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Abstract

Recently, a new type of Caenorhabditis elegans associative learning was

reported, where nematodes learn to reach a target arm in an empty T-maze,

after they have successfully located reward (food) in the same side arm of a

similar, baited, training maze. Here, we present a simplified mathematical

model of C. elegans chemosensory and locomotive circuitry that replicates

C. elegans navigation in a T-maze and predicts the underlying mechanisms

generating maze learning. Based on known neural circuitry, the model circuit

responds to food-released chemical cues by modulating motor neuron activity

that drives simulated locomotion. We show that, through modulation of inter-

neuron activity, such a circuit can mediate maze learning by acquiring a turn-

ing bias, even after a single training session. Simulated nematode maze

navigation during training conditions in food-baited mazes and during testing

conditions in empty mazes is validated by comparing simulated behaviour

with new experimental video data, extracted through the implementation of a

custom-made maze tracking algorithm. Our work provides a mathematical

framework for investigating the neural mechanisms underlying this novel

learning behaviour in C. elegans. Model results predict neuronal components

involved in maze and spatial learning and identify target neurons and poten-

tial neural mechanisms for future experimental investigations into this learn-

ing behaviour.
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1 | INTRODUCTION

The nematode Caenorhabditis elegans is broadly used to
address key neurobiology questions (Sengupta &
Samuel, 2009). Despite having only 302 neurons

Abbreviations: DMN, dorsal motor neuron; KNN, k-nearest
neighbour; NGM, nematode growth medium; SVD, singular value
decomposition; TRP, transient receptor potential; TRPC, transient
receptor potential—canonical; TRPN, transient receptor potential—no
mechanoreceptor potential C; VMN, ventral motor neuron; XMN,
ventral or dorsal motor neuron.
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(hermaphrodites), C. elegans are capable of non-
associative (Rankin et al., 1990; Rankin & Broster, 1992)
and associative learning (Ardiel & Rankin, 2010; Rankin
et al., 1990), mainly in the context of chemical cues.
Moreover, with their nervous system mapped (Cook
et al., 2019; Varshney et al., 2011; White et al., 1986) and
many of the neuronal connections characterized
(Arnatkeviciute et al., 2018; Towlson et al., 2013),
C. elegans have been successfully used to dissect decision
making neuronal circuits (Faumont et al., 2012; Ghosh
et al., 2016; Jarrell et al., 2012; Tanimoto et al., 2017).

Lately, mathematical models have been employed to
describe and capture neuronal dynamics (Ghosh
et al., 2016; Kato et al., 2014; Roberts et al., 2016; Scholz
et al., 2017; Tanimoto et al., 2017) in several C. elegans
behaviour studies, in a way complementary to experi-
mental efforts. In many cases, mathematical modelling is
the main means applied to untangle complex neuronal
interactions, feeding strategies or locomotion dynamics
(Calhoun et al., 2014; Izquierdo & Beer, 2016;
Izquierdo & Lockery, 2010; Klein et al., 2017;
Mirzakhalili et al., 2018; Soh et al., 2018). Interestingly,
although learning in C. elegans has been well established
and extensively characterized, there are few studies that
take advantage of mathematical modelling in their effort
to understand the underlying mechanisms (Demin &
Vityaev, 2014; Hasani et al., 2017). Most of these studies

focus either on non-associative learning, that is, habitua-
tion (Hasani et al., 2017) or on improved chemotaxis
(Demin & Vityaev, 2014), often without taking into
account the biological structure of the governing neuro-
nal circuits. However, mathematical models of neuronal
circuits have been recruited to explore learning in other
systems (Garst-Orozco et al., 2014; Wei et al., 2017) or as
stand-alone computational work (Maass et al., 2007).

Recently, our group (Gourgou et al., 2021) character-
ized a new type of learning in C. elegans, using a custom-
made T-maze platform. In this new behaviour, young
adult C. elegans learn to reach a target arm in an empty
maze, after successfully locating reward (food) in a simi-
lar training maze (Figure 1). More specifically, C. elegans
nematodes are initially challenged with locating food
(Escherichia coli OP50), placed at the end of one maze
arm (left side arm in Figure 1b schematic). Almost 79% of
scored worms locate food successfully. When these nema-
todes are placed in a second, empty T-maze, �75% of
scored nematodes reach the same side maze arm, even
though no reward is present. It was shown (Gourgou
et al., 2021) that functional chemosensation plays a lead-
ing role in this food-triggered form of associative learning
and that other sensory modalities, for example,
mechanosensation and proprioception, are also involved.
In addition, it was suggested that C. elegans are likely to
use a mixed learning strategy by utilizing both the

F I GURE 1 The maze learning experiment. (a) Schematic of the control experiment, where young adult Caenorhabditis elegans are

placed at the bottom of an empty T-maze and are allowed to explore freely. A decision is considered made when they reach the end of either

the left or the right maze arm. (b) Schematic of the Training/Testing experiment, where young adult C. elegans are placed at the bottom of a

T-maze, which contains food (reward) at one end, and are allowed to explore freely. Nematodes that locate the reward are then tested in a

second, empty T-maze. A decision is considered made when worms reach the end of either the left or the right maze arm. Modified from

Gourgou et al. (2021). In blue: the functional corridors of the maze, light blue: auxiliary areas, allowing for extra room to insert the bacterial

food (on either the left or right maze end) and to place the worm in (bottom of the maze—starting point). (c) % of scored worms in Control

and Training/Testing experiments. Number of scored worms: ncontrol = 70, nTraining = 874, nTesting = 239, p values of binomial

probability test provided above bars (see Gourgou et al., 2021, Figures 1 and S2)
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structural features of the maze and proprioceptive cues.
The exact mechanism and neuronal circuits that steer
this behaviour have not been identified.

Here, we present a mathematical model of a simpli-
fied C. elegans chemosensory and locomotor neuronal
circuitry, activated by the food-released chemical cues,
that drives locomotion in a food-baited training maze.
We show that, under certain assumptions, such a circuit
can produce the learned behaviour, as a result of an
induced turning bias, even after a single training session.
We rely on experimental results reported by Gourgou
and colleagues (Gourgou et al., 2021), and we verify the
realistic nature of simulated worm behaviour using new
experimental video data, extracted through the imple-
mentation of a new, custom-made tracking algorithm,
especially developed for the maze environment. Our
work provides a mathematical framework for investigat-
ing the neural mechanisms underlying this novel learn-
ing behaviour in C. elegans. Model results replicate key
traits of nematode behaviour inside the maze, such as
percentage of nematodes that locate the bait, percentage
of nematodes that learn, their exploratory behaviour and
the paths followed during maze navigation. Additionally,
model results predict neuronal components involved in
maze learning, specifically interneurons that monitor
and code for path curvature based on proprioception.
Lastly, the model serves as a guide for future experimen-
tal work by identifying target neurons and neural mecha-
nisms involved in this learning behaviour and provides a
foundation for modelling the experimentally observed
impact of ageing on this behaviour.

2 | METHODS

2.1 | Model development

The main goal of the proposed model is to provide a sim-
plified mathematical framework for the neuronal cir-
cuitry that steers C. elegans navigation and learning in a
maze environment (Figure 1) (Gourgou et al., 2021).

The model expands upon a previously published and
extensively tested C. elegans sensorimotor model
(Cohen & Sanders, 2014; Ghosh et al., 2016). For simplic-
ity, we treated the worm as a single point at the head,
with its body following behind. This allows us to examine
sensory input at one specific point, for a clear view of the
worm’s sensorimotor properties.

Each simulated worm was placed in a T-shaped maze
inscribed in a 5 � 5 mm square, with functional corridors
1 mm wide (Figure 2a). Simulated nematodes use only
the functional corridors of the maze.

In building the model, we introduce several assump-
tions. First, unlike living worms that often climb up the
maze walls (Gourgou et al., 2021) or even burrow them-
selves into the agar, model nematodes travel only in two
dimensions, crawling on the maze floor without penetrat-
ing the wall. This, combined with the absence of indeci-
sive, injured or escaping worms, which occasionally
come up in experiments, eliminates censored data.

