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ABSTRACT

Modern software projects are incredible feats of engineering that manage dozens of
concurrent execution tasks, are comprised of millions of lines of code, and written by
hundreds of developers. Moreover, projects must meet an ever growing set of complex
requirements, including correctness, performance, and security. Due in part to this com-
plexity, developers make mistakes that lead to software failures that have devastating cost
to society; in 2020 alone, operational failures caused by software bugs cost US companies
56 trillion dollars.

To understand the causes and effects of a software bug, a developer usually dynamically
inspects the state of their execution by using an inspection tool such as gdb, Intel Pin, or
logging. Debugging tools today support an inline inspection interface, which essentially
requires iteratively constructing new inspection programs to understand a bug. The inline
inspection interface imposes two limitations: (1) powerful inspection programs impose
infeasible performance overhead and (2) inspection programs are needlessly complex to
specify.

This dissertation proposes an alternative model for inspecting an execution called data-
centric execution inspection. The framework takes a data-oriented view that considers an
execution as a first-class data object and enables execution inspection as queries over the
data objects. This dissertation shows that a data-centric framework enables the use of
common data-centric approaches, namely cluster-scale parallelization and relational query
models, to enable fundamentally more powerful inspection through three projects.

First, this dissertation shows how data-centric execution inspection enables cluster-
scale parallelization of execution inspection to alleviate the performance limitations of ex-
isting tools. Data-centric execution inspection enables systems to inspect multiple regions
of an execution simultaneously, so a system can parallelize inspection work across thou-
sands of cores in a compute cluster. Alas, existing techniques and systems do not parallelize
well, since they assume that inspection occurs inline with the original program. This thesis
redesigns inspection techniques and tools by following scalability as a first class design
constraint to facilitate cluster-scale parallelization of execution inspection. First, JetStream
parallelizes the work of dynamic information flow tracking (DIFT) an order of magni-

tude better than prior approaches by partitioning DIFT across two phases and leveraging



a different from of parallelism for each phase. Second, Sledgehammer proposes a general
vision for cluster-fueled debugging, which uses thousand-core computer cluster to enable
debugging that is both powerful and interactive. Sledgehammer identifies cluster-fueled de-
bugging as both a vehicle for accelerating existing debugging tools, such as retro-logging to
enable after-the-fact execution inspection, and enables fundamentally more powerful tools,
such as continuous-function evaluation to enable “always on” evaluation of complex global
program invariants.

Second, this dissertation shows how a relational query model, called the OmniTable
query model, transforms execution inspection from a low-level programming task into a
high-level data science task to enable inspection that is both low-latency and simpler to
specify. The model exposes a table abstraction of each execution and supports SQL queries
for inspection. Results indicate that debugging using the OmniTable model is more suc-
cinct than in current state-of-the art tools. Moreover, our prototype, Steamdrill, optimizes
inspection queries using a planning approach that seamlessly uses Sledgehammer-style
cluster parallelization, standard relational optimizations, and a novel multi-replay approach

to provide results an order-of-magnitude faster than prior general-purpose inspection tools.
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CHAPTER

Introduction

As software has increased in ubiquity, the costs of software bugs have become mas-
sive. The consortium for information and software quality estimate that software failures
caused by software bugs cost companies in the United States 1.56 trillion dollars in the year
2020 [44]. In addition to financial costs, software bugs have interrupted key societal infras-
tructure, leading to massive power outages [62] and crippled health care organizations [85].
Finally, software bugs have even lead to loss-of-life due to bugs in the transportation indus-
try [76] and medical devices.

To reduce the effects of software bugs, the community has devised a number of tech-
niques, tools, and systems that improve software reliability. Of particular importance are
techniques that help developers diagnose the causes and effects of a software failure. De-
velopers use these techniques across many domains, including debugging, in which a devel-
oper identifies the root cause of a failure; security forensics, in which a developer identifies
which secret data was leaked; and configuration management, in which a developer iden-
tifies which configuration parameters lead to software misbehaviors. Studies show that
developers spend the majority of their time on these development tasks [57, 82].

To understand the cause and effects of a software failure, a developer traditionally in-
spects the runtime behavior of a program preceding and proceeding a failure; we refer
to this process as execution inspection. Execution inspection is an iterative process: in
each iteration, a developer gathers information about the execution state of a failing pro-
gram until the developer can isolate the key causes and/or effects of their software’s ac-
tions [25, 30, 32, 9]. Developers use tools, such as gdb or logging, to inspect program
state: studies find wide-spread use of both ad-hoc tools (e.g., nearly all open-source soft-
ware uses logging [91]) and sophisticated techniques (e.g., memory tools have altered the
makeup of the bugs found in modern software [48]).

The power of the debugging tools at a developer’s disposal has an outsize impact on

their ability to debug their software. In this dissertation, we identify two fundamental



limitations inherent in current inspection tools. First, existing tools impose high latency,
which is compounded by the iterative nature of execution inspection. Second, existing
tools require that a developer construct complex specification in order to perform execution
inspection. Then, we propose a novel data-oriented framework for program inspection
that resolves the specification and performance problems in existing tools. we show that
A data-centric model enables fundamentally more powerful execution inspection by
facilitating relational query models and cluster-scale parallelization.

1.1 The Limitations of Existing Tools

Execution inspection is a programming task in which a developer specifies the program
states that they wish to inspect by writing a new inspection program. For example, to track
all values assigned to a variable, a developer might add a set to their program to track
all assigned values, add instrumentation that updates the set after every assignment of
the variable, and add code that prints all set elements at the end of the program execution.
Different inspection tools offer different programming languages for this task. For example,
if the developer used gdb to write the inspection program above, the set becomes paper-
and-pencil notes, while the instrumentation becomes breakpoints with print statements.
However, nearly all current tools support an inline inspection model, in which developers
specify inspection logic as an imperative program that executes inline with the original
buggy program. The inline inspection model directly leads to both poor performance and

specification complexity.

Performance Inline inspection requires that a developer choose between power and in-
teractivity when performing execution inspection. For simple problems, a developer may
track program state infrequently, which imposes low performance overhead and allows the
developer to interactively inspect their program. However, challenging issues usually re-
quire more heavyweight execution inspection. A developer will perform detailed logging,
create functions that validate complex data-structures, and track the causality of execution
state using tools like dynamic information flow tracking (DIFT). Heavyweight execution
inspection is expensive: detailed logging, invariant, and DIFT can impose many order
of magnitude slowdowns [23, 74]. High costs render heavyweight tools non-interactive,
which is especially problematic given the iterative nature of execution inspection. As
a result of this high cost, developers will even forgo the use of heavyweight tools alto-

gether [25].



Specification Current inline inspection programming models make it difficult to correctly
specify program inspection logic. Even basic questions, such as the variable value scenario
presented above, require surprisingly complexity. The simple question requires the devel-
oper construct new data-structures and manually identify all program locations to injection
their instrumentation. Depending upon the tool that the developer uses, they may need to
contend with other software pitfalls including dynamic memory, fault handling, and concur-
rency. Inspection specification is made even more complex by the need for performance;
achieving low-latency inspection requires implementing low-level optimizations, such as
optimistic hybrid analysis [22] or path profiling [5], that are complex. In general, since the
inline debugging model closely resembles traditional imperative programming, the devel-
oper will encounter many of the same bugs that they traditionally encounter when building

software.

1.2 Data-Centric Execution Inspection

In this dissertation, we introduce a new data-centric model for execution inspection
that alleviates the performance and specification limitations inherent in execution inspec-
tion tools. The key idea is to treat a program execution as a first-class data object, which
developers query to perform execution inspection. Treating an execution as a data object
enables the use of data-centric techniques to accelerate and simplify debugging. Data-
centric execution inspection enables cluster-scale parallelization as a mechanism for better
performance, since the execution data object model allows a developer to inspect multi-
ple regions of an execution simultaneously. Additionally, data-centric execution inspection
facilitates relational query models to simplify the specification of execution inspection.

Below, we elaborate on the three projects presented in this dissertation that provide

evidence of the benefits of data-centric execution inspection.

1.2.1 Cluster-Scale Parallelization of Execution Inspection

In the first part of this dissertation, we show cluster-scale parallelization can allevi-
ate the performance limitations of existing tools. Data-centric execution inspection allows
multiple regions of an execution to be inspected simultaneously, so the work of execution
inspection can be parallelized across thousands of cores in a compute cluster. Unfortu-
nately, existing execution inspection tools and techniques assume that inspection occurs
inline with execution, so prior approaches to scale inspection tools have me little success.
Prior work even called one inspection technique, dynamic information flow, “embarrass-

ingly sequential” [72].



Parallelizing execution inspection requires re-designing inspection techniques and tools
to follow scalability as a first-class design constraint. In this dissertation, we first show how
to accelerate DIFT using cluster scale parallelization (see chapter III). Then, we generalize
the lessons learned in parallelizing DIFT to generally parallelize debugging-style questions

(see chapter IV).

JetStream—Cluster-scale Parallelization of Information Flow Queries Dynamic in-
formation flow tracking (DIFT) is an important tool for understanding and troubleshoot-
ing program behavior. Originally proposed by the security community [64], DIFT has
subsequently proven useful in a diverse set of domains including forensic analysis [42],
information provenance [23], privacy [26], application debugging [72], and configuration
troubleshooting [3, 4]. DIFT instruments an application binary to track data and/or con-
trol flow from global sources (e.g., program inputs) to global sinks (e.g., program outputs).
Prior parallel DIFT techniques have failed to scale beyond a few cores in a single machine
because of the fine-grain sequential dependencies between memory and register values: the
set of dependencies at each step in the execution is a function of a large number of prior
instructions, so partitioning DIFT into tasks that can be processed concurrently is difficult.

JetStream, my prototype, successfully parallelizes DIFT queries across many cores in
a compute cluster by splitting the queries into two phases and using a different form of
parallelism for each phase [69]. The first phase is the local DIFT phase, which uses epoch
parallelism [84, 65]. It time slices an execution into sequential chunks, called epochs,
and calculates the information flow dependencies within each epoch on a separate core in
parallel. Epoch parallelism effectively breaks the sequential dependencies in DIFT and
facilitates parallel processing. Next, the aggregation phase combines the information flow
from the local DIFT phase to compute the final result. The aggregation phase organizes
the cores into a chain in order of program execution and structures computation as a stream
processing algorithm along the chain: Information about sources is passed forward along
the chain. Information about sinks is passed backward along chain.

The structuring of the aggregation phase is the most important factor in enabling Jet-
Stream to scale much better than prior approaches at parallelizing DIFT. The insight is that
a small amount of sequential information allows JetStream to avoid huge amounts of un-
necessary work. Streaming this data along a sequential chain allows most processing to
occur in parallel, with the sequential limitation being essentially the time to pass a single
data value from one end of the chain to the other; this is much less than the total query time
even for hundreds of processors. We used JetStream for DIFT queries over seven desktop

and server applications and find that JetStream scales DIFT to hundreds of cores for these



applications. DIFT queries calculated using 128 cores are 12—48 times faster than sequen-

tial queries, and, in most cases, execute faster than the original execution of the program.

SledgeHammer—Cluster-fueled Debugging Cluster-fueled debugging generalizes the
parallelization approach of JetStream to accelerate general-purpose debugging queries and
enable execution inspection that is simultaneously powerful and interactive. Cluster-fueled
debugging parallelizes heavyweight debugging tools across many cores in a compute clus-
ter, which requires introducing scalability as a first-class design constraint. Sledgehammer,
the first general-purpose cluster-fueled debugger, supports an interface designed to mimic
logging, invariant function, and analysis approaches commonly used when debugging to-
day. The system uses epoch parallelism to parallelize the calculation of fracers, functions
that inspect the program state of an execution to produce output and enable logging and
invariant functions. Critically, Sledgehammer preserves the behavior of the original ex-
ecution by using a low-overhead, scalable, undo-log approach to isolate changes made
by a tracer. Sledgehammer also supports two different interfaces for programmatically
analyzing and aggregating tracer output in order to accelerate a wide variety of different
debugging questions.

Sledgehammer uses the tracer and analyzer interface to support three parallel debug-
ging tools. Parallel Retro-logging allows developers to modify the logging logic in their
program and produces new logging output for a previously-recorded execution. Continuous
Function Evaluation allows a developer to define a function over the state of their execution
that will logically be executed after every program instruction. Sledgehammer returns a log
that indicates all instances in the execution where the function’s output changes. Finally,
Parallel Retro-Timing allows a developer to retroactively measuring timing in a previously-
recorded execution. Developers can use these tools in conjunction (i.e., a developer can use
a continuous function alongside new logging); regardless of which tool a developer uses,
they can aggregate output using a Sledgehammer analyzer interface.

We evaluate Sledgehammer in seven scenarios debugging common problems in com-
plex applications (Memcached, MongoDB, and nginx). With 1024 compute nodes, Sledge-
hammer returns the same results as sequential debugging, but on average returns results 416

times faster due to parallelization.

1.2.2 Steamdrill & The OmniTable Query Model

Cluster-scale parallelization largely solves the performance tradeoff in the inline in-
spection programming model. Alas, the use of parallelism actually further exacerbates the

specification issues with execution inspection, since developers must explicitly consider



parallelism when constructing inspection programs. In the final chapter of this thesis, we
identify how relational query models can alleviate these concerns to enable execution in-
spection that is both low-latency and has requires simpler specification.

They key idea is an new relational query model for expressing execution inspection
tasks that converts inspection from a low-level programming task into a data science task.
At the center of the model is an OmniTable, a table representation of an execution that
encompasses the complete view of all history program state reached during an execution.
In essence, the OmniTable realizes the vision of treating an execution as a first-class data
object. The OmniTable query model supports inspection of an execution through SQL
queries over the OmniTable associated with the execution and leverages database concepts
to create database-style views that contain more familiar debugging abstractions (e.g., the
Funcs view identifies the functions executed in an execution). This is not the first work
to propose new models for program inspection, but prior tools expose incomplete program
history, only exposing data at specific points in time (e.g., function entry/return [27, 31]),
only exposing some program state (e.g., global variables [55]), or only exposing data from
necessarily incomplete software logs [54, 7, 77].

Unfortunately, an OmniTable for even a short execution is petabytes in size, which
makes it infeasible to store or compute a fully materialized table. So, instead of material-
izing an OmniTable for each execution, our prototype, Steamdrill, lazily materializes the
table for each developer query. The system uses deterministic record/replay to store the ex-
ecution associated with each OmniTable. When a developer queries an OmniTable, Steam-
drill generates instrumentation and re-executes the replay with the instruction to produce
query output. Steamdrill uses a query optimization and planning approach to construct the
instrumentation, and thus seamlessly leverages standard database optimizations (e.g., pred-
icate push-downs) and cluster-scale parallelization (e.g., Sledgehammer and JetStream).
Additionally, the system proposes a novel resolution strategy that partitions instrumenta-
tion across multiple replay executions. Intuitively, a multi-replay approach allows Steam-
drill to use data that is inexpensive to observe (e.g., data about invoked functions) to reduce
the amount of observation required of data that is expensive to observe (e.g., data about
executed instructions).

We results show major advantages compared to prior tools. As a baseline, we use gdb’s
python bindings, which offer a scripting interface over standard gdb primitives such as
breakpoints and backtraces. Across 9 queries written to diagnose bugs in 4 case studies,
we find that OmniTable queries require 3.465 times fewer lines, 1.95 times fewer operands
and operators, and would require 3.775 times less time to construct (according to Halstead

Complexity [34]) than their gdb counterparts. Moreover, we find that 3 representative



OmniTable queries, which require no modification for cluster-scale parallelism, are an

average of 93.91 times faster than their gdb counterparts when executed on 64 cores.

1.3 Road-map

In the rest of this thesis, we elaborate on three projects that argue for a data-centric
model for program inspection. First, we outline how my work relates to existing literature
(chapter II). Then, we describe how a data-centric model enables cluster-scale paralleliza-
tion, which alleviates the performance limitations of existing program inspection tools in
the context of dynamic information flow (chapter III) and debugging queries (chapter IV).
Next, we outline how a data-centric model encourages relational query models, which sim-
plify the specification of inspection logic (chapter V). Finally, we describe conclude and

identify the future of data-centric execution inspection (chapter VI).



CHAPTER 11

Related Works

Deterministic record and replay is roughly as old as computing itself and has been used
by many systems for program inspection. Deterministic record and replay reliably repro-
duces a program execution, which makes it possible to repeatedly inspect program behavior
that would otherwise be difficult to reproduce due to non-determinism (e.g., concurrency
errors and other “heisenbugs”). In addition, systems have used deterministic record and
replay to enable reverse execution, which allows these tools to logically execute program
statements in reverse order [6]. Prior work uses reverse execution to provide useful de-
bugging features (e.g., reverse breakpoints and watchpoints), but fundamentally exposes
an imperative inline programming model for specifying program inspection logic. In con-
trast, the execution data object framework explores how a data-centric approach to program
inspection enables easier specification for program inspection.

Prior systems use deterministic record and replay to parallelize program inspection
through epoch parallelism [65, 72, 84]. These systems are intended for online analysis
(e.g., for security use-cases), where it only makes sense to scale to multi-core machines. In
contrast, the execution data object framework models program inspection as a query over a
prior program execution, which encourages using a massive shared-cluster of thousands of
cores to accelerate inspection tasks. New design constraints and algorithms are necessary
to scale to thousands of compute cores.

Execution mining [47] treats executions as data streams that can be dynamically ana-
lyzed. While execution mining offers a similar vision to that of an execution data object,
it retains an imperative inline programming model. Thus, this work suffers from both the
specification and performance problems of existing tools.

In the rest of this section, I identify the related work for each of the projects in this

dissertation.



2.1 Jetstream

JetStream is the first system to parallelize DIFT across a cluster, and it is the first system
to efficiently track millions of global sources, global sinks, and dependencies. Several
prior systems have parallelized DIFT across the cores of a single machine. To achieve
cluster-level scalability, JetStream’s main contribution is parallelizing the aggregation of
local DIFT data while minimizing the communication between cores.

Like JetStream, Speck [65] partitions an execution into epochs and performs local DIFT
for each epoch. Speck tracks only a single label (tainted or untainted). Speck’s local
DIFT produces a log of sub-commands, which it then optimizes to achieve an up to 6x
reduction in log size. Aggregation is done sequentially over the optimized log. This limits
the speedup achieved by Speck to only 2x on a 8-core machine.

Ruwase et al. [72] partition an execution into epochs and perform local DIFT on each
core using custom hardware [16]. JetStream’s merge log optimization is derived from this
work; thus, the local DIFT phases of the two systems are similar. However, Ruwase et al.
perform aggregation sequentially, and this limits scalability. Like Speck, their system tracks
only a single label. TaintPipe [61] partitions DIFT into epochs and tracks taint as symbolic
formulas inside each epoch. TaintPipe also performs aggregation sequentially. It is unclear
how symbolic tracking can scale efficiently to millions of labels and dependencies.

JetStream focuses on after-the-fact analysis, while prior DIFT parallelization has fo-
cused on live analysis during execution. Live analysis runs only a single pre-defined query,
but it is suitable for security use cases in which sensitive actions such as sending network
output need to be blocked based on the DIFT results (Speck and Ruwase et al. delay output
to support this functionality, while TaintPipe does not). In contrast, after-the-fact analysis is
suitable for tasks like forensics [42], debugging [72], configuration troubleshooting [3, 4],
analysis of privacy leaks [26], and provenance [23]. No prior system has parallelized after-
the-fact DIFT.

Many systems have explored how to make DIFT itself faster. One promising idea is
decoupled execution, in which the DIFT work is split into an instrumentation thread and an
analysis thread. ShadowReplica [36] combines decoupled execution with static analysis to
reduce the amount of instrumentation that Pin must perform. TaintPipe combines decou-
pled execution with another form of static analysis: taint abstractions for commonly used
function. libdft [40] provides several low-level optimizations for accelerating Pin-based
DIFT. Profiling and/or static analysis can also reduce the cost of dynamic instrumenta-
tion [14, 37, 68].

These ideas are orthogonal to the speedups that JetStream provides through paralleliza-



tion. In fact, our evaluation shows that Pin dynamic instrumentation is often the scalability
bottleneck after JetStream parallelization, so incorporating these optimizations into Jet-

Stream is a very promising direction for future work.

2.2 Sledgehammer

Sledgehammer is the first general-purpose framework for accelerating debugging tools
by parallelizing them across a cluster. It has frequently been observed that deterministic
replay [24] is a great help in debugging [15, 43, 66, 79, 85]. Sledgehammer leverages
Arnold [23] replay both to ensure that results of successive queries are consistent and also
to parallelize work via epoch parallelism [84]. JetStream [69] uses epoch parallelism for a
different task: dynamic information flow tracking (DIFT). Sledgehammer’ tracer isolation
has less overhead and scales much better than the dynamic binary instrumentation used
by JetStream, making it better suited for tasks like debugging that need not monitor every
instruction executed.

Many tools aim to simplify and optimize the dynamic tracing of program execution.
Dtrace and SystemTap reduce overhead when tracing is not being used, but are expen-
sive when gathering large traces [13, 67]. Execution mining [47] treats executions as data
streams that can be dynamically analyzed and supports iterative queries by indexing and
caching streams. Other tools introspect distributed systems. Fay [27] lets users introspect
at the start and end of functions but injected code must be side-effect free. Pivot trac-
ing [54] lets users specify queries in an SQL-like language. These tools help debug parallel
programs, but, unlike Sledgehammer, they are not themselves parallelized for performance.

Several prior systems support retro-logging. Most isolate all code added to an execu-
tion [17, 38]; this comes with high overhead. Sledgehammer reduces isolation overhead
through compiler-based isolation and hides remaining overhead through parallelization.
Like Sledgehammer, rdb [35] allows users to modify source code and executes the modi-
fications during replay; however, rdb prohibits program state modifications instead of iso-
lating them. Dora [85] allows the added code to perturb application state and uses mutable
replay to make a best effort to keep replaying the application correctly after the perturba-
tion. This eliminates isolation overhead, but there is no guarantee that the debugging output
will be correct. Mutable replay is a good choice when output is simple and can be verified
by inspection, but incorrect results could prove frustrating for complex debugging tasks.

As documented in the wild store scenario, developers commonly write debug functions
to verify invariants. Researchers have advocated running similar functions at strategic code

locations to repair structures [21] or detect likely invariants [28]. Continuous function
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evaluation takes this to an extreme by logically running a function after every instruction.
X-Ray [3] systematically measures timing during recording to support profiling of replayed
executions; Sledgehammer’s more general interface allows debuggers to define the events

being measured and understand the uncertainty in timing results.

