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ABSTRACT  

Introduction: Research and continuous quality improvement in pediatric rehabilitation settings 

requires standardized data and a systematic approach to use these data. 

Methods: We systematically examined pediatric data concepts from a pediatric learning network 

to determine capacity for capturing gross motor function (GMF) for children with Cerebral Palsy 

(CP) as a demonstration for enabling infrastructure for research and quality improvement 

activities of a LHS. We used an iterative approach to construct phenotype models of GMF from 

standardized data element concepts based on case definitions from the Gross Motor Function 

Classification System (GMFCS). Data concepts were selected using a theory and expert-

informed process and resulted in the construction of four phenotype models of GMF: an overall 

model and three classes corresponding to deviations in GMF for CP populations.  

Results: 65 data element concepts were identified for the overall GMF phenotype model. The 65 

data elements correspond to 20 variables and logic statements that instantiate membership into 

one of three clinically meaningful classes of GMF. Data element concepts and variables are 

organized into five domains relevant to modeling GMF: Neurologic Function, Mobility 

Performance, Activity Performance, Motor Performance, and Device Use. 

Conclusion: Our experience provides an approach for organizations to leverage existing data for 

care improvement and research in other conditions. This is the first consensus-based and theory-

driven specification of data elements and logic to support identification and labeling of GMF in 

patients for measuring improvements in care or impact of new treatments. More research is 

needed to validate this phenotype model and the extent that these data differentiate between 

classes of GMF to support various LHS activities. 

Keywords: Learning Health Systems, Pediatric Rehabilitation, Phenotypes, Infrastructure



3 
 

BACKGROUND 

The re-purposing of patient health data collected during routine patient care from the electronic 

health record (EHR) is more common over the past decade and can advance and support the 

formulation of real-world knowledge, a key area of Learning Health Systems (LHS) (1-3). 

Pediatric rehabilitation relies on EHR data to support clinical decision making of the 

interprofessional care team as well as LHS research and learning efforts to improve care delivery 

for patients with physical disability and deviations in functional performance. However, there is 

a paucity of systematic approaches to leverage EHR data in pediatric rehabilitation. Recent 

strategic plans by the National Institutes of Health (NIH) and National Institute for Child Health 

and Human Development (NICHD) emphasize building better rehabilitation research and 

learning infrastructure (4, 5). The re-use of EHR data to characterize the range of patient 

functional performance through conceptual and digital phenotyping can support evaluation of 

new and existing rehabilitative treatments and is of great value in rehabilitation settings. LHS 

infrastructure is designed to meet such needs across a broad range of health settings. However, in 

pediatric Cerebral Palsy (CP), there is no existing application, or systematic approach, for using 

EHR data to model complexity and deviations in physical functioning to support patient cohort 

identification.  

Currently, few reports in the literature use analytic methods to “phenotype” patient 

cohorts in pediatric rehabilitation research, and only limited studies exist that develop or use 

typologies such as “phenotype models” from health data to characterize patient function in other 

settings (6-9). A phenotype model contrasts a computable phenotype or phenotype algorithm, 

which are traditionally designed from EHR data elements and values and have computable rules 

dictated by patient data. While a model is an informative representation of a system or person, a 



4 
 

phenotype model is an informative representation of important and relevant data concepts that 

exist in an EHR. Fried et al. describe a phenotype model in the context of frailty as a group of 

patient characteristics that, if present together, may represent a patient’s level of frailty (10). 

Their model included variables for ambulation quality, reduced strength, unintentional weight 

loss and reduced activity tolerance that were collected on patients aged 65 years or older in an 

observational cohort study (6, 10). Others have recently used the frailty phenotype model for a 

variety of applications, such as to support the construction of a frailty index based on the 

accumulation of deficits documented in an EHR to evaluate the extent of frailty in geriatric 

inpatients (6-9). However, the absence of literature on phenotyping in rehabilitation research 

makes designing phenotype algorithms difficult because of the complexity of physical 

functioning. Hence, a phenotype model for functional performance is a critical infrastructure for 

LHSs in pediatric rehabilitation. Phenotyping approaches, such as Mo et al.’s desiderata for 

computable phenotyping using EHR data (11) and others (12-15), can be adapted to develop 

phenotype models of physical functioning from EHR data sources.  

