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Key points: 

 Terrestrial organic carbon is an important CO2 sink when transported via rivers 

to the ocean and sequestered in coastal marine sediments. 

 Biomarkers indicate enhanced terrestrial organic carbon burial during early 

Eocene - this could have acted as a negative feedback mechanism 

 Hydrology regulates organic carbon export from the terrestrial biosphere at this 

site 

 

Abstract:  

Terrestrial organic carbon (TerrOC) acts as an important CO2 sink when transported 

via rivers to the ocean and sequestered in coastal marine sediments. This mechanism 

might help to modulate atmospheric CO2 levels over short- and long timescales (103 

to 106
 years), but its importance during past warm climates remains unknown. Here 

we use terrestrial biomarkers preserved in coastal marine sediment samples from 

Wilkes Land, East Antarctica (~67°S) to quantify TerrOC burial during the early 

Eocene (~54.4 to 51.5 Ma). Terrestrial biomarker distributions indicate the delivery of 

plant-, soil- and peat-derived organic carbon (OC) into the marine realm. Mass 

accumulation rates of plant- (long-chain n-alkane) and soil-derived (hopane) 

biomarkers dramatically increase between the earliest Eocene (~54 Ma) and the early 

Eocene Climatic Optimum (EECO; ~53 Ma). This coincides with increased OC mass 

accumulation rates and indicates enhanced TerrOC burial during the EECO. Leaf wax 

δ2H values indicate that the EECO was characterised by wetter conditions relative to 

the earliest Eocene, suggesting that hydroclimate exerts a first-order control on 

TerrOC export. Our results indicate that TerrOC burial in coastal marine sediments 
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could have acted as an important negative feedback mechanism during the early 

Eocene, but also during other warm climate intervals. 

 

Plain Language Summary 

Organic matter from the terrestrial biosphere can be transferred into rivers and 

eventually deposited in the ocean. This process helps to remove carbon dioxide from 

the atmosphere over long (> 1000 years) timescales. However, the importance of this 

process in warm climates is one of the most poorly understood aspects of the climate 

system. One way to test the behaviour of the Earth in warmer-than-present climate 

states is to examine the geological record. Here we analysed marine sediments 

deposited close to the Antarctic shoreline to quantify organic carbon burial during an 

ancient warm interval (the early Eocene, 56 to 48 million years ago). We analysed 

biomolecules from plants and microbes to determine how much organic matter was 

derived from the terrestrial biosphere. We found evidence for increased terrestrial 

organic carbon burial in marine sediments during the early Eocene. This process could 

help to remove carbon dioxide from the atmosphere and is relevant to other episodes 

of climate change during Earth's history. 

 

1. Introduction  

Over long-timescales (104 to 106
 years), the evolution of atmospheric carbon dioxide 

(CO2) concentrations primarily reflects the balance between CO2 sources (e.g., solid 

earth degassing, oxidation of rock-derived OC and sulphide minerals; Plank and 

Manning, 2019; Hilton et al., 2014; Torres et al., 2014) and CO2 sinks (e.g., silicate 

weathering, organic carbon burial) (Berner 1990; Gaillardet et al., 1999; Galy et al., 
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2007). Between ~20 to 50% of total OC burial in modern marine sediments is derived 

from the terrestrial biosphere (TerrOC; i.e. soils and vegetation) (Hilton & West 2020). 

Consequently, TerrOC burial in marine sediments may act as an important CO2 sink 

over short- to long timescales (103 to 106 years) (Hilton et al 2015).   

The erosion and subsequent burial of TerrOC in marine sediments is 

determined by a variety of climatic and tectonic controls (Eglinton et al 2021). Steep 

river catchments are typically characterised by enhanced TerrOC export (e.g., Hilton, 

2017; Kao et al., 2014). However, climate also exerts a key control on TerrOC export 

(Hilton, 2017;  Galy et al 2015) and there is a close link between mean annual run-off 

and TerrOC export in modern river systems (Hilton, 2017; Wang et al., 2020). Although 

TerrOC export and burial may help to modulate atmospheric CO2 over geological 

timescales, the importance of this process in the past is unknown and the majority of 

work has been on modern erosive systems (e.g., Hilton, 2017; Galy et al., 2015; Wang 

et al., 2020).  

The early Eocene Climatic Optimum (EECO; 53.3-49.1 Ma) is characterised by 

high temperatures (~10 to 16°C warmer than pre-industrial) (Inglis et al 2020), an 

intensified hydrological cycle (Carmichael et al., 2016), and lacked continental-scale 

ice sheets (Francis and Poole, 2002). As such, it can serve as a natural laboratory to 

understand how TerrOC export and burial operates when it is significantly warmer and 

wetter than present. Here we use samples recovered from the East Antarctic margin 

(Integrated Ocean Drilling Program (IODP) Leg 318; IODP Site U1356; ~ 67°S 

paleolatitude) (Escutia et al 2011b) to determine the amount of TerrOC transported 

along the land-sea continuum during the earliest Eocene (54.3 to 51.5 Ma), including 

one of the three DeepMIP intervals (i.e., the  Early Eocene Climatic Optimum; 53.3 to 

49.1 Ma) (Hollis et al 2019). A combination of bulk and molecular proxies are used to 
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fingerprint the type of OC in the East Antarctic margin. We then apply a mixing model 

approach to quantify TerrOC burial along the East Antarctic margin. We also develop 

new leaf wax δ2H records and compare these alongside isotope-enabled modelling 

simulations to determine the relationship between the hydrological cycle and TerrOC 

export during the early Eocene.  

 

2. Methods and Materials 

2.1. Site description 

Site U1356 (modern coordinates: 63°18.6138′ S, 135°59.9376′ E) is located ~300 km 

off Wilkes Land, Antarctica, at the transition between the continental rise and the 

abyssal plain. Current water depth is 3992 meters (Escutia et al 2011a) (Figure 1). 

Samples were obtained from lithological Unit XI (~948 to 1000 mbsf) that consists of 

bioturbated hemipelagic early Eocene claystones. Occasional laminated siltstone and 

sandstone interbeds indicate sporadic gravity flows or bottom current activity reaching 

the site (Escutia et al 2011a). Lithological Unit XI is dated as early Eocene based upon 

a combination of published dinoflagellate cyst (dinocyst) biostratigraphy and 

magnetostratigraphy (Bijl et al 2013, Tauxe et al 2012).   