2.3 Steamdrill & The OmniTable Query Model

Prior systems have proposed high-level languages for debugging in which developers
specify inspection logic in a declarative fashion. Many of these systems retain the chal-
lenges of inline debugging because they require the developer to manually instrument their
software to specify interesting program state [77, 7, 54, 33]. Others limit the observa-
tions that a developer can make to only specific program state (e.g., the heap [31]) or only
specific program events (e.g., function entry/exit [27, 55]). The Program Monitoring and
measuring system [49] provides a relational interface for inspecting source-level events; a
developer must manually instrument software to inspect events that occur below the source
level (e.g., garbage collection). No existing system supports a non-inline programming
model for inspecting arbitrary architectural program state.

In addition, prior high-level inspection languages allow a developer to instrument a
future execution of their software. In these systems, execution state is ephemeral. So, while
many of these systems propose relational optimizations to optimize queries [31, 27, 54, 49],
these systems are unable to take advantage of the full range of optimizations afforded to
Steamdrill.

Execution mining [47] models software at a similar granularity to the OmniTable and
uses deterministic replay to facilitate repeated queries of the same execution. However,
Tralfamadore, the system that supports the execution mining model, supports a high-level
stream-based language which logically inspects a program inline with the original exe-
cution. Moreover, due to expensive materialization costs, Tralfamadore, has prohibitive
space and computation overheads, making it more suitable for understanding programs
rather than debugging them.

Many systems have noted that deterministic replay can be a great help when debugging
software problems [43, 79, 83, 66, 29]. More recently, JetStream [69] and Sledgeham-
mer [70] use deterministic replay as a vehicle for parallelizing debugging queries. These
tools provide visibility and repeatability, but limit observation due to poor specification

languages; the OmniTable abstraction instead supports more expressive SQL queries.
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CHAPTER III

JetStream: Cluster-scale Parallelization of Information

Flow Queries

Dynamic information flow tracking (DIFT) has emerged as an important tool for un-
derstanding and troubleshooting program behavior. Originally proposed by the security
community [64], DIFT instruments an application binary to track data and/or control flow
from global sources (e.g., program inputs) to global sinks (e.g., program outputs). Informa-
tion flow analysis has proven to be helpful in a diverse set of domains that include forensic
analysis [42], information provenance [23], privacy [26], application debugging [72], and
troubleshooting of configurations [3, 4].

Unfortunately, dynamic information flow analysis can be painfully slow; depending on
the granularity and amount of information tracked, execution slowdowns of up to one or
two orders of magnitude are common. While this cost can be reduced by limiting analysis
to managed languages such as Java or by restricting the types of queries that can be per-
formed, general-purpose information flow analysis over binary code requires batch-style
analysis for substantial programs. In other words, the user employing DIFT must run such
analyses over the course of hours. DIFT would be much more powerful if analysis could
be employed interactively; for instance, a user could refine a particular query by changing
sources, sinks, the propagation function, the granularity of instrumentation, or the period of
program execution over which the analysis is employed. The user could then narrow down
the bug, misconfiguration, or privacy violation in a manner similar to traditional debugging
techniques.

Our goal is to make DIFT queries interactive by parallelizing them across many cores in
a compute cluster. With hundreds or thousands of cores, DIFT queries that previously took
hours or days can complete in seconds or minutes, enabling refinement and iteration over
multiple queries. Thus, a shared cluster can become a valuable resource for a large team

of system operators or programmers who want to occasionally engage in an interactive
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debugging or troubleshooting session using DIFT tools. Usage scenarios for DIFT include
both live analysis (as the program runs) and after-the-fact analysis (executed on a replay of
an execution). We target the latter scenario.

Previous efforts at parallelizing DIFT have met with only limited success. Information
flow is inherently difficult to scale (Ruwase et al. call it “embarrassingly sequential” [72])
because it tracks many fine-grained sequential dependencies between memory and register
values. The set of dependencies at each step is a function of a large number of prior instruc-
tions executed by the program. Consequently, prior efforts have produced parallel versions
that scale to only a few cores on a single machine, and no current approach can effectively
leverage a commodity cluster to scale DIFT.

Our solution, JetStream, provides cluster-level scalability by computing information
flow in two phases, each using a different form of parallelization.

The first phase is the local DIFT phase; it divides program execution into time seg-
ments (epochs) and assigns a separate core to compute the information flow for each epoch.
Each core determines the dependencies within its epoch that may be relevant to answering
the overall query. It tracks sources and sinks that are identified explicitly in the query (e.g.,
network input and output); we call these global sources/sinks. It also tracks locations that
may serve as links between global sources and sinks; we call these local sources/sinks.
Local sources are all memory addresses and registers at the beginning of an epoch, and
local sinks are all memory addresses and registers at the end of an epoch. The local DIFT
phase parallelizes cleanly into separate partitions, with all dependencies between partitions
resolved in the next phase.

Two challenges arise for the local DIFT phase. First, computing all dependencies that
may be relevant to the query is too expensive. We address this challenge by deferring
and avoiding work as much as possible. JetStream uses merge trees [72] to represent and
manipulate dependency sets more efficiently. More importantly, it defers traversing these
merge trees until the next (aggregation) phase; that phase avoids traversing the vast majority
of tree nodes that do not lie on a dependency path between a global source and a global
sink.

The second challenge is that each epoch must follow the same execution as the orig-
inal execution, so that the aggregation of local DIFTs produces a result equivalent to a
sequential DIFT. JetStream uses checkpointing and deterministic record/replay to divide
an execution into epochs and perform the local DIFT for each epoch independently, yet
consistently. JetStream uses lightweight statistics collected during the original execution
of a program to partition the DIFT work equally, and it uses heavyweight statistics collected

during the first query of an execution to better partition subsequent queries.
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The second phase, called the aggregation phase, prunes and combines the information
from the local DIFT phase to compute the final result, i.e., the relationship between global
sources and global sinks across the entire execution. The cores in this phase are organized
in a chain in order of program execution, and the computation is structured as a stream pro-
cessing algorithm with pipeline-style parallelism. Each core resolves dependencies using
information from one epoch’s local DIFT phase, and the global query is answered via two
streaming passes.

In the first streaming pass, the locations (registers and memory addresses) that are de-
rived from global sources are passed forward along the chain (from the beginning to the end
of execution). This information is used to prune deferred operations that do not depend on
a global source. In the second streaming pass, the locations that propagate dependencies to
a sink are passed backward along the chain. This lets JetStream prune deferred operations
on which no sink depends.

The structuring of the aggregation is the most important factor in enabling JetStream to
scale much better than prior approaches at parallelizing DIFT. Our insight is that a small
amount of sequential information is necessary to avoid huge amounts of unnecessary work;
this information is essentially the locations that depend on global sources (forward pass)
and the locations on which global sinks will depend (backward pass). Streaming this data
along a sequential chain allows most processing to occur in parallel, with the sequential
limitation being essentially the time to pass a single data value from one end of the chain
to the other; this is much less than the total query time even for hundreds of processors.

The contributions of this paper are:

e An algorithm for parallelizing DIFT that scales much better than prior approaches,

enabling interactive (sub-minute) response times.

e Scalable and efficient support for tracking millions of distinct global sources and sinks
at byte granularity, without restrictions on source-code availability, compute platform,
or query type.

e A detailed evaluation of the remaining bottlenecks in accelerating DIFT through par-
allelization.

We have applied JetStream to run DIFT queries over seven desktop and server applica-
tions: Evince, Firefox, Ghostscript, Gzip, Mongodb, Nginx, and OpenOffice. Our results
show that JetStream scales DIFT to at least 128 cores for these applications. It accelerates
DIFT queries to run 12-48 times faster than sequential queries, and, in most cases, runs

queries faster than the original execution of the program.
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3.1 Motivation

DIFT is a fundamental analysis that is useful in diverse domains. For example, Arnold [
uses DIFT for provenance queries that reveal how data values in files and application mem-
ory were derived. In forensics [42], DIFT has been used to answer questions such as:
“How was my system compromised?” and “What data was leaked?” TaintDroid [26] and
similar systems use DIFT to reveal whether an application execution leaks sensitive data.
X-Ray [3] uses DIFT to identify misconfigurations that cause performance anomalies, and
ConfAid [4] uses DIFT to identify misconfigurations that cause bugs. Poirot’s [41] use of
DIFT helps determine if a security vulnerability has been exploited.

Many of the above systems run complex DIFT queries on native binaries and can suffer
from painfully slow DIFT query times. These systems are often forced to use batch-style
computation, even though many would ideally be interactive in nature.

Consider a developer debugging an incorrect output value from a Web server. Using
JetStream, they begin by running a DIFT query that shows all program inputs from which
the faulty value was derived. This alone is not enough to reveal the bug, so they run an
additional query tracking the inputs that led to a correct output. Comparing the results
shows that inputs from a particular network connection led to the faulty output but not
the correct one. Using this information, they discover a bug in the code which parses
network inputs. To see if this bug has impacted any file system state, the developer runs
another query specifying all values from the faulty parsing code as global sources and all
file system outputs as global sinks. They detect that no permanent state has been affected
by their bug. Next they consider other forms of external output such as network messages.

Debugging the problem and determining the impact of the bug both require multiple
DIFT queries. Further, phrasing the correct queries may be non-trivial and require multiple
iterations to get helpful results. If each query takes hours to complete, then this process only
makes sense for the most difficult bugs. In contrast, low-latency DIFT enables information

flow analysis to be an integral part of the debugging process.

3.2 Background

We first describe two technologies on which JetStream builds: dynamic information

flow tracking and deterministic record and replay.
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3.2.1 DIFT

Dynamic information flow tracking, sometimes referred to as taint tracking, instruments
applications to monitor data flow as programs execute. In its most general form, DIFT
reveals which global sources causally affect which global sinks according to a propagation
function. Global sources are typically external program inputs, such as bytes read from a
file or a network socket, and global sinks are typically external outputs.

The propagation function specifies what information flows to track during program
execution. For example, a basic data flow propagation function for the instruction x =y+z
would state that the sources on which x depends are the union of the sources on which
y and z depend. Usually, DIFT tracks data flow (as we do in this work), but some DIFT
systems also track implicit flows propagated via control flow.

When an application executes, DIFT assigns a taint identifier to each unique global
source. For each location, it maintains a set of taint identifiers that shows the global
sources on which that location currently depends, and it updates taint sets as instructions
execute. At each global sink, DIFT outputs the set of taint identifiers of all locations writ-
ten to the sink (e.g., the bytes sent to a network socket). Thus, DIFT produces a set of
(globalsource,globalsink) tuples that describe how particular global sources and global
sinks are related.

JetStream tracks global sources, global sinks, and dependencies at byte granularity us-
ing binary instrumentation inserted by Pin [53]. A single JetStream query may look for
relationships between millions of distinct global sources and sinks. In contrast, many prior
DIFT systems require source code or the use of a managed language runtime. Others track
only whether any global source data propagates to a global sink and cannot determine which
sources affect each sink—such systems cannot answer questions such as: “Which inputs
affected this program value?” or “What data did I leak?”

A JetStream query contains a program execution to monitor, a filter that specifies the
global sources, a filter that specifies sinks, and a propagation function. For instance, a
provenance query [23] might wish to determine the lineage of the data in a particular file.
The source filter would match all external program inputs and the output filter would match
writes to a particular file. This would reveal which bytes in the file were derived from which
sources. Alternatively, a privacy query [26] might specify reads from sensitive files as
sources and network outputs as sinks. This would reveal what data was leaked over the net-
work and how it was leaked. JetStream provides an interface for supporting custom propa-
gation functions and supplies Arnold’s copy, data, and index propagation functions [23] as
defaults.

For complex applications, mapping all global sources to all global sinks at byte gran-
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Instructions Taint IDs | Merge Log ( fo:::/\; dsgztiss) (bzil?::/z;l:cllp;z;)
{< 1,00 >,
<I,00 >}
EpochO | 1. A=read() | A: Iy
2.B=read() | B: [
3.C=A+B C: Moo M(),()Z {I(),Il}
{A,B,C}
{< 0p,C >}
4.D=X+Y DZMl’() M],OZ{XI,Y]}
5.E=C E: C;
Epoch 1} ¢ g _¢ B: {}
7. ZZA[D] Z: M1_1 M171 1{A17M170} \
{A,C,E,Z}
{< 0p,E >}
Epoch2 | 8. F=E F. E» I
9. write(F) Oy: Ey X

Table 3.1: JetStream Example. DIFT analysis of an example program. The n™ input to the
execution is labeled I,, the m™ output to the execution is labeled as O,,, the taint of variable X in
epoch i is labeled X;, and the j* entry in the merge log for Epoch k is labeled My ;

ularity produces far too much information (e.g., terabytes of data for some benchmarks in
Section 3.4). Thus, filters are needed to extract the right information succinctly. This leads
to refinement through iteration. Our goal is to make DIFT fast enough to be interactive, so

that a user can issue multiple queries to search for the right information.

3.2.2 Deterministic Replay

Deterministic replay allows the execution of a program to be recorded and reproduced
faithfully. When a program first executes, all inputs from nondeterministic actions are
logged; these values are supplied during subsequent replays in lieu of performing the non-
deterministic operations again. Thus, the program starts in the same state, executes the
same instructions on the same data values, and generates the same results.

JetStream derives several benefits from using deterministic replay. First, replay allows
JetStream to partition a recorded execution into epochs and execute these epochs in parallel.
Deterministic replay guarantees that the result of stitching together all epochs is equivalent
to a sequential execution of the program. Second, replay allows an execution recorded on
one machine to be replayed on a different machine. There are few external dependencies,
since interactions with the operating system and other external entities are nondeterministic
and replayed from the log. Thus, the only requirement for replay is that the replaying
computer has the same hardware architecture as the recording computer and that it runs

a kernel modified to support replay. Finally, replay allows iterative queries over the same
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execution.

JetStream uses Arnold [23] to provide deterministic record and replay of multithreaded,
multiprocess applications. Arnold’s performance overhead is less than 10% for most work-
loads, and its storage overhead is reasonable even for continuous recording of a worksta-

tion.

3.3 Design and Implementation

To parallelize a DIFT query, JetStream divides an execution into epochs and assigns
each epoch to a different core. JetStream then evaluates the query in two phases: a local
DIFT phase and an aggregation phase.

In the local DIFT phase, each core concurrently computes the relationships between
sources and sinks within its epoch. A core can directly observe global sources and global
sinks that occur during its epoch. However, some locations at the start of an epoch may
depend on global sources from preceding epochs, and the local DIFT cannot know the ac-
tual dependencies because the local DIFTs for those preceding epochs are being executed
concurrently. Thus, for all epochs but the first one, the local DIFT phase conservatively
tracks all locations at the start of the epoch as local sources and assigns a unique local
source identifier to each location at the epoch start. Similarly, the local DIFT cannot de-
termine which locations at the end of an epoch will ultimately propagate to global sinks in
succeeding epochs, so the local DIFT treats all locations at the end of the epoch as local
sinks. A local DIFT phase thus tracks and reports dependencies between all sources (both
local and global) and all sinks (both local and global).

In the aggregation phase, the cores organize as a chain in program execution order and
communicate local DIFT results forward and backward along the chain to produce the final
set of (globalsource, globalsink) tuples. We next describe these two phases in more detail.

Table 3.1 shows an example query in which JetStream finds all dependencies from
global sources to global sinks in a simple program. Program execution is divided into three
epochs (shown by the horizontal partitioning). The local DIFT phase is the region to the
left of the double vertical bar, and the aggregation phase is the region to the right of the bar.
Instructions 1 and 2 read data from global sources, and instruction 9 writes to a global sink.

3.3.1 Local DIFT

JetStream implements the local DIFT phase as a Pin tool. Executing an application with
this tool attached is quite slow (e.g., 14-75x slowdown for the benchmarks in Section 3.4).

There are two reasons: DIFT may add several additional instructions to track taint for
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each application instruction executed, and Pin dynamically adds the instrumentation to an
application as it executes. The first is a fundamental cost of DIFT, while the second is a
consequence of using a dynamic instrumentation tool.

The local DIFT phase for a given epoch first replays the application uninstrumented to
advance its execution to the start of the epoch, a process we call fast forwarding. JetStream
may start the replay from the beginning, or it may start from a checkpoint of application
state taken during recording or during a previous query. Given the relative speed difference
between instrumented and uninstrumented execution, starting from the beginning is rea-
sonable for low numbers of epochs. As the number of epochs increases, fast forward time
comes to dominate total query time, and checkpoints are quite beneficial.

Next, JetStream attaches the DIFT tool to the application and Pin starts instrumenting
the application to track dependencies. JetStream assigns a unique source identifier to each
location modified by a global source in the epoch and to each location at the start of the
epoch.

JetStream runs all threads of a multithreaded application on a single core to realize an
important performance benefit: the instrumentation code does not need to obtain locks to
synchronize access to the DIFT data structures because only one thread runs at any given
time [87]. JetStream still fully utilizes the processor because each core runs a different
epoch in parallel.

For each location, JetStream stores an integer taint identifier that represents the set of
global and local sources on which that location currently depends. A taint identifier may
be: (1) a global source identifier, (2) a local source identifier, or (3) an identifier that maps
to a set of global and local sources. In the Taint IDs column of Table 3.1, Iy and /; are
global source identifiers, and C; and E; are local source identifiers that represent the taint
of address C at the start of epoch 1 and the taint of address E at the start of epoch 2.

For each x86 instruction, the local DIFT tool reads the taint identifiers of the instruc-
tion’s inputs and updates the taint identifiers of the instruction’s outputs. Taint identifiers
for registers are stored in a per-thread array, and taint identifiers for memory addresses are
stored in a two-level page table. The tool decomposes the work for each instruction into
a sequence of four sub-commands: set, clear, copy, and merge. The first three sub-
commands are straightforward—set assigns a taint identifier to a location, clear assigns
the NULL identifier to a location, and copy sets the destination’s taint identifier equal to
the source’s. Thus, each of these sub-commands are low overhead integer operations. Ta-
ble 3.1’s Taint IDs column shows how the local DIFT tool updates the taint data structures:
a set for instruction 1, a clear for instruction 6, and a copy for instruction 5.

The merge sub-command is used for instructions that combine dependencies, e.g., in-
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structions 3, 4, and 7. For these instructions, the set of sources on which the output depends
is the union of the sets of sources on which the inputs depend. Our original implementation
tracked such sets explicitly, but this worked poorly. For some complex applications, the
DIFT did not finish after running for hours, or the size of the sets exceeded the 256GB
memory of our server. Intuitively, the reason is that the set of tuples that relate all local
sources to all local sinks can be as large as the size of the address space squared.

We therefore turned to an idea proposed by Ruwase et al. [72] in which sets of taint val-
ues are represented by a binary tree. Each merge operation generates a new taint identifier
to represent the set union. JetStream writes an entry to a merge log, which contains the taint
identifiers of the input to the merge. Thus, the merge log is a DAG sorted in temporal order,
and each node (entry) in the merge log represents a binary tree of taint identifiers rooted at
that node. Any merge node can be resolved to a set of source identifiers by performing a
depth-first traversal of the tree rooted at that node.

In the example, instruction 4 creates a merge node M o (each epoch has a distinct
merge log, with the particular log denoted by the subscript). The node states that address
D depends on whatever X and Y depend on at the start of epoch 1. Instruction 7 creates a
merge node that has M| ¢ as a child, so address X depends on whatever A, X, and Y depend
on at the start of the epoch.

Using the merge log yields two benefits. First, it defers expensive set union operations
until the aggregation phase; optimizations in that phase avoid the need to perform the vast
majority of such unions. Second, the merge log uses much less memory than storing a set
for each location. Memory usage is roughly proportional to the number of unique merge
operations rather than the total size of all taint sets for every location. The cost of using a
merge log is that JetStream must perform a tree traversal when it needs to resolve a root
node to a set of source identifiers.

JetStream makes two enhancements to Ruwase et al’s algorithm. First, it uses a hash
table to cache recently-seen merge pairs and reuse merge nodes when duplicates are found.
Second, whereas Ruwase et al. used the tree data structure only for abstract values (i.e.,
local source identifiers); JetStream also uses the tree structure for sets of global source
identifiers, such as distinct bytes from different sources encountered during the local epoch
(as for instruction 3 in the example).

At the end of an epoch, JetStream writes four datasets to a shared memory buffer: global
source metadata, global sink metadata, the merge log, and the taint identifiers for all local
sinks. The global source metadata describes each global source identifier (e.g., the system
call that read the byte, the file the byte was read from, the offset within the file, etc.).

Similarly, the global sink metadata describes each byte sent to a sink. Since application
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execution typically modifies only a small percentage of locations during a given epoch, the
local sink identifiers for most locations will be the local source identifier of those locations.
To save space, the local DIFT only outputs those local sink identifies where this relationship
does not hold. These optimizations allow the output of the local DIFT phase to fit in the

memory of modern servers (though it is still large, e.g., a few GB per epoch).

3.3.2 Partitioning

The time to produce an answer to a query depends on the longest local DIFT time for
any epoch. Thus, to achieve good speedups, JetStream must partition local DIFT so that
each core does roughly the same amount of work. To accomplish this, JetStream estimates
the amount of time it will take to run local DIFT for any given interval of execution and
defines epoch boundaries so that the estimated local DIFT time for each epoch is the same.

We estimate the local DIFT time for an interval of execution as a linear combination of

three factors:

* Fast Forward Time: JetStream replays the application without instrumentation to
advance execution to the start of the epoch. We estimate that this component of work
is proportional to the user-level CPU time used for this portion of execution by the

recorded application.

¢ Instructions executed: To track information flow for an interval of execution, Jet-
Stream must execute the instructions in that interval, as well as the instrumentation
code that propagates dependencies among locations. This component of work is
proportional to the number of instructions executed, which we estimate from the

user-level CPU time used to execute the interval in the recorded execution.

* Unique instructions executed: Pin instruments an instruction when it is executed
for the first time. With Pin, instrumentation cost is a significant portion of the over-
all DIFT time, especially for short intervals in which each instruction may only be
executed a few times. As JetStream parallelizes the DIFT work across more cores,
each interval becomes shorter, and the relative cost of instrumenting instructions in-
creases. This component of work is proportional to the number of unigue instruc-
tions executed. During recording, we read processor performance counters via the
perf_events API to estimate the number of unique instructions executed by sam-
pling the instruction pointer (we sample every 32 L1 instruction cache read misses
for user-level code). When executing the first query for an execution, we use dy-

namic instrumentation to measure the actual number of unique instructions executed
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during an interval; this adds little overhead compared to DIFT instrumentation.

