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EXECUTIVE SUMMARY

Because of the Boiling Water Reactor (BWR)’s unique features such as the cruciform control
blade, coolant void, two-phase flow, and heterogeneous geometry, the performance and robustness
of MPACT for BWR applications is degraded compared to its performance for Pressurized Water
Reactor (PWR) applications. In order to improve the efficiency and robustness forBWRsimulations,
several enhancements were considered and implemented in the work performed here, including:

• adoption of the linear-source MOC;

• improved iterative methods;

• memory reduction by using mixed single and double precision;

• optimization of problem initialization.

The Linear Source Approximation (LSA) and the optimized meshing were initially developed for
PWR applications, and the LSA has not been used routinely for whole core calculations. In this
work, issues with the linear source with respect to its robustness and optimal meshing for BWRs
have been addressed. For the new iteration scheme, the multilevel in energy CMFD solver was
combined with a sophisticated feedback-based partial convergence technique. The method was first
shown to be very effective in reducing the number of outer iterations and MGCMFD iterations for
multiphysics PWR applications, and was then adapted to BWR applications in this work. Although
some considerations for robustness remain to be resolved. Themixed precision technique combined
the use of different numerical precisions in the MPACT computational algorithm in order to reduce
memory usage. Several variables with a large memory footprint that are not directly related to
convergence checks (:eff, fission source) are now stored as single-precision reals and converted
back to double precision only in the calculation. All three enhancements improve the efficiency of
MPACT for BWR simulations. The robustness of LSA and the new iteration scheme is improved in
order to realize these efficiency gains. Finally, the problem initialization process has been optimized
to speed up the geometry and meshing set-up at the beginning of a problem.

The new iterative methods have been shown to speed up the coupled MPACT simulation of the
Peach Bottom 2 (PB2) cycle 1 problem by a factor of 2. The LSA and mixed precision reduce the
total memory by 17% for the PB2 problem with a minimum runtime impact. The optimization of
geometry andmeshing setup results in a speedup of 30-40% in the problem initialization, depending
on the number of unique assemblies and control cells. The remainder of the runtime speed up is
attributed to the MEDPC algorithm.
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1. INTRODUCTION

The MPACT code was developed during the CASL project to analyze Pressurized Water Reac-
tor (PWR) problems with the objective of efficiently solving the 3D neutron transport for PWR
applications. The Boiling Water Reactor (BWR) core has similar material compositions compared
to the PWR, but the neutron behavior, and therefore numerical behavior, are generally different
because of the BWR’s unique features. These features include the cruciform control blade, coolant
void, two-phase flow, and highly heterogeneous geometry. These differences in physics, geometry
and meshing were observed to degrade the performance of MPACT and in some cases introduce
stability issues. For practical applications like the PB2 cycle depletion, longer computing time
and convergence and stability issues were observed using the default options. Furthermore, the
run time became longer since the BWR simulation normally requires more than 50 states for each
burnup cycle (double that of a PWR simulation).

In order to speed up the calculation and reduce the memory usage for BWR simulations, in this
milestone, several enhancements were considered and implemented, including:

• adoption of the linear source Method of Characteristics (MOC);

• improved iterative methods;

• memory reduction by using mixed single and double precision;

• optimization of problem initialization.

The Linear Source Approximation (LSA) and the optimized meshing were initially developed for
PWR applications, and the LSA has not been used routinely for the whole core calculation. In this
work, issues with the linear source with regard to its robustness and optimal meshing for BWRs
have been addressed. For the new iteration scheme, the multilevel in energy Coarse Mesh Finite
Difference (CMFD) solver was combined with a sophisticated feedback-based partial convergence
technique [2, 3]. The method was first shown to be very effective in reducing the number of outer
iterations and multigroup CMFD (MGCMFD) iterations for multiphysics PWR applications, and
was then adapted to BWR applications in this work. The mixed precision technique combined the
use of different numerical precisions in the computational algorithms in order to reduce memory
usage. Several variables with large memory footprint that are not directly related to convergence
checks (:eff, fission source) are now stored as single-precision reals and converted back to double
precision in the calculation. All three enhancements improve the efficiency of MPACT in BWR
simulations. The robustness of LSA and the new iteration scheme is improved in order to realize
these efficiency gains. Finally, the problem initialization process has been optimized to speed up
the geometry and meshing set-up at the beginning of a problem. The remainder of the runtime
speed up is attributed to the MEDPC algorithm.

Detailed descriptions of these enhancements are presented in Section 2, and the efficiency improve-
ments for the PB2 cycle 1 depletion problem are discussed in Section 3.

1 NURAM-2021-002-00
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2. METHOD AND CODE ENHANCEMENTS

2.1 Linear Source MOC
2.1.1 Brief Description for Linear Source MOC
The MOC based on the LSA is becoming a new standard in neutron transport calculations [4, 5, 6].
While the Flat Source Approximation (FSA) is convenient and used in many existing codes, the
LSA can reduce the computational burden of the transport calculation. The LSA allows the use
of a much coarser mesh discretization while maintaining solution accuracy [4]. Recently, the LSA
has been developed and implemented in CASMO5 and OpenMOC [4, 5]. The method relies on
trajectory-based numerical spatial moments to calculate the linear expansion coefficients of the
scalar flux [4]. The method has also been implemented in MPACT with a slight reformulation in
the LSA equations to facilitate application for the multiphysics calculations [6, 7].

The LSA inMPACT is based on the method implemented in CASMO5 [4]. In the LSA, MOC track-
based spatial moments over source regions are calculated to obtain the LS expansion coefficients
of the scalar flux. The differential form of the transport equation along a MOC segment is written
as follows:

3k
6

<,:,8
(B<)

3B<
+ Σ6

CA,8
k
6

<,:,8
(B<) = @6<,:,8 (B<) , (1)

where < is the direction combining the azimuthal and polar directions; : is the segment index; 6
is the energy group index; 8 is the cell index; B< is the distance along the MOC segment; k6

<,:,8
is

the angular flux; Σ6
CA,8

is the transport cross section; and @6
<,:,8

is the total source.

