is the method known as generalized belief propagation [208],

which is based on the idea of passing messages not just between pairs of nodes but

between larger groups. Generalized belief propagation employs a region-based approx-

imation [209], in which the free energy ln𝑍 is approximated by a sum of independent

local free energies of regions within the network. Once the regions are defined it is

straightforward to write down belief propagation equations, which can be used to

calculate marginals and other quantities of interest, including approximations to the

partition function and entropy. Perhaps the best known example of generalized belief

propagation, at least within the statistical physics community, is the cluster variational

method, in which the regions are defined so as to be closed under the intersection op-

eration [210] and the resulting free energy is called the Kikuchi free energy [211].

The accuracy and complexity of generalized belief propagation is determined by

the specific choice of regions, which has been described as being “more of an art than

a science” [212]. Loops contained within regions are correctly accounted for in the

belief propagation, while those that span two or more regions are not and introduce

error. At the same time, the computational complexity of the belief propagation cal-

culations increases exponentially with the size of the regions [212], so choosing the

right regions is a balancing act between enclosing as many loops as possible while not

making the regions too large. A number of heuristics have been proposed for choos-

ing the regions [213–215] but real-world networks can pose substantial difficulties

because they often contain both high degrees and many loops [1], which effectively

forces us to compromise either by leaving loops out or by using very large regions.

Our method can have a significant advantage in these systems because it can accom-

modate large, tightly connected neighborhoods through local Monte Carlo sampling.
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Ourmethod also has the benefit that the neighborhoods are constructed automatically

based on the network structure rather than being chosen by the user.

In Ref. [216] message passing schemes are described for percolation models and

spectral calculations on loopy networks. In this study we extend this approach to the

solution of general probabilistic models. We derive a factorization of the probabil-

ity of states for such models that allows us to write self-consistent message passing

equations for the marginal probabilities on sets of nodes in a neighborhood around

a given reference node. From these equations we can then calculate a range of quan-

tities of interest such as single-site marginals, partition functions, and entropies. To

ground our discussion we use the Ising model as an example of our approach, show-

ing how our improved message passing methods can produce better estimates for

this model than regular message passing. We show that our methods are asymptoti-

cally exact on networks whose loop structure satisfies certain general conditions and

give good approximations for networks that deviate from these conditions. We give

example results for the Ising model on both real and artificial networks and also dis-

cuss applications of our method to a range of other problems, emphasizing its wide

applicability.

4.2. Methods

Our first step is to develop the general theory of message passing for probabilistic

models on loopy networks. With an eye on the Ising model, our discussion will be

in the language of spin models, although the methods we describe can be applied

to any probabilistic model with pairwise dependencies between variables, making it

suitable for a broad range of calculations in probabilistic modeling.
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4.2.1. Model description

Consider a general undirected, unweighted network 𝐺 composed of a set 𝑉 of

nodes or vertices and a set 𝐸 of pairwise edges. As discussed in Sec. 1.1, the net-

work can be represented mathematically by its adjacency matrix 𝐀 with elements

𝐴𝑖𝑗 = 1 when nodes 𝑖 and 𝑗 are connected by an edge and 0 otherwise. On each node

of the network there is a variable or spin 𝑠𝑖, which is restricted to some discrete set of

values 𝑆. In a compartmental model of disease propagation, for instance, 𝑠𝑖 ∈ 𝑆 =
{0 (susceptible), 1 (infected), 2 (removed)} could be the infection state of a node [217,

218]. In a spatial model of segregation 𝑠𝑖 ∈ 𝑆 = {0 (unoccupied), 1 (occupied)}
could represent land occupation [219].

Spins 𝑠𝑖 and 𝑠𝑗 interact if and only if there is an edge between nodes 𝑖 and 𝑗, a
formulation sufficiently general to describe a large number of models in fields as di-

verse as statistical physics, machine learning, economics, psychology, epidemiology,

and sociology [210, 220–225]. Interactions are represented by an interaction energy

𝑔𝑖𝑗(𝑠𝑖, 𝑠𝑗|𝜔𝑖𝑗), which controls the preference for any particular pair of states 𝑠𝑖 and

𝑠𝑗 to occur together. The quantity 𝜔𝑖𝑗 represents any external parameters, such as

temperature in a classical spin system or infection rate in an epidemiological model,

that control the nature of the interaction. We also allow for the inclusion of an exter-

nal field 𝑓𝑖(𝑠𝑖|𝜃𝑖) with parameters 𝜃𝑖, which controls the intrinsic propensity for 𝑠𝑖 to

take an particular state. This could be used for instance to encode individual risk of

catching a disease in an epidemic model.

Given these definitions, we write the probability 𝑃(𝐬|𝜔, 𝜃) that the complete set of
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spins takes value 𝐬 in the Boltzmann form

𝑃(𝐬|𝜔, 𝜃) = 𝑒−𝐻(𝐬|𝜔,𝜃)

𝑍(𝜔, 𝜃) , (4.1)

where the Hamiltonian

𝐻(𝐬|𝜔, 𝜃) = − ∑
(𝑖,𝑗)∈𝐸

𝑔𝑖𝑗(𝑠𝑖, 𝑠𝑗|𝜔𝑖𝑗) − ∑
𝑖∈𝑉

𝑓𝑖(𝑠𝑖|𝜃𝑖) (4.2)

is the log-probability of the state to within an arbitrary additive constant, and the

partition function

𝑍(𝜔, 𝜃) = ∑
𝐬

𝑒−𝐻(𝐬|𝜔,𝜃) (4.3)

is the appropriate normalizing constant, ensuring that 𝑃(𝐬|𝜔, 𝜃) sums to unity. In this

chapter we will primarily be concerned with computing the single-site (or one-point)

marginal probabilities

𝑞𝑖(𝑠𝑖) = ∑
𝐬⧵𝑠𝑖

𝑃(𝐬|𝜔, 𝜃), (4.4)

where 𝐬 ⧵ 𝑠𝑖 denotes all spins with the exception of 𝑠𝑖. For convenience we have

dropped 𝜔 and 𝜃 from the notation on the left of the equation, but it should be clear

contextually that 𝑞𝑖 depends on both of these variables.

The one-point marginals reveal useful information about physical systems, such

as the magnetization of classical spin models or the position of a phase transition.

They are important for statistical inference problems, where they give the posterior

probability of a variable taking a given state after averaging over contributions from
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all other variables (e.g., the total probability of an individual being infected with a

disease at a given time). Unfortunately, direct computation of one-point marginals is

difficult because the number of terms in the sum in Eq. (4.4) grows exponentially with

the number of spins. The message passing method gives us a way to get around this

difficulty and compute 𝑞𝑖 accurately and rapidly.

Message passing can also be used to calculate other quantities. For instance, we

will show how to compute the average energy (also called the internal energy), which

is given by

𝑈(𝜔, 𝜃) = ∑
𝐬

𝐻(𝐬|𝜔, 𝜃)𝑃 (𝐬|𝜔, 𝜃). (4.5)

The average energy is primarily of interest in thermodynamic calculations, although

it may also be of interest for statistical inference, where it corresponds to the average

log-likelihood.

We can also compute the two-point correlation function between spins

𝑃 (𝑠𝑖 = 𝑥, 𝑠𝑗 = 𝑦) = 𝑃(𝑠𝑗 = 𝑦|𝑠𝑖 = 𝑥) 𝑞𝑖(𝑠𝑖 = 𝑥). (4.6)

This function can be computed by first calculating the one-point marginal 𝑞𝑖(𝑠𝑖 = 𝑥),
then fixing 𝑠𝑖 = 𝑥 and repeating the calculation for 𝑠𝑗. The same approach can also

be used to compute higher order multi-point correlation functions.

4.2.2. Message passing equations

Our method operates by dividing a network into neighborhoods [216]. A neigh-

borhood 𝑁 (𝑟)
𝑖 around node 𝑖 is defined as the node 𝑖 itself and all of its edges and
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neighboring nodes, plus all nodes and edges along paths of length 𝑟 or less between

the neighbors of 𝑖. See Fig. 4.1 for examples. The key to our approach is to focus ini-

tially on networks in which there are no paths longer than 𝑟 between the neighbors

of 𝑖, meaning that all paths are inside 𝑁 (𝑟)
𝑖 . This means that all correlations between

spins within 𝑁 (𝑟)
𝑖 are accounted for by edges that are also within 𝑁 (𝑟)

𝑖 , which allows

us to write exact message passing equations for these networks. Equivalently, we can

define a primitive cycle of length 𝑟 starting at node 𝑖 to be a cycle (i.e., a self-avoiding

loop) such that at least one edge in the cycle is not on any shorter cycle beginning and

ending at 𝑖. Our methods are then exact on any network that contains no primitive

cycles of length greater than 𝑟 + 2.
This approach gives us a series of methods where the 𝑟th member of the series is

exact on networks that contain primitive cycles of length 𝑟+2 and less only. The calcu-

lations become progressivelymore complex as 𝑟 gets larger: they are very tractable for

smaller values but become impractical when 𝑟 is large. In many real-world networks

the longest primitive loop will be relatively long, requiring an infeasible computation

to reach an exact solution. However, long loops introduce smaller correlations be-

tween variables than short ones, and moreover the density of long loops is in many

cases low: the network is “locally dense but globally sparse.” In this situation, we find

that the message passing equations for low values of 𝑟, while not exact, give excellent

results. They account correctly for the effect of the short loops in the network, while

making only a small approximation by omitting the long ones.

In practice, quite modest values of 𝑟 can give good results. The smallest possible

choice is 𝑟 = 0, which corresponds to assuming that there are no loops in the network

at all, that the network is a tree. This is the assumption made by traditional message

passing methods, and it gives poor results on many real-world networks. The next
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approximation after this, however, with 𝑟 = 1, which correctly accounts for the effect

of loops of length three in the network (i.e., triangles), produces substantially better

results, and the 𝑟 = 2 approximation (which includes loops of length three and four)

is in many cases impressively accurate. In the following developments, we drop 𝑟
from our notation for convenience—the same equations apply for all values of 𝑟.

Having defined the initial neighborhood 𝑁𝑖 we further define a neighborhood 𝑁𝑗⧵𝑖

to be node 𝑗 plus all edges in 𝑁𝑗 that are not contained in 𝑁𝑖 and the nodes at their

ends. Our method involves writing the marginal probability distribution on the spin

at node 𝑖 in terms of a set of messages received from nodes 𝑗 that are in 𝑁𝑖, including

nodes that are not immediate neighbors of 𝑖. (This contrasts with traditional message

passing in which messages are received only from the immediate neighbors of 𝑖.)
These messages are then in turn calculated from further messages 𝑗 receives from

nodes 𝑘 ∈ 𝑁𝑗⧵𝑖, and so forth.

When written in this manner, the messages 𝑖 receives are independent of one an-

other in any network with no primitive cycles longer than 𝑟 + 2. Messages received

from any two nodes 𝑗1 and 𝑗2 within 𝑁𝑖 are necessarily independent since they are

calculated from the corresponding neighborhoods 𝑁𝑗1⧵𝑖 and 𝑁𝑗2⧵𝑖 which are discon-

nected from one another: if they were connected by any path then that path would

create a primitive cycle starting at 𝑖 but passing outside of 𝑁𝑖, of which by hypothesis

there are none. By the same argument, we also know that 𝑁𝑗⧵𝑖 and 𝑁𝑖 only overlap at

the single node 𝑗 for any 𝑗 ∈ 𝑁𝑖.

This much is in commonwith the approach in Ref. [216], but to apply these ideas to

the solution of probabilistic models we need to go further. Specifically, we now show

how this neighborhood decomposition allows us to factorize the Hamiltonian into a

product of independent sums over the individual neighborhoods, with interactions
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that can be represented by messages passed between neighborhoods. Consider 𝑁𝑖

as comprising a central set of nodes and edges surrounding 𝑖. Then we can think

of the set of neighborhoods 𝑁𝑗⧵𝑖 for all 𝑗 ∈ 𝑁𝑖 as comprising the next “layer” in the

network, the sets 𝑁𝑘⧵𝑗 for all 𝑘 ∈ 𝑁𝑗⧵𝑖 as a third layer, and so forth until all nodes and

edges in the network are accounted for. In a network with no primitive cycles longer

than 𝑟 + 2, this procedure counts all interactions exactly once, allowing us to rewrite

our Hamiltonian as a sum of independent contributions from the various layers thus:

𝐻(𝐬) = 𝐻𝑁𝑖
(𝐬𝑁𝑖

) + ∑
𝑗∈𝑁𝑖

𝐻𝑁𝑗⧵𝑖
(𝐬𝑁𝑗⧵𝑖

)

+ ∑
𝑗∈𝑁𝑖

∑
𝑘∈𝑁𝑗⧵𝑖

𝐻𝑁𝑘⧵𝑗
(𝐬𝑁𝑘⧵𝑗

)

+ ∑
𝑗∈𝑁𝑖

∑
𝑘∈𝑁𝑗⧵𝑖

∑
𝑙∈𝑁𝑘⧵𝑗

𝐻𝑁𝑙⧵𝑘
(𝐬𝑁𝑙⧵𝑘

) + … ,

(4.7)

where 𝐬𝑁𝑖
and 𝐬𝑁𝑗⧵𝑖

are the sets of spins for the nodes in the neighborhoods𝑁𝑖 and𝑁𝑗⧵𝑖

and we have defined the local Hamiltonians

𝐻𝑁𝑖
(𝐬𝑁𝑖

) = − ∑
(𝑗,𝑘)∈𝑁𝑖

𝑔𝑗𝑘(𝑠𝑗, 𝑠𝑘|𝜔𝑗𝑘) − 𝑓𝑖(𝑠𝑖|𝜃𝑖), (4.8)

𝐻𝑁𝑗⧵𝑖
(𝐬𝑁𝑗⧵𝑖

) = − ∑
(𝑘,𝑙)∈𝑁𝑗⧵𝑖

𝑔𝑘𝑙(𝑠𝑘, 𝑠𝑙|𝜔𝑘𝑙) − 𝑓𝑗(𝑠𝑗|𝜃𝑗). (4.9)

The decomposition of Eq. (4.7) is illustrated pictorially in Fig. 4.1.

The essential feature of this decomposition is that it breaks sums over spins such

as those in Eqs. (4.3) and (4.4) into a product of sums over the individual neighbor-

hoods {𝑁𝑗⧵𝑖}𝑗∈𝑁𝑖
. Because these neighborhoods are, as we have said, independent,

this means that the partition function and related quantities factorize into products of
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sN0
= {s0, s1, s2, s3, s4}

sN1∖0
= {s1, s5, s6}

q0←1

q0←2

q0←3
q0←4

q1←5 q1←6

s3

s2

s1

s4s0

s6s5

N0 (excluding 0)
N1∖0 (excluding 1)

Fig. 4.1. Hamiltonian expansion diagram, with 𝑟 = 2. The focal node is in red while
the rest of its neighborhood 𝑁0 is in green. Nodes and edges in purple represent
the neighborhood 𝑁1⧵0 excluding node 1. We also label the corresponding spin and
message variables used in Eqs. (4.11) and (4.12).

sums over a few spins each, which can easily be performed numerically. For instance,

the one-point marginal of Eq. (4.4) takes the form

𝑞𝑖(𝑠𝑖 = 𝑥) ∝ ∑
𝐬𝑁𝑖 ∶𝑠𝑖=𝑥

𝑒−𝐻𝑁𝑖 (𝐬𝑁𝑖 ) ∏
𝑗∈𝑁𝑖

∑
𝐬𝑁𝑗⧵𝑖⧵𝑗

𝑒−𝐻𝑁𝑗⧵𝑖 (𝐬𝑁𝑗⧵𝑖 ) ∏
𝑘∈𝑁𝑗⧵𝑖

∑
𝐬𝑁𝑘⧵𝑗⧵𝑘

𝑒−𝐻𝑁𝑘⧵𝑗 (𝐬𝑁𝑘⧵𝑗 ) … ,

(4.10)

which can be written recursively as

𝑞𝑖(𝑠𝑖 = 𝑥) = 1
𝑍𝑖

∑
𝐬𝑁𝑖 ∶𝑠𝑖=𝑥

𝑒−𝐻𝑁𝑖 (𝐬𝑁𝑖 ) ∏
𝑗∈𝑁𝑖

𝑞𝑖←𝑗(𝑠𝑗), (4.11)
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with

𝑞𝑖←𝑗(𝑠𝑗 = 𝑦) = 1
𝑍𝑖←𝑗

∑
𝐬𝑁𝑗⧵𝑖 ∶𝑠𝑗=𝑦

𝑒−𝐻𝑁𝑗⧵𝑖 (𝐬𝑁𝑗⧵𝑖 ) ∏
𝑘∈𝑁𝑗⧵𝑖⧵𝑗

𝑞𝑗←𝑘(𝑠𝑘), (4.12)

where the normalization constants 𝑍𝑖 and 𝑍𝑖←𝑗 ensure that the marginals 𝑞𝑖 andmes-

sages 𝑞𝑖←𝑗 are normalized so that they sum to 1. (In practice, we simply normalize the

messages by dividing by their sum.) The quantity 𝑞𝑖←𝑗(𝑠𝑗) is equal to the marginal

probability of node 𝑗 having spin 𝑠𝑗 when all the edges in 𝑁𝑖 are removed. Alter-

natively, one can think of it as a local external field on node 𝑗 that influences the

probability distribution of 𝑠𝑗. To make this more explicit one could rewrite Eq. (4.11)

as

𝑞𝑖(𝑠𝑖 = 𝑥) = 1
𝑍𝑖

∑
𝐬𝑁𝑖 ∶𝑠𝑖=𝑥

𝑒−𝐻𝑁𝑖 (𝐬𝑁𝑖 )+∑𝑗∈𝑁𝑖
log 𝑞𝑖←𝑗(𝑠𝑗), (4.13)

where log 𝑞𝑖←𝑗(𝑠𝑗) plays the role of the external field.

Equations (4.11) and (4.12) define ourmessage passing algorithm and can be solved

for the messages 𝑞𝑖←𝑗 by simple iteration, starting from any suitable set of starting

values and applying the equations repeatedly until convergence is reached.

