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1  |  INTRODUC TION

Due to climate change, extreme weather events are increasing, and 
extreme heat days are expected to warm by 3°C in the mid- latitudes 
by mid- century Intergovernmental Panel on Climate Change.1 The 
impacts of extreme weather events, e.g., temperatures or precipita-
tion amounts that were observed less than 1% of the time in a histori-
cal period, such as 1981– 2010,2 disproportionately fall on vulnerable 

communities. These vulnerable communities include persons of color, 
who are more likely to live in lower quality homes and neighborhoods 
with fewer resources due to racially discriminatory mortgage lending 
practices, and individuals with low incomes, who often lack extreme 
temperature mitigation methods or may limit energy usage to mini-
mize utility costs.3 Of U.S. cities, Detroit, Michigan may be particularly 
vulnerable. This city of 670 000 people American Community Survey4 
lies in the Koppen climate classification group “hot summer continental 
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Abstract
The burden of temperature- associated mortality and hospital visits is significant, but 
temperature's effects on non- emergency health outcomes is less clear. This burden is 
potentially greater in low- income households unable to afford efficient heating and 
cooling. We examined short- term associations between indoor temperatures and cog-
nitive function and daytime sleepiness in low- income residents of Detroit, Michigan. 
Apparent temperature (AT, based on temperature and humidity) was recorded hourly 
in 34 participant homes between July 2019- March 2020. Between July- October 
2019, 18 participants were administered word list immediate (WLL) and delayed 
(WLD) recall tests (10- point scales) and the Epworth Sleepiness Scale (24- point scale) 
2– 4 times. We applied longitudinal models with nonlinear distributed lags of tem-
perature up to 7 days prior to testing. Indoor temperatures ranged 8– 34°C overall 
and 15– 34°C on survey days. We observed a 0.4 (95% CI: 0.0, 0.7) point increase in 
WLL and 0.4 (95% CI: 0.0, 0.9) point increase in WLD scores per 2°C increase in AT. 
Results suggested decreasing sleepiness scores with decreasing nighttime AT below 
22°C. Low- income Detroit residents experience uncomfortably high and low indoor 
temperatures. Indoor temperature may influence cognitive function and sleepiness, 
although we did not observe deleterious effects of higher temperatures.
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climate”.5 In the 1981– 2010 climatological period, 8.9 days per year had 
maximum temperatures exceeding 32°C, 114.5 days per year had min-
imum temperatures below 0°C Great Lakes Integrated Sciences and 
Assessments,6 and the relative humidity level was 69%.7 In the Detroit 
region, 7.4% of deaths annually are attributed to ambient hot or cold 
temperatures.8 According to the 2019 American Community Survey, 
79% of Detroit's residents identify as Black or African American, 8% 
identify as Hispanic or Latino, and 31% live below the poverty level.4 
Furthermore, in the 2019 American Housing Survey, 15% of Detroit 
households reported uncomfortably cold home temperatures for 24 h 
or longer for reasons such as equipment breakdowns, utility inter-
ruptions, and inadequate insulation.9 Utility disconnections for non- 
payment are of particular concern for uncomfortable or unsafe indoor 
air temperatures. DTE Energy, which provides both natural gas and 
electricity service to Detroit residents, performed over 70 000 dis-
connections between September 2020 and September 2021 amidst 
ongoing pandemic conditions.10 In an analysis of energy inefficiency 
in Detroit, energy inefficiency correlated with the percentage of 
African American or Latino households in a census tract, likely due 
to inadequate weatherization of the homes in these neighborhoods.11 
To inform policies related to healthcare subsidies, housing subsidies, 
and environmental and energy justice, it is particularly important to 
understand the health impacts of indoor temperatures among those 
more likely to have inadequate housing and therefore exposure to a 
wide range of indoor temperatures.

Both hot and cold temperatures have been shown to increase 
emergency health events, and these associations have been used to 
estimate annual attributable mortality, hospitalizations, emergency 
department visits, and health costs.8,12,13 However, associations 
between non- emergency events and temperature, particularly in 
community settings, are less well characterized. With respect to 
one such non- emergency health event, short- term cognitive func-
tion change, there is compelling evidence from a wide range of 
disciplines (education, psychology, health and medicine, ergonom-
ics, building science, neuroscience, and gerontology) that cognitive 
function is impacted by temperature extremes in laboratory con-
ditions, schools, and the workplace.14- 17 For example, in classroom 
settings, higher temperatures negatively affected students' learning, 
performance on standardized tests, focus, attention, and task com-
pletion.18,19 Considering residential settings, a study of older men in 
Boston found inverse associations between indoor temperature and 
cognitive function.20 Among young adults in non- air conditioned 
buildings, cognitive function was reduced during a heat wave.21 
However, among older adults or in low- socioeconomic households, 
these associations are not well characterized.