 

2.2. Bulk isotope geochemistry 

Total organic carbon (TOC) measurements were carried out at MARUM, University of 

Bremen. Approximately 10 cm3 of sediment (n = 360) was freeze-dried and ground to 

a fine powder using an agate mortar. Total carbon (TC), total organic carbon (TOC), 

and total sulphur (TS) were measured using a LECO CS-200 Carbon-Sulphur 

analyzer. Approximately 65 mg of the homogenized sample was weighed in a ceramic 
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cup and burnt in an induction furnace. The resultant CO2 and SO2 were then measured 

with a nondispersive infrared detector to provide a measure of the sedimentary TC 

and TS content. To determine the TOC content, sediments (~65 mg) were decalcified 

using 12.5% hydrochloric acid (HCl) to remove carbonate species, followed by a 

subsequent rinse of the residue with de-ionized water. Samples were subsequently 

analyzed as described above. Total inorganic carbon (TIC) was determined by 

subtracting TOC from TC. All data are reported in weight percent (wt. %) dry sample.  

Bulk carbon isotope analyses of the OC fraction (δ13Corg) were carried out at 

MARUM, University of Bremen at 2 cm resolution throughout Cores 318-U1356A-

103R to -106R (n = 368). The bulk samples were decalcified with 1 N HCl solution, 

followed by a subsequent rinse of the residue with de-ionized water. The sample was 

then combusted using the oven of an HERAEUS CHN-Analyser. The δ13C value was 

subsequently measured with a Finnigan MAT Delta E Mass-spectrometer.  

Measurements were calibrated using a house standard (milled and decalcified 

organic-rich surface sediment from the German Wadden Sea), itself calibrated to 

international standards.   Repeatability of the house standard is typically ±0.15‰. 

 

2.3. Organic geochemistry 

A total of 118 sediment samples (~10-15g dry mass) from IODP Site 1356 (948.96 to 

998.1 mbsf) were freeze-dried and extracted using Accelerated Solvent Extraction with 

dichloromethane (DCM) and methanol (MeOH) (9:1, v/v, respectively) as the organic 

solvent. An internal standard (5α-andostrane) with a known concentration was added 

to each sample prior to extraction. Excess solvent was removed using rotary 

evaporation under vacuum. The total lipid extract (TLE) was separated into ‘apolar’, 
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‘ketone’, ‘ethyl acetate’ (EtOAc), and ‘polar’ fractions over an activated alumina (Al2O3) 

column using hexane:DCM (9:1, v/v; N1), hexane:DCM (1:1, v/v; N2), EtOAc:DCM 

(1:1 v/v; N3), and DCM:MeOH (1:1, v/v; N4), respectively. Al2O3 was activated by 

oven-drying for at least 4 h at 150 °C.  

For a subset of earliest Eocene samples (n = 11), we performed urea adduction 

on the N1 fractions to separate cyclic (i.e. non-adduct) and aliphatic (i.e. adduct) 

hydrocarbons. To achieve this, 200μl of hexane, acetone and urea (10% in MeOH) 

were added to the saturated hydrocarbon fraction. The sample was frozen for ca. 60 

minutes until urea crystals formed. Solvent was then removed under a stream of N2 

and extracted (x5) with ca. 1ml of n-hexane (non-adduct fraction). The urea crystals 

were then dissolved in 500 μl of MeOH and 500 μl of water and the adduct fraction 

was extracted (x5) with ca. 1ml of n-hexane. The adduction procedure was repeated 

on the adduct fraction once more to ensure all non-adduct material was removed 

(Inglis et al 2019). 

 

2.3.1 GC and GC-MS analysis 

N1 fractions were redissolved in hexane and analyzed using a gas chromatograph 

(GC; Shimadzu 2010) with a flame ionization detector (FID) and hydrogen as carrier 

gas at constant pressure (190 kPa). Separation of the different compounds was 

achieved using the following column: length: 60 m, diameter: 0.25 mm, film thickness: 

0.25 μm, coating: 100% dimethyl-polysiloxane. The gas chromatograph temperature 

program increased from 50 to 120 °C at 30 °C min-1, then 120-310 °C at 5 °C min-1, 

with a final isothermal time of 20 min at 300 °C. Compound identification was 

confirmed by GC-MS (Shimadzu QP2010-Plus Mass Spectrometer (MS) interfaced 
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with a Shimadzu 2010 GC) using the same column described above. Compounds 

were identified using retention times and mass spectra. The abundance of n-alkanes 

and hopanes are normalised to TOC. An in-house external standard comprised of 20 

n-alkanes (ranging from C16 to C37) was run every 10 samples to monitor analytical 

performance. 

 

2.3.2. GC-C-IRMS analysis 

Compound specific hydrogen isotopic compositions were determined for a subset of 

samples from the earliest Eocene (n = 11) and EECO (n = 5). We analysed long-chain 

(C27, C29) n-alkanes via gas chromatography-combustion-isotope ratio mass 

spectrometry (GC-C-IRMS) using a ThermoFisher Trace GC Ultra coupled to a 

ThermoFisher Scientific Delta V Isotope Ratio MS. The GC column used was a 

30 m × 0.25 mm i.d. fused silica column with ZB1 stationary phase. The H3
 factor was 

measured daily allowing isotope values to be corrected for protonation reactions 

occurring within the ion source of the mass spectrometer (Sessions et al 1999). The 

H3
 factor was typically below 5 ppm mV−1 and had a rate of change of less than 0.1 

day-1. The GC program was as follows: starting temperature 70 °C, rising at 10 °C/min 

to 300 °C, at which point the oven temperature was held stable for 8 min, giving a total 

analysis-time of 32 min. Triplicate runs of each sample were performed. The average 

standard error of the mean (SEM) value for a triplicate measurement was typically 2 

to 7‰. Each individual sample was co-injected with sacrificial compounds consisting 

of n-pentadecane and ethyl caprylate to condition the reactor. Measured isotope 

values were normalised by comparing the instrument's response to a suite of n-

alkanes with a known isotopic composition (B5 mix; supplied by A. Schimmelmann, 

Indiana University, USA) injected before and after each triplicate of sample runs. The 
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root mean square error determined by replicate measurements of the standard across 

the course of analyses was between 4 and 7 ‰. Normalised results are reported in 

standard per mil (‰) notation as δ2H values relative to Vienna Standard Mean Ocean 

Water (VSMOW) and calculated against calibrated H2 gas, introduced directly into the 

ion source. 