In the present study, a phenotype model structures key data concepts and value sets 

available in an EHR to characterize theoretical patient cohorts by deviations in functional 

performance, irrespective of the EHR data values. Analytical strategies, including phenotyping 

algorithms, to improve the identification of cohorts related to physical function would be a great 

benefit to research, quality improvement and clinical practice in pediatric rehabilitation settings. 

Therefore, our work in developing a phenotype model of gross motor function built on EHR data 

standards and architectures is more exploratory and conceptual and serves as a foundation for 

future phenotyping algorithms to define functional classes broadly from existing data sources.   
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Gross Motor Function Classification System  

Many clinicians (e.g. orthopedic surgeons, physiatrists, occupational therapists (OT), 

physical therapists (PT), and nurse practitioners) use the Gross Motor Function Classification 

System (GMFCS) level to classify physical function during routine care for patients with CP. 

The GMFCS is a five-level ordinal classification structure (i.e. I, II, III, IV, V) and standard 

screening tool used to classify deviations in performance of gross motor function activities for 

children with CP (16). Palisano et al. illustrates these deviations and includes corresponding 

definitions (16, 17). These deviations are frequently used in hip surveillance programs that focus 

on monitoring children with CP who may develop a hip dysplasia and subsequent displacement 

and dislocation (18-23). However, the GMFCS is not always documented as a discrete data 

element in the EHR. Rather, it is often embedded in free-text and dictated clinical notes using 

variations in terminologies, making EHR-driven and automated cohort identification by 

functional performance levels more difficult. 

GMFCS levels describe performance and participation rather than CP-related physical 

impairment and body region involved (spastic hemiplegia, diplegia, tetraplegia and quadriplegia) 

(18).  The GMFCS level definitions illustrate current functional status and have predictive value 

for a child’s future functioning level with CP (16, 24, 25). On one end, patients at GMFCS I are 

independent in all mobility activities and can run, jump, and play without physical limitations, 

and do not require the use of external devices. On the other end, patients at GMFCS V require 

total physical assistance to perform all activities, are unable to propel their own wheelchair, and 

require a manual wheelchair that is propelled by family or caregiver. The GMFCS is also divided 

into age-ranges that reflect age-related gross motor development and mobility skills (birth-2, 2-4, 

4-6, 6-12, and 12-18). These age-range specific GMFCSs address similar underlying concepts in 
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each case definition but are modified to reflect age-appropriate activities. Although GMFCS 

level is considered stable after 2 years-old (16, 25), children generally achieve major gross motor 

developmental milestones by age 5.  

Pediatric Learning Networks 

In the past decade, federal funding and non-profit organizations supported establishing 

LHS in pediatrics by developing several national clinical data research networks (26-34). 

PEDSnet, a Patient Centered Outcomes Research Institute (PCORI) funded effort, is one 

example of a general pediatric care learning network being used to support LHS activities (29, 

30). The Shriners Hospitals for Children (SHC) Health Outcomes Network (SHOnet) is another 

learning network, one that is specific to the SHC system (35). SHOnet is the exemplary learning 

network for this use-case and adapts the existing pediatric-specific common data model (CDM) 

for PEDSnet built based on the Observational Medical Outcomes Partnership (OMOP) structure 

(29, 30, 36, 37). SHOnet harmonizes EHR data elements across 20 pediatric specialty hospitals 

in the SHC System. In addition to the OMOP concepts mapped in PEDSnet, the SHOnet CDM 

includes extensive mappings to EHR data elements for PT and OT observational discrete data 

elements. All SHOnet data elements for observational data and medications are stored as OMOP 

and RxNorm concept codes, respectively. This data infrastructure allows SHOnet to address 

many important treatment and research questions. In terms of the GMFCS values in SHOnet, due 

to EHR documentation practices at the clinician level, the GMFCS as a discrete data element has 

low completeness (35). The development of a phenotype model of gross motor function would 

build capacity to address questions related to functional outcomes stratified by functional 

performance levels.  
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STUDY OBJECTIVES 

The overall aim of this study was to develop a methodology to build conceptual 

classification models of functional performance phenotypes from EHR data concepts in pediatric 

learning networks. Objective 1 of this aim was to construct a phenotype model of gross motor 

function using a theory and expert-informed approach based on SHOnet CDM discrete data 

element concepts and using existing case definitions for each GMFCS level as gold-standard 

phenotype definitions. Objective 2 of this aim was to define three clinically meaningful classes 

of gross motor function that were derived from an expert-panel review of a set of data element 

concepts and corresponding value sets available in a pediatric EHR.  