In the case of the eigenvalue problem with 2D MOC, the total source @6
<,:,8

includes the fission
source and scattering source. The LS along a MOC segment is approximated as:
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where B<,:,8 is the total length of segment; @̄6
<,:,8

and @̂6
<,8

are the LS expansion coefficients; @6
8

is the cell-averaged total source; r2
0,:,8

is the segment midpoint coordinates; u< is the direction
vector; b8 is the scaling factor to conserve the analytic volume; and q̂6

8
is the LS coefficient vector

containing G and H components such that q̂6
8
=

[
@
6

8,G
@
6

8,H

]) .
From the MOC sweep, the scalar flux q6

8
and its spatial moments (e.g., q6

8,G
and q6

8,H
) are calculated

by accumulating the angular flux and product of the direction vector and angular flux. The scalar
flux and its moments are used to calculate @6

8
and q̂6

8
for the next MOC sweeping. The LSA in

MPACT was formulated to eliminate the cross section dependence of the pre-computed coefficients
for the multiphysics and 2D/1D simulations [7]. A complete derivation of the LSA is presented in
[7].
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2.1.2 Modified �2 Function Calculation and Minor Code Error Fixes
Since the LSA has not been used routinely, there were some undiscovered code deficiencies related
to the robustness of LSA. It was necessary to address these issues to use the LSA for the BWR
applications. The first issue is related to the exponential function calculation. The LSA in MPACT
uses the �2 function to calculate the flux and its moments. The �2 function is defined as a function
of g as follows:

�2(g) = (1 − (1 − 4−g)/g)/g , (3)

where g is the optical thickness. The �2 function is tabulated and interpolated for efficient
calculations of the exponential function which is one of the most expensive calculations in the
MOC kernel. The �2 function is used to calculate �1 and )2 in the following expression.

Δk
6

<,:,8

g
6

<,:,8

=

(
k
6,in
<, 9,8
−
@̄
6

<,:,8

Σ
6

CA,8

)
�1(g6<,:,8) −

C<,:,8

2
@̂
6

<,8

Σ
6

CA,8

)2(g6<,:,8) , (4)

where Δk6
<,:,8

is the change of angular flux; g6
<,:,8

is the optical thickness; k6,in
<, 9,8

is the incoming
angular flux; C<,:,8 is the renormalized track segment length; and �1 and )2 are defined as

�1(g6<,:,8) = 1 − g6
<,:,8

�2(g6<,:,8) , (5)

)2(g6<,:,8) = 2�2(g6<,:,8) − �1(g6<,:,8) . (6)

The �2 is tabulated with Chebyshev points [8] between 0 to gmax. The maximum value of g (i.e.
gmax) is 40.0 which may be sufficiently large for the 2D calculation. However, the g6

<,:,8
can exceed

the maximum limit of the table in the case of 2D/1D calculation since the transport cross section
becomes very large due to the Transverse Leakage (TL) splitting. When g6

<,:,8
exceeds the range of

table, �2(g6<,:,8) is extrapolated. However, the extrapolation can give a negative value when g6
<,:,8

exceeds the range as shown in Fig. 1. This is because the �2 function is not sufficiently close to

Figure 1. �2 function calculations
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0 at the end of table. The negative value from the �2 extrapolation makes the solution diverge by
causing the calculation of a negative flux during the iteration. This situation does not occur in the
Flat Source (FS) MOC since the exponential function for the FS MOC (i.e. 1 − 4−g) converges
to 0 very quickly therefore the extrapolation gives 0 consistently. To resolve this issue, the �2
calculation has been updated as follows:

�2(g) =
{
Interpolation of �2 table, if g ≤ gmax.

(1 − 1/g)/g, else if g > gmax.
(7)

Since 4−g can be approximated to 0 if g is larger than 40, Eq. (7) still calculates the �2 function
accurately as shown in Fig. 1. Moreover, the overhead may be negligible since there is no explicit
calculation of the exponential function during the MOC sweep and g rarely exceeds gmax.

In addition to the �2 table update, there were code errors related to the LS MOC solver. The angle
decomposition algorithm was not completely implemented in the LS MOC solver, therefore the
solution diverged when the angle decomposition with MPI was used. The domain decomposition
in the LS MOC also had an issue with index out of bounds error that was not detected with the
GCC-5.4.0 compiler. However, the issue caused a segmentation fault with the GCC-8.3.0 compiler.
These code errors were also fixed.

2.1.3 Improvement in Robustness of Linear Source MOC
In MPACT and other transport codes adopting the 2D/1D method, many stabilization methods
have been studied for the 2D/1D method based on the FSA to maintain and improve stability
[9, 10, 11, 12, 13, 14]. However, none of the studies were performed for bigger BWR problems
with LSA. In the LSA method, the linear component of the source always has some negative
component when splitting the TL – this is a necessary result of the construction of the method.
When testing the LSA, negative linear sources were encountered for some problems. The presence
of a negative source is very detrimental to convergence stability. In the 2D MOC, the negative
source can occur when the LS has a very steep source gradient compared with the actual source
distribution. In the 2D/1D method, the TL splitting directly causes a negative source by letting half
of the cell have a negative source to give a source that integrates to 0. Due to this lack of robustness,
the LSA could not be used as a default option in MPACT unless the issue is resolved.

To address this negative source issue, and to ensure robust and stable convergence, a new method
was developed in this work to reduce, or relax, the LS gradient of the problematic cell. We call
this method the Limited Linear Source Approximation (LLSA). In the LLSA, the minimum local
source @6,min

8
is computed by Eq. (8). This is the minimum value along a segment, and it is either

at the entrance or exit of the segment.

@
6,min
8

= min
0,<,:

{
@̄
6

<,:,8
± @̂6

<,8

B<,:,8

2

}
. (8)

To ensure positivity, we introduce the gradient reduction factor, W6
8
, that is calculated by Eq. (9).
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W
6

8
= min

(
@
6

8

@
6

8
− @6,min

8

, 1

)
. (9)

When @6,min
8

is non-negative, W6
8
is one because it is not necessary to reduce the LS gradient.

Conversely, if @6,min
8

is negative in the first term, the denominator becomes larger than @6
8
. Therefore,

the range of W6
8
is between 0 and 1. When W6

8
is equal to 0, the method will be the same as the FSA.

W
6

8
is multiplied to q̂6

8
to reduce the gradient of the LS leading to the following equation:

@′6
<,:,8
(B<) = @̄′6<,:,8 + @̂

′6
<,8

(
B< −

B<,:,8

2

)
= @

6

8
+ W6

8
r20,:,8 · q̂

6

8
+ 1
b8
W
6

8
u< · q̂68

(
B< −

B<,:,8

2

)
,

(10)

where (·)′ indicates the parameter is modified by W6
8
.