With only slightmodificationwe canuse the same approach to calculate the internal

energy aswell. The contribution to the internal energy from the interactions of a single

node 𝑖 is 1
2 ∑𝑗∶𝐴𝑖𝑗=1 𝑔(𝑠𝑖, 𝑠𝑗|𝜔𝑖𝑗)+𝑓(𝑠𝑖|𝜃𝑖), where the factor of 1

2 compensates for double

counting of interactions. Summing over all nodes 𝑖 and weighting by the appropriate

Boltzmann probabilities, the total internal energy is

𝑈 = ∑
𝑖∈𝑉

1
𝑍𝑖

∑
𝐬𝑁𝑖

[1
2 ∑

𝑗∶𝐴𝑖𝑗=1
𝑔(𝑠𝑖, 𝑠𝑗|𝜔𝑖𝑗) + 𝑓(𝑠𝑖|𝜃𝑖)]𝑒−𝐻𝑁𝑖 (𝐬𝑁𝑖 ) ∏

𝑗∈𝑁𝑖

𝑞𝑖←𝑗(𝑠𝑗). (4.14)
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All of the quantities appearing here are knownapriori, except for themessages 𝑞𝑖←𝑗(𝑠𝑗)
and the normalizing constants 𝑍𝑖, which are calculated in the message passing pro-

cess. Performing the message passing and then using the final converged values in

Eq. (4.14) then gives us our internal energy.

4.2.3. Implementation

For less dense networks, those with node degrees up to about 20, the message

passing equations of Eqs. (4.11) and (4.12) can be implemented directly and work

well. The method is also easily parallelizable, as we can update all messages asyn-

chronously based on their values from the previous iteration, as well as compute the

final marginals in parallel.

For networks with higher degrees the calculations can become unwieldy, the huge

reduction in complexity due to the factorization of the Hamiltonian notwithstanding.

For a model with 𝑡 distinct spin states at every node, the sum over states in the neigh-

borhood of 𝑖 has 𝑡|𝑁𝑖| terms, which can quickly become computationally expensive to

evaluate. Moreover, if just a single node has too large a neighborhood it can make

the entire computation intractable, as that single neighborhood can consume more

computational power than is available.

In such situations, therefore, we take a different approach. We note that Eq. (4.12)

is effectively an expectation

𝑞𝑖←𝑗(𝑠𝑗 = 𝑦) = ⟨𝛿𝑠𝑗,𝑦⟩𝑁𝑗⧵𝑖
, (4.15)
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where we use the shorthand

⟨𝐴⟩𝑁𝑗⧵𝑖
= ∑

𝐬𝑁𝑗⧵𝑖

𝐴(𝐬𝑁𝑗⧵𝑖
)
𝑒−𝐻𝑁𝑗⧵𝑖 (𝐬𝑁𝑗⧵𝑖 ) ∏𝑘∈𝑁𝑗⧵𝑖⧵𝑗 𝑞𝑗←𝑘(𝑠𝑘)

𝑍𝑖←𝑗
. (4.16)

We approximate this average using Markov chain Monte Carlo importance sampling

over spin states, and after convergence of the messages the final estimates of the

marginals 𝑞𝑖 can also be obtained by Monte Carlo, this time on the spins in 𝑁𝑖. We

describe the details in Section 4.3.

4.2.4. Calculating the partition function

The partition function 𝑍 is perhaps the most fundamental quantity in equilibrium

statistical mechanics. From a knowledge of the partition function one can calculate

virtually any other thermodynamic variable of interest. Objects equivalent to 𝑍 also

appear in other fields, such as Bayesian statistics, where the quantity known as the

model evidence, the marginal likelihood of observed data given a hypothesized model,

is mathematically analogous to the partition function and plays an important role in

model fitting and selection [226–228].

Unfortunately, the partition function is difficult to calculate in practice. The calcu-

lation can be done analytically in some special cases [229, 230], but direct numerical

calculations are difficult due to the need to sum over an exponentially large number

of states, andMonte Carlo is challenging because of the difficulty of correctly normal-

izing the Boltzmann distribution.
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Another concept central to statistical mechanics is the entropy

𝑆 = − ∑
𝐬

𝑃(𝐬) ln𝑃(𝐬), (4.17)

which has broad applications not just in physics but across the sciences [231–233].

Like the partition function, entropy is difficult to calculate numerically, and for ex-

actly the same reasons, since the two are closely related. For the canonical distribution

of Eq. (4.1) the entropy is given in terms of 𝑍 by 𝑆 = ln𝑍 + 𝛽𝑈 . Even if we know the

internal energy 𝑈 therefore (which is relatively straightforward to compute), the en-

tropy is at least as hard to calculate as the partition function. Indeed the fundamental

difficulty of normalizing the Boltzmann distribution is equivalent to establishing the

zero of the entropy, a well known hard problem (unsolvable within classical thermo-

dynamics, requiring the additional axiom of the Third Law).

As we now show, the entropy can be calculated using our message passing formal-

ism by appropriately factorizing the probability distribution over spin states. Since

we have already developed a prescription for computing 𝑈 (see Eq. (4.14)), this also

allows us to calculate the partition function. The details of the procedure are quite in-

volved and do not follow straightforwardly from the previous discussion, so we defer

the derivation to Appendix B.4. As shown there, the state probability 𝑃(𝐬) in Eq. (4.1)

can be rewritten in the factorized form

𝑃(𝐬) =
∏𝑖∈𝐺 𝑃(𝐬𝑁𝑖

)
∏((𝑖,𝑗))∈𝐺 𝑃(𝐬∩𝑖𝑗

)2/|∩𝑖𝑗| , (4.18)

where 𝑃(𝐬𝑁𝑖
) is the joint marginal distribution of the variables in the neighborhood

of node 𝑖, 𝑃(𝐬∩𝑖𝑗
) is the joint marginal distribution in the intersection ∩𝑖𝑗 = 𝑁𝑖 ∩ 𝑁𝑗 of
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the neighborhoods 𝑁𝑖 and 𝑁𝑗, and ((𝑖, 𝑗)) denotes pairs of nodes that are contained

in each other’s neighborhoods.

By a series ofmanipulations, this form can be further expressed as the pure product

𝑃(𝐬) = [ ∏
((𝑖,𝑗))∈𝐺

𝑃(𝐬∩𝑖𝑗
)1/(|∩𝑖𝑗|

2 )][ ∏
(𝑖,𝑗)∈𝐺

𝑃(𝑠𝑖, 𝑠𝑗)𝑊𝑖𝑗][∏
𝑖∈𝐺

𝑃(𝑠𝑖)𝐶𝑖], (4.19)

where

𝑊𝑖𝑗 = 1 − ∑
((𝑙,𝑚))∈𝐺

1
(|∩𝑙𝑚|

2 )
1{(𝑖,𝑗)∈∩𝑙𝑚} (4.20)

with 1{… } being the indicator function, and

𝐶𝑖 = 1 − ( ∑
𝑗∈𝑁𝑖

1
| ∩𝑖𝑗 | − 1) − ( ∑

𝑗∈𝑁(0)
𝑖

𝑊𝑖𝑗). (4.21)

Substituting Eq. (4.19) into Eq. (4.17), we get an expression for the entropy thus:

𝑆 = − 1
(|∩𝑖𝑗|

2 )
∑

((𝑖,𝑗))∈𝐺
𝑃(𝐬∩𝑖𝑗

) ln𝑃(𝐬∩𝑖𝑗
)

− ∑
(𝑖,𝑗)∈𝐺

𝑊𝑖𝑗𝑃(𝑠𝑖, 𝑠𝑗) ln𝑃(𝑠𝑖, 𝑠𝑗) − ∑
𝑖∈𝐺

𝐶𝑖𝑃(𝑠𝑖) ln𝑃(𝑠𝑖). (4.22)

Note that, like the well known Bethe approximation for the entropy [212], this ex-

pression has contributions from the one- and two-point marginals 𝑃(𝑠𝑖) and 𝑃(𝑠𝑖, 𝑠𝑗)
of Eqs. (4.6) and (4.11), but also contains a term that depends on the jointmarginal𝑃(𝐬∩𝑖𝑗

)
in the intersection ∩𝑖𝑗, which may be nontrivial if 𝑟 > 0. As shown in Appendix B.4,
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we can calculate this joint marginal using the message passing equation

𝑃(𝐬∩𝑖𝑗
) = 1

𝑍∩𝑖𝑗

𝑒−𝛽𝐻(𝐬∩𝑖𝑗 )𝑞𝑖←𝑗(𝑠𝑗) ∏
𝑘∈∩𝑖𝑗⧵𝑗

𝑞𝑗←𝑘(𝑠𝑘), (4.23)

where𝐻(𝐬∩𝑖𝑗
)denotes the terms of theHamiltonian of Eq. (4.2) that fall within∩𝑖𝑗 and

𝑍∩𝑖𝑗
is the corresponding normalizing constant. For | ∩𝑖𝑗 | sufficiently small, 𝑍∩𝑖𝑗

can

be computed exactly. In other cases we can calculate it using Monte Carlo methods

similar to those we used previously for the marginals 𝑃(𝑠𝑖).

4.2.5. Ising model calculations

As an archetypal application of our methods we consider the Ising model on vari-

ous example networks. The ferromagnetic Ising model in zero external field is equiv-

alent in our notation to the choices

𝑔𝑖𝑗(𝑠𝑖, 𝑠𝑗) = −𝛽𝐴𝑖𝑗𝑠𝑖𝑠𝑗, 𝑓𝑖(𝑠𝑖) = 0, (4.24)

where 𝛽 = 1/𝑇 is the inverse temperature. Note that temperature in this notation

is considered a part of the Hamiltonian. It is more conventional to write tempera-

ture separately, so that the Hamiltonian has dimensions of energy rather than being

dimensionless as here, but absorbing the temperature into the Hamiltonian is nota-

tionally convenient in the present case. It effectively makes the temperature a param-

eter 𝜔𝑖𝑗 in Eq. (4.2) (and all 𝜔𝑖𝑗 are equal).

As example calculations, we will compute the average magnetization 𝑀 , which is
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given by

𝑀 = ∣⟨ 1
𝑁

𝑁
∑
𝑖=1

𝑠𝑖⟩∣ = 1
𝑁 ∣

𝑁
∑
𝑖=1

[2𝑞𝑖(𝑠𝑖 = +1) − 1]∣ , (4.25)

and the heat capacity 𝐶, given by

𝐶 = 𝑑𝑈
𝑑𝑇 = −𝛽2 𝑑𝑈

𝑑𝛽 . (4.26)

As detailed in Appendix B.1, we employ an extension of the message passing equa-

tions to compute𝐶 that avoids having to use a numerical derivative to evaluate Eq. (4.26).

In brief, we consider the messages 𝑞𝑖←𝑗 to be a function of 𝛽 then define their deriva-

tives with respect to 𝛽 as their own set of messages

𝜂𝑖←𝑗 = 𝑑𝑞𝑖←𝑗
𝑑𝛽 , (4.27)

with their ownassociatedmessage passing equations derived bydifferentiatingEq. (4.12).

We then compute the heat capacity 𝐶 by differentiating Eq. (4.14), expressing the re-

sult in terms of the 𝜂𝑖←𝑗, and substituting it into Eq. (4.26).

4.2.6. Behavior at the phase transition

Inmanygeometries, the ferromagnetic Isingmodel has a phase transition at a nonzero

critical temperature between a symmetric state with zero average magnetization and

a symmetry broken state with nonzero magnetization. Substituting Eq. (4.24) into

Eqs. (4.11) and (4.12) we can show that the message passing equations for the Ising

model always have a trivial solution 𝑞𝑖←𝑗(𝑠𝑗) = 1
2 for all 𝑖, 𝑗. This choice is a fixed point
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of the message passing iteration: when started at this point the iteration will remain

there indefinitely. Looking at Eq. (4.25), we see that this fixed point corresponds to

magnetization 𝑀 = 0. If the message passing iteration converges to this trivial fixed

point, therefore, it tells us that the magnetization is zero and we are above the criti-

cal temperature; if it settles elsewhere then the magnetization is nonzero and we are

below the critical temperature. Thus the phase transition corresponds to the point at

which the fixed point changes from being attracting to being repelling.

This behavior is well known in standard belief propagation, where it has been

shown that on networks with long loops only there is a critical temperature 𝑇BP be-

low which the trivial fixed point becomes unstable and hence the system develops

nonzero magnetization, and that this temperature corresponds precisely to the con-

ventional zero-field continuous phase transition on these networks [234]. Extending

the same idea to the present case, we expect the phase transition on a loopy network to

fall at the corresponding transition point between stable and unstable in our message

passing formulation.

Moreover, because the values of the messages at the trivial fixed point are known,

we can compute an expression for the phase transition point without performing any

message passing. We treat the message passing iteration as a dynamical system and

perform a linear stability analysis of the trivial fixed point. Perturbing around 𝑞 = 1
2

(shorthand for setting all 𝑞𝑖←𝑗 = 1
2 ) and keeping terms to linear order, we find that the

dynamics is governed by the Jacobian

𝐽𝑗→𝑖,𝜈→𝜇 = 𝜕𝑞𝑖←𝑗
𝜕𝑞𝜇←𝜈

∣
𝑞=1/2

= �̃�𝑗→𝑖,𝜈→𝜇𝐷𝑗→𝑖,𝜈→𝜇, (4.28)

where �̃� is a generalization of the so-called non-backtrackingmatrix [235] to our loopy
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message passing formulation:

�̃�𝑗→𝑖,𝜈→𝜇 = {
1 if 𝑗 = 𝜇 and 𝜈 ∈ 𝑁𝑗⧵𝑖,

0 otherwise,
(4.29)

and 𝐷𝑗→𝑖,𝜈→𝜇 is a correlation function between the spins 𝑠𝜇 and 𝑠𝜈 within the neigh-

borhood 𝑁𝑗⧵𝑖—see Appendix B.3 for details.

When the magnitude of the leading eigenvalue 𝜆max of this Jacobian is less than 1,

the trivial fixed point is stable; when it is greater than 1 the fixed point is unstable.

Hence we can locate the phase transition temperature by numerically evaluating the

Jacobian and locating the point at which |𝜆max| crosses 1, for instance by binary search.

Equation 4.29 is also useful in its own right. The non-backtracking matrix has nu-

merous applicationswithin network science, for instance in community detection [235],

centrality measures [236], and percolation theory [237]. The generalization defined in

Eq. 4.29 could be used to extend these applications to loopy networks, although we

will not explore such calculations here.

4.3. Results

4.3.1. A model network

As a first example application, we examine the behavior of our method on a model

network created precisely to have short loops only up to a specifiedmaximum length.

The network has short primitive cycles only of length 𝑟 + 2 and less for a given choice

of 𝑟, though it can also have long loops—it is “locally dense but globally sparse” in

the sense discussed previously. Indeed this turns out to be a crucial point. The Ising
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model does not have a normal phase transition on a true tree, because at any finite

temperature there is always a nonzero density of defects in the spin state (pairs of

adjacent spins that are oppositely oriented), which on a tree divide the network into

finite sized regions, imposing a finite correlation length and hence no critical behavior.

Similarly in the case of a network with only short loops and no long ones there is

no true phase transition. The long loops are necessary to produce criticality, a point

discussed in detail in [238].

To generate networks that have short primitive cycles only up to a certain length,

we first generate a random bipartite network—a networkwith two types of nodes and

connections only between unlike kinds, as discussed in Sec. 1.1—then project down

onto one type of node, producing a network composed of a set of complete subgraphs

or cliques. In detail, the procedure is as follows.

1. We first specify the degrees of all the nodes, of both types, in the bipartite net-

work.

2. We represent these degrees by stubs of edges emerging, in the appropriate num-

bers, from each node, then we match stubs at random in pairs to create our ran-

dom bipartite network.

3. We project this network onto the nodes of type 1, meaning that any two such

nodes that are both connected to the same neighbor of type 2 are connected di-

rectly with an edge in the projection. After all such edges have been added, the

type 2 nodes are discarded.

4. Finally, we remove a fraction 𝑝 of the edges in the projected network at random.

If 𝑝 = 0, the network is composed of fully connected cliques, but when 𝑝 > 0 some
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cliques will be lacking some edges, and hence the network is composed of a collection

of subgraphs of size equal to the degrees of the corresponding nodes of type 2 from

which theywere projected. If we limit these degrees to amaximum value of 𝑟+2 then

there will be no short loops of length longer than this.

Figure 4.2 shows the magnetization per spin, entropy, and heat capacity for the

ferromagnetic Ising model on an example network of 9 447 nodes and 13 508 edges

generated using this procedure with 𝑟 = 2 and 𝑝 = 0.6. We also limit the degrees

of the type-1 nodes in the bipartite graph to a maximum of 5, which ensures that no

neighborhood in the projection is too large to prevent a complete summation over

states and hence that Monte Carlo estimation of the sums in the message passing

equations is unnecessary.

Results are shown for belief propagation calculations with 𝑟 = 0, 1, and 2, the last

of which should, in principle, be exact except for the weak correlations introduced by

the presence of long loops in the network. We also show in the figure the magnitude

of the leading eigenvalue of 𝐽 for each value of 𝑟. The points at which this eigenvalue

equals 1, which give estimates of the critical temperature for each 𝑟, are indicated by

the vertical lines. Also shown in the figure for comparison are results from direct

Monte Carlo simulations of the system, with the entropy calculated from values of

the heat capacity computed from energy fluctuations and then numerically integrated

using the identity

𝑆 = ∫
𝑇

0

𝐶(𝑇 )
𝑇 𝑑𝑇 . (4.30)

The message passing simulations offer significantly faster results for this system: for

𝑟 = 2 message passing was about 100 times faster than the Monte Carlo simulations.
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Looking at Fig. 4.2, we can see that as we increase 𝑟 the message passing results

approach those from the direct Monte Carlo, except close to the phase transition,

where theMonte Carlo calculations suffer from finite size effects that smear the phase

transition, to which the message passing approach appears largely immune. While

the results for conventional belief propagation (𝑟 = 0) are quite far from the direct

Monte Carlo results, most of the improvement in accuracy from ourmethod is already

present even at 𝑟 = 1. Going to 𝑟 = 2 offers only a small additional improvement in

this case.

