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Running headline: Extratropical tree biomass estimation

Abstract

1. Allometric equations for calculation of tree aboveground biomass (AGB) form the 

basis for estimates of forest carbon storage and exchange with the atmosphere. 

While standard models exist to calculate forest biomass across the tropics, we lack a 

standardized tool for computing AGB across boreal and temperate regions that 

comprise the global extratropics.

2. Here we present an integrated R package, allodb, containing systematically selected 

published allometric equations and proposed functions to compute AGB. The data 

component of the package is based on 701 woody species identified at 24 large 

Forest Global Earth Observatory (ForestGEO) forest-dynamics plots representing a 

wide diversity of extratropical forests.

3. A total of 570 parsed allometric equations to estimate individual tree biomass were 

retrieved, checked, and combined using a weighting function designed to ensure 

optimal equation selection over the full tree size range with smooth transitions 

across equations. The equation dataset can be customized with built-in functions 

that subset the original dataset and add new equations.

mailto:teixeirak@si.edu
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4. Although equations were curated based on a limited set of forest communities and 

number of species, this resource is appropriate for large portions of the global 

extratropics and can easily be expanded to cover novel forest types.

Key words: aboveground biomass, extratropics, forest carbon storage, Forest Global Earth 

Observatory (ForestGEO), R, temperate forest, tree allometry, tree biomass

Introduction

Forest trees account for 70-90% of the land biomass of earth (Houghton 2008). 

Quantification of forest aboveground biomass (AGB) is an essential step to understand the 

sources, sinks and flow of carbon worldwide and, more importantly, how carbon storage 

and fluxes are changing through time (Houghton 2005). Changes in forest carbon storage 

will strongly influence the course of climate change (Friedlingstein et al. 2006), and forest 

conservation, management, and restoration are among the most cost-effective tools for 

climate change mitigation (Griscom et al. 2017). Indeed, changes in forest carbon are 

emphasized in the guidelines for national greenhouse gas inventories by the 

Intergovernmental Panel on Climate Change (IPCC, Calvo Buendia et al. 2019), and account 

for approximately one-quarter of national emission reductions planned by countries under 

the Paris Climate Agreement (Grassi et al. 2017). Thus, accurate estimates of tree biomass 

are critical to understanding forest carbon dynamics and managing forests for climate 

change mitigation.

Despite rapidly developing technology focusing on remote-sensing to estimate forest 

biomass over large areas (Knapp et al. 2020; Zolkos, Goetz, and Dubayah 2013), ground-

based assessments that combine tree census data and allometric equations remain the 

most widely applied indirect method to estimate forest biomass and are still required to 

calibrate remote sensing data (Chave et al. 2014, 2019). These models are based on 

common biomass predictors including diameter at breast height (DBH) and height (H) (e.g. 

Feldpausch et al. 2012), sometimes incorporating wood density and crown structure 

(Chave et al. 2005, 2014; Goodman, Phillips, and Baker 2014). Although ground-based 
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LiDAR is emerging as a promising technique for non-destructive allometry development 

(Stovall, Anderson-Teixeira, and Shugart 2018), the vast majority of biomass allometries 

have been created through destructive tree harvest. Yet, development of reliable allometric 

equations requires large sample sizes (Duncanson, Rourke, and Dubayah 2015), 

particularly for large trees that are the most problematic to sample (Stovall, Anderson-

Teixeira, and Shugart 2018) and usually underrepresented (Burt et al. 2020). Moreover, 

allometric relationships vary across species (Poorter et al. 2015; but see Paul et al. 2016) 

and with environmental factors such as climate and nutrient availability (Duncanson, 