To avoid confounding testing and training in our evaluation, we choose the constants
in the model for the first query of an execution by running a linear regression over data
from the other benchmarks in our set. The coefficient of determination (R? value) for these
regressions is 0.86—0.87. Due to the high overhead of instrumenting code with Pin, the cost
of inserting instrumentation (proportional to unique instructions executed) usually dom-
inates the cost of running the instrumented code (proportional to instructions executed),
especially for small epochs.

For subsequent queries of a given execution, we run a linear regression over the perfor-
mance data gathered during the first query. This produces a much better R value of 0.985.
We also add the number of merges that occurred during each interval to our model, and that
change slightly increases the R? value to 0.989.

JetStream partitions the recorded execution into n epochs of roughly equal local DIFT
time as estimated by the above model, where #n is the number of available cores to run the
query. This process is conceptually simple, but a complication is that the total local DIFT
time depends on the particular partitioning chosen because an instruction that is executed
in multiple epochs will incur an instrumentation cost in each of those epochs. We solve this
problem by using a hill-climbing algorithm in which each iteration updates the estimate of
the total local DIFT time for the query, and the new estimate is used to calculate a better
partitioning in the next iteration. Usually, this process converges after a small number of

iterations.

3.3.3 Aggregation

The aggregation phase produces the set of (globalsource,globalsink) tuples that are
related by the propagation function. Within a single epoch, a global source and global
sink are related if the global sink either has the global source’s identifier or if it has the
identifier of a merge node and that node resolves to a set that contains the global source’s
identifier. If the global source and sink are in adjacent epochs, then they are related if there
exists a location L at the boundary of the two epochs such that, in the first epoch, the local
sink identifier of L depends on the global source, and in the second epoch, the global sink
depends on the local source identifier of L. If one or more epochs separate the epochs of the
global source and sink, then there must be multiple such relationships forming a continuous
path from source to sink.

In Table 3.1, such a path exists between the global sources of instruction 1 and 2 and

the global sink of instruction 9. In epoch 0, resolving the merge tree for address C reveals
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that it depends on both global source 0 and global source 1. In epoch 1, the final value
of E depends on the value of C at the beginning of the epoch. In epoch 2, instruction 9
writes address F, which depends on location E at the beginning of the epoch. Determining
the complete relationship between global sources and global sinks requires aggregating the

data from the local DIFT phase of each epoch.

3.3.3.1 Parallelizing aggregation: A failed attempt

To meet our performance goals, both the local DIFT and aggregation phases must scale
well with the number of cores. Our first approach to constructing a parallel aggregation
phase was based on a tree-like merge of local DIFT information. First, each individual
epoch produces a map of all (source,sink) tuples where sources and sinks may be either
local or global. For each sink with a taint identifier that represents a merge node, the map
is generated by a depth-first traversal of the tree rooted at that node to resolve the set of
source identifiers. This step is performed in parallel for all epochs, and caching is used to
avoid revisiting tree nodes. If both the source and sink in a tuple are global, then the tuple
is immediately output and removed from the map. Such tuples represent dependencies that
can be computed solely on the DIFT information in a local epoch.

Next, we merge maps for pairs of adjacent epochs. For all locations, L, if there exists
a tuple (source,L) in the first epoch and a tuple (L, sink) in the second epoch, then this
step adds the tuple (source,sink) to its map. Since two epochs are involved, this step is
parallelized across two cores. As before, if the sources and sinks in a tuple are both global,
the tuple is immediately output and removed from the map. Merges are performed in a
binary tree, merging sets of 4, 8, 16, etc. epochs, using the same approach as above. The
number of cores participating in each merge grows proportionally, and the number of merge
steps is logarithmic in the number of epochs.

Unfortunately, this algorithm performed very poorly. Traversing the merge log for each
end value and generating sets of start values was extremely time-consuming, even with
caching and reuse of intermediate results. Even worse, for most of our applications, some
of the merged maps failed to fit in 256GB of memory. Our analysis showed that the reason
for this behavior was that we were doing far more work than we needed to: the vast majority
of merge nodes visited and values in the merged maps were not actually on a path between
a global source and a global sink. However, because no epoch knew the full set of global
sources and sinks when creating or merging maps, each had to calculate all dependencies
that could possibly be used.

We concluded from this failed attempt that a fully-parallel aggregation phase is infea-

sible because it vastly increases the total work done. To fix this, aggregation must use
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data about global sources and sinks to generate less intermediate data and to traverse fewer

merge nodes.

3.3.3.2 Backward pass

Our next approach to aggregation was to structure the computation as a stream pro-
cessing algorithm that scales via pipeline-style parallelism. We arrange the epochs in an
ordered chain. In parallel, each epoch processes any global sinks encountered during the
epoch. The JetStream aggregator checks the taint identifier for each byte sent to a global
sink. If the taint identifier is a global source (i.e., if the global source and sink are in the
same epoch), the aggregator immediately outputs a (globalsource, globalsink) tuple. If the
taint identifier is a local source identifier L, the aggregator sends a (L, globalsink) tuple to
the previous epoch in the chain. Epochs on the same machine communicate via a shared
memory buffer; epochs on different machines communicate via a TCP socket. If the taint
identifier is a merge log node, the aggregator resolves the set with a depth-first traversal of
the tree rooted at that node. For each unique source identifier in the set, it either outputs a
(globalsource, globalsink) tuple or sends a (L, globalsink) tuple to the previous epoch.

When the aggregation phase for an epoch receives a (L, globalsink) tuple from the
succeeding epoch, it checks the epoch’s local sink taint identifier for L. This is either
a local source identifier, a global source identifier, or a merge node identifier that re-
solves to a set of source identifiers. For each global source, the aggregator outputs a
(globalsource, globalsink) tuple, and for each local source L', it sends a (L', globalsink)
tuple to the preceding epoch.

The last epoch sends a sentinel value to its preceding epoch after it has finished pro-
cessing its sinks; when an epoch reads the sentinel, its work is done as no more tuples will
be forthcoming. It then sends the sentinel to its predecessor.

The last column of Table 3.1 shows the backward pass. Epoch 2 determines that O
depends on location E and passes that tuple to epoch 1. Epoch 1 determines that E depends
on C, so passes the tuple (O, C) to epoch 0. Epoch 0 resolves the merge tree rooted at My o
and outputs tuples relating O with both I and 1.

The major advantage of this streaming algorithm is that no epoch will process a merge
node or send a tuple to a proceeding epoch unless the node/tuple represents a location that
propagates to some global sink according to the propagation function. In the example, no
merge nodes in epoch 1 are visited. This vastly reduces the amount of aggregation work.
The potential disadvantage of this algorithm is that we have added a sequential step; each
tuple must flow from global sink to global source, passing through all intermediate epochs.

Our results show that this has only a minor effect on overall query time since each core can
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still process tuples in parallel. In other words, the latency of passing a tuple through all
epochs in the chain is very small compared to the query time, just as the sequential time
to execute a machine instruction in a pipelined CPU is trivial compared to the time spent
operating with a full pipeline.

Our results show that this algorithm, which we will refer to as the backward pass pro-
duces reasonable aggregation costs for some simple applications/queries, but it still takes
too long for complex applications/queries. The reason is that we are still visiting too many
merge nodes and creating too many tuples that are not ultimately on the path between a
source and a sink. Thus, we found it necessary to also add a streaming forward pass that
propagates information about which locations are related to global sources along the chain

of epochs.

3.3.3.3 Forward pass

The forward pass runs prior to the backward pass. For each epoch, the forward pass
first calculates a reverse index that has the same vertexes as the merge log DAG but that has
edges in the opposite direction. The reverse index is also a DAG; depth-first traversal from
a given local or global source yields the set of sinks that depend on that source. Each epoch
builds its reverse index by first visiting all merge log nodes in temporal order, then visiting
all local sinks. This step is fully parallelized since the reverse index can be computed purely
with local information for each epoch.

Next, for each byte read from a global source, the aggregator does a depth-first traversal
of the reverse index to determine the set of local sinks that depend on any source. It passes
these sink locations to the succeeding epoch in the chain (forward in time). Here, the
aggregator is only determining that a given local sink is tainted by any global source; it
is not identifying a particular global source that has tainted the local sink. Therefore, the
aggregator passes a local sink to the succeeding epoch at most once, and it visits each node
in the reverse index at most once. It sets a visited bit for each local sink and merge node
to avoid duplicate work.

As the aggregator receives locations from the prior epoch, it does a depth-first traversal
of the reverse index to determine which (if any) additional local sinks depend on that loca-
tion. It sends the locations associated with those local sinks to the succeeding epoch. The
aggregator also retains the complete set of locations obtained from the prior epoch; this live
set is the set of all local sources that depend on any global source.

Similar to the backward pass, the first epoch sends a sentinel token as soon as it finishes
processing global sources. Once an epoch receives the sentinel, its live set is complete; the

epoch then sends the sentinel to its successor.
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Benchmark || Replay Log | Replay Single Core Global Global Dependencies
Size (MB) | Time (s) | DIFT Time (s) Sources Sinks
Gzip 0.03 2.98 109.23 || 64352941 | 48791393 36586765
Ghostscript 0.12 1.03 76.90 2514067 176009 14682254
Evince 2.90 13.47 234.30 || 10302852 | 104061604 346305
Nginx 30.65 4.75 196.51 || 10412627 | 35000000 5000000
MongoDB 37.02 22.79 309.99 8863855 | 116592809 76042962
OpenOffice 15.25 7.55 418.03 9946659 | 32110959 14599069
Firefox 24.80 67.42 1838.70 920029 1636119 131476

Table 3.2: JetStream Benchmarks.

In Table 3.1, the Live Set column shows the forward pass. At the end of the first epoch,
locations A, B, and C depend on at least one global source. The second epoch adds Z to this
set because it depends on A and adds E to this set because it depends on C. Additionally,
the second epoch removes B from this set because its taint value was cleared.

Once an epoch knows its live set, it prunes its merge log. The aggregator processes
merge log nodes sequentially. Any local source not in the live set for that epoch cannot
depend on a global source. So, if a child of a merge node is a local source identifier, and
the local source is not in the live set, the child is replaced by a NULL identifier. If a merge
node has two NULL children, no members of its source set depend on a global source. Any
identifier in the merge log that refers to such a node is also replaced with a NULL value.
Essentially, this is a garbage collection in which any node known to be unrelated to a global
source is removed. This garbage collection can substantially prune the merge log. Each
epoch can run the prune in parallel once it knows its live set. Thus, the only sequential
component of the forward pass is the propagation of live set values. In Table 3.1, epoch 1
prunes merge node M1 o because it does not depend on any global source. M ; is updated
to (A;,NULL).

By inserting a forward pass, JetStream guarantees that all merge nodes processed and all
tuples generated during the backward pass are on a path between a global source and global
sink. This vastly reduces the number of nodes processed and tuples generated, making the
backward pass more efficient. Note that although the forward pass itself must visit all
nodes tainted by a global source (even those that do not lead to a global sink), the forward
pass does much less work than the backward pass because it tracks only whether or not a
location depends on a global source. It does not identify the specific source(s) on which

the location depends.

3.3.3.4 Pre-pruning

JetStream uses one final optimization to improve aggregation performance. During an

epoch, many values in memory or registers are overwritten before the epoch ends. If a
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merge log node does not propagate to either a local or global sink, then it can be removed
from the log based solely on information available from that epoch. We call this step pre-
pruning. JetStream does pre-pruning via a mark-and-sweep garbage collection over the
merge log. It iterates through all sinks; if a sink has the taint identifier of a merge log node,
JetStream marks the merge node as referenced. Then, JetStream iterates backward through
the merge log. For each child in a merge log entry that refers to a prior merge log node,
JetStream marks the prior merge log node as referenced. It discards all unmarked nodes
and compacts the merge log. This reduces the number of merge log nodes that need to be

processed later during both the forward and backward passes.

3.3.3.5 Summary

For each epoch, JetStream performs the following operations: (1) It runs the program
without instrumentation from the start or from the nearest checkpoint to the beginning
of the epoch. (2) It attaches a Pin tool and performs a local DIFT until the end of the
epoch. (3) It pre-prunes the resulting local DIFT output to eliminate merge log nodes that
cannot lead to a global sink. (4) It performs a forward aggregation pass to further prune the
merge log by excluding any node that does not depend on a global source. (5) It performs
a backward aggregation pass to generate (globalsource,globalsink) tuples; only merge
nodes and locations on the path between a source and a sink are visited during this pass.
Almost all of these steps can be performed in parallel for each epoch. The exceptions are
the propagation of source dependencies in the forward path and (location,sink) tuples in
the backward pass. These sequential steps are structured as stream processing along the

epoch chain to maximize the work done in parallel.

3.4 Evaluation

Our evaluation answers the following questions:
e How well does JetStream scale DIFT?

e What are the remaining scalability bottlenecks?

e What is the impact of query optimizations?

3.4.1 Experimental Setup

JetStream uses the Arnold record and replay system [23] and the Pin dynamic instru-
mentation framework [53]. We evaluated JetStream using a CloudLab [71] cluster of 32
r320 machines (8-core Xeon E5-2450 2.1GHz processors, 16GB RAM, 10Gb NIC). We
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envision running JetStream on an even larger cluster, but we could only reliably get a 32
machine cluster from CloudLab. Since these machines have a relatively small amount of
RAM (16GB) and DIFT queries are memory-intensive, we use only 4 cores per machine,
leaving the experimental setup with 128 effective cores. For all experiments, we report the

mean of 5 trials and show 95% confidence intervals.

3.4.2 Benchmarks

We evaluate JetStream with seven benchmarks chosen to represent common desktop
and server workloads:

e Gzip — Zip a large file.
e Ghostscript — Convert a research poster from PostScript to PDF.

Evince — Open and view a research paper.

Mongodb - Yahoo cloud server benchmark [18].

Nginx — Serve static content.

OpenOffice — Edit a conference presentation.

e Firefox — A long Facebook browsing session.

For Gzip, Ghostscript, Evince, Mongodb, and Nginx, the query asks for dependencies
between all command line, network, and file system inputs and all such outputs. Run-
ning the all-to-all query for OpenOffice and Firefox generated over 1TB of data before
we stopped the query. Thus, the OpenOffice query only considers file system data from
the user’s home directory to be sources, and the Firefox query considers cookie data to be
sources and network output to specific sites (about 10% of total output) to be sinks. We use
Arnold’s data flow propagation function for all queries.

Table 3.2 shows a summary of the benchmarks. These are complex queries: most
consider millions of distinct source and sinks, and most generate millions of dependencies.
We show the time to replay each benchmark without instrumentation and the sequential
DIFT time on a replay as baselines. We do not show the time for the original benchmark
to run because that time depends on user think-time (for interactive applications), network
delays, idle time (for server applications) and external output. When the benchmark is
not CPU bound, DIFT overheads can be underestimated. Replay time, against which we
compare, can already be one or two orders of magnitude faster than the original execution

time [23]. We also report the compressed replay log size for each benchmark.
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Figure 3.1: First Query Scalability - JetStream’s scalability from 1 to 128 cores
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Figure 3.2: Scalability After Repartitioning - JetStream’s scalability after incorporating its im-
proved partitioning model

3.4.3 Scalability

We first evaluate the scalability of JetStream queries. Figure 3.1 shows the speedup
of executing the first query for each benchmark on a log-log scale as we vary the number
of cores from 1 to 128. Results are normalized to evaluating a query using a sequential
algorithm on a single core; the black diagonal line shows ideal speedup, and a horizontal
line would show no speedup. Overall, JetStream accelerates DIFT queries by 8-28x with
a mean of 13x using 128 cores. All benchmarks continue to scale through 128 cores, but
some (e.g., Evince) scale less well at high numbers of cores.

We find that the biggest bottlenecks to scalability of the first query are (1) the epoch
partitioning is often imbalanced, resulting in delays due to tail latency, and (2) the fast
forward time becomes a bottleneck as query time approaches the replay time (since we
need to replay the application from the beginning to start an epoch).

We address the first bottleneck by gathering data about unique instructions executed

during the first query and improving the partitioning. Figure 3.2 shows the impact of repar-
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Figure 3.3: Second Query Scalability - JetStream’s scalability after improving partitioning and
checkpointing

titioning for the second query. With this optimization, JetStream scales the DIFT queries
by 9-26x, with a mean of 14x. Repartitioning improves performance for all benchmarks
except Gzip; in the case of Gzip, the model generated with less-detailed statistics is actually
a better predictor of performance than the model generated with more-detailed statistics.
We address the second bottleneck by taking intermediate checkpoints during the first
query. Figure 3.3 shows the scalability of the second query when using both repartitioning
and checkpointing. JetStream scales the DIFT queries by 12-48x, with a mean of 21x. All
benchmarks continue to scale up to 128 cores, though the pace of scaling diminishes with
larger number of epochs. At 128 cores, the Gzip and Mongodb queries execute faster than
their sequential replay times, and all benchmarks except Ghostscript execute faster than the

original execution time of the application.

3.4.4 Analysis of First-Query Bottlenecks

Next, we examine results for individual benchmarks in more detail and identify scala-
bility bottlenecks. Figures 3.4 and 3.5 show stacked bar graphs for each benchmark at 128
cores; results for the first query are in the left column, and results for the second query are
in the right column.

Each stacked bar in a graph shows the time spent in different query stages for a single
epoch; the epochs are ordered left to right by the order of the time slices in the applica-
tion execution. The bottom region, labeled fast forward, shows the time for application
execution to reach the start of the epoch. Instrumentation is the time required for Pin to
instrument instructions, and analysis is the time to execute that instrumentation. The split
between these two values is estimated by assuming that the instrumentation cost is equal

to the unique instructions executed term from the model in Section 3.3.2 (which has an R?
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Figure 3.4: Breakdown of Query Processing Time for 128 Cores. Each stacked bar shows one
core processing an epoch. From bottom to top, the shaded regions within each bar show the time
spent fast forwarding, doing dynamic instrumentation, running DIFT, pre-pruning, performing the
forward pass, pruning the merge log and performing the backward pass.
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Figure 3.5: Breakdown of Query Processing Time for 128 Cores. Each stacked bar shows
one core processing an epoch. From bottom to top, the shaded regions within each bar show the
time spent fast forwarding, doing dynamic instrumentation, running DIFT analysis, pre-pruning,
performing the forward pass, pruning the merge log and performing the backward pass.

value of 0.989) as we cannot directly distinguish these two values.

Pre-prune, forward pass, prune, and backward pass show the time spent in each aggre-
gation stage. The sequential constraints of the forward pass and backward pass are shown
by the gently sloping lines at the top of each region: one epoch’s forward or backward
pass cannot complete until the prior epoch in that pass has completed. The total time to
complete the query is given by the height of the first stacked bar; the first epoch is the last
to complete aggregation because of the sequential nature of the backward pass.

Outlier epochs caused by the result of poor partitioning can be detected by variance in
the tops of the analysis regions (the combination of the fast forward, instrumentation, and
analysis phases). All of our benchmarks except Gzip and Mongodb noticeably benefit from
improved partitioning. For example, comparing the first and second queries of OpenOffice
(Figures 3.5a and 3.5b) shows the benefit of improving the partitioning between the first
and second queries. Reducing outliers leads to substantially faster second query times for
these benchmarks.

The effects of checkpointing in JetStream can be seen in all of our benchmarks. For
example, comparing the first and second queries of Gzip (Figures 3.4a and 3.4b) shows

the dramatic effect that checkpointing can have on query latency. The primary reason that
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Figure 3.7: Retainting Overhead - Overhead of tainting local sources at the beginning of each
epoch.

this benchmark does not scale well for the first query is that the query time approaches the
replay time of the benchmark—this is shown by fast forward being a large component of
the last epoch time for the first query. In contrast, the fast forward times in the second query

are much smaller.

3.4.5 Analysis of Second-Query Bottlenecks

We next look at second query performance and bottlenecks. Interestingly, the specific
bottlenecks vary from benchmark to benchmark.

For Evince (Figure 3.4f), OpenOffice (Figure 3.5b), and Firefox (Figure 3.5d), Pin
instrumentation time dominates total query time. Pin instrumentation time also impacts
Ghostscript (Figure 3.4d) to a lesser degree. To explore this issue in more detail, Figure 3.6
shows the speedup for just instrumentation and analysis. All benchmarks scale up to 128

cores, but not ideally.
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There are two main factors that limit instrumentation and analysis scalability: (1) Jet-
Stream must taint all local sources at each epoch boundary, and (2) Pin instruments an
instruction in every epoch in which that instruction occurs, so dividing the program into
smaller epochs increases the total instructions instrumented. We isolated the cost of (1) by
running a sequential query on one core that retaints each address at epoch boundaries. This
does the exact same work as the parallel version, and it produces the same results; how-
ever, Pin instruments each instruction only once across all epochs. As Figure 3.7 shows,
the overhead added by tainting local sources is relatively small (3—25% of the sequential
DIFT query). When this overhead is parallelized over 128 cores, it should have little effect
on query time. Additionally, our model from Section 3.3.2 shows that unique instructions
correlate very highly with instrumentation and analysis time.

Switching from a dynamic to static instrumentation tool, using techniques that reduce
the amount of dynamic instrumentation [36], or employing a low-overhead binary instru-
mentation platform (e.g., Protean code [46]) could reduce instrumentation time. Alterna-
tively, we could take checkpoints that include already-instrumented code, as is done by
Speck [65].

Poor partitioning is a significant component of overall query time for Ghostscript (Fig-
ure 3.4d), Nginx (Figure 3.4h), and Mongodb (Figure 3.4j). There are two separate reasons
for poor partitioning in these benchmarks.

JetStream gathers statistics about query execution after each system call is executed.
Ghostscript contains long regions of computation without a system call. At 128 epochs,
JetStream must split some of these regions into multiple epochs. It divides these regions
crudely based on the number of entries in the replay log; this crude metric often mispredicts
the actual query execution time for the split epochs. Gathering statistics at finer-grained
intervals would reduce outliers.

Outlier epochs in Nginx and Mongodb occur due to variance in the amount of taint pro-
cessing done in each epoch. Outliers are correlated with large numbers of tainted sources
and/or sinks in the epoch. Currently, our partitioning tool cannot determine which sources
and sinks will be tainted in advance, but JetStream could potentially gather more statistics
about sources and sinks during the first query, which could help the partitioning tool make
such a determination for subsequent queries.

