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A: Notation

Let

rf= [ 1wire foz

K
gz(em H = log {Zﬂkfnk yz ’Xzat )} ) gz(ena H) = gz(anu H) - )‘Zlog{

k=1

€+ g

Gn = {O/Bn(t) ra=(ay, - ,aq,) € R, max |0zl| < L,t €0, 1]}

1<i<

={6, = (B,7,7,8) € R*"® [0 1) ®RK’“®9557 18] + ||| + [Iv] < M},

(O H) = ZE 0,.: H) n/\Zlo {””’“}

T ={B, Ve T,k =1,--,50} and f[n( -;0,,) is the estimator of H(y) given 6,, and

is defined by Equation (15) in the main paper.

Four Essential Lemmas

Before presenting the lemmas, we first define the covering number of the class £,, =

{Z(Gn;ﬁn(-;On)) : 0, € ©,}. In particular, for any ¢ > 0 define the covering
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number N (e, £, L1(P,)) as the smallest value of x for which there exist {6, ; €

©,,7=1,---,k} such that

NN A
min E zz_; wl(emﬂn( ,On)) - éi(ean;Hn(';en,j)ﬂ <6

]6{1} 7K/}

for all 8,, € ©,,. If no such k exists, define N(¢, L,,, L1(P,)) = co. We remark that
our theory relies on modern empirical process theory (Van der Varrt & Weller, 1996).
For the situation that we consider here, to establish the asymptotic normality we

employ the Riesz representation theorem. Next we state and also prove four lemmas.

Lemma 1 The covering number of the class ©,, satisfies
N(e, ®,, Ly) < ¢ (antptmtK

where the sign “ <7 indicates that the function on its left-hand side is bounded by a

positive constant times the function on its right-hand side.

Proof: Applying Lemma 2.5 and Corollary 2.6 in Van de Geer (2000), we can

complete the proof.

Lemma 2 Under conditions (A1)-(A5), H,(y;0,) which is defined in Equation (15)

in the main paper satisfies satisfies

sup |]/—\In(ya 0n) - H(yv 0n)| — 07

0,.€0,,y€y,Y]

where H(y;8,,) satisfies
V(H (y;60n);0,) =0, (5.1)

for given y € [y, y] and 8,, € ©,,.



Proof: It follows from the Law of Large Numbers and the monotonicity of Hy(y)

that for given ¢ > 0, y € [y,7], 0, € O,

%ZZ I(Yy<y) =) md {Ho(y) a'fB"@fJ) XihBr C}]
k=1

o
i=1 j=1 kj

Y (M) 00005) = Xy
k=1 V Okjo

S (Ho(y) - a%ina(_:j) — XihB C) } 5.2)

almost surely as n — oo, where N = >"" | n,.

Then, we show that Equation ((S.2) holds uniformly on y € [y, 7| and 0,, € ©,,.
By Lemma 1 and Theorem 19.4 of Van der Varrt(1998), ©,, are P-Glivenko-Cantelli

class. Since 7, ® {Ho(y)fa;]%?)fx“”ﬁk — } is a continuous function on ©,, and is
J

bounded by 1. Moreover the indicator function class {I (Y;; < y)} also belongs to the

VC class; thus, the uniform convergence of the result in Equation (S.2) follows from

Van de Geer (2000).

Furthermore, it also follows from Equation (S.2) that for large ¢,

%zn:i: iy Zﬂ-k@ {HO a;Bn(tzj) - Xi(j)ﬁk _ g}] >0, (83)

i=1 j=1 Tkj

L Ho(y) — oy Baltyy) — Xig

NZZ I(Y,; <vy) _Zﬂ'k@{ o(y) k O(k,]) () B +C} 0. (S.4)
i=1 j=1 k=1 J

Together with the monotonicity and continuity of ®, these results imply that there

exists a unique ﬁn(y; 0,,) such that

%ZZ iy Zm@ { o(1:6,) — 04Bu(ty) ~ MH_Q (s5)