The effects of the sleep environment have received much atten-
tion to better understand the factors contributing to restful sleep 
and daytime sleepiness, although findings have been mixed with re-
gard to optimal sleeping temperatures (Lan et al. 22). Furthermore, 
few studies have examined sleep- temperature associations in 
community- based samples, where individuals might have more con-
trol over indoor temperature via a thermostat or may be exposed to 
wider temperature ranges given that older or unemployed individuals 

in the community are less likely to be in school or workplace envi-
ronments during the day. Among Hong Kong students sleeping in 
dormitory rooms, Zhang et al.23 found a slight U- shaped association 
between reported sleeping thermal environment satisfaction and 
room temperature, with optimal satisfaction at 24.2°C. Another 
study found sleep to be more disrupted among low- income resi-
dents in Boston as summer temperatures increased.24 Furthermore, 
cognition is directly impacted by sleep quality,25,26 and may there-
fore be impacted both directly and indirectly by indoor temperature. 
These findings as a whole suggest associations between indoor tem-
perature and the specific health outcomes of cognitive function and 
sleep. However, community- based research on indoor temperature 
as well as its association with both outcomes is sparse.

In the current study, we characterized indoor temperature expo-
sures in 34 low- income Detroit residences between July 2019- March 
2020. For 18 of the participants, we then estimated associations of 
indoor temperatures with cognitive function and daytime sleepi-
ness, and we characterized the time course (how long the exposure 
effects last) of temperature- associated cognition and sleepiness. We 
administered a phone survey on 2– 4 occasions and measured indoor 
temperatures in the hours and nights prior to the survey. We hy-
pothesized that cognitive processes— specifically working memory 
and auditory attention—  and sleepiness would increase with increas-
ing temperatures above 22°C, decreasing temperatures below 22°C, 
and increasing temperature variability. We hypothesized that tem-
perature exposures immediately prior to the survey or in the night 
prior to the survey would have stronger effects than temperatures 
occurring 24 h or more earlier.

2  |  METHODS

2.1  |  Recruitment

The Detroit Communities Reducing Energy and Water (D- CREW) is 
a community- based participatory research project to examine the 
feasibility of an integrated, neighborhood- based, case- management 

Practical implications

Climate adaptation strategies should account for non- 
emergency health problems related to indoor temperature 
rather than just the mortality and emergencies related to 
temperature. Even in late summer and autumn, short- term 
changes in temperature were associated with short- term 
changes in sleepiness and cognitive function. We did not 
see deleterious effects at high temperatures as hypoth-
esized, but this may be due to insufficient sampling on ex-
treme heat days. Further research on indoor temperatures 
and health is warranted to inform low- income energy ef-
ficiency assistance policies.
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approach to increasing household access to existing residential en-
ergy and water assistance programs to inform broader city- wide 
programs and planning. The cognition and temperature study was 
part of the larger study seeking to understand the potential health 
benefits of an energy efficiency program by reducing the barriers 
to assistance program utilization for low- income Detroit residents. 
Participants, adults with low- to- moderate household incomes re-
siding in Detroit, were recruited using community flyers in an East 
Detroit public housing complex and Lower East Side neighborhood 
and consented in person. Of the 41 consented and enrolled partici-
pants, 18 consented to this optional cognition and temperature sub- 
study and responded to at least 2 phone surveys. Seven of the 41 
participants completed only one phone survey. We excluded these 
7 participants from the cognition and sleepiness analyses so that we 
could focus our analysis on within- participant associations between 
temperature and cognition and sleepiness and control for individual 
non- time- varying characteristics by design (see Statistical Analysis 
below). In an initial face- to- face survey of all participants, demo-
graphic and housing information were collected.

2.2  |  Cognitive and sleepiness phone surveys

Participants	were	called	between	July	and	November	2019,	between	
11:00 and 18:00, and phone calls lasted approximately 10 min. The 
assessments included three previously validated measures of day-
time sleepiness and cognition. These tests were chosen for their 
speed and ease of administration by phone.

The Epworth Sleepiness Scale27 was used to measure sleepiness. 
Participants were asked to rate (scale of 0– 3) how likely they were to 
doze or fall asleep given the following situations: sitting and reading, 
watching television, sitting inactive in a public place (e.g a theater or 
a meeting), as a passenger in a car for an hour without a break, lying 
down to rest in the afternoon when circumstances permit, sitting 
and talking to someone, sitting quietly after a lunch without alcohol, 
and in a car stopped for a few moments in traffic. The sum of the 
8- item scale can range from 0 to 24, with higher scores indicating 
more sleepiness.

