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Abstract: Cluster analysis with functional data often imposes normality assumptions on outcomes and is
typically carried out without covariates or supervision. However, nonnormal functional data are frequently
encountered in practice, and unsupervised learning, without directly tying covariates to clusters, often
makes the resulting clusters less interpretable. To address these issues, we propose a new semiparametric
transformation functional regression model, which enables us to cluster nonnormal functional data in
the presence of covariates. Our model incorporates several unique features. First, it omits the normality
assumptions on the functional response, which adds more flexibility to the modelling. Second, our model
allows clusters to have distinct relationships between functional responses and covariates, and thus makes
the clusters formed more interpretable. Third, unlike various competing methods, we allow the number of
clusters to be unspecified and data-driven. We develop a new method, which combines penalized likelihood
and estimating equations, to estimate the number of clusters, regression parameters, and transformation
functions simultaneously; we also establish the large-sample properties such as consistency and asymptotic
normality. Simulations confirm the utility of our proposed approach. We use our proposed method to
analyze Chinese housing market data and garner some interesting findings. The Canadian Journal of
Statistics 50: 221–240; 2022 © 2021 Statistical Society of Canada
Résumé: En cas de données fonctionnelles, l’analyse par grappes est souvent réalisée sous l’hypothèse de
normalité et se fait généralement sans tenir compte de covariables et sans supervision. Mais en pratique,
comme il est fréquent que les données fonctionnelles à l’étude ne soient pas gaussiennes, le recours
à un apprentissage non supervisé sans un lien direct entre les covariables et les clusters fournit des
résultats difficiles à interpréter. Pour remédier à ces problèmes, les auteurs du présent travail proposent
un nouveau modèle de régression fonctionnelle de transformation semi-paramétrique (STFR) qui permet
de regrouper des données fonctionnelles non normales en présence de covariables. Le modèle proposé
intègre plusieurs caractéristiques particulières. Premièrement, en omettant l’hypothèse de normalité de la
variable réponse fonctionnelle, il rend la modélisation bien plus flexible. Deuxièmement, en permettant
aux relations entre les variables réponses fonctionnelles et les covariables de varier d’un cluster à
l’autre, il facilite l’interprétation des clusters construits. Troisièmement, contrairement à diverses méthodes
concurrentes, l’approche proposée ne fixe pas le nombre de clusters à l’avance mais adopte davantage un
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choix automatique. La méthode ainsi développée combine les équations d’estimation et la vraisemblance
pénalisée pour estimer simultanément le nombre de clusters, les paramètres de régression et les fonctions
de transformation. Enfin, en plus d’une étude du comportement asymptotique des estimateurs proposés,
dont la convergence et la normalité asymptotiques, les auteurs présentent des simulations et une analyse de
données du marché immobilier chinois afin de confirmer les bonnes performances et l’utilité pratique de
la méthode proposée. La revue canadienne de statistique 50: 221–240; 2022 © 2021 Société statistique du
Canada

1. INTRODUCTION

Functional data have been routinely collected in many fields, such as economics, pharmacy,
biology, and climatology (Yao, Müller & Wang, 2005a, 2005b; Yao, 2007; Li & Hsing, 2010a,
2010b; Li, Wang & Carroll, 2010; Yao & Müller, 2010; Yao, Fu & Lee, 2010; Horváth &
Kokoszka, 2012) and analyses of these data may provide valuable insights for decision makers
in these fields. For example, the past two decades have witnessed the skyrocketing housing
prices in most cities in China, while the housing markets in a small number of cities have
been relatively steady. The sharp market inequality has intrigued scholars and investors (e.g.,
Zhang et al., 2017; Jia, Wang & Fan 2018), and has sparked interest in understanding how this
inequality aligns with the local economy, geography, and demographics, and also which markets
are at risk of a “real estate bubble” and which are deemed “healthy.” Hence it is crucial to study
the change trends in housing prices across cities and to identify the patterns along with local
economic conditions and demographic features. Of particular interest is the detection of various
types of relationships between these trends and the corresponding macroeconomic factors and
the classification of cities or markets accordingly. The results may help identify cities with
overheated housing markets.

On the surface, the problem seems to fall into the traditional cluster analysis of func-
tional data, for which various methods are available. For example, the two-step method
converts the infinite-dimensional clustering problem into a finite-dimensional one and then uses
finite-dimensional clustering methods (Abraham et al., 2003; James & Sugar, 2003; Ray &
Mallick, 2006; Chiou & Li, 2007; Peng & Müller, 2008; Bouveyron & Jacques, 2011; Samé
et al., 2011; Giacofci et al., 2013, Jacques & Preda, 2013, 2014b); distance-based clustering,
including those of Tarpey & Kinateder (2003), Ferraty & Vieu (2006), Cuesta-Albertos &
Fraiman (2007), Tokushige, Yadohisa & Inada (2007), and Ieva et al. (2013), involves clus-
tering that uses the curve data directly; see Jacques & Preda (2014a) for a comprehensive
review. However, none of these approaches can classify functional data while accounting for
covariates.