The apparent position of the phase transition aligns well with the predictions de-

rived from the value of the Jacobian for each value of 𝑟. The transition is particularly

clear in the gradient discontinuity of the magnetization. For 𝑟 = 1 and 2 the heat

capacity appears to exhibit a discontinuity at the transition, which differs from the

divergence we expect on low-dimensional lattices but bears a resemblance to the be-

havior seen on Bethe lattices and other homogeneous tree-like networks [197, 239,

240].

4.3.2. Real-world networks

For our next example we look at an application on a real-world network, where we

do not expect the method to be exact, though as we will see it nonetheless performs

well. The network we examine has larger local neighborhoods than our synthetic

example, which means we are not able to sum exhaustively over all configurations

of the spins 𝐬𝑁𝑗⧵𝑖
in Eq. (4.12) (and similarly 𝐬𝑁𝑖

in Eq. (4.11)) so, as described in Sec-

tion 4.2.3, we insteadmake use ofMonte Carlo sampling to estimate themessages 𝑞𝑖←𝑗

and marginals 𝑞𝑖.
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Fig. 4.2. Ferromagnetic Ising model critical behavior on synthetic network. The top
panel shows the averagemagnetization, while the bottom one shows the heat capacity
and the entropy (the latter shifted up for visualization purposes). The magnitude of
the leading eigenvalue for the Jacobian is also shown in the top panel for all three
values of 𝑟, andwe can see that the apparent positions of the phase transition, revealed
by discontinuities in the physical quantities or their gradients, correspond closely to
the temperatures at which the associated eigenvalues are equal to 1.

118



The summation over local spins in Eq. (4.12) is equivalent to computing the ex-

pectation in Eq. (4.15). To calculate 𝑞𝑖←𝑗(𝑠𝑗 = 𝑦) we fix the values of its incoming

messages {𝑞𝑗←𝑘} and perform Monte Carlo sampling over the states of the spins in

the neighborhood 𝑁𝑗⧵𝑖 with the Hamiltonian of Eq. (4.9). Then we compute the av-

erage in Eq. (4.15) separately for the cases 𝑦 = 1 and −1 and normalize to ensure

that the results sum to one. The resulting values for 𝑞𝑖←𝑗 can then be used as incom-

ing messages for calculating other messages in other neighborhoods. We perform the

Monte Carlo using the Wolff cluster algorithm [241], which makes use of the Fortuin-

Kasteleyn percolation representation of the Ising model to flip large clusters of spins

simultaneously and can significantly reduce the time needed to obtain independent

samples, particularly close to the critical point. Once the messages have converged to

their final values we compute the marginals 𝑞𝑖 by performing a second Monte Carlo,

this time over the spins 𝐬𝑁𝑖
with the Hamiltonian of Eq. (4.8). More details on the

procedure are given in Appendix B.2.

The Monte Carlo approach combines the best aspects of message passing and tra-

ditional Monte Carlo calculations. Message passing reduces the sumswe need to per-

form to sets of spins much smaller than the entire network, while theMonte Carlo ap-

proach dramatically reduces the number of spin states that need to be evaluated. The

approach has other advantages too. For instance, because of the small neighborhood

sizes it shows improved performance in systems with substantial energy barriers that

might otherwise impede ergodicity, such as antiferromagnetic systems. But perhaps

its biggest advantage is that it effectively allows us to sample very large numbers of

states of the network without taking very large samples of individual neighborhoods.

If we sample 𝑘 configurations from one neighborhood and 𝑘 configurations from an-

other, then in effect we are summing over 𝑘2 possible combinations of states in the
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union of the two neighborhoods. Depending on the value of 𝑟, there are at least 2𝑚
neighborhoods 𝑁𝑗⧵𝑖 in a network, where 𝑚 is the number of edges, and hence we are

effectively summing over at least 𝑘2𝑚 states overall, a number that increases exponen-

tially with network size. Effective sample sizes of 101000 or more are easily reachable,

far beyond what is possible with traditional Monte Carlo methods.

Figure 4.3 shows the results of applying these methods with 𝑟 = 0 … 4 to a network

from [242] representing the structure of an electric power grid, alongwith results from

direct Monte Carlo simulations on the same network. As the figure shows, the mag-

netization is again poorly approximated by the traditional (𝑟 = 0) message passing

algorithm, but improves as 𝑟 increases. In particular, the behavior in the region of the

phase transition is quite poor for 𝑟 = 0 and does not provide a good estimate of the

position of the transition. For 𝑟 = 1 and 2, however, we get much better estimates,

and for 𝑟 = 3 and 4 the method approaches the Monte Carlo results quite closely,

with the critical temperature falling somewhere in the region of 𝑇 = 1.6 in this case.

We also see a much clearer phase transition in the message passing results than in the

standard Monte Carlo, because of finite size effects in the latter. These results all sug-

gest that for real systems our method can give substantial improvements over both

ordinary belief propagation and direct Monte Carlo simulation, and in some cases

show completely different behavior altogether.

4.4. Conclusion

In this chapter we have presented a new class of message passing algorithms for

solving probabilistic models on networks that contain a high density of short loops.

Taking the Ising model as an example, we have shown that our methods give sub-
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Fig. 4.3. Ferromagnetic Ising model critical behavior on a power grid network. Mes-
sage passing and Monte Carlo calculations of the average magnetization, entropy,
and specific heat on the “494 bus power system” network from Ref. [242]. Again, the
message passing results approximate the real solution progressively better as 𝑟 grows
larger.
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stantially improved results in calculations of magnetization, heat capacity, entropy,

marginal spin probabilities, and other quantities over standardmessagepassingmeth-

ods that do not account for the presence of loops. Our methods are exact on networks

with short loops up to a fixed maximum length which we can choose, and can give

good approximations on networks with loops of any length.
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Chapter 5.

Representative Community Divisions

of Networks

In this chapter, we conclude our discussion of statistical inference for network data

by addressing the issue of multimodality in community detection. We describe a sim-

ple, fast, principled method for dealing with the heterogeneity present in the results

from any community detection algorithm, revealing the range of possibilities for com-

munity structure in a network in a manner analogous to standard error analysis for

measurement data. This method allows researchers employing community detection

in their work to summarize the complex output of these algorithms to gain a more

holistic understanding of the ways in which a network can be effectively partitioned.

5.1. Introduction

There are numerous existing methods for community detection, including ones

based on centrality measures [243], modularity [244], information theory [245], and
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Bayesian generative models [246]—see [247] for a review. Most methods represent

the community structure in a network as a single network partition or division (see

Sec. 1.2.4 for a brief background), which is typically the one that attains the highest

score according to some objective function. As pointed out bymany previous authors,

however, there may be multiple partitions of a network that achieve high scores, any

of which could be a good candidate for division of the network [248–253]. With this in

mind some community detection methods, including methods based on modularity

and on generative models, return multiple plausible partitions rather than just one.

But while these algorithms give a more complete picture of community structure,

they have their own problems. In particular, the number of partitions returned is of-

ten very large. Even for relatively small networks the partitions may number in the

hundreds or thousands, far more than any human observer can reasonably compre-

hend. How then are we supposed to make sense of the output of these calculations?

In some cases it may happen that all of the plausible divisions of a network are

quite similar to each other, in which case we may be able to form a consensus cluster-

ing [254], a single partition that is representative of the entire set in the same way that

the mean of a set of numbers can be a useful representation of the whole. However, if

the partitions vary substantially, then the consensus can fail to capture the full range

of behaviors in the same way that the mean can be a poor summary statistic for broad

or multimodal distributions of numbers. In cases like these, summarizing the com-

munity structuremay require not just one but several representative partitions, which

may themselves be consensus partitions for a local cluster of network divisions [253].

In this chapter, we present a simple and efficient method for finding such represen-

tative partitions. Given a large set of possible structures returned by a community

detection algorithm, our method finds a smaller set that captures the main variants

124



and possibilities while remaining comprehensible to human users.

Broadly speaking, our method clusters the partitions into a small number of sub-

sets, in a manner somewhat akin to traditional methods for clustering numerical data

in high-dimensional data spaces. A few previous studies have investigated the clus-

tering of partitions. Calatayud et al. [255] proposed an algorithm that starts with the

single highest scoring partition (underwhatever objective function is in use), then iter-

ates through other divisions in order of decreasing score and assigns each to the clos-

est cluster if the distance to that cluster is less than a certain threshold, or starts a new

cluster otherwise. This approach is primarily applicable in situations where there is a

clear definition of distance between partitions (there are many possible choices [256]),

as the results turn out to be sensitive to this definition and to the corresponding dis-

tance threshold. Peixoto [253] has proposed a principled statistical method for clus-

tering partitions using methods of Bayesian inference, which works well but differs

from ours in that rather than returning a single partition as a representative of each

cluster it returns a distribution over partitions. It also does not explicitly address is-

sues of the dependence of the number of clusters on the number of input partitions,

issues that we address in some detail in this chapter.

The method we propose is based on fundamental information theoretic principles

and has a number of practical advantages. It does not require the explicit choice of

partition distance function, does not depend on the number of input partitions pro-

vided the partition space is well sampled, and is adaptable to any community detec-

tion algorithm that returns multiple sample partitions. The method is based on the

principle ofminimum description length, which posits that when selecting between pos-

sible models for a data set, the best model is the one that permits the most succinct

representation of the data [257]. In our context, we seek to capture the information
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contained in a set of community divisions returned by some community detection

algorithm using a model that consists of a small number of representative partitions

that are used to reconstruct the clusters around them. The description length principle

has been applied to clustering in the past for real-valued (non-network) data, includ-

ing methods based on Gaussian mixture models [258], hierarchical clustering [259],

Bernoulli mixturemodels for categorical data [260], and probabilistic generativemod-

els [261]. Georgieva et al. [262], for instance, have proposed a clustering framework

that is similar in some respects to ours but for real-valued vector data. As in our

approach the data are thought of as a message to be transmitted in multiple parts, in-

cluding the cluster centers and the data within each cluster. Georgieva et al., however,

only use their measure as a quality function to assess the outputs of other clustering

algorithms and not as an objective to be optimized to obtain the clusters themselves.

The minimum description length approach has also been applied to the task of com-

munity detection itself by Rosvall and Bergstrom [263], who used it to formulate an

objective function for community detection that considers the encoding of a network

in terms of a partition and the node and edge counts within and between the commu-

nities in the partition.

Our algorithm takes as input a set of divisions of a network into communities,

which may be obtained in any manner we like. Common methods for generating

such divisions are sampling from probabilistic models, thermal samples generated

using modularity or other energy functions, or multiple runs of optimization algo-

rithms, and our method will work with any of these. We design a partition clustering

objective function using simple information theoretic arguments, and use an efficient

Monte Carlo scheme to optimize this objective and identify clusters of similar parti-

tions and a representative member of each cluster. We test the method on a range
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of real and synthetic networks and demonstrate that it returns substantially distinct

community divisions that are a good guide to the structures present in the original

sample.

5.2. Methods

The primary goal of our proposed technique is to find representative partitions

that summarize the community structure in a network. We call these representative

partitions modes. Suppose we have an observed network consisting of 𝑛 nodes and

we have some method for finding community divisions of these nodes, also called

partitions. As in Sec. 1.2.4, we can represent a partition with a length-𝑛 vector 𝐠 that

assigns to each node 𝑖 = 1 … 𝑛 a label 𝑔𝑖 indicating which community it belongs to.

We assume that there are a large number of plausible partitions and that our com-

munity detection method returns a subset of them. Normally we expect that many of

the partitions would be similar to one another, differing only by a few nodes here or

there. The goal of this study is to develop a procedure for gathering such similar parti-

tions into clusters, and generating a mode, which is itself a partition, as an archetypal

representative of each cluster. For the sake of clarity, we will use the words “parti-

tion” or “division” to describe the assignment of network nodes to communities, and

the word “cluster” to describe the assignment of entire partitions to groups according

to the method that we describe.

In order both to divide the partitions into clusters and to find a representativemode

for each cluster, we first develop a clustering objective function based on information

theoretic arguments. The main concept behind our approach is a thought experiment

in which we imagine transmitting our set of partitions to a receiver using a multi-
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step encoding chosen so as to minimize the amount of information required for the

complete transmission.

5.2.1. Partition clustering as an encoding problem

Let us denote our set of partitions by 𝐷 and suppose there are 𝑆 partitions in the

set, labeled 𝑝 = 1 … 𝑆. Now imagine we wish to transmit a complete description of all

elements of the set to a friend. How should we go about this? The most obvious way

is to send each of the partitions separately to the receiver using some simple encod-

ing that uses, say, numbers or symbols to represent community labels. We could do

somewhat better by using an optimal prefix code such as a Huffman code [264] that

economizes by representing frequently used labels with shorter code words. Even

this, however, would be quite inefficient in terms of information. We can do better by

making use of the fact that, as we have said, we expect many of our partitions to be

similar to one another. This allows us to save information by dividing the partitions

into clusters of similar ones and transmitting only a few partitions in full—one repre-

sentative partition ormode for each cluster—then describing the remaining partitions

by how they differ from these modes. The method is illustrated in Fig. 5.1.

Initially, let us assume that we want to divide the set 𝐷 of partitions into 𝐾 clus-

ters, denoted 𝐶𝑘 with 𝑘 = 1 … 𝐾. (We will discuss how to choose 𝐾 separately in a

moment.) To efficiently transmit 𝐷, we first transmit 𝐾 representative modes, which

themselves are members of 𝐷, with group labels ̂𝐠(𝑘). Then for each individual par-

tition in 𝐷 we transmit which cluster, or equivalently which mode, it belongs to and

then the partition itself by describing how it differs from thatmode. Since the latter in-

formation will be smaller if a partition is more similar to its assigned mode, choosing
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Fig. 5.1. Illustration of the transmission of a set of partitions for a network. We first
transmit a small set of “modes,” archetypal partitions drawn from the larger set, with
average information content equal to the entropies of these partitions (Eq. 5.2). Then
each partition 𝑝 from the complete set is transmitted by describing how it differs
from the most similar of the modes, using a modified conditional entropy expres-
sion (Eq. 5.4). The weight 𝑤𝑘 is the fraction of all partitions that are part of cluster
𝑘.

a set of modes that are accurately representative of all partitions will naturally mini-

mize the total information, and we use this criterion to derive the best set of modes.

This is the minimum description length principle, as applied to finding the optimal

clusters and modes.

Following this plan, the total description length per sampled partition can be ap-
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proximated (see Appendix C.1) by the expression

ℒtotal = 𝑛
𝑆

𝐾
∑
𝑘=1

𝐻( ̂𝐠(𝑘)) + 𝐻(𝐜) + 𝑛
𝑆

𝐾
∑
𝑘=1

∑
𝑝∈𝐶𝑘

𝐻mod(𝐠(𝑝)| ̂𝐠(𝑘)). (5.1)

The first term represents the amount of information required to transmit the modes

and is simply equal to the sum of their entropies:

𝐻( ̂𝐠(𝑘)) = −
𝑛𝑚𝑘

∑
𝑟=1

𝑎(𝑚𝑘)
𝑟
𝑛 log 𝑎(𝑚𝑘)

𝑟
𝑛 . (5.2)

Here 𝑚𝑘 is the partition label 𝑝 of the 𝑘th mode, 𝑛𝑝 is the number of communities in

partition 𝑝, and 𝑎(𝑝)
𝑟 is the number of nodes in partition 𝑝 that have community label 𝑟.

The second term in Eq. 5.1 represents the amount of information needed to specify

which cluster, or alternatively which mode, each partition in 𝐷 belongs to:

𝐻(𝐜) = −
𝐾

∑
𝑘=1

𝑐𝑘
𝑆 log 𝑐𝑘

𝑆 , (5.3)

where 𝑐𝑘 = |𝐶𝑘| is the number of partitions (out of 𝑆 total) that belong to mode 𝑘.
The third term in 5.1 represents the amount of information needed to specify each

of the individual partitions 𝐠(𝑝) in terms of their modes ̂𝐠(𝑘):

𝐻mod(𝐠(𝑝)| ̂𝐠(𝑘)) = 𝐻(𝐠(𝑝)| ̂𝐠(𝑘)) + 1
𝑛 logΩ(𝑝, 𝑚𝑘). (5.4)

𝐻mod is themodified conditional entropy of the group labels of 𝐠(𝑝) given the group labels
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of ̂𝐠(𝑘) [265]. The normal (non-modified) conditional entropy is

𝐻(𝐠(𝑝)| ̂𝐠(𝑘)) = −
𝑛𝑚𝑘

∑
𝑟=1

𝑛𝑝

∑
𝑠=1

𝑡𝑚𝑘𝑝
𝑟𝑠
𝑛 log 𝑡𝑚𝑘𝑝

𝑟𝑠

𝑎(𝑚𝑘)
𝑟

, (5.5)

where 𝑡𝑚𝑝
𝑟𝑠 is the number of nodes simultaneously classified into community 𝑟 in par-

tition 𝐠(𝑚) and community 𝑠 in partition 𝐠(𝑝). The matrix of elements 𝐭𝑚𝑝 for any pair

of partitions 𝑚, 𝑝 is known as a contingency table, and Eq. 5.5 measures the amount

of information needed to transmit 𝐠(𝑝) given that we already know both ̂𝐠(𝑘) and the

contingency table. To actually transmit the partitions in practice we would also need

to transmit the contingency table, and the second term in Eq. 5.4 represents the in-

formation needed to do this. The quantity Ω(𝑝, 𝑚) is equal to the number of possible

contingency tables 𝐭𝑚𝑝 with row and column sums 𝑎(𝑚)
𝑟 and 𝑎(𝑝)

𝑠 respectively. This

quantity can be computed exactly for smaller contingency tables and there exist good

approximations to its value for larger tables [265].