Dubayah, and Enquist 2015; Lines et al. 2012), stand age (Fatemi et al. 2011), and stand 

density (Gower, Vogt, and Grier 1992). Whereas tropical biomass data has been pooled to 

form the basis of a standardized approach to biomass estimation across the tropics (Chave 

et al. 2005, 2014; Réjou-Méchain et al. 2017), no such standardized approach currently 

exists for extratropical regions (above 23.5  latitude N or S). Rather, a wide variety of ∘
allometries developed for various levels of taxonomic and geographic organization, and of 

variable quality, are scattered throughout the literature (Chojnacky, Heath, and Jenkins 

2014; Conti et al. 2019; Jenkins et al. 2004; Luo et al. 2020; Luo, Wang, and Ouyang 2018; 

Muukkonen 2007; Návar 2009; Paul et al. 2016; Rojas-García et al. 2015). These equations 

differ in functional form, input and output variables, units, and size range across which they 

can be applied. This makes identification and application of appropriate allometries a time-

consuming and error-prone process (Breugel et al. 2011) with low reproducibility and little 

standardization across studies (Somogyi et al. 2007). While challenging for studies at 

individual sites, this becomes particularly problematic for studies aiming to apply an 

approach that is both locally optimized and standardized across multiple forest types and 

regions (e.g., Lutz et al. 2017).

Several key principles should guide the development of temperate and boreal allometries. 

First, larger sample sizes of trees used to develop allometric equations greatly reduce 

biases and systematic errors (Duncanson, Rourke, and Dubayah 2015), and are particularly 

important in constraining the uncertainty in AGB estimates of large trees (Chave et al. 

2004; Stovall, Anderson-Teixeira, and Shugart 2018; Sullivan et al. 2018). For example, 

pantropical models based on large datasets (Chave et al. 2005; Feldpausch et al. 2011) give 
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reliable results with smaller errors compared to regional models (Rutishauser et al. 2013). 

Second, the precision of predictions can be improved by using equations calibrated with 

trees from a similar taxonomic group, and that grew in similar climatic conditions (Daba 

and Soromessa 2019; Ngomanda et al. 2014; Roxburgh et al. 2015). In practice, these two 

principles are in conflict, in that taxa- or location-specific allometries are usually 

constructed based on a much lower sample size than generic allometries. Furthermore, 

specific allometries are often limited in the size range over which they were calibrated and 

are largely driven by a very small number of large trees, leading to potentially large errors 

if extrapolated beyond their size range, or to discontinuous functions if an alternative 

equation is applied beyond the calibrated range. Lastly, biomass allometries should be 

continuous functions of tree size. This is especially critical for applications using records of 

tree diameter growth to estimate woody productivity (e.g., Helcoski et al. 2019; Anderson-

Teixeira et al. in press) or to compare carbon stocks or fluxes across tree size classes (e.g., 

Lutz et al. (2018); Meakem et al. (2018); Piponiot, C. unpublished data). Ideally, continuous 

functions based on sufficient sample sizes would be derived from re-analysis of data 

collected to produce existing sets of allometric equations, as has been done for the tropics 

(Chave et al. 2014), but unfortunately original data are often difficult to access, lack proper 

documentation, or are unavailable. Although there has been some progress in developing 

comprehensive databases to support the development of allometries (Falster et al. 2015; 

Henry et al. 2013; Schepaschenko et al. 2017), these are not yet comparable in coverage to 

the existing set of allometric models. Thus, for now, a standardized process for applying 

biomass allometries across extratropical forests must draw upon existing sets of allometric 

equations.

Here we present a framework aimed at facilitating tree biomass estimation across globally 

distributed extratropical forests. To standardize and simplify the biomass estimation 

process we developed allodb (Table 1, https://docs.ropensci.org/allodb/) as an open-

source application aiming to: a) compile relevant published and unpublished allometric 

equations, focusing on AGB but structured to handle other variables (e.g., height and 

biomass components); b) objectively select and integrate appropriate available equations 

https://docs.ropensci.org/allodb/
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across the full range of tree sizes; and c) serve as a platform for future updates and 

expansion to other research sites globally.