Limited research has been published concerning cluster analysis on functional responses with
covariates. For example, Titterington, Smith & Makov (1985), Muthén (2001), and McLachlan
& Peel (2004) proposed a growth mixture model (GMM), and Nagin (1999) and Nagin (2005)
suggested group-based trajectory modelling (GBTM) to identify clusters of individuals based on
functional responses as well as covariates. Shi & Wang (2008) developed a mixture of Gaus-
sian process functional regression models to classify relationships between curve responses and
covariates. However, these approaches require the functional response to follow a Gaussian distri-
bution, which is violated by our motivating data; see Figure 2. Misleading results may occur when
such an assumption is violated. For example, Bauer & Curran (2003) showed that, for nonnormal
data, multiple groups can be falsely identified when, in fact, there is only one group. Moreover, as
our numerical studies revealed, misspecifications of the polynomial growth curves, which were
commonly assumed by these models, may lead to unreliable estimation and classification. Finally,
all these methods require the number of clusters to be known a priori, whereas detecting the num-
ber of clusters is a centerpiece in cluster analysis. To our knowledge, little research has focused
on this topic, and most published work has relied on the Bayesian information criterion (BIC)
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(Schwarz, 1978; Jones, Nagin & Roeder, 2001; Nagin, 2005; Shi & Wang, 2008; Andruff et al.,
2009), which may involve a marked computational burden. Additionally, large-sample results
with the BIC are not available, making it difficult to evaluate its validity for model selection.

We propose a semiparametric transformation functional regression (STFR) model for
clustering a functional response with covariates. Our model relaxes the restrictive conditions
on the response, the growth curves, and the number of clusters. To introduce the idea, we first
note that, for a continuous random variable Y with distribution function F, Φ−1(F(Y)) has a
standard normal distribution, where Φ is the standard normal distribution function. This indicates
the existence of normal transformation functions, at least in the absence of covariates. Now,
with covariates X and an unknown transformation function H(⋅), we denote by 𝑓k(H(Y)|X) the
conditional probability density of the transformed responses in the kth cluster, which we assume
is a normal density function given the covariates X. Hence, the conditional distribution of H(Y)
given X is a normal mixture. In addition, we also assume that we can specify a semiparametric
model with an unknown growth curve. Finally, with penalization on the group probability, we
identify clusters that best fit the data. We develop a new method, which combines penalized
likelihood and estimating equations, to estimate the number of clusters, regression parameters,
and transformation functions simultaneously. We also establish this method’s large-sample
properties such as consistency and asymptotic normality. We apply our STFR model and the
competing methods for clustering to analyze a Chinese housing market dataset. Our model
provides a better fit than the competing alternatives, and generates some interesting results that
may shed light on the determinants of real estate markets in China.

The remainder of the article is organized as follows. Section 2 introduces our proposed
model and the associated method of estimation, and provides a BIC-type procedure for selecting
the tuning parameters. Section 3 develops the theoretical properties, including

√
n-consistency,

asymptotic normality, and the model selection consistency. In Section 4 we report the results
of simulation studies and comparisons with alternative competing clustering methods, while
Section 5 concerns our analysis of the Chinese housing market data. We conclude the article
with a brief discussion of the possibilities for future research. All the technical proofs may be
found in the corresponding Supplementary Material.

2. THE MODEL AND ITS ESTIMATION

2.1. Model and Objective Function
Let

(
Yi(t),Xi(t)

)
, i = 1,… , n be independent realizations of (Y(t),X(t)), where t ∈

[
t0, t1

]
with

0 ≤ t0 < t1 < ∞ being two fixed constants, and X(t) is a p-dimensional covariate vector which
includes time-dependent as well as time-independent components. Instead of observing the full
trajectories Yi(⋅) and Xi1(⋅),… ,Xip(⋅), we measure them at sparse and irregular time points. To
adequately describe the subject-specific time points underlying the measurements, we assume
there are ni measurements for Yi(⋅) and Xi1(⋅),… ,Xip(⋅) at time points ti =

(
ti1,… , ti,ni

)
from[

t0, t1
]
. For notational simplicity and without loss of generality, we hereafter assume this

bounded set is [0, 1], and the measurement time ti𝑗 is randomly distributed on [0, 1]. Let
Yi𝑗 = Yi

(
ti𝑗
)

and Xi𝑗 =
(
Xi1

(
ti𝑗
)
,… ,Xip

(
ti𝑗
))′

, 𝑗 = 1,… , ni; then Yi =
(
Yi1,Yi2,… ,Yi,ni

)′ and

Xi =
(
Xi1,Xi2,… ,Xi,ni

)′ represent the sequences of measurements on individual i over ni time
points. For a nonrandom function H, let 𝑓 (H(Yi)|Xi, ti) denote the conditional probability density
of the transformed responses H

(
Yi
)
=
(
H
(
Yi1

)
,H

(
Yi2

)
,… ,H

(
Yi,ni

))′ given time-dependent
covariates Xi and time points ti. We assume that H(⋅) is chosen such that H(Yi) given Xi, ti
follows a mixture of K normal densities, i.e.,

𝑓
(
H
(
Yi
)|Xi, ti

)
=

K∑
k=1

𝜋k𝑓k
(
H(Yi

)|Xi, ti
)
,

K∑
k=1

𝜋k = 1 (1)
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with 𝜋k ≥ 0, where 𝜋k is the marginal probability that an individual belongs to clus-
ter k and 𝑓k(H(Yi)|Xi, ti) is the multivariate normal density function with mean 𝜇ik and
covariance matrix Δi(𝜸k), where 𝜸k is an m-dimensional parameter vector. We assume
𝜇ik = gik + Xi𝜷k, where gik =