Second, model nematodes always start the simulation
at the bottom of the maze (starting point), oriented in a
random direction up the maze corridor (Figure 2a). This
excludes from the simulations much of the exploring

F I GURE 2 The maze environment. (a) Schematic showing the dimensions of mazes used in experiments, in mm; blue: the functional

corridors of the maze, light blue: auxiliary areas (Figure 1). For the simulations, we set the food source location to be 0.4 mm from the end of

either the left or right functional corridor of the maze, as indicated by the red line and the asterisk. The simulated worm is not permitted in

the auxiliary areas of the simulated mazes. (b) Visualization of the strength of the signal detected by the modeled chemosensory neuron

(Figure 3), with food placed on the left maze end. The worms start detecting food approximately 2 mm above the beginning of the vertical

corridor (dashed line). (c) Three-dimensional plot of the food gradient in the maze. Because the modeled chemosensory neuron (Figure 3) is

sensitive to changes in the food gradient (Equations 2 and 5), it is important to understand what the gradient looks like, to identify which

areas are critical for the worm to locate the food. X, Y axes show maze floor coordinates (in mm); Z axis (arbitrary units) indicates food

signal strength
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behaviour that C. elegans might display during the first
few seconds in the starting point of the maze, however,
does not impact any of the quantitative results.

Third, model worms keep the same ventral/dorsal
body orientation with respect to the maze sides during a
trip. This assumption is justified by the fact that
C. elegans do not flip often (Schwarz &
Bringmann, 2017), unless special conditions apply
(Singh & Sulston, 1978). For the purposes of this work,
we keep the body orientation constant throughout and
across the simulations; therefore, the ventral motor neu-
rons (VMNs) always control the body wall muscles that
lie towards the left maze side, and the dorsal motor neu-
rons (DMNs) control the ones towards the right maze
side. Consequently, nematodes that make a ventral turn
or have a ventral turning bias always turn left or counter-
clockwise and worms that make a dorsal turn or have a
dorsal turning bias always turn right or clockwise.

Lastly, food reward was placed on either the left or
the right end of the maze, maintained the same concen-
tration for the entire duration of the simulation and gen-
erated a signal gradient when diffused in the medium
(Figure 2b,c).

2.2 | Neuronal circuit architecture

Based on the work done by Ghosh and colleagues (Ghosh
et al., 2016) and the modelling logic adopted by Izquierdo
and Lockery (Izquierdo & Lockery, 2010), we consider a
neuronal circuit (Figure 3) with four main components:
(i) the chemosensory neuron AWA, which drives chemo-
taxis and subsequent food location; (ii) the interneuron
RIM, which receives input from the AWA and is respon-
sible for steering the worm and controlling the pirouette
rate; (iii) the motor neurons VMN and DMN, which
account for all the ventral (V) and dorsal (D) pairs of

F I GURE 3 Diagram of the modeled neuronal circuit. The network consists of five neurons (AWA, RIM, ventral motor neuron [VMN],

dorsal motor neuron [DMN] and Γ) and three auxiliary components modeled as neurons (Ω, IV, ID). The AWA is the chemosensory neuron

responsible for food detection. When activated (in the presence of food, training maze), it sends a signal to the interneuron RIM. Then the

RIM changes the pirouette rate by sending a current to Ω (the first auxiliary component) and causes the worm to change direction of

locomotion by sending a current to the motor neurons (VMN and DMN). VMN and DMN send currents to each other both directly and

indirectly through the other two auxiliary components, IV and ID. This allows the two motor neurons to oscillate and causes the worm’s
undulatory locomotion. Finally, Γ integrates input from the motor circuit to monitor the curvature of the worm’s path. During training, the
worm experiences a reward when it finds the food (see also blue dashed line arrow from AWA to Γ, when food is detected), which results in

Γ sending a current to the motor neurons (red arrows). This sequence of events creates a turning bias expressed in testing, which steers the

worm in a way analogous with RIM’s role during training

SAKELARIS ET AL. 357



motor neurons, respectively, and are responsible for loco-
motion; and (iv) the neuronal component Γ, which moni-
tors the worm’s instantaneous curvature. AWA, RIM,
DMN and VMN correspond to real C. elegans neurons,
the role of which has been well established
(Bargmann, 2006; Hart, 2006), whereas Γ accounts for an
assumed neuron or collection of neurons.

Due to the undulatory nature of C. elegans locomo-
tion, we can model VMN and DMN as a half-centre
oscillator (Ghosh et al., 2016). This is achieved through
reciprocal inhibition and the implementation of the
auxiliary neuronal components IV and ID (Figure 3).
These are not physical neurons that could be found in
C. elegans, rather they are implicitly modelled neurons
that serve a delayed excitatory connection between VMN
and DMN. Similarly, Ω is a component modelled as a
neuron, which controls pirouette rate through a probabil-
ity function (Equation 13).

Because C. elegans neurons generally produce poten-
tials with graded properties rather than less often
observed classic action potentials (Geffeney et al., 2011;
Goodman et al., 1998; Lindsay et al., 2011; Liu et al.,
2009, 2011; Mellem et al., 2008; O’Hagan et al., 2005),
we modelled neurons as leaky integrators (Ghosh
et al., 2016) with the general equation

τm
dVi

dt
¼�ViþV 0,iþ tanh Iið Þþ ξ ð1Þ

where Vi is the (unitless) charge of neuron i, V0,i is the
resting potential, Ii is the input and τm is a neuronal time
constant. Here, tanh serves as a sigmoidal function that
allows for saturated neuronal signal, observed in
C. elegans neurons (Larsch et al., 2013; Suzuki et al.,
2008; Thiele et al., 2009). Finally, ξ is the noise term
expressed as a random variable, with mean frequency
0.2 Hz, duration 0.1 s and amplitude 0.2.

For the circuit parameters, see also Table S1.
Equations 1–14 were solved simultaneously using
Runge–Kutta integration with a time step of 0.01 s.

2.3 | Food gradient

We used a Gaussian gradient equation to model the
strength of the food signal given by

C x,yð Þ¼Ce
�r x,yð Þ2

D : ð2Þ

Here, C controls the amplitude, and D is the diffusion
coefficient. Moreover, r(x,y) is the distance between the
point (x, y) and the food source (Figure 2) given by

r x,yð Þ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x�xf
� �2þ y� yf

� �2
r

y≥ 4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xc�xf
� �2þ yc�yf

� �2
r

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x�xcð Þ2þ y�ycð Þ2

q
y<4

8>>><
>>>: :

ð3Þ

The coordinates (xf, yf) and (xc, yc) represent the food
location and the location of the maze corner nearest to
the food, respectively. We use this method to approxi-
mate the food gradient rather than simply taking the
radial distance, to reflect the assumption that the food-
derived chemical cues diffuse more easily through the
air-filled corridors of the maze than seeping through the
agar-made walls and floor. This is not an exact measure-
ment and may have a small impact on results.

Parameters related to the strength of food gradient
are shown in Table S2.

2.4 | Sensory neuron

The only sensory neuron in the model is the chemosensory
neuron AWA, the dynamics of which is described by the
general equation (Equation 1). Because AWA receives
input from the environment rather than other neurons,
the input term IAWA is given by the equation

IAWA ¼F�S, ð4Þ

where F can be considered the fast component of sensory
detection and S the slow component (Ghosh et al., 2016).
This structure allows the AWA membrane potential to
respond transiently to a constant stimulus, which has
been observed experimentally (Liu et al., 2018). Further-
more, it has been reported that when given a sinusoidal
stimulus with the frequency of C. elegans natural head
swings, the AWA membrane potential makes oscillations
with a similar frequency (Liu et al., 2018). This, too, is
reflected in the model. Together, these make the AWA
sensitive to changes in the food gradient and allows the
worms to become accustomed to the scent of food if the
signal is not changing, encouraging the worms to move
up the gradient towards the food. We then have

dF
dt

¼ αC�βF, ð5Þ

dS
dt

¼ γ F�Sð Þ, ð6Þ

where α is the depolarization rate, β is the leak rate, γ is
the repolarization rate and finally C = C(x,y) is the
strength of the food gradient at coordinates (x, y).
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Because AWA is sensitive to changes in the food gradi-
ent, it is important to understand what the gradient looks
like so we can identify which areas are critical for the
worm to locate the food (Figure 2).