The immediate, single trial word list learning (WLL) and the 5- 
min delay word list delayed (WLD) tests of nonassociated verbal 
material from the28 were used to measure cognition.29 These cog-
nitive tests are associated with frontally- mediated performance 
in attention and working memory (WLL) and temporally- mediated 
performance in episodic memory (WLL and WLD).30 Previous stud-
ies have demonstrated negative associations between the cognitive 
distraction of physical discomfort, such as thermal discomfort, and 
frontally- mediated tasks.31,32 In the WLL test, participants heard 
10 words in a row, 2 s apart, and were asked to repeat the words 
they remembered at the completion of the list. For the WLD task 
the participants were asked to recall as many words as they could 
remember from the initial list after a 5- min delay. More words re-
membered indicated better performance on that test. Each of the 
four phone calls included a different list of words from the HRS. 

WLD was administered at the end of the phone survey as that was 
timed to be approximately 5 min after the WLD. We created four 
distinct word lists— one for each phone survey— and we randomly 
assigned, within each individual, the survey order of the word lists. 
The Epworth Sleepiness Scale was administered during the delay be-
tween the WLL and the WLD. The survey end time was used as the 
reference time in linking environmental information. We attempted 
to contact each participant on at least 4 occasions with the goal of 
completing 4 surveys per participant.

2.3  |  Outdoor temperature

Outdoor temperature values were obtained from the Detroit City 
Airport (DET) hourly values from the Integrated Surface Hourly 
Database.33 DET is approximately 3 km from the East Side housing 
complex and 7 km from the Lower East Side neighborhood. Missing 
values (<0.01% of values) were replaced with Detroit Metropolitan 
Airport (DTW) values. DTW is 36 km from DET and DET temper-
ature values were well- predicted (R2 = 0.68) by those from DTW. 
These data were imported using the rnoaa package in R,34 converted 
to local time, and linearly interpolated to create a value for each hour 
on the hour.

2.4  |  Indoor temperature

Each participant was given a UX100- 011 HOBO logger (Onset 
Corp.), which recorded indoor temperatures and humidity at hourly 
intervals. Participants were asked to mount the HOBO at eye 
level on an interior bedroom wall away from direct sunlight and 
air vents. Missing indoor data were imputed (see below). Apparent 
temperature (AT) is a measure of temperature incremented up-
wards at higher humidity values to better reflect perceived tem-
perature.35 We chose this metric given the synergistic effects of 
humidity and temperature on sleep quality.36 We calculated AT as 
AT = − 2.653 + (0.994 × temperature) + 0.0153 × (dew point)2 for 
both indoor and outdoor environments.37

2.5  |  Statistical analysis

AT exposure, both indoor and outdoor, was characterized in 5 dis-
tinct ways. (1) First, for each participant and cognitive exam, we 
converted AT, one value for each of the prior 24 h, to a distributed 
lag nonlinear crossbasis38 using R's dlnm package. A distributed 
lag nonlinear crossbasis is a two- dimensional spline of AT. We 
used a piecewise linear spline with one inflection point (knot) at 
the median AT of 22°C in the exposure dimension and a natural 
cubic spline with one knot at 12 h in the lag dimension. This al-
lowed us to characterize nonlinear associations between AT and 
cognition (e.g., potential negative associations both at very low 
and very high temperatures) as well as a nonlinear lag effect (e.g., 
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a potentially stronger effect at immediate vs. much longer lags). 
We chose a piecewise linear spline in the exposure dimension 
due to a priori beliefs that effects would be minimized at room 
temperature (22°C) but be adverse both at colder and hotter tem-
peratures.17 In sensitivity analyses, we moved the knot to other 
moderate room temperatures: 20 and 24°C. In the lag dimension, 
we chose a natural cubic spline, which has an additional degree of 
freedom, due to a lack of a priori beliefs about the point in time 
at which effects would begin to diminish. (2) We also character-
ized nighttime AT as a piecewise linear spline of the average of 
hourly AT from 22:00 to 06:00 on the night before the exam (lag 
night 0). (3) To characterize temperature variability at night, we 
calculated the standard deviation (SD), rather than the average, 
of nighttime hourly AT in the prior night (lag night 0) as a natural 
cubic	spline	with	a	knot	at	1°C.	(4)	Nighttime	AT	over	the	prior	7	
nights (lag nights 0– 6) was also converted to a crossbasis, again as 
a piecewise linear spline in the exposure dimension with a knot at 
22°C and a natural cubic spline in the lag dimension with a knot 
at 2 days. (5) We characterized nighttime AT SD over lag days 0– 6 
as a natural cubic spline crossbasis with a knot at 1°C and lag day 
2. If the association modeled using a spline appeared linear, we 
additionally characterized the temperature metric as a single con-
tinuous variable in a separate model.