The LLSA changes the gradient of the linear component only, so that the average source and neutron
population are still conserved. With this LLSA, the emergence of a negative flux or source is not
detected if the cell-average source is non-negative.

When the LSA is used in the 2D/1D method, the only difference in the 2D/1DMOC equation is the
existence of the TL from the axial nodal solver. There are many methods to construct the TL [15],
but the limited flat and isotropic TL is used in this work. With the TL, !6

8
, the transport equation

along a segment is written as:

3k
6

<,:,8
(B<)

3B<
+ Σ6

CA,8
k
6

<,:,8
(B<) = @̄6<,:,8 + @̂

6

<,8

(
B< +

B<,:,8

2

)
+ !6

8
. (11)

In the 2D/1D method, a negative flux can be computed because the TL can have a negative value.
If there is no constraint to prevent a negative TL, it is possible to encounter a negative source.
Therefore, some TL splitting method [16] is used in most of the codes adopting the 2D/1D method.
There are many variations in the TL splitting method [16], but the isotropic TL is the default option
in MPACT. If a total source (i.e. @6

8
+ !6

8
) is less than zero, then the source is moved to the left-hand

side of the equation with an isotropic flux assumption as follows:

3k
6

<,:,8
(B<)

3B<
+

(
Σ
6

CA,8
−
@
6

8
+ !6

8

q
6

8

)
k
6

<,:,8
(B<) = @̄6<,:,8 + @̂

6

<,8

(
B< +

B<,:,8

2

)
− @6

8

= r20,:,8 · q̂
6

8
+ 1
b8

u< · q̂68
(
B< −

B<,:,8

2

)
.

(12)

In both the FSA and LSA, the TL splitting is performed with the cell-averaged source @6
8
and TL,

!
6

8
. In the case of the FSA, the right-hand side of Eq. (12) is zero, so there is no need to consider
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the negative source issue. In the LSA, however, the source term is not zero, and it is necessary to
have a negative source when the integrated source over the cell is equal to zero.

As a part of the LLSA, a new TL splitting method is developed to prevent the negative source. This
method is necessary to find the minimum source identical to Eq. (8).

@′6,min
8

= min
0,<,:

{
@̄′6
<,:,8
± @̂′6

<,8

B<,:,8

2

}
. (13)

Note that the gradient reduction factor W6
8
has been applied to the terms in Eq. (13). While @′6,min

8

can be obtained by Eq. (13), but this calculation can be more easily performed as follows if we
already know @

6,min
8

and W6
8
:

@′6,min
8

=

(
@
6,min
8
− @6

8

)
W
6

8
+ @6

8
. (14)

In Eq. (14), @6,min
8
− @6

8
corresponds to the gradient of the LS, therefore W6

8
is multiplied with that

term. If @′6,min
8
+ !6

8
< 0, the TL splitting is performed with @′6,min

8
as follows:

3k
6

<,:,8
(B<)

3B<
+

(
Σ
6

CA,8
−
@′6,min
8
+ !6

8

q
6

8

)
k
6

<,:,8
(B<)

= @̄′6
<,:,8
+ @̂′6

<,8

(
B< +

B<,:,8

2

)
− @′6,min

8

= @
6

8
− @′6,min

8
+ W6

8
r20,:,8 · q̂

′6
8
+ 1
b8
W
6

8
u< · q̂′68

(
B< −

B<,:,8

2

)
.

(15)

The source-term of Eq. (15) is always non-negative if @6
8
is non-negative. The LSA is implemented

for the P0 and P= MOC solvers in MPACT, but only the isotropic source is approximated as linear
for a good compromise between calculation burden and accuracy [4, 17]. Therefore, implementing
the LLSA for the P= MOC solver can be done like what is described in this work.

The LSA and LLSA are compared for the PB2 cycle 1 single assembly problem [18, 19]. The
radial view of problem geometry is shown in Fig. 2. The 2D/1D solver in MPACT is used for the
simulations of both cases since they are 3D problems. The 2D MOC with %2 scattering and %3

Figure 2. Radial view of PB2 3D single assembly problem
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Table 1. Numerical results from PB2 assembly simulations

Method :eff
Difference
(pcm)

Max difference in
pin power (%)

Is negative LS
detected?

Elapsed time
(mm:ss)

LSA 1.03801 - - Yes 03:18
LLSA 1.03801 0.000 0.015 No 03:22

Figure 3. Source distribution in control blade region from PB2 single assembly simulation

one-node nodal method are used in the calculation. For the MOC ray and angle discretization, the
Chebyshev-Yamamoto quadrature is used with a ray spacing of 0.05 cm, 16 azimuthal angles 2 polar
angles per octant. The fuel pellet is divided into 2 regions radially, and the surrounding coolant
region is divided into 4 regions in the azimuthal direction. The non-fuel rod, such as the guide tube
or plenum, does not have subregions. The reflector pin-cell is divided to have 2x2 meshes. 40 MPI
processes were used in the simulation.

The simulation results for both cases are summarized in Table 1. The LSA shows negative LSs
for the PB2 assembly problem. In the case of the PB2 problem, the negative LS is observed from
the 2nd outer iteration to convergence. Fortunately, the negative LS does not lead to instability in
either problem, but the possibility remains.

On the other hand, the LLSA does not show the negative LS. There are minimal differences between
the results from the LSA and LLSA. The maximum difference in the pin power distribution is
0.015%. This is because the LLSA changes the LS coefficient and splits the TL by as little as
possible to maintain a non-negative LS at the same time. It is concluded that the LLSA successfully
resolves the negative LS issues caused by the LSA. There is also minimal overhead from the LLSA
in the calculation time, so it is negligible.

The source distribution is plotted in Fig. 3 to illustrate the difference between the LSA and LLSA.
Fig. 3 shows the source distributions at the end of the control blade mesh in the PB2 assembly
problem. G and H in the figure indicate the relative position from the center of mesh. It is clearly
observed that the LSA has negative values in Fig. 3 when the TL splitting is performed. The average
source is 0, and half of the mesh has the negative LS. This is why the negative LS was observed
in Table 1. On the other hand, the LLSA has positive sources in all locations. In the LLSA, both
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LS gradient and the quantity of the split source are adjusted properly. This example shows why the
LLSA is necessary to adjust the quantity of the split source and the gradient of LS simultaneously
to avoid the negative LS that may cause instability.