For model parameters related to food location
(chemotaxis), see also Table S3.

2.5 | Interneurons and motor neurons

For interneuron RIM, motor neurons and the auxiliary
components IV and ID, the Ii term in equation
(Equation 1) is given by

Ii ¼ b
X
j � Ni

wj!iV j, ð7Þ

where b is the gain parameter, Ni is the collection of all
neurons that send output to i and wj ! i is the strength of
the connection from neuron j to neuron i.

In the absence of sensory input, VVMN and VDMN

approach a state of stable oscillations, which drive undu-
lations in the worm’s locomotion. In order to start these
oscillations in the motor circuit, initial conditions for the
motor neurons needed to be non-zero. To avoid unnatu-
ral movement of the worms in the beginning of the maze,
we chose initial conditions on the steady state, setting
VVMN to �0.167, VDMN to +0.167, VIV to +0.405 and VID

to �0.405.

2.6 | The Γ neuron

Γ is a neuronal component modelled as an interneuron,
which receives input from the motor circuit. Thus, it
tracks the instantaneous geometric curvature of the
worm’s motion (see Section 3 and Figure 5) and its activ-
ity in the circuit can introduce a turning bias (see
Section 3 and Figure 6). The bias is achieved by varying
the resting potential, V0,Γ, according to the equations,

V 0,Γ ¼mtanh ζð Þ: ð8Þ

1
k
dζ
dt

¼�rζþ gVΓVAWA: ð9Þ

Here, ζ represents the bias term that gets triggered as the
worm approaches the food. Activity differences in the
AWA and Γ driven by head sweeps across the food gradi-
ent cause it to increase when the worm senses a stronger
food gradient on its dorsal body side and decreases when
it senses stronger food gradient on its ventral body side
(Figures 6 and 8). This means that by the time the worm

reaches the food, we would typically expect V0,Γ to tend
towards either +m or �m. Because this is the resting
potential of the Γ neuron, V0,Γ will be positively or nega-
tively biassed as a result.

2.7 | Simulating motion

The instantaneous direction of motion changes as a func-
tion of the VMN and DMN neurons. This direction is
used to calculate the x and y coordinates of the point
worm:

dθ
dt

¼ω VVMN �VDMNð Þ, ð10Þ

dx
dt

¼ vcos θð Þ, ð11Þ

dy
dt

¼ vsin θð Þ, ð12Þ

where ω is the undulation amplitude, v is the velocity in
mm/s, x and y are in millimeters and θ is in radians.
Pirouettes are implemented by changing θ to a random
number drawn from a uniform distribution in the interval
[0,2π]. Pirouette frequency in the training maze is given
by a probability function depending on the value of VΩ:

P VΩð Þ¼
0 pþwΩVΩ <0

pþwΩVΩ 0≤ pþwΩVΩ ≤ 2p

2p pþwΩVΩ >2p

,

8><
>: ð13Þ

where p is the average pirouette rate of 2.1 pirouettes per
minute (Ghosh et al., 2016) and wΩ is the unitless propor-
tionality constant equal to 2.1. Because AWA inhibits
RIM and RIM excites Ω, VAWA increases when the worm
is heading up the food gradient, which causes VRIM and
VΩ to decrease. This, in turn, lowers the probability of a
pirouette. Similarly, when the worm is moving down the
gradient, VAWA decreases, which subsequently increases
the pirouette rate. The more frequent occurrence of pir-
ouettes when the nematode is moving up the gradient,
probably to terminate runs that lead the animal away
from the attractant, has been observed experimentally
(Pierce-Shimomura et al., 1999).

Additionally, experiments showed that worms spend
more time in the control maze than the testing maze
(Gourgou et al., 2021). Modelling shows that this result is
consistent with trained worms having a lower pirouette
rate than naïve worms, so we decreased the value of the
pirouette rate parameter, p to be 1.47. This value was
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chosen to optimize the performance of the model; how-
ever, we note that the results of the model are agreeable
with experimental results for any value of p between 0.58
and 2.2 pirouettes per minute (Figure S6).

For locomotion-related parameters, see also Table S4.

2.8 | Learning connections

During the training phase (Figure 1b), the Γ neuron only
receives input (Figure 3, black arrows); however, during
testing, Γ sends an equal output to VMN and DMN
(Figure 3, red arrows) given by

wΓ!XMN ¼w sgn V0,Γð Þ, ð14Þ

where V0,Γ is the final value determined by Equations 8
and 9 at the end of training. This means that V0,Γ is posi-
tive, then VMN and DMN both receive a positive, oscil-
lating input, which is antiphase to curvature. Similarly, if
V0,Γ is negative, then VMN and DMN receive a positive,
oscillating input, which is in phase with curvature. We
call the outputs from Γ to VMN/DMN the learning
connections.

We justify the plasticity of the above connections as a
hypothesized mechanism of learning, because it is has
been shown that functionally silent synaptic connections
become strengthened when modulatory conditions
change (Marder, 2012). Indeed, neuromodulation can
reconfigure circuit properties and can amend neuronal
functions over seconds or minutes (Marder, 2012). For
example, in the modelled circuit, this could be the result
of dopaminergic neuromodulation, as C. elegans
possesses dopaminergic neurons (Sulston et al., 1975)
that are involved in motor behaviour control (Sawin
et al., 2000), for example, increased turning behaviour
(Hills et al., 2004), that can be affected by reward-
triggered learning (Ardiel & Rankin, 2010). Notably, plas-
ticity of these learning connections would not occur in
worms that do not reach the food/reward during training
because no reward induced dopamine signalling would
have occurred. This is reflected in the model because in
this case sgn(V0,Γ) and thus wΓ ! XMN would be equal
to zero.

For parameters related to the learning connections,
see also Table S5.

1. Data accessibility statement: All codes related to this
work will be made available, upon acceptance of this
manuscript, and will be accessible in a public reposi-
tory (GitHub).

2. Ethics statement: Experimental animals used in this
work were hermaphrodites C. elegans nematode
worms, which, as invertebrate animals, do not require

IRB approval. In any case, the minimum necessary
number of nematodes was used (n = 41, as stated in
Figure 12).

2.9 | Maze tracker

In order to track C. elegans as they traverse a maze, we
developed a customized algorithm, the Maze Tracker,
that would be effective in the maze environment and
tracks the centroid of the nematode. Standard worm
trackers are designed for use with open surface NGM
plates, which offer high contrast and low noise and can
track nematodes as they move on two-dimensional sur-
faces. In the case of T-mazes (Gourgou et al., 2021), most
nematodes are moving along three dimensions, the back-
ground is non-uniform due to the 3-dimensional maze
structure, recordings are often noisy due to camera
refocusing, and in some frames, the worm in study is
momentarily undetectable, moving along wall-floor
edges.

To tackle the challenge, the Chan–Vese active con-
tour method (Chan & Vese, 2001) is used as a first step to
extract contours from the first frame of each recording
(Figure 4a). The user must select the number of iterations
for which to run the algorithm as a hyper-parameter.
After applying Chan–Vese active contour method, several
contours are obtained, so we need to pick the one that is
most likely to correspond to the T-maze. This is achieved
by finding the contour whose horizontal length and verti-
cal length satisfy the threshold values that are provided
by the user. An example of the separated T-maze contour
is shown in Figure 4b.