The modified conditional entropy, including the logΩ term, thus measures the to-

tal amount of information needed to transmit the partition 𝐠(𝑝) after having already

transmitted its mode ̂𝐠(𝑘). The logΩ term is often omitted from calculations of con-

ditional entropy, but it turns out to be crucial in the current application. Without it,

one can minimize the conditional entropy simply by making the number of groups in

the modal partition very large, with the result that the minimum description length

solution is biased toward modes with many groups. The additional term avoids this

bias.

In principle, beforewe send any of this information, we also need transmit to the re-

ceiver information about the size of each partition and the number ofmodes 𝐾, which

adds some additional terms to the description length, Eq. 5.1. These terms, however,
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are small, and moreover they are independent of how we configure our clusters and

modes, so we can safely neglect them.

A detailed derivation of Eq. 5.1 is given in Appendix C.1. Byminimizing this quan-

tity we can now find the best set of modes to describe a given set of partitions.

5.2.2. Choosing the number of clusters

So far we have assumed that we know the number 𝐾 of clusters of partitions, or

equivalently the number of modes. In practice we do not usually know 𝐾 and nor-

mally there is not even one “correct” value for a given network. Different values of 𝐾
can give useful answers for the same network, depending on how much granularity

we wish to see in the community structure. In general, a small numbers of clusters—

no more than a dozen or so—is most informative to human eyes, but fewer clusters

also means that each cluster will contain a wider range of structures within it. How

then do we choose the value of 𝐾?

One might hope for a principled, parameter-free method of choosing the value

based for instance on statistical model selection techniques, in which we allow the

data to dictate the natural number of clusters that should be used to describe it. On

closer inspection, however, it seems likely that no such method exists. As described

for example in [253], one can look at the problem in terms of the “landscape” defined

by a community detection metric such as modularity. Good community structures

correspond to high values of modularity and clusters of good structures correspond

to regions of high value or peaks in the landscape, so the number of clusters is equiv-

alent to the number of peaks. But the number of peaks depends on how closely one

inspects the landscape. Viewed at a coarse scale the landscape may contain only a
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few peaks, but at a finer scale there will be many small fluctuations that define large

numbers of peaks and valleys, each potentially corresponding to its own cluster. One

must make a decision about the scale at which one wishes to probe the landscape and

this decision is equivalent to choosing the number of clusters. This is not a question of

avoiding “overfitting,” as can happen in certain types of model fitting. The landscape

here is a deterministic one and the fluctuations are not due to stochastic variation or

measurement error. They would persist even if we could draw an infinite number of

sample structures for a network.

Thus, if one wants to generate a reasonable number of clusters one is obliged to

make a decision about what that number is and devise a way to impose that decision

on the output of the clustering algorithm. There are no “parameter-free” ways to per-

form the clustering. Some methods might appear at first glance to be parameter-free,

but this only means that the parameters are concealed in implementation details or

in assumptions made in the algorithm design. In our approach we prefer to make the

parameters explicit for the user, both to clarify the assumptions made in a calculation

and to give the user the option to vary the parameter values if they wish.

A natural way to parametrize the number of clusters is to impose a penalty on the

description length objective function using a multiplier or “chemical potential” that

couples linearly to the value of 𝐾 thus:

ℒtotal = 𝑛
𝑆

𝐾
∑
𝑘=1

𝐻( ̂𝐠(𝑘)) + 𝐻(𝐜) + 𝑛
𝑆

𝐾
∑
𝑘=1

∑
𝑝∈𝐶𝑘

𝐻mod(𝐠(𝑝)| ̂𝐠(𝑘)) + 𝜆𝐾. (5.6)

This imposes a penalty equal to 𝜆 for each extra cluster added and hence larger values

of 𝜆 will produce larger penalties.

Equation (5.6) is the objective function we use in our method. It is straightforward
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to show that this form makes the optimal number of clusters 𝐾 independent of 𝑆—

see Appendix C.2 for a derivation. As we have said, we normally want to the number

of modes to be small, which means that we expect 𝜆 to be of order unity. In practice,

we find that the choice 𝜆 = 1 works well in many cases and this is the value we use for

all the example applications presented here, although it is possible that other values

might be useful in certain circumstances.

One can set the value of 𝜆 to zero, which is equivalent to removing the penalty term

altogether. In this case there is still an optimal choice of 𝐾 implied by the description

length alone. Low values of 𝐾, corresponding to only a small number of modes, will

give inefficient descriptions of the data because many partitions will not be similar to

any of the modes, while high values of 𝐾 will give inefficient partitions because we

will waste a lot of information describing all themodes. In between, at somemoderate

value of 𝐾, there is an optimal choice that determines the best number of clusters. An

analogous method is used, for example, for choosing the optimal number of bins for

histograms and often works well in that context [266, 267].

This might appear at first sight to give a parameter-free approach to choosing the

number of modes, but in fact this is not the case because the number of modes the

method returns now depends on the number of sampled partitions 𝑆, increasing as

the value of 𝑆 increases and diverging as 𝑆 becomes arbitrarily large. When creat-

ing a histogram from a fixed set of samples this behavior is desirable—you want to

use more bins when you have more data—but in the present case the dependence on

𝑆 introduces a hidden parameter on which the value of 𝐾 depends. We would like

our representation of the space of community structures to capture the fundamen-

tal features of the network independent on how we choose to sample those features,

including how many samples we draw.

134



It is worth noting that one can envisage other encodings of a set of community

structures that would give slightly different values for the description length. For ex-

ample, when transmitting information about which cluster each sampled structure

belongs to one could choose to use a single fixed-length code for the cluster labels,

which would require log𝐾 bits per sample. This would simply replace the term 𝐻(𝐜)
in Eq. 5.1 with log𝐾. One could analogously replace the terms 𝐻( ̂𝐠(𝑘)) with their

corresponding fixed-length average code sizes (per node), with values log𝑛𝑚𝑘
. In

general, both of these changes would result in a less efficient encoding that tends to

favor a smaller number of modes. However, neither of them would affect the asymp-

totic scaling of the description length and the term in 𝜆𝐾 would still be needed to

achieve a number of modes that is independent of 𝑆. It is also possible to extend the

description length formulation to a hierarchical model in which we allow the possi-

bility of more than one “level” of modes being transmitted, which could compress the

data more efficiently but lacks the simple interpretation of the output present in the

two-level scheme presented here.

5.2.3. Minimizing the clustering objective

Our goal is now to find the set of modes ̂𝐠 that minimize Eq. 5.6. This could be done

using any of a variety of optimization methods, but here we make use of a greedy al-

gorithm that employs a sequence of elementary moves that merge and split clusters,

inspired by a similar merge-split algorithm for sampling community structures de-

scribed in [268]. We start by randomly dividing our set 𝐷 of partitions into some

number 𝐾0 of initial clusters, then identify the mode ̂𝐠(𝑘) of each cluster 𝐶𝑘 as the

partition 𝑝 ∈ 𝐶𝑘 that minimizes 𝐻(𝐠(𝑝)) + ∑𝑞∈𝐶𝑘
𝐻mod(𝐠(𝑞)|𝐠(𝑝)). In other words, the
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initial mode for each cluster is the partition 𝑝 that is closest to all other partitions 𝑞 in

the cluster in terms of modified conditional entropy, accounting for the entropy of 𝑝
itself.

Computing the modified conditional entropy, Eq. 5.4, has time complexity O(𝑛),
which means it takes O(𝑛𝑆2/𝐾2

0) steps to compute each mode exactly if the initial

clusters are the same size. This can be slow in practice, but we can obtain a good

approximation substantially faster by Monte Carlo sampling. We draw a random

sample 𝑋 of partitions from the cluster (without replacement) and then minimize

𝐻(𝐠(𝑝))+(𝑐𝑘/|𝑋|) ∑𝑞∈𝑋 𝐻mod(𝐠(𝑞)|𝐠(𝑝)), where as previously 𝑐𝑘 is the size of the clus-

ter. Good results can be obtained with relatively small samples, and in our calcula-

tions we use |𝑋| = 30. The time complexity of this calculation is O(𝑛𝑆/𝐾0), a signifi-

cant improvement given that sample sizes 𝑆 can run into the thousands or more. We

also store the values of 𝐻(𝐠(𝑝)) and 𝐻mod(𝐠(𝑞)|𝐠(𝑝)) as they are computed so that they

do not need to be recomputed on subsequent steps of the algorithm.

Technically, our formulation does not require one to constrain ̂𝐠(𝑘) to be amember of

𝐶𝑘, but this restriction significantly reduces the computation time in practice by allow-

ing stored conditional entropy values to be reused repeatedly during calculation. One

could relax this restriction and choose the mode ̂𝐠(𝑘) of each cluster 𝐶𝑘 to be the par-

tition 𝐠 (which may or may not be in 𝐶𝑘) that minimizes 𝐻(𝐠) + ∑𝑞∈𝐶𝑘
𝐻mod(𝐠(𝑞)|𝐠).

However, we have not taken this approach in the examples presented here.

Once we have an initial set of clusters and representative modes, the algorithm

proceeds by repeatedly proposing one of the following moves at random, accepting

it only if it reduces the value of Eq. 5.6:

1. Pick a partition 𝐠(𝑝) at random and assign it to the closest mode ̂𝐠(𝑘), in terms of

modified conditional entropy.
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2. Pick two clusters 𝐶𝑘′ and 𝐶𝑘″ at random and merge them into a single cluster

𝐶𝑘, recomputing the cluster mode as before.

3. Pick a cluster 𝐶𝑘 at random and split it into two clusters 𝐶𝑘′ and 𝐶𝑘″ using a

𝑘-means style algorithm: we select two modes at random from 𝐶𝑘 and assign

each partition in 𝐶𝑘 to the closer of the two (in terms of modified conditional

entropy). Then we recompute the modes for each resulting cluster and repeat

until convergence is reached.

These steps together constitute a complete algorithm for minimizing Eq. 5.6 and op-

timizing the clusters, but we find that the efficiency of the algorithm can be further

improved by adding a fourth move:

4. Perform step 2, then immediately perform step 3 using the merged cluster from

step 2.

This extra move, inspired by a similar one in the community merge-split algorithm

of [268], helps with the rapid optimization of partition assignments between pairs of

clusters.

We continue performing these moves until a prescribed number of consecutive

moves are rejected without improving the objective function. We find that this proce-

dure returns very consistent results despite its random nature. If results were found

to vary between runs it could be worthwhile to perform random restarts of the algo-

rithm and adopt the results with the lowest objective score. However, this has not

proved necessary for the examples presented here.

The algorithm has O(𝑛𝑆) time complexity permove in theworst case (which occurs

when there is just a single cluster), and is fast in practice. In particular, it is typically
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much faster than the community detection procedure itself for current community

detection algorithms, so it adds little to the overall time needed to analyze a network.

We give a range of example applications in the next section.

5.3. Results

In this section we demonstrate the application of our method to a number of exam-

ple networks, both real and computer generated. For each example we perform com-

munity detection by fitting to the non-parametric degree-corrected block model [269]

and sampling 10 000 community partitions from the posterior distribution of themodel

by Markov chain Monte Carlo using the algorithm of [268]. These samples are then

clustered using the method of this chapter with the cluster penalty parameter set to

𝜆 = 1, the number of Monte Carlo samples for estimating modes to |𝑋| = 30, and
the number of initial modes to 𝐾0 = 1. We also calculate for each mode 𝑘 a weight

𝑤𝑘 = 𝑐𝑘/𝑆 equal to the fraction of all partitions in 𝐷 that fall in cluster 𝑘, to assess the

relative sizes of the clusters.

5.3.1. Synthetic networks

As afirst test of ourmethod,we apply it to a set of synthetic (i.e., computer-generated)

networks specifically constructed to display varying degrees of ambiguity in their

community structure. Figure 5.2A shows results for a network generated using the

planted partition model, a symmetric version of the stochastic block model [67, 77] in

which 𝑛 nodes are assigned in equal numbers to 𝑞 communities, and between each

pair of nodes 𝑖, 𝑗 an edge is placed with probability 𝑝in if 𝑖 and 𝑗 are in the same com-

munity or 𝑝out if 𝑖 and 𝑗 are in different communities. In our example we generated a
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A

B

w1 = 0.83

w2 = 0.17

w1 = 0.53

w2 = 0.47

C

w1 = 1

Fig. 5.2. Representative modes and their corresponding weights for three synthetic
example networks, identified byminimizing Eq. 5.6 with 𝜆 = 1 for 10, 000 community
partition samples. (A) Planted partition model with 100 nodes, four communities,
and connection probabilities 𝑝in = 0.25 and 𝑝out = 0.02. (B) Network of 99 nodes
generated using the stochastic block model with a mixing matrix of the form given in
Eq. 5.7 with 𝑝𝑠 = 0.27, 𝑝𝑚 = 0.08, and 𝑝𝑏 = 0.01. (C) Ring of eight cliques of six nodes
each, connected by single edges, based on the example in [270].
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network with 𝑛 = 100 nodes, 𝑞 = 4 communities, and 𝑝in = 0.25, 𝑝out = 0.02. Though
it contains four communities, by its definition, this network should exhibit only a

single mode, the structure “planted” into it in the network generation process. There

will be competing individual partitions, but they should be distributed evenly around

the single modal structure rather than multimodally around two or more structures.

And indeed our algorithm correctly infers this as shown in the figure: it returns a

single representative structure in which all nodes are grouped correctly into their

planted communities. Given the random nature of the community detection algo-

rithm it would be possible for a small number of nodes to be incorrectly assigned in

the modal structure, simply by chance, but in the present case this did not happen

and every node is assigned correctly.

For a second, more demanding examplewe construct a network using the full (non-

symmetric) stochastic block model, which is more flexible than the planted partition

model. If 𝐠 denotes a vector of community assignments as previously, then an edge

in the model is placed between each node pair 𝑖, 𝑗 independently at random with

probability 𝜔𝑔𝑖𝑔𝑗
, where the 𝜔𝑔𝑖𝑔𝑗

are parameters that we choose (see Sec. 1.3.1). For

our example we create a network with three communities and with parameters of the

form

𝝎 =
⎡
⎢
⎢
⎢
⎣

𝑝𝑠 𝑝𝑚 𝑝𝑏

𝑝𝑚 𝑝𝑠 𝑝𝑏

𝑝𝑏 𝑝𝑏 𝑝𝑠

⎤
⎥
⎥
⎥
⎦

, (5.7)

where 𝑝𝑠 is the within-group edge probability, 𝑝𝑚 and 𝑝𝑏 are between-group prob-

abilities, and 𝑝𝑠 > 𝑝𝑚 > 𝑝𝑏. In our particular example the network has 𝑁 = 99
nodes divided evenly between the three groups and 𝑝𝑠 = 0.27, 𝑝𝑚 = 0.08, 𝑝𝑏 = 0.01.
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This gives the network a nested structure in which there is a clear separation between

group 3 and the rest, and a weaker separation between groups 1 and 2. This sets up

a deliberate ambiguity in the community structure: does the “correct” structure have

three groups or just two? As shown in Fig. 5.2B, our method accurately pinpoints this

ambiguity, finding two representativemodes for the network, one with three separate

communities and one where communities 1 and 2 are merged together.

A third synthetic example network is shown in Fig. 5.2C, the “ring of cliques” net-

work of Fortunato and Barthelemy [270], in which a set of cliques (i.e., complete sub-

graphs) are joined together by single edges to create a loop. Good et al. [251] found

this network to have ambiguous community structure in which the cliques joined to-

gether in pairs rather than forming separate communities on their own. Since there

are two symmetry-equivalent ways to divide the ring into clique pairs this also means

there are two equally good divisions of the network into communities. Good et al.

performed their community detection using modularity maximization, but similar

behavior is seen with the method used here. Most sampled community structures

show the same division into pairs of cliques, except for a clique or two that may get

randomly assigned as a whole to a different community. Our algorithm readily picks

out this structure as shown in Fig. 5.2C, finding twomodes that correspond to the two

rotationally equivalent configurations. Moreover, the two modes have approximately

equal weight 𝑤𝑘 in the sampling, indicating that the Monte Carlo algorithm spent a

roughly equal amount of time on partitions near each mode.
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5.3.2. Real networks

Turning now to real-world networks, we show that our method can also accurately

summarize community structure found in a range of practical domains. (Further ex-

amples are given in Appendix C.3.) The results demonstrate not only that themethod

works but also that real-world networks commonly do have multimodal community

structure that is best summarized by two or more modes rather than by just a sin-

gle consensus partition, although our method will return a single partition when it is

justified—see Sec. 5.3.1.

Figure 5.3A shows results for onewell-studied network, the co-purchasing network

of books about politics compiled by Krebs (unpublished, but see [59]), where two

books are connected by an edge if they were frequently purchased by the same buy-

ers. It has been conjectured that this network contains two primary communities,

corresponding to politically left- and right-leaning books, but the network contains

more subtle divisions as well. A study by Peixoto [253] found 11 different types of

structure—what we are here calling “modes.” Many of these modes, however, dif-

fered only slightly, by the reassignment of a few nodes from one community to an-

other. Applying our method to the network we find, by contrast, just two modes

as shown in the figure, suggesting that our algorithm is penalizing minor variations

in structure more heavily than that of Ref. [253]. The two modes we find have four

communities each. In the one on the left in Fig. 5.3A these appear to correspond ap-

proximately to books that are politically liberal (red), center-left (purple), center-right

(green), and conservative (yellow); in the one on the right they are left-liberal (green),

liberal (red), center (purple), and conservative (yellow).

Figure 5.3B shows a different kind of example, a social network of self-reported
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B C

w3 = 0.20

w1 = 0.53 w2 = 0.47

w1 = 0.41

w1 = 0.64

w2 = 0.19

w3 = 0.17

w2 = 0.39

Fig. 5.3. Representative modes and their corresponding weights for three real-world
example networks, identified byminimizing Eq. 5.6 with 𝜆 = 1 for 10, 000 community
partition samples. (A) Network of political book co-purchases [59]. (B) High school
friendship network [271, 272]. (C) Network of adjacent census tracts in the city of
Chicago [273].
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friendships among US high school students drawn from the National Longitudinal

Study of Adolescent to Adult Health (the “Add Health” study) [271, 272]. The partic-

ular network we examine here is network number 5 from the studywith 157 students.