MATERIALS AND METHODS 

Procedure 

The use of functional performance data elements to build patient cohorts for research or 

quality improvement is challenging because different clinicians observe and record physical 

functioning differently and this is not captured discretely or consistently by providers. Functional 

status can also represent a challenge because of the range of states (high functioning to low 

functioning), and it manifests differently in different patients. For this research, we designed a 

stepped and iterative process based on consensus expert review (38) and adapted several 

methodologies (11-15) to develop a phenotype model and corresponding subgroups, or classes, 

of gross motor function (GMF) that uses theoretical data concepts from the SHOnet CDM. Error! 

Reference source not found. provides a flow diagram of our procedure to develop the GMF 

phenotype model (GMFPM).  

Given this initial effort in what may be a more difficult classification, function across 

multiple subgroups rather than presence or absence of a condition on binary terms, for the 
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purposes of this study, the GMFCS was collapsed from five levels into three distinct classes of 

GMF. The three classes are largely consistent with major functioning levels: GMF Phenotype 

Class 1 includes GMFCS I and II, those who ambulate without assistive devices; GMF 

Phenotype Class 2 corresponds to GMFCS III, those individuals who use assistive devices 

including wheelchairs; GMF Phenotype Class 3 includes GMFCS IV and V, those individuals 

who have significant ambulatory limitations. Furthermore, all phenotype models in this study 

corresponded to patients aged 6-18 years old because this is the largest age-band of the GMFCS 

that overlaps with school setting and clinical practice (e.g. hip surveillance) guidelines and 6-18-

year-olds are expected to have stable GMFCS levels. The construction of the GMFPM and 

classes proceeded through four phases. Since this model is foundational and is not a computable 

phenotype using real patient data, the validation of such model is beyond the scope of this paper. 

Four Phases Design Process  

In Phase 1, two SHOnet clinical domain experts, an OT and PT with experience treating 

patients with motor dysfunction, systematically selected data element concepts and value sets for 

panel review. These domain experts reviewed and scrutinized 10000+ observational discrete data 

element concepts in the SHOnet CDM to be included for panel review. The initial set of data 

concepts were selected based on existing knowledge of routine care, evaluation, and treatment of 

patients with CP by SHC OTs, PTs, and nurses and if the concepts were thought to align with 

and deviate across GMFCS levels. For example, the data concept “Ambulation Level” had 6 

possible values of mobility performance that demonstrate significant visible deviations between 

GMFCS levels and is known to be collected by OT and PT. Muscle tone and motor control 

dysfunction are common problems in patients with CP; therefore, data concepts for “Drooling” 

relates to oral motor control and concepts for “Elbow Tone” and “Ankle Tone” are known to 
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deviate between GMFCS levels. Those not selected included data concepts for manual muscle 

testing of specific muscles and concepts on lab values that may be indeterminate of GMFCS 

levels. The initial set comprised 540 data element concepts. Domain experts then convened to 

review the initial selection of data concepts and removed those that were redundant or extraneous 

to functional performance. This resulted in a final selection of 89 data element concepts.  

In Phase 2, the final set of data element concepts were consolidated into 31 unique and 

derived variables for use in the expert-panel review exercise to assign and rate variables. A 

unique variable corresponds to one data element concept. A derived variable corresponds to 

many data element concepts that could be collapsed into one variable due to similarity in concept 

and value set. This also simplified the expert-review process. For example, multiple data element 

concepts correspond to different types of assistive devices a patient may use with the same 

yes/no value set, so the concepts were combined to form the derived variable “Assistive Devices 

Used”. This contrasts the “Ambulation Level” variable, which is a single data element concept 

that maintains a standard 6-level value set spanning ‘Independent’ to ‘Dependent’ performance. 