Next, a T-shape polygon is fitted to the contour.
This is required (i) to prevent the algorithm from con-
tinuing to track an animal after it has escaped the maze
and from focusing on a dark non-worm object that lie
outside the maze limits. Because the Maze Tracker is
based on the difference between frames, an algorithm
that shifts its focus between frames would result in
errors; (ii) due to the top-down imaging system and the
light source’s perspective, the imaged T-maze border is
slightly distorted with respect to the true border—as a
result, the contour generated by Chan-Vese is often
smaller than the real T-maze and must therefore be
resized; (iii) the generated Chan–Vese contour is not
guaranteed to be a perfect T-shape due to noise in the
image; however, we know that the experimental maze
structure was a T-shape by design. Therefore, fitting a
T-polygon and assigning it as the area of interest allows
the algorithm to track the worm for a larger part of the
maze area. Polygon fitting thus allows the use of a con-
sistent T-shape throughout the tracking. This polygon is
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rotated and shifted to have maximal overlap with the
extracted contour.

The problem can be mathematically described as
follows:

T ≈QPþd1TN ,

where T denotes the coordinate matrix of the T-maze
contour with size M � N, P denotes the generated
coordinate matrix of the polygon with size M � N, Q is a
unitary matrix and d is a displacement vector. The
Procrustes Transformation method is applied (Gower &
Dijksterhuis, 2004) to solve the problem, which can be
written as

bQ,bd¼ argmin
Q:Q0Q¼I, d � FM

kT� QPþd1TN
� �kF :

Note that F in the subscript denotes the Frobenius norm.
An example of the polygon fitting via this transformation
can be found in Figure 4c.

Every frame’s rank-1 approximation is computed
using singular value decomposition (SVD). To be more
precise, suppose a video has L frames, where each
frame has size W � H, then we build a matrix having
size (WH) � L. Therefore, an approximation is made,
based on all the frames of the video. This approxima-
tion can satisfactorily estimate the static background of
the maze. Subtracting the approximated background
from every frame highlights the motion of the worm,
making tracking easier. To track the worm, a diff

operation (MATLAB) is performed on every two suc-
cessive video frames, where the foreground object,
namely, a moving worm, can be represented by
Ii + 1(x,y) � Ii(x,y), where Ii denotes the image at the
ith frame in a video. The foreground object is calcu-
lated for each frame, and differences between frames
are assumed to account for worm motion (note that
this assumption can be considered simplistic as videos
are collected in noisy environments, and therefore,
noise rectification steps are described below). Over the
entirety of the video, the tracking result for each frame
is concatenated, to generate the final trajectory of the
moving worm.

As mentioned earlier, videos collected are often noisy.
The most important sources of noise are that (i) the
experimenter often changes the focus of the camera to
more easily track the worm from a human perspective—
such a change in focus introduces noise in to the diff
operation as successive frames at the point of change can
be very different; (ii) due to the camera’s perspective, it is
sometimes hard to see the worm when it is crawling
along maze walls. These types of noise usually result in
spikes in the detected path (see Figure 4d, green line).

To rectify this, we solve a binary classification
problem to classify every point on a trajectory as ‘noisy’
or ‘not noisy’ based on preceding trajectory points. Our
two-step algorithm utilizes a user-defined threshold and
the k-nearest neighbour (KNN) algorithm to classify
noise points. As a first step, successive points are identi-
fied that are further from each other than from the user-
defined threshold value; thus, noisy points are roughly
detected. Next, they are ‘smoothed’ using KNN, as all the

F I GURE 4 Implementation of the Maze

Tracker. (a) Original image of a T-maze.

(b) T-maze separated from the extracted contour

(red lines) by thresholding the width and height

of contours. (c) An example of T-Maze polygon

fitting using the Procrustes transformation.

(d) The worm trajectory after KNN smoothing;

red line: the final trajectory, green line: when

there is an abrupt change in the position of the

worm because of the camera’s change of focus, a
jump in the trajectory occurs. This is detected as

noise by the algorithm and is removed. Such a

jump (spike) is represented here by the

green line
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points labelled as ‘not noisy’ in the first step are found
and the label in the majority of the neighbouring points
is assigned to the point in question. An outline for the
two-step algorithm is given in the Supporting
Information. The classified result is shown in Figure 4d.

Currently, the Maze Tracker does not track the three-
dimensional motion of the worm, although C. elegans
crawl both on the floor and on the walls of the maze
(see for example Figure 4c and Gourgou et al., 2021).
Motion on the maze walls is perceived as 2D motion.
This follows the mathematical model, which does not
account for C. elegans crawling on the maze walls.
Moreover, the Maze Tracker does not allow for quantifi-
cation of locomotion features, that is, omega turns and
reversals; however, neither the experimental nor the
model results depend on detailed locomotion events.

3 | RESULTS

We built a model of C. elegans chemosensory and loco-
motive circuitry, where food-triggered maze learning is
achieved through hypothesized learning connections,
stemming from reward-evoked neuromodulation. We
first present results illustrating the relationship between
simulated worms path curvature and activation of
neurons involved in the chemotaxis process (training).
We then show that, based on the simulated worm’s

motion in response to food-released chemical cues,
plasticity in the modelled circuitry reliably generates a
turning bias in the worm’s motion, yielding behavioural
results consistent with observed behaviour of living
worms, before (training) and after learning (testing). We
demonstrate the reliability of the model, which accounts
for different worm trajectories in the maze environment,
and we confirm and predict experimental results.

3.1 | Training results, food location and
learning acquisition

The modelled neuronal component Γ receives input from
the motor circuit, and as a result, its activity tracks the
instantaneous geometric curvature of the worm’s path. In
order to test this encoding of curvature, we ran 10,000
simulations of a worm in the Training (food-baited) maze
and compared path curvature to VΓ at every timestep.
We found (Figure 5a) that VΓ was essentially a scalar
multiple of curvature by finding a linear fit of
Curvature = 10.79VΓ with R2 = 0.999, suggesting that
the connectivity of the network allows Γ to track
curvature very well (see also Supporting Information).

Next, we explored how C. elegans’ motion changes in
the presence of a food gradient (Figure 5b,c). When the
model worms do not detect food, the curvature of their
paths is symmetric between ventral and dorsal

F I GURE 5 Examples of curvature. (a) Measuring the accuracy of the Γ neuron encoding of curvature. Over the course of 10,000

training simulations, the actual geometric curvature of the worms’ paths (y axis) and the value of VΓ (x axis) were recorded at every point

(excluding points near pirouettes or on the wall). We found that Γ voltage was a scalar multiple of curvature. (b) Instantaneous geometric

curvature of a worm’s path when moving straight ahead, where φ (the average heading through one undulation, Figure S3A) is constant and

equal to π/2. In this case, the magnitude of curvature is symmetric and periodic (ranging from light yellow to dark blue). (c) Instantaneous

geometric curvature of a worm’s trajectory when the worm changes direction because of food detection, resulting in an increasing φ (average

direction of motion, Figure S3A). At the inflexion point of the worm’s trajectory, where the worm changes from moving toward the right

maze side to moving toward the left, φ=π/2 as in (b), but now path curvature is asymmetrically closer to 0 with a smaller magnitude in the

negative (dark blue) undulations than the positive (orange) ones
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undulations (Figure 5b); however, upon food detection
and the worm’s path turning up the food gradient, curva-
ture shifts asymmetrically closer to zero, depending
which body side the food is on. For example, when the
worm is making a ventral (left) turn as in Figure 5c, the
magnitude of curvature is smaller in the negative undula-
tions (blue) than the positive undulations (yellow), as
indicated by the colour bar.

We then asked whether there was any discernable
relationship between the path curvature, the voltage of
the chemosensory AWA neuron and food location
(Figure 6). Indeed, there is a strong relationship between
the three, especially when the worm first enters the junc-
tion of the maze and encounters the food gradient

(Figure 6, yellow shaded area in graph, yellow
highlighted portion of the worm path). In this part of the
maze journey, the AWA voltage makes large oscillations
due to the worm moving perpendicularly to the gradient.
This means that in each undulation cycle, the worm
heads up and down the gradient causing the AWA volt-
age to increase and decrease as well. This is an important
part of the trajectory because here the worm first receives
information about the location of the food in the maze.
In fact, it turns out that the AWA voltage oscillates
antiphase with Γ voltage and thus path curvature, when
food is on the left maze side, that is, on the worm’s ven-
tral body side (Figure 6a) and in phase with Γ voltage
and path curvature when food is on the right maze side,

F I GURE 6 Correlations between worm trajectory to food position and AWA/Γ activity during training help establish turning bias.