2.1.4 Linear Source MOCMesh Optimization
It is necessary to determine the default or recommended meshing options to use the LS MOC
efficiently for BWR applications. The LSMOCmesh option was determined for PWR applications,
but it has not been determined for BWRs. GE14 single assembly problems [20] are selected to
perform the mesh sensitivity test. There are two configurations (i.e. unrodded and rodded) of the
assembly depending on the existence of the control blade. Fig. 4 shows the geometry and mesh of
a GE14 assembly. The finemesh was made to eliminate the mesh discretization error. The finemesh
is also used as one of references in the comparison. The default option is the default mesh option
with the FS. The LS optimum mesh is the mesh determined through mesh sensitivity tests.

(a) GE14 single assembly geometry (b) Source regions with fine mesh

(c) Source regions with default mesh (d) Source regions with LS optimum mesh

Figure 4. GE14 single assembly problem geometry and mesh discretizations
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The :eff and the pin power distribution results are presented in Table 3 using these mesh options.
The solutions are compared to theMonte Carlo solution (Serpent) and also compared to the finemesh
calculation with LS (i.e. LS-finemesh). The LS and FS give very similar results to each other
for the GE14 unrodded case. The :eff difference is 31 pcm and the RMS pin power difference is
0.04%. This means the LS and FS calculate an identical solution if the mesh discretization error
is completely eliminated. The FS with default mesh option gives 130 ∼ 193 pcm differences in
the :eff and about 0.5% RMS difference in the power distribution compared to the LS-finemesh
calculations. This means the differences are caused by insufficient mesh discretization. However,
these differences are within our acceptance criteria [21]. On the other hand, the LS with the
optimum mesh shows 52 ∼ 58 pcm difference in :eff and less than 0.1% RMS difference in the pin
power distribution. With using the LS, we can improve the accuracy for :eff and the pin power
distribution by 100 pcm and 0.4%, respectively. In this comparison, the very coarse assembly gap
mesh (shown in Fig. 4d) is used in the LS MOC. However, it was found that the coarse mesh
is not sufficient for the calculation with the Thermal Hydraulics (TH) feedback. The gap mesh
discretization may becomemore important as the void fraction of the coolant inside the channel box
increases. Therefore, two more meshing lines normal to the channel box and one more meshing
line parallel to the channel box at the outer gap were added. The updated meshing option is used
in the following calculations in this report.

Additional comparisons between the FS and LS are made with more progression problems in [20].
The results are presented in Table 2. On average, the LS is 0.4%more accurate than the FS in terms
of the RMS pin power difference. The LS calculates 130 pcm larger differences in :eff than the
FS. This is probably because the Super Homogenization (SPH) factors embedded in the resonance
data of MPACT’s cross section library are based on the FS MOC with default mesh option. For
the multigroup cross section calculations, MPACT uses the subgroup method by default. The
subgroup method is also used in all calculations in this report. There are some error sources in the
resonance self-shielding with the subgroup. The resonance interference effect is one of the most
important sources of error. The resonance interference effect may not be considered correctly with
the conventional subgroup method and equivalence theory [22, 23]. There are some other error
sources such as the intermediate resonance source approximation, and heterogeneous resonance
integral table [24, 25]. Even though the multigroup cross section is calculated accurately, there
is still inconsistency between the multigroup calculation and the continuous energy Monte Carlo
due to the angle dependency of the multigroup cross section [26]. To address these issues in the

Table 2. Mesh sensitivity test for GE14 single assembly problems

Compared to Serpent Compared to LS-finemesh

Case Calculation
options

:eff diff
(pcm)

RMS power
diff. (%)

MAX power
diff. (%)

:eff diff
(pcm)

RMS power
diff. (%)

MAX power
diff. (%)

GE14
Unrodded

LS - finemesh 147 0.27 0.66 0 (Ref.) 0 (Ref.) 0 (Ref.)
FS - finemesh 116 0.30 0.71 -31 0.04 0.10
FS - default 17 0.65 1.65 -130 0.45 1.25
LS - optimum 199 0.24 0.53 52 0.07 0.16

GE14
Rodded

LS - finemesh 182 0.26 0.49 0 (Ref.) 0 (Ref.) 0 (Ref.)
FS - finemesh 108 0.33 0.78 -73 0.11 0.51
FS - default -11 0.71 1.61 -193 0.50 1.35
LS - optimum 240 0.24 0.50 58 0.07 0.16
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Table 3. Comparisons of FS and LS to BWR progression problems

:eff Pin power difference (%)
Case difference (pcm) 3D RMS 3D MAX

FS LS FS LS FS LS
BWR-GE9-V00-C -112 184 0.64 0.17 1.65 0.42
BWR-GE9-V00 -67 101 0.52 0.16 1.20 0.32

BWR-PEACH-6-00-C -121 154 0.48 0.15 1.36 0.36
BWR-PEACH-6-00 -45 90 0.46 0.12 1.11 0.33
GE14-3D-00-HZP 52 241 1.59 1.23 7.49 7.29
GE14-3D-AX-HFP 49 185 2.58 1.99 8.67 5.77
GE14-4X4-00-C 19 217 0.55 0.22 1.50 0.58
GE14-4X4-00 18 214 0.54 0.22 1.30 0.65
PLR-00-C 59 273 0.71 0.22 1.70 0.66
PLR-00 60 235 0.58 0.20 1.50 0.43

Absolute Average 60.20 189.40 0.87 0.47 2.75 1.68

multigroup cross section calculations, we have used the SPH factor in MPACT [27]. However, one
issue here is that the error from the mesh discretization is also corrected by the SPH factor as well
as the other error sources in the multigroup cross section calculations since the FS MOC with the
default mesh option is used in the SPH factor calculation. Therefore, we expect that the accuracy
of :eff with the LS MOC will be more accurate as well if the SPH factor is regenerated with the
very fine mesh calculation to eliminate the error source from the mesh discretization. Recall that
the LS gives more accurate results in terms of mesh convergence.

2.2 MEDPC
The efficiency of the BWR simulation can be improved by increasing the convergence rate of the
fission source and decreasing the run time of the CMFD solver. MEDPC is the new CMFD solver
used to improve the efficiency of the CMFD method. It is developed based on the Multilevel-in-
Energy Diffusion (MED) solver [1], that is a more efficient CMFD solver compared to the default
solver in MPACT for the problem without feedback. However, the MED is typically less stable
than the default CMFD in problems with feedback. Therefore, the concept of the Nearly-optimally
Partially Converged (NOPC)-CMFD [2] is introduced to improve the robustness of the MED solver
and the new method is called MEDPC.