o3
i=1 j=1 kj

for given y and 6@,,. Similarly, there is a unique function H(y;@,,) that satisfies Equa-

tion (S.1) for given y and 6,,. Note that
Uy (Ho(y; 02); 0n) = {0 (Ho(y; 0,); 0n) — W (H(y;0,); 0,)} + Wi (H(y;0,); 6,,),
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and by Lemma 1 and the uniform strong law of large numbers, we have
U, (H(y:6,):6,) — Y(H(y:6,):6,) =0,
almost surely uniformly in y € [y, y] and 8,, € ©,,. Then it follows that
0= 100 (Ho(y;0.):00) | = Cl[ Houly: ) — H(y: 0,)l| — . (5.6)
where C' > 0 does not depend on y, and

En= sup |0, (H(y;0,);0.)| — 0.

0,.€0,,y€y,j]

Hence, Equation (S.6) implies that PA[n(y; 0,,) converges to H(y;0,) uniformly in

y € ly,y] and 0,, € O,,.

Lemma 3 Assume that Conditions (A1)-(A5) hold. Then the covering number of

the class L,, satisfies

N(e, L, Li(P,)) < ¢ (antptm+K

Proot: For any 0 = U {3 w757} € ©,.0%) — UIC (3. w2 .6} <
0©,,, we have
Pl(6; Hy(+:6)) = PL(6@); (- 69))
= pn{g(g(l);g(.;gm)) _ g(e(z);H(_;o(g)))}
—|—Pn{@'(9(1);ﬁn( L 0W)) — 0(6W; H(-;0M)))

~

—P,{{(8%;H,(-;0%)) —1(6P; H(-;60"))}. (S.7)
By the uniform convergence of f-\ln(y; 0,) to H(y;8,) described in Lemma 2, we have

Po{ (6 H,(-:00)) = (05 H(-:0W))} = 0,(1),



Using a Taylor series expansion, under condition A(1) we obtain

161 H(-:61)) — [(8; H(-:6%))

K
1 2 1 2 1 2 1 2
<o » (I8 = BN + w721+ 1 = 321 + gy — 982 llso)- (S-9)
k=1

Let a,(cj) = (oz,(fl), e ,a,g])n),j = 1,2 be the spline coefficients of g,gj),j = 1,2, respec-

tively. We have

1 2 1 2 1 2
127 = 7o < max Jog) — il = flog” — ey (8.10)

By Combining (S.9) and (S.10) we obtain

06" H(-;6W)) — (6% H(-;6®))]

K
1 2 1 2 1 2 1 2
<> (I8P = BN + I — 72 + 17 = 42 + el — o?]|).(8.11)
k=1

Next, using Equations (S.7), (S.8), (S.11) together with Lemma 1, and mimicking the
calculation on page 94 of Van der Varrt & Weller(1996), we have N (e, L,,, L1(F,)) <

¢~ (mntptm+ DK Thig completes the proof.

Lemma 4 Assume that Conditions (A1)-(A5) hold. Then we have

sup |Png(0n; Hy( 10,)) — Pg(On; H(-;0,))| — 0 almost surely.
Proof: By lemma 2, we have supy ce. |Pn{g(0n; H,(- ;on))—é(en; H(-;0,))} —
0. And it is obvious that P,0(0,; H(-;8,))—Pl(8,; H(-:6,)) = P.l(8,; H(-:6,))—
Pl(0,;H(-;0,)). Then we need to prove
sup |Pn€(0na H( ) en)) - PE(Ona H( ) 0n))| —0
. Note that [¢(0,,; H(-;8,))| is bounded under Conditions (A1)-(A4). So, without loss
of generality, we assume supy ce. |[((0,; H(-;6,))| < 1. Then P¢*(0,;H(-;0,)) <
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P(supg co, [0(0n; H(-;6,))))* < 1. Let a,, = n~Y/* 1 (logn)'/? with v/2 < ¢ <
1/2. Obviously {a,} is a non-increasing sequence of positive numbers. Also for a

given € > 0, let ¢, = ea,,. Then for sufficiently large n and any 8,, € ©,,, we have

var(B,0(0,; H(-:6,)) _  (1/n)PC(6,; H(-;6,))
(4e,,)? - 16€2a2
1 < 1 < 1
16ne2a? — 16e2n??1logn — 2