Pirouettes are turned off for clarity. (a) Food on the left maze arm. Left panel: trajectory of a worm finding the food; right panel: voltages of

AWA and Γ (related to path curvature) over time. The worm starts detecting food at about 20 s (grey shaded area) and reaches the junction

of the maze at about 40 s. For the next 20 s, AWA and path curvature are antiphase (yellow shaded area) and until the worm’s path is

aligned with the food gradient at about 60 s. After that, AWA voltage increases until it saturates. (b) Food on the right maze arm. Left panel:

trajectory of a worm finding the food; right panel: voltages of AWA and Γ over time. The worm starts detecting food at about 20 s (start of

grey shaded area) and reaches the junction of the maze at about 40 s. In this case, AWA voltage and curvature are in phase for the next 20 s

(yellow shaded area) and until the worm’s path is aligned with the food gradient at about 60 s. After that, the signal becomes stronger until

it saturates

SAKELARIS ET AL. 363



that is, on the worm’s dorsal body side (Figure 6b). This
justifies the modelling of ζ (Equation 9) by showing that
it increases when Γ and AWA voltages are in phase and
decreases when they are out of phase, providing a
method for discriminating the source of the food scent.
As a result, when ζ is above zero at the end of training,
we expect the food to have been on the right side of the
maze, and if it is below zero at the end of training, the
food is expected to have been on the left side of the maze.

As a hypothetical mechanism for Γ to dynamically
encode curvature properties of the trajectory taken to the
food reward, the variable ζ was used to dynamically vary
the resting potential, V0,Γ, of Γ (see Equation 8) through
the training session. The value of V0,Γ reached at the end
of the training session reflected whether the food was on

the right (V0,Γ > 0) or left (V0,Γ < 0) side of the maze
(Figure 7). Indeed, we found that V0,Γ could accurately
predict the reward location more than 88% of the time
(Figure 7).

As shown in Figure 7, more than 10% of simulated
worms attain biases opposite what we might expect. This
can happen when the worms’ frame of reference changes
so that the food gradient is stronger on its other side. For
example, in Figure 8, Worm 1 takes a path where the
peak of the food signal gradient is always on its ventral
(left) side, leading to a negative final value of ζ and, in
turn, of V0,Γ (red curve, right). Worm 2, on the other
hand, takes an identical path to Worm 1 for the first 63 s
but then pirouettes and crosses the horizontal maze arm
so that it becomes oriented with the peak of the food

F I GURE 7 The resting potential (V0,Γ) of Γ
changes depending on food location. At the end

of Training, 87.7% of 1000 simulated worms had

a negative value for V0,Γ when food was on the

left maze side (grey shaded area), whereas 88.4%

of 1003 simulated worms had a positive value

for V0,Γ when food was on the right maze side

(green shaded area). For an example of a

simulated worm that had a positive value for

V0,Γ even though food was on the left maze side,

see Figure 8, Training/Testing Worm C

F I GURE 8 Dynamic evolution of a turning bias. (a) Two simulated worms in the training maze, food placed at the left maze arm.

Worm 1 (red line) finishes training (reaches the food) with the peak of the gradient on its ventral (left) body side. Worm 2 (blue dashed line)

takes an identical path to the food as Worm 1 (red and blue paths overlap), except at 63 s, it crosses the horizontal maze corridor shortly

before it reaches the food, so that it finishes training (reaches the food) having the peak of the gradient on its dorsal (right) body side.

(b) Resting potential V0,Γ over time, corresponding to the worms in (a). For both worms, V0,Γ hovers around 0 between 0 and 37 s (blue and

red curves overlap), then the worms start to detect the gradient on the ventral body side of the worm (37–63 s), so V0,Γ\ starts to decrease. In

Worm 1, this decrease continues as the worm continues its trajectory (63-s end), resulting in the Worm 1 finishing the trial with a positive

value of V0,Γ.\ In Worm 2, however, V0,Γ sharply increases at 63 s when the worm crosses the corridor (and the gradient) perpendicularly so

that its peak now lies on the dorsal body side of the worm. This leads to the Worm 2 finishing the trial with a positive value of V0,Γ.
Consequently, Worms 1 and 2 are expected to have acquired a different bias, although they both reached the food on the left maze side
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signal gradient now on its dorsal (right) side (blue dashed
curve, right). As shown in Figure 6, the largest changes
in AWA membrane potential occur when the worm is
travelling perpendicularly across the food gradient. This
means that between 63 and 75 s, V0,Γ increases signifi-
cantly, and by the end of training, Worm 2 develops a
right (dorsal) bias despite the food originally being on the
left (ventral) side of the worm. In fact, the vast majority
of the opposite biases acquired in the simulations are
attributed to worms moving this way, potentially similar
to the living nematode in Example 4, of Figure 11 and
the simulated Worm C of Figure S8 (see also Suppl. Video
SI Video 5).

3.2 | Testing results and learning
expression

After implementing this method of dynamically encoding
the location of the reward in relation to the model worm,
we investigated how to bias locomotion in a testing maze,
absent of a food gradient. A simplified and pronounced
example of how to induce a turning bias is presented in
Figure 9. In this example, Γ delivers an oscillating input
to the motor neurons starting at 20 s, for various values
of V0,Γ. This achieves asymmetry in the VMN/DMN-
governed undulated path. Depending on whether the
input is in-phase or antiphase with path curvature, the

F I GURE 9 Generating a turning bias during Testing. (a) A worm is travelling with φ the average direction of motion (Figure S3A),

constant and equal to \frac{\pi}{2}, moving straight forward. Then an oscillating input with a positive mean is given to the ventral motor

neuron (VMN) and dorsal motor neuron (DMN) (graph, warm colour lines), which is antiphase to the path curvature (graph, blue line). This

causes the worm to turn left or toward the ventral side/counterclockwise (curvature visualization). (b) A worm is travelling with φ constant

and equal to \frac{\pi}{2}, moving straight forward. This time an oscillating input with a positive mean is given to the VMN and DMN

(graph, warm colour lines), which is in phase with the path curvature (graph, blue line). As a result, the worm turns right or towards the

dorsal side/clockwise (curvature visualization). Note that in both cases (a and b), the closer the mean of the oscillating input is to 0, the

weaker the bias. Also, the change in the direction of locomotion is evident from the change in curvature maximums and minimums (both

graphs, dashed lines). In (a), once the input is applied, the minimums and maximums are both closer to 0; however, the change in minimum

(red arrow) is greater than the change in maximum. Similarly, in (b), the maximum and minimum get both closer to 0, but this time, it is the

maximum that presents the greater change (red arrow)
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worm will make a dorsal (right) turn or a ventral (left)
turn, respectively. In any case, the severity of the turn
varies with the mean of the input.

In the neuronal circuit model, we can reliably gener-
ate similar inputs to the motor neurons, and thus induce
a turning bias, by using V0,Γ to bias Γ voltage and by acti-
vating the learning connections (Equation 14). Suppose,
for example, that the worm finishes the training maze
with a positive value for V0,Γ, signifying that the worm
made a dorsal/right turn to find food. Then during loco-
motion in the testing maze, VΓ will be oscillating in-
phase with path curvature around its positive mean, V0,Γ.
Activation of the learning connections whose input is
weighted by wΓ ! XMN, yields a positive, oscillating input
to the motor neurons. As we would expect from
Figure 9b, this causes a dorsal (right side/clockwise) turn-
ing bias. Similarly, if the worm finishes the training maze
with a negative value for V0,Γ, then in the testing maze
VΓ will be oscillating in-phase with path curvature
around its negative mean, V0,Γ. However, now wΓ ! XMN

is negative, so the input of the learning connections to
the motor neurons has a positive mean and is making
oscillations antiphase to the worm’s path curvature, caus-
ing a ventral (left side/counterclockwise) turning bias
(Figure 9a). Thus, both the amplitude of change in V0,Γ

and its sign (positive vs. negative) contribute to encoding
the location of the food relative to the worm’s position.