Software development and workflow

Focal sites and species

We focus on multiple sites within the Forest Global Earth Observatory (ForestGEO), the 

largest worldwide network of long-term forest monitoring sites using standardized 

methods (Anderson-Teixeira et al. 2015; Davies et al. 2021). As such, it is a good model for 

assembling and applying allometric equations across a wide range of species, forest 

environments, and to understand associated challenges in calculating biomass. ForestGEO 

currently includes 33 extratropical forests across North America (n=17), Europe (n=4), and 

Asia (n=12), ranging in latitude from 23 to 61 degrees N. At each site, all stems  1 cm ≥
DBH within 5-50 ha plots are censused following standardized protocols, including 

identification to species level (Condit 1998). From the 24 participant sites included in 

allodb (Table S1), there are 1109 species-location combinations, 701 woody species, 248 

genera, and 86 plant families represented (see site-species table in allodb).

Systematic search for biomass allometries

We compiled 570 allometric equations from the literature, focusing on retrieving equations 

to estimate AGB based on DBH and developed primarily in extratropical regions 

(Chojnacky, Heath, and Jenkins 2014; Forrester et al. 2017; Jenkins et al. 2004; Luo, Wang, 

and Ouyang 2018), and drew upon these and local expertise to help identify original, 

species-specific, and location-specific allometries (Fig. S1). Three of our focal sites have 

local biomass allometries (SCBI: Stovall, Anderson-Teixeira, and Shugart 2018; Wytham 

Woods: Fenn et al. 2015; Yosemite: Lutz et al. 2014). For eighteen species found at the 

University of California Santa Cruz ForestGEO site (UCSC, Table S1), we include new local 

allometric equations to estimate H, which is an independent variable in some allometric 

models. In some cases, equations were only available for separate tree components (stem, 

bark, branches, foliage); these were summed to obtain AGB. For each equation, we 

retrieved standard information including location, taxa, units, DBH ranges, sample size (see 
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allodb equations table for other categories), which are used in the proposed weighting 

scheme. We assigned Köppen climate zones to each equation using the R package kgc 

(Bryant et al. 2017; Köppen 2011). When equations were calibrated for broad regions (e.g., 

North America, Northern Germany) or vaguely-defined locations, we estimated their 

location from brief descriptions or regional maps in the original publication and included 

all possible Köppen zones. Details on all equations are available in the equations.csv file 

within allodb.

Inputs for calculating biomass

Prior to calculating tree biomass using allodb, users need to provide: (a) DBH (cm); (b) 

parsed species Latin names, and (c) site coordinates (Fig. 1).

(a) DBH: allodb makes consistent calculations of AGB (kg) based on DBH (cm) as the 

primary predictor. In some instances, available allometric equations include H as an 

additional predictor (e.g., Jansen and Faber 1996), for these cases, inputs of H (m) 

refine predictions. We structured allodb expecting that the input DBH from plot 

inventories is checked in advance. For sites where trees are commonly measured at 

heights other than the standard 1.3 m (e.g., buttresses, trunk irregularities, differing 

census protocols), we recommend users to apply a taper correction function to 

improve estimates of biomass changes (see Cushman et al. 2014) before using 

allodb. As many forest census protocols recommend measuring stems at 1.3m 

(including shrubs), we provided additional equations to convert DBH into diameter 

at base (dba, i.e., diameter conversion models by Lutz 2005; Paul et al. 2016) for 

those allometries that use dba or diameter at stump height (20-30 cm above 

ground) to predict biomass.

(b) Latin species names: Species identification is critical for selecting appropriate 

allometric equations. To standardize spelling and nomenclature, plant names for all 

sites were checked using the function correctTaxo from the BIOMASS package 

(Réjou-Méchain et al. 2017). Accepted family names (used in the weighting scheme) 

were retrieved using the function tax_name from the package taxize (Chamberlain et 
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al. 2020). We recommend the use of such a function to homogenize and correct 

taxonomic information prior to using allodb.