Let P? denote the signed measure that places mass ﬂ:% at each of the observations
{Oq,---,0,}, with the plus and minus signs themselves independent of the O;. Then
from page 31 of Pollard (1984) and var(P,¢(0,,; H(-;80,)))/(4€,)?* < 1/2, the following

symmetrization inequality holds:

P( sup |P,l(0,;H(-;0,)) — Pl0,;H(-;0,))| > 8¢,)

<AP(sup |P(0,; H(-;6,))| > 2¢,). (S.12)
0cO,

Let O = {Oy,---,0,} represent the observed data. Given O, select (Onl), e ,On“)),
where k = N(€e,/2, L, L1(P,)), such that

min_ P[00, H(-:6,)) — (09 H(y;09))] < 2,
JE{L, K} 2
for all 8,, € ©,,. For each 0, € ©,, let
0, = argmin P, |((8,; H(-:0,)) — (67 H(y: 67)).
04
Note that
IP"( (0, H(-;6,)) — £(6);,; H(y;6;,)))]
= I—Zi (0.; H(-;6,)) — (i(6;; H(y;67)))|
< —Z\ (6, H(-30,,)) — 6:(0;; H(y; 07)))|
= Pnlf 0,; H(-30,)) — (6} H(y;67))|. (S.13)
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Then by the definition of € and (S.13) we have

P( sup [PRU(6n; H(-;6y))| > 2€,]|O)

0,€0,
< P(sup [|P26(6;,; H(y; 0;))| + Prl(0n; H(-56,)) — £(6,; H(y; 0,,))]] > 26,|O)
ne n
< Plmas P09 H(y:09))] > 210)
J
< N(ew/2, Lo, L1(Py)) max P(|P20(69); H(y: ))\>3€”|0) (S.14)
J

According to the definition of the covering number N(e,/2, £,, Li(P,)), for each 8%,
there exists éff) such that Pn\ﬁ(éflj); H(y; éff))) 069

P(IPLO9; H(y: 60)] > *2(0)

n

) (y7 n ))| < En Therefore

n 7

< P(HP::E(Bn’  H(y; eS)>>|

+ P00, H(y: 8,)) — (09 H(y:09) ] > 10)
P(P20(6Y; H(y; 0))] > e]O). (S.15)

By Hoeffding’s inequality, we have

PP, Hy:0)| > al0) = PN =08, H(y:0.)))| > nes|O)

< zexp[ 2(ney,) /Z (26,8 H (y;87)))2
< 2exp(—ne2/2). (S.16)
The last inequality in Equation (S.16) holds because |€i(éff); H(y; é,(f)))| <1.

Combining the the results found in Equations (S.14)-(S.16) and Lemma 3, we obtain

P( sup |P(0,;H(-;0,))| >26,]0) < 2N(en/2,En,Ll(Pn))eXp(—nei/Q)

6,c0,
< COen/2) 0 PFm TR exp(—ne /2).

Note that the right-hand side does not depend on the observations O; then, by taking

expectations over O, we have

P( sup |P%(0,:H(-:0,))| > 26,) < Cf(e,/2) ntPtmTDE oxp(—ne2 /2).  (S.17)
gneg'VL



Combining Equations (S.12) and (S.17) we obtain

P( sup |Pol(6n; H(-:6y)) — PU6,; H(-:6,))] > 86,)

0,€0,
< 4P( sup |P(0,;H(-;60,))| > 2¢,)
0,€0,
< (en/2)" IR exp(—ne;, /2)

< C exp(—062n2¢1 logn).