Notably, this process accounts for more than just a
binary decision of either a ventral or dorsal turning bias,
because it generates stronger or weaker biases depending
on the value of V0,Γ. This is highlighted in Figure 9a,b,
where different magnitudes of input to motor neurons

are presented, oscillating around three different means
(warm colour lines). As illustrated in the curvature visu-
alization panels of Figure 9, this results in biases of vary-
ing strengths.

3.3 | Cumulative results and model
Worms paths

To quantitatively test the model’s ability to replicate
maze learning in C. elegans, we simulated 10,000 trials of
the maze learning experiment (Figure 1, and Gourgou
et al., 2021). In each trial, we first simulated a worm in
the training maze with food on the left maze end, and if
that worm located the food, we activated the learning
connections in the model circuit and ran the simulation
in the testing maze without the food gradient. The simu-
lated worm learned successfully if the first maze end it
reached was the left maze end. We then ran 10,000 trials
with food on the right side of the training maze. After
running all of the training/testing pairs, we found that
model worms located the reward during training
(Figure 10, grey shaded area) and successfully learned
the reward location (Figure 10, green shaded area) at
similar percentages as observed experimentally
(Figure 1).

The model allows for an intermediate check of the
number of worms that acquired the correct turning bias
during training, namely, the number of trials in which
we would expect the worm to exhibit learning in the test-
ing maze based on the acquired V0,Γ bias alone
(Figure 10, non-shaded area). It is hard to compare this

F I GURE 1 0 Model statistics. In 10,000 trials of the training maze with reward on the left maze arm and 10,000 trials with reward on

the right maze arm, 77% and 78%, respectively, of the model worms located the food (grey shaded area). Of the worms that successfully

located their reward, 87% and 89%, respectively, were biassed ‘correctly’, meaning they acquired a dorsal bias when reward was on the right

maze side and a ventral bias when reward was on the left maze side (non-shaded area). Finally, 72% and 74%, respectively, of the worms that

located the reward during training visited the same side in the testing maze (green shaded area). Results agree with experimental data (see

Figure 1)
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with an experimental result, because it is challenging to
distinguish between the stages of learning acquisition
and learning expression experimentally; however, in
most of the simulated worms, the model learning mecha-
nism is effectively activated.

We also explored whether the path trajectories of sim-
ulated worms were similar to those taken by actual
worms in the maze experiments. To that end, we used a
custom-built algorithm, the Maze Tracker, to track living
nematodes as they traversed T-mazes. As shown in
Figure 11, Column A, C. elegans often explored the
starting area of the Training maze before migrating north
towards one of the maze ends. Some initial exploration
also took place in the Testing maze, but pirouetting
occurred less frequently. Although tracking results of
Figure 11a do not account for the total population of
worms examined, they are indicative of potential routes
followed.

Approximations of the four experimental Training
trajectories were then used to train the model
(Figure 11b, Training), and the resulting turning bias was
used to seed 100 testing simulations (Figure 11b, Testing).
This led to the model Testing outcome agreeing with the
experimental Testing outcome in 78–81% of simulations.
Interestingly, the high agreement was even present in
Example 4 in which the experimental C. elegans exhibited
a clockwise bias in the Testing maze and did not reach
the correct maze arm. In the Training maze, this worm
approached the food area having the food on its right
body side (dorsal, for the simulated worm). Because the
model suggests that it is the worm’s orientation with
respect to the food signal, which is learned, as demon-
strated in Figure 8, this leads to the model worm develop-
ing a clockwise (dorsal) bias as well. Although this type
of path trajectory was not taken by all experimental
worms that did not exhibit learning, it is exciting that in

F I GURE 1 1 Comparison of experimental and simulated worm paths in a T-maze. (a) Experiments: Four examples of N2 wild type

young adult Caenorhabditis elegans that located food successfully in the Training maze (food placed on the left side maze arm). The first

three nematodes reached the same maze side in the Testing maze (learning acquired), whereas the fourth did not (learning not acquired).

Paths were generated using the custom-made Maze Tracker (see Section 2). (b) Simulations: The Training column shows simulations (blue

lines) in which the heading of the worm was continuously adjusted to follow the respective experimental trajectories (yellow dots). The

Testing column shows 100 different simulated Testing paths for each Training simulation, all generated with the turning bias that was

determined in the corresponding Training simulation. Paths that ended on the left side of the maze (learning acquired) are coloured blue,

whereas those that ended on the right side of the maze (learning not acquired) are coloured grey
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this case, both the real and the simulated non-learners
displayed a similar behaviour when approaching the
reward. We trained the model on 24 additional experi-
mental trajectories, finding that in total, the model
results generally matched experimental testing results in
11 out of 14 trials where the C. elegans expressed learning
and in 5 out 10 trials where the C. elegans did not
(Figure S10). For a detailed description of model worms’
paths and biases, see also Figure S8.

The hypothesis of turning bias acquisition can be fur-
ther tested experimentally by tracking the locomotion of
worms placed on an open surface after training, instead
of the testing maze. If a turning bias is acquired, then
according to the model, nematodes should be moving
with a clockwise or counterclockwise turning bias, even
in the absence of a maze structure. If food was on the left
arm of the training maze, nematodes would be expected
to receive a counterclockwise bias, while if the food
was on the right arm, they would be expected to receive
a clockwise bias. Indeed, in a simulation of this
experiment, when trained with food on the left maze
arm, the model predicts that worms spend 71% of the
time moving in a counterclockwise direction, 19% in a
clockwise direction and 10% moving straight (Figure 12,
green bars).

However, this prediction is expected to be only par-
tially corroborated by experimental data. Although a
turning bias may be acquired during training, steering
nematodes to follow a clockwise or counterclockwise
biassed motion, C. elegans interaction with maze
walls and floors provides mechanosensation-perceived
information important for learning (Gourgou et al.,

2021). This is not accounted for in the model. Indeed,
when an experiment was performed to test this predic-
tion, living worms spent only 61% of the time moving in
a counterclockwise direction when tested on a flat NGM
plate, after their maze training (Figure 12). This is still a
significant portion time compared with the portion of
time spent moving clockwise (32%) and straight (7%);
therefore, the model’s prediction is indeed partially con-
firmed, due to the acknowledged exclusion of modelling
the structural maze features and the nematodes’ interac-
tions with them. This interesting observation showcases
the necessity of evaluating modelling results in combina-
tion with experimental data. The crosstalk of the two can
be highly informative.

4 | DISCUSSION

4.1 | Foundations of the model

Biology-based neural circuit modelling is a promising
and emerging approach that can assist in understanding
how the neural circuits process, represent and store
information (Nair et al., 2016). Favourably, the idea that
computational models will contribute to understanding
how behaviour at the organismal level emerges from the
properties of lower level circuits (Marder, 2012) is broadly
accepted.

The model proposed here, which is based on biophys-
ical principles, aims to explore a neuronal mechanism
that could potentially mediate a recently reported learn-
ing behaviour (Gourgou et al., 2021) in an invertebrate

F I GURE 1 2 Comparison of open surface locomotion bias in simulated and experimental Caenorhabditis elegans during testing: Both

model and experimental worms were trained in a T-maze with food placed on the left maze arm. Next, instead of a testing maze, they were

placed on an open, flat surface (nematode growth medium [NGM] plate for the experimental ones). Graph shows the percentage of worms,

which exhibited a clockwise (right turning) bias, a counterclockwise (left turning) bias or moved straight ahead, during testing. Grey: Bars

indicate the results for n = 41 experimentally tested nematodes (N2 wild type, Day 1 adults, fully fed); green: 10,000 simulations run with

n = 41; bars indicate the mean, and error bars indicate the lower and upper bound of the 95% percentile. For details on determination of the

clockwise/counterclockwise motion of experimental animals, see Supporting Information
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experimental system. In this novel paradigm, young adult
C. elegans learn to reach a target maze arm in an empty,
testing maze, after successfully locating and tasting
reward (food) in a training maze (Figure 1). The idea is to
consider a simple, minimal circuit that could mediate
learning under these conditions. The goal is to create a
mathematical framework that will continue to evolve as
experimental results keep flowing in. Hence, the two
thrusts can be in a constant crosstalk, to eventually iden-
tify the neural mechanisms that mediate this maze learn-
ing behaviour.