(
gk
(
ti1
)
, gk

(
ti2
)
,… , gk

(
ti,ni

))′, gk(⋅) is an unknown smooth
function, 𝜷k is a parameter vector with dimension p, and Xi is a matrix of covariates
with dimension ni × p. We assume the covariance matrix Δi(𝜸k) follows some paramet-
ric structure, but we do not require any particular structure, such as AR(1) or blockwise
diagonal, on the covariance matrix. In particular, the covariance matrix can be a linear
combination of various covariance matrices with certain structures. The model specified in
Equation (1) generalizes the existing models. When H(x) = x, gk(⋅) is specified, and the true
number of clusters is known, our model includes the group-based trajectory modelling pro-
posed by Nagin (1999, 2005) as a special case. In this article, we propose to estimate K,
along with 𝝅 =

(
𝜋1,… , 𝜋K

)′, the growth curve gk(⋅), and the transformation function H(⋅)
simultaneously.

Denote

 = {g(⋅) ∶ |g(q1)(t1) − g(q1)(t2)| ≤ c0|t1 − t2|q2 , for any 0 ≤ t1, t2 ≤ 1}, (2)

where q1 is a nonnegative integer, q2 ∈ (0, 1], r = q1 + q2 ≥ 2, and c0 > 0 is a constant. The
smoothness assumption identified in Equation (2) is often used in nonparametric curve estimation.
With the assumption gk ∈  for k = 1,… ,K, we approximate gk(⋅) by gnk(t) = 𝜶′

kBn(t) for k =
1,… ,K, where Bn(⋅) =

{
b1(⋅),… , bqn

(⋅)
}′ is a set of B-spline basis functions of order r + 1 with

knots 0 = t0 < t1 < · · · < tMn
= 1, satisfying max

(
t𝑗 − t𝑗−1 ∶ 𝑗 = 1,… ,Mn

)
= O(n−v). Here,

qn = Mn + r + 1, and Mn is the integer part of nv with 0 < v < 0.5; see Schumaker (2007). The
resulting model for cluster k has the form

H
(
Yi
)|Xi, ti ∼ N(Bn

(
ti
)
𝜶k + Xi𝜷k,Δi

(
𝜸k
))
, (3)

where Bn
(
ti
)
=
(
Bn

(
ti1
)
,… ,Bn

(
ti,ni

))′. We denote 𝜇nik = Bn
(
ti
)
𝜶k + Xi𝜷k and

𝑓nk
(
H
(
Yi
)|Xi, ti

)
= (2𝜋)−ni∕2|Δi

(
𝜸k
)|−1∕2

× exp
[
−1

2
{

H
(
Yi
)
− 𝜇nik

}′ Δi
(
𝜸k
)−1 {H

(
Yi
)
− 𝜇nik

}]
.

We can base our inference on the logarithmic likelihood function

Ln
(
𝜽n;H

)
=

n∑
i=1

log

{
K∑

k=1

𝜋k𝑓nk
(
H
(
Yi
)|Xi, ti

)}
, (4)

with 𝜽n =
{
𝜷k,𝜶k, 𝜸k, 𝜋k, k = 1,… ,K

}
and

∑K
k=1 𝜋k = 1.

Since the number of clusters is unknown, we begin with a bigger model that has the
number of clusters K ≥ K0 with K0 being the true number of clusters. This implies that
some clusters are redundant or can be merged. As 𝜋k = 0 indicates that the kth clus-
ter is not necessary and can be deleted from the model, cluster detection corresponds
to the selection of nonzero {𝜋k, k = 1,… ,K}, which, however, cannot be achieved by
directly penalizing

(
𝜋k, k = 1,… ,K

)′. To see that, we denote 𝛿ik = 1 if Yi arises from
the kth cluster, and 𝛿ik = 0 otherwise, and denote 𝛿i =

(
𝛿i1,… , 𝛿iK

)′; then the complete
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data for individual i is Di =
{

Yi, 𝛿i,Xi
}

. The expected complete-data log-likelihood function
is

n∑
i=1

K∑
k=1

(
bik

[
log

(
𝜋k
)
+ log

{
𝑓nk

(
H
(
Yi
)|Xi, ti

)}])
, (5)

where bik = E
{
𝛿ik|Yi,Xi, ti

}
. Since Equation (5) contains log(𝜋k), which has a gradient that

increases quickly when 𝜋k is close to zero, the Lp-type penalties cannot directly set small
values of 𝜋k to zero and and hence we need to consider imposing a penalty on log{𝜋k} for
sparsity. Following Huang, Peng & Zhang (2017), we consider the penalized log-likelihood
function

Qn
(
𝜽n;H

)
= Ln

(
𝜽n;H

)
− n𝜆

K∑
k=1

log
{

𝜖 + 𝜋k

𝜖

}
, (6)

where 𝜖 > 0 is small, say 10−6 or o{n−1∕2(log n)−1} (Huang, Peng & Zhang, 2017). With this,
we can show that there is a positive probability of some estimated values of 𝜋k equalling zero
exactly, resulting in the estimation of the number of clusters.