Aggregation plays a minor role in query time for most benchmarks. The speed of the
forward pass is seen in the slope of the top of this region across epochs. Similarly, the speed
of the backward pass is given by the slope of the top of that region. The total area for these
two regions is less relevant since the sequential constraints mean that epochs will some-

times be idle waiting for data to arrive from predecessor epochs. We see negligible forward
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Figure 3.8: Optimization Effectiveness - Effect of aggregation optimizations at 128 cores. Exper-
iments that did not complete are left blank.

pass time across all benchmarks. Backward pass time is most noticeable for Ghostscript
(Figure 3.4d), Mongodb (Figure 3.4j) and OpenOffice (Figure 3.5b), as shown by the no-
ticeable slope of the top region in each graph. Better caching heuristics may improve the

backward pass for these benchmarks.

3.4.6 Optimizations

We next evaluate the costs and benefits of optimizations employed by JetStream. We
first measure the benefit of two aggregation optimizations: the forward pass and pre-
pruning. To isolate aggregation cost from outliers in the local DIFT stage, we let all epochs
finish local DIFT before beginning aggregation. This is the worst case for aggregation costs
since individual epochs cannot pre-prune or construct the reverse index while waiting for
prior epochs to finish local DIFT.

Figure 3.8 shows the isolated cost of aggregation for 128 cores. If aggregation per-
forms only the backward pass (omitting the forward pass and pre-pruning), then only Gzip
and Nginx complete; aggregation runs out of memory on all other benchmarks. For Gzip
and Nginx, adding the forward pass improves isolated aggregation time by 98% and 71%,
respectively.

The pre-prune optimization appears less effective. It decreases isolated aggregation
time for Firefox, OpenOffice, and Ghostscript, but increases it slightly for Mongodb, Evince,
and Gzip. We conclude that JetStream’s policy of always pre-pruning is likely suboptimal;
an adaptive policy that only pre-prunes when spare CPU cycles are available would be
better.

We also measured the extra costs to optimize partitioning. We measured the time to

profile L1 instruction cache misses for CPU-intensive benchmarks (Gzip and Ghostscript);
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the average overhead was 3.1%. The average overhead imposed by taking checkpoints
during the first query was only 0.7% since each epoch takes at most one checkpoint. Finally,

the average overhead of tracing unique instructions during the first query was 1.5%.

3.5 Conclusion

JetStream enables interactive DIFT over past executions by parallelizing queries across
a cluster. It uses deterministic record and replay to divide an execution into epochs and
execute a local DIFT for each epoch on a separate core. It aggregates results from local
DIFTs by arranging epochs in a sequential chain according to the order of program execu-
tion and using a pipeline-like stream processing algorithm to pass information about global
sources and sinks along the chain. For future work, we plan to explore novel debugging

and forensics applications enabled by JetStream.
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CHAPTER IV

Sledgehammer: Cluster-Fueled Debugging

In this chapter, we show how to generalize the lessons and architecture from Jet-
Stream to accelerate general-purpose debugging questions. Debugging is onerous and
time-consuming, comprising roughly half of all development time [57]. It involves de-
tective work: using the tools at their disposal, a developer searches a program execution for
clues about the root cause of correctness or performance problems.

Current debugging tools force developers to choose between power and interactivity.
Tools such as gdb are interactive: developers can inspect program values, follow execution
flow, and use watchpoints to monitor changes to specific locations. For many simple bugs,
interactive debuggers like gdb allow developers to quickly identify root causes by asking
and answering many low-level questions about a particular program execution.

Yet, complex bugs such as wild stores, synchronization errors, and other heisenbugs
are notoriously hard to find. Consider a developer trying to uncover the root cause of non-
deterministic data corruption in a Web server. They cannot use gdb because they do not
yet know which values to inspect or which part of the server execution to monitor. So,
they employ more heavyweight tools. They add logging message and sprinkles functions
to verify invariants or check data structures at various points in the server code.

Custom tools like logging and invariant checks are powerful, but they are definitely
not interactive. First, the developer must execute a program long enough for a bug to
occur. Complex bugs may not be evinced with a simple test case; e.g., rare heisenbugs
may require lengthy stress testing before a single occurrence. Second, detailed logging and
custom predicates slow down program execution, sometimes by an order of magnitude.
This means that each new question requires a long wait until an answer is delivered, and
diagnosing a root cause often requires asking many questions.

Ideally, our developer would have tools that are both powerful and interactive. Then,

they could ask complex questions about their server execution and receive an answer
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in a few seconds. Yet, the tradeoff seems fundamental: these powerful tools are time-
consuming precisely because they require substantial computation to answer complex ques-
tions about long program executions.

Cluster-fueled debugging solves this dilemma: it provides interactivity for complex
tools by parallelizing their work across many cores in a compute cluster. With sufficient
scale, developers see answers to even detailed queries in a few seconds, so they can quickly
iterate to gather clues and identify a root cause.

Sledgehammer is the first general cluster-fueled debugger. It is designed to mirror cur-
rent debugging workflows: i.e., adding logging [91] or invariant checks, re-compiling, re-
executing to reproduce the problem, and analyzing the output of the additional instrumen-
tation. However, Sledgehammer produces results much faster through parallelization of
instrumentation and analysis. Like prior academic [43, 79, 83] and commercial [66] tools,
Sledgehammer is replay-based; i.e., it can deterministically reproduce any previously-
recorded execution on demand for debugging. Replay facilitates iterative debugging be-
cause each question is answered by observing the same execution, ensuring consistent an-
SWers.

Sledgehammer uses deterministic replay for another purpose: it time-slices a recorded
program execution into distinct chunks called epochs, and it runs each epoch on a differ-
ent core. It uses ptrace to inject debugging code, called tracers into program execution.
Vitally, Sledgehammer provides isolation so that tracers do not modify program behavior,
guaranteeing that each replayed execution is consistent with the original recording. Be-
cause tracers are associated with specific points in the program execution and the execution
is split across many cores, the overhead of both tracer execution and isolation is mitigated
through parallelization.

Tracers may produce large amounts of data for complex debugging tasks, and process-
ing this data could become a bottleneck. So, Sledgehammer also provides several options
to parallelize data analysis. First, local analysis of each epoch can be performed on each
core. Second, stream-based analysis allows information to be propagated from preceding
epochs to subsequent epochs, allowing further refinement on each core. Finally, tree-based
aggregation, terminating in a global analysis step, produces the final result.

Cluster-fueled debugging makes existing tools faster. Retro-logging [17, 38, 85] lets
developers change logging in their code and see the output that would have been produced
if the logging had been used with a previously-recorded execution. Retro-logging requires
isolating modified logging code from the application to guarantee correct results. Both
isolation and voluminous logging add considerable overhead. We introduce parallel retro-

logging, which hides this overhead through cluster-fueled debugging to make retro-logging
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interactive.

Cluster-fueled debugging enables new, powerful debugging tools that were previously
infeasible due to performance overhead. To demonstrate this, we have created continuous
function evaluation, which lets developers define a function over the state of their execu-
tion that is logically evaluated after every instruction. The tool returns each line of code
where the function return value changes. Continuous function evaluation mirrors the com-
mon debugging technique of adding functions that verify invariants or check data structure
integrity at strategic locations in application code [2 1], but it frees developers from hav-
ing to carefully identify such locations to balance performance overhead and the quality of
information returned.

We have also created parallel retro-timing, which lets developers retroactively measure
timing in a previously-recorded execution (a feature not available in prior replay-based
debugging tools). Sledgehammer returns timing measurements as a range that specifies
minimum and maximum values that could have been returned during the original execution.

This paper makes the following contributions:

e We present a general framework for parallelizing complex debugging tasks across a

compute cluster to make them interactive.

e Parallelization makes scalability a first-class design constraint for debugging tools,
and we explore the implications of this constraint.

e We introduce continuous function evaluation as a new, powerful debugging tool made
feasible by Sledgehammer parallelization and careful use of compiler instrumentation
and memory protections.

e We explore the fundamental limits of parallelization and show how to alleviate the
bottlenecks experienced when trying to scale debugging.

We evaluate Sledgehammer with seven scenarios debugging common problems in mem-
cached, MongoDB, nginx, and Apache. With 1024 compute nodes, Sledgehammer returns
the same results as sequential debugging, but parallelization lets it return answers 416 times

faster on average. This makes very complex debugging tasks interactive.

4.1 Usage

To use Sledgehammer, a developer records the execution of a program with suspect
behavior for later deterministic replay. Recording could occur during testing or while re-
producing a customer problem in-house. Deterministic replay enables parallelization. It
also makes results from successive replays consistent, since each replay of the application

executes the same instructions and produces the same values on every replay.
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Next, the developer specifies a debugging query by adding tracers to the application
source code. A tracer can be any function that observes execution state and produces
output. Examples of tracers are logging functions, functions that check invariants, and
functions for measuring timing. A tracer can be inserted at a single code location, inserted
at multiple locations, or evaluated continuously. Thus, tracers are added in much the same
way that developers currently add logging messages or invariant checks to their code.

A developer can also add analyzers to aggregate tracer output and produce the final
result; e.g., an analyzer could filter log messages or correlate events to identify use-after-
free bugs. Sledgehammer provides several ways to parallelize analysis. Developers can
write local analyzers that operate only on output from one epoch of program execution,
stream analyzers that propagate data between epochs in the order of program execution,
and tree-based analyzers that combine per-epoch results to generate the final result over the
entire execution.

In summary, the interface to Sledgehammer is designed to be equivalent to the current
practice of adding logging/tracing code and writing analysis code to process that output.
However, Sledgehammer uses a compute cluster to parallelize application execution, in-
strumentation, and analysis, and, in our setup, produces answers in a few seconds, instead

of minutes or hours.

4.2 Debugging Tools

We have created three new parallel debugging tools.

4.2.1 Parallel Retro-Logging

Retro-logging [17, 38, 85] lets developers modify application logging code and observe
what output would have been generated had that logging been used during a previously-
recorded execution. We implement parallel retro-logging by adding tracers to the appli-
cation code that insert new log messages; often tracers use the existing logging code in
the application with new variables. Log messages are deleted via filtering during analysis,
and log messages are modified by both inserting a new log message and filtering out old
logging.

Parallelizing retro-logging has several benefits. First, the application being logged may
run for a long time, and verbose logging causes substantial performance overhead. Second,
even carefully-written logging code perturbs the state of the application in subtle ways,
e.g., by modifying memory buffers and advancing file pointers. If left unchecked, these

subtle differences cause the replayed execution to diverge from the original, which can
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prevent the replayed execution from completing or silently corrupt the log output with
incorrect values. Isolation is required for correctness, and the cost of isolation is high. This
cost is not unique to Sledgehammer: tools such as Pin [53] and Valgrind [63] that also
isolate debugging code from the application have high overhead. Sledgehammer hides this

overhead via parallelization.

4.2.2 Continuous Function Evaluation

Continuous function evaluation logically evaluates the output of a specified function
after every instruction. It reports the output of the function each time the output changes
and the associated instruction that caused the change. Continuous function evaluation can
be used to check data structure invariants or other program properties throughout a recorded
execution.

Actually evaluating the function after each instruction would be prohibitively expen-
sive, even with parallelization. Sledgehammer uses static analysis to detect values read by
the function that may affect its output and memory page protections to detect when those
values change. This reduces performance overhead to the point where parallelization can

make this debugging tool interactive.

4.2.3 Retro-Timing

Many debugging tasks require developers to understand the timing of events within an
execution. Replay debugging recreates the order of events, but not event timing. Thus, a
recorded execution is often useless for understanding timing bugs.

Sledgehammer systematically captures timing data while recording an execution. To re-
duce overhead of frequent time measurements, it integrates time recording with the existing
functionality for recording non-deterministic program events. When debugging, developers
call RetroTime, a Sledgehammer provided function that returns bounds on the clock value
that would have been read during the original execution. These bounds are determined by

finding the closest time measurements in the replay log.

4.3 Scenarios

We next describe seven scenarios that show how Sledgehammer aids debugging. We
use these scenarios as running examples throughout the paper and measure them in our

evaluation.
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bool is_corrupt (item +head, item =tail, int size) {
int count = 0;

while (tail->prev != NULL)
tail = tail->prev;
if (tail != head) return true;

01NN kAW~

while (head != NULL) {
head = head—>next;

10 count++;

1}

12 return (count != size);

13 }

14

15 char =check_ all_lists () {

16 for (inti=0;i < SIZE; ++i)

17 if (is_corrupt (heads[i], tails[i], sizes[i]))

18 CFE_RETURN (*‘1°7);

19 CFE_RETURN (*‘0’);

20 }

el

Figure 4.1: Tracer for the First Memcached Query.

4.3.1 Atomicity Violation

Concurrency errors such as atomicity violations are notoriously difficult to find and de-
bug [51]. In this scenario, a memcached developer finds an error message in memcached’s
production log indicating an inconsistency in an internal cache. Memcached uses paral-
lel arrays, heads, tails and sizes, to manage items within the cache. For each index,
heads[i] and tails[i] point to the head and tail of a doubly-linked list, and size[i]
holds the number of list items.

To use Sledgehammer, the developer first records an execution of memcached that ex-
hibits the bug. Next, they decide to use continuous function evaluation and writes tracers to
identify the root cause of the bug. To illustrate this process, we used existing assert state-
ments in the memcached code to write the sample tracer in Figure 4.1. The is_corrupt
function validates the correctness of a single list. The check_all_1ists function returns
“1” if any list is corrupt and “0” otherwise.

By adding SH_Continuous (check_all_lists) to the memcached source, the devel-
oper specifies that check_all_lists should be evaluated continuously. This outputs a
line whenever the state of the lists transitions from valid to invalid, or vice versa. The
CFE_RETURN macro prepends to each line the thread id and instruction pointer where the
transition occurred.

The developer then writes an analysis function; we show the function they would write
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1 void analyze (int in, int out) {
2 FILE #inf = fdopen(in), outf = fdopen(out);
3 map<int, int> invalid_count;
4 char line[128];

5 int location, tid, count;
6

7

8

while (getline(&line, NULL) > 0) {
sscanf(‘‘%x:%x:%x\n"’, &location, &tid, &count);
9 if (count) invalid[location] += count;
10 }
11 for (auto &it : invalid)
12 fprintf(outf, ““%x:%x\n’’, it.first, it.second);
13 }

Figure 4.2: Analyzer for the First Memcached Query.

char: check_all lists () {
for (int i =0;i < SIZE; ++i)
if (check(heads|i], tails[i], sizes[i]))
CFE_APPEND (‘‘invalid:%x\n’’, locks[i]);
else
CFE_APPEND (‘‘valid:%x\n’’, locks[i]);
CFE_RETURN();

}
9
10 void hook_lock (pthread_mutex_t smutex) {
11 tracerLog(‘‘0:%x:lock:%x\n"’, tracerGettid(), mutex);
12 }
13
14 void hook_unlock (pthread_mutex_t +mutex) {

15 tracerLog(‘‘0:%x:unlock:%x\n"’, tracerGettid(), mutex);
16 }

0NN AW~

Figure 4.3: Tracer for the Second Memcached Query.

in Figure 4.2. This function reports all code locations where a transition to invalid occurs.
We wrote this function so that the same code can be used for local and tree analysis.

Running this query doesn’t reveal the root cause of the bug, as each transition to invalid
occurs at a code location that is supposed to update the cache data structures. So, the
developer next suspects a concurrency bug. The cache is updated in parallel; for each
index i, a lock, locks[i], should be held when updating the parallel arrays at index i.
Thus, there are two invariants that should be upheld: whenever the arrays at index 1 become
invalid, locks[i] should be held, and whenever locks[i] is released, the arrays should
be valid.

Figure 4.3 shows how the developer would modify the tracer for a second query. The

check_all_lists function now appends the validity and lock for each item in the list to a
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string and returns the result. The developer also adds two functions that report when cache
locks are acquired and released. They add two more statements to the memcached source
code to specify that these functions should run on each call to pthread mutex_lock and
pthread mutex_unlock.

Figure 4.4 shows the new analysis routine that the developer would write. The analyzer
is structured like a state-machine; each line of input is a transition from one state to the
next. lockset tracks the locks currently held and needed_locks tracks which locks must
be held until lists are made valid again. Line 14 checks the first invariant mentioned above,
and line 28 checks the second.

We again use the same analyzer for both local and tree-based analysis. Since local
analysis occurs in parallel, a needed lock may have been acquired in a prior epoch, and
locks held at the end of an epoch may be needed in a future epoch. Thus, the analyzer
outputs all transitions that it can not prove to be correct based on local information, as well
as information that may be needed to prove transitions in subsequent epochs correct. The
global analyzer at the root of the tree has all information, so any transition it outputs is
incorrect.

In our setup, the query returns in a few seconds and identifies two instructions where
an array becomes invalid while the lock is not held. One occurs during initialization (and

is correct because the data structure is not yet shared). The other is the atomicity bug.

4.3.2 Apache 45605

In this previously reported bug [1 1], a Apache developer noted that an assertion failed
during stress testing. The assertion indicated that a thread pushed too many items onto a
shared queue. Without Sledgehammer, developers spent more than two months resolving
the bug. They even proposed an incorrect patch, suggesting that they struggled to under-
stand the root cause.

Four unsigned integers, nelts, bounds, idlers and max_idlers, control when items
are pushed onto the queue. By design, nelts should always be less than bounds, and
idlers should always be less than max_idlers. We emulated a developer using Sledge-
hammer to debug this problem by writing a tracer that uses continuous function evaluation
to check these relationships and an analyzer that lists instructions that cause a relationship
to no longer hold.

The query returns a single instruction that decrements idlers. As this result is sur-
prising, we modified the query to also output the value of each integer when the transition
occurs. This shows that the faulty instruction causes an underflow by decrementing idlers

from O to UINT_MAX. From this information, the developer can realize that idlers should
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}

oid analyzer (int in, int out) {

FILE =inf = fdopen (in), outf = fdopen (out);
map<int, set<int>> lockset;

map<int, set<int>> needed_locks;

char line[128], type[8];

int thread, ip, lock;

while (getline (&line, NULL) > 0) {
sscanf (““%x:%x:%s:%Xx’’, ip, thread, type, lock);

if (!strcmp (type, ‘‘lock’”))
lockset[thread].insert (lock);
} else if (!strcmp(type, “‘invalid’”)) {
if (lockset[thread].contains (lock))
needed_locks[thread].insert (lock);
else
fprintf (outf, line);
} else if (Istrcmp (type, ““valid’’)) {
if (needed_locks[thread].contains (lock))
needed_locks[thread].remove (lock);
else
fprintf (out, line);
} else if (!strcmp (type, ‘‘unlock’) {
if (lockset[thread].contains (lock))
lockset[thread].remove (lock);
else
fprintf (outf, *“%s’’, line);
if (needed_locks[thread].contains (lock))
fprintf (outf, “‘BUG: atomicity violation: %x\n’’, ip);
} else {
fprintf(outf, ‘“%s’’, line);
}
}

for (const auto &I set : lockset)
for (lock : 1_set.second)
fprintf (outf, ‘‘lock:%x:%x\n"’, 1_set.first, lock);
for (const auto &I_set : needed_locks)
for (lock : 1_set.second)
fprintf (outf, “‘invalid:%x:0:%x\n"’, 1_set.first, lock);

Figure 4.4: Analyzer for the Second Memcached Query.
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never be 0 when the instruction is executed and that the root cause is that the preceding if

statement should be a while statement.

4.3.3 Apache 25520

In another previously-reported bug [ 10], an Apache developer found that the server log
was corrupted after stress testing. Apache uses an in-memory buffer to store log messages
and flushes it to disk when full. With Sledgehammer, a developer could debug this issue
by writing a tracer that uses continuous function evaluation to validate the format of log
messages in the buffer. The analyzer identifies instructions that transition from a correctly-
formatted buffer to an incorrectly-formatted one. Running this query returns only an in-
struction that updates the size of the buffer after data has been copied into the buffer. This
indicates that the buffer corruption occurs during the data copy before the size is updated.

Thus, the developer next writes a query to detect such corruption by validating the fol-
lowing invariant: each byte in the buffer should be written no more than once between
flushes of the buffer to disk. The continuous function evaluation tracer returns a checksum
of the entire buffer region (so that all writes to the buffer region are detected irrespec-
tive of the value of the size variable) and the memory address triggering the tracer (see
tracerTriggerMemory () in Section 4.4.2). The developer also writes a tracer that hooks
calls to the buffer flush function. The analyzer outputs when multiple writes to the same
address occur between flushes. The output shows that such writes come from different
threads, identifying a concurrency issue in which the instructions write to the buffer with-

out synchronization.

4.3.4 Data Corruption

Memory corruption is a common source of software bugs [4&] that are complex to trou-
bleshoot; often, the first step in debugging is reproducing the problem with more verbose
logging enabled. In this scenario, an nginx developer learns that the server very infre-
quently reports corrupt HTTP headers during stress testing, even though no incoming re-
quests have corrupt headers. Without Sledgehammer, he would enable verbose logging
and run the server for a long time to try to produce a similar error. Reproduction is painful;
verbose logging adds considerable slowdown and produces gigabytes of data.

With Sledgehammer, the developer uses parallel retro-logging to enable the most ver-
bose existing nginx logging level over the failed execution recorded during testing. In
nginx, this requires adding tracepoints in two dedicated logging functions. Each tracer

calls a low-level nginx log function after specifying the desired level of verbosity. The de-
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veloper also filters by regular expression to only collect log messages pertaining to HTML
header processing. The same filter code can be run as a local analyzer without modifica-
tion, so parallelization is trivial. In our setup, the Sledgehammer query returns results in
a few seconds, and the developer notes that corruption occurs between two log messages.
This provides a valuable clue, but the developer must iteratively add more logging to nar-
row down the problem. Fortunately, these messages can be added retroactively to the same

execution; the resulting output is seen in a few seconds.

4.3.5 Wild Store

Wild stores, i.e., stores to invalid addresses that corrupt memory, are another common
class of errors that are reportedly hard to debug [48]. In this scenario, Mongodb crashes and
reports an error due to a corruption in its key B-tree data structure. Mongodb has an existing
debugging function that walks the B-tree and checks its validity. Without Sledgehammer,
the developer must sprinkle calls to this function throughout the code, re-run the application
to reproduce the rare error, and try to catch the corruption as it happens. Unfortunately, the
corruption was introduced during processing of a much earlier request and lay dormant for
over 10 seconds. Further, the wild store was performed by an unrelated thread, so it takes
numerous guesses and many iterations of running the program to find the bug.