 

2.4. Lipid biomarker proxies  

We use biomarkers ratios to assess the source and maturity of organic matter. The 

average chain length (ACL) expresses the average number of carbon atoms for the 

long-chain odd-carbon numbered n-alkanes (Pancost & Boot 2004). The ACL is 

defined for n-alkanes using the following equation (Eglinton & Hamilton 1967): 

 

ACL= (25 x C25) + (27 x C27) + (29 x C29) + (31 x C31) + (33 x C33) / (25 + 27 + 29 + 31 

+ 33) [e.q. 1] 

 

The carbon preference index (CPI) reflects the dominance of odd-carbon-numbered 

relative to even-carbon-numbered n-alkane homologues (Bray & Evans 1961). 

Modern sediments exhibit high CPI values (> 3 to 30) (Diefendorf & Freimuth 2017). 

This value decreases over time due to diagenesis, approaching values of unity (= 1) 

in mature rocks and oils. The CPI is defined using the following equation (Bray & Evans 

1961): 
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CPI = 0.5 x ((C25 + C27 + C29 + C31 / C26 + C28 + C30 + C32) + (C27 + C29 + C31 + C33 / 

C26 + C28 + C30 + C32)) [eq. 2] 

 

The hopane ββ/(αβ+ββ) ratio is used to evaluate changes in sediment maturity. 

Modern sediments exhibit high hopane ββ/(αβ+ββ) ratios (up to 1) whereas thermally 

mature rocks and oils are characterised by lower hopane ββ/(αβ+ββ) ratios 

(Mackenzie et al 1980), although there can be exceptions (e.g. acidic peats) (Inglis et 

al 2018). With increasing maturation, C31 to C35 hopanes also 

undergo isomerisation at the C-22 position. An increase in 22S/(22R + 22S) values is 

characteristic of increasing thermal maturation (Mackenzie et al., 1980). 

 

2.5. Mass accumulation rates 

Biomarker mass accumulation rates (MARs; in ng/cm2/kyr-1) are calculated using 

linear sedimentation rate (LSR; cm/kyr), dry bulk density (ρ; g/cm3) (Dadey et al 1992) 

and biomarker abundance (ng/g dry sediment): 

 

MAR = LSR * ρ * biomarker abundance [eq. 3] 

 

Linear sedimentation rates (LSRs) are calculated between the age tie-points. To avoid 

age inversions (i.e., within Core 105R-1) we constructed LSRs based on a selection 

of tie points rather than incorporate all bio- and  magnetostratigraphic datums in the 

age model (see Supplementary Information). 

 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/isomerization
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2.6. Continental shelf area calculations 

We calculate continental shelf area using the Eocene-Oligocene (ca. 34 Ma) 

paleotopography published elsewhere (Hochmuth et al 2020a, Hochmuth et al 2020b, 

Paxman et al 2019). The same calculations are also conducted using Bedmap2 

(Fretwell et al 2013) for the present day. Continental shelf area for the Eocene is 

defined as being from the 0 m contour (e.g. shore of an ice free Antarctica) to the -

1000m bathymetric contour (Figure S1). We calculate continental shelf area for the 

region directly adjacent to Wilkes basin and for the whole Antarctic continent 

(Appendix) in order to understand potential (Terr)OC sequestration. 

     

2.7. Modelling simulations 

δ2Hwax is usually employed as a proxy for the isotopic composition of precipitation 

(δ2Hw). However, this integrates a combination of climatic changes including 

temperature, rainfall amount and characteristics, and atmospheric vapour transport. 

Here we use modelled δ2Hw obtained via the isotope-enabled Community Earth 

System Model version 1.2 (iCESM1.2) (Zhu et al 2020, Zhu et al 2019) to compare 

with our proxy reconstructions and to aide climatic interpretation of δ2Hw (Lee et al 

2007, Schmidt et al 2007). The iCESM1.2 simulations were performed following 

protocols of the Deep-time Model Intercomparison Project (Lunt et al 2021, Lunt et al 

2017) with the Eocene paleogeography and vegetation (56.0 - 47.8 Ma) (Herold et al 

2014) and atmospheric CO2 levels of ×1, ×3, ×6 and ×9 the preindustrial value (284.7 

ppmv). The different atmospheric CO2 levels span the range of proxy-derived CO2 

estimates for the early Eocene (Anagnostou et al, 2020). We also carried out a single 

pre-industrial simulation to isolate the non-CO2 component on δ2Hw (i.e., changes due 
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to paleogeography, vegetation, aerosols, and lack of continental ice sheets). All 

simulations were run at a horizontal resolution of 1.9 × 2.5° (latitude × longitude) for 

the atmosphere and land, and a nominal 1° for the ocean and sea ice. Of particular 

relevance to this study is the capability of iCESM1.2 to simulate the transport and 

transformation of oxygen and hydrogen isotope ratios (δ18O and δ2H) in the climate 

system (Brady et al 2019). Seawater δ18O and δ2H in the simulations were initialized 

from constant values of ‒1.0‰ and ‒8.0‰, respectively, to account for the absence 

of ice sheets in a hothouse climate (Hollis et al 2019). The simulations were run for 

more than 2000 years with the surface climate and water isotopes close to 

equilibration. The simulations capture the magnitude of Eocene global warmth, the 

reduction in the meridional gradient of sea-surface temperature, and the overall values 

and distribution of marine planktic foraminifera δ18O. Readers are referred to Zhu et 

al. (2019) and Zhu et al. (2020) for details of the experimental setup, equilibration 

state, and assessment of the simulation results. 