Since Qn
(
𝜽n;H

)
involves the infinite-dimensional function H(⋅) and hence a direct maxi-

mization is infeasible, we resort to a two-stage approach. We first use a series of estimating
equations to estimate the transformation function H. We then estimate 𝜽n by maximizing
Qn

(
𝜽n;H

)
with H replaced by its current estimate. We repeat the procedure until convergence

or the number of iterations exceeds 100. This iterative estimator may converge to a local
minimizer since the objective function is nonconvex. These local minimizers may differ from
each other. Multiple initial values are recommended so that the optimum value can be identi-
fied. Since the choice of initial values plays a vital role in nonconvex optimization, we have
designed a strategy for selecting the initial values. Specifically, by noting that H is monotonic
increasing, we use the Box–Cox transformation (with a 𝜌) to select an initial value for H(⋅).
With a fixed large K, a specified H, and a B-spline approximation of the nonparametric mean
function gk(t), fitting this semiparametric model has been reduced to a linear regression problem
without the penalty term on 𝜋k, enabling us to apply a common mixture regression statistical
software, such as the R package flexmix (Leisch, 2004). In this way, we can easily obtain the
initial values as desired. For the choice of 𝜌, we take a value that maximizes the resulting
log-likelihood function. Our simulation studies suggest that this strategy will work well in
practice.

2.2. A Penalized EM Algorithm for 𝜽n Given H

To estimate𝜽n given H, we propose to use a penalized expectation–maximization (EM) algorithm
(Dempster, Laird & Rubin, 1977). Since the complete data for individual i is Di =

{
Yi, 𝛿i,Xi

}
,

the penalized complete-data log-likelihood function is

c
(
𝜽n;H

)
= logc

(
𝜽n;H

)
− n𝜆

K∑
k=1

log
{

𝜖 + 𝜋k

𝜖

}
, (7)

where

logc
(
𝜽n;H

)
∝

n∑
i=1

K∑
k=1

(
𝛿ik

[
log

(
𝜋k
)
+ log

{
𝑓nk

(
H
(
Yi
)|Xi, ti

)}])
. (8)

DOI: 10.1002/cjs.11680 The Canadian Journal of Statistics / La revue canadienne de statistique



226 JIANG, LIN, PENG, FAN AND LI Vol. 50, No. 1

We estimate 𝜽n by maximizing E
{
c

(
𝜽n;H

)|Yi,Xi, , ti, i = 1,… , n
}

with respect to 𝜽n. To
proceed, we differentiate E

{
c

(
𝜽n;H

)|Yi,Xi, , ti, i = 1,… , n
}

with respect to 𝜽n and set the
derivatives to zero, thereby obtaining the following estimation equations:

n∑
i=1

E
(
𝛿ik|Yi,Xi, ti

)
𝜋k

−
n∑

i=1

E
(
𝛿i1|Yi,Xi, ti

)
1 −

∑K
𝑗=2 𝜋𝑗

+ n𝜆

𝜖 + 1 −
∑K

𝑗=2 𝜋𝑗

− n𝜆
𝜖 + 𝜋k

= 0,

for k = 2,… ,K, (9)

n∑
i=1

E
(
𝛿ik|Yi,Xi, ti

){
tr
(
Δi
(
𝜸k
)−1 𝜕Δi(𝜸k)

𝜕𝛾k𝑗
Δi(𝜸k)−1

[
Δi
(
𝜸k
)
−
{

H
(
Yi
)
− 𝜇nik

}⊗2
])}

= 0,

for k = 1,… ,K, 𝑗 = 1,… ,m, (10)

𝜶k =

{
n∑

i=1

E
(
𝛿ik|Yi,Xi, ti

)
Bn

(
ti
)′Δi

(
𝜸k
)−1Bn

(
ti
)}−1

×
n∑

i=1

E
(
𝛿ik|Yi,Xi, ti

)
Bn

(
ti
)′Δi

(
𝜸k
)−1 {H

(
Yi
)
− Xi𝜷k

}
, (11)

𝜷k =

{
n∑

i=1

E
(
𝛿ik|Yi,Xi, ti

)
X′

iΔi
(
𝜸k
)−1Xi

}−1

×
n∑

i=1

E
(
𝛿ik|Yi,Xi, ti

)
X′

iΔi
(
𝜸k
)−1 {H

(
Yi
)
− Bn

(
ti
)
𝜶k

}
, (12)

with
∑K

k=1 ‖𝜶k‖ = c0 for identifiability; 𝛾k𝑗 is the 𝑗th component of 𝜸k, and a⊗2 = aa′. Given that
𝜖 is so small that 1

𝜋𝑗+𝜖
≈ 1

𝜋𝑗
for any 𝜋𝑗 , we arrive at an approximating solution of the estimating

equations identified in Equation (9), namely

𝜋k = max

{
0, 1

1 − K𝜆

[
1
n

n∑
i=1

E
(
𝛿ik|Yi,Xi, ti

)
− 𝜆

]}
. (13)

Some 𝜋k may be shrunk to zero and the constraint
∑K

k=1 𝜋k = 1 may not be satisfied. However, this
result neither decreases the likelihood function nor affects the estimate of the posterior probability
E
(
𝛿ik|Yi,Xi, ti

)
in the E-step or the update of𝜋k in the M-step. In this particular case, we normalize