The presence of food/reward at one end of the maze
(Figure 2) is what triggers the modelled behaviour and
activates the neuronal circuit in this study (Figure 3). In
experiments, when C. elegans locate and reach the food, a
reward is received. To understand how C. elegans learn
from receiving a reward, we considered how they reach
the reward in the first place. It is well established that
C. elegans approach food using two different forms of
chemotaxis: klinotaxis and klinokinesis (Izquierdo &
Lockery, 2010; Pierce-Shimomura et al., 1999), also
known as the weathervane (Iino & Yoshida, 2009) and
pirouette (Dusenbery, 1974; Dusenbery, 1980) mecha-
nism, respectively. C. elegans only need one of these
motion forms for successful chemotaxis; however, they
often use a combination of the two to locate food as
quickly and efficiently as possible (Iino & Yoshida, 2009).

We considered both motion forms to identify a mini-
mal candidate process for the C. elegans to navigate in
the training maze. Therefore, the modelled worms reach
food through a combination of klinotaxis and
klinokinesis, shifting to more dominant klinotaxis as the
worm moves up the attractant gradient. As a result,
klinotaxis-like motion continues to be more prevalent
throughout testing; however, remnants of klinokinesis
are still present with the reduced pirouette rate
(Equation 13 and Sections 3 and 2.7).

The reward-triggered nature of the maze behaviour
affects the model in multiple ways. It is known that dopa-
mine is important for learning and memory
(Schultz, 2007; Wise, 2004) and that it is particularly
involved in reward-related incentive learning (Arias-
Carri�on et al., 2010). The role of dopamine in C. elegans
nervous system has been well studied (Wintle & van
Tol, 2001), and its significance for nematodes’ non-
associative and associative learning has been established
(Ardiel & Rankin, 2010; Kindt et al., 2007; Sanyal
et al., 2004). Therefore, it is logical to hypothesize that
the dopamine pathway is involved in the maze behav-
iour. Indeed, in Gourgou et al. (2021), it was shown that
a dop-3 mutant strain, which lacks a dopamine receptor,
shows compromised maze performance, although the
dopamine-mediated mechanism was not further

explored. Similarly, C. elegans reward-triggered improved
maze performance was abolished in the dopamine-poor
mutant cat-2 (Qin & Wheeler, 2007).

Here, the suggested model takes advantage of the
neuromodulatory effect of dopamine, when it assumes
the emergence of synaptic signalling from the neural
component Γ to the VMN and DMN motor neurons as a
result of locating the food (Figure 3). This is based on the
concept that otherwise silent synaptic connections are
strengthened under the effect of reward-evoked dopa-
mine. Thus, the ability of the circuit to mediate learning
stems from the dopamine-induced plasticity of the Γ
component. Indeed, it is well established that neuronal
dynamics and neuromodulatory mechanisms reconfigure
circuits (Marder, 1984) to make them capable of variable
outputs under modulator control (Marder, 2012).

Maze learning experimentally observed in C. elegans
resembles spatial working memory (Klingberg, 2010),
due to its short timeframe and sensitivity to distraction
(Gourgou et al., 2021). Working memory is attributed to
increased dopamine receptor density in the brain
(Goldman-Rakic, 1995; Klingberg, 2010) and increased
persistent neuronal activity (Compte et al., 2000;
Goldman-Rakic, 1995). In addition, enhanced functional
connectivity, dopamine release and sensitivity are of key
importance in the overall mechanism of working mem-
ory (Constantinidis & Klingberg, 2016). Therefore, exis-
ting literature supports the synaptic facilitation and
plasticity assumed in the model as the basis of maze
learning.

Importantly, model worms locate the food and learn
to reach target maze locations (Figure 10) at similar per-
centages as observed experimentally (Figure 1). The dif-
ference between the percentage of model worms that
acquired the correct bias and the percentage of worms
that expressed learning (Figure 10) could be attributed to
the effect of noise or to pirouette-induced distraction dur-
ing testing. Interestingly, the comparison between the
path trajectories of experimental and simulated worms
(Figure 11) confirms the model’s ability to realistically
reproduce C. elegans locomotion in the maze environ-
ment, both in the presence of food (training) and during
testing. This is a welcomed strength, because we did not
rely on trajectory-describing metrics to build the model;
hence, the ability of the model to successfully reproduce
C. elegans trajectories came as a result of the circuit’s
properties.

4.2 | Limitations of the model

The modelled circuit includes a chemosensory neuron,
interneurons and motor neurons, with the addition of
neuronal components that are responsible for
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locomotion features and enable learning (Figure 3).
Experimental results (Gourgou et al., 2021) show that
C. elegans performance in the maze is a multisensory
behaviour and requires the contribution of
mechanosensation (for food location and learning), and
importantly, of proprioception (for learning). The cur-
rent modelling effort constitutes the first attempt of a
parsimonious model capable of capturing C. elegans
maze learning under certain conditions. We opted for a
simple circuit, with only external chemosensory input.
At the same time, although the model does not assimi-
late any mechanosensory input, the notion of proprio-
ception is present, without explicitly modelling
proprioceptive neurons. To this end, the assumed com-
ponent Γ, which monitors curvature, could represent a
neuron expressing mechanosensitive channels involved
in proprioception, for example, transient receptor
potential—no mechanoreceptor potential C (TRPN) and
transient receptor potential—canonical (TRPC) (Li
et al., 2006). This way, the function of monitoring
motion curvature, which is pivotal in the proposed
model (Figures 5 and 9), would be tied to monitoring
body bending.

C. elegans body orientation while traversing the maze
is found not to be of critical importance for learning, but
it could still be a contributing factor for some of the
experimental results (Gourgou et al., 2021). In the pro-
posed model, ventral/dorsal body orientation was taken
into account, and in fact, it was important for the model
worms to acquire a turning bias (Figures 6–8). It is possi-
ble that in living worms, the contribution of body orien-
tation is replaced with more detailed proprioceptive cues
on the body posture and motion, as well as with feedback
on the body’s interaction with the structural features of
the maze (Gourgou et al., 2021). Indeed, experimental
data suggest that multiple TRP channels, which are
known to mediate proprioception in both mid-body and
the head area (Han et al., 2017; Yeon et al., 2018), were
involved in maze learning (Gourgou et al., 2021). Incor-
porating multisensory integration is a main goal as we
work to update and fine tune the model. At the same
time, it is interesting that the suggested model can
account for learning with just chemosensory input and
targeted key assumptions.

Lastly, simulated worms pirouetted less in general
than the actual worms (Figure 11). It is well established
that when a C. elegans encounters an obstacle with its
nose tip, it usually backs up and pirouettes (Kaplan &
Horvitz, 1993; Riddle et al., 1997), and the plasticity of
the turning behaviour has also been reported (Calhoun
et al., 2014). Although this was not always the case when
C. elegans encountered the maze walls in the maze exper-
iments (Gourgou et al., 2021), as nematodes might start

climbing up the wall, they certainly sometimes engaged
in similar obstacle avoidance behaviour. This behaviour
is omitted from the model to keep the network minimal.
C. elegans’ interaction with the maze walls is modelled
only coarsely, also because no three-dimensional locomo-
tion is considered.

4.3 | Predictions of the model

Predictions generated by the model are either confirmed
by experimental results, or they propose a number of
experiments that would further elucidate the maze learn-
ing mechanism. As a first indication, an almost identical
percentage of experimental and simulated worms reach
the same maze side in training and testing (Figures 1 and
10), confirming the overall dependability of the model.