With Sledgehammer, the developer specifies that the existing Mongodb debugging
function should be evaluated continuously. Since the B-tree is constantly being modified,
its validity changes often in the code that adds and deletes elements. The developer there-
fore writes a simple analyzer that counts the number of transitions that occur at each static
instruction address. The same code is used for both local and tree-based analyzers. The
query returns in under a minute. It reports three code locations where the data structure

becomes invalid exactly once: two are initialization and the third is the wild store.

4.3.6 Memory Leak

Memory leaks, double frees, and use-after-free bugs require reasoning about an execu-
tion’s pattern of allocations and deallocations. In this scenario, an nginx developer notes
that a large code change has introduced very infrequent memory leaks that lead to excessive
memory usage for long-running servers. One option for tracking down this bug is to run a
tool like Valgrind [63] over a long execution with varied requests. Due to the overhead of
Valgrind instrumentation, this takes many minutes to return a result over even a relatively
short execution.

With Sledgehammer, the developer adds three tracers and hooks the entry and exit of
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routines such as malloc and free. The analyzer matches allocations and deallocations
and reports remaining unallocated memory. Parallelizing the analyzer is straightforward:
the sequential analyzer can be used for tree-based and local analysis without modification.
Stream analysis requires adding 10 lines of code to pass a list of allocated memory regions
that have not yet been deallocated from epoch to epoch. In our setup, a Sledgehammer

query identifies leaked memory in nginx in a few seconds.

4.3.7 Lock Contention

Rare performance anomalies are hard to debug. One common source of performance
anomalies is lock contention [81]. Low-level timing data is informative, but gathering such
data has high overhead and may prevent the anomaly from occurring. In this scenario, a
memcached developer sees infrequent requests that have much longer latencies than ex-
pected. They run a profiler, but the tool reports only average behavior, which obscures the
occasional outlier. So, they sprinkle timing measurements at key points in their code and
re-runs the application many times to drill down to the root cause: lock contention with
a background thread. Each run requires a long time to exhibit an anomaly and difficult
analysis to determine which requests are outliers in each new execution.

With Sledgehammer, the developer runs a query that gathers RetroTime data at key
points in request parsing, starting with existing timing code originally disabled during
recording. Because queries are fast, they retroactively add even more timing code and
can iterate quickly to drill down to the suspect lock acquisition. Their analysis function
tracks time taken in each specified request phase, and compares breakdowns for the five
longest requests with average behavior. A final query identifies the thread holding the con-
tended lock by combining retro-timing with tracers that hook mutex acquisition and release.
Analysis of the tracelog identifies the background thread that holds the lock on which the

anomalous requests wait.

4.4 Design and Implementation

Figure 4.5 shows how Sledgehammer parallelizes debugging. The developer specifies
(1) a previously-recorded execution to debug, (2) tracers that run during a replay of that
execution, and optionally, (3) analysis functions that aggregate tracer output to produce a
final result. Sledgehammer parallelizes the replayed execution, tracers, and analysis across
many cores in a cluster.

Section 4.4.2 discusses how developers specify tracers by annotating their source code

to add logging and instrumentation. Sledgehammer parses the source code to extract the
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Figure 4.5: Sledgehammer Architecture Overview. A replay is divided into n epochs. Each
core runs an epoch by executing the original application (A boxes) and injecting tracers (T boxes).
Local analysis runs on each core with output from a single epoch, stream analysis takes input from
previous epochs and sends output to subsequent ones. Tree analyzers combine output from multiple
epochs.

tracers, the arguments passed to each tracer, and the locations where tracers should be
invoked.

Section 4.4.3 describes how Sledgehammer prepares for query execution by distribut-
ing generic (non-query-specific) information needed to replay the execution to available
compute nodes. It divides the execution into epochs of roughly-equal duration, where the
number of epochs is determined by the number of cores available. Read-only data shared
across epochs, e.g., the replay log, application binaries, and shared libraries, are read from
a distributed file system. Sledgehammer caches these files on local-disk for improved per-
formance on subsequent queries. The per-epoch state, e.g., application checkpoints at the
beginning of each epoch, is generated in parallel, with each core generating its own state.

As discussed in Section 4.4.4, Sledgehammer runs a query by executing each epoch
in parallel on a separate core. Epoch execution starts from a checkpoint and replays non-
deterministic operations from the replay log to reproduce the recorded execution. Sledge-
hammer uses pt race to insert software breakpoints at code locations where tracers should
run. When a breakpoint is triggered, it runs the tracer in an isolated environment that rolls
back any perturbation to application state after the tracer finishes. To support continuous
function evaluation, Sledgehammer uses page protections to monitor memory addresses
that may affect the return value of the function; it triggers a tracer when one of those ad-
dresses is updated.

Section 4.4.5 discusses how analyzers process the stream of output from tracers. As

shown in Figure 4.5, Sledgehammer supports three types of analysis routines: local, stream,
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and tree. Local analysis (e.g., filtering) operates on tracer output from a single epoch.
Stream analysis allows information to be propagated from epochs earlier in the application
execution to epochs later in the execution. Sledgehammer runs a stream analyzer on each
compute node; each analyzer has sockets for reading data from its predecessor epoch and
sending data to its successor. A tree analyzer combines input from many epochs and writes
its output to stdout. For a large number of cores, these analyzers are structured as a tree
with the root of the tree producing the final answer to the query. Thus, a purely sequential

analysis routine can always run as the root tree analyzer.

4.4.1 Background: Deterministic Record and Replay

Sledgehammer uses deterministic record and replay both to parallelize the execution of
a program for debugging, and also to ensure that successive queries made by a developer
return consistent results. Deterministic replay [24] allows the execution of a program to
be recorded and later reproduced faithfully on demand. During recording, all inputs from
nondeterministic actions are written to a replay log; these values are supplied during sub-
sequent replays instead of performing the nondeterministic operations again. Thus, the
program starts in the same state, executes the same instructions on the same data values,
and generates the same results.

Epoch parallelism [84] is a general technique for using deterministic replay to partition
a fundamentally sequential execution into distinct epochs and then execute each epoch in
parallel, typically on a different core or machine. Determinism guarantees that the result of
stitching together all epochs is equivalent to a sequential execution of the program. Replay
also allows an execution recorded on one machine to be replayed on a different machine.
There are few external dependencies, since interactions with the operating system and other
external entities are nondeterministic and replayed from the log.

Sledgehammer uses Arnold [23] for deterministic record and replay due to its low
overhead (less than 10% for most workloads) and because Arnold supports epoch paral-
lelism [69]. We modified Arnold to support ptrace-aware replay, in which Sledgehammer
sets breakpoints and catches signals. We also modified Arnold to run tracers in an iso-
lated environment where they can allocate memory, open files, generate output, etc. Our
modifications roll back the effects of these actions after the tracer finishes to guarantee that
the replay of the original execution is not perturbed, similar to prior systems that support
inspection of replayed executions [ 17, 38, 41]. In other words, the same application instruc-
tions are executed on the same program values, but Sledgehammer inserts additional tracer
execution into replay and the instrumentation needed to support that execution. We also

modified Arnold to capture additional timing data during recording to support retro-timing.
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4.4.2 Sledgehammer API

Developers debug a replayed execution by specifying tracers that observe the program
execution, defining when those tracers should execute, and supplying analysis functions
that aggregate tracer output. This is analogous to placing log functions in source code and

writing programs to process log output.

4.4.2.1 Tracers

Tracers are functions that execute in the address space of the program being debugged,
allowing them to observe the state of the execution. Tracers are compiled into a shared
library that is loaded dynamically during query execution. Tracers write output to a logging
stream called the tracelog; this output is sent to analysis routines for aggregation. Tracers
can write to the tracelog directly by calling a Sledgehammer-supplied function or they can

specify that all output from a specific set of file descriptors should be sent to the tracelog.

Isolation Tracers must not perturb program state. Even a subtle change to application
memory or kernel state can cause the replay to diverge from the recording, leading to replay
failure, or even worse, silent errors introduced into the debugging output. None of the
queries in our scenarios run without isolation. As Section 4.4.4.1 describes, Sledgehammer
isolates tracers in a sandbox during execution; any changes to application state are rolled
back on tracer completion. Sledgehammer has two methods of isolation with different
tradeoffs between performance and code-generality: fork-based and compiler-based.

With fork-based isolation, tracers run as separate processes. Developers have great
flexibility. A tracer can make arbitrary modifications to the program address space, and it
can make system calls that write to the tracelog or that affect only child process state. A
tracer may link to any application code or libraries and invoke arbitrary functionality within
that code, provided it does not make system calls that externalize state. However, we found
that fork-based isolation was very slow to use with frequently-executed tracers.

Thus, we added support for compiler-based isolation, in which tracers can execute
more limited functionality. This isolation is enabled by compiling tracers with a custom
LLVM [45] pass. Tracers can modify any application memory or register. However, they
must use a Sledgehammer-provided library to make system calls. This library prevents
these calls from perturbing application state. A tracer may call functions in application
code or libraries only if that code is linked into the tracer and compiled with LLVM. Since
LLVM cannot compile glibc by default, Sledgehammer provides many low-level functions

for tracer usage. Our compiler pass verifies that all functions linked into a tracer call only
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other functions compiled with the tracer or Sledgehammer library functions. Our results in
Section 4.5.5 show that compiler-based isolation executes queries 1-2 orders of magnitude

faster than fork-based isolation.

The tracestore Tracers must execute independently. Since tracers run in parallel in dif-
ferent epochs, a tracer cannot rely on state or output produced by any tracer executed earlier
in the program execution. Yet, there are often many tracers executed during a single epoch,
and sharing data between them can be a useful optimization. For instance, it is waste-
ful for each tracer to independently determine the file descriptor used for logging by an
application.

Sledgehammer provides a tracestore for opportunistic sharing of state within an epoch.
If data in the tracestore is available, a tracer uses it; if not available, it obtains the data
elsewhere. Sledgehammer allocates the tracestore by scanning the replay log to find an
address region never allocated by the execution being debugged; it maps the tracestore into
this region. This prevents tracestore data from perturbing application execution.

Sledgehammer initializes the tracestore at the beginning of each epoch, prior to exe-
cuting any application instructions. The developer can supply an initialization routine that
inspects application state and sets variables to initial values. If compiler-based isolation is
being used, the LLVM compiler pass automatically places all static tracer function variables
in the trace store and initializes them at the start of each epoch.

Tracers read and write tracestore values, and updates are propagated to all subsequent
tracer executions until the end of the epoch. Tracers may dynamically allocate and deal-
locate memory in the tracestore; the memory remains allocated until the end of the epoch.
All of our scenarios use the tracestore to cache file descriptors, which avoids the overhead
of opening and closing files in each tracer. The continuous function evaluation scenarios

also cache lists of memory addresses accessed by the function.

Tracer Library Sledgehammer provides several functions that implement common low-
level tasks, including:
e tracerTriggerAddress (), which returns the instruction pointer that triggered the
tracer.
e tracerStack (), which returns the stack pointer when the tracer was called.
e tracerTriggerMemory (), which returns the memory address that triggered a contin-

uous function evaluation tracer.
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4.4.2.2 Tracepoints

Sledgehammer inserts tracers at tracepoints, which are user-defined locations in the
application being debugged. There are several ways to add tracepoints. First, a location-
based tracepoint executes a tracer each time the program execution reaches a given location.
Our data corruption scenario uses this method to add tracers to nginx log routines. These
tracepoints are specified by adding annotations to the application source code at the desired
locations.

Second, a user can hook a specific function to invoke a tracer each time a given function
is called or whenever a function exits. The tracer receives all arguments passed to the
function by default. For example, the memory leak scenario hooks the entry and exit of
malloc and free to track memory usage.

Third, a continuous function evaluation logically inserts a tracepoint to evaluate the
function after every program instruction. In practice, Sledgehammer tracks the values read
by the function and uses memory page protection to detect when those values change. It
only runs the function at these instances. Hooks and continuous functions can be specified
by annotations anywhere in the application source code since their effects are global to the
entire execution.

When running a query, developers specify which C/C++ source files contain their mod-
ified source code. The Sledgehammer parser scans these files and extracts all tracepoint
annotations. It correlates each tracer with a line or function name in the application source
code as appropriate. Next, it uses the same method as gdb to convert source code lines and
function symbols to instruction addresses. For each parameter passed to a tracepoint, the
parser determines the location of the symbol, i.e., its memory address or register.

Developers who lack source code or use other programming languages can instead
use gdb-like syntax to specify tracepoints, or they can specify all functions residing in a
particular binary, or matching some regex. In this case, Sledgehammer leverages UNIX
command-line utilities and gdb scripts to associate tracepoints with instruction pointers

and symbols.

4.4.3 Preparing for Debugging Queries

Much of the work required to run a parallel debugging tool is query-independent: it
can be done once, before running the first query, and reused for future queries. To pre-
pare a recorded execution for debugging, a master node parses the replay log and splits
the execution into distinct epochs, where the number of epochs is set to the number of

cores available. Each core is assigned a distinct epoch. Currently, Sledgehammer requires
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each epoch to start and end on a system call. The master divides epochs so that each has
approximately the same number of system calls in the replay log.

Next, the master distributes or creates the data needed to replay execution. Arnold
replay requires a deterministic replay log, application binaries and libraries, and snapshots
of any read-only files [23]. These files are read-only and accessed by many epochs, so
the master places them in a distributed file system and sends a message to compute cores
informing them of the location.

Each epoch starts at a different point in the program execution. Prior to instrumenting
and running the epoch, Sledgehammer must re-create the application state at the beginning
of the epoch. A simple approach would replay the application up to the beginning of the
epoch. However, for the last epoch, this process takes roughly as long as the original
execution of the program. To avoid this performance overhead, Sledgehammer starts each
epoch from a unique checkpoint.

During recording, Sledgehammer takes periodic checkpoints every few seconds. This
creates a relatively small set of checkpoints that are distributed to compute nodes by storing
them in the distributed file system. Prior to running the query, the master asks each compute
core to create an epoch-specific checkpoint. Each core starts executing the application from
the closest previous recording checkpoint, pauses at the beginning of its epoch, and takes
a new checkpoint. This process effectively parallelizes the work of creating hundreds or
thousands of epoch-specific checkpoints, and it avoids having to store and transfer many
large checkpoints.

Sledgehammer hides the cost of checkpoint creation in two ways. First, it overlaps per-
epoch checkpoint creation with parsing of source code. Second, it caches checkpoints on

each core so that they can be reused by subsequent queries over the same execution.

4.4.4 Running a Parallel Debugging Tool

To run a query, the master sends a message to each compute core specifying the shared
libraries that contain the compiled tracers and analysis functions. It also sends a list of
tracepoints, each of which consists of an instruction address in the application being de-
bugged, a tracer function, and arguments to pass to that function.

Upon receiving the query start message, a compute core restores its per-epoch check-
point and loads the tracer dynamic library into the program address space via dlopen.
Sledgehammer uses d1sym to get pointers to tracer functions. Unfortunately, the dynamic
loader modifies program state and causes divergences in replay. Sledgehammer therefore
checkpoints regions that will be modified before invoking the loader and restores the check-

pointed values after the loader executes.
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Prior to starting an epoch, each core also maps the tracestore into the application ad-
dress space and calls the tracestore initialization routine. Each compute core starts a control
process that uses the pt race interface to manage the execution and isolation of tracer code.
For each location-based tracepoint or function hook, the control process sets a correspond-
ing software breakpoint at the specified instruction address by rewriting the binary code at
that address with the int 3 instruction.

Each core replays execution from the beginning of its epoch. When a software break-
point is triggered, replay stops and the control process receives a ptrace signal. The
control process rewrites the application binary to call the specified tracer with the given
arguments. It uses one of the isolation mechanisms described next to ensure that the tracer
does not perturb application state. After the tracer executes, the control process rewrites

the binary to restore the software breakpoint.

4.4.4.1 Isolation

Tracer execution must be side-effect free: any perturbations to the state of the original
execution due to tracer execution can cause the replay to diverge and fail to complete, or
such perturbation can lead to incorrect debugging output. Sledgehammer supports fork-

based and compiler-based isolation.

Fork-based isolation When a tracepoint is triggered, the control process forks the appli-
cation process to clone its state. The parent waits until the child finishes executing. The
control process rewrites the child’s binary to call the tracer. As the tracer executes, it may
call arbitrary code in the application and its libraries, but it must be single-threaded. The
kernel sandboxes the system calls called by the child process. It allows system calls that are
read-only or perturb only state local to the child process (e.g., its address space). To avoid
deadlocks, Sledgehammer ignores synchronization operations made by the tracer; this is
safe only because the tracer itself is single-threaded. The kernel also redirects output from
any file descriptors specified by the developer to the tracelog; this is convenient for captur-
ing unmodified log messages. Tracelog output can also be generated by system calls made
by the Sledgehammer library. System calls that modify state external to the process (e.g.,
writing to sockets or sending signals) are disallowed. System calls that observe process
state, e.g., getpid(), return results consistent with the original recording.

At the end of tracer execution, the child process exits and the tracer restarts application
execution. If a tracer fails, the control process receives the signal via ptrace and resumes

application execution.
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Compiler-based isolation Our early results showed that fork-based isolation was often
too slow for frequently-executed tracers. So, we created compiler-based isolation, which
improves performance at the cost of losing some developer flexibility. With compiler-based
isolation, tracer libraries must be self-contained; i.e., rather than calling application or
library code from a tracer, that code must be copied or compiled into the tracer library. This
means that tracers must use a set of standard library functions provided by Sledgehammer
instead of calling those functions directly. Tracers must also be single-threaded and written
in C/C++.

Sledgehammer compiles tracers with LLVM. A custom compiler pass inserts code into
the tracer that instruments all store instructions and dynamically logs the memory locations
modified by tracer execution and the original values at those locations to an undo log. The
compiler pass inserts code before the tracer returns that restores the original values from the
undo log. It also checkpoints register state before executing a tracer and restores that state
on return. To avoid deadlocks, the compiler pass omits any synchronization instructions in
the tracer; this is safe only because the tracer itself is single-threaded and all its effects are
rolled back. The compiler pass verifies that the tracer is self-contained; e.g., that it does not
make any system calls.

We noticed that most addresses in tracer undo logs were stack locations. Rather than
log all of these stores, Sledgehammer allocates a separate stack for tracer execution and
switches the stack pointer at the beginning and end of tracer execution. The compiler pass
statically determines instructions that write to the stack via an intra-procedural points-to
analysis, and it omits these stores from the undo log. Some variables are passed to the
tracer on the stack, so Sledgehammer explicitly copies this data when switching stacks.

If a tracer fails, the control process catches the signal, runs the code to undo memory

modifications, restores register state, and continues the application execution.

4.4.4.2 Support for Continuous Function Evaluation

Continuous function evaluation must use compiler-based isolation. When a tracer runs,
the compiler pass tracks the set of memory addresses read. The tracer is guaranteed to
be deterministic because it cannot call non-deterministic system calls and must be single-
threaded. Therefore, the value produced by the tracer cannot change unless one of the
values that it has read changes.

Sledgehammer uses memory page protections to detect if any value read by a tracer
changes. The control process causes the continuous function to be evaluated at the begin-
ning of the epoch, before any application instruction executes. Tracer execution generates

an initial set of addresses to monitor; the compiler adds instrumentation to record this mon-
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itor set in the tracestore. Sledgehammer executes the tracer only to initialize the monitor
set, so tracer output is not logged to the tracelog. The control process asks the kernel to
mark all pages containing at least one address in the monitor set as read-only.

When a page fault occurs due to the application writing to one of these pages, the
kernel alerts the control process. The control process unprotects the page and single-steps
the application. Then, the control process checks if the the faulting address is in the monitor
set. If the address is not in the set, the page fault is due to false sharing, so Sledgehammer
re-protects the page and continues execution.

If the address is in the monitor set, Sledgehammer runs the tracer again, and records
its output in the tracelog. If the tracer faults on a page in the monitor set, the control
process unprotects the page and resumes execution of the tracer. Since tracers do not write
to many of the pages in the monitor set, unprotecting on demand is much more efficient
than unprotecting all pages before tracer execution.

After the tracer completes, Sledgehammer updates the monitor set. If a page is added to
the monitor set, Sledgehammer protects it. However, if a page is removed from the monitor
set, Sledgehammer does not unprotect the page until the next page fault; this optimization
improves performance by deferring work.

The stack switching optimization used for compiler-based isolation is also useful for
continuous function evaluation. Reads of addresses on the stack are detected via an intra-
procedural points-to analysis and not instrumented. Any remaining stack reads are detected

dynamically from their addresses.

4.4.4.3 Support for Retro-Timing

To support retro-timing, we modified Arnold to query the system time when a replay
event occurs: such events include all system calls, signals delivered, and synchronization
operations, including low-level synchronization in glibc. The timing information is written
into the replay log for efficiency. Since Arnold is already paying the cost of interrupting the
application and logging its activity, the additional performance cost of querying the system
time is minimal (1%, as measured in Section 4.5.6).

A typical replay log will have tens of millions of events even for a few seconds of
execution. Logging all this data would introduce substantial slowdown, so we compress
the timing data by only logging the time if the difference from the last logged time is
greater than lus.

Sledgehammer provides a library function to query time retroactively. Starting from
the application’s current location in the replay log, Sledgehammer finds and returns the

immediately preceding and succeeding time recorded in the log. Reading the clock at this
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point in the execution would have returned a value in this range.

4.4.5 Aggregating Results

Tracelog output can be quite large, so Sledgehammer allows developers to write anal-
ysis routines that aggregate the tracelog data. It provides several options for parallelizing
analysis to improve performance.

There are three types of analysis routines. A local analyzer runs on each compute core
and operates only over the tracelog data produced by a single epoch. For example, the data
corruption scenario uses a local analyzer to filter undesired messages from verbose logging.
If a local analyzer is specified, Sledgehammer creates an analysis process that loads and
executes the local analyzer from a dynamic library. Local analyzers receive tracelog data
on an input file descriptor and write to an output file descriptor. Sledgehammer uses shared
memory to implement high-performance data sharing.

A stream analyzer passes information from epoch to epoch along the direction of pro-
gram execution. The memory leak scenario passes allocated chunks of memory to succeed-
ing epochs so that they can be matched with corresponding frees. This allows each core to
reduce the amount of output data it produces.

Each epoch’s stream analyzer has an input file descriptor on which it receives the output
of the local analyzer (or the tracelog data if no local analyzer is being used). The stream
analyzer has an additional file descriptor on which it receives data from its predecessor
epoch. It has two output file descriptors: one to which it writes analysis output and another
by which it passes data to its successor epoch. Data is passed between epochs via TCP/IP
sockets. Each stream analyzer closes the output socket when it is done passing data to
its successor, and each learns that no more data will be forthcoming by observing that the
input socket has been closed.