In the following three subsections, the theory of CMFD, MED and NOPC-CMFD are introduced.

2.2.1 CMFD Acceleration
The CMFD method utilizes the low-order diffusion equation to accelerate the convergence of the
transport solution. In operator form, the diffusion equation is a generalized eigenvalue problem
written as

MΦ = _FΦ. (16)

The matrix " ,F ∈ R#�×#� , with # as the number of coarse meshes, and � as the number of
group. The default CMFD system is formed with multigroup cross sections, i.e. � � 1.

To solve this eigenvalue problem, the Wielandt shifted power iteration is used. For the ;Cℎ power
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iteration, the solution process is[
M − _(;)B F

]
�(;+ 1

2 ) =
[
_(;) − _(;)B

]
F�(;) , (17)

_(;+1) = _(;)B +
[
_(;) − _(;)B

] F�(;)F�(;+ 1
2 )

 . (18)

_B is the Wielandt shift parameter. The default CMFD linear system in MPACT is solved with the
GMRES solver from PETSc [28]. In MPACT, the default _B is 2/3.
Due to the large size of the linear system, the solution process of each power iteration is extremely
slow. To balance the efficiency and accuracy, the eigenvalue problem is always partially converged
with the number of power iterations smaller than or equal to !. The default value of ! is 20.
Nevertheless, for the full-core simulation, the run time of default CMFD solver is more than 1/3 of
the total run time [1].

2.2.2 MED
To improve the efficiency of the default CMFD solver in the solution of the diffusion linear system,
the MED solver has been proposed and implemented in MPACT [1]. The solver is multilevel in that
the power iteration is mainly performed on a one-group CMFD (1GCMFD) system. The 1GCMFD
system Eq. (19) is obtained by collapsing the original MGCMFD system with the latest multigroup
flux.

M1��1� = _1�F1��1� (19)

The multigroup flux is obtained by solving the fixed source problem Eq. (20) with the fission source
calculated for the one-group solution of:

M"��"� = _1� j"�F1��1� . (20)

Since the size of the one-group matrices "1� and �1� are much smaller, the computational cost
for solving 1GCMFD system is cheaper compared to solving the MGCMFD system. To converge
the eigenvalue and flux, multiple iterations are performed between the MGCMFD system and the
1GCMFD system.

The number of iterations between the 1GCMFD and MGCMFD is !"� , and the 1GCMFD system
is solved with !1� power iterations per mgcmfd iteration. Therefore, the total number of power
iterations performed is !1�!"� , which is much larger than 20. Consequently, the convergence rate
of the MED case is faster for large-scale problem, compared to the case with the default CMFD
solver.

Table 4. MED Solver vs Default CMFD Solver in GE14-3D-00-HZP Problem

Default MED
# of MOC inners 15 15
Total Run Time (s) 417 187
CMFD Run Time (s) 360 127
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Table 5. MED Solver vs Default CMFD Solver in 2D Peach Bottom Problem [1]

Default MED
# of MOC inners 157 21
Total Run Time (s) 1319 350
CMFD Run Time (s) 275 65

In Table 4, we can observe that the CMFD run time is reduced to 1/3 when MED is used for the
GE14-3D-00-HZP problem, that is a small-sized problem. In Table 5, we can observe that in the
2D Peach Bottom problem (i) the number of MOC iterations is much smaller, and (ii) the CMFD
run time is much shorter.

2.2.3 NOPC-CMFD
The efficiency from the MED solver might not be observed in the problems with feedback [1]. On
the contrary, it could make the solutions converge more slowly. The reason was that the CMFD
problem is too tightly converged. In our previous research [2], it was theoretically shown that the
tight convergence of the CMFD solutions will reduce the convergence rate in the problem without
feedback. However, in the problems with feedback, the CMFD solution should be neither too
tightly nor too loosely converged. As a result, a sophisticated method for the partial convergence
of CMFD solutions was developed. Here the partial convergence parameters refer to the number
of power iterations and the Wielandt shift value _B used to solve the diffusion eigenvalue problem.

We have proposed Eqs. (21) to (22) to determine the partial convergence in terms of the Wielandt
shift parameter _B.

A = 1 −

(
1 − 1−W6

1+ 3W
l2
?

) 1
!

1 −
(
1 − 1−W6

1+ 3W
l2
?

) 1
!

l2
?

3(1 − 2) , (21)

_B = A_ (22)

Here, W6 is a problem-dependent parameter characterizing the feedback intensity. l6 is a parameter
related to the size of the problem in terms of the mean free path and 2 is the scattering ratio. !
is the number of power iterations we prefer to use to solve the eigenvalue problem. It should be
noted that for the MED, ! is !"�!1� , i.e. the total number of power iterations performed on
the 1GCMFD system. CMFD with _B determined by Eqs. (21) to (22) is called NOPC-CMFD
in [2, 3]. And MEDPC is the NOPC-CMFD solver that is implemented based on MED. Since the
partial convergence is nearly-optimally determined, the use of the relaxation factor can be avoided.
Moreover, the larger the feedback is, the looser the nearly-optimal partial convergence is. Therefore,
with feedback intensity increasing, the linear system becomes easier to solve. This will potentially
increase the efficiency.

We have proposed procedures to estimate the W6 for PWRs in [3]. It has been observed that in PWR
problems, MEDPC can let MPACT converge a problem with different power levels in a similar
convergence rate and reduce the run time of a multi-state PWR depletion problem by more than
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40%. The enhancement from using MEDPC in the BWR problem is shown in Section 3.

2.3 Mixed Precision
Mixed precision refers to the combined use of different numerical precisions in a computational
method. There are a few benefits to using lower precision than 64-bit (double) floating point. First,
it requires less memory for storing a variable. Second, it requires less memory bandwidth, thereby
speeding up the data transfer operations. Third, math operations run faster in reduced precision.
For example, mixed precision algorithms were developed to accelerate scientific computations for
solving linear systems [29].

In the reactor neutronics calculation, since the convergence criteria for several quantities of interest,
such as the effective multiplication factor and neutron flux, are at 10−6, calculations performed with
all single-precision variables may suffer from convergence issues. Therefore, a mixed precision
scheme is proposed here to store selected quantities with a large memory footprint as single-
precision reals, and convert them back to double precision when performing the actual calculations
relevant to the numerical iteration and convergence.