The 31 variables included 14 unique variables, 17 derived variables and corresponding value 

sets. Variables and GMF classes formed a two-step grid-like exercise for expert-panel review 

and completion. 

In Phase 3, we convened a panel of four new domain experts to support the design of the 

overall phenotype model and classes. The panel included four licensed clinicians and mobility 

researchers (three PTs and one OT) from three different SHCs with extensive knowledge of CP 

and an average of over 20 years of clinical experience. Panelists independently completed an 

evaluation exercise for the 31 variables by each GMF class. Error! Reference source not found. 

and Error! Reference source not found. provide examples of the two-step evaluation exercise 
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(denoted EX1 and EX2). In EX1, panelists examined the extent that each of the 31 variables 

differentiated between the three GMF classes for patients 6-18 years old. For each GMF class, 

panelists assigned available performance values to each of the 31 variables, therefore each 

panelist completed 93 distinct classifications. If warranted, panelists assigned multiple values for 

each variable. In EX2, panelists rated their perception of how well variables distinguished 

between the three GMF classes by applying a 5-point rating scale (1- does not distinguish at all, 

3 – distinguishes moderately, 5 – distinguishes very well) to each variable. At the end of the 

exercise, panelists recommended additional variables they felt may distinguish between classes.  

In Phase 4, we stratified the overall phenotype model by the three GMF classes based on 

the deviations in how panelists allocated performance values for all variables in EX1. The 

deviations in assigned values informed the construction of logic statements and rules for variable 

value sets to instantiate membership to one of the three GMF classes. Each statement contains 

human-readable text and includes a stem, rule and qualifier that is stratified by value sets for 

each variable. Two PhD trained, licensed PTs, on the SHOnet team with informatics and clinical 

domain expertise reviewed the structured rules, value assignments and logical operators for 

variables in each GMF class for content validity.  

Data Analysis 

The expert panel responses to the two-step evaluation exercise were analyzed in three-

phases. First, we reviewed the values in EX1 that individual panelists assigned to the 31 

variables across each GMF class and assigned an overall value per GMF class based on one of 

three results: 1) One variable value received panel consensus. 2) If panelists assigned multiple 

values to a variable or there was a tie in values, then both values comprised the final value for a 

GMF class (the inclusion of multiple values accounts for deviation in patient performance within 
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a GMF class). 3) If the result in 1 or 2 did not occur, then the respective GMF classes included 

all values assigned by panelists.  

Next, we analyzed the panel ratings in EX2 regarding the extent to which variables 

differentiated between the three GMF classes. The variables were analyzed for one of two 

criteria to be included in all GMF classes: 1) if a consensus of panelists rated the variable ≥ 3, or 

2) if the panel responses for a variable were split, for example if the variable received two ratings 

of ≤ 2 and two ratings of ≥ 3. Furthermore, the models did not include variables that received a 

consensus rating of ≤ 2.  

In the final phase, we conducted a quality control check by analyzing the conformance 

between how panelists assigned values for each GMF class and how panelists rated the 

differentiation between GMF classes. Instances of conformance occurred when assigned variable 

values deviated across all GMF classes in EX1 and panelists rated the variable differentiation ≥ 3 

in EX2. If the responses did not conform, then the variable was not included in the model. 

Microsoft Excel was used to complete all analyses.  

RESULTS 

The overall GMFPM and three GMF classes included 20 variables that correspond to 65 

performance-related data elements that were identified by the expert panel. Error! Reference 

source not found. provides a list of the 20 variables and 65 data elements and value sets in the 

overall phenotype model. Error! Reference source not found. provides a breakdown of the results 

for the overall phenotype model. The panel initially rated 23 of 31 variables to at least 

moderately (≥3) differentiate between GMF Phenotype classes; therefore, they agreed with 

approximately 73% of data element concepts selected by the SHOnet team. After final analysis, 
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three variables were added to existing variables to reduce negation in verbiage and redundancy 

and resulted in the total of 20 variables.  