Taking advantage of the moderate correlation between indoor 
and outdoor temperature in this population, (Ref. [39], In prog-
ress) we performed multiple imputations using chained equations 
(MICE) using the R package mice40 to impute missing AT crossbasis 
values using available values and crossbases formed from 24 lags 
of airport AT. We imputed the crossbases rather than the raw AT 
values given that, unlike raw lags of AT, the components of the 
crossbases are assumed to be linearly associated with the out-
come and are not highly multicollinear. We used predictive mean 
matching and performed 5 imputations with 50 iterations each. 
Because the mice package only outputs the square root of the di-
agonal of the covariance matrix rather than the full covariance ma-
trix, which is needed to calculate predictions at given temperature 
and lag values using model output and the dlnm package above, 
we calculated the covariance matrix using Rubin's Rules41 as fol-
lows. Step 1: We calculated the multiple imputation point estimate 
as the mean of the five imputed estimates. Step 2: We calculated 
the “within” variance, or the mean of the variances. Step 3: We 
calculated the “between” variance, or mean of the squared dif-
ferences of each imputation estimate from the multiply- imputed 
point estimate. Step 4: We calculated total variance as (Step 
2) + (Step 3) + (Step 3)/(number of imputations). We confirmed 
our calculations by verifying that the square root of the diagonal 
of the resulting covariance matrix was identical to the coefficients' 
standard errors calculated for the model output by the mice pack-
age, which also used Rubin's Rules.

We employed repeated measures fixed effects analyses42 in 
which we included a dummy variable for each participant in a lin-
ear regression of temperature on cognitive outcome. This controls 
for non- time- varying confounding (e.g., age, race, gender, etc.) and 

instead estimates the change in outcome for a change in time- 
varying exposure. This is equivalent to modeling the association be-
tween the difference between cognitive or sleepiness score and the 
within- person mean score and the difference between temperature 
exposure and the within- person mean of that temperature exposure.

Specifically, we used the model:

where yij is the health effect (WLL, WLD, or sleepiness score) for per-
son i at time point j; α1 through αn are dummy variables for n individu-
als, vector Tij is either (1) the 24- h crossbasis for AT, (2) the piecewise 
linear spline basis for nighttime average AT, (3) the natural cubic spline 
basis for nighttime AT SD, (4) the 7- day crossbasis for nighttime aver-
age AT, or (5) the 7- day crossbasis for nighttime AT SD.

Descriptive statistics, including means, medians, and percentiles 
were calculated for both the exposures and outcomes as well as for 
the within- person differences between the values and the within- 
person means. Pearson's correlation coefficients were calculated 
among certain exposure metrics. Descriptive statistics were also cal-
culated over the entire time the temperature and humidity monitors 
were in the residences: from July 2019 through March 2020.

3  |  RESULTS

3.1  |  Participant characteristics

Due to in- person research restrictions related to the COVID- 19 pan-
demic, we were not able to retrieve the monitors in- person, but most 
participants returned the monitors by mail or at a drop- off location. 
Two monitors were mis- programmed and the data were not usable. 
In total, we acquired hourly indoor temperature and humidity data 
for 15 of the 18 phone survey participants and 34 of the 41 overall 
study participants. Of the 18 phone survey participants, indoor tem-
perature and humidity data were imputed for 10 surveys among 3 
participants. A total of 64 participant days were available for analy-
sis, with one participant completing 2 surveys, 6 participants com-
pleting 3 surveys, and 11 completing all 4 surveys.

Of the 18 survey participants, most (89%) were women, and 
89% identified as African American. Given that we had selected low- 
income residents, most (83%) of the respondents had annual house-
hold incomes less than $20 000 (Table 1), which was lower than 
the Detroit 2019 median household income of $31 0004 and well 
below the national 2019 median household income of $68 700.43 
Participant ages ranged from 28– 77 years with a median of 58 years.

3.2  |  Indoor AT and response characteristics on the 
survey day

For the days participants were surveyed, hourly AT values in the 
prior 24 h ranged from 15.0 to 32.4°C. Means of AT values over 

(1)yij = �1 + �2 +… + �n + �1Tij + �ij
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the prior 24- h periods ranged from 16.7 to 30.1°C, but nighttime 
(22:00– 06:00) mean AT values were slightly higher and ranged 
from	17.3	 to	30.8°C.	None	of	 the	 indoor	 temperature	measures	
exceeded plausible values during the survey period (Table 2). 
Indoor AT range also varied within person, with the majority of 
24- average measurements being at least ±1 to ±6.5°C from the 
within- person mean (Table S1). When indoor AT was cooler, in-
door AT variability also increased (Pearson correlation coefficient 
r =	−0.38	for	AT	<22°C vs. AT SD). WLL and WLD scores ranged 
from 2 to 10 and 1 to 10, respectively, on these 10- point scales. 
On the Epworth sleepiness scale, 11 is the threshold above which 
a respondent is considered to have mild excessive daytime sleepi-
ness. Fifty percent of the reported scores were 6 or less, so most 
of our responses did not indicate excessive daytime sleepiness 
(Table 2). WLL, WLD, and sleepiness scores exhibited within- 
person variability, with the majority of responses being at least 
±0.8, ±0.8, and ±1.4 points from the within- person mean, respec-
tively (Table S1).