𝜋k by enforcing
∑K

k=1 𝜋k = 1 after the EM algorithm converges. Then, we estimate 𝜽n by repeat-
edly using Equations (10)–(13) until 𝜽n converges. For each step, the values of 𝜋k, 𝜶k, and 𝜷k on
the left-hand side of the equations are replaced by the iterative values from the previous step, and
𝜸k is estimated by Newton–Raphson iteration using Equation (10). To estimate 𝜽n, we compute

E
(
𝛿ik|Yi,Xi, ti

)
=

𝑓nk
(
H
(
Yi
)|Xi, ti

)
𝜋k∑K

𝑗=1 𝑓n𝑗
(
H
(
Yi
)|Xi, ti

)
𝜋𝑗

. (14)

At the rth step, E
(
𝛿ik|Yi,Xi, ti

)
is estimated by the left-hand side of Equation (14), with the

unknown parameters and functions replaced by the estimators from the previous iteration.
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2.3. Estimation of H Given 𝜽n

For any given y, we have

Pr
(
Yi𝑗 ≤ y|Xi, ti

)
= Pr

(
H
(
Yi𝑗

)
≤ H(y)|Xi, ti

)
=

K∑
k=1

𝜋kPr
(
H
(
Yi𝑗

)
≤ H(y)|𝛿ik = 1,Xi, ti

)
=

K∑
k=1

𝜋kΦ

{
H(y) − 𝜶′

kBn
(
ti𝑗
)
− X′

i𝑗𝜷k√
𝜎k𝑗

}
,

where 𝜎k𝑗 denotes the element (𝑗, 𝑗) of Δi(𝜸k). We estimate H(y) by solving

n∑
i=1

ni∑
𝑗=1

[
I
(
Yi𝑗 ≤ y

)
−

K∑
k=1

𝜋kΦ

{
H(y) − 𝜶′

kBn
(
ti𝑗
)
− X′

i𝑗𝜷k√
𝜎k𝑗

}]
= 0, (15)

for any given y in the support of Yi𝑗 . Specifically, let v1,… , vsn
denote the distinct points of

Yi𝑗 , i = 1, 2,… , n, 𝑗 = 1, 2,… , ni. Given y = vs, s = 1,… , sn, we estimate H(y) by solving the
equation

n∑
i=1

ni∑
𝑗=1

[
I
(
Yi𝑗 ≤ y

)
−

K∑
k=1

𝜋kΦ

{
𝜃 − 𝜶′

kBn(ti𝑗) − X′
i𝑗𝜷k√

𝜎k𝑗

}]
= 0, (16)

for 𝜃. Equation (16) says that the estimator Ĥ(y) is a nondecreasing step function with jumps
that occur only at the observed values of Yi𝑗 . Varying y among

{
v1,… , vsn

}
and repeat-

ing the estimation procedure for each y, we obtain the whole curve estimator of H(⋅). We
use the Newton–Raphson algorithm to solve Equation (16), with a moderate computational
cost. Coupled with the closed-form estimator for 𝜽n at each step, the implementation of our
proposed method is straightforward. Unlike traditional nonparametric approaches (Horowitz,
1996), our approach does not involve nonparametric smoothing or need to select smoothing
parameters.

2.4. Selection of the Tuning Parameter 𝜆
Estimating K relates to the selection of the tuning parameter 𝜆 and the number of interior knots
Mn. Through our simulation studies, we found that our proposed algorithm is not sensitive to
the choice of the number of knots, which is consistent with observations in the literature made
by other investigators; see Winsberg & Ramsay (1981). For smooth functions, three to six knots
seemed adequate, as we later recommend. We consider a BIC-based procedure to select 𝜆,
which yields model selection consistency for linear regression models (Wang, Li & Tsai, 2007).
Specifically, we choose 𝜆 by maximizing

BIC(𝜆) = log Ln
(
𝜽n;H

)
− 1

2
DF𝜆 log

(
n∑

i=1

ni

)
, (17)

where DF𝜆 is the generalized degree of freedom, which can be consistently estimated by the
number of nonzero parameters; see Zhang, Li & Tsai (2010) for corresponding results involving
generalized linear models. In our numerical studies, we selected 𝜆 using a grid search, which
seemed to work well.
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3. LARGE-SAMPLE PROPERTIES

Denote the estimators of 𝜽n and H by �̂�n and Ĥn, respectively. Also define ‖𝑓‖∞ = supt |𝑓 (t)|,
P𝑓 = ∫ 𝑓 (x)dP(x), and Pn𝑓 = 1

n

∑n
i=1 𝑓 (xi) for any function 𝑓 , and for c0 > 0

𝚯 = {𝜽 = (𝜷,𝝅, 𝜸, g) ∈ RKp ⊗ [0, 1]K ⊗ RK×m ⊗ K , ‖𝜷‖ + ‖𝝅‖ + ‖𝜸‖ ≤ c0},

where 𝜷 =
(
𝜷1,… ,𝜷K

)
,𝝅 =

(
𝜋1,… , 𝜋K

)
, 𝜸 =

(
𝜸1,… , 𝜸K

)
, g =

(
g1,… , gK

)
, and ‖ ⋅ ‖ is the

Euclidean norm. Furthermore, we define a distance metric

d(𝜽1,𝜽2) =
(‖𝜷1 − 𝜷2‖2 + ‖𝝅1 − 𝝅2‖2 + ‖𝜸1 − 𝜸2‖2 +

K∑
k=1

‖gk,1 − gk,2‖2
2

)1∕2
,

where ‖gk,1 − gk,2‖2
2 = ∫ 1

0 {gk,1(t) − gk,2(t)}2dt. Let𝜽0 = (𝜷0,𝝅0, 𝜸0, g0) be the true value of𝜽, and
K0 be the true number of clusters. Without loss of generality, we suppose the first K0 components
of 𝝅0 are nonzero with

∑K
k=1 𝜋k0 = 1 and 𝜋10 ≥ 𝜋20 ≥ · · · ≥ 𝜋K0 > 0 for identifiability. Theorems

1–3 summarize the large-sample properties under the following regularity conditions; the proofs
may be found in the Supplementary Material.