Variables were grouped into five performance-related domains (Error! Reference source 

not found.) to organize and present the data concepts based on characteristics in the GMFCS 

definitions and components of Body Structures and Function, Activity, and Participation in the 

World Health Organization International Classification of Functioning, Disability and Health 

(39). The five domains include: Neurologic Function, Mobility Performance, Activity 

Performance, Motor Performance, and Device Use. In post-exercise discussions, two panelists 

recommended additional data elements for gastrointestinal and anti-epileptic/muscle relaxant 

medications because these medication types may help distinguish between high and low GMFCS 

levels. These corresponding RxNorm data concepts were not added to the model in this study. 

Each GMF class comprised human readable logic statements and rules for each variable 

to instantiate membership to that respective GMF class. As an exemplar, Error! Reference source 

not found. provides a matrix view of the Activity Performance domain and includes rules, 

variables, data element concepts, and value sets stratified by each GMF class. Error! Reference 

source not found. includes an example logic statement for the “Ambulation Level” variable to 

differentiate between GMF classes. The structured rules and logic statements for variables in 

each GMF class are included as supplemental materials. These statements include OMOP 

custom concept codes for data elements and value sets to encourage generalizability with other 

pediatric health system data warehouses, networks and registries built using OMOP. The 

compilation of the structured rules provides an opportunity to study more granular deviations in 

physical functioning between GMFCS levels.  
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Analysis of Conformance 

The analysis of conformance revealed inconsistencies for two variables. The first variable 

was “General Lower Extremity Muscle Tone”. Although panelists perceived that this variable 

moderately differentiated (≥ 3) between GMF classes, the panelists all assigned the same 

performance value to each GMF class. Due to the inconsistency, this variable was not included 

in overall model. This may have occurred due to the decreased granularity in the value set for 

this variable. Fortunately, the panel also selected two other lower extremity derived variables 

that were joint-specific and had more granular value sets: “Knee Tone” and “Ankle Tone”. These 

variables included both flexor and extensor tone data elements and are scored using the Modified 

Ashworth Scale (MAS). The MAS is a standardized 6-level ordinal scale (i.e. 0, 1, +1, 2, 3, 4) of 

muscle tone and better deviates between GMF classes compared to variables for presence of 

general tone with yes/no value sets. 

The second inconsistency occurred for the variable “Elbow Tone”. On the 5-level rating 

of differentiation between GMF classes, two panelists rated “Elbow Tone” ≤ 2, one panelist 

declined to rate the variable, and another rated the variable a 3. The overall performance values 

applied to “Elbow Tone” using the MAS followed a clear gradation across each GMF class 

[(MAS scores: GMF Class 1: 0,1,1+; GMF Class 2: 1,1+, 2,3; GMF Class 3: 2,3,4)]. At the 

discretion of SHOnet domain experts, “Elbow Tone” was included in all models. 

DISCUSSION 

In this study, we developed a standards-based, expert-informed GMFPM that also offers 

flexibility across three clinically meaningful classes aligned with the GMFCS. This is the first 

instance where CDM data concepts are organized into a phenotype model of functional 

performance specifically for pediatric rehabilitation. The findings illustrate that gross motor 
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function for initial cohort identification activities in pediatric rehabilitation can be represented 

through phenotypes of discrete data elements within standardized database models used widely 

in CDMs for learning networks, data registries, and data warehouses. This study also underscores 

the complexity of modeling functional performance using standardized data elements and the 

rigor necessary to develop similar typologies of functional performance in the future; therefore, 

our methods should be informative, nonetheless.  

The work supports future infrastructure by exploring what data are available that fit into a 

conceptual model (GMFPM) that the CP community has already decided are important. These 

data element concepts can later be leveraged for different applications, including the 

development of a phenotype algorithm that can be deployed and validated on existing data for a 

given purpose. Our phenotype model will undergo additional study and validation to determine 

its performance in differentiating between GMF classes. In addition, this phenotype model serves 

as a measurement instrument to determine documentation and value of these EHR data elements.  

The rigorous approach to construct the phenotype model and classes was contextualized 

by the desiderata for computable phenotyping and information modeling work by Westra et al. 