3.3  |  Indoor AT on a warm day

Indoor AT varied through the day and varied between participants. 
For example, on the warm day of August 21, 2019, when the out-
door AT ranged from 24.0 to 32.7°C, the hourly median indoor 
AT across participants ranged within a somewhat comfortable 
24.0– 27.0°C over the course of the day, with the highest tempera-
tures in the evening. However, hourly maximum indoor AT ranged 
from 31.1– 34.0°C. On that day, participant- specific medians ranged 
from 21.7– 32.2°C, while participant- specific maxima ranged from 
23.0– 34.0°C, and one participant never experienced indoor ATs 
below 31°C. Additionally, 3 of the participants experienced indoor 
ATs greater than 30°C at some point during that day (Figure S1).

3.4  |  Indoor AT July 2019- March 2020

In examining the range of temperatures experienced throughout the 
entire larger study period (July 2019- March 2020), including several 
months after the end of this phone survey period, the first through 
third quartiles of daily indoor AT remained between 19 and 28°C 
(Figure S2A). However, indoor AT was as low as 8.0°C and as high 
as 43.5°C. The highest and somewhat implausible values may have 
resulted from inappropriate placement of a monitor, e.g., near an ap-
pliance	or	in	the	sun.	Nevertheless,	even	after	excluding	participant	
10, values were as high as 33.8°C. Of the 34 participants, 5 and 22 
experienced indoor ATs below 10°C and above 30°C, respectively, 
and 3 participants experienced both extremes (Figure S2B).

3.5  |  Associations of cognitive changes and 
sleepiness with AT

For indoor AT below 22°C, we did not see associations between 
cognitive changes and AT in the 24 h preceding the phone survey 
(Figure 1A,C). However, we did see an increase in sleepiness score 
for low AT in the hour of the survey: for a 2°C decrease in AT below 
22°C,	we	observed	a	0.5	(95%	CI:	−0.0,	1.1,	p = 0.05) point increase. 

TA B L E  1 Counts	and	percents	by	race,	gender	(only	male	
and female reported), and income categories among 18 Detroit, 
Michigan	participants	surveyed	on	2–	4	occasions,	July-	November,	
2019

Characteristic N (%)

Race

African American 16 (89%)

White 1 (5%)

Other 1 (5%)

Female 16 (89%)

Income categories

$0– 19 999 15 (83%)

$20 000– 34 999 0 (0%)

$35 000– 49 999 1 (5%)

$50 000- $74 999 1 (5%)

No	answer 1 (5%)

Characteristic Mean Min Median Max

Age (years, N = 14) 56 28 58 77

Word list learning score (WLL) 6.4 2.0 6.0 10.0

Delayed word list learning score (WLD) 4.9 1.0 4.5 10.0

Epworth Sleepiness Scale score 6.8 0.0 6.0 18.0

AT (C), minimum of lags 0– 23 ha 22.1 15.0 22.0 28.4

AT (C), maximum of lags 0– 23 ha 25.5 19.1 25.6 32.4

AT (C), mean of lags 0– 23 ha 23.6 16.7 23.2 30.1

AT (C), mean of prior nighta,b 23.9 17.3 23.6 30.8

Meant AT standard deviation (C), prior nighta,b 0.6 0.1 0.5 3.1

aN = 15 participants with complete (non- imputed) data representing 54 participant days
bNight	= 22:00– 06:00.

TA B L E  2 Distributions	of	age,	apparent	
temperature (AT) exposure, cognition 
(word list and delayed word list learning 
scores), and sleepiness scores among 18 
Detroit, Michigan participants surveyed 
on	2–	4	occasions,	July-	November,	2019
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In the directions opposite to those hypothesized, we additionally 
observed a decline in sleepiness score in the 10– 20 h prior to the 
survey such that, e.g., for a 2°C decrease in AT below 22°C, sleepi-
ness	scores	decreased	by	−0.3	(95%	CI:	−0.5,	−0.0,	p = 0.03) points 
in lag hour 17 (Figure 1E). Most of the surveys were administered in 
the afternoon and evening, so this 10– 20 lag hour time period corre-
sponds to the prior evening and night during which individuals might 
have been trying to sleep. Similarly, with increasing indoor AT above 
22°C in this time period of 10– 15 h prior to the survey, results were 
suggestive of improvements in WLL and WLD scores (Figure 1B,D). 
Specifically, we observed a 0.1 (95% CI: 0.0, 0.3, p = 0.06) point in-
crease in WLL score for each 2°C increase in AT above 22°C at lag 
hour 12 and a 0.1 (95% CI: 0.0, 0.3, p = 0.09) point increase in WLD 
score.