(Twonodeswith degree zerowere removed from the network before running the anal-

ysis.) As the figure shows, the method in this case finds three modes, each composed

of half a dozen core communities of highly connected nodes whose boundaries shift

somewhat from one mode to another, as well as a set of centrally located nodes (pale

pink and yellow in the figure) that seem to move between communities in different

modes. The movement of nodes from one community to another may be a sign of

different roles played by core and peripheral members of social circles, or of students

with a broad range of friendships.

In Fig. 5.3C, we show a third type of network, the geographic network of census

tracts in the city of Chicago used for community detection in a different context in

Sec. 3.3.3 [273]. (In contrast with the results in Sec. 3.3.3, we do not use weights in

the community detection procedure used here, for consistency with the rest of the

examples.) We recall that in this network the nodes represent the census tracts and

two nodes are joined by an edge if the two corresponding tracts share a border, and

community detection applied to this network tends to find contiguous local neigh-

borhoods. Our algorithm finds three modes that differ primarily in the communities

on the southwest side of the city where the density of census tracts is lower (though it

is unclear whether this is the driving factor in the variation of community structure).
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5.4. Conclusion

In this chapter we have presented a method for summarizing the complex output

of community detection algorithms that identifies a small number of archetypal net-

work partitions that are broadly representative of high-scoring partitions in general.

The method is based on fundamental information theoretic principles, employing a

clustering objective function based on the description length required to transmit a

set of partitions using a specific multi-step encoding that we describe. We have de-

veloped an efficient algorithm to minimize this objective and we give examples of

applications to both synthetic and real-world networks that exhibit nontrivial multi-

modal community structure.
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Chapter 6.

Conclusion

My goal with the work in this thesis is to bridge current gaps between the theory

and practice of network science by developing principled methods for incorporating

metadata into the analysis of networks and formulating efficient algorithms to extract

information from network data through statistical inference. In terms of theoretical

contributions, my hope is that this work can provide new insights about networked

systems that are obscured by existing measures, and that the ideas I have presented

are sufficiently fundamental and intuitive to inspire further refinement and adapta-

tion to new problems. On the more practical side, I aim to expand the mathematical

and computational toolkit for researchers using networks in their work by providing

measures that quantify the interplay of network topology and metadata, as well as

algorithms to make otherwise intractable inference tasks more accessible (both com-

putationally and intuitively).

In Chapter 2, I presented new measures for assessing balance in signed networks,

showing that real networks are indeed structurally balanced and that we can use this

information to effectively predict missing data. Many extensions and generalizations
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of the work presented here would be possible. Good data on signed networks are cur-

rently relatively scarce, but it would be interesting to see how the results generalize

when similar calculations are performed on other networks, particularly social net-

works. As discussed in Section 2.3.1, many data sets are more naturally represented

as weighted and/or directed signed networks, and so extending the measures pro-

posed here to these classes of networks would provide a more flexible framework for

analysis of a wide variety of data. One could also employ balance metrics to perform

anomaly detection in networks, looking for edges that participate in a large number

of imbalanced loops. A further interesting question is how to determine the optimal

value of the parameter 𝛼, which controls the amount by which longer loops are dis-

counted in the calculations. In this work I simply chose a value that seems reasonable,

noting that the results are not strongly dependent on the choice, but it would be an

improvement if one were able to find a first-principles method of fixing the value of 𝛼.

Finally, adapting the proposed measures to count only simple cycles rather than all

closedwalks could potentially improve their performance for less penalizing discount

parameters 𝛼.

In Chapter 3, I discussed a framework for measuring the variation in distributional

metadata across networks, demonstrating its potential to identify a variety of interest-

ing patterns in spatial socioeconomic data. There are numerous improvements that

can be made to this methodology in future work, particularly to increase its effec-

tiveness in practical applications. Firstly, important limitations arise from the quality

and resolution of census data, which I do not attempt to address. In particular, the

coarse binning of interval distributional datasets (in this case, income and housing)

can result in poor estimation of entropy and other uncertainty measures, as long tails

are not accounted for and these tails may account for a large portion of the variabil-
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ity in the distributions [274]. One improvement to the methodology to obtain more

accurate results would thus be to estimate these full distributions based on the prede-

fined bins and other summary statistics such as themean,median, andGini coefficient

[154, 275], then apply the newmeasures using approximations of differential entropy.

Additionally, some census data have large margins of error due to various statistical

sampling issues [276, 277], and so correcting for this noise in the analyses would also

improve the efficacy of these techniques. More generally, this framework is applica-

ble to any network with node metadata that take the form of a distribution, and so it

would be interesting to see the techniques presented in this chapter applied to other

systems. One example is scientific collaboration networks, where each researcher has

a distribution of disciplines in which they have previously published, which can be

used to assess mixing preferences among co-authors [278].

In Chapter 4, I derived a new message passing algorithm for the solution of proba-

bilistic models on networks containing short loops, which gives good results in both

real and synthetic example applications, in contrast to standardmessage passingwhich

fails badly on such networks. There are many ways in which the methods and results

of this study could be extended. I studied only one application in detail, the Ising

model, but the formalism presented is a general one that could be applied to many

other models, including those with more general factor graph representations. In

principle, any model with sparse pairwise interactions (i.e., interactions whose num-

ber scales sub-quadratically with the number of variables) could be studied using

these methods. For example, there is a large class of generative models of networks

inwhich edges appearwith probabilities that depend on the properties of the adjacent

nodes. Examples include the Chung-Lu model [279] and the stochastic block model

and its variants [67, 77]. If we assume an observed network to be drawn from such
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a model then we can use statistical inference to estimate the values of hidden node

attributes that influence edge probability, such as community membership. The pro-

posed message passing methods could be applied to such inference calculations and

could in principle give more accurate results in the common case where the observed

network contains many short loops. Another potential application in the realm of

statistical inference is the inverse Ising model, the problem of inferring the parame-

ters of an Ising or Ising-like model from an observed sequence of spin states, which

has numerous applications including the reconstruction of neural pathways [280], the

inference of protein structure [281], and correlations within financial markets [282].

It can be shown that the one- and two-point correlation functions of the observed

spins are sufficient statistics to reliably estimate coupling and external field parame-

ters [283] and the describedmethod could be used to compute these statistics on loopy

networks to greater accuracy than with traditional message passing and faster than

standard Monte Carlo simulation. Other potential applications, further afield from

traditional statistical physics, include the solution of constraint satisfaction problems,

coding theory, and combinatorial optimization.

InChapter 5, I concluded this thesis by presenting a simple, efficient summarization

procedure based on information theoretic arguments which can extract a set of repre-

sentative community divisions that capture the plausible partitions of a network. One

can envisagemany potential applications of this approach. Asmentioned in Sec. 5.3.2,

the representative community partitions for a social network could highlight distinct

roles or reveal information about the diversity of a node’s social circle. In networks

with additional node metadata one could investigate how individual attributes are

associated with the representative partitions. Multimodal community structure may

also be of interest in spatial networks, for instance for assessing competing partitions,
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as inmesh segmentation in engineering and computer graphics [284]. More generally,

in the same way that any measurement can be supplemented with an error estimate,

any community structure analysis could be supplemented with an analysis of com-

peting partitions to help understandwhether the optimal division is representative of

the structure of the network as awhole. Additionally, the techniques presented in this

study could be extended in a number of ways. The concept underlying the described

algorithm is applicable to any set of partitions—not just community divisions of a net-

work but partitions of any set of objects or data items—so it could be applied in any sit-

uation where there are multiple competing ways to cluster objects. All that is needed

is an appropriate measure of the information required to encode representative ob-

jects and their corresponding clusters. One potential application within network sci-

ence could be to the identification of representative networks within a set sampled

from some generative model, such as an exponential random graph model [285].

Common to all the work contained in this thesis is the integration of knowledge

from multiple disciplines. The notion of balanced triads from psychology can be ex-

tended to more general interaction structures through graph theory. Segregation, a

fundamentally sociological and political phenomenon, can be unveiled with infor-

mation theoretic comparison of demographic variables. The behavior of magnetic

materials can be better understood by considering the loop structure of graphs un-

derlying their spin interactions. And uncertainty in the modular structure of social

systems can be quantified by identifying a maximally efficient information encoding

for transmission to a receiver. It is critical to merge multiple disciplinary perspectives

in order to bridge the gap between theoretical and application-oriented network sci-

ence, as it is an inherently interdisciplinary field. I aim to spark interest in a broad

audience with the questions I tackle, and I hope the work I have presented here will
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form a foundation for new and exciting collaborations.
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Appendix A.

Community Inference Methods

In this appendix we discuss inference methods to handle the intractability of the

posterior distribution 𝑃(𝐠, 𝜽|𝐺) in Eq. 1.15. These methods include Monte Carlo

sampling, variational Bayesian inference, profile likelihood estimation, and the ex-

pectation maximization algorithm. We then give an example of Bayesian community

inference for the stochastic block model using expectation maximization with belief

propagation.

A.1. Algorithmic techniques

Perhaps the simplest solution to the intractability of 𝑃(𝐠, 𝜽|𝐺), and the one most

commonly used in practice, is just to ignore the evidence 𝑃(𝐺) altogether. If we can

draw samples from 𝑃(𝐠, 𝜽|𝐺), we can construct estimates of the model variables 𝐠, 𝜽
and compute expectation values over this posterior distribution. This sampling only

requires us to know the ratio of the posterior probability of two configurations 𝐠, 𝜽
and 𝐠′, 𝜽′, which crucially does not depend on the denominator 𝑃(𝐺). Monte Carlo
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methods are used to perform this sampling, and for a given inference task there are

numerous ways one can take samples that are informative of the posterior distribu-

tion. (See [286] for details on Monte Carlo sampling and its variants in the context of

statistical physics systems.) For a judicious choice of prior (typically one uses a con-

jugate prior with respect to relevant terms in the likelihood [78]), it may be possible to

average over some or all of the parameters 𝜽, in which case we can reduce the dimen-

sionality of the space we need to sample from, at the cost of not obtaining estimates

for the parameters that have been integrated out.

Alternatively, we can circumvent the integral in Eq. 1.15 by using a simpler distri-

bution ̃𝑃 (𝐠, 𝜽) as an approximation for 𝑃(𝐠, 𝜽|𝐺). The form of this approximating

distribution is typically restricted to a simple family of distributions (e.g. a product

of independent probability distributions), and our goal is to identify the specific dis-

tribution ̃𝑃 (𝐠, 𝜽) within this family that minimizes the Kullback Leibler (KL) divergence

𝐷𝐾𝐿( ̃𝑃 ||𝑃 ) = ∑
𝐠,𝜽

̃𝑃 (𝐠, 𝜽) log
̃𝑃 (𝐠, 𝜽)

𝑃 (𝐠, 𝜽|𝐺), (A.1)

wherewe’ve used as shorthand a summation sign to indicate sums/integrals over dis-

crete/continuous variables respectively. After somemanipulation, one can show that

this minimization is equivalent to maximizing the evidence lower bound (also known

as the negative variational free energy)

ELBO(𝐺) = − ∑
𝐠,𝜽

̃𝑃 (𝐠, 𝜽) log ̃𝑃 (𝐠, 𝜽) + ∑
𝐠,𝜽

̃𝑃 (𝐠, 𝜽) log[𝑃 (𝐺|𝐠, 𝜽)𝑃 (𝐠, 𝜽)]. (A.2)

Maximizing Eq. A.2 results in a set of self-consistent equations for the parameters of

the distribution ̃𝑃 that can be solved using numerical iteration. Due to its usage of
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the calculus of variations to derive optimization conditions, this technique is called

variational Bayesian inference [78].

Fortunately, in many cases we may only be interested in point estimates (single

values) of the parameters 𝜽, in which casewe havemultiple additionalmethods at our

disposal. The simplest is usually to compute themaximum a posteriori (MAP) estimator

̂𝜽(𝐠) = argmax
𝜽

{𝑃(𝐠, 𝜽|𝐺)} ∝ argmax
𝜽

{𝑃(𝐺|𝐠, 𝜽)𝑃 (𝐠, 𝜽)} (A.3)

as a function of the group assignments 𝐠, then feed this estimator back into the pos-

terior distribution to obtain the profile likelihood

𝑃(𝐠, ̂𝜽(𝐠)|𝐺) ∝ 𝑃(𝐺|𝐠, ̂𝜽(𝐠))𝑃 (𝐠, ̂𝜽(𝐠)), (A.4)

which is then only a function of the group assignments. This distribution can be sam-

pled using Monte Carlo methods, or (to obtain point estimates of 𝐠) optimized using

a variety of stochastic optimization methods.

An alternative technique for point estimation of 𝜽, which resembles variational

Bayesian inference, is called the expectation-maximization (EM) algorithm [287]. In the

EM algorithm, we seek the marginal MAP estimator ̂𝜽, given by

̂𝜽 = argmax
𝜽

{∑
𝐠

𝑃(𝐠, 𝜽|𝐺)} = argmax
𝜽

{log∑
𝐠

𝑃(𝐠, 𝜽|𝐺)} , (A.5)

wherewe have taken the logarithm of themarginal posterior as the objective function.

This transformation does not change the optimization problem due to the monotone

increasing nature of the logarithm, and it will facilitate the derivation of the equations

we need for optimization. For the same reason as the model evidence, we cannot
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evaluate the term inside the brackets analytically or numerically. However, as in the

case of variational Bayesian inference, we can maximize a lower bound on this sum

to get our desired result. Using Jensen’s inequality, we can write

log∑
𝐠

𝑃(𝐠, 𝜽|𝐺) ≥ ∑
𝐠

𝑞(𝐠) log[𝑃 (𝐠, 𝜽|𝐺)/𝑞(𝐠)], (A.6)

where 𝑞(𝐠) is any properly normalized probability distribution over partitions 𝐠. By
inspection, we can see that the inequality is satisfied when

𝑞(𝐠) = 𝑃(𝐠, 𝜽|𝐺)
∑𝐠 𝑃(𝐠, 𝜽|𝐺). (A.7)

With this choice of 𝑞(𝐠), the parameters 𝜽 that maximize the right hand side of Eq. A.6

are the marginal MAP estimators ̂𝜽 we are looking for. These can be computed using

the equations

∑
𝐠

𝑞(𝐠)∇𝜽 log𝑃(𝐠, 𝜽|𝐺)|𝜽= ̂𝜽 = 0, (A.8)

where ∇𝜽 is the gradient operator. Since the left hand side of Eq. A.8 is just an expecta-

tion value over the distribution 𝑞(𝐠), it can be evaluated usingMonte Carlo sampling.

The EM algorithm in this case consists of initializing a guess for ̂𝜽, then (until conver-

gence) alternating the steps of (1) sampling from 𝑞(𝐠) using Eq. A.7 and (2) updating

the estimates of ̂𝜽 using A.8.

Alternatively, if the expectation in Eq A.8 can be written in terms of simple ex-

pectations over 𝑞(𝐠) (such as one- or two-point marginals), we can sometimes skip

sampling altogether and instead use numerical iteration to estimate these posterior

expectations, and thus the parameter updates. (We will show this in the upcoming
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example.) This approach is typically much faster in practice, but does not always give

good answers if we need to approximate the posterior statistics, which is typically

the case for networks that have loops. In any case, the EM algorithm turns the single

intractable maximization in Eq. A.5 into two tractable, interlaced maximization prob-

lems, which in the end gives us the marginal MAP estimates we want. In fact, we

actually get more than just these point estimates for the model parameters, we get the

whole posterior distribution of 𝐠, conditioned on these estimates. We can see this by

noticing that 𝑞(𝐠) in Eq. A.7 is none other than 𝑃(𝐠|𝐺, 𝜽), and so once our EM algo-

rithm has reached convergence we have computed this distribution (or at least some

of its useful expectation values) as well.

A.2. Belief propagation and inference with the SBM

Now that we’ve established the formalism one uses to perform Bayesian inference

for community detection in networks, we can demonstrate how this works in practice

using the stochastic blockmodel as an example. Wewill use an expectationmaximiza-

tion algorithm with a numerical approximation technique known as belief propagation

to solve for the marginal MAP estimates of the model parameters.

As described in Sec. 1.3.1, in the SBM with 𝐾 groups, an undirected, unweighted

edge is placed independently at random between each pair of nodes 𝑖 and 𝑗 with

probability 𝜔𝑔𝑖,𝑔𝑗
, where 𝑔𝑖 is the group assignment of 𝑖 and 𝝎 is the 𝐾 × 𝐾 mixing

matrix of edge probabilities between groups. In this case, 𝜽 = 𝝎 and the probability

of observing a graph 𝐺 (with adjacency matrix 𝐀), given the model variables 𝐠 and
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𝜽, is

𝑃(𝐺|𝐠, 𝝎) = ∏
𝑖<𝑗

𝜔𝐴𝑖𝑗
𝑔𝑖𝑔𝑗(1 − 𝜔𝑔𝑖𝑔𝑗

)1−𝐴𝑖𝑗. (A.9)

Now, if we put uniformpriors on both the group assignments 𝐠 and themixingmatrix

𝝎 (to assume as little information as possible), we can write the model posterior as

𝑃 (𝐠, 𝝎|𝐺) = 𝑃(𝐺|𝐠, 𝝎)𝑃(𝐠)𝑃(𝝎)
𝑃(𝐺) ∝ 𝑃(𝐺|𝐠, 𝝎), (A.10)

where we’ve ignored the evidence 𝑃(𝐺) as it will not play a role in our EM algorithm.