(c) Site coordinates: These are needed to account for climate zones. The Köppen 

classification scheme (Köppen 2011) provides an efficient way to describe climatic 

conditions defined by multiple variables with a single and ecologically relevant 

metric (Chen and Chen 2013) and allows the assignment to a particular climate 

based on site coordinates. allodb obtains the Köppen climate zone of a given site 

using the kgc R package (Bryant et al. 2017). The obtained climate is then compared 

to the allometric equations’ Köppen zone(s) and used in the weighting scheme. By 

including a climate input we are able to represent bioclimatic variables otherwise 

not included in original publications.

A user constructs a table with DBH, species, and site coordinates, as in the example 

provided in the allodb package:

install.packages("remotes")

remotes::install_github("ropensci/allodb")

library(allodb)

data(scbi_stem1)

scbi_stem1$agb =

  get_biomass(

    dbh = scbi_stem1$dbh,

    genus = scbi_stem1$genus,

    species = scbi_stem1$species,

    coords = c(-78.2, 38.9)

  )

AGB estimation in allodb

allodb estimates AGB (or any other dependent variable) by calibrating a new allometric 

equation for each taxon and location in the user-provided census data. The new allometric 

equation is based on a set of allometric equations that can be customized using the 

new_equations() function. Each equation is then given a weight by the function 
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weight_allom() based on: 1) its original sample size (numbers of trees used to develop a 

given allometry), 2) its climatic similarity with the target location, and 3) its taxonomic 

similarity with the target taxon (see weighting scheme below). The final weight attributed 

to each equation is the product of those three weights. Equations are then resampled with 

the function resample_agb(): the number of samples per equation is proportional to its 

weight, and the total number of samples is 10  by default. The resampling is done by 4

drawing DBH values from a uniform distribution on the DBH range of the equation, and 

estimating the AGB with the equation. The pairs of values (DBH, AGB) obtained are then 

used in the function est_params() to recalibrate a new allometric equation: this is done by 

applying a linear regression to the log-transformed data (see example in Fig. 1). The 

parameters of the new allometric equations are then used in the get_biomass() function by 

back-transforming the AGB predictions based on the user-provided DBHs. By using the 

function illustrate_allodb(), the user can visualize in a plot the top 10 resampled equations 

and the final fitted equation (e.g., Figs. 1, S3).

Weighting scheme of allometric equations

Each equation is given a weight by the function weight_allom(), calculated as the product of 

the following components:

1) sample-size weight: because larger sample sizes greatly reduce biases and 

systematic errors (Duncanson, Rourke, and Dubayah 2015), we attribute a larger 

weight to equations calibrated with a larger number of trees. This weight is 

calculated as an asymptotic function of the sample size : . The � 1― �―� ⋅ (���(20)�95 )

sample-size weight increases sharply at low sample sizes and gets close to one (its 

asymptotic value) for sample sizes > .  is 500 by default, and may be �95 �95
adjusted by the user. Equations with no sample size information are given a sample-

size weight of 0.1 by default: this value can be adjusted by the user using the 

argument .���
2) climatic weight: equations calibrated in similar climatic conditions as the target 

location are given a higher weight, using the 3-letter system of Köppen climate 
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scheme (Köppen 2011). This weight is calculated in 3 steps: (1) if the main climate 

group (first letter) is the same, the climate weight starts at 0.4; if one of the groups 

is “C” (temperate climate) and the other is “D” (continental climate), the climate 

weight starts at 0.2 because the 2 groups are considered similar enough; otherwise, 

the weight is 1e-6; (2) if the equation and site belong to the same group, the weight 

is incremented by an additional value between 1e-6 and 0.3 based on precipitation 

pattern similarity (second letter of the Köppen zone), and (3) by an additional value 

between 1e-6 and 0.3 based on temperature pattern similarity (third letter of the 

Köppen zone). The resulting weight has a value between 1e-6 (different climate 

groups) and 1 (exactly the same climate classification). When an equation was 

calibrated with trees from several locations with different Köppen climates, the 

maximum value out of all pairwise equation-site climate weights is used.