To identify the variables with a large memory footprint, memory profiling was performed initially
with the P5-2D problem with depletion. Fig. 5 shows the memory usage of the components in
MPACT. The largest three of them are the MOC sweeper, the shielder (resonance self-shielding)
sweeper, and the cross section mesh. We look further into each of the three components to
understand the components of the memory usage, as shown in Tables 6-8.

In both MOC sweepers, the ray tracing data (ray segment length and region indices of a ray
segment) and neutron fluxes (scalar flux and angular flux at the boundaries of a spatial domain) are

Figure 5. Memory profiling of the 5a-2d case with depletion
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the dominating variables. In the cross section mesh data, the 1D and 2D cross sections account for
more than 90% of the memory in the depletion calculation, and the isotope densities are a smaller
fraction. Therefore, in the initial implementation of the mixed precision, three groups of variables
with a large memory footprint are converted to single precision: 1) MOC ray segment lengths; 2)
all cross sections on the macroscopic cross section mesh; 3) the angular flux at the boundaries.

Another reason for choosing the ray segments and the cross sections to be single precision is that
in reality, these values are not known to double precision due to the manufacturing tolerance in
geometry or the cross section measurements. For the angular flux at the boundaries, this is an
iterative quantity so there could be some risk in making it single precision. However, it is not the
primary iterative quantity used in the convergence check. Presently, we have not seen a convergence
problem related to this change. The relative consumption of memory by the angular flux at the
boundaries increases as the problem is further decomposed, so making this single precision has a
bigger benefit on more spatially decomposed problems, and reduces the data in the communication,
which can lead to reduced communication overhead. The scalar flux is kept as double precision
since it directly relates to the fission source convergence. Also, we do not expect a runtime
benefit from the current mixed-precision implementation since the single-precision variables are
all converted back to double precision in the calculation.

Table 6. A Memory breakdown in the MOC Sweeper.

Memory (GB) Fraction
Fluxes (1/3 scalar flux + 2/3 angular flux BC) 2.135 35.8%

Ray tracing 3.038 51.0%
XS+Source 0.754 12.7%
Others 0.031 0.5%
Total 5.957 100%

Table 7. A Memory breakdown in the shielder MOC Sweeper.

Memory (GB) Fraction
Fluxes (1/3 scalar flux + 2/3 angular flux BC) 1.134 27.2%

Ray tracing 1.525 36.6%
XS+Source 0.841 20.2%

Coeff. for the fast sweeper 0.635 15.2%
Others 0.030 0.7%
Total 4.163 100%

Table 8. A Memory breakdown in the depleted XS Mesh.

Memory (GB) Fraction
Isotope densities 0.257 7.7%

1D XS 0.381 11.5%
Scattering matrix 2.102 63.5%
Isotopic fission XS 0.499 15.1%

Others 0.072 2.2%
Total 3.311 100%
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An initial test for the same P5-2D problem showed that using single precision reals for segment
length, boundary angular flux and cross sections will reduce the overall memory by 5%, 7% and 7%,
respectively. We will expand the conversion to additional variables as the framework is established
to facilitate the conversion.

2.4 Problem Initialization Speedup
The complexity of BWRs has shown that for full core problems the geometry processing inMPACT
is significantly slow. A task done for this milestone was to increase the speed of the geometry and
mesh setup to help the user.

To this end, there were several places where the code was optimized for speed. When setting up
an assembly, it is sliced axially into 2-D lattices. In the problem initialization, all lattices were
setting up the control blade geometry in the blade locations, regardless of whether that geometry
and mesh had already been set up. A change was made to only place the blade in each unique
lattice type, thus eliminating repeated operations by reducing the number of times a blade is added
to the geometry.

Another place the code was sped up was in the rotation of all of the meshes. In MPACT, the
geometry is first set up in an unrotated state. It is then rotated and the rotated geometry is meshed.
There were several steps in this process where the same object was being created. Now, each unique
pin cell mesh is setup once and rotated as needed, and similarly for lattices.

The effectiveness of the speedup is shown in Table 9. A full 3-D BWR core is initialized before and
after the modifications mentioned above. The case name description refers to the number of unique
assemblies or control cells in the case. The first case only has one unique assembly type used
throughout the core map, and it is the same case as a single unique control cell. As the number of
unique assemblies increases, so does the complexity of the setup of the problem geometry andmesh.
Every unique assembly is loaded into the rotation map location that corresponds to no rotation.
The control cell cases show how much speed up was gained specifically from the modifications to

Table 9. Core Geometry and Mesh Initialization Comparison

Number of
Unique Geometries Meshing Time (s) Percent

Speedup
before after

1 Asy 50.83 36.26 28.66
2 Asy 79.59 54.31 31.76
4 Asy 138.32 94.09 31.98
8 Asy 283.77 184.25 35.07
16 Asy 487.94 314.14 35.62
32 Asy 956.97 695.69 27.30
2 Con. Cell 85.74 55.70 35.04
4 Con. Cell 157.18 97.70 37.84
8 Con. Cell 331.37 202.94 38.76
16 Con. Cell 576.95 352.90 38.83
32 Con. Cell 1152.25 641.35 44.34
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the rotation routines, while the assembly cases show the speed up from the non-rotation portions of
the code. The speedup is calculated as the difference of the before time and the after time, divided
by the before time multiplied by 100.

3. RESULTS OF FULL-CORE CALCULATION

3.1 Description for Peach Bottom 2 Reactor Simulation
In this section, the impact of individual options (i.e. LS, mixed precision, andMEDPC) is analyzed
against the PB2 core model [18, 19] to determine the improvement from each option. The radial
view of the PB2 core geometry is shown in Fig. 6. Three types of fuel assemblies are loaded
in the core. The control blade and the detectors are placed in the assembly gaps. To investigate
improvements from the methods proposed in this work, we ran the PB2 model with a quarter code
symmetry. As shown in Fig. 6, the actual core is not quarter symmetric. However, the primary
purpose of this work is to determine how much efficiency and robustness can be improved by the
proposed methods. Therefore, it is acceptable to use the quarter code model for this purpose. Fig. 7
presents the reactor conditions over the PB2 cycle 1 simulations. The reactor conditions in Fig. 7
are used to demonstrate the cycle 1 simulation as it is as much as possible.