Hence >, P(supg, co, |P,0(6,;H(-:6,)) —Pi(0,:H(-;8,))| > 8¢,) < co. By the
Borel-Cantelli lemma, we will have supg, .o, |Pul(8,; H(-;0,))—Pi(0,; H(-;6,))| —

0 almost surely, which completes the proof of Lemma 4.

Proofs of Theorems 1-3

Proof of Theorem 1. Our proof of Theorem 1 relies on three steps. The first
step establishes the consistency of §n and ﬁn(y; gn) Next we determine the rate of
convergence of @n Finally, by utilizing the two previous steps we obtain the selection

consistency for the cluster number.

Step 1 (Consistency). Under condition (A2) and by Corollary 6.21 of Schu-

maker (1981), there exist g,z = 0tj,uBn(t) such that

sup |gnro(t) — gro(t)| = O(g,") = O(n™"),
te[0,1]

where go(+) denotes the true function of gx(-), k = 1,--- , K. Let 8,0 = (By, ™0, Yo, 8no),

where g9 = (91n07 T 7gKn0)~ Then,

d(eno, 00) = O(n_”’). (S].S)

~

Let M(0,; Hy(y:0,)) = —0(6,; Ho(:6,)), K. = {6, : d(6,,0,0) > €,0, € ©,} for



e >0 and

Cln = Bsu(g ’PnM(ona ﬁn( 5 0n)) - PM(eny ﬁn( 5 0n))‘7
n€Bn

Then one can show that

inf PM (8, Ha( -3 6,.))

< Gu - inf P, M (8, H,(-:6,)). (S.19)
If 5n € K., then we have

< P,M (0,05 Ho( -5 60100)) = Con + PM(0n0; ﬁn( 10n0)) (5.20)

Let 6. = infx, PM(6,; ﬁ]n( -30,)) — PM(8,0; ﬁn( -3050)). One can easily verify that
dc > 0 under the conditions specified in Theorem 1 when n is large enough. By

equations (S.19) and (S.20), we have

~

inf PM (8,5 Hu(+:0,)) < Gt Con + PM (80 Ha( - 010)

with (, = (n + Gn, and hence (, > 0. by the definition of J.. Since {gn €
Kt € {G = 6}, then UZ, ﬂiiz{an € Kt € UZiNaZi{¢n = 6} By Lemma
2 and the strong law of large numbers, we have both (;,, — 0 and (5, — 0 al-
most surely. Therefore, | J;o; (o, {Cx > dc} is the null set when n is large enough,
which proves that d(6.,,6,) — 0 almost surely as n — co. Combining this result
with Equation (S.18), we have d(@n,eo) — 0. Together with Lemma 2, we have

~ ~

}AIn(y) = H,(y;0,) — H(y;0y) = Hy(y) uniformly in y € [y, 7].
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Step 2 (Rate of convergence). We establish the convergence rate of 6, by
using Theorem 3.4.1 of Van der Varrt & Weller (1996). For any n > 0, define the

class of functions

~

'Fﬁ = {g<0n7Hn( : >9n)) - g(enmﬁ[n( : ;9n0>> : en € @nan/Z S d(9n79n0> S 7}}

For 0 in the neighborhood of 6, the compactness of the parameter spaces implies

that P{¢(6o; Ho) — ((6; H,(-:6))} =< d*(6,6,). Hence

~ ~ ~

P(f(eno, Hn( 3 0710)) — 6(00, H())) = d2(0n07 00) S C’I”L_QTU. (821)

Hence, for large n, by equation (S.21) we have

~ ~ ~

P(aen; Hn( : 50n)) - ﬁ(@no; Hn( ) §0n0>>> < 0772 +Cn Y = OP(UQ)a

for any £(0,; Hy(+:0,))—0(B0; Ho( -2 6,0)) € F,. Following the calculations found on
p-597 of Shen & Wong (1994), we can establish that for 0 < ¢ < n,log Ny(e, F;;, Lo(P)) <
Cgnlog(n/e). Under Conditions (Al)-(A5), it is easy to see that F, is uniformly
bounded. Therefore, by Lemma 3.4.2 of Van der Varrt & Weller (1996), we obtain