When examining average night time AT in isolation from the 
other time periods, we found positive associations with WLD, 
WLL, and sleepiness, which were again contrary to our hypotheses. 
Specifically, for WLD, we found a 0.7 (95% CI: 0.1, 1.4, p = 0.02) 
point increase in score for each 2°C increase in average night time 
AT above 22°C. In fact, neither WLL or WLD exhibited nonlinear 
associations with AT within the observed AT range (Figure 2A,C). In 
a model with AT represented as a single, linear term rather than a 
spline, we observed a 0.4 (95% CI: 0.0, 0.7) point increase in WLL and 
0.4 (95% CI: 0.0, 0.9) point increase in WLD scores for each 2°C in-
crease	in	AT.	At	cooler	temperatures,	we	found	a	−1.7	(95%	CI:	−3.3,	
−0.1,	p = 0.03) point decrease in sleepiness score for each 2°C de-
crease in average night time AT below 22°C. When considering the 

night time AT variability (SD) instead of the average, we observed 
results suggestive of an increase in WLL score with increasing night 
time AT SD. However, the AT SD results were not statistically signifi-
cant and may also have been confounded by cooler average AT given 
the moderate correlation (r =	−0.38)	between	average	night	time	AT	
and night time AT SD at AT below 22°C. In sensitivity analyses of 
average night time AT in which we assigned the cold- hot inflection 
point at 20°C or 24°C rather than 22°C, results were qualitatively 
similar for WLL, WLD, and sleepiness, although the positive asso-
ciation between sleepiness and AT at lower temperatures became 
non- significant (Figure S3A- F).

In models of 7 prior nights of AT exposure, we did not find signifi-
cant associations between either average night time AT or night time 
AT SD and the cognitive or sleepiness scores for any of the lag nights 
(Figures S4A- F and S5A- F).

4  |  DISCUSSION

This community- based participatory research study recruited low- 
income residents of Detroit and estimated associations between 
indoor temperatures and the participants' cognitive function and 
daytime sleepiness during 2019. Although findings were mixed and 
inconsistent with some prior literature, our work adds to the limited 
body of knowledge about how temperature may influence indicators 
of health and quality of life, and not only deaths and urgent health 
effects requiring hospital visits. This research is an important area of 
inquiry in the context of climate change and the well- documented 
disparities in weather- related health outcomes, and may also inform 
efforts to reduce energy insecurity among lower- income popula-
tions and enhance environmental justice. We next discuss our find-
ings in more detail and in the context of previous findings from the 
literature, discuss strengths and limitations, and suggest areas for 
future research building upon this work.

4.1  |  Cognition and AT

Multiple domains of indoor environmental quality, including thermal 
environment, lighting, noise, and air pollution, have been found to 
influence cognitive performance (reviewed in Ref. [44]). Cold tem-
perature exposure has been shown to impact memory, vigilance, 
and reaction time as well as changes in dopamine, epinephrine, and 
norepinephrine levels (reviewed in Ref. [15]). Cognitive deficits re-
lated to temperature may also be due to a distracting effect of ther-
mal discomfort or poor sleep the prior night (Lan et al. 22, Alhola & 
Polo- Kantola 45, Johnson et al. 46). However, many of our findings, 
particularly for the warm temperatures, did not agree with these 
prior findings or support our hypotheses that working and episodic 
memory and auditory attention cognitive domains would show an 
inverse- V- shaped association with AT within the range of observed 
ATs (18– 30°C) and with an inflection point of 20– 24°C. Rather, we 
observed an increase in these domains of cognitive performance 

F I G U R E  1 Time	course	of	associations	for	hourly	indoor	
apparent temperatures prior to the hour of the phone survey (lag 
hours), the differences between the word recall (A, B), delayed 
word recall (C, D), and sleepiness (E, F) scores and the scores at 
22°C. The left column (A, C, E) are the effects above 22°C and the 
right column (B, D, F) are the effects below 22°C. The gray shaded 
areas represent 95% confidence intervals
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with increasing ATs, which supports the hypothesis of a protec-
tive effect of increasing AT, but not the hypothesis that the upper 
threshold for this effect is 22°C. Our survey period started mid- 
summer and ended in mid- autumn, prior to the much colder outdoor 
and indoor temperatures experienced by some of our participants 
and after the hottest day of the summer (maximum AT of 39.9°C). 
Therefore, our participants may not have experienced indoor tem-
peratures above or below the threshold at which temperature has 
deleterious effects on these cognitive domains. In contrast to field 
studies that did capture more extreme temperatures, attention/pro-
cessing speed and working memory were reduced in young adults in 
non- air conditioned buildings during a heat wave,21 and the odds of 
having a low mini- mental status score was minimized at daily mean 
outdoor temperatures of 10– 15°C in older male veterans, with the 
daily	mean	 outdoor	 temperature	 ranging	 from	 −5	 to	 25°C.20 In a 
meta- analysis of cognition and temperature studies, where cogni-
tion included office productivity and learning, Seppanen et al. (47) 
found a 10% decline in normalized performance for indoor tempera-
tures at 30 vs. 23°C.