A tree analyzer combines the output of many epochs. Each compute core sends its
output to the node running the tree analyzer via a TCP/IP socket. Sledgehammer receives
the data, buffers and reorders the data, then passes the output of the prior stage to the tree
analyzer in the order of program execution. The tree analyzer aggregates the data and
writes its output to a file descriptor.

By default, Sledgehammer allows a tree analyzer to combine up to 64 input streams.
Therefore, if there are less than 64 epochs, a single tree analyzer performs a global aggre-
gation.

Since use of these analyzers is optional, the simplest form of aggregation is NULL
tree aggregation, in which Sledgehammer concatenates all tracelog output into a file in

order of application execution. Alternatively, a developer may take any existing sequential
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Benchmark Application | Replay time (s) | Tracer calls (millions)
Data corruption nginx 2.0 7.7
Wild store MongoDB 30.1 34
Atomicity violation | memcached 98.5 42.8
Memory leak nginx 76.0 3.6
Lock contention memcached 934 75.5
Apache 45605 Apache 50.7 1.9
Apache 25520 Apache 60.1 3.7

Table 4.1: Sledgehammer Benchmarks. This table shows the benchmarks used to evaluate
Sledgehammer.

analysis routine and run it as a tree analyzer at the root of the tree. However, Section 4.5.4
reports substantial performance benefits for many queries from using local, stream, and

tree aggregation to parallelize analysis.

4.5 Evaluation

Our evaluation answers the following questions:

e How much does Sledgehammer reduce the time to get debugging results?
e What are the challenges for further scaling?
e What is the benefit of parallelizing analysis?

e Does compiler-based isolation reduce overhead?

4.5.1 Experimental Setup

We evaluated Sledgehammer using a CloudLab [71] cluster of 16 1320 machines (8-core
Xeon E5-2450 2.1GHz processors, 16GB RAM, and 10Gb NIC). Since several applications
we evaluate use at least 2GB of RAM, we only use 4 cores on each machine, yielding 64
total cores for parallelization. To investigate scaling, we emulate more cores by splitting
the execution into 64-epoch subtrees, each with their own tree analyzer, and running the
subtrees iteratively. We calculate the time for the final tree aggregation by distributing
subtree outputs across the cores and measuring the time to send all outputs to a root node
and run the global analyzer. We add this time to the maximum subtree execution time. This
estimate is pessimistic since no output is sent until the last byte has been generated by the
last tree analyzer. We also do not run stream analyzers beyond 64 cores.

Our results assume that the query-independent preparation of Section 4.4.3 (e.g., par-
allel checkpoint generation) is already completed. Preparation is only done once for each

execution and can be done in the background as the developer constructs a query. We mea-
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sured this time to be proportional to the recording checkpoint frequency; e.g., preparation

takes an average of 2.1 seconds when the record checkpoint interval is every 2 seconds.

4.5.2 Benchmarks

We reproduce the 7 scenarios described in Section 4.3 by injecting the described bug
into each application and running the specified Sledgehammer query. In each scenario, our
query correctly identifies the bug. All reported results are the mean of 5 trials; we show
95% confidence intervals. Queries use compiler-based isolation and parallelize analysis
as described in each scenario. Table 4.1 identifies the time required to replay of each
benchmark as well as the number of tracer calls performed in the debugging scenario. We

use the following workloads:

e Data corruption We send nginx 100,000 static Web requests.

e Wild store We send MongoDB workload A from the YCSB benchmarking tool [18].

e Atomicity violation We use memtier [60] to send memcached 10,000 requests and
execute the final query described in the scenario.

e Memory leak We send nginx 2 million static Web requests. By default, nginx leaks
memory with this workload, so we did not inject a bug.

e Lock contention We use memtier [60] to send memcached 10,000 requests and exe-
cute the final query that hooks pthread functions and measures timing at 5 trace-
points.

e Apache 45605 We recreate the bug by stress testing using scripts from a collection of
concurrency bugs [90] and run the final query.

e Apache 25520 We recreate the bug by stress testing Apache and run the final query.

4.5.3 Scalability

Table 4.2 shows the query lancency for 1 core, 64 cores, and 1024 cores. The wild
store and atomicity violation scenarios take over 2 hours to return a result with sequential
execution. The simplest scenario, Apache 45605, still takes over 4 minutes when executed
sequentially. With 64 cores, Sledgehammer speeds up these queries by a factor of 42-55
(with a geometric mean of 48). With 1024 cores, the speedup is 255-601 with a mean of
416. Queries that take hours when executed sequentially return in less than 20 seconds.
The data corruption and Apache 45605 queries returns results in one second. At 1024
cores, the result is returned faster than the time to replay the execution sequentially without

debugging in all cases.
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Benchmark 1 Core 64 Cores 1024 Cores
latency (s) latency (s) | speedup | latency (s) speedup

Data corruption 324.8 (£2.2) 7.2(£0.2) | 45(£1.0) | 1.0(£0.0) | 330 (£13)
Wild store 7688.4 (£13.5) | 181.3 (£6.0) | 42 (£2.0) | 17.2(£1.0) | 446 (£15)
Atomicity violation | 7852.4 (+20.1) | 173.1 (£1.2) | 45(+0.3) | 13.7 (+£0.7) | 573 (£15)
Memory leak 1575.2 (+8.1) 30.3(£0.2) | 52 (£0.3) 2.8 (£0.2) | 559 (£25)
Lock contention 3281.8 (£17.5) | 68.3(£0.6) | 48 (40.5) | 10.9 (£1.2) | 301 (£16)
Apache 45605 2499 (£1.1) 5.2(£0.5) | 48(+0.5) | 1.0(£0.6) | 255 (£15)
Apache 25520 717.3 (£1.6) 12.9 (£0.0) | 55(£0.2) | 1.2(£0.0) | 601 (£4.4)

Table 4.2: Sledgehammer Performance. This table shows how Sledgehammer speeds up the time
to run a debug query with 64 and 1024 cores, as compared to sequential (1 core) execution. For
reference, we also show the time to replay the application without debugging and the number of
tracers executed during each query. Figures in parentheses are 95% confidence intervals.
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Figure 4.6: Sledgehammer Scalability. This figure shows how query time improves as the number
of cores increases.

Figure 4.6 shows how Sledgehammer performance scales as the number of cores in-
creases from 1 to 1024. The diagonal line through the origin shows ideal scaling. Most
queries approach ideal scaling, and all continue to scale up to 1024 cores. However, some

start to scale less well as the number of cores approaches 1024.

4.5.3.1 Scaling bottlenecks

We next investigated which factors hinder Sledgehammer scaling. One minor factor is
disk contention. Arnold stores replay logs on local disk, which leads to contention when 4
large server applications each read their logs during epoch execution on separate cores. We
measured this overhead as ranging from O to 41% at 4 cores per node, with an average of

15%. This accounts for some of the dip in scalability from 1 to 4 cores.
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Figure 4.7: Total Work. Each bar sums initialization time, epoch execution time, and analysis time
overs all epochs. This shows how much extra work is created by parallelization.

The last step in tree analysis is sequential; its performance does not improve with the
number of cores. At 1024 cores, this step is only 0.1-7% of total query time in our bench-
marks. While it could be a factor for higher numbers of cores, it has little impact at 1024
cores.

For each query, Figure 4.7 totals individual execution time over all cores when us-
ing 64 and 1024 cores, normalized to execution time for single-core execution. Initializa-
tion includes restoring checkpoints and mapping tracers into the application address space.
Epoch execution is the time to run the application and its tracers, Analysis includes all
local, stream, and tree-based analysis. As expected, the cost of per-node initialization in-
creases as the number of cores increases; this is especially noticeable in the Apache 45605,
data corruption and lock contention scenarios. Initialization overhead is the primary factor
inhibiting the scalability of Apache 45605. Initialization will eventually bound Sledge-
hammer scalability in other scenarios as well, but it is not the most important factor at 1024
cores.

Interestingly, the total work for the wild store scenario actually decreases slightly as we
increase the number of cores. Continuous function evaluation defers work when pages are
deleted from the monitor set. For shorter epochs, deleted pages are more likely to never
be accessed again; work deferred is never done. At 1024 cores, this effect is dwarfed by
increasing per-node initialization work, so total work increases again.

In most scenarios, the most significant barrier to scalability is workload skew. As

Sledgehammer partitions epochs into smaller chunks, we see more imbalance in the work
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Skew
Benchmark 64 cores 1024 cores
Data corruption 1.13 (£0.04) | 1.72 (£0.07)
Wild store 1.78 (£0.07) | 2.38 (£0.14)
Atomicity violation | 1.28 (£0.02) | 1.40 (+0.08)
Memory leak 1.06 (£0.01) | 1.40 (£0.14)
Lock contention 1.17 (£0.01) | 2.16 (0.24)
Apache 45605 1.07 (£0.03) | 1.27 (40.03)
Apache 25520 1.01 (40.00) | 1.17 (4=0.00)

Table 4.3: Skew. The reported values are the longest epoch execution time divided by the average
execution time.
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Figure 4.8: Analysis. We compare query time with sequential (S) and parallel (P) analysis using
64 cores. The regions in each bar show how much time is spent in each phase along the critical path
of query processing.

done by different epochs. Outlier epochs lead to high tail latency [20]. We quantify skew in
Table 4.3 as the ratio of maximum epoch execution time over mean epoch execution time.
Perfect partitioning would yield a skew of 1, but Sledgehammer sees average skew of 1.19
at 64 scores and 1.60 at 1024 cores. Skew is the most important factor in the decreased

scaling seen in Figure 4.6.

4.5.4 Benefit of Parallel Analysis

We next quantify how much benefit is achieved by parallelizing analysis. Figure 4.8
compares query response time for sequential analysis and parallel analysis using the an-
alyzers for each query described in Section 4.3. We show results with 64 cores, i.e., the

largest number of cores we can support without emulation.
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Fork-based | Compiler-based
Benchmark query time(s) query time(s) Speedup

Data corruption 7.5 (£0.9) .79 (£0.1) 9.6 (£1.4)
Memory leak 32.5 (£0.2) 2.30 (£0.1) | 14.2 (£0.5)
Lock contention | 632.2 (£5.0) 6.01 (£0.0) | 105.3 (£1.0)

Table 4.4: Isolation Performance. We compare the time to execute the first 64 out of 1024 epochs
using fork-based and compiler-based isolation.

All scenarios except the wild store and Apache scenarios achieve substantial speedup by
parallelizing analysis. The atomicity violation, lock contention, and memory leak analyses
traverse large tracelogs and track complex interactions across log messages. Many of these
interactions are contained within a single epoch, so local analysis can resolve them. Using
parallel analysis speeds up analysis by up to a factor of 96, with a mean improvement of
31. Overall, parallel analysis accelerates total query time by up to a factor of 4, with a
mean improvement of 2. Sequential analysis does not scale, so we expect this speedup to

increase as the cluster size grows.

4.5.5 Isolation

Table 4.4 compares the performance of compiler-based and fork-based isolation for
all queries that do not use continuous function evaluation (which requires compiler-based
isolation). On average, compiler-based isolation speeds up epoch execution by a factor of
24, making it the best choice unless its restrictions on what can be included in a tracer

become too onerous.

4.5.6 Recording Overhead

We measured recording overhead on a server with an 8-core Xeon E5620 2.4 GHz pro-
cessor, 6 GB memory, and two 1 TB 7200 RPM hard drives. The average recording over-
head for our application benchmarks was 6%. Checkpointing every two seconds increases
the average overhead to 8%, and adding additional logging for retro-timing increases aver-
age overhead to 9%. The additional space overhead for retro-timing is 17% compared to

the base Arnold logging.

4.6 Conclusion

In this chapter, we introduce cluster-fueled debugging: a technique that enables in-

teractivity for powerful debugging tools by leveraging thousands of cores in a compute
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cluster. Then, we describe Sledgehammer, the first cluster-fueled debugger. Sledgeham-
mer introduces scalability as a new design constraint for debugging tools in order to achieve
cluster-scale parallelization of debugging tools. We leverage massive-scale parallelism to
make parallel retro-logging, continuous function evaluation, and retro-timing practical by
running them an average of 416 times faster than sequential execution on a 1024-core clus-

ter.
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CHAPTER V

The OmniTable Relational Query Model

JetStream and Sledgehammer show how data-centric execution inspection enables cluster-
scale parallelization as a mechanism to nearly eliminate the performance issues of exist-
ing execution inspection tools. Alas, these approaches amplify the complexity required
to perform execution inspection, since developers need to carefully consider parallelism
when constructing parallel queries. In this chapter, we identify relational query models
as an approach to not only simplify execution inspection, but also to seamlessly leverage
performance optimizations, such as cluster-scale parallelization. We focus particularly on
debugging use-cases, but the model and artifacts presented in this chapter could be useful
across a variety of domains including configuration management and security forensics.

Our new debugging model is the OmniTable query model. At the center of the model is
a new abstraction, called an OmniTable, which is a table representation of an execution that
contains all architectural state (e.g., all bytes of memory and all registers) before every in-
struction executed during an execution. The OmniTable query model supports debugging
queries written in SQL, which both simplifies debugging logic and enables the underly-
ing query processing engine to automatically optimize and accelerate debugging queries.
The model re-purposes existing database concepts (e.g., high-level views) and creates new
operators (e.g., traversal functions) to tailor relational models for debugging purposes.

The OmniTable query model is not the first declarative debugging model, but prior tools
expose incomplete program history that is insufficient for debugging. For example, existing
systems only expose data at specific points in time (e.g., function begin/end [27, 31]), only
expose some program state (e.g., global variables [55]), or only expose data from inherently
incomplete software logs [54, 7, 77]. In contrast, an OmniTable provides unrestricted
access to all user-level state in an execution.

While our results show that the OmniTable query model provides simplicity compared
to existing tools (see section 5.5), the model comes with a large feasibility problem: nearly

all OmniTables are petabytes or exabytes in size, making it impossible to store or compute
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a fully materialized table. So, our prototype, Steamdrill, lazily materialized an OmniTable
on-demand. The system uses deterministic record/replay to store the execution associated
with each OmniTable, which is much smaller than storing the entire table. When a de-
veloper queries an OmniTable, Steamdrill generates instrumentation that it executes over
the replay to produce the data required for the query. In essence, this approach filters
OmniTable data before it is calculated, rather than afterwards.

Steamdrill uses a query optimization and planning approach to generate instrumenta-
tion, which facilitates automated performance optimizations on arbitrary debugging queries.
Query planning simplifies the adoption of database optimizations, such as predicate push-
downs and caching, to optimize instrumentation. In addition, Steamdrill uses a novel multi-
replay approach to resolves debugging queries. The system splits query logic across mul-
tiple invocations of a replay so that it can use data that is inexpensive to observe (e.g., data
about invoked functions) to reduce the cost of observing data that is expensive to observe
(e.g., data about executed instructions).

After query planning, Steamdrill turns to cluster-fueled debugging (see chapter IV) to
parallelize execution inspection. Using relational logic simplifies the adoption of cluster-
fueled debugging, since queries can be decomposed into numerous stateless operators that
are easy to parallelize. Steamdrill partitions the work of resolving a query into portions
that it resolves using existing database systems (e.g., spark SQL [1]) and portions that it
resolves using instrumentation.

We evaluated the OmniTable query model by writing 9 queries to diagnose the root
cause of 4 bugs from open-source software projects. We first evaluate the complexity of
these queries by comparing them to inspection programs written using gdb’s python li-
brary, which supports a scriptable interface for familiar gdb features (e.g., breakpoints and
backtraces). We find that OmniTable queries require 3.465 times fewer lines, 1.95 times
fewer operands and operators, and would require 3.775 times less time to construct, ac-
cording to Halstead Complexity [34], than their gdb counterparts. Additionally, we find
that the average latency of 3 representative OmniTable queries is 93.91 times faster than
gdb scripts.

We make the following contributions:

e The OmniTable query model, which facilitates debugging queries over the entire his-
tory of execution state by providing the detailed OmniTable abstraction and an ex-
tended SQL interface.

e Steamdrill, which automatically optimizes OmniTable queries using query planning

and cluster-scale parallelization.

e An evaluation of 4 queries, which shows that OmniTable queries are succinct and that
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Metadata \ Registers \ Memory
clock [ thread | stack|...| eip|eax|ebx|...[0x0]0x1 ... | Oxfffffef
1 100 | 0x2000 | ... | 0x1000 1 1]... 1 1]... 1
2 100 | 0x2000 | ... | Ox1004 1 1]... 1 1]... 1
1000] 100 0x2000]... [0x1064] 1] 1]...] 1] 1[..] 1

Figure 5.1: Omnitable. An example OmniTable for a short execution.

Steamdrill can evaluate queries with low-latency.

5.1 Query Model

The OmniTable query model helps a developer succinctly reason about the entire his-
tory of execution’s state. The core abstraction is an OmniTable, a table abstraction contain-
ing all user-level architectural state of an execution immediately before every instruction
in the execution. Compared with traditional debugging tools such as logging or gdb, SQL
provides a simplified mechanism for reasoning about large amounts of process state across
large regions of an execution. Developer queries can inspect any state of an execution at
any instruction in the execution using the OmniTable.

However, an OmniTable on its own offers an incomplete debugging tool, since all exe-
cution state would need to be accessed in terms of architectural state: variables would need
to be accessed directly by their memory addresses, functions by the address of the function
entry and return, etc. Moreover, traditional relational logic cannot express the reasoning
required for debugging, since it does not support stacks and unbounded traversals.

To solve these limitations, the OmniTable query model adopts and extends a variety
of database concepts. The model supports Generators, user-defined-table-functions, to
enable queries over non-architectural state (e.g., debugging symbols). It adds new operators
to support common logic used when debugging, such as traversal functions and new Join
operators for modelings stacks and event ordering.

The OmniTable query model makes heavy use of derived views. Derived views label
OmniTable state according to a high-level abstraction, such as the functions executed in an
OmniTable or the value of the variables in scope at each instruction in an OmniTable. This
organization simplifies reasoning across programming abstractions (e.g., reasoning about
both executed instructions and function invocations). Derived views are written using the
same version of SQL used to query an OmniTable; we have created 3views to date.

Below, we describe the relational tables (subsection 5.1.1), SQL operators (subsec-

tion 5.1.2), and column operators (subsection 5.1.3) supported by the model. Finally, we
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describe how these concepts are used to create a high-level derived view over an OmniTable
(subsection 5.1.4).

5.1.1 Relations

The OmniTable query model supports two types of relational base tables, an OmniTable
and Generators. The model supports columns with primitive types (e.g., Long, String,
etc.), structs, maps, and arrays. Finally, the model supports variant columns (see Fig-

ure 5.3a), which can contain any data type.

OmniTable The OmniTable is a database-style table that logically exposes all state in an
execution at all instructions in the execution; Figure 5.1 shows an example of the table for
a short execution. For each instruction in the execution, the OmniTable contains a clock, a
monotonically increasing logical-time, the thread that executed the row’s instruction, and
the value of all registers and memory addresses. The clock column provides the ordering
of the instructions from the original execution (in multi-threaded executions, clock reflects
a total ordering consistent with the original partial order) and facilitates querying the order
of events within an execution. Moreover, the field serves as a primary key across the derived
views implemented over an OmniTable. To query the OmniTable for an execution named

execId, a developer would specify ot (execId) in their query.

Generators An OmniTable alone is insufficient for debugging since developers would
need to reference all execution state in terms of architectural structures. Generators pro-
vide a user-defined-trace-function interface for referencing non-execution state in a query,
such as debugging symbols, that allows developers to bridge the semantic gap between
traditional programming abstractions (e.g., functions, lines of code) and the state of an
OmniTable. A developer specifies a Generator by writing a program that generates re-
lational output to standard out; Steamdrill provides an API to simplify this process. A
developer queries Generator data by calling it like a function in their query. For example,
FuncDefs is a generator that produces information about all of the functions defined in a
binary; a developer can query all such definitions for an executable, “a.out”, by specify-
ing Select * From FuncDefs("a.out"). We have written three generators, FuncDefs,
InstDefs, and VarDefs; Figure 5.2 describe the schema of the first two.
The input to a Generator can depend upon query data. For example, the Generator
Binaries (execId) identifies the binaries mapped into the address space of the execution
named execId (this information is contain in an OmniTable, but useful for bootstrap-

ping queries). To identify all functions defined in all binaries mapped into the address
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InstDefs

addr Long The address of the instruction definition
operation String The name of the instruction

operandl Variant The first operand to the instruction
operand2 Variant The second operand to the instruction

memread Stored Procedure A procedure that produces the

memory address read by the instruction
memwrite Stored Procedure A procedure that produces the

memory address written by the instruction

(a) A Generator that identifies all instructions defined in all executables used in an OmniTable

FuncDefs

entrEip Long The address of the instruction definition
exitEip Array[Long] The address of return instructions in the function
name  String The name of the function
def String The source location of the function definition
args Stored Procedure A procedure that produces a map

of all inputs and their value
ret Stored Procedure A procedure that produces the return

value of the function when executed at an exitEip

(b) A Generator that identifies all instructions defined in all executables used in an OmniTable

Figure 5.2: Generators. The schema two Generators that we have implemented in the
OmniTable query model
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space of the execId, a developer specifies: Select * From FuncDefs (Select * From

Binaries (execId))

5.1.2 Relational Operators

To query execution state, a developer specifies SQL-style Select, From, Where queries.
Steamdrill supports standard relational operators including join operators, groupby, or-
derby, and pivot statements. Additionally, Steamdrill provides two types of new join op-
erators to handle debugging semantics which are inconvenient or impossible to express in
native SQL.

StackJoin SQL does not support unbounded traversals, so it is not possible to model
a function stack using standard SQL. Existing relational debugging tools do not handle
this logic and do not allow a developer to reason about recursive invocations of functions.
Specifying r1 StackJoin r2 on ordl, ord2, equal in a query joins relations r1 and
r2 using stack semantics. In particular, the operator groups rows from r1 and r2 that are
equal based upon the predicate equal. It pushes rows in r1, ordered by ord1, onto a stack
until the next row occurs after r2, as ordered by ord2. The operator then matches the top

element on the stack with the current row from the second table.