We can now substitute Eq. A.9 into Eq. A.8 to get the parameter update equation

∑
𝐠

𝑞(𝐠) 𝜕
𝜕𝜔𝑟𝑠

[∑
𝑖<𝑗

(𝐴𝑖𝑗 log𝜔𝑔𝑖𝑔𝑗
+ (1 − 𝐴𝑖𝑗) log(1 − 𝜔𝑔𝑖𝑔𝑗

))] ∣
𝜔𝑟𝑠=�̂�𝑟𝑠

= ∑
𝐠

𝑞(𝐠) [∑
𝑖<𝑗

(𝐴𝑖𝑗𝛿𝑔𝑖,𝑟𝛿𝑔𝑗,𝑠/�̂�𝑟𝑠 − (1 − 𝐴𝑖𝑗)𝛿𝑔𝑖,𝑟𝛿𝑔𝑗,𝑠/(1 − �̂�𝑟𝑠))]

= ∑
𝑖<𝑗

𝑞𝑖𝑗(𝑟, 𝑠)[𝐴𝑖𝑗/�̂�𝑟𝑠 − (1 − 𝐴𝑖𝑗)/(1 − �̂�𝑟𝑠)]

= 0

⇒ �̂�𝑟𝑠 =
∑

(𝑖,𝑗)∈𝐸
𝑞𝑖𝑗(𝑟, 𝑠)

∑
𝑖<𝑗

𝑞𝑖𝑗(𝑟, 𝑠) =
2 ∑

(𝑖,𝑗)∈𝐸
𝑞𝑖𝑗(𝑟, 𝑠)

∑
𝑖,𝑗

𝑞𝑖𝑗(𝑟, 𝑠) (A.11)

where 𝐸 is the edge set of 𝐺 (which we’ve assumed has no self-edges) and 𝑞𝑖𝑗(𝑟, 𝑠) is

the posterior probability under 𝑞(𝐠) that 𝑖 and 𝑗 are simultaneously in groups 𝑟 and

𝑠 respectively.

This is the exact parameter update equation for our EM algorithm, but it is a bit

computationally costly to evaluate, since for the denominator we have to compute
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𝑞𝑖𝑗(𝑟, 𝑠) for all node pairs 𝑖, 𝑗. However, if we assume that for large networks the dis-

tribution of group sizes {𝑛𝑟}𝐾
𝑟=1 is tightly peaked, we can make the approximation

∑
𝑖,𝑗

𝑞𝑖𝑗(𝑟, 𝑠) = ∑
𝐠

𝑞(𝐠) [∑
𝑖

𝛿𝑔𝑖,𝑟 ∑
𝑗

𝛿𝑔𝑖,𝑟] = ∑
𝐠

𝑞(𝐠)[𝑛𝑟𝑛𝑠] = ⟨𝑛𝑟𝑛𝑠⟩

≈ ⟨𝑛𝑟⟩⟨𝑛𝑠⟩ = ∑
𝑖

𝑞𝑖(𝑟) ∑
𝑗

𝑞𝑗(𝑠), (A.12)

where 𝑞𝑖(𝑟) is the posterior probability under 𝑞(𝐠) that 𝑖 is in group 𝑟. Our update

equation now reads

�̂�𝑟𝑠 =
2 ∑

(𝑖,𝑗)∈𝐸
𝑞𝑖𝑗(𝑟, 𝑠)

∑𝑖 𝑞𝑖(𝑟) ∑𝑗 𝑞𝑗(𝑠), (A.13)

which can be evaluated in O(𝑚 + 𝑛) time.

The one- and two-point marginals 𝑞𝑖(𝑟) and 𝑞𝑖𝑗(𝑟, 𝑠) in Eq. A.13 can be evaluated by

Monte Carlo sampling 𝑞(𝐠), but for large networks this can be very slow. We can do

better by computing them in an iterative manner using a set of self-consistent equa-

tions called the belief propagation equations [288]. These equations can be derived by

assuming that the network is a tree—or in other words, has no simple cycles. (This

is sometimes not a good assumption for networks with high clustering but we will

ignore this issue for now; see Ch. 4 for more details on an improved solution.) Going

back to the definition of 𝑞𝑖(𝑟), we have that

𝑞𝑖(𝑟) ∝ ∑
𝐠 ∶ 𝑔𝑖=𝑟

𝑃(𝐠|𝐺, 𝝎) = ∑
𝐠 ∶ 𝑔𝑖=𝑟

𝑒∑(𝑖,𝑗)∈𝐸 log𝜔𝑔𝑖,𝑔𝑗+∑(𝑖,𝑗)∈�̃� log(1−𝜔𝑔𝑖,𝑔𝑗 ), (A.14)

where the set 𝐠 ∶ 𝑔𝑖 = 𝑟 is the set of all possible partitions in which 𝑔𝑖 = 𝑟, and ̃𝐸 is
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the set of all node pairs not connected by an edge. For the moment, we will ignore the

non-edge terms log(1 − 𝜔𝑔𝑖,𝑔𝑗
), as they will be dealt with later on with a mean-field

approximation. Further manipulation of 𝑞𝑖(𝑟) then yields

̃𝑞𝑖(𝑟) ∝ ∑
𝐠 ∶ 𝑔𝑖=𝑟

∏
𝑗∈𝜕𝑖

𝑒log𝜔𝑔𝑖,𝑔𝑗 ∏
𝑘∈𝜕𝑗⧵𝑖

𝑒log𝜔𝑔𝑗,𝑔𝑘 ∏
𝑙∈𝜕𝑘⧵𝑗

𝑒log𝜔𝑔𝑘,𝑔𝑙 ⋯

= ∏
𝑗∈𝜕𝑖

𝐾
∑
𝑠=1

𝑒log𝜔𝑟,𝑠 ∏
𝑘∈𝜕𝑗⧵𝑖

𝐾
∑
𝑡=1

𝑒log𝜔𝑠,𝑡 ∏
𝑙∈𝜕𝑘⧵𝑗

𝐾
∑
𝑢=1

𝑒log𝜔𝑡,𝑢 ⋯ , (A.15)

where 𝜕𝑖 is the set of neighbors of 𝑖 and 𝜕𝑗⧵𝑖 is the set of 𝑗’s neighbors that are not neigh-
bors with 𝑖—in the tree approximation we’ve made, this is the same as 𝑗’s neighbors

other than 𝑖, since 𝑖 and 𝑗 do not share any common neighbors. We’ve also notated the

marginal probability as ̃𝑞𝑖(𝑟) to emphasize that this expression is not accounting for

the effect of non-edges. Now, we can see by inspection that Eq. A.15 can be written

in the following recursive form

̃𝑞𝑖(𝑟) ∝ ∏
𝑗∈𝜕𝑖

∑
𝑠

𝜔𝑟𝑠𝑞𝑖←𝑗(𝑠), (A.16)

where

̃𝑞𝑖←𝑗(𝑠) ∝ ∏
𝑘∈𝜕𝑗⧵𝑖

∑
𝑡

𝜔𝑠𝑡𝑞𝑗←𝑘(𝑡) (A.17)

is the marginal posterior probability that 𝑗 is in group 𝑠 if 𝑖 is removed from the net-

work. This is also known as a “message”, which is passed from 𝑗 to 𝑖.
Now, if 𝜔𝑟𝑠 ∼ 𝑂(1/𝑛), as is the case for a sparse network with 𝑚 ∼ 𝑂(𝑛), then

up to sub-leading terms in 𝑛, 𝑖 sends the same message to all of its non-neighbors 𝑗,
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which is simply its marginal 𝑞𝑖(𝑟) [288]. To account for all interactions contributing

to node 𝑖’s marginal probability, we can thus tack on to Eq. A.16 the product of these

independent messages coming from all of 𝑖’s non-neighbors. Making the analogous

transformation for the equations for the messages 𝑞𝑖←𝑗, our final belief propagation

equations are given by

𝑞𝑖(𝑟) = 1
𝑍𝑖

∏
𝑗∉𝜕𝑖

[1 − ∑
𝑠

𝜔𝑟𝑠𝑞𝑗(𝑠)] ∏
𝑗∈𝜕𝑖

∑
𝑠

𝜔𝑟𝑠𝑞𝑖←𝑗(𝑠) (A.18)

and

𝑞𝑖←𝑗(𝑠) = 1
𝑍𝑖←𝑗

∏
𝑘∉𝜕𝑗⧵𝑖

[1 − ∑
𝑡

𝜔𝑠𝑡𝑞𝑘(𝑡)] ∏
𝑘∈𝜕𝑗⧵𝑖

∑
𝑡

𝜔𝑠𝑡𝑞𝑗←𝑘(𝑡), (A.19)

where

𝑍𝑖 = ∑
𝑟

∏
𝑗∉𝜕𝑖

[1 − ∑
𝑠

𝜔𝑟𝑠𝑞𝑗(𝑠)] ∏
𝑗∈𝜕𝑖

∑
𝑠

𝜔𝑟𝑠𝑞𝑖←𝑗(𝑠) (A.20)

and

𝑍𝑖←𝑗 = ∑
𝑠

∏
𝑘∉𝜕𝑗⧵𝑖

[1 − ∑
𝑡

𝜔𝑠𝑡𝑞𝑘(𝑡)] ∏
𝑘∈𝜕𝑗⧵𝑖

∑
𝑡

𝜔𝑠𝑡𝑞𝑗←𝑘(𝑡), (A.21)

are computed upon each update of the messages and marginals to ensure that these

are properly normalized. Our update for 𝑞𝑖(𝑟) now consists of iterating Eq.s A.18 and

A.19 until convergence.

To update the parameters �̂�𝑟𝑠 in Eq. A.13 for our EM algorithm, we also need the

two-point marginals 𝑞𝑖𝑗(𝑟, 𝑠) for the edges (𝑖, 𝑗) ∈ 𝐸, which can be computed after
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the convergence of the messages 𝑞𝑖←𝑗. Since we are assuming 𝐺 is a tree, removal of

the edge (𝑖, 𝑗) will split 𝐺 into two sub-trees, one rooted at 𝑖 and the other at 𝑗. The

probability 𝑞𝑖𝑗(𝑟, 𝑠) that connected nodes 𝑖 and 𝑗 are in groups 𝑟 and 𝑠 respectively

is then proportional to the probability that 𝑖 is in group 𝑟 with 𝑗 removed from the

network, times the probability that 𝑗 is in group 𝑠 with 𝑖 removed from the network,

times the probability that 𝑖 and 𝑗 are connected by an edge given that they are in

groups 𝑟 and 𝑠. Mathematically, we have

𝑞𝑖𝑗(𝑟, 𝑠) = 𝑞𝑗←𝑖(𝑟)𝑞𝑖←𝑗(𝑠)𝜔𝑟𝑠
𝑍𝑖𝑗

, (A.22)

where

𝑍𝑖𝑗 = ∑
𝑟,𝑠

𝑞𝑗←𝑖(𝑟)𝑞𝑖←𝑗(𝑠)𝜔𝑟𝑠 (A.23)

normalizes the two-point marginal. The complete EM algorithm for inferring the

marginal MAP estimators in the SBM involves alternating the parameter update in

Eq. A.13with the belief propagation updates in Eq.s A.18 andA.22, until convergence.

At the end of this process, we then have both �̂� as well as the posterior marginals 𝑞𝑖

and 𝑞𝑖𝑗.
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Appendix B.

Supplementary Material for Chapter 4

In this appendix we provide detailed derivations for multiple results in Chapter 4,

including the specific heat, local Monte Carlo sampling algorithm, message passing

Jacobian, and entropy.

B.1. Calculation of the heat capacity using message

passing

The heat capacity, which is given by

𝐶 = 𝑑𝑈
𝑑𝑇 = −𝛽2 𝑑𝑈

𝑑𝛽 , (B.1)

can be calculated from the expression for the internal energy

𝑈(𝛽) = 1
2 ∑

𝑖∈𝑉

1
𝑍𝑖(𝛽) ∑

𝐬𝑁𝑖

𝐻𝜕𝑖
(𝐬𝜕𝑖

) 𝑒−𝛽𝐻𝑁𝑖 (𝐬𝑁𝑖 ) ∏
𝑗∈𝑁𝑖⧵𝑖

𝑞𝑖←𝑗(𝑠𝑗, 𝛽),
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where instead of incorporating the 𝛽 dependence into theHamiltonian as in the chap-

ter, we now temporarily it explicitly for clarity of demonstration. In this expression,

𝑁𝑖 denotes the neighborhood of node 𝑖 as in the main text, 𝜕𝑖 denotes the node 𝑖 and
its immediately adjacent edges and nodes, and 𝐻𝑁𝑖

(𝐬𝑁𝑖
) and 𝐻𝜕𝑖

(𝐬𝜕𝑖
) represent the

terms in the Hamiltonian for these subgraphs:

𝐻𝑁𝑖
(𝐬𝑁𝑖

) = −𝑓𝑖(𝑠𝑖|𝜃𝑖) − ∑
(𝑗,𝑘)∈𝑁𝑖

𝑔𝑗𝑘(𝑠𝑗, 𝑠𝑘|𝜔𝑗𝑘) (B.2)

and

𝐻𝜕𝑖
(𝐬𝜕𝑖

) = −2𝑓𝑖(𝑠𝑖|𝜃𝑖) − ∑
(𝑖,𝑗)∈𝜕𝑖

𝑔𝑖𝑗(𝑠𝑖, 𝑠𝑗|𝜔𝑖𝑗), (B.3)

with the 𝛽 dependence omitted from the definition of the functions. With the 𝛽 de-

pendence written in this way the message passing equations take the form

𝑞𝑖(𝑥, 𝛽) = 1
𝑍𝑖(𝛽) ∑

𝐬𝑁𝑖⧵𝑖

𝛿𝑠𝑖,𝑥𝑒−𝛽𝐻𝑁𝑖 (𝐬𝑁𝑖 ) ∏
𝑗∈𝑁𝑖⧵𝑖

𝑞𝑖←𝑗(𝑠𝑗, 𝛽), (B.4)

and

𝑞𝑖←𝑗(𝑦, 𝛽) = 1
𝑍𝑖←𝑗(𝛽) ∑

𝐬𝑁𝑗⧵𝑖

𝛿𝑠𝑗,𝑦𝑒−𝛽𝐻𝑁𝑗⧵𝑖 (𝐬𝑁𝑗⧵𝑖 ) ∏
𝑘∈𝑁𝑗⧵𝑖⧵𝑗

𝑞𝑗←𝑘(𝑠𝑘, 𝛽), (B.5)
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with

𝑍𝑖(𝛽) = ∑
𝐬𝑁𝑖

𝑒−𝛽𝐻𝑁𝑖 (𝐬𝑁𝑖 ) ∏
𝑗∈𝑁𝑖⧵𝑖

𝑞𝑖←𝑗(𝑠𝑗, 𝛽), (B.6)

𝑍𝑖←𝑗(𝛽) = ∑
𝐬𝑁𝑗⧵𝑖

𝑒−𝛽𝐻𝑁𝑗⧵𝑖 (𝐬𝑁𝑗⧵𝑖 ) ∏
𝑘∈𝑁𝑗⧵𝑖⧵𝑗

𝑞𝑗←𝑘(𝑠𝑘, 𝛽). (B.7)

Differentiating B.5 with respect to 𝛽 and defining the quantity

𝜂𝑖←𝑗(𝑦) = 𝑑𝑞𝑖←𝑗(𝑦, 𝛽)
𝑑𝛽 , (B.8)

we get

𝜂𝑖←𝑗(𝑦) = 1
𝑍𝑖←𝑗

∑
𝐬𝑁𝑗⧵𝑖

𝑒−𝛽𝐻𝑁𝑗⧵𝑖 (𝐬𝑁𝑗⧵𝑖 ) ∏
𝑘∈𝑁𝑗⧵𝑖⧵𝑗

𝑞𝑗←𝑘(𝑠𝑘)([𝑞𝑖←𝑗(𝑦) − 𝛿𝑠𝑗,𝑦] 𝐻𝑁𝑗⧵𝑖
(𝐬𝑁𝑗⧵𝑖

)

+ [𝛿𝑠𝑗,𝑦 − 𝑞𝑖←𝑗(𝑦)] ∑
𝑘∈𝑁𝑗⧵𝑖⧵𝑗

𝜂𝑗←𝑘(𝑠𝑘)
𝑞𝑗←𝑘(𝑠𝑘)), (B.9)

which can be regarded as a new message passing equation for the derivative 𝜂𝑖←𝑗(𝑦).
To apply it, we first solve for the 𝑞𝑖←𝑗(𝑦) in the usual fashion then fix their values and

iterate (B.9) from a suitable initial condition until convergence.

For large neighborhoods, where the sums over spins states cannot be performed

exhaustively, the local Monte Carlo procedure described in the main text carries over

naturally. We define

⟨𝐴⟩𝑁𝑗⧵𝑖
= ∑

𝐬𝑁𝑗⧵𝑖

𝐴(𝐬𝑁𝑗⧵𝑖
)
𝑒−𝛽𝐻𝑁𝑗⧵𝑖 (𝐬𝑁𝑗⧵𝑖 ) ∏

𝑘∈𝑁𝑗⧵𝑖⧵𝑗
𝑞𝑗←𝑘(𝑠𝑘)

𝑍𝑖←𝑗
(B.10)
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and then rewrite Eq. (B.9) as an average

𝜂𝑖←𝑗(𝑦) = ⟨[𝑞𝑖←𝑗(𝑦) − 𝛿𝑠𝑗,𝑦] 𝐻𝑁𝑗⧵𝑖
(𝐬𝑁𝑗⧵𝑖

) + [𝛿𝑠𝑗,𝑦 − 𝑞𝑖←𝑗(𝑦)] ∑
𝑘∈𝑁𝑗⧵𝑖⧵𝑗

𝜂𝑗←𝑘(𝑠𝑘)
𝑞𝑗←𝑘(𝑠𝑘)⟩

𝑁𝑗⧵𝑖

,

(B.11)

which can be evaluated using Monte Carlo sampling as previously.