These and other studies are consistent with the idea that a U-  or 
V- model, with a single inflection point, is too restrictive.17 Instead, 
the “extended- U” model48 may be more appropriate in allowing for 
a wider range of temperatures over which cognition is only slightly 
or not at all affected by temperature and therefore allowing for sig-
nificantly increasing or decreasing associations at only the extreme 

ends of the temperature range. Support for the extended- U model 
with regards to memory was found in a recent qualitative meta- 
analysis of studies of college students.44 Additional support for an 
extended- U model was provided by a quantitative meta- analysis of 
laboratory studies of temperature and cognitive function, incorpo-
rating studies using a wide variety of cognitive performance mea-
sures. In this meta- analysis, effects in the experimental groups vs. 
the control groups did not change substantially when temperature 
rose to 5°C above the control group room temperatures. However, 
5% decreases in overall cognitive function were observed for a 6°C 
decrease in temperature or a 9°C increase in temperature, and cog-
nitive function declined by as much as 8% at extreme hot and cold 
temperatures. As expected, heterogeneity in study findings was 
considerable given different levels of acclimatization, physical fit-
ness, thermal comfort, and clothing between studies.49 With respect 
to thermal comfort and acclimatization, military and sports medicine 
studies have demonstrated physiological adaptation to warm tem-
peratures.50 Specific to cognition, a chamber study of tropically- 
acclimated and temperate- climate- acclimated men showed greater 
decrement in mental arithmetic performance in the temperate- 
climate acclimated men.51 In occupational settings, thermal comfort 
preferences vary across individuals and countries, and this variation 
may be due in part to differences in acclimatization.52 These studies 
further support the idea that our temperature ranges were not suffi-
ciently wide to detect decreases in cognitive function in a U- shaped 
model, particularly for hot temperatures. Additionally, studies of 
mortality and temperature have found a strong effect of timing in 
year such that the first wave of high temperatures in spring or early 
summer has the most substantial deleterious effects, and then sub-
sequent days or nights of high temperature in mid-  or late- summer 
are less impactful as subjects have likely become either acclimated 
to or, rarely, expired from high temperatures.53 Therefore, future 
research on indoor temperatures and cognition should study warm- 
temperature effects early in and throughout the summer and should 
also study cold temperature effects during the coldest months. 
Future studies should also include a higher number of participants 
to provide the statistical power needed for an extended- U model, or 
more flexible regression splines that could account for a potentially 
wide range of ideal indoor AT values.

4.2  |  Sleep and AT

In support of one hypothesis, we did observe an increase in sleepi-
ness when AT was below 22°C in the hour of the phone survey. 
However, when considering a longer time course of exposure, 
our results did not support our hypothesis of a V- shaped associa-
tion between AT and sleepiness within the range of observed ATs 
(18– 30°C) and an inflection point of 20– 24°C. However, we did 
see significantly reduced daytime sleepiness at lower bedroom 
temperatures the night before, suggesting that sleep quality was 
maximized at these lower nighttime bedroom temperatures. Our 
results are consistent with those from a study of 8 older men in 

F I G U R E  2 Associations	between	nighttime	(22:00–	06:00)	
average indoor apparent temperatures (AT) and AT standard 
deviations (SD) and next- day cognition and sleepiness, or the 
differences between the word recall (A, B), delayed word recall (C, 
D), and sleepiness (E, F) scores and the scores at 22°C or an SD of 
1°C. The left column (A, C, E) are the effects for average AT and the 
right column (B, D, F) are the effects for AT SD. The gray shaded 
areas represent 95% confidence intervals



8 of 11  |     GRONLUND et aL.

Japan with average bedroom temperatures ranging from 20– 28°C. 
In that study, increasing air temperature and humidity were corre-
lated with earlier wake- up times and decreased sleep efficiency.54 
However, our findings conflict with those from studies of Hong 
Kong students in their dormitory rooms, in which sleeping thermal 
environment satisfaction was maximized at 24.2°C with satisfac-
tion slightly diminished at both lower and higher temperatures,23 
and sleep quality was higher among students reporting thermal 
satisfaction vs. those reporting feeling too hot or cold (Tsang 
et al. 55). Also, perhaps because our participants did not experience 
extreme- heat conditions, our findings did not concur with those of a 
Massachusetts study,24 in which sleep was disrupted in low- income 
housing residents during a heat wave. Our results also conflict with 
a review of sleep and thermal environment studies finding that 
heat exposure, but not mild cold exposure, impacts sleep stages in 
community- based settings where bedding and clothing can be al-
tered by the participants.56

In general, minimum wintertime recommended indoor tempera-
tures for sleeping range from 17– 20°C and maximum summertime 
indoor temperatures range from 23– 26°C.57 In community settings, 
thermal comfort during sleep has been optimized at temperatures 
as high as 24°C (Lin & Deng 58). These wide ranges in comfortable 
sleeping temperatures are likely due in part to the strong influences 
of bedding and bed clothing on optimal ambient sleeping tempera-
ture,59,60, Lin & Deng 58, 23,61. If bedding and bed clothing remained 
consistent within our participants during each participant's survey 
period, then our study would have controlled for bedding and cloth-
ing effects by examining only within- person changes in sleepiness 
with within- person changes in temperature. However, individuals in 
our study may have altered their bedding and clothing based on am-
bient bedroom temperature in ways that were not consistent from 
one individual to the next.