OrderedJoins It is common to reason about next, or previous, event that matches some
criteria. SQL supports this for supports this form of reasoning, but requires complex sub-
queries and aggregates. So, the OmniTable query model adds two new ordered join oper-
ators. Specifying r1 NextJoin r2 on ordl, ord2, equal operator matches each row in
r1, as ordered by ordl, to the next row in r2, as ordered by ord2, that matches the pred-
icate equal. PrevJoin computes the opposite relationship. We find that these relations
useful for identifying which function call executed an instruction, or identifying the next

access to a shared variable.

5.1.3 Column Operators

The OmniTable query model supports a rich set of column types and column opera-
tors. The model supports primitives (e.g., long, string, pointer, etc.), structs, maps, arrays,
dynamically typed variant columns, and postgress-style stored procedure columns. It sup-
ports arithmetic and conditional operators, field expressions (a.b), subscript expressions

(a[b]), and traversal functions that iterate through a data structure. The model supports
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pointer dereferences by converting them into expressions over an OmniTableMemory col-
umn (e.g., a->b becomes Memory[a] .b), provided that the variables the deference derive
from a single OmniTable. The OmniTable query model supports grouped aggregations
(e.g., Count, Max, Min, etc.), user-defined functions, and user-defined-aggregation func-

tions. Below, we elaborate on traversal function and stored procedures.

Traversal Functions When debugging, developers often traverse the elements in a data
structure. However, standard SQL does not support unbounded traversals, so the OmniTable
query model builds now primitives for these operations. Given a pointer-typed column and
a field within the pointed-to type, the traverse (column, field) expression produces a
row of output for each element in the transitive closure of the structure, starting at column
and following field pointers until the value is NULL. For example, traverse (head, "next
") generates a row for all elements in a linked-list starting at head. Steamdrill also supports
an explode operator that converts each value from an array-typed or map-typed column

into a row.

Stored Procedures Debuggers perform computation that depends upon execution con-
text. For example, the location of the arguments to a function will depends upon the par-
ticular function. Stored procedures [80] are relational logic stored in relation and offer a
mechanism to decide the relational logic to perform at query resolution. Stored procedures
are called like functions in a query; for example, Loc (esp) calls the stored procedure in

column Loc with the column esp as input.

5.1.4 Derived Views

We used the OmniTable query model to implement three derived views according to
three different abstractions of execution behavior; Figure 5.3) details their schema. The
Vars (ot) view contains information about all source-level variables that are in scope at
every instruction in the OmniTable named ot. The eip column identifies the executed
instruction, the name and de f columns identify the variable, and the clock column encodes
a logical time that makes it possible to compare the execution order of rows in Vars. The
Value column includes the value of the variable; the table uses a polymorphic column type,
Variant, to allow different rows to have different types of data stored in the Value column.

Similarly, Funcs (ot) contains information about every function that is executed in the
OmniTable, ot (see Figure 5.3b). The name and def columns identify the function that was
executed, and the entr and exit columns identify logical times of function entry and exit,

respectively. If the function never returns (e.g., due to a crash), then exit will be NULL.
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Funcs

entr Long

The clock value of the function entry

exit Long

The clock value of the function exit (or null)

name String

The function name

def String

The location of the source-code definition

thread Long

The thread that called the function

args Map (String->Variant) The argument values of the function call

(a) A derived view identifying all function calls in an OmniTable

Vars
clock Long The clock value of the instruction
thread Long The thread that executed the instruction
eip Long The instruction pointer at which the variable is in scope

name String

The variable name

def String

The location of the source-code definition

value Variant The value of the variable

(b) A derived view identifying the value of all variables in scope at each instruction in an OmniTable

Insts
clock Long  The clock value of the instruction
thread Long The thread that executed the instruction
eip Long  The instruction pointer

read Long

The memory address read by the instruction (or null)

write Long

The memory address written by the instruction (or null)

op String The name of the type of operation for this instruction

(¢) A derived view identifying data about all instructions executed in an OmniTable

Figure 5.3: Derived View. The derived views implemented using the OmniTable query model.

73



Create View Funcs (ExecId):
Select c.clock as entr, name, def, thread, args, r.clock as exit, rtn
From (Select clock, name, def, thread, args(esp) as args
From ot (ExecId) Join FuncDefs (ExecId)
Where eip = entrEip) c
Left StackJdoin
(Select clock, rtn(esp, eax) as rtn, name, thread
From ot (ExecId) Join FuncDefs (ExecId)
Where eip in return) r
on clock, clock, c.name=r.name And c.thread=r.thread

Figure 5.4: Functs Definition. The SQL code that creates the Funcs view.

Funcs exposes the arguments to the functions through the args column. args contains
an entry for each argument passed to the function. For example, a developer cal specity
args["i"] to get the value of the argument i passed to the function.

Finally, the Insts (ot) view contains information about each instruction contained in
the OmniTable, ot (see Figure 5.3c). The thread column identifies the thread that executes
the instruction associated with each row, the eip column identifies the instruction, the
clock column identifies the logical time of the operation, and the op column identifies the
mnemonic for the assembly instruction.

We next describe how we construct the Funcs view using the OmniTable query model.
We use two subqueries to construct the view, one that joins the OmniTable to FuncDefs
when eip = startIP to identify all function calls, and one that joins the OmniTable to
FuncDefs when eip in returns to identify all function returns. The view uses a Left
StackJoin operator to join each call with it’s corresponding return, or null if the function

never returns. Figure 5.4 shows the code to construct the view.

5.2 Case Studdies

In this section, I describe four case studies and nine queries that illustrate the use and
benefits of the OmniTable query model. The queries presented here use the three derived
views and two Generators presented in section 5.1. Below, I model the behavior of a
developer confronted with each bug and describe how they can use the OmniTable query

model to deduce the root cause of their issue.
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Select Count (*), args.key, args.value, args.incr
From Funcs (ot)

Where Name = "process_command"

Group By args.key, args.value, args.incr

Figure 5.5: Atomicity Q1. The first atomicity violation query

5.2.1 Memcached Atomicity Violation

I describe how the OmniTable query model helps a developer debug an atomicity vi-
olation in memcached [58], an open-source key-value caching system. In this scenario, a
developer notices that an integer from their memcached cache has an incorrect value, i.e.,
they expect the value of the integer to be 1000 after executing commands against the cache,
but the value is only 995. Lost update bugs, such as this one, are difficult to diagnose
because the developer does not know what program state to track or when to track it. An
atomicity violation detection tool [52] could help identify the cause of the lost update, but,
these tools rely on heuristics and can thus misdiagnose the cause of a bug.

Using the OmniTable query model, the developer first isolates the module of their pro-
gram where the bug occurs. Memcached processes requests in two steps, parsing and
processing; the developer’s first query identifies which of these two steps is buggy. They
inspect all calls to a function, process_command, that is the boundary between process-
ing and parsing by using the Funcs view. The developer groups the calls by three of the
function arguments, the key that is updated, the value to use when updating, and whether
the value should be incremented and decremented. They count the number of calls in each
group. Figure 5.5 shows the query.

The output of the query shows that the failing execution calls the processing function
with the correct parameters the expected number of times. So, the developer knows that
the bug lies in the process_command function. process_command operates by updating a
local variable, it, of type item, which represents a key-value pair. Each item struct has
an associated 1inked boolean field that tracks whether it resides in the cache; a lost update
could arise if the function were operating on an unlinked item. To identify if this is the cause
of the bug, the developer uses the Vars view to track the value of it at every instruction
where it is in scope (see Figure 5.6). The developer counts the number of times it is linked
(i.e., it.linked = True) and how many times it is unlinked at each instruction in the
program. They use a pivot so that each row shows the counts for both linked and unlinked
states at a given instruction side-by-side.

The output of the second query identifies a few instructions in the execution in which it

usually is 1inked, but very rarely is unlinked. These anomalous states arise in instructions
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Select eip, True as "linked", False as "unlinked"
From Vars (ot)

Where name = "it" and def = "memcached.c:123"
Pivot Count () for val.linked in (True, False)

Figure 5.6: Atomicity Q2. The second atomicity violation query

after process_command assigns it, but before the function modifies the the key-value pair.
Through code inspection, the developer notices that the function does not correctly lock it
throughout the function, and so another thread invalidates the item while it is processed.

The fix is to add proper locking to the process_command function.

5.2.2 Apache Http Performance Anomaly

The next scenario highlights how the OmniTable query model allows a developer to
simultaneously reason about multiple abstractions over an execution. In this scenario, an
apache httpd developer notices that all requests issued to their web server between two
requests, the 150" and 160", experience a large spike in latency [12]. Standard perfor-
mance debugging tools, such as perf, use sampling to identify frequently executed code.
They work well for fixing end-to-end application performance, but are not suited for fixing
outlier performance bugs.

The first developer query identifies which source module in httpd is buggy (see Fig-
ure 5.7). Internally, apache httpd uses two types of threads, a listener thread, which accepts
new requests, and worker threads, which process requests. When worker threads are idle,
the system adds them to a worker queue. The developer’s query identifies whether workers
are idle during the outlier performance to identify which type of thread impedes progress;
if all workers are idle, then the listener thread is buggy, otherwise the workers are to blame.
The developer identifies the clock values of the start and end of the outlier performance by
using a window aggregation function to order all calls to the request function, which is
called for each request. The developer uses the Vars view to identify all instructions where
the worker_queue is full. They joins these two relations by clock value to determine if the
queue is full during the poor performance window

The output shows that the worker_queue is full during the poor performance window
and suggests that the listener thread causes the poor performance. One possible cause of
the poor performance by the listener thread is a blocking system call, so the developer
checks if the execution calls any blocking system calls (i.e., system calls that operate on
a blocking file descriptor or are called with a long timeout) during the poor performance

window (see Figure 5.8). The developer’s query uses two subqueries. First, they iden-
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Select *
From Vars (ot) Join
(Select row_number() Over (Order By entr) rnum, min(entr), max(exit)
From Funcs (ot)
Where name = "request"
Having rnum>=150 And rnum<=160) on clock>=min And clock<=max
Where name="worker_ queue" And val->idlers=val->max_idlers

Figure 5.7: Performance Q1. The first Apache Httpd performance anomaly query

Select f.name

From Funcs(ot) f Left Join
(Select Args["fd"], entr
From Funcs (ot)

Where Args["arg"]=0_NONBLOCK And Args["cmd"]=F_SETFL And Name="fcnt") b
on f.entr<b.entr And b.args["fd"]=f.args["fd"]
Join

(Select row_number () Over (Order By entr) rnum, min(entr), max(exit)

From Funcs (ot)

Where name = "request"

Having rnum >= 150 And rnum <= 160) on f.entr >= min And f.exit <= max
Where (b.start = NULL And "fd" in f.args) Or (f.args["timeout"] >= 1000)

Figure 5.8: Performance Q2. The second Apache Httpd performance anomaly query

tify all calls to fcntl that modify a file descriptor to be non-blocking using Funcs view.
They use a left join to identify all functions that are called on the same file descriptor and
occur after the fcntl. However, the developer only selects functions that take a file de-
scriptor parameter without a matching non-blocking call (i.e., b.start = NULL And "£d"
in f.Arguments) or those that have a large timeout parameter (i.e., f.Args ["timeout"]
> 1000). Lastly, to limit to search to those functions called during the poor performance
window, the developer reuses the window aggregation subquery from their first query.

The query result shows a single call to poll that is called with a minute-long timeout
when shutting down a socket. The solution implemented by the developers redesigned the

system so that shutdown logic is performed by a worker thread and will not stall the system.

5.2.3 Memcached Livelock

In this scenario, a developer notices livelock when testing memcached, i.e., the server
stops accepting requests and one thread, thread=12478, has high cpu utilization while
the other have no cpu utilization [59]. The developer’s first query locates the location in

the program where the livelock occurs by counting the number of instructions that occur
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Select count (*), Name
From Insts(ot) 1 PrewvJoin Funcs(ot) £

on i.order, f.entry, i.order<=f.exit And i.thrd=f.thrd
Where f.exit=NULL And f.thrd=12478 And "memcached" in f.def

Figure 5.9: Livelock Q1. The first memcached livelock query

Select Name, True as "linked", False as "unlinked"
From Funcs (ot)

Where "iten" in args

Pivot Count () for args["item"].linked in (True, False)

Figure 5.10: Livelock Q2. The second memcached livelock query

during each of the functions on the call stack of the thread with high cpu utilization (see
Figure 5.9). The livelock is most likely in the function that contains an unexpectedly large
number of instructions. The developer identifies functions on the call stack at the end of the
execution by finding functions in the Funcs view that do not return (i.e., exit = NULL).
They identify all of the instructions that execute during a function by using the PrevJoin
operator to join each instruction (from Insts) to the previous function that operates on the
same thread.

The output indicates that a single function has a larger than expected number of instruc-
tions, likely from an infinite list. The function contains a single loop that iterates over a
linked-list of item structs (see subsection 5.2.1), so the developer suspects that the list is
corrupted and contains a cycle. The developer identifies any operations over item structs
that are unexpectedly linked (unlinked) by counting the number of times each item param-
eter is in a linked (unlinked) state when functions that take item parameters are called (see
Figure 5.10).

The query identifies a single unexpected function call; in exactly one case, item free,
the call to free an item, is called on a linked item. However, memcached uses reference
counting and item_free should only be called when the refcount field reaches 0. A final
query tracks all updates to the reference count of the erroneous item and determines if it
there is an underflow or overflow (see Figure 5.11). The output identifies a single overflow;

the developer fixes the issue based upon the call stack of the erroneous addition.

5.2.4 SQLite Semantic Bug

I describe how a developer can use the OmniTable query model to debug an occasional
segmentation fault in their webserver [78]. The webserver processes each request by query-

ing an internal SQLite in-memory database; the segmentation fault indicates that there is a
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Select Name, args["recount"] as ref

From Funcs (ot)

Where Name = "refcnt_incr" And ref = 65535
Or Name = "refcnt decr" And ref = 0

Figure 5.11: Livelock Q3. The third memcached livelock query

with (Select explode((Oper[args["nOp"]])args["p"]), entr, exit)

From Funcs (ot)

Where Name="sqglite3VdbeExec") as Opers

Select 0l.0per.opcode, True, False

From Opers ol Join Opers 02 on entr And ol.val.cursor = o2.val.cursor
Where o2.opcode = "Rewind" And ol.index < oZ2.index

Pivot Count () for ol.exit=NULL in (True, False)

Figure 5.12: Semantic Q1. The first query for the SQLite bug

bug in the SQLite logic. In particular, SQLite convert each query into a list of operations
that act upon cursors; the fault shows that one type of operation, a Rewind operation,
occasionally acts upon a null cursor.

The developer’s first query identifies whether the bug is located in the logic that creates
a list of operations or the logic that executes one by comparing the list for the failing query
with the list for successful queries (see Figure 5.12). They create a view, called Opers, that
identifies each operation that is passed to "sglite3vVdbeExec", the function that executes
each list of operation. In particular, they cast a pointer argument to the function to an
array of Oper structs with size nOp (another argument to the function) and use the explode
function to produce a row in the output for each element in the array. Additionally, the
view identifies whether the operation belongs to the failing query by checking to see if the
call to "sglite3VdbeExec" completed. The developer joins Opers with itself to count
how many times each operation occurs before a Rewind to the same cursor in both failing
and successful queries. They use a pivot so that each row shows the successful and failing
counts side-by-side.

The query identifies that an Open operation precedes every Rewind except for in the
failing case. The developer next aims to understand why an Open operation was not added
to the list of operations in the failing case (see Figure 5.13). So, the developer identifies
“near-misses”, where the program almost created an Open operation. In particular, they
identify instructions that were executed from functions which could have added an Open
operation to the list. They first find all functions that contain a call to OpenCreate, the
function that creates Open operations, using the FuncDefs and InstDefs Generators.

They then join two Funcs views and one Insts view to the above generators to identify
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Select Unique eip

From Funcs (ot) c

Join Funcs(ot) e on c.args["p"]=e.args["p"]

Join Insts(ot) i on i.clock>=c.entr And i.clock<=c.exit

Join FuncDefs(ot) f on f.entrEip<=i.eip And f.exitEip<=i.eip

Join InstDefs(ot) id on f.entrEip<=id.addr And f.exitEip<=id.addr

Where c.name="create_list" And c.name="Sqglite3VdbeExec" And p.exit=Null
And opcode="call" And operand="OpenCreate"

Figure 5.13: Semantic Q2. The first query for the SQLite bug

Quer Parsing Relational Optimization Rngfc’ed |
Y ] (subsection 5.3.1) Tree (subsection 5.3.2) elationa

Tree

Planning
(subsection 5.3.3)
@ Execution EStagefl

esut (subsection 5.3.4) xecution

Plan

Figure 5.14: SteamDrill Design. Depicts each step in resolving a query together with their input
and output data-structures.

all instructions that execute during the function that creates the list of operations which
ultimately fail.

The output of the query identifies that all of the "near-misses” originate from a single
function. Moreover, by mapping the instructions back to the source code, the developer
identifies a boolean flag that, if reversed, would create an Open operation. The bug fix

involved setting the boolean to False when processing certain types of queries.

5.3 Design

In this section, we describe how Steamdrill resolves debugging queries. From the de-
veloper perspective, Steamdrill executes queries to filter and select data from a fully materi-
alized OmniTable. However, fully realizing an OmniTable is infeasible due to high storage
and compute costs: the size of an OmniTable is roughly equal to the size of addressable
memory times the number of executed instructions and thus reaches petabytes of data after
even a few seconds of execution.

Instead, Steamdrill lazily materializes OmniTable data, eliding realization of any OmniTable
state that is unneeded to answer a developer query. Rather than extract an OmniTable

during execution, Steamdrill uses deterministic record and replay [23] to extract a log of
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Select eip, read, write
From Insts(e)
Left Join
(Select name, m.entr, f.exit, m.rtn
From Funcs(e) m NextJoin Funcs(e) f
on exit, entr, m.rtn = f.args["ptr"] And f.name = "free
Where m.name = "malloc")
on entr<clock And clock<exit And (read=rtn Or write = rtn)
Where name=NULL

Figure 5.15: Undefined Use Query. An undefined use query over the execution identified by e.

non-deterministic inputs to the program execution. For each developer query, the system
uses the logs of nondeterministic inputs to generate OmniTable state on-demand by gener-
ating instrumentation for the specific query and re-executing the original program with the
instrumentation to extract execution data. In essence, the approach filters OmniTable data
before the table is generated instead of afterwards.

Steamdrill’s design mirrors that of conventional database engines [2], which allows
the system to seamlessly employ known debugging optimizations, such as cluster-scale
debugging chapter V, and employ novel ones. In particular, since deterministic replay
guarantees consistent program state across executions of the same replay, Steamdrill treats
each OmniTable referenced in a query as an independently materializable object. The sys-
tem assigns materialization tasks across multiple replay executions, which enables it to use
inexpensive-to-materialize relations (e.g., Funcs) to reduce the calculation of expensive-
to-materialize relations (e.g., Insts)

In the rest of this section, we describe how Steamdrill resolves queries in more detail
(see Figure 5.14). First, Steamdrill translates a query into a tree of relational operators (in-
ternal nodes) over data tables (leaves) (subsection 5.3.1). These trees help the system more
easily employ relational optimizations (subsection 5.3.2) and decomposes logic into easy
to parallelize operators. The system then constructs a staged execution plan, which assigns
each operator in the relational tree to a particular replay stage (subsection 5.3.3). Finally,
the system executes each stage by instrumenting a replay execution and leveraging existing
database engines (subsection 5.3.4), constructing the clockcolumn using a performance
counter optimization (subsection 5.3.5).

We use the query in Figure 5.15 as an example. The query is a simplified query for
identifying undefined use bugs in an execution. It identifies all memory instructions that
read or write to memory that was not dynamically allocated. It uses a subquery to identify

the valid region of time for dynamically allocated memory by using a NextJoin to find
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Funcs(e) m Funcs(e) f

Figure 5.16: Undefined Use Parsed Tree. The tree of relational operators after parsing. Each
Generator is a blue oval, each OmniTable is a red oval, and each relational operator is shown as a
white rectangle. Dotted rectangles identify the derived views used in the query.

match each call to malloc with the subsequent call to free. The query uses a Left Join
to join each instruction that dereferences memory to the dynamically allocated region of

time, but only produces output when no match is found.

5.3.1 Parsing

Steamdrill begins processing a query by parsing the query and converting it into a tree of
relational operators over data tables; the tree encodes all data needed to resolve the query
in terms of simple operations that can be optimized and cached. Steamdrill follows the
standard database approach: selection statements are converted into projection operators
(7), joins become join operators and clauses from a where statement are converted to either
selection operators (G) or criteria for the join operator [73]. Tables in the relational tree
are decoupled and may appear multiple times. Figure 5.16 shows the tree of relational

operators for the undefined used query.

5.3.2 Optimization

After converting the query into a tree of relational operators, Steamdrill optimizes the
query by manipulating the tree of relational operators. The system uses the rule-based
pattern-matching approach of the catalyst optimizer [1]. Steamdrill allows developers to
specify rules as simple patterns that manipulate the tree of relational operators. These rules

encode traditional database optimizations (e.g., operator push-down and caching), debug-
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Figure 5.17: Undefined Use Annotated Tree. The tree of relational operators after optimization.
Steamdrill rules choose a join order that evaluates Funcs subqueries before Instssubtrees.

ging specific optimizations, (e.g., converting logic over instructions to logic over basic
blocks), and decide upon the join order and join algorithm for each join in a query. The
output of optimization is a relational tree in which all join nodes have been annotated with
their join algorithm. During planning, Steamdrill will use the join order and algorithms to
separate the tree into stages.

The most critical task in optimization is determining the join order and algorithm.
Steamdrill supports two execution strategies for all Join operators other than StackJoin:
merge-based joins, which operate over fully realized relations, and block nested loop joins,
which calculate one of the input relations first and use the data in that relation to limit the
data scanned over the second relation. We describe the specific rules that we have imple-
mented in section 5.4.

Figure 5.17 shows the output of optimization for the undefined use query. Steamdrill
first removes the subtrees for the call to malloc and the return from free since no data is
required from either subtree. Steamdrill rules then reorder join operators to minimize the
work of materializing the Instssubtree by computing the Funcs subtrees first. The system

determines the type of join (merge vs. loop) to use for each join operator.

5.3.3 Planning

Next, Steamdrill converts the tagged relational tree into an execution plan. The exe-
cution plan groups each relational operator into a stage, where each OmniTable node in a
stage will be executed in the same replay execution. The system uses as few stages as pos-

sible (since each additional stage will require a replay execution) while correctly following

83



loop Join

X
I I

merge Join 3) OT

ZS
I I

merge NextJoin 1D
/r

loop Join (2) loop Join

; OoT oT
FD (D)

FD

Figure 5.18: Undefined Use Execution Plan. The tree of relational operators after planning. Each
stage is shown in a gray background and labeled (1), (2), or (3).

the join algorithms and join order in the tagged relational operator tree. This approach is
similar to database engines that attempt to reuse table scans[97].