We can also differentiate 𝑍𝑖(𝛽), Eq. (B.6), which yields

1
𝑍𝑖(𝛽)

𝑑𝑍𝑖(𝛽)
𝑑𝛽 = 1

𝑍𝑖
∑
𝐬𝑁𝑖

𝑒−𝛽𝐻𝑁𝑖 (𝐬𝑁𝑖 ) ∏
𝑗∈𝑁𝑖⧵𝑖

𝑞𝑖←𝑗(𝑠𝑗)

× [ ∑
𝑗∈𝑁𝑖⧵𝑖

1
𝑞𝑖←𝑗(𝑠𝑗)

𝑑𝑞𝑖←𝑗(𝑠𝑗, 𝛽)
𝑑𝛽 − 𝐻𝑁𝑖

(𝐬𝑁𝑖
)], (B.12)

which can again be written as an average

1
𝑍𝑖(𝛽)

𝑑𝑍𝑖(𝛽)
𝑑𝛽 = ⟨ ∑

𝑗∈𝑁𝑖⧵𝑖

𝜂𝑖←𝑗(𝑠𝑗)
𝑞𝑖←𝑗(𝑠𝑗)

− 𝐻𝑁𝑖
(𝐬𝑁𝑖

)⟩
𝑁𝑖

, (B.13)

where we have used a shorthand analogous to that of Eq. (B.10):

⟨𝐴⟩𝑁𝑖
= ∑

𝐬𝑁𝑖

𝐴(𝐬𝑁𝑖
)
𝑒−𝛽𝐻𝑁𝑖 (𝐬𝑁𝑖 ) ∏

𝑗∈𝑁𝑖⧵𝑖
𝑞𝑖←𝑗(𝑠𝑗)

𝑍𝑖
. (B.14)

Differentiating Eq. (B.2) and substituting from Eqs. (B.9) and (B.13) we now find,
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after some manipulation, that

𝑑𝑈
𝑑𝛽 = 1

2 ∑
𝑖∈𝑉

[⟨𝐻𝜕𝑖
(𝐬𝜕𝑖

)⟩𝑁𝑖
⟨𝐻𝑁𝑖

(𝐬𝑁𝑖
)⟩𝑁𝑖

− ⟨𝐻𝜕𝑖
(𝐬𝜕𝑖

)𝐻𝑁𝑖
(𝐬𝑁𝑖

)⟩𝑁𝑖
]

+ 1
2 ∑

𝑖∈𝑉
[⟨𝐻𝜕𝑖

(𝐬𝜕𝑖
) ∑

𝑗∈𝑁𝑖⧵𝑖

𝜂𝑖←𝑗(𝑠𝑗)
𝑞𝑖←𝑗(𝑠𝑗)

⟩
𝑁𝑖

− ⟨𝐻𝜕𝑖
(𝐬𝜕𝑖

)⟩𝑁𝑖
⟨ ∑

𝑗∈𝑁𝑖⧵𝑖

𝜂𝑖←𝑗(𝑠𝑗)
𝑞𝑖←𝑗(𝑠𝑗)

⟩
𝑁𝑖

],

(B.15)

which can be substituted into Eq. (B.1) to calculate 𝐶.

B.2. Local Monte Carlo simulation for the Ising model

As discussed in themain text, when neighborhoods are too large to allow us to sum

exhaustively over their states we can approximate the message passing equations by

Monte Carlo sampling. Taking again the example of the Ising model, the message

passing equations are

𝑞𝑖 =
∑𝐬𝑁𝑖

𝛿𝑠𝑖,+1𝑒−𝛽𝐻𝑁𝑖 (𝐬𝑁𝑖 ) ∏𝑗∈𝑁𝑖⧵𝑖 𝑞𝑖←𝑗(𝑠𝑗)
∑𝐬𝑁𝑖

𝑒−𝛽𝐻𝑁𝑖 (𝐬𝑁𝑖 ) ∏𝑗∈𝑁𝑖⧵𝑖 𝑞𝑖←𝑗(𝑠𝑗)
, (B.16)

𝑞𝑖←𝑗 =
∑𝐬𝑁𝑗⧵𝑖

𝛿𝑠𝑗,+1𝑒−𝛽𝐻𝑁𝑗⧵𝑖 (𝐬𝑁𝑗⧵𝑖 ) ∏𝑘∈𝑁𝑗⧵𝑖⧵𝑗 𝑞𝑗←𝑘(𝑠𝑘)

∑𝐬𝑁𝑗⧵𝑖
𝑒−𝛽𝐻𝑁𝑗⧵𝑖 (𝐬𝑁𝑗⧵𝑖 ) ∏𝑘∈𝑁𝑗⧵𝑖⧵𝑗 𝑞𝑗←𝑘(𝑠𝑘)

, (B.17)

where the messages in this case represent the probability of the corresponding spin

being +1. If we divide top and bottom by ∑𝐬𝑁𝑖
𝑒−𝛽𝐻𝑁𝑖 (𝐬𝑁𝑖 ) in the first equation and
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by ∑𝐬𝑁𝑗⧵𝑖
𝑒−𝛽𝐻𝑁𝑗⧵𝑖 (𝐬𝑁𝑗⧵𝑖 ) in the second, we get

𝑞𝑖 =
∑𝐬𝑁𝑖

𝑒−𝛽𝐻𝑁𝑖 (𝐬𝑁𝑖 )(𝛿𝑠𝑖,+1 ∏𝑗∈𝑁𝑖⧵𝑖 𝑞𝑖←𝑗(𝑠𝑗))/ ∑𝐬𝑁𝑖
𝑒−𝛽𝐻𝑁𝑖 (𝐬𝑁𝑖 )

∑𝐬𝑁𝑖
𝑒−𝛽𝐻𝑁𝑖 (𝐬𝑁𝑖 )(∏𝑗∈𝑁𝑖⧵𝑖 𝑞𝑖←𝑗(𝑠𝑗))/ ∑𝐬𝑁𝑖

𝑒−𝛽𝐻𝑁𝑖 (𝐬𝑁𝑖 ) , (B.18)

𝑞𝑖←𝑗 =
∑𝐬𝑁𝑗⧵𝑖

𝑒−𝛽𝐻𝑁𝑗⧵𝑖 (𝐬𝑁𝑗⧵𝑖 )(𝛿𝑠𝑗,+1 ∏𝑘∈𝑁𝑗⧵𝑖⧵𝑗 𝑞𝑗←𝑘(𝑠𝑘))/ ∑𝐬𝑁𝑗⧵𝑖
𝑒−𝛽𝐻𝑁𝑗⧵𝑖 (𝐬𝑁𝑗⧵𝑖 )

∑𝐬𝑁𝑗⧵𝑖
𝑒−𝛽𝐻𝑁𝑗⧵𝑖 (𝐬𝑁𝑗⧵𝑖 )(∏𝑘∈𝑁𝑗⧵𝑖⧵𝑗 𝑞𝑗←𝑘(𝑠𝑘))/ ∑𝐬𝑁𝑗⧵𝑖

𝑒−𝛽𝐻𝑁𝑗⧵𝑖 (𝐬𝑁𝑗⧵𝑖 ) .

(B.19)

Numerators and denominators now take the form of a Boltzmann average, but over

the distributions defined by 𝐻𝑁𝑖
and 𝐻𝑁𝑗⧵𝑖

alone, which we can think of as a “zero-

field” ensemble that omits the effect of the “external field” imposed by the messages.

Defining the useful shorthand

⟨𝐴⟩0,𝑁𝑖
=

∑𝐬𝑁𝑖
𝑒−𝛽𝐻𝑁𝑖 (𝐬𝑁𝑖 )𝐴(𝐬𝑁𝑖

)
∑𝐬𝑁𝑖

𝑒−𝛽𝐻𝑁𝑖 (𝐬𝑁𝑖 ) , (B.20)

⟨𝐴⟩0,𝑁𝑗⧵𝑖
=

∑𝐬𝑁𝑗⧵𝑖
𝑒−𝛽𝐻𝑁𝑗⧵𝑖 (𝐬𝑁𝑗⧵𝑖 )𝐴(𝐬𝑁𝑗⧵𝑖

)

∑𝐬𝑁𝑗⧵𝑖
𝑒−𝛽𝐻𝑁𝑗⧵𝑖 (𝐬𝑁𝑗⧵𝑖 ) , (B.21)

we can then write the message passing equations in the form

𝑞𝑖 =
⟨𝛿𝑠𝑖,+1 ∏

𝑗∈𝑁𝑖⧵𝑖
𝑞𝑖←𝑗(𝑠𝑗)⟩0,𝑁𝑖

⟨ ∏
𝑗∈𝑁𝑖⧵𝑖

𝑞𝑖←𝑗(𝑠𝑗)⟩0,𝑁𝑖

, (B.22)

𝑞𝑖←𝑗 =
⟨𝛿𝑠𝑗,+1 ∏

𝑘∈𝑁𝑗⧵𝑖⧵𝑗
𝑞𝑗←𝑘(𝑠𝑘)⟩0,𝑁𝑗⧵𝑖

⟨ ∏
𝑘∈𝑁𝑗⧵𝑖⧵𝑗

𝑞𝑗←𝑘(𝑠𝑘)⟩0,𝑁𝑗⧵𝑖

, (B.23)
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where the “0” serves to remind us that the expectation is over the zero-field ensemble.

Expressing the equations as zero-field expectations allows us to evaluate them using

the Wolff algorithm, which is highly efficient in this context.

We can further speed up sampling by making use of the up-down symmetry of

the zero-field ensemble, which effectively gives us two samples for every spin state.

If we obtain a set of samples {𝐬𝑁} by sampling from the zero-field ensemble, then

because of symmetry {−𝐬𝑁} are also correct samples that would have occurred with

the same probability. Including these additional samples explicitly in the message

passing equations gives

𝑞𝑖←𝑗 =
⟨𝛿𝑠𝑗,+1 ∏

𝑘∈𝑁𝑗⧵𝑖⧵𝑗
𝑞𝑗←𝑘(𝑠𝑘) + 𝛿−𝑠𝑗,+1 ∏

𝑘∈𝑁𝑗⧵𝑖⧵𝑗
(1 − 𝑞𝑗←𝑘(𝑠𝑘))⟩0,𝑁𝑗⧵𝑖

⟨ ∏
𝑘∈𝑁𝑗⧵𝑖⧵𝑗

𝑞𝑗←𝑘(𝑠𝑘) + ∏
𝑘∈𝑁𝑗⧵𝑖⧵𝑗

(1 − 𝑞𝑗←𝑘(𝑠𝑘))⟩0,𝑁𝑗⧵𝑖

, (B.24)

and corresponding expressions can be derived for any expectation.

B.3. The Jacobian at the critical point

In the main text we used the leading eigenvalue of the Jacobian of the message

passing iteration at the trivial fixed point to locate the position of the phase transition.

Taking the Ising model as our example once again, the calculation is as follows.

The message passing equations can be rewritten as

𝑞𝑖←𝑗 = 1
𝑍𝑖←𝑗

∑
𝐬𝑁𝑗⧵𝑖

1
2(1 + 𝑠𝑗) 𝑒−𝛽𝐻𝑁𝑗⧵𝑖 (𝐬𝑁𝑗⧵𝑖 ) ∏

𝑘∈𝑁𝑗⧵𝑖⧵𝑗
[1

2(1 − 𝑠𝑘) + 𝑠𝑘𝑞𝑗←𝑘],

168



where

𝑍𝑖←𝑗 = ∑
𝐬𝑁𝑗⧵𝑖

𝑒−𝛽𝐻𝑁𝑗⧵𝑖 (𝐬𝑁𝑗⧵𝑖 ) ∏
𝑘∈𝑁𝑗⧵𝑖⧵𝑗

[1
2(1 − 𝑠𝑘) + 𝑠𝑘𝑞𝑗←𝑘]. (B.25)

Considering the sum over spins as a local average again, the elements of the Jacobian

are then given by

𝜕𝑞𝑖←𝑗
𝜕𝑞𝜇←𝜈

= 1{𝜇=𝑗,𝜈∈𝑁𝑗⧵𝑖}[⟨ (1 + 𝑠𝑗)𝑠𝜈
1 − 𝑠𝜈 + 2𝑠𝜈𝑞𝜇←𝜈

⟩
𝑁𝑗⧵𝑖

− ⟨1 + 𝑠𝑗⟩𝑁𝑗⧵𝑖
⟨ 𝑠𝜈

1 − 𝑠𝜈 + 2𝑠𝜈𝑞𝜇←𝜈
⟩

𝑁𝑗⧵𝑖

],

(B.26)

where 1{… } is the indicator function and we have used the shorthand from Eq. (B.10)

again. Now evaluating this expression at the trivial fixed point 𝑞𝑗←𝑘 = 1
2 for all 𝑗, 𝑘

(which we write as simply 𝑞 = 1
2 for short), we get the Jacobian

𝐽𝑗→𝑖,𝜈→𝜇 = 𝜕𝑞𝑖←𝑗
𝜕𝑞𝜇←𝜈

∣
𝑞= 1

2

= �̃�𝑗→𝑖,𝜈→𝜇𝐷𝑗→𝑖,𝜈→𝜇, (B.27)

where �̃� is a generalization of the non-backtracking matrix given by

�̃�𝑗→𝑖,𝜈→𝜇 = {
1 if 𝜇 = 𝑗 and 𝜈 ∈ 𝑁𝑗⧵𝑖,

0 otherwise,
(B.28)
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and

𝐷𝑗→𝑖,𝜈→𝜇 =
∑

𝐬𝑁𝑗⧵𝑖

𝑠𝜇𝑠𝜈 𝑒−𝛽𝐻𝑁𝑗⧵𝑖 (𝐬𝑁𝑗⧵𝑖 )

∑
𝐬𝑁𝑗⧵𝑖

𝑒−𝛽𝐻𝑁𝑗⧵𝑖 (𝐬𝑁𝑗⧵𝑖 ) (B.29)

−
∑

𝐬𝑁𝑗⧵𝑖

𝑠𝜇 𝑒−𝛽𝐻𝑁𝑗⧵𝑖 (𝐬𝑁𝑗⧵𝑖 )

∑
𝐬𝑁𝑗⧵𝑖

𝑒−𝛽𝐻𝑁𝑗⧵𝑖 (𝐬𝑁𝑗⧵𝑖 ) ×
∑

𝐬𝑁𝑗⧵𝑖

𝑠𝜈 𝑒−𝛽𝐻𝑁𝑗⧵𝑖 (𝐬𝑁𝑗⧵𝑖 )

∑
𝐬𝑁𝑗⧵𝑖

𝑒−𝛽𝐻𝑁𝑗⧵𝑖 (𝐬𝑁𝑗⧵𝑖 ) ,

which we note is temperature dependent. Using the shorthand from Eq. (B.20), 𝐷 can

also be written in the simpler form

𝐷𝑗→𝑖,𝜈→𝜇 = ⟨𝑠𝜇𝑠𝜈⟩0,𝑁𝑗⧵𝑖
− ⟨𝑠𝜇⟩0,𝑁𝑗⧵𝑖

⟨𝑠𝜈⟩0,𝑁𝑗⧵𝑖
. (B.30)

At the temperature where the magnitude of the leading eigenvalue 𝜆max of 𝐽 is 1 at

the trivial fixed point, the fixed point transitions from being stable to unstable, which

corresponds to the phase transition as described in the main text. Thus we can locate

the phase transition by evaluating the matrices �̃� and 𝐷 numerically and using them

to compute |𝜆max|. Note that the expectations in Eq. (B.30) do not depend on the values

of the messages, so we do not need to perform message passing to calculate them—

evaluating the Jacobian and locating the phase transition requires us only to perform

the sums over neighborhoods or approximate them using local Monte Carlo.
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Fig. B.1. Neighborhoods and various related quantities for a node 𝑖 in an example
network. In this example we assume that 𝑟 = 2 is sufficient to capture all primitive
cycles and thus that calculations at 𝑟 = 2 are exact. (a) The neighborhood 𝑁𝑖 = 𝑁 (2)

𝑖
contains the edges and nodes shown in solid black. (b) At node 𝑖 there are two distinct
intersections, ∩𝑖𝑚 = 𝑁𝑖 ∩ 𝑁𝑚 and ∩𝑖𝑗 = 𝑁𝑖 ∩ 𝑁𝑗. Note that the intersections for all
pairs of nodes in ∩𝑖𝑗 are identical. For instance in this example we have ∩𝑖𝑗 = ∩𝑖𝑘 =
∩𝑖𝑙 = ∩𝑗𝑘 = ∩𝑗𝑙 = ∩𝑙𝑘. (c) The subgraph 𝐺𝑖→𝑗 is the connected component to which 𝑗
belongs after all edges in 𝑁𝑖 are removed, and similarly for 𝐺𝑖→𝑚.

B.4. Proof of neighborhood-level factorization

In the calculation of the partition function and entropy in Section 4.2.4 of the main

text we make use of the factorized form

𝑃(𝐬) =
∏

𝑖∈𝐺
𝑃(𝐬𝑁𝑖

)

∏
((𝑖,𝑗))∈𝐺

𝑃(𝐬∩𝑖𝑗
)2/|∩𝑖𝑗| , (B.31)

where ∩𝑖𝑗 = 𝑁𝑖 ∩ 𝑁𝑗 and ((𝑖, 𝑗)) are pairs of nodes that are contained in each other’s

neighborhood, i.e., nodes 𝑖 and 𝑗 such that 𝑖 ∈ 𝑁𝑗 and 𝑗 ∈ 𝑁𝑖. This form is derived as

follows.