(11, 38). Westra et al. developed an information model of structured flowsheet data elements to 

support secondary data use in health systems research (38). However, their work uses a data-

driven consensus process informed by the available structured data values across a large hospital 

system. This contrasts our study which used an initial theory-driven approach to compile data 

element concepts that support semantic interoperability, followed by an expert-informed 

consensus-based review and analysis of conformance (38). In addition, Morley et al. demonstrate 

the use of expert-panel review for developing phenotyping algorithms (12); however, our focus 

on physical function and a multi-step rating process by the panel highlights significant 



15 
 

differences between phenotyping algorithms and developing conceptual phenotype models using 

CDM data concepts. Much like Westra, the design of this phenotype model helps simplify the 

representation of CDM data concepts for specific research and evaluation purposes that use EHR 

data (38). However, though pragmatic, the drawback in using the data element values that 

providers document in the EHR to construct typologies such as ours is that these data perpetuate 

bias from clinical documentation practices and the selection of data elements providers use for 

clinical documentation (40). 

The methods described in this paper support the theory-based selection of data elements 

and corresponding interface terminologies to design the logic statements and rules capable of 

classifying cohorts of patients by deviations in gross motor function. The underlying rationales 

for provider documentation are unknown, but it is likely that discrete data are documented for 

billing and administrative purposes, while diagnostic reasoning, including GMFCS levels and 

other information used to form these clinical phenotypes, is included in narrative documentation. 

Nevertheless, our findings demonstrate the inherent value of designing function-based 

mechanisms around discrete data elements readily available in an EHR and learning network and 

emphasizes the need for improved capture of meaningful and usable clinical data. The benefit of 

using a theory-driven, expert-informed approach is that the typologies are not constrained by 

what data are collected. Instead, the typologies may be interoperable with other standards-based 

pediatric data resources and foregrounds what data should be collected by clinicians and systems 

to classify clinically sensible classes of gross motor function. Moreover, the iterative approach 

we used demonstrates the utility of stretching existing methodologies into developing 

“functional” phenotypes for pediatric rehabilitation.  



16 
 

This expert-informed GMFPM may support future predictive analytics of GMFCS for 

research; however, this study has strengths and limitations. The primary limitation of this study 

is its generalizability. Since SHC is a specialty pediatric healthcare system, the documentation of 

many of these data elements and their inclusion in SHOnet may be different from other systems. 

Other pediatric healthcare systems that manage general pediatric disorders may not prioritize, 

document or have fields in the EHR for many of the data elements in the phenotype model.  

In terms of strengths, our study devised and applied a foundational methodological 

approach to phenotyping that could very easily be adapted to any other use cases, particularly in 

the field of medical rehabilitation. Evidence demonstrates that the re-use of EHR data improves 

patient cohort identification and may be essential to support pragmatic prospective cohort studies 

with economy of scale (6-9, 41-44). However, the discrepancy between derived definitions and 

the performance and use of phenotypes in practice points to a need to improve the identification 

and agreement of clinical characteristics in EHR-based phenotypes (41). The methodological 

approach and use of data concepts from a CDM described in this study helps fill this gap. A 

significant strength of the study was that it used data element concepts based on a standardized 

terminology of medical concepts (i.e. OMOP). OMOP includes widely accepted reference 

terminology standards and publicly available concept codes which further supports opportunities 

for generalized use. Another strength of this study was the investigator blinding to completeness 

or availability of patient EHR data in the initial review and selection process because this 

knowledge could have biased the theory-based selection of data element concepts. Lastly, 

panelists all worked at three regionally different SHCs; therefore, the regional variation and 

priorities in practice may mitigate potential biases in their ratings.  
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The GMFPM, although not operational in an EHR, builds infrastructure from a CDM to 

identify pediatric patient cohorts by distinct categories of gross motor function for research and 

quality improvement. Our findings can also inform other multi-site research and learning 

networks that support pediatric populations (i.e. PEDSnet, ImproveCareNow) of the 

opportunities afforded by building out their data elements for measurement infrastructure to 

conduct critical LHS research in rehabilitation. Future work should analyze data quality 

dimensions of the phenotype model, the extent that the typologies can validly differentiate 

between GMF classes, and its utility in applications such as CP hip surveillance efforts. More 

use-cases of phenotypes for characterizing functional performance and care processes are needed 

to build a computable measurement library with economy of scale and scope for pediatric 

rehabilitation.  
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