3) taxonomic weight: equations calibrated with trees from a similar taxonomic group 

as the target taxon are given a higher weight (Fig. S2). The taxonomic weight is 

equal to 1 for same species equations, 0.8 for same genus equations, 0.5 for same 

family equations and for equations calibrated for the same broad functional or 

taxonomic group (e.g., shrubs, conifers, angiosperms). All other equations are given 

a low taxonomic weight of 10 : these equations will have a significant relative ―6
weight in the final prediction only when no other more specific equation is available.

The choices of weighting functions and parameter values are selected based on our current 

understanding of the principles of allometric equations and experimentation with various 

options, and weightings may be adjusted based on user discretion. However, adjusting 

these values can result in unsatisfactory predictions: alternative weighting schemes should 

be checked before being used for predictions.

In particular, we use taxonomic similarity as an easily measurable proxy of expected 

similarity among species’ allometries, but the assumption that related species have similar 

allometries does not always hold. For example, the North American high-elevation five-

needle pines (Pinus longaeva, P. aristata, P. albicaulis, and P. balbouriana) are 

morphologically similar to one another but extremely different from the more common 
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Pinus species (e.g., Pinus strobus). Because generic genus-level equations are usually based 

on the more common species (e.g., Chojnacky, Heath, and Jenkins 2014), biased predictions 

can result where the target species has vastly different morphology or wood density from 

the genus-level mean, particularly if they grow in similar climate zones. The resulting 

errors can be especially important when dealing with large trees. Using species’ 

phylogenetic or morphological similarity and wood density could help reduce such biases, 

but this information is not always available for all species and equations. We recommend 

that researchers working with species that do not conform to generalized allometric 

models for their taxa and climate zone (i.e., ~8% of species in analysis of Paul et al. 2016) 

carefully evaluate the weighting of allodb equations and apply alternative allometric 

models if needed.

Evaluation and validation of methods

To validate and evaluate allodb, we (1) screened for equation errors; (2) evaluated against 

widely used regional allometric models; and (3) compared allodb predictions against raw 

data.

As a preliminary test to detect preventable equation errors (e.g., unit conversion issues, 

typos when transcribing, errors within original publications), we manually evaluated each 

equation in R (R Core Team 2018) as it was entered into our dataset to ensure that 

predictions were within reasonable range. We identified outliers through plotting of each 

species per focal ForestGEO site to compare biomass values predicted by the different 

equations on a hypothetical DBH range between 1-200 cm (e.g. Fig. S3). Through this 

process, equation errors were corrected when possible, and problematic equations 

removed.

Next, we evaluated how AGB estimates using allodb compare to those obtained from the 

widely the widely-used regional equations for North America of Chojnacky, Heath, and 

Jenkins (2014). Using the SCBI ForestGEO plot as a test case, we found that allodb 

predictions aligned reasonably with those of the Chojnacky, Heath, and Jenkins (2014) 

equations (Fig. S4), but with differences that can be meaningful. The most notable 

departure occurred for the largest-DBH trees in the plot, for which absolute differences 
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could be large (>3000 kg) for a couple species (e.g., Quercus velutina), with the Chojnacky, 

Heath, and Jenkins (2014) allometries predicting higher AGB. Across smaller and 

intermediate tree sizes, allodb predictions could be higher or lower depending on the 

species, with an overall tendency for allodb predictions to be higher. Both of these 

differences align with the findings of a terrestrial LiDAR study at this site (Stovall, 

Anderson-Teixeira, and Shugart 2018), which found that the Chojnacky, Heath, and Jenkins 

(2014) equations underestimated biomass overall while overestimating biomass of the 

largest individuals. Summing across all trees in the SCBI plot, allodb predicted a total AGB 

of 307.6 Mg ha-1, which is 19% higher than a published estimate of 258.9 Mg ha-1 that 

applies Chojnacky, Heath, and Jenkins (2014) equations to the same data (Lutz et al. 2018).