The 2D/1D solver inMPACT is used for all simulations. The 2DMOCwith the Transport-Corrected
%0 (TCP0) scattering source option and the %3 one-node nodal method are used in the calculation.
For the MOC ray and angle discretization, the Chebyshev-Yamamoto quadrature is used with a ray
spacing of 0.05 cm, 16 azimuthal angles 2 polar angles per octant. The TH feedback is calculated
using the simplified TH module in MPACT. The quarter core models were run with 1200 cores on
the Idaho National Laboratory (INL) High Performance Computing (HPC) machine, Sawtooth.

3.2 Impact of Linear Source MOC in the Full-core Calculation
The first comparison investigates the benefits of the LSA. The cycle 1 simulations were performed
with the default options for the meshing and MOC solver and the LSA option. It should be noted
that the high resolution vessel option was turned off in both simulations. The high resolution

Figure 6. PB2 core radial view
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(a) Power scenario (b) Average control blade positions

(c) Pressure scenario (d) Flow rate

Figure 7. PB2 cycle 1 conditions

Table 10. PB2 reactor cycle 1 simulation with LS

Default LS Change (%)
# of states 25 25 0

# of predictors/correctors 48 48 0
# of XS calculations 1055 1052 0

# of subgroup FSP calls 435 425 -2
# of simplified TH calls 1054 1051 0
# of MGCMFD inners 1302500 1294400 -1

# of nodal inners 5295 5280 0
# of MOC inners 1059 1056 0

# of outer iterations 1059 1056 0
MOC (hours) 7.95 10.01 26
Nodal (hours) 2.09 3.05 46
CMFD (hours) 25.06 26.92 7
TH (hours) 14.77 12.69 -14

Depletion (hours) 0.47 0.32 -32
XS and etc. (hours) 5.00 2.62 -48

Total (hours) 55.34 55.61 0
Max memory per core (GB) 3.12 2.77 -11

Average memory per core (GB) 2.74 2.41 -12
Total memory (TB) 3.21 2.82 -12

vessel option is to model the vessel geometry more accurately. If this option is not used, the vessel
geometry is composed of pin-cell size meshes. There is a minimal impact on the reactor parameters
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by turning off the option, but the coarser mesh is desirable for the LS MOC. Fortunately, the LSA
did not encounter a stability issue related to the negative LS, so the LLSA was not used in this
simulation.

Table 10 shows the simulation results for the default and LS options. The number of outer
iterations are similar (about 1060) for both cases. While the LSA does have more unknowns per
cell to converge, relative to the FSA, it does not necessarily require more iterations since there are
fewer cells. For the PB2 simulations, the effects from both points are not significant or they may
have canceled each other, resulting the similar number of outer iterations. The total runtime from
both simulations is similar at 55 hours. The LSA uses 2 hours more in the MOC calculations, but it
can save the runtime in other places (such as the subgroup fixed source calculations) by decreasing
the number of source regions. On the other hand, the LSA shows a 12% reduction in the total
memory usage since coarser mesh can be utilized with the LSA.

3.3 Impact of MEDPC in the Full-core Calculation
The impact of the use ofMEDPC is analyzed in Table 11. In contrast with the previous comparison,
the high resolution vessel option was used for both the default and MEDPC cases since the mesh
discretization is not a point of this comparison. From the use of MEDPC, it is expected to reduce
the number of outer iterations and the number of MGCMFD iterations by improving the coupling
scheme for feedback and the CMFD iteration. The improvement from MEDPC is clearly observed
in Table 11. The number of outer iterations is reduced from 1032 to 633 by using the MEDPC.
The nearly-optimal partial convergence shows a great improvement in reducing the outer iterations.

Table 11. PB2 reactor cycle 1 simulation with MEDPC

Default MEDPC Change (%)
# of states 25 25 0

# of predictors/correctors 48 48 0
# of XS calculations 1029 680 -34

# of subgroup FSP calls 419 258 -38
# of simplified TH calls 1028 679 -34
# of MGCMFD inners 1269800 171465 -86

# of nodal inners 5160 3165 -39
# of MOC inners 1032 633 -39

# of outer iterations 1032 633 -39
MOC (hours) 7.59 4.83 -36
Nodal (hours) 1.81 1.26 -30
CMFD (hours) 24.47 4.53 -81
TH (hours) 14.20 9.53 -33

Depletion (hours) 0.45 0.46 2
XS and etc. (hours) 4.88 2.26 -54

Total (hours) 53.40 22.87 -57
Max memory per core (GB) 3.06 3.07 0

Average memory per core (GB) 2.69 2.70 0
Total memory (TB) 3.15 3.17 1
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With the default options, the CMFD is the most time consuming part of the calculation. It took
24.47 hours with more than 1 million MGCMFD inner iterations for the cycle 1 calculation. The
MEDPC reduces the MGCMFD iterations by 86% so that the elapsed time for CMFD is also
reduced by 81%. Overall, the total runtime is reduced by 57%. There is a minimal overhead in the
memory usage.

It should be noted that the reset_sol option has been used at states 2 and 3 for the MEDPC
case shown in Table 11. The reset_sol option is to reinitialize the transport solution, and it
is usually used if a stability issue occurs. MPACT has a feature that reinitializes the transport
solution automatically if a high residual error (i.e. residual > 50.0) occurs during iterations. In the
simulation with the default option, the solution was reinitialized 4 times due to the high residual
error. The MEDPC case also showed the high residual error, and the residual became NaN in some
states. The logic in MPACT does not reinitialize the solution automatically if the residual becomes
NaN. Therefore, the reset_sol is used to reinitialize the solution manually. In the future, we will
improve the current code logic so that the solutions can also be reset automatically for the MEDPC
cases. We will also continue investigating the high residuals, and try to develop the method to
predict whether the high residuals will happen, and then reset the solution at the beginning of the
state.