 

3. Results  

3.1. Bulk geochemistry 

Total organic carbon (TOC) content ranges between 0.1 and 1.5% (Figure 2). There 

is a gradual increase in TOC values between 54.4 and 53.5 Ma (Core 106R to 105R) 

followed by a gradual decrease thereafter (53.5-52.7 Ma, Core 104R to 101R). Bulk 

δ13Corg values range between -25.7 and -28.1 ‰ (Figure 2). The early Eocene record 

from Site U1356 exhibits several δ13Corg variations. These δ13Corg cycles and 

excursions have maximum values of up to -26‰ (in one case -25‰). The average 

δ13Corg values of -26 to -28 ‰ are typical for terrestrial organic matter (Hayes 1993), 
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although this value may be different in the Eocene (Sluijs & Dickens 2012). The 

cyclicity in the δ13Corg record is relatively pronounced in the lower part of the studied 

section (Cores U1356-105R and -106R; Figure 2), where TOC values are high enough 

(0.5 – 1.2 wt. %) to provide robust data. In the upper part of the early Eocene section 

(e.g., Cores 103R and -104R), TOC contents are often lower than 0.5 wt. % and yield 

a lower fidelity δ13Corg signal.   

 

3.2. Biomarker distributions and mass accumulation rates 

The N1 fraction contains a range of n-alkanes (C17 to C33) and is dominated by long-

chain homologues (C27 to C33). The abundance of long-chain n-alkanes ranges 

between ~1 and 250 ng/g (average: 92 ng/g; Fig. 2d). Long-chain n-alkane (plant-

derived OC; Figure 3d) mass accumulation rates (MARs; in ng/cm2/kyr-1) increase by 

two orders-of-magnitude between the earliest Eocene (~54 Ma) and the onset of the 

EECO (~53 Ma; Figure 3). CPI values (average: 2.8; Figure 4a) indicate that long-

chain n-alkanes have retained a biological odd-over-even predominance. In 

combination with high ACL values (~27 to 30; Supplementary Information), this 

confirms they are derived from terrestrial higher plants (Diefendorf & Freimuth 2017).  

 The apolar fraction also contains a range of bacterial-derived hopanes (C27 to 

C32) and hopenes (C27 to C30). The abundance of hopanes ranges from ~1 to 191 ng/g 

(average: 54 ng/g) and exhibits a significant linear correlation with long-chain n-alkane 

abundance (r2 = 0.81, p < 0.001; Figure S2). Hopane (soil- and peat-derived OC; 

Figure 3d) mass accumulation rates (MARs; in ng/cm2/kyr-1) increase by two orders-

of-magnitude between the earliest Eocene (~54 Ma) and the onset of the EECO (~53 

Ma; Figure 3). The dominant hopanes are (22R)-17β,21β (H)-hopane (C30), (22R)-
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17α,21β (H)-homohopane (C31) and (22R)-17β,21β (H)-homohopane (C31). The C31 

hopane ββ/(αβ+ββ) isomerisation ratio ranges between 0.31 and 0.82 (average: 0.65; 

Figure 4b). The earliest Eocene (54.3 to 53.7 Ma) samples (Core 106R) are 

characterised by the lowest C31 ββ/(αβ+ββ) indices (0.4 to 0.6). C31 ββ/(αβ+ββ) indices 

increase during the early Eocene (~53.7 Ma) and remain higher (~0.5 to 0.8) thereafter 

(Cores 105R to 101R) with the exception of two relatively low values between 949 and 

950 mbsf (Core 101R; Figure 4b). C30 ββ/(αβ+ββ) indices were stable and high (~0.7-

0.8). C31 hopane 22S/(22S + 22R) ratios were stable and low (<0.1).  

Our analyses are combined with previously published Branched-versus-

Isoprenoid Tetraether (BIT) values (Bijl et al 2013). BIT values range between 0.16 

and 0.62 (average: 0.35) and exhibit higher values (> 0.4 to 0.5) during the EECO 

(Core 105R to 102R; Supplementary Information) compared to the earliest Eocene 

(Core 106R).  

 

3.3. Long-chain n-alkane δ2H values 

Long-chain n-alkane δ2H (δ2Hwax) values were determined for a subset of samples (n 

= 15) deposited during the earliest Eocene (54.3 to 53.9 Ma) and across the EECO 

(53.3 to 49.1 Ma). C27 n-alkane δ2H values average −190‰ (n = 15, standard error of 

the mean [SEM]: ± 4.0‰) with a range from −140 to −222‰ (Figure 5a). C29 n-alkane 

δ2H values average −194‰ (n = 15, SEM: ± 2.9‰) with a range from −158 to −224‰ 

(Figure 5a). Both the C27 and C29 n-alkanes co-vary and exhibit a positive linear 

relationship (r2
 = 0.78, p < 0.001), indicating that they are derived from a similar source 

(i.e. higher plants) (Figure S3). 
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4. Discussion 

4.1. Enhanced TerrOC burial on the East Antarctic margin during the EECO  

The export of terrestrial OC along the terrestrial-aquatic continuum can be evaluated 

by analysing the distribution of lipid biomarkers within the Wilkes Land sediment 

samples. The hydrocarbon distribution is dominated by long-chain n-alkanes with an 

odd-over-even predominance. High CPI values (~3; Figure 4a) together with the 

dominance of long-chain n-alkanes (relative to shorter-chain homologues) confirms 

that they are derived from the epicuticular wax of terrestrial higher plants (Eglinton & 

Hamilton 1967). The hydrocarbon assemblage also contains abundant bacterial-

derived hopane biomarkers. Hopanes can be produced in terrestrial and marine 

environments by a range of bacteria (Talbot & Farrimond 2007). However, the positive 

linear relationship between long-chain n-alkanes (terrestrial higher plants) and 

hopanes (r2 = 0.81; p < 0.001; Figure S2) indicates that here, both are sourced from 

the terrestrial biosphere.  

Long-chain n-alkane (plant-derived OC; Figure 4d) and hopane (soil-derived 

OC; Figure 4c) mass accumulation rates (MARs; in ng/cm2/kyr-1) increase by two 

orders-of-magnitude between the earliest Eocene (~54 Ma) and the onset of the EECO 

(~53 Ma).  This significant increase indicates enhanced burial of plant- and soil OC 

during the early Eocene, with highest accumulation rates during the EECO. Note that 

we performed the same calculations assuming a constant LSR (1.82 cm/year, i.e., the 

average LSR rate) and find similar MARs during the EECO (~53 Ma; Figure S4-5). 