4.3  |  Study strengths

In contrast to most temperature and cognition or temperature and 
sleep research, our indoor temperature measurements were ac-
quired in a community setting, among adults, including retirees, in 
their own homes. We also employed a community- based participa-
tory research approach, whereby community partners participated 
in and enhanced the quality of the study design, played a critical 
role in recruitment and retention, and participated in analysis and 
dissemination. Our long observation period across multiple months 
allowed for indoor temperature characterization in 3 seasons and 
longitudinal, within- person comparisons of temperature with short- 
term changes in sleep and cognition to fully control for non- time- 
varying confounding.

Furthermore, although air conditioning is often proposed as an 
easy mitigation method, for many low- income families, such as those 
included in our study, the cost of mechanical cooling is likely prohib-
itive. Heating and cooling costs in the Midwestern U.S. can strain 
household resources, where 1 in 5 residents reported reducing or 

forgoing food or medicine to pay energy costs in the 2015 Residential 
Energy Consumption Survey.62 Therefore, low- income subjects are 
potentially most greatly impacted by indoor temperature and tem-
perature variability due to fewer household resources to control the 
indoor environment.

4.4  |  Study limitations and Avenues for 
future research

We did not control for indoor air pollutants, which may be associated 
with cognitive function and correlate with indoor temperatures.63 
Furthermore, the Epworth Sleepiness Scale includes questions 
about riding in cars, which may not be appropriate for our low- 
income, urban population. We chose the WLL and WLD tests given 
their validated use over the phone and in racially diverse populations 
(e.g., Ref. [64]). Simple task decrement in the heat has been reported 
in a small number of studies, but there is evidence that more com-
plex tasks are more sensitive to heat.44 We also did not ask about 
pajama type or coverage or bedding materials. We assumed that in-
dividuals would select the combination of each that would maximize 
their comfort given ambient bedroom temperatures, but prefer-
ences could be influenced by other factors and vary seasonally. We 
also did not verify that participants had properly sited the monitors 
prior to phone survey administration. Without a clear decision rule 
on what would be an impossible indoor temperature value, we did 
not drop or impute high values. However, an overestimate of the 
change in exposures from one time period to the next might have 
biased our results. Higher sample size, in addition to allowing us to fit 
an extended- U model as discussed above, would allow us to examine 
differences by sex and age, which may be important for generalizing 
our	findings.	Notably,	prior	research	suggests	that	men	have	been	
found to prefer cooler sleeping environments due perhaps to higher 
basal metabolic rates,59,60 and it is plausible that women's tempera-
ture preferences vary across the life course, including during preg-
nancy and perimenopause. Our participants ranged in age from 
28– 77 years old, and prior research has shown that age impacts cog-
nitive performance and sleep (e.g., Ref. [65,66]). Additionally, sleep 
disparities by race have been observed,67 and a better understand-
ing of the determinants of sleep quality and subsequent daytime 
sleepiness in low- income households and people of color is critical 
to eliminating these disparities.

Higher sample sizes would permit us to consider interactions be-
tween duration and intensity of exposure, with the idea that habitu-
ation to the temperatures occur or, conversely, that long durations of 
mild temperatures may be as impactful as short durations of intense 
exposure. The surveys were also administered from late morning 
through the evening, which may have introduced chronobiological 
bias, considering the circadian patterns of cognitive performance 
and sleepiness (e.g., Ref. [68,69]). Finally, little is known about pre-
cisely which domains of cognition are impacted by temperature in 
a non- occupational setting. We chose to study domains that were 
measured by tests easily administered in a short amount of time over 
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the phone. Future studies should examine a more comprehensive 
range of cognitive domains, including complex cognitive tasks such 
as arithmetic given that complex cognitive tasks may be more sus-
ceptible to temperature.17

5  |  CONCLUSIONS

Our results were suggestive of short- term associations of AT with 
sleepiness and cognition, such that sleepiness increased when 
AT was below 22°C in the hour of the testing and cognition de-
clined for each 2°C decrease in average nighttime AT below 30°C. 
Protective effects of cool (18– 22°C) nighttime AT on daytime 
sleepiness were also observed. The association between cognition 
and AT was linear, rather than V- shaped as hypothesized. Future 
research should expand sample size, seasons of testing, and num-
ber of tests per person to allow for a potentially more complex 
functional form, i.e., an “extended- U” shape, of cognition and 
sleepiness with temperature. These advancements would enable 
the characterization of cognition and sleepiness over the wide 
range of indoor temperatures experienced by this and other low- 
income populations.
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