(A1) {X(t), t ∈ (0, 1)} is bounded.
(A2) gk0 ∈ , k = 1,… ,K0 and 𝜽0 is an interior point of 𝚯.
(A3) There exists

[
y, ȳ

]
such that 1

N

∑n
i=1

∑ni
𝑗=1 I

(
Yi𝑗 ∉

[
y, ȳ

])
= op

(
n−1∕2

)
, where N =∑n

i=1 ni.
(A4) The transformation function H(y) is strictly increasing with a continuous first derivative

over y ∈
[
y, ȳ

]
, and satisfies a restriction H(a) = b for constants a and b ≠ 0.

(A5) Δ∕𝛿 ≤ c0 uniformly in n, where 𝛿 = min
1≤i≤Mn

|ti − ti−1|, Δ = max
1≤i≤Mn

|ti − ti−1| = O(n−𝜐).

Condition (A1), for mathematical convenience, is commonly used in the nonparametric
and semiparametric literature (Fan & Gijbels, 1996; Horowitz, 1996, 2001; Zhang, Li & Xia,
2015). The boundedness assumption for the regressor X(t) is technical to simplify the proofs
and may be relaxed to allow bounded high-order moments. (A2) is commonly assumed in the
semiparametric literature (Chen & Tong, 2010). Condition (A3) is used to avoid the tail problem,
which is also required by Lin, Zhou & Li (2012), while Condition (A4) is a common requirement
for the transformation function (Zhou, Lin & Johnson, 2008). Condition (A5) is often assumed
for spline analysis (Lu, Zhang & Huang, 2009).

Theorem 1. Under Conditions (A1)–(A5), 𝜆
√

n → 0, 𝜆
√

n log n → ∞, and 𝜖 = o
(

1√
n log(n)

)
,

the estimated number of components ŝn → K0 with probability tending to 1.

Theorem 2. Under Conditions (A1)–(A5), 𝜆
√

n → 0, and 𝜖 = o
(

1√
n log(n)

)
,

Ĥn(y)
a.s.
→ H0(y) uniformly over y ∈

[
y, y

]
,

d
(
�̂�n,𝜽0

)
= Op

(
n−min

(
1−𝜐

2 ,r𝜐
))
,

where r is a smooth parameter defined in Equation (2), and 0 < 𝜐 < 0.5 is given for determining
the spline basis Bn(⋅).
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The choice of 𝜐 = 1∕2r + 1 yields the optimal rate of convergence nr𝜐 for the nonparametric
function (Stone, 1980).

Theorem 3. Under Conditions (A1)–(A5) with r ≥ 2 and 1
4r

< v <
1
2
,
√

n𝜆 → 0 and 𝜖 =

o
(

1√
n log(n)

)
,

√
n
(
Υ̂ − Υ0

)
→ N

(
0, I−1(Υ0

))
,

where Υ =
{
𝜷k, 𝜸k, 𝜋k, k = 1,… ,K0

}
, Υ0 is the true value of Υ, and I−1

(
Υ0

)
is defined in the

Supplementary Material.

4. SIMULATION STUDY

Since our proposed method allows the transformation function as well as the distribution of
the functional data to be unknown, we investigated whether our approach is more robust than
alternative existing parametric or semiparametric procedures that need to specify the distributions
of the response curves, and, if so, whether the robustness of our approach comes at the expense
of reduced efficiency. We compare our method with the following: (i) the model with correct
transformation (CT), where the transformation function is correctly specified and the growth
curve is estimated by B-splines, and (ii) the untransformed model (WOT), with the growth
curves estimated by B-splines. The CT and WOT methods are used to evaluate the efficiency and
robustness of our proposed method, respectively. We also assess the accuracy of cluster selection.
Finally, as our method assumes a Gaussian distribution for the transformed responses within
each cluster, we investigate the sensitivity of our method to departures from this assumption. We
used the criteria of bias, standard error (SE), and root-mean-square error (RMSE), defined by

bias =

[
1

ngrid

ngrid∑
i=1

{
Eĝ

(
ti
)
− g

(
ti
)}2

]1∕2

, SE =

[
1

ngrid

ngrid∑
i=1

E{ĝ
(
ti
)
− Eĝ

(
ti
)}2

]1∕2

,

and RMSE =
[
bias2 + SE2]1∕2

, where ti
(
i = 1,… , ngrid

)
denote the grid points on which g(⋅)

is estimated. For each parameter configuration detailed below, we generated N = 200, 400
independent datasets, and used the cubic B-spline approximation with the number of knots
Kn = n1∕3, the knots were placed at the Kn-quantiles of the observation times, and ngrid = 200.
We approximated Eĝ(ti) by the sample mean based on these N simulated datasets.