Delivery of TerrOC into the marine realm is consistent with the high abundance of 

terrestrial palynomorphs (i.e., pollen and spores; (Contreras et al 2013, Pross et al 

2012) and other terrestrial biomarkers (including high BIT indices; Pross et al., 2012; 

Bijl et al., 2013; Figure 3a) in the same sediments. These findings are analogous to 
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those observed in modern (high-latitude) environments, where large river systems in 

northern Eurasian and North American (Hilton et al., 2015; Sparkes et al., 2015; 

Semiletov et al., 2011; Guo et al., 2004) are capable of transporting large quantities of 

TerrOC from soils into the marine realm.   

The earliest Eocene sediments also contain an unusually high abundance of 

the ‘thermally-mature’ C31 17α,21β(H) hopane stereoisomer and exhibit relatively low 

C31 hopane ββ/(αβ+ββ) ratios (0.4-0.7; Figure 4b). This implies delivery of biospheric 

(i.e., thermally immature) and petrogenic OC (i.e., thermally mature) into the marine 

realm. Input of petrogenic OC should be assosciated with the delivery of other 

thermally-mature hopanes (e.g., C30 αβ hopanes). However, C30 hopane ββ/(αβ+ββ) 

values remain relatively high (>0.7), implying minimal petrogenic OC input. Modern 

acidic bogs can be dominated by the ‘thermally mature’ C31 17α,21β(H) isomer (Inglis 

et al 2018), but typically lack other thermally-mature hopanes (e.g., C30 αβ hopanes; 

Inglis et al., 2018). We therefore argue that the occurrence of the ‘thermally mature’ 

C31 17α,21β(H) stereoisomer within an otherwise immature hopane assemblage 

represents input of acidic peat into the marine realm. The occurrence of the ‘thermally 

mature’ C31 17α,21β(H) stereoisomer within recent coastal marine sediments has also 

been interpreted to reflect input of peat from the surrounding catchment (Smittenberg 

et al 2004). This hypothesis helps explain why C30 and C29 hopane ββ/(αβ+ββ) values 

remain relatively high throughout (>0.7). It is also consistent with the lack of other 

thermally-mature biomarkers (e.g. αβ 22S-hopanoid isomers, bisnorhopanes, 

benzohopanes, triaromatic steroids) and relatively high CPI values (>3; Figure 4a).   

Input of acidic peat into the marine realm is consistent with the occurrence of 

Stereisporites spores in the Site U1356 sediments (Pross et al., 2012; Figure S6) that 

can be attributed to the Sphagnaceae family, which today only comprises the genus 



A
ut

ho
r 

M
an

us
cr

ip
t 

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

 

UOB Open 

Sphagnum (commonly known as peat moss). Despite the low abundances registered, 

the occurrence of Stereisporites spores in the Site U1356 sediments appears 

noteworthy for various reasons. Firstly, Stereisporites spores are relatively rare or 

absent in early Cenozoic sediments (see Inglis et al., 2015 and ref. therein). Secondly, 

spores are generally strongly underrepresented in sporomorph assemblages from 

marine sediments due to the selective nature of sporomorph transport as a function of 

transport distance (Contreras et al 2014, Moss et al 2005). As such, even their 

occurrence in low numbers (e.g., ~1% of total sporomorph assemblage) can have 

substantial ecological significance and points towards the existence of peatlands 

and/or forested mires within the Site U1356 catchment area. The input of acidic peat 

into the marine realm is also consistent with the results of biome-based modelling 

suggesting that ~15–20% of Antarctica was capable of supporting wetland and peat 

formation during the Eocene (DeConto et al 2012). 

 

4.2. Quantifying TerrOC burial on the East Antarctic margin during the EECO 

Lipid biomarkers indicate that a considerable fraction of the OC pool on the early 

Eocene Wilkes Land continental margin is derived from the terrestrial biosphere. 

However, the relative proportion of terrestrial vs marine OC must be known in order to 

quantify TerrOC burial (Weijers et al 2009). In modern settings, bulk OC δ13C values 

(δ13Corg) can discriminate between marine OC (13C-enriched) and vascular plant 

and/or soil OC (13C-depleted). However, marine OC can be relatively 13C-depleted 

during the Eocene (up to 7‰ relative to modern) (Sluijs & Dickens 2012) due to 

enhanced fractionation under higher CO2 (Freeman & Hayes 1992).  

Here we use BIT indices (Hopmans et al 2004) to characterise the fraction of 

terrestrial vs marine OC and employ a two end-member mixing-model: 
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fterrestrial = (Xsample – Xmarine) / (Xterr – Xmarine) * 100 (eq. 4) 

 

where fTerrestrial is the terrestrial OC fraction and XSample is the BIT index for the sediment 

sample (following Weijers et al., 2009). The marine- (Xmarine) and terrestrial end-

member (Xterr) for BIT is 0 and 0.91, respectively (Hopmans et al., 2004). The BIT 

index can reach a theoretical value of 1. However, BIT values in globally-distributed 

soil samples average 0.91 (Weijers et al 2006). Using our mixing-model approach, we 

estimate that the proportion of terrestrial OC in the Wilkes Land sediments ranges 

between 20% (minimum) and 65% (maximum). As the BIT index captures the 

proportion of soil OC (rather than soil and plant OC), this approach may underestimate 

the proportion of terrestrial OC in the Wilkes Land sediments. The BIT index has been 

shown to be controlled strongly by crenarchaeol—rather than brGDGT—

concentrations, and may lead to a decoupling between BIT values and other terrestrial 

OC tracers (Smith et al 2012). However, the fractional abundance of crenarchaeol is 

stable throughout the early Eocene (Bijl et al., 2013), arguing that BIT is largely 

controlled by changes in brGDGT abundance. The BIT index can also be influenced 

by in-situ marine or fluvial brGDGT production. However, brGDGTs reflect typical soil-

distributions, with no abnormal Isomerization Ratio or #Ringstetra values (Sinninghe 

Damsté 2016). This suggests negligible marine in situ or river production) and is 

consistent with other early Eocene sites in the southwest Pacific Ocean (e.g., Bijl et 

al., 2021). 