Finally, we tested the accuracy of allodb predictions against a comprehensive compilation 

on destructive sampling by Schepaschenko et al. (2017). A subset (n=6266 trees) from the 

original dataset was used providing DBH (> 1cm), H (m), and measured AGB (kg) at 176 

sites distributed in Eurasia (Fig. S5). The allodb predictions were reasonable across the 

tree size range, with root-mean-square error (RMSE) of 87.02 kg on a linear scale (and a 

mean relative error-MRE- of 72%) and 0.71 kg on a logarithmic scale.

Conclusions and future improvements

Calculation of tree biomass has multiple challenges that we tried to overcome when 

designing allodb. The allodb package makes it possible to obtain consistent, reproducible 

AGB estimates for extratropical forests, noting that careful attention to versioning (i.e., 

citation of package version) will be necessary to ensure reproducibility. We believe that 

these estimates are as accurate as possible given the issues that currently plague the field 

(e.g., limited diameter ranges, allometries based on low sample sizes, lack of harvested 

data, Burt et al. 2020). In addition, the allodb platform and scope can be expanded to 

include more equations and thereby represent more species and sites. It can also be 

expanded to cover more response variables (e.g., roots, foliage, heights and crown 

dimensions) so that we can better predict AGB (or below ground biomass) on an ecosystem 

scale, characterize forest structure, and potentially link it with LiDAR applications and 

more general remote sensing methods. With appropriate accounting for snags and down 
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wood (Janik et al. 2017) and appropriate reduction factors (e.g., Harmon et al. 2011), allodb 

can also form the basis for calculating dead woody biomass. We encourage the user 

community to contribute to building allodb into an increasingly useful resource for 

estimating extratropical forest biomass, thereby better meeting the challenge of 

characterizing and managing forest carbon stocks and fluxes in an era of climate change.
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Table 1. Description of data and functions in allodb. A detailed explanation of functions 

and data can be found in the allodb R package documentation 

(https://docs.ropensci.org/allodb/reference/index.html).

Name Description

Data

equations A dataframe with retrieved equations from literature and auxiliary data

references
A dataframe listing all references by reference ID used in equation 

table

site-species
A dataframe listing focal sites in this study and the identified family, 

genus, and species per site.

Metadata

equations_metadata A dataframe explaining fields in the equation table

missing_values
A dataframe describing the use of codes for missing values used in 

the equation table

reference_metadata A dataframe explaining fields in the reference table

site-species_metadata A dataframe explaining fields in the site-species table

Functions

est_params
Estimates the parameters (slope, intercept, sigma) of the recalibrated 

allometric equations

get_biomass Executes the AGB calculation per stem (kg)

illustrate_allodb Produces illustrative graphs of the recalibration process
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Name Description

new_equations
Customizes the original set of allometric equations by subsetting it 

and/or by adding new equations

resample_agb Resamples the original equations

weight_allom
Combines multiple variables (taxa, climate, and sample size) to 

attribute a weight to each equation

Figure 1: Illustration of allodb workflow and predictions. User provides a dataframe 

with DBH (cm), parsed species Latin names, and site coordinates. allodb estimates AGB by 

calibrating a new allometric equation for each taxon in the user-provided data. The 

equations table in allodb can be customized using the new_equations() function. Each 

equation is given a weight by the weight_allom() function and then resampled with the 

function resample_agb(). The values obtained are used in the function est_params() to 

recalibrate a new allometric equation and then used in the get_biomass() function. 

illustrate_allodb() is used to visualize the top resampled equations (details for each 

equation can be found in the equations table within allodb) and the final fitted equation.
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