Simulation 1. We generated observations from a three-component mixture model with
𝜋1 = 𝜋2 = 𝜋3 = 1∕3. The data in cluster k were obtained using

H
(
Yi
(
ti𝑗
))

= gk
(
ti𝑗
)
+ Xi𝛽k + 𝜖i

(
ti𝑗
)
,

for k = 1, 2, 3, where Xi is generated from U(0, 1) with coefficients 𝛽1 = 1, 𝛽2 = 2 and 𝛽3 = 3;
g1(t) = exp(t) − 1, g2(t) = sin(𝜋t), and g3(t) = −0.5t2 + 0.5; 𝜖i(t) denotes a Gaussian process
with mean zero and a covariance function cov(𝜖i(t1), 𝜖i(t2)) = 𝜎2

k × 𝜌
|t1−t2|
k with 𝜎2

1 = 0.1, 𝜌1 =
0.3, 𝜎2

2 = 0.15, 𝜌2 = 0.35, 𝜎2
3 = 0.2, 𝜌3 = 0.4. For each individual i, ni = 5, and the observation

time ti𝑗 was sampled from a uniform distribution on U(0, 1). We considered two transformations:
the logarithm transformation H(y) = 4 log(y) (Case 1), and the Box–Cox transformation H(y) =
(y0.5 − 1)∕0.5 (Case 2).

Tables 1 and 2 report the biases, empirical SEs, and RMSEs for our proposed method with
the initial number of clusters K(0) = 7, as well as the observed results for the CT and WOT
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TABLE 1: Performance of the proposed method, CT, and WOT for Case 1 in Simulation 1.

Proposed (K(0) = 7) CT (K = K0 = 3) WOT (K = K0 = 3)

Bias SE RMSE Bias SE RMSE Bias SE RMSE

Case 1

𝜋1 0.003 0.026 0.026 0.002 0.024 0.024 0.039 0.043 0.058

𝜋2 0.002 0.079 0.079 0.005 0.039 0.040 0.217 0.073 0.229

𝜋3 0.000 0.082 0.082 0.002 0.040 0.040 0.256 0.064 0.264

𝛽1 0.006 0.055 0.056 0.006 0.047 0.047 0.246 0.150 0.288

𝛽2 0.006 0.066 0.066 0.001 0.058 0.058 0.022 0.139 0.141

𝛽3 0.000 0.070 0.070 0.007 0.054 0.055 0.268 0.165 0.315

𝜌1 0.009 0.045 0.046 0.005 0.046 0.046 0.026 0.070 0.075

𝜌2 0.008 0.063 0.064 0.006 0.050 0.050 0.079 0.173 0.190

𝜌3 0.012 0.054 0.055 0.008 0.046 0.046 0.070 0.038 0.079

𝜎2
1 0.000 0.012 0.012 0.002 0.010 0.010 0.191 0.111 0.221

𝜎2
2 0.002 0.015 0.015 0.004 0.017 0.017 0.263 0.044 0.267

𝜎2
3 0.001 0.033 0.033 0.006 0.017 0.018 0.153 0.017 0.154

g1(t) 0.002 0.042 0.042 0.001 0.029 0.029 0.059 0.059 0.084

g2(t) 0.004 0.061 0.062 0.002 0.042 0.042 0.117 0.286 0.310

g3(t) 0.003 0.055 0.055 0.005 0.048 0.048 0.123 0.049 0.133

♯cluster 0 0 0 a a

aK(0) in the proposed method is the initial value for the number of clusters; K0 is the true number
of clusters.

estimators for Cases 1 and 2, respectively. When implementing the CT and WOT methods,
the number of clusters was correctly specified as K = K0 = 3, whereas our proposed method
was initialized with a larger number of clusters than the true value, and yielded #cluster, the
estimated number of clusters. Tables 1 and 2 indicate that the WOT resulted in large biases and
variances (with biases even dominating the corresponding SEs), suggesting that misspecifying of
transformation functions may lead to biased and unstable estimates of the regression parameters
and the growth curves. In contrast, our method does not require the specification of transformation
functions and hence avoids the bias and instability that results when transformation functions are
misspecified. Furthermore, our proposed method yielded estimates with corresponding estimated
biases and variances that were close to those values obtained when the transformation functions
were correctly specified. This result suggests that our proposed method achieves robust results
with little loss of efficiency. Moreover, our method is able to estimate the number of clusters
accurately.

Figure 1, which displays the average estimates of the transformation function and the growth
curves based on the 200 simulations, together with the corresponding 95% pointwise confidence
intervals, shows that the estimates, on average, are very close to the true functions.

Since our proposed method requires an initial number of clusters, we also investigated its
behaviour using different initial numbers of clusters K(0) = 7, 14, and 21, respectively, for Case 2.
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TABLE 2: Performance of the proposed method, CT, and WOT for Case 2 in Simulation 1.