The proportion of TerrOC can then be multiplied alongside TOC MARs to 

provide a first-order approximation of TerrOC sequestration along the Wilkes Land 

margin. This first requires an estimate of the Wilkes Land continental shelf area 
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(118,675 km2). Here we assume that the early Eocene shelf was similar to that of the 

latest Eocene (Paxman et al 2019) and was significantly smaller than the present day 

continental shelf area (170,731 km2).  We also assume that the sediment package 

thickness (and thus, %TerrOC) is uniform. Assuming that 20 to 65% of the OC pool in 

the Wilkes Land sediments is terrestrial-derived (see above), this implies the burial of 

20 to 72 PgC of TerrOC the depositional interval (54.3 and 51.5 Ma). If we assume 

similar climate, vegetation distributions and transport mechanisms across the entire 

Antarctic shelf area (3,947,850 km2), the potential mass of TerrOC sequestered is 

much larger (~410 to 1300 PgC) and equates to a burial flux of 0.14-0.46 TgC/yr. 

These estimates are relatively modest compared to highly-erosive mountainous river 

catchments (e.g., Taiwan; > 8 TgC/yr; Kao et al,. 2014) and large river systems (e.g., 

the Mackenzie River; 2.2 (+1.3/-0.9) TgC/yr; Hilton et al., 2015). To refine these 

estimates, additional studies at different localities are required. Additional seismic data 

may help to improve estimates of offshore sediment thickness, whilst the application 

of binary (or ternary) mixing models based on other geochemical proxies (e.g,. C/N 

ratios, n-alkane/alkenones ratios) will help to refine our estimates of TerrOC burial 

(see Weijers et al., 2009). Until then, our estimates should be treated with caution. 

Although these estimates incorporate various uncertainties, our work highlights 

the potential importance of continental margins as depocentres for TerrOC burial 

during the early Eocene. This is consistent with High Arctic continental shelf sediments 

deposited between the Palaeocene-Eocene Thermal Maximum (PETM; ~56 Ma) and 

Eocene Thermal Maximum 2 (ETM2; ~53 Ma), which are dominated by long-chain n-

alkyl lipids and low hydrogen indices (Boucsein & Stein 2009, Weller & Stein 2008). 

Terrigenous input–which is strongly correlated with TerrOC export in modern settings 

(e.g., Galy et al., 2015)–also increases during the EECO, including in New Zealand 
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(e.g. Mead Stream) (Nicolo et al 2007, Slotnick et al 2012) and the North Iberian 

margin (Payros et al 2015). Enhanced TerrOC burial may be further promoted by 

larger, flatter drowned shelf areas during the Eocene (Bowen 2013, Sømme et al 

2009). Taken together, this suggests an important role for continental shelves in 

storing terr(OC) during the Eocene. This is especially important given the evidence for 

low (terr)OC burial in open ocean Eocene environments (Olivarez Lyle & Lyle 2006). 

 

4.3. Hydroclimate regulates TerrOC export during early Eocene 

Enhanced TerrOC burial in coastal marine sediments could be driven by expansion of 

the terrestrial biosphere during the EECO. However, TerrOC export is largely 

controlled by precipitation (Hilton 2017) and the capacity of rivers to erode and 

transport TerrOC (Galy et al 2015). Here we explore whether hydroclimate regulates 

OC export from the terrestrial biosphere. To assess this, we use the hydrogen isotopic 

composition (δ2H) of leaf wax (C27 and C29 n-alkane) biomarkers in a subset of 

samples deposited during the earliest Eocene (54.3 to 53.9 Ma) and EECO. C27 and 

C29 n-alkane δ2H values average -190 and -195‰, respectively, and are comparable 

to those reported from other early Eocene-aged sites from similar latitudes (Speelman 

et al 2010). The isotopic composition of precipitation (δ2Hw) is estimated by assuming 

an apparent fractionation factor (2Hɛwax/w) which integrates a range of variables (e.g. 

soil- and/or leaf water evapotranspiration, biosynthetic effects, vegetation type). 

Theoretical models have incorporated evaporative 2H-enrichment of soil water into 

predictions of 2ɛwax/w (Konecky et al 2019, Smith & Freeman 2006). However, in 

settings with extensive evaporation, woody plants take up rainwater opportunistically 

via different rooting strategies (Fan et al 2017), resulting in minimal xylem water 2H-
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enrichment. Although leaf water 2H-enrichment is more variable (Daniels et al 2017, 

Feakins et al 2016, Kahmen et al 2013), it is significantly reduced in warm and wet 

climates (Feakins et al 2016). As the East Antarctic margin was characterised by 

elevated temperatures (> 16 ±5 °C) and high precipitation (>1300-1600 mm/year) 

(Pross et al 2012), the impact of leaf water 2H- enrichment is likely minimal.  

Changes in the plant community can also influence the apparent fractionation 

between δ2Hwax and δ2Hw values. To account for the impact of vegetation isotope 

effects upon leaf wax δ2H values, we developed a pollen-corrected fractionation factor 

(2Hɛwax/w-corr) using a three endmember mixing model (following Feakins 2013). This 

includes C3 gymnosperms, C3 dicots and pteridophytes (i.e. ferns) and is defined as:  

 

2Hɛwax/w-corr = fgymnosperm * ɛgymnosperm] + [fdicot * ɛdicot] + [fpteridophytes * ɛpteridophytes] (eq. 5) 

 

Where ɛ is based on the mean fractionation factor in modern plant types (Sachse et 

al 2012) and f is based upon the percentage of pollen in adjacent samples (Contreras 

et al 2013, Pross et al 2012). Our pollen-corrected fractionation factor ranges between 

-107 and -113‰ and is higher than assumed in some Eocene studies (-130‰) 

(Handley et al 2012, Pagani et al 2006) but similar to an updated global dataset of 

2Hɛwax/w in modern systems (e.g., -121‰ for C29 n-alkane; McFarlin et al., 2019). When 

our pollen-corrected fractionation factor is applied to our leaf wax dataset, we obtain 

δ2Hw–corr values which average -82‰ (C27 n-alkane; Figure 5b) and -83‰ (C29 n-

alkane; Figure 5b). These values are 2H-enriched relative to modern values (-99‰; 

based on iCESM1.2 pre-industrial x1 CO2 simulation; see also below). There are 

several reasons for this. Firstly, local air temperatures will yield more 2H-enriched 
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water vapour (a temperature effect) (Poulsen et al 2007). Secondly, under warmer 

climates, decreased rainout efficiency at the low-latitudes (due to a reduction in vertical 

moisture transport) will result in more 2H-enriched precipitation at the mid-to-high 

latitudes (e.g., Pagani et al 2006). Our pollen-corrected δ2Hw values exhibit 

considerable variability in the earliest Eocene interval (ca. 30 to 40‰; Figure 5). This 

may represent changes in the hydroclimate regime. However, it could also record 

changes in OC source region. Indeed, sporomorph distributions indicate that TerrOC 

is derived from both the lowlands and higher-altitude hinterlands (Pross et al., 2012). 