The system performs a depth-first traversal of the tree starting at the root node and
tracks the current stage assignment, starting at 1. Leaf nodes (OmniTable, Generator) are
assigned to the current stage value. Unary nodes (i.e., all non-join operators) inherit the
stage of their child. Merge join operators inherit the maximum stage assignment from their
child node. To assign loop join operators to a stage, Steamdrill first traverses the inexpen-
sive relation (by convention, the left), adds one to the stage of the root of the inexpensive
tree and uses the incremented value to traverse the expensive relation. The system assigns
the loop join operator to the stage of the root of the expensive relation.

Figure 5.18 shows the staged execution plan for the undefined use query. Each of the
gray regions represents to a separate execution stage; by convention the relation shown
on the left-hand side of each loop join is calculated before the relation on the right-hand
side. When manipulating tree operations, Steamdrill pushes the selection and projection
operators from the root of the tree towards the leaf nodes. This process allows Steamdrill
to prune subtrees that do not produce data in the query output (e.g., execution data from the

entry to malloc and the return from free functions are not used by the query).

5.3.4 Execution

Next, Steamdrill executes each stage in staged execution plan to resolve the query. To

resolve a stage, Steamdrill first identifies the operators that it can use to create instrumen-
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tation for the next replay execution. For each OmniTable node in the stage, Steamdrill
gathers the subtree of operators that consume row-by-row data from that OmniTable node.
For example, in the second stage of Figure 5.18, the Merge Join and Merge NextJoin nodes
are multi-row relational operators, the ID node is a row-by-row Generator subtree, and the
two subtrees root at I nodes are row-by-row OmniTable subtrees. To produce Generator
data, the system executes the Generator’s program with the inputs from the query. Steam-
drill uses existing implementations and algorithms from the database community to imple-
ment other relational operators in the query (e.g., merge joins, aggregations) [1].

To materialize data for each row-by-row OmniTable subtree, the system instruments
the replay execution. The system converts each row-by-row subtree into a stateless cur-
sor. Logically, each cursor single-steps through the execution, conditionally producing the
execution data from an output clause when a filter clause evaluates to true. Since each sub-
tree consumes data from a single row, cursors are embarrassingly parallel (i.e., the system
can execute the same cursor over multiple time regions of the program simultaneous using
cluster-fueled debugging [70]). For each subtree, the system converts the clauses in projec-
tion nodes into the output clause and converts the clauses in all join and selection nodes to
into the filter clause.

An early prototype collected all of the cursors in a stage and passed them as tracers
to execute in a parallel Sledgehammer query. Unfortunately, this approach is far too expen-
sive, even with cluster-fueled debugging, since single-stepping the execution can impose
slowdowns of 4 orders of magnitude. So, Steamdrill analyzes the filter clause of a cursor to
determine when the cursor might produce output without having to execute the filter clause
after every instruction.

The system analyzes the filter clauses and the executables in the recorded execution
to identify program locations at which the filter might evaluate to true; it calls the set of
program locations the breakpoint set. Second, the system identifies any regions of memory
upon which the filter clause depends and places these into watchpoint set. Third, Steamdrill
identifies time-based dependencies (i.e., conditions on clock) in the filter clause which
it places in progresspoint set. Steamdrill creates two versions of the replay executables,
the native executables and one that includes cursor code at their corresponding breakpoint
sets. The system switches back and forth between the executables depending upon the
value of clock(for progresspoints) and memory (for watchpoints). It uses Sledgehammer
continuous function evaluation to track watchpoints and uses a kernel module to alert the
system of progresspoints.

While these optimizations limit the number of instructions that require cursor logic,

the frequency of instrumentation poses a problem for existing instrumentation tools. Dy-
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namic instrumentation tools, such as PIN [53], guarantee accurate instrumentation, but
do not scale as Steamdrill parallelizes queries (see chapter III) because they duplicate in-
strumentation effort across each epoch. Software breakpoint tools, like Sledgehammer,
scale to large numbers of cores, but impose massive slowdowns for frequently executed
code because each breakpoint imposes two context switches. Static binary instrumentation
would allow shared instrumentation and would scale, but existing systems rely on inaccu-
rate heuristics [89] because x86 ELF binaries cannot be statically disassembled.

Steamdrill uses an approach similar to that taken by MULTIVERSE [&] in which it
soundly disassembles the executables by over-approximating the basic-blocks in the pro-
gram. However, where as xxx treats all bytes in a binary as a potential starting point for a
basic-block, Steamdrill leverages Intel Control Flow Enforcement Technology (CET) [75]
to drastically improve its precision. CET requires that binaries include special ENDBR in-
structions at all indirect jump and indirect call destinations. Steamdrill scans all regions
of ELF executables in the replay that were mapped with executable permission to create a
work-list of basic block starting addresses. For each address in the work-list, the system
disassembles the binary starting at the address and adds the destination of any direct jump
or direct call instructions to the work-list. After disassembling all elements in the work-list,
the system treats all discovered targets as the starting point of a basic block and uses the
next aligned basic block start address as the ending point for the block.

Then, Steamdrill instruments the executables in a replay basic-block by basic-block. As
long as the distance between two subsequent basic-blocks is longer than a jump instruction,
the system uses a jump instruction instead of a software breakpoint. When two basic-
blocks are too close together for a jump instruction, the system uses a software breakpoint

approach that context switches to a daemon process to execute instrumented code.

5.3.5 Clock Optimization

The clockcolumn is a critical primitive in the OmniTable query model since it both
provides ordering and acts as a primary key. Alas, actually calculating an instruction count
would be too expensive, since each instruction in the program would need to increment
a counter. However, instructions will execute from low program counter to high program
counter within a basic block. So counting the number of jump, call, and return instruc-
tions executed is sufficient, with ties broken by the program counter value.

Unfortunately, tracking all jump instructions is expensive because of both the addi-
tional work for each query and the additional work of instrumenting all jump instructions.
Steamdrill turns to program counters to solve this issue. In particular, Intel provides two

deterministic counters, the number of call instructions executed and the number of condi-
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tional jump instructions executed [86]. With the instruction pointer tie-break, Steamdrill
thus only needs to instrument unconditional backwards jump instructions and all return

instructions.

5.4 Implementation

We built a Steamdrill prototype by extending spark SQL [!] and Sledgehammer. Re-
lational operations (joins, aggregations, etc.) execute within Spark, while the instrumen-
tation and execution code execute in Sledgehammer. We used Spark’s DataSource API to
expose the OmniTable as a relational interface and add new operators for interfacing with
an OmniTable. Significant implementation work is involved with adding stored procedures
and nested-block loop-joins to spark, because they require a restructuring of an OmniTable
scan.

We implement rules for the catalyst optimizer. In general, the rules aim for left-deep
join structures in which OmniTable nodes are isolated on the right-hand side of a join
node. Intuitively, these structures allow the system to leverage as much filtering as possi-
ble when extracting data from an OmniTable. The rules favor ordering joins so that the
system calculates Funcs before Varsand Varsbefore Insts. Each rule required roughly
25 lines of Scala code, making it an extendable approach as developers add derived views.
We continue to investigate cost-based approaches that could help infer or simplify rule
construction.

Our instrumentation component takes cursors as input and produces instrumented basic-
blocks, watchpoints and progresspoints. Our implementation currently only identifies break-
points by inspecting bounds on the instruction pointer in the filter clause of a cursor (i.e., it
does not statically analyze the replay executables). The instrumentation produces an c file,
which includes the output and filter clauses of each cursor object, and an inline assembly
component, which includes the original logic of the program instrumented to call into the
cursor ¢ code. The tool compiles these components before injecting them into a replay
execution.

Finally, we built a library for constructing Generators that formats output to stdout

in a format that the Steamdrill spark component can parse.

5.5 Evaluation

In this section, we evaluate the OmniTable query model and Steamdrill. We answer

three questions: first, “Does the OmniTable query model improve upon existing debugging
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interfaces?”, second, “Does Steamdrill accelerate debugging queries?”, and third, “How do
Steamdrill design decisions impact query performance?”.

We use the four case studies and nine queries presented in section 5.2 for evaluation
criteria. As a baseline for our study, we implement the queries from section 5.2 using
gdb’s python bindings. gdb’s python bindings enable scripting on top of gdb abstrac-
tions (e.g., breakpoints and backtraces). We present an example python script in sub-
section 5.5.1 and perform a qualitative and quantitative comparison of gdb scripts with
equivalent OmniTable queries.

We then implement and execute 3 queries from our case studies using the OmniTable
and gdb. We present a comparison between the performance of the OmniTable and gdb in
subsection 5.5.2. We investigate the scalability of Steamdrill (subsection 5.5.3), and show
the performance impact of using rounds of replay and the performance counter optimization
(subsection 5.5.4).

We gather performance numbers using a CloudLab [71] cluster of 8 r320 machines
(8-core Xeon E5-2450 2.1GHz processors, 16GB RAM, and 10Gbps NIC).

5.5.1 OmniTable and GDB Comparison

In this section, we compare the complexity of queries written in the OmniTable query
model with scripts written for gdb’s python bindings. We find that all of the debugging
queries for the case studies are expressible in both the OmniTable query model and in gdb’s
python bindings. We first explain the complexity qualitatively by providing a representative
gdb query. Then, we use software engineering metrics to compare the complexity of these

queries qualitatively.

5.5.1.1 Qualitative Comparison

Figure 5.9 shows the gdb script for the first memcached livelock query. The script
creates a custom class, operation, that extends the gdb Breakpoint class. Each time the
execution reaches a breakpoint, gdb executes the stop function from the associated class.
The script manipulates a multi-dimensional data structure, counts, which stores a stack
for each function executed in the program. For all functions, the script creates a breakpoint
that adds a new counter for the function invocation. For all instructions in a function, the
script increments the counter at the top of the stack. For all return instructions in a function,
the script pops the counter at the top of the stack. The script uses regular expressions to
identify each type of breakpoint. Finally, it prints out all of the counts on all of the stacks

for each function in counts.

88



counts = defaultdict (list)
class operation (Breakpoint):
def __init__ (self, location, 1, o):
Breakpoint.__init__ (self, location)
self.label =1
self.oper = o
def stop(self):
if get_record_pid () == 12478:
self.oper (self.label)
return False
def add_one(1l):
counts[1l][-1] += 1

def pop(l):
counts[1l].pop ()
def push(1l):
counts[l].append(0)
for line in execute ("info functions™).split ("\n"):
match = search (r"\A["\N(\) I+ ([7 NtA\n\r\EAvN(\)T+)\N(.*\).*", line)
if match:

func = match.group (1).strip("*")
operation (func, func, push)

for inst in execute ("disas $%s".format (func)).split ("\n"):
i = search(r"\s+(0x[0-9A-Fa-f]+).*", 1inst)
r = search(r"\s+(0x[0-9A-Fa-fl+).*ret.*", inst)
if i:

operation(c.group (1), func, add_one)
if r:
operation(r.group(l), func, pop)

def print_counts():
for func in counts:
for count in counts[func]:
print ("%s:%d".format (func, counts[func]llk]))
events.exited.connect (print_counts)

Figure 5.19: The gdb script for the first memcached livelock query
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Metric Lines Nodes Halstead
gdb OT gdb OT gdb OT

Atomicity Q1 7 48 39 147 82
Atomicity Q2 11 74 26 518 38
Performance Q1 | 20 94 52 518 227
Performance Q2 | 30 113 120 989 1243
Livelock Q1 35 149 26 1471 62
Livelock Q2 12 69 23 397 34
Livelock Q3 10 45 26 140 39
Semantic Q1 22 0 110 77 911 520
Semantic Q2 41 8 151 96 1489 684
Average 20.89 5.67 94.78 53.89 731.66 326.16

— W AN WO NN

Table 5.1: OmniTable Complexity. Complexity metrics for OmniTable (OT) queries and gdb
scripts for each query in our case study.

In sum, we see complexity in this query in its use of (1) a multidimensional data-

structure, (2) complex control flow operations, and (3) complex regular expressions.

5.5.1.2 Quantitative Comparison

We use three software engineering metrics to compare complexity of gdb scripts and
OmniTable queries: the number of lines of code, the number of terms in the abstract syntax
tree associated with the query or script, and the Halstead Complexity, which uses properties
of an abstract syntax tree to estimate the amount of time it will take to correctly produce the
program [34]. Table 5.1 shows the evaluation metrics for each query in our case studies.

We see that OmniTable queries are usually substantially less complex than their gdb
counterparts. By geometric mean, OmniTable queries require 3.465 times fewer lines, 1.95
fewer nodes in the abstract syntax tree, and require 3.775 less time to construct according
to Halstead Complexity. The only query that is more complex than its gdb counterpart is
the second query for the performance anomaly use case. Additional complexity arises in
the second performance query because the OmniTable does not include kernel state, so
identifying the blocking file descriptors requires substantial logic. In contrast, gdb scripts
directly execute fcntl to identify whether a file descriptor is blocking or non-blocking.
Extending the OmniTable query model to include kernel state would eliminate this com-
plexity.
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Figure 5.20: SteamDrill and GDB Performance Comparison. Compares the latency of gdb
scripts and Steamdrill queries. The y-axis is in log scale

5.5.2 SteamDrill and GDB Comparison

We compare the latency of 3 queries using Steamdrill with that of the corresponding
scripts executed using gdb. Figure 5.20 shows the latency of each tested query when using
gdb, Steamdrill with a single core, and Steamdrill with 64 cores. We plot latency on a log
scale.

In order to provide a reasonable performance comparison, we manually perform the
multi-replay optimization for the Livelock Q1 gdb script. The first script calculates the
functions on the stack at the end of the execution and second tracks instruction counts in
only those functions. The first script finished in about 2 hours, while the second was less
than halfway completed after a full 24 hours. We kill the script at this time and use 48
hours as an estimate of the total run-time.

We find that Steamdrill accelerates queries relative to gdb by a geometric mean of 17.84

when using one core and a geometric mean of 93.91 when using 64 cores.

5.5.3 Steamdrill Scalability

We next evaluate the scalability of Steamdrill. We measure the latency of Steamdrill
queries when using between 1-64 cores. Figure 5.21 provides a log-log plot with number
of cores on the x axis and speedup on the y-axis. Based on geometric mean, Steamdrill

queries at 64 cores are a 9.83 times faster than queries when running on a single core.
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Figure 5.21: SteamDrill Scalability. Compares the latency of gdb scripts and Steamdrill queries.

5.5.4 Optimization Impact

We evaluate the impact of two optimizations on Steamdrill performance. First, we
evaluate the impact of using rounds of replay on query latency. We first evaluate Livelock
Q1 using Steamdrill’s default optimizer, which uses two rounds of replay to calculate the
query, and using an optimizer that schedules all materialization tasks in a single replay. We
execute both queries using 64 cores. We find that Steamdrill is 3.48 times faster when using
multiple rounds of replay instead of a single round.

Next, we evaluate the impact of the performance counter optimization. We execute the 3
evaluation queries using the performance counter optimization and then with the optimiza-
tion disabled (when disabled, Steamdrill instruments all jump, call, and return instruc-
tions). We execute all queries using 64 cores. We find that queries using the performance

counter optimization are 1.44 times faster than those using the naive instrumentation.

5.6 Conclusion

In conclusion, we presented the OmniTable query model as a solution for writing more
succinct execution inspection queries, and Steamdrill as a system that realizes the model.
We showed that OmniTable queries are more succinct that existing debugging tools, and

that Steamdrill resolves them faster as well.
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CHAPTER VI

Conclusion and Future Work

In this dissertation, we proposed data-centric execution inspection as an alternative
framework for thinking about execution inspection. We argued that treating an execution
as a first-class data object allows us to consider execution inspection from a query-based
perspective, instead of from the traditional low-level programming perspective. We showed
that this framework enables the use of data-centric approaches, namely cluster-scale par-
allelization and relational query models, to build fundamentally more powerful inspection
tools.

More precisely, we presented two tools, JetStream and SledgeHammer, which use
cluster-scale parallelization to accelerate our debugging queries. JetStream and Sledge-
Hammer provide evidence of how thousands of cores in a compute cluster can accelerate
the latency of inspection tasks from hours or minutes to seconds. Then, we presented the
OmniTable query model, which turns to relational query models to not only simplify our
debugging tools, but also to seamlessly adopt performance optimizations, such as cluster-
scale parallelization.

In the rest of this section, we propose future work that extends the ideas presented in this
dissertation. We first describe follow up work that expands the OmniTable query model
beyond single-execution inspection into multi-execution inspection. Then, we identify the
challenges and opportunities that surround adoption of data-centric execution inspection.
Finally, we propose a future where data-oriented approaches percolate into other aspects

and areas of software reliability.

6.1 The Future of OmniTable Queries

In chapter V, we described how a developer can use the OmniTable relational query

model to inspect a single execution of their software. In essence, the use-cases presented
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in the chapter present the OmniTable query model as a “narrow-waist” for performing pro-
gram inspection, whether for sophisticated dynamic analyses or one-off debugging ques-
tions. My evaluation (see section 5.5) shows that the model is superior to state-of-the-art
tools; on average, the OmniTable decreases the complexity of inspection by a factor of
3.775. Moreover, the design of the OmniTable query model allows Steamdrill to use the
same query resolution strategy and optimizations across an extremely diverse set of inspec-
tion tasks; a feature absent from existing state-of-the-art inspection techniques. Within the
context of debugging single-executions, we see follow-up work investigating extensions to
the model to enable transitive queries for inspection such as information flow.

Additionally, while these results show the benefits of the model, the use-cases and
scenarios presented in chapter V only scratch the surface of the tasks that are possible with
an OmniTable. SQL queries can use Join operators to extract data from multiple tables;
the use-cases in chapter V join diverse views of the same OmniTable when debugging
an execution. However, it is easy to imagine using the OmniTable query model to join
inspection across diverse executions. There are at least three directions facilitated by cross-
execution inspection.

First, a developer can inspect multiple executions of the same (or nearly the same)
program. They can perform statistical bug isolation [50], in which they inspect failing
and succeeding executions to gather predicates over executions that are highly correlated
with failure. Moreover, whereas prior tools were application independent and difficult
to customize, the OmniTable query models simplifies the customization of these tools.
Additionally, this model allows a developer to implement custom performance debugging
queries. For example, the OmniTable model would allow a developer to identify if the
performance of their application is correlated with the size of a custom data-structure in
their program. Finally, developers can perform “evolutionary debugging”, in which they
debug regression performance or correctness bugs by tracking how the behavior of the
program changed across versions.

Second, a developer can use the OmniTable to inspect the execution of separate nodes
in a distributed system. This abstraction enables the OmniTable query model to subsume
prior work in the space of high-level inspection tools for distributed systems, such as pivot
tracing. There is interesting work to be done in this space, primarily for efficient record-
and-replay in distributed settings, since the categorization of inputs into deterministic and
non-deterministic is completely upended in a distributed setting where multiple nodes can
cooperatively replay a distributed execution.

Third, a developer can use the OmniTable query model to inspections multiple exe-

cutions of different programs. Cross-program execution inspection might be useful for
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learning the “unwritten rules” of a programming library. These inspection queries might
enable the sharing of bug detection predicates across applications. Further, statistical bug
isolation is potentially possible across applications that have some similarities, such as us-
ing the same libraries.

Cross-execution inspection queries present a number of systems challenges. How can
a system feasible support queries that require re-executing hundreds or thousands of exe-
cutions? Solutions from the database community stand out as possibilities for enable these
queries. For example, caching and indexing strategies could precompute predicates that
identify equivalent or related executions. The intellectual challenges are vast, but so too

are the payoffs.

6.2 On the Adoption of Data-Centric Execution Inspection

This dissertation shows the benefits of data-centric execution inspection, and we am
fascinated with how we can make these ideas and tools amenable to typical software system
deployments.

Record-and-replay is an enabling technology for data-centric execution inspection; it
is difficult to imagine completing the work in this thesis without building on these ideas.
Nevertheless, inn my opinion, the biggest challenge with the adoption of data-centric exe-
cution inspection is the current reliance on record-and-replay. Record-and-replay has been
known for decades and had immense impact the research community. However, deployed
software has been extremely slow to adopt record-and-replay technology. There are a va-
riety of reasons why, including maintainability limitations (e.g., Arnold [23] requires tens-
of-thousands of kernel source code lines, Castor [56] requires new compiler tool-chains),
performance issues (e.g., Mozilla RR [66] serializes threads during recording and imposes
order of magnitude slowdowns), and limited effectiveness (e.g., Arnold [23] cannot support
racy program).

We see two possible approaches to resolve the limitations of record-and-replay. First,
we could construct record-and-replay systems with more appropriate tradeoffs. REPT [19]
and ER [93] alleviate many of the maintainability, performance, and effectiveness chal-
lenges of early systems and may pave the way for adoption. New deployment models,
such as heterogeneous systems, microservices, and lambda functions may also offer better
tradeoffs for more effective record-and-replay technology. It remains to be seen whether
we can overcome the hurdles of record-and-replay, but there is hope.

Second, we should look for opportunities to treat an execution as a data object with-

out relying on record-and-replay. Are there deployment models and systems that are
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“deterministic-enough” for data-centric execution inspection? Can we leverage RaceMob-
like [39] parallelism to split OmniTable queries across equivalent independent program ex-
ecutions rather than querying a single execution? Exploring this space of applications out-
side of record-and-replay is a fantastic step towards better applicability for these ideas, but
also presents a number of major systems challenges. For example, employing RaceMob-
Like parallelism to partition OmniTable queries across executions will require low-overhead

methods for identifying executions that are equivalent.

6.3 Towards Data-Centric Software Reliability

This dissertation shows how a data-centric view enables fundamentally more power-
ful execution inspection. However, software reliability requires more than just execution
inspection, it also requires bug detection, bug response, and bug avoidance. Data-centric
execution inspection has the potential to be a building block for these tools, helping us
design better systems by making it easier to understand what they are doing.

As we look to the next decade, we are fascinated with how data-oriented approaches
can more generally improve software reliability. Our software is pervasively deployed, and
generates untold amounts of execution data. Most of this data is discarded and treated as
useless; the original vision of the Eidetic System [23] was that we could feasibly store all
of this information. The vision of data-centric software reliability is that we can use this

data to make our software systems more correct, efficient, and secure.
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