Jn(%me2(P))}
URVAD

where Jy(n, F, L2(P)) = fon{l + logNH(e,fn,LQ(P))}%da < C\/qnn. Let ¢,(n) =
V@ + @n//n. Tt is easy to see that ¢,(n)/n is decreasing in 7, and r2¢,(1/r,) =
Tn/Gn + r2q,/n'/? < On'/? where r,, = N~'/2n'/2 = n1=v)/2_ Noting that

Po(0(6,; Hy(+:60,)) (8,03 Hy (- 0,))) > 0 and d(8,,, 0,0) < d(8,.80)+d(6,0,0) —
0 in probability, by applying Theorem 3.4.1 of Van der Varrt & Weller (1996), we

Ep|n'/*(P, — P)

7, < CJy(n, Fy, Lz(P)){l +

have n=/2d(8,,, 0,,0) = Op(1). This result, together with d(6y, ) = O~ , shows
that d(6,, 8o) = Op(n~(1=v)/2 4 p=rv) = O(p~min(z=rv))

Step 3 (Selection consistency). In the final step, according to the proof of

Huang et al.(2017), we need only consider the maximizer of Q,(6,; Hy(-:6,)) with

11



d(an,ﬂo) < Oy /nmin(55r) and 7, < 1/(ynlogn) for k > so. We use a Lagrange
multiplier \; to account for the constraint 3 p_ 7 = 1. Note Q%(0,; H,(-:6,)) =
Qn(0,; f[n( 3 0,)) — )\1(2?:1 7 — 1). By Lemma 2, it is then sufficient to show that

aQZ(OnS H( " en))

87rk

1
<0 for 7 < (S5.22)

. vnlogn’

with probability tending to one. To show equation (S.22),

T gy T SRS VI S ) (5.23)

T _
T=T7 i=1 Zk:l kank €+ Ty

0Q, (0, H(-;6x))
aﬂ'k

Obviously, the first term in the equation above is of order O,(n) by the law of large

1—v

numbers. Given k < sg, it is easy to establish that 7y = mg + O,(1/n™n( 3

7TU)) >
1 - min{mig, 0, -+ , M50} Then the second term should be O,(n)) = o,(n), and
moreover \; = Op(n). Next, consider equation (5.23) when k > sy and 7, < m.
It is obvious that the first and third terms in Equation (S.23) are each of order O,(n).
1

For the second term, because 7 = Op(m), Av/nlogn — oo and € = O(W)’

we have

1
/n=A\

e+ T €+ T

ni = O,(A/nlogn) — oo,

with probability tending to one. Hence the second term in Equation (S.23) dominates
the first and third terms. Therefore we have proved Equation (S.22), or equivalently

7r = 0 for k > sq with probability tending to one when n — oo.

Proof of Theorem 2. The proof of Theorem 2 is completed by following by step

1 and step 2 in the proof of Theorem 1.

Proof of Theorem 3. Let © — 6, to be © excluding 6y. Let ) denote the

linear span of ©® — @y and define the Fisher inner product on the space ) as <

0,5 >= P{{(0; H(-:00)[]i(8; H(-;0,))[5]} for v,5 € Q and the Fisher norm

as ||v|| =< v,v >, where £(8¢; H(-;00))[v] = dg(gﬂ“gf(‘%et))) is the first order
s=0

directional derivative of £(8¢; H(-;0y)) at the direction v € Q (evaluated at 6y).
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Also let © be the closed linear span of 2 under the Fisher norm. Then (€, | - ||) is a
Hilbert space. For a vector of so(p+m+1)-dimension b = (b}, b, b5)" with ||b|| < 1 and
for any v € ), define a smooth functional of 8 as h(0) = 'Y = b8 + byy + byw and
h(0y)[v] = W , where T = {8, v, T, k = 1, -+, so}, whenever the limit on
the right-hand side igowell—deﬁned. According to the Riesz representation theorem,
there exists v* € Q such that A(0y)[v] =< v,v* > for all v € Q and ||[v*|| = ||(80)]|.
Note that h(0) — h(8,) = h(6y)(8 — ;). Thus according to Cramér-Wold device, in

order to prove Theorem 3, it suffices to show that

V< 6, — 0g,0" >5 N(0,6' 17 (To)b), (S.24)