Although leaf waxes typically provide a spatially-integrated perspective, the spatial and 

temporal integration may vary by compound type and/or change through time. Future 

work using other compound classes (e.g,. long-chain n-alkanoic acids) may help to 

differentiate between lowland (proximal) and highland (distal) OC sources (see 

Feakins et al 2018, Hemingway et al 2016). 

Our pollen-corrected δ2Hw values indicate higher average δ2Hw values (e.g., -

66‰ for the C29 n-alkane) during the EECO compared to the earliest Eocene (e.g., 

e.g., -90‰ for the C29 n-alkane; Figure 5b). This is consistent with an increase in 

poleward moisture transport in response to higher CO2 and higher temperatures. To 

confirm that the higher average δ2Hw values are due to higher CO2 and/or higher 

temperatures, we calculate the precipitation-amount weighted δ2Hw in isotope-enabled 

CESM simulations with a range of atmospheric CO2 concentrations (×1, ×3, ×6 and 

×9 the preindustrial level; see section 2.7). The modelled δ2Hw exhibits a monotonic 

increase with the CO2 concentrations in the simulations with values of -106‰ in ×1 

CO2, -96‰ in ×3 CO2, -91‰ in ×6 CO2 and -81‰ in ×9 CO2 (Figure 6b). This δ2Hw 

sensitivity to CO2 levels in isotope-enabled climate models has been attributed to 

warmer temperatures and/or the associated reduction in isotopic rainout at low-
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latitudes (Poulsen et al., 2007; Speelman et al., 2010). The qualitatively consistent 

results between model simulations and proxy data supports our interpretation that the 

observed increase in proxy-inferred δ2Hw values between the earliest Eocene and 

EECO (~20 to 40‰) is attributable to a CO2-induced warming. There is also close 

data-model agreement in the absolute δ2Hw values (Figure 6), supporting our data-

based reconstructions. The impact from non-CO2 boundary conditions on δ2Hw can 

also be evaluated by comparing iCESM1.2 Eocene ×1 simulations against the pre-

industrial simulation. This shows that the combined non-CO2 boundary conditions (i.e., 

paleogeography, vegetation, aerosols, removal of continental ice sheets) decrease 

δ2Hw by ~ 7‰. This implies that non-CO2 boundary conditions exert a small secondary 

control on δ2Hw values at our site. The iCESM1.2 simulations (x3, x6 and x9 PI CO2 

simulations) also exhibit high MAP estimates (~1310, 1520, and 1720 mm/year, 

respectively; Figure 7c-d) during the early Eocene. These are higher than previous 

simulations (Carmichael et al 2016) but more consistent with existing sporomorph-

based estimates (>1300 mm/year [paratropical rainforest biome] and >1600 mm/year 

[temperate rainforest biome]; Figure 7a-b) (Pross et al 2012). Slightly lower values 

(800–1350 mm/year) have been reconstructed for Site U1356 based on climofunctions 

applied to detrital geochemistry (Passchier et al 2013) and likely reflects the 

differences in the catchment sourcing.  

Taken together, our results reveal that EECO was characterised by enhanced 

poleward moisture transport relative to the earliest Eocene (~54 Ma; Figure 5-6). The 

EECO also coincides with an interval of enhanced delivery of terrestrial OC into the 

marine realm (Figure 3), implying a causal link between the hydrological cycle and 

TerrOC burial at our site. Crucially, TerrOC burial can help to remove the atmospheric 

CO2 and could serve as a negative feedback to decrease the surface temperature 
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during intervals of global warmth. Compared to the silicate weathering feedback 

(which operates on the timescales of a million years), the organic carbon cycle 

operates over shorter timescales. As such, it could also be an important negative 

feedback during shorter-term warming events (e.g., hyperthermals). 

 

5. Conclusions 

The transport and burial of biospheric organic carbon in coastal marine sediments is 

an important carbon sink in modern settings. However, the relative importance of this 

feedback in past warm climates remains a major gap in our understanding. Using a 

multi-proxy approach, we find a significant increase in the accumulation rate of 

terrestrial biomarkers in early Eocene coastal marine sediments from offshore East 

Antarctica. As the early Eocene Antarctic continent was covered by a vast terrestrial 

OC reservoir (> 1015 PgC), the transport and subsequent burial of biospheric organic 

carbon in coastal marine sediments could have acted as a key CO2 sink. This study 

highlights the importance of the terrestrial biosphere during past warm climates and 

its potential role as a negative feedback to stabilize the surface temperature. 
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Captions 

 

Figure 1: Continental configurations of the Australian sector of the Southern Ocean 

during the early Eocene (subchron C24n; 53.8 Ma). Map shows the position of the 
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study site (U1356). Dark grey areas reflect present day shorelines, and light grey areas 

are submerged continental blocks above 3,000 m water depth. Modified from Bijl et 

al., 2013. 

 

Figure 2: Organic carbon burial along the East Antarctic margin during the early 

Eocene. a) δ13Corg (‰), b) total organic carbon (TOC; wt. %), c) bacterial-derived 

hopanoids (ng/g), d) plant-derived long-chain n-alkanes (ng/g).  Black segments 

indicate intervals of no core recovery. 

 

Figure 3: Enhanced terrestrial organic carbon burial along the East Antarctic margin 

during the Eocene. a) branched-versus-isoprenoidal tetraether (BIT) index (Bijl et al., 

2013), b) total organic carbon (TOC; g/cm2/kyr-1) mass accumulation rate (MAR), c) 

hopanioid MAR (ng/cm2/kyr-1), d) long-chain n-alkane MAR (ng/cm2/kyr-1).  Note that 

(a), (b) and (c) are on a logarithmic scale. Black segments indicate intervals of no core 

recovery. 