3.4 Impact of Mixed Precision in the Full-core Calculation

Table 12. PB2 reactor two states simulation with mixed precision

Default Mixed
Precision Change (%)

# of states 2 2 0
# of predictors/correctors 2 2 0
# of XS calculations 58 58 0

# of subgroup FSP calls 29 29 0
# of simplified TH calls 57 57 0
# of MGCMFD inners 77100 75800 -2

# of nodal inners 290 290 0
# of MOC inners 58 58 0

# of outer iterations 58 58 0
MOC (hours) 0.52 0.52 0
Nodal (hours) 0.12 0.10 -17
CMFD (hours) 1.47 1.49 1
TH (hours) 0.83 0.77 -7

Depletion (hours) 0.02 0.02 0
XS and etc. (hours) 0.25 0.21 -16

Total (hours) 3.22 3.12 -3
Max memory per core (GB) 3.04 2.77 -9

Average memory per core (GB) 2.74 2.49 -9
Total memory (TB) 3.21 2.92 -9

The simulation result with the mixed precision is compared in Table 12. Results from simulations
performing two states are compared in this section to investigate the impact of the mixed precision

19 NURAM-2021-002-00



Efficiency/Robustness Enhancements for BWR

efficiently. In this comparison, the reset_sol option (described in Section 3.3) is used for both
the default and the mixed precision cases because one more reinitialization occurred with the
mixed precision case. This situation can mislead the impact of using the mixed precision, so that
the solution is reinitialized manually for both cases. The mixed precision does not lead to the
high residual error directly. The calculations with feedback are not yet completely stable, so it is
hypothesized that a small perturbation makes the high residual error occur, unfortunately. When
using reset_sol for both cases, the number of outer iterations is the same. The use of the mixed
precision does not change the runtime or iterations since the variables used in the actual calculations
are still double precision. The total runtime is also similar with a minimal difference. The memory
usage is reduced about 9% by using the mixed precision. With this initial implementation, the
macroscopic cross section, the MOC segment length, and the boundary angular flux have been
changed to the single precision. It may be possible to further reduce the memory by converting
other variables to single precision.

3.5 Impact of Combining All Methods in the Full-core Calculation
The LS, MEDPC, and mixed precision are combined and tested for the PB2 cycle 1 calculation.
Similar to the MEDPC case in Section 3.3, the reset_sol is used at states 2, 3, 4 and 12 to prevent
the issue related to the NaN residual error. The reset_sol option was necessary for 2nd and
3rd states in the case of the MEDPC (see Section 3.3). However, two more states were necessary
to reinitialize when all implements are used together since the path to the converged solution is
changed due to combining the LS, the mixed precision, and MEDPC together.

Table 13. PB2 reactor cycle 1 simulation with all options

Default All Change (%)
# of states 25 25 0

# of predictors/correctors 48 48 0
# of XS calculations 1029 734 -29

# of subgroup FSP calls 419 255 -39
# of simplified TH calls 1028 733 -29
# of MGCMFD inners 1269800 182937 -86

# of nodal inners 5160 3425 -34
# of MOC inners 1032 685 -34

# of outer iterations 1032 685 -34
MOC (hours) 7.59 6.33 -17
Nodal (hours) 1.81 1.72 -5
CMFD (hours) 24.47 5.64 -77
TH (hours) 14.20 9.17 -35

Depletion (hours) 0.45 0.33 -27
XS and etc. (hours) 4.88 0.66 -86

Total (hours) 53.40 23.86 -55
Max memory per core (GB) 3.06 2.63 -14

Average memory per core (GB) 2.69 2.24 -17
Total memory (TB) 3.15 2.62 -17
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With combining all options, we could reduce the runtime by 55% and thememory by 17% compared
to the default case, where the runtime savings are due to the MEDPC, and the memory savings
are due to the LS and mixed precision. The runtime of these calculations should be similar to
the MEDPC in Table 11 since neither the LS or the mixed precision should increase the runtime.
However, the case takes 1 hour more than MEDPC. By looking into the detailed breakdown of the
runtime, it is the number of outer iterations of this case that takes 52 iterations more than MEDPC.
The transport solution of this case has been reinitialized 2 more times manually, therefore it may
be the reason for the more iterations. However, this case still shows 34% fewer iterations than the
default case.

The solutions from the default and the new cases are compared in Fig. 8. The :eff difference between
the two simulations is about 60 pcm. The case with the new options calculates the underestimated
:eff compared to the default case. The average 2D and 3D RMS pin power differences are 0.26%
and 0.66%, respectively. The 3D RMS difference for the fuel temperature difference is about 12.5
K.

The MEDPC and the mixed precision do not make a meaningful difference in the solution. The
MEDPC and the default CMFD give the same solution within the convergence criteria. The
main reason of the difference is due to the LS MOC. As discussed in Section 2.1.4, the default
mesh option with the FS MOC does not calculate a sufficiently converged solution in terms of

(a) :eff difference (b) Pin power distribution difference

(c) Fuel temperature difference (d) Coolant density difference

Figure 8. Comparison of reactor parameters between the default and the all new options
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the mesh discretization. Another reason is that the TH solver assumes the fuel pellet is divided
with equal-volume regions. In the LS MOC mesh, the gadolinia fuel is divided into 10 regions
with equal-volume. However, the UO2 fuel has two regions in the radial direction with an inner
radius set to 0.875 of the pellet radius. This fractional ratio captures the 239Pu accumulation more
accurately with a small number of subregions [6]. This inconsistency between the neutronics and
the TH calculations may cause the fuel temperature difference. The new case tends to overestimate
the fuel temperature. This overestimated fuel temperature likely contributes to the underestimated
:eff. The LS MOC mesh has not been used routinely therefore there are still some issues to resolve
in the spatial coupling. In the future, we will address this issue further to use the LS MOC in the
production calculation.

4. CONCLUSION AND ONGOINGWORK

To improve the efficiency and robustness, and reduce the memory of the MPACT BWR calculation,
four enhancements are developed in this milestone, including: 1) adoption of the linear-source
MOC; 2) new iterative methods; 3) mixed precision; and 4) problem initialization optimization.
The optimization of the geometry and meshing initialization process shows a speedup of 30-40%
during problem setup, depending on the number of unique assemblies and control cells. The new
iterative methods have shown to speed up the MPACT and TH coupled calculation of the PB2 cycle
1 problem by a factor of 2. The LSA and mixed precision reduce the total memory by 17% for the
PB2 problem with a minimum runtime impact.

The run time of the PB2 problem has been successfully reduced by the MEDPC method. However,
the high residual (and NaN) issues occurred several times and the transport solution has to be reset
in order to converge the MEDPC calculation. Therefore, further investigation and testing on more
problems is needed to improve the robustness of the MEDPC for BWR applications. Also, we may
extend the mixed precision to other variables for additional memory savings. Further gains for the
input processing speed up could be found in optimizing the redundancy checking for the creation
of each pin mesh. Currently, the check happens after a pin mesh is initialized. If the parameter lists
for each pin mesh are stored during initialization and compared before the pin mesh is initialized,
more input processing time could be saved.
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