Consider Fig. B.1, which illustrates the definition of the sets of nodes we use and

their intersections. As shown in panel (b) of the figure, many of the sets are equivalent

to one another. Specifically, for any pair 𝑘, 𝑙 ∈ ∩𝑖𝑗 we have ∩𝑘𝑙 = ∩𝑖𝑗. This allows us

171



to write

𝑃(𝐬∩𝑖𝑗
) = [ ∏

(𝑘,𝑙)∈∩𝑖𝑗

𝑃(𝐬∩𝑘𝑙
) ]

1/(|∩𝑖𝑗|
2 )

= ∏
(𝑘,𝑙)∈∩𝑖𝑗

𝑃(𝐬∩𝑘𝑙
)1/(|∩𝑘𝑙|

2 ), (B.32)

where the product is over all (|∩𝑖𝑗|
2 ) pairs {𝑘, 𝑙} ∈ ∩𝑖𝑗. A proof of Eq. (B.31) can then

be achieved by induction. Assume that the formula is correct for all networks with

fewer than 𝑛 nodes and no primitive cycles longer than 𝑟 + 2. If 𝐺 is a network with

𝑛 nodes and no primitive cycles longer than 𝑟 + 2 then

𝑃(𝐬) = 𝑃(𝐬𝑁𝑖
) ∏

𝑗∈𝑁𝑖

𝑃(𝐬𝑁𝑗
|𝐬𝑁𝑖

)𝑃 (𝐬𝐺𝑖→𝑗
|𝐬𝑁𝑗

)

= 𝑃(𝐬𝑁𝑖
) ∏

𝑗∈𝑁𝑖

𝑃(𝐬𝑁𝑗
)

𝑃 (𝐬∩𝑖𝑗
)𝑃 (𝐬𝐺𝑖→𝑗

|𝐬𝑁𝑗⧵𝑁𝑖
), (B.33)

where 𝐺𝑖→𝑗 denotes the connected subgraph to which 𝑗 belongs after all edges in 𝑁𝑖

have been removed (see Fig. B.1). Since by definition the 𝐺𝑖→𝑗 have fewer than 𝑛
nodes and no primitive cycles longer than 𝑟 + 2, Eq. (B.31) is by hypothesis true for

these subgraphs, and using (B.32) we have

𝑃(𝐬) = 𝑃 (𝐬𝑁𝑖
) ∏

𝑗∈𝑁𝑖

1
∏

(𝑘,𝑙)∈∩𝑖𝑗

𝑃(𝐬∩𝑘𝑙
)1/(|∩𝑘𝑙|

2 )

∏
𝑘∈𝐺𝑖→𝑗

𝑃(𝐬𝑁𝑘
)

∏
(𝑘,𝑙)∈𝐺𝑖→𝑗

𝑃(𝐬∩𝑘𝑙
)2/|∩𝑘𝑙|

=
∏

𝑖∈𝐺
𝑃(𝐬𝑁𝑖

)

∏
(𝑖,𝑗)∈𝐺

𝑃(𝐬∩𝑖𝑗
)2/|∩𝑖𝑗| . (B.34)

The base case is a graph with a single node, for which (B.31) is trivially true, and

hence by induction (B.31) is true for all networks that have no primitive cycles longer

than 𝑟 + 2.
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For the purposes of the calculation presented in Section 4.2.4, Eq. (B.31) can be fur-

ther simplified by noting that

𝑃(𝐬𝑁𝑖
) = 𝑃(𝑠𝑖) ∏

𝑗∈𝑁𝑖

𝑃(𝐬∩𝑖𝑗
|𝑠𝑖)

1
|∩𝑖𝑗|−1

= 𝑃(𝑠𝑖) ∏
𝑗∈𝑁𝑖

[
𝑃(𝐬∩𝑖𝑗

)
𝑃 (𝑠𝑖)

]
1

|∩𝑖𝑗|−1

. (B.35)

Substituting this result into (B.31) then yields

𝑃(𝐬) = ∏
((𝑖,𝑗))∈𝐺

𝑃(𝐬∩𝑖𝑗
)1/(|∩𝑖𝑗|

2 ) ∏
(𝑖,𝑗)∈𝐺

𝑃(𝑠𝑖, 𝑠𝑗)𝑊𝑖𝑗 ∏
𝑖∈𝐺

𝑃(𝑠𝑖)𝐶𝑖, (B.36)

where

𝑊𝑖𝑗 = 1 − ∑
((𝑙,𝑚))∈𝐺

1
(|∩𝑙𝑚|

2 )
1{(𝑖,𝑗)∈∩𝑙𝑚} (B.37)

and

𝐶𝑖 = 1 − ∑
𝑗∈𝑁𝑖

1
| ∩𝑖𝑗 | − 1 − ∑

𝑗∈𝑁(0)
𝑖

𝑊𝑖𝑗. (B.38)

The one- and two-spin marginals 𝑃(𝑠𝑖) and 𝑃(𝑠𝑖, 𝑠𝑗) can be calculated using the mes-

sage passing methods described in the text, while the intersection marginal 𝑃(𝐬∩𝑖𝑗
) is

given by

𝑃(𝐬∩𝑖𝑗
) = 1

𝑍∩𝑖𝑗

𝑒−𝛽𝐻(𝐬∩𝑖𝑗 )𝑞𝑖←𝑗(𝑠𝑗) ∏
𝑘∈∩𝑖𝑗⧵𝑗

𝑞𝑗←𝑘(𝑠𝑘), (B.39)

where 𝐻(𝐬∩𝑖𝑗
) denotes the terms of the full Hamiltonian that fall in ∩𝑖𝑗 and 𝑍∩𝑖𝑗

is the

corresponding normalizing constant.

Equation B.36 is exactwhen the network contains no primitive cycles longer than 𝑟+
2, in which case 𝑊𝑖𝑗 = 0. When there are longer primitive cycles (and hence Eq. (B.31)
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is not exact), the terms 𝑃(𝑠𝑖, 𝑠𝑗)𝑊𝑖𝑗 ensure that each edge gets weighted correctly in

the factorization.
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Appendix C.

Supplementary Material for Chapter 5

In this appendix we provide detailed derivations for multiple results in Chapter 5,

as well as a table demonstrating the effect of sample size on the number of modes and

plots of the identified modes for additional real example networks.

C.1. Derivation of the description length

The description length is equal to the amount of information needed to transmit

the complete set of sampled partitions. We break up the transmission procedure into

four separate steps:

1. We transmit 𝑆 vectors 𝐚(𝑝), one for each 𝑝 = 1 … 𝑆. If partition 𝑝 has 𝑛𝑝 non-

empty communities, then there are ( 𝑛−1
𝑛𝑝−1) ways to choose the values in the

vector 𝐚(𝑝) and hence ( 𝑛−1
𝑛𝑝−1) possible messages that may need to be transmit-

ted to the receiver to communicate 𝐚(𝑝). In binary, our encoding thus requires

log ( 𝑛−1
𝑛𝑝−1) bits, where log denotes the logarithm base 2. (Strictly the number

of bits is equal to the smallest integer that is greater than or equal to this num-
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ber, but the difference is negligible for large 𝑛.) The information required for

transmitting all count vectors 𝐚(𝑝) is then

𝐿1 =
𝑆

∑
𝑝=1

log ( 𝑛 − 1
𝑛𝑝 − 1). (C.1)

This quantity does not depend on the choice of modes or cluster assignments, so

we can ignore it when we optimize the total description length of our encoding.

It is conceptually important, however, that the 𝐚(𝑝) are transmitted first, as they

are needed for constructing efficient encodings for other quantities.

2. Next we transmit the full set of group labels ̂𝐠(𝑘) for each of the mode partitions,

exploiting the fact that we now know the label count vector 𝐚(𝑚𝑘) for eachmode.

The number of possible sets of group labels consistent with this vector is given

by𝑛!/ ∏𝑛𝑚𝑘
𝑟=1 𝑎(𝑚𝑘)

𝑟 ! and hence the number of bits required to transmit a particular

set of modes is

𝐿2 =
𝐾

∑
𝑘=1

log( 𝑛!
∏𝑛𝑚𝑘

𝑟=1 𝑎(𝑚𝑘)
𝑟 !

) . (C.2)

3. For each partition 𝑝, we transmit the partition number 𝑚𝑘 of the mode to which

it belongs. This effectively specifies the clusters themselves. This can be done

efficiently by first transmitting the size 𝑐𝑘 = |𝐶𝑘| of each of the 𝐾 clusters. There

are (𝑆−1
𝐾−1) possible choices such that ∑𝐾

𝑘=1 𝑐𝑘 = 𝑆, so it takes log (𝑆−1
𝐾−1) bits to

transmit any one choice. Then, given the 𝑐𝑘 there are 𝑆!/ ∏𝐾
𝑘=1 𝑐𝑘! possible ways

to assign the partitions to the clusters, so the total number of bits required to
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transmit the cluster labels for all partitions is

𝐿3 = log (𝑆 − 1
𝐾 − 1) + log( 𝑆!

∏𝐾
𝑘=1 𝑐𝑘!

) . (C.3)

4. Finally, we transmit the groups labels 𝐠(𝑝) for each individual partition other

than the modes, making use of the fact that the modes have already been trans-

mitted. We do this in two steps:

a) We first transmit the contingency table 𝐭𝑚𝑘𝑝. Since the receiver knows 𝐚(𝑚𝑘)

and 𝐚(𝑝), they also know the row and column sums of 𝐭𝑚𝑘𝑝 because

∑
𝑟

𝑡𝑚𝑘𝑝
𝑟𝑠 = 𝑎(𝑝)

𝑠 (C.4)

and

∑
𝑠

𝑡𝑚𝑘𝑝
𝑟𝑠 = 𝑎(𝑚𝑘)

𝑟 . (C.5)

If there are Ω(𝑚𝑘, 𝑝) possible contingency tables with these row and column

sums, then it takes logΩ(𝑚𝑘, 𝑝) bits to transmit the contingency table 𝐭𝑚𝑘𝑝.

Closed-form expressions for Ω(𝑚𝑘, 𝑝) exist for smaller tables. For larger ones

there are good approximations, as described in Ref. [265].

b) Given the contingency table, the number of partitions consistent with the ta-

ble is ∏𝑛𝑚𝑘
𝑟=1 [𝑎(𝑚𝑘)

𝑟 !/ ∏𝑛𝑝
𝑠=1 𝑡𝑚𝑘𝑝

𝑟𝑠 !] and the number of bits needed to transmit one

partition is the log of this number.

The total number of bits required for transmitting the non-mode partitions is

177



thus

𝐿4 =
𝐾

∑
𝑘=1

∑
𝑝∈𝐶𝑘
𝑝≠𝑚𝑘

[log
𝑛𝑚𝑘

∏
𝑟=1

𝑎(𝑚𝑘)
𝑟 !

∏𝑛𝑝
𝑠=1 𝑡𝑚𝑘𝑝

𝑟𝑠 ! + logΩ(𝑚𝑘, 𝑝)]. (C.6)

In practice, the exclusion of the term 𝑝 = 𝑚𝑘 from the sums makes little differ-

ence and can be neglected without significantly changing the results, so we will

henceforth include this term for notational convenience.

Combining everything, the total description length for the model is

𝐿total = 𝐿1 + 𝐿2 + 𝐿3 + 𝐿4. (C.7)

For our purposes it is convenient to normalize this as description length per sample,

which gives

ℒtotal = 1
𝑆 (𝐿1 + 𝐿2 + 𝐿3 + 𝐿4). (C.8)

We can convert this quantity to more familiar language by using Stirling’s approxi-

mation, whose leading terms for base-2 logarithms can be written in the form

log𝑥! ≃ 𝑥 log𝑥 − 𝑥
ln 2. (C.9)

Dropping the term 𝐿1 from Eq. C.8 as discussed previously, we then have

ℒtotal ≃ 𝑛
𝑆

𝐾
∑
𝑘=1

𝐻( ̂𝐠(𝑘)) + 𝐻(𝐜) + 𝑛
𝑆

𝐾
∑
𝑘=1

∑
𝑝∈𝐶𝑘

𝐻mod(𝐠(𝑝)| ̂𝐠(𝑘))

+ 𝑆 − 1
𝑆 log(𝑆 − 1) − 𝑆 − 𝐾

𝑆 log(𝑆 − 𝐾) − 𝐾 − 1
𝑆 log(𝐾 − 1). (C.10)
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Assuming 𝑆 ≫ 𝐾 (but not assuming, crucially, that 𝐾 remains constant as 𝑆 → ∞),

we can drop the last three terms in Eq. C.10, giving the form:

ℒtotal ≃ 𝑛
𝑆

𝐾
∑
𝑘=1

𝐻( ̂𝐠(𝑘)) + 𝐻(𝐜) + 𝑛
𝑆

𝐾
∑
𝑘=1

∑
𝑝∈𝐶𝑘

𝐻mod(𝐠(𝑝)| ̂𝐠(𝑘)), (C.11)

up to an additive constant.

C.2. Number of clusters

Here we demonstrate that the optimal value of 𝐾 in the penalized description

length is asymptotically constant as the number of samples 𝑆 grows. For the purposes

of our argument we assume that all partitions 𝑝 have the same number of groups 𝑛𝑝,

that the number of nodes 𝑛 is fixed and 𝑛 ≫ 𝑛𝑝, and that the cluster sizes 𝑐𝑘 are

approximately equal. We do not neglect the last three terms in Eq. C.10 as we did

previously, for a more careful treatment.

In terms of 𝑆, 𝐾, 𝑛, and 𝑛𝑝, the leading order scaling of each of the terms in Eq. C.10,

along with the linear penalty term +𝜆𝐾, is

ℒ(𝑆, 𝐾) ∼ 𝐾𝑛
𝑆 log𝑛𝑝 + log𝐾 + 𝑛(𝑆 − 𝐾)

𝑆 �̃�mod(𝐾) (C.12)

+ 𝑆 − 1
𝑆 log(𝑆 − 1) − 𝑆 − 𝐾

𝑆 log(𝑆 − 𝐾) − 𝐾 − 1
𝑆 log(𝐾 − 1) + 𝜆𝐾,

where 𝐻mod(𝐾) is a typical scale for 𝐻mod(𝐠(𝑝)| ̂𝐠(𝑘)). In general 𝐻mod(𝐾) is a de-

creasing function of 𝐾, since a larger number of clusters allows partitions to be as-

signed to closer modes. We ignore the logΩ/𝑛 contribution to 𝐻mod, as it scales like

𝑛2
𝑝 log𝑛/𝑛 [265] and can be neglected by comparison with the O(log𝑛𝑝) contribution
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from the standard conditional entropy when 𝑛 ≫ 𝑛𝑝.

For fixed 𝑆, a local minimum of Eq. C.12 with respect to 𝐾 occurs at the first value

of 𝐾 for which

ℒ(𝑆, 𝐾 + 1) − ℒ(𝑆, 𝐾) > 0. (C.13)

To demonstrate that the optimal value of 𝐾 remains constant as 𝑆 increases, we let

𝑆 → ∞ in Eq. C.12 and show that we can always satisfy Eq. C.13 with a finite value

of 𝐾 that is independent of 𝑆. Letting 𝑆 → ∞ in Eq. C.12 with 𝐾 constant and

substituting into Eq. C.13 gives

log(1 + 1/𝐾) + 𝜆 + 𝑛[𝐻mod(𝐾 + 1) − 𝐻mod(𝐾)] > 0, (C.14)

where we have discarded terms of order log𝑆/𝑆 and smaller. Rearranging gives

𝐻mod(𝐾) − 𝐻mod(𝐾 + 1) < 𝜆
𝑛 + 1

𝑛 log(1 + 1/𝐾). (C.15)

Because 𝐻mod(𝐾) is a decreasing function of 𝐾, this inequalitywill always be satisfied

for some constant 𝐾, since 𝐻mod(𝐾) − 𝐻mod(𝐾 + 1) approaches 0 from above and

the right-hand side is bounded below by the strictly positive constant 𝜆/𝑛. Thus the

optimal value of 𝐾 in Eq. C.12 is asymptotically constant as 𝑆 grows.

Note thatwe cannotmake the same argument for the unpenalizeddescription length

of Eq. C.7. In that case the inequality analogous to Eq. C.15 is

𝐻mod(𝐾) − 𝐻mod(𝐾 + 1) < 1
𝑛 log(1 + 1/𝐾), (C.16)
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but the right-hand side of this expression goes to zero as 𝐾 becomes large, so we

cannot guarantee there is a finite value of𝐾 that satisfies the inequality. In practice, we

find that this inequality is not satisfied in many test networks, the optimal 𝐾 growing

monotonically with 𝑆.

In Table C.1, we display the optimal number of clusters 𝐾 for various sample sizes 𝑆
and 𝜆 = 0, 1, for the networks shown in Chapter 5 and this appendix. We can see that

for 𝜆 = 0 the number of clusters grows substantially with the sample size 𝑆, whereas

with 𝜆 = 1 it remains nearly constant for most of the examples. The biggest exception

is the network science collaboration network, which does differ by a few clusters as we

increase 𝑆 but not by many. This illustrates that, despite the scaling in Eq. C.15 being

only approximate for 𝑆 → ∞, the constraint 𝜆𝐾 is effective in practical applications

for reducing the effect of the sample size on the number of clusters.

C.3. Additional example applications

In Fig. C.1we show twoadditional example applications of ourmethod. FigureC.1A

shows a network of collaborations among researchers in the field of network sci-

ence [289], which exhibits highlymultimodal community structure. In amanner rem-

iniscent of the artificial network of cliques in Fig. 2C, this network consists of many

small, tightly connected groups of nodes, which can be arranged in various ways to

form plausible community divisions. As we might expect, the modes identified for

this network appear to be comprised of a few of these possible arrangements.

In Fig. C.1B we show the modes of a network of associations among terrorists in-

volved in the 2004 Madrid train bombing [290]. In this case, we see that the com-

munity structure in the upper region of the network is uncertain, resulting in two
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Table C.1: Number of clusters 𝐾 for various sample sizes 𝑆, and 𝜆 = 0, 1, for example
networks.

Network Number of samples 𝑆 Optimal 𝐾, 𝜆 = 0 Optimal 𝐾, 𝜆 = 1
100 1 1

Planted partition 1000 1 1
10000 3 1
100 2 2

Nested SBM 1000 2 2
10000 8 2
100 2 2

Cliques 1000 10 2
10000 29 2
100 2 2

Political books 1000 8 2
10000 25 2
100 2 2

AddHealth 1000 8 3
10000 19 3
100 1 1

Chicago 1000 3 3
10000 14 3
100 2 2

Collaborations 1000 8 4
10000 26 6
100 3 2

Terrorists 1000 6 2
10000 17 2

substantially distinct community divisions appearing as modes.
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A

B

w1 = 0.32 w2 = 0.27 w3 = 0.22

w4 = 0.09 w5 = 0.07 w6 = 0.03

w1 = 0.59 w2 = 0.41

Fig. C.1. Representative modes and their corresponding weights for two additional
real-world example networks, identified by minimizing the penalized description
length with 𝜆 = 1 for 10, 000 community partition samples. (A) Collaboration net-
work among network scientists [289]. (B) Network of terrorist associations [290].
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