 

Figure 4: Lipid biomarker thermal maturity ratios in early Eocene-aged Wilkes Land 

sediments. a) long-chain n-alkane carbon preference index (CPI), b) C31 hopane 

ββ/(αβ+ββ) indices. Black segments indicate intervals of no core recovery. 

 

Figure 5: Enhanced poleward moisture transport to the East Antarctic margin during 

the early Eocene). a) δ2Hwax estimates inferred from the C27 n-alkane (orange) and C29 

n-alkane (blue). Error bars represent ± 1σx̅ (following Polissar and D’Andrea, 2014). 

b) pollen-corrected proxy-derived δ2Hw estimates inferred from the C27 n-alkane 
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(orange) and C29 n-alkane (blue). Error bars indicate ±1σ propagated errors of the 

analytical error and the fractionation uncertainty (following Feakins, 2013). Here we 

use the standard deviation from modern plant type groups (i.e., C3 angiosperms, C3 

gymnosperms, ferns; Sachse et al., 2012) to calculate the fractionation uncertainty 

(see Appendix). 

 

Figure 6: Reconstructed and simulated δ2Hw on the East Antarctic margin during the 

early Eocene: a) δ2Hw-corr estimates inferred from the C27 n-alkane (light grey) and C29 

n-alkane (dark grey). Dashed line represents median value. Box represents 1st and 3rd 

interquartile range. Whiskers represent 95% confidence interval. b) model-derived 

δ2Hw estimates inferred from iCESM1.2. Open triangle represents pre-industrial x1 

CO2 simulation. Closed circles represent Eocene simulations at four different CO2 

levels (x1, x3, x6 and x9 pre-industrial CO2).  

 

Figure 7: Long-term hydroclimate variability along the East Antarctic margin during 

the early Eocene. a) mean annual precipitation (MAP) estimates for the temperate 

rainforest biome based on bioclimatic analysis (Pross et al., 2012), b) MAP estimates 

for the paratropical rainforest biome based on bioclimatic analysis (Pross et al., 2012), 

c) and d) MAP estimates obtained via iCESM1.2 for four different CO2 levels (x1, x3, 

x6 and x9 pre-industrial CO2). Whiskers represent precipitation estimates during 

summer (JJA) and winter (DJF) months. Black segments indicate intervals of no core 

recovery. 

 



1
6
0
°E

1
8
0
°

1
6
0
°W

40°S

6
0
°S

14
0°
W

12
0°W

120°E

140°E

40
°S

12
0°W

120°E

6
0
°S

1
6
0
°W

1
6
0
°E

Antarctica

Australia
NZ

U1356

A
ut

ho
r 

M
an

us
cr

ip
t  

 

 

 

 

 

This is the author manuscript accepted for publication and has undergone full peer review but has
not been through the copyediting, typesetting, pagination and proofreading process, which may
lead to differences between this version and the Version of Record. Please cite this article as doi:
10.1029/2021PA004348.

This article is protected by copyright. All rights reserved.

https://doi.org/10.1029/2021PA004348
https://doi.org/10.1029/2021PA004348
https://doi.org/10.1029/2021PA004348


A
ut

ho
r 

M
an

us
cr

ip
t 

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

d)

-28

-27

-26

-25

1
3

δ
C

 (‰
)

o
rg



A
ut

ho
r 

M
an

us
cr

ip
t 

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

10

100

10000.1

1

10

1

10

100

1000

H
o

p
a

n
e

 M
A

R
 

2
(n

g
/cm

/kyr)

2
T

O
C

 M
A

R
 (

g
/c

m
/k

yr
)

L
o
n
g
-c

h
a
in

 n
-a

lk
a
n
e
 M

A
R

 
2

(n
g
/c

m
/k

yr
)

101R 104R 105R 106RCore

YpresianStage

0.2

0.4

0.6

B
IT

d)

Age (Ma)

52 53 54



A
ut

ho
r 

M
an

us
cr

ip
t 

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

0.0

0.2

0.4

0.6

0.8

1.0
1

2

3

4

101R 104R 105R 106R Core

Ypresian Stage

C
 h

o
p

a
n

e
 

3
1

β
β

/(
α
β

+
β
β

) 
ra

tio
s

C
a

rb
o

n
 p

re
fe

re
n

ce
 in

d
e

x 

a)

b)

Age (Ma)

52 53 54



A
ut

ho
r 

M
an

us
cr

ip
t 

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

-140

-100

-60

-20

C n-alkane27 

C n-alkane29 

-240

-200

-160

-120

101R 104R 105R 106RCore
YpresianStage

Age (Ma)

52 53 54

P
o

lle
n

-c
o

rr
e

ct
e

d
 

2
δ

H
 (
‰

)
w

2
δ

H
 (‰

)
w

a
x

a)

b)

C n-alkane27 

C n-alkane29 



A
ut

ho
r 

M
an

us
cr

ip
t 

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

-125

-100

-75

-50

-25

 
2

δ
H

 (
‰

)
w

C n-alkane27 C n-alkane29 

x1 CO2

Eocene 

Modern

-125

-100

-75

-50

-25

2
δ

H
 (‰

)
w

iCESM1.2

x1 CO2

x3 CO2

x6 CO2

x9 CO2

a) b)



A
ut

ho
r 

M
an

us
cr

ip
t 

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

1000

2000

3000

101R 104R 105R 106RCore

YpresianStage

M
A

P
 

(m
m

/y
e

a
r)

1000

2000

3000

M
A

P
 

(m
m

/y
e

a
r)

b) Paratropical rainforest biome

a) Temperate rainforest biome

x1
 C

O
2

x3
 C

O
2

x6
 C

O
2

x9
 C

O
2

JJA

DJF

Annual
Key:

3000

1000

2000

3000
M

A
P

 
(m

m
/ye

a
r)

1000

2000 M
A

P
 

(m
m

/ye
a

r)

c) 

d) JJA

DJF

Annual
Key:

Age (Ma)

52 53 54