Qualitative and quantitative comparisons between liv-
ing and simulated worms endorse the key model hypoth-
esis of the Γ curvature-monitoring component. Given
that C. elegans use a varying combination of klinotaxis/
klinokinesis to maximize food location efficiency and
rapidity (Iino & Yoshida, 2009), we conclude that the
klinotaxis/klinokinesis mix changes during training and
shifts in favour of klinotaxis once the worm orients itself
towards the food. Consequently, one could expect that
when they learn, nematodes acquire a mainly klinotaxis-
based turning bias. This is reflected in the modelled cir-
cuitry where in trained worms, Γ causes a weathervane-
like clockwise or counterclockwise turning bias; however,
as explained above, the model nematodes’ motion in the
testing maze comes partially as a result of dampened
klinokinesis (reduced pirouette rate), which allows the
turning bias to take effect.

As a result, the model predicts that locomotion of suc-
cessfully trained nematodes is different than of naïve
worms, in two ways. First, in an empty maze, trained
model C. elegans pirouette noticeably less often than
untrained ones (see Sections 2 and 2.7). Second, trained
model worms’ paths consistently present either a clock-
wise or counterclockwise bias. Indeed, many of the exper-
imental worm paths also show reduced pirouette rate
during testing (Figure 11a). The similarities extend also
to the turning bias, because in each example of
Figure 11a, the worm’s path in the testing maze features
a strong curve, which is absent in the training maze. This
was investigated more thoroughly by analysing the move-
ment of C. elegans that were allowed to roam on an open
surface after being trained in the training maze
(Figure 12). It was found that living worms exhibited
noticeable turning biases as suggested by the in silico
experiments, providing further support for the model.

The increase in performance can be attributed to two
factors. First, worms that were biassed towards the food
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arm tended to develop stronger biases towards the food
arm because magnitude of the resting potential of Γ
tended to increase. Second, worms that were biassed
away from the food were less successful in the next train-
ing maze, meaning less of them were allowed to move on
to the next phase of the experiment. We found that
worms that acquired strong biases towards the food arm
were able to successfully complete the subsequent train-
ing more than 95% of the time (Figure S9) and almost
always retained a strong bias towards the food arm.
Worms with weaker biases successfully completed the
subsequent training about 85% of the time and developed
stronger biases approximately 80% of the time. However,
only about 55% of worms that were biassed away from
the food arm were able to successfully complete the train-
ing maze. Altogether this meant that by the end of the
fourth round of training, nearly all worms were strongly
biassed towards the maze arm, implying that C. elegans
may be able to learn more effectively with a repeated
training protocol.

Furthermore, as explained above, the model hypothe-
sizes a decisive role for reward-mediated plasticity, per-
haps through dopamine signalling. The contribution of
the dopamine pathway, of neurons expressing dopamine
receptors and of dopaminergic neurons in C. elegans spa-
tial maze learning, has not been investigated. Several
experiments can be conducted to test this prediction,
including, but not limited to, genetic ablation or inactiva-
tion of targeted neurons, strains with loss-of-function
mutations of dopamine receptors components and
targeted use of dopamine inhibitors.

Another major model hypothesis is the function of Γ,
as a neuronal component that monitors motion curvature
and is subject to neuromodulation-driven plasticity. Con-
sequently, a series of experiments can be designed to test
targeted candidate interneurons or command motor neu-
rons. Note that this role could be played by a collection of
neurons with feedback connections.

4.4 | Model extensions

A very exciting property of the proposed mathematical
framework is its ability to operate as a platform for
modelling efforts of more complex phenomena, like age-
ing. Gourgou and colleagues (Gourgou et al., 2021) report
maze learning deterioration in middle aged animals. The
exact component or operation of the steering neuronal
circuitry that is affected by ageing remains to be eluci-
dated. However, the finding of ageing-driven learning
decline in C. elegans corroborates previous work (Arey
et al., 2018; Kausler, 1994).

The proposed model offers three sites, namely, model
parameters, that could potentially be associated with

ageing-driven learning deterioration (see also Supporting
Information): (i) w (Equation 1 and Table S1), which is
the magnitude of the connection between Γ and the ven-
tral and DMNs, (ii) k (Equation 9 and Table S5), which
controls the sensitivity of the bias term ζ to sensory input
and (iii) m (Equation 8 and Table S5), which is the maxi-
mum magnitude of the change in resting potential of Γ as
a result of learning.

Reduced magnitude of the connection between Γ and
the motor neurons is related to the learning connections
(red arrows in Figure 3). Physiologically, this corresponds
to ageing-related decreased ability to achieve working
memory (Leung et al., 2015; Mattay et al., 2006) through
strengthening synaptic connections. These connections
in the model are hypothesized to be the result of
dopamine-mediated neuromodulation. Interestingly, the
dopamine system is reported to undergo significant age-
related decline (Backman et al., 2006; Morcom
et al., 2010).

Reduced sensitivity of the bias to sensory input
would mean that the turning bias acquired by Γ, which
is then input to VMN/DMN motor neurons, is weaker.
This would result from a reduced signal that Γ receives
from its upstream neurons, including sensory ones, or
from reduced susceptibility of Γ to the input. Therefore,
such a change could be justified by ageing-related
decline in secondary sensory neurons performance,
which has been reported to occur in a context-specific
manner (Leinwand et al., 2015) and has been correlated
to impaired neurotransmission production (Leinwand
et al., 2015).

The third ageing-related model target refers to
reduced maximum magnitude of the resting potential of
Γ as a result of learning. This represents the sensitivity of
Γ to the turning bias signal received in the form of input
from the motor neurons during training or the ability of
Γ to induce cellular plasticity. The mechanism of bias
acquisition is not explicitly modelled here; therefore, the
exact biological mechanism by which ageing could affect
it is not clear. However, the suggested modification could
be related to reduced neurotransmission (Segovia
et al., 2001), age-related alterations in neurotransmitter
receptors (Lippa et al., 1981) or ageing-related functional
decline of ion channels (Branch et al., 2014; Cai &
Sesti, 2009).

Since ageing is a systemic phenomenon, we investi-
gated the effect of all three interventions combined, and
the outcome is presented in Figure 13 and in a web-based
interactive figure (http://www-personal.umich.edu/
�bennets/aging_figure.html). The modelled circuitry and
parameters presented in this work refer to young adults
(w = 0.2, m = 0.7, k = 1) and are capable of successful
learning as it operates at the yellow/orange area of the
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surface plot in Figure 13c. Ageing-derived decreases in
each of these parameters reduce the percentage of simu-
lated worms that exhibit successful learning in the testing
maze. The effect of each individual potentially ageing-
related parameter (w, k, m) on worm learning is shown
in Figure S5.

It is noted that in the present work, ageing is not
modelled on a biophysical basis. At the same time, we
consider it important that the model is constructed in a
way that welcomes future extensions and stands capable
of integrating physiological mechanisms that could
impact the core hypothesis of learning. Lastly, whether
maze learning in C. elegans is an adaptive behaviour or a
side effect of associative learning remains to be seen. Dec-
iphering the complete neuronal circuitry that steers this
behaviour may help shed light on this question. We hope
that the mathematical framework presented here can
contribute to this effort.

5 | CONCLUSIONS

Mathematical modelling does not have to act a posteriori
to the experimental component of a research effort but
instead can spark experimentation by proposing a priori
a justified hypothesis (Karbowski, 2019). We aim to
enhance this process with the introduction of this

biophysically based mathematical model for
chemosensory and locomotive neural circuitry in
C. elegans that is capable of reproducing experimentally
observed learning behaviour in a T-maze. While we have
taken a parsimonious modelling approach, a strength of
the proposed model is the generation of several experi-
mentally testable hypotheses. These hypotheses refer to
the neural mechanisms that generate plasticity in
C. elegans’ neural circuitry that may be responsible for
the observed learning behaviour. In addition, our model
framework acts as a platform for investigating effects of
other phenomena involved in worm maze learning, such
as ageing.
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