~/

since b'{(8,,, 7, 3,,) = (B, 7, %)’} = h(6,)—h(80) = h(65)(0,—60) =< 0, —6g, v* >.
In fact, Equation (S.24) holds when /i < 8,, — 8, v* > N(0, |v*||?) and ||v*||? =
VI~ ()b,

In the following, we Equation (S.24) holds, we prove /n < 0, — 0, 0" >y
N(O, ||[v*||*). According to the result of Corollary 6.21 in Schumaker (1981), there
exists II,,v* € ©,, — 0, such that ||II,v* — v*|| = O(n™"™). In addition, under the
assumptions r > 2 and 1/2 > v > 1/4r, we have 4,|/I,v* — v*|| = o(n~"'/?) where
6, = n~mind(=0)/2rv}  For any @ € {@ € © : d(0,0,) = O(5,)}, define the first- and

second-order directional derivative in the directions v, v to be

o 10 = OO,
H0 (0.5 - T8 +d?:zg+ 56,0) _dio +j§, 0)[v] B

s=0,5=0

Define (0 — o; H(-;60)) = £(0: H(-;0)) —{(00; H(-:60)) —{(80; H(-:60))(6 —6,)
and let &, = o(n~'/2). Then by the definition of 8,, and PZ(BO; H(-;0)(I,v*] =0,
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we have

0 < Pu{l(Bn;H(-:0,)) = U0, % e, IL0"s H(-:0))}

= P{r(B. — 60 H(+:60)) + (60; H(;60))(8, — 6,)

— (B + enIL v — 00 H(+;00)) — (803 H(-:00))(8, + £, ILv" — 6;) )}

= FeuPul(8y: H(-;60))[I,0")
(P, — P){r(8, — 00; H(-;00)) — (8, £ £,11,0* — 6; H(-;6,))}
+P{r(6, — 80; H(-;80)) — (8, £ £, 110" — 8; H(-;60)) }

= FeaPul(8y; H(-:00)[v"] F £, P l(8; H( -1 00)) (L0 — v']
+(P, — P){r(0,, — 00; H(-:00)) — (0, £ £, T1,0* — Bg; H(-:6))}
+P{r(6, — 00: H(-;60)) — (8, + e, IL,v" — 8g; H(-;6,))}

= Fe  Pl(B0; H( - 0) | F 1 + I + s, (S.25)

We will investigate the asymptotic behavior of Iy, I, Is. For I, it follows from Con-

ditions (A1)-(A5), the Chebyshev inequality and ||II,v* — v*|| = o(1) that
I =&, x 0,(n"/?). (S.26)
For Iy, due to the mean value theorem, we obtain the result that

I, = (Pn_P){g(anSH('§9n))

—(0n £ e, 11,0 H(+305)) £ ,0(00; H(-;60))[en11,0"]}

= Fea(P— P)[{(B: H(-;0)) — {(8y: H(-:6,))}[IL07]]. (S.27)

where 0 lies between én and ﬁn + ¢,I,v*. By Theorem 2.8.3 of Van der Varrt &
Weller (1996), we know that {£(8¢; H(-;80))[I1,v*] : |8 — o] = O,(d,)} belongs to
the Donsker class. Hence by Theorem 2.11.23 of Van der Varrt & Weller (1996), we

obtain I = €, x 0,(n"1/?).
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Since

P(r[0 — 6o; H(-;80)])

= P{i(6; H(-;8)) — {(60; H(-:6,)) — {(00; H(;6,))[0 — 6]}

= PG H(+:6))[0 — 00,6 — 0] — (60 H(+:60))[6 ~ 6.0 — 6,])
+%P5(90; H(-;00))[0 — 65,0 — 8]

_ %Pi(eo; H(-100))[0 — 00,8 — 4] + £ x 0,(n~"/?),

where 0 is between 6 and 6, and the last equation follows from a Taylor expansion,

conditions A(1)-A(5) and r > 2, 1/2 > v > 1/4r. Therefore

1.4 ~ . _
I3 = —§{H0n —00)? — |60, £ 10" — 0]]?} + £, X 0,(n"1/?)
~ 1
=+e, <0, — 6y, 10" > —|—§||5an1}*||2 + &5 X 0,(n?)
0 * * * 1 *|2 -1/2
=+, <6, — 0y, I, v" —v* +0v* > +§H5anv 1* + en X 0,(n""%)
~ ~ 1
=+e, <0, —0y,v" >+e, <0, — 0y, I,v" —v* > +§||5n1'[nv*||2 + &, X op(n_l/Q)
-~ 1
=+4e, <0, —0p,0v" > +§||6anU*H2 + &, X 0p(n" %)

=+4e, < /én — 0y, 0" > +¢, X op(n’l/Q), (S.28)

where the last equality holds due to the fact that d,|/II,v* — v*| = o(n~'/?), the
Cauchy-Schwartz inequality, and [|TL,v*||* — |[v*||. By (S.25), (S.26), (S.27), (S.28),
By the results specified in Equations (S.25)(S.28), combined with P#(8,; H)[v*] = 0,

we can establish that

0 < Po{l(6n; H(+;6,)) — U6, + eI, H(-;6))}

= e, Pl(00; H(-: 00))[v"] £ 20 < 8,y — B0, 0" > 42, X 0p(n~12)

= Feu(Py — PYU(Bo; H(-;00))[v"] £ &0 < B, — 00, 0" > +e, x 0,(n~1/?).

Therefore, we obtain Fv/n(P, — P)l(80; H)[v*] £/ < 6,, — 6y, v* > +0,(1) > 0. By
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combining this result with the central limit theorem we have \/n < En — 0, v" >=

V(B = P)U(Bo; H)[v*] + 0,(1) = N(0, [[o*|%) and [[v** = [|£(80; H)[o"]|>

Now we calculate |[v*|. Rewrite T = (8',9/,7) = (Y1, -+, Tiprmi1)s,). For

each component Yo, ¢ = 1,2,--+ ,(p+m + 1)so. Let o7 = (b7,,b3,,-- ,b%,,) be the
minimizer of E{ly - e, — o, [brg] — lp,[bag] — -+ — by, [bsog]}> With respect to 1, =
(blqaqua te 7bsoq)7 where ET = (~I57g/7ag;—)/a gﬁ = (~2317 T N%so)/7 gﬂ = (Em, te 7gﬂso)/7

= (o 0 Y g, = o fi(H () [%) /5 ma fie(H (y) XA (v,) " H{H (y) = i}
Ury, = Fe(H(Y)%) /320w fu (H () [%) =22, Ly, = /Sy mafu(H (Y)|X)%(ky”x),
Oy, = T fr(H(y)1%) /30 T fi(H (y)[x) A () " H{H(y) — jue}, and e, is a (p+m +

1)so-dimensional vector of zeros except the g-th element equal to 1.

Define a vector Sy of dimension (p + m + 1)sg, with the g-th element as ¢y - e, —

O, [07,] — oy [U5,) — -+ — by, [b%,,); and [(Yg) = E(SySy). Furthermore, by following

s0q

calculations similar to those found in Chen et al.(2006), we obtain

. ] 2
ol = [h60) = sup 1@

- 2
vEV:||v]|>0 v

= V[E(SySL)] " b = VT (To)b.

This completes the proof of Theorem 3.
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