Proposed (K(0) = 7) CT (K = K0 = 3) WOT (K = K0 = 3)

Bias SE RMSE Bias SE RMSE Bias SE RMSE

Case 2

𝜋1 0.004 0.026 0.026 0.002 0.024 0.024 0.205 0.079 0.220

𝜋2 0.006 0.083 0.083 0.004 0.040 0.040 0.122 0.108 0.164

𝜋3 0.011 0.085 0.085 0.002 0.040 0.040 0.082 0.092 0.124

𝛽1 0.012 0.053 0.054 0.005 0.047 0.047 0.246 0.150 0.288

𝛽2 0.003 0.067 0.067 0.001 0.058 0.058 0.022 0.139 0.141

𝛽3 0.008 0.070 0.070 0.007 0.054 0.055 0.268 0.165 0.315

𝜌1 0.010 0.045 0.046 0.005 0.046 0.046 0.297 0.039 0.299

𝜌2 0.007 0.058 0.058 0.005 0.050 0.050 0.000 0.135 0.135

𝜌3 0.014 0.057 0.059 0.009 0.046 0.046 0.060 0.085 0.104

𝜎2
1 0.001 0.012 0.012 0.002 0.010 0.010 0.077 0.051 0.093

𝜎2
2 0.003 0.015 0.015 0.004 0.017 0.017 0.234 0.045 0.238

𝜎2
3 0.001 0.036 0.036 0.006 0.017 0.018 0.271 0.026 0.272

g1(t) 0.002 0.043 0.043 0.001 0.029 0.029 0.132 0.067 0.148

g2(t) 0.002 0.061 0.061 0.002 0.042 0.042 0.067 0.164 0.177

g3(t) 0.005 0.055 0.055 0.005 0.048 0.048 0.049 0.104 0.115

♯cluster 0 0 0 a a

aK(0) in the proposed method is the initial value for the number of clusters; K0 is the true number
of clusters.

Table 3 shows that despite the differing initial values of K(0), the resulting estimates were almost
the same, suggesting that our proposed approach appears to be robust to the initial specification
of the number of clusters.

Simulation 2. Our proposed method assumes a Gaussian distribution for the transformed
responses. To investigate the robustness of our method to this particular assumption, we generated
data using parameter settings that were similar to those used in Case 2 of Simulation 1, except that
the 𝜖i(t) were generated from a mixed distribution, with each component being the centralized
and scaled gamma distribution 𝜎 × (Gamma(𝜏, 1) − 𝜏)∕

√
𝜏; also, the correlation was introduced

via a normal copula function. Taking 𝜏 = 5, 10, 50, Table 4 reports the observed results for
K(0) = 7.

A useful rule to evaluate the severity of bias, as suggested by Olsen & Schafer (2001),
involves checking whether the standardized bias (bias over SE) exceeds 0.4. When 𝜏 ≥ 10,
both the skewness and the excess kurtosis were less than 1, and our proposed estimators
were nearly unbiased. When both the skewness and the excess kurtosis were approximately 1,
our proposed estimators yielded observed results that were moderately biased but nonetheless
acceptable.

Simulation 3. We investigated the case of a time-dependent covariate. We generated the data
using parameter settings that were similar to those used previously in Case 1 of Simulation 1,
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FIGURE 1: Estimated growth curves and transformation function for Cases 1 and 2 of Simulation
1 (solid: true function; dashed: 95% confidential limit; dotted: average of the estimated growth

curve).

except that we generated Xi(t) from Brownian motion. Table 5 summarizes the observed results
that were obtained using an initial number of clusters K(0) = 7. Our conclusions paralleled those
derived from the results of Simulation 1.

5. ANALYSIS OF THE CHINESE HOUSING MARKET (2007–2014)

Rising housing prices in most of the Chinese cities between 2007 and 2014 had led to a public
outcry over the seriously overheating markets in these regions, while the corresponding real
estate markets in a small number of cities were stable in the same time period (Zhang et al.,
2017). From the perspective of public policy as well as personal investment, it is therefore of
substantial interest to study how such inequality may be linked to local economy, geography,
and demographics, and which particular markets were more alike compared to other markets.
Previous studies in a similar vein often made restrictive conditions, e.g., linear relationships,
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TABLE 3: Performance of the proposed method, the CT, and the WOT for Case 2 in Simulation 1.

K(0) = 7 K(0) = 14 K(0) = 21

Bias SE RMSE Bias SE RMSE Bias SE RMSE

𝜋1 0.004 0.026 0.026 0.004 0.026 0.026 0.003 0.026 0.026

𝜋2 0.006 0.083 0.083 0.006 0.082 0.083 0.014 0.072 0.074

𝜋3 0.011 0.085 0.085 0.002 0.084 0.084 0.011 0.075 0.075

𝛽1 0.012 0.053 0.054 0.011 0.053 0.054 0.010 0.053 0.054

𝛽2 0.003 0.067 0.067 0.003 0.067 0.067 0.007 0.063 0.064

𝛽3 0.008 0.070 0.070 0.008 0.070 0.070 0.003 0.066 0.066

𝜌1 0.010 0.045 0.046 0.009 0.045 0.047 0.008 0.045 0.046

𝜌2 0.007 0.058 0.058 0.006 0.056 0.057 0.003 0.053 0.053

𝜌3 0.014 0.057 0.059 0.014 0.057 0.059 0.016 0.053 0.053

𝜎2
1 0.001 0.012 0.012 0.001 0.012 0.012 0.002 0.012 0.012

𝜎2
2 0.003 0.015 0.015 0.002 0.015 0.015 0.002 0.014 0.014

𝜎2
3 0.001 0.036 0.036 0.002 0.036 0.036 0.008 0.032 0.033

g1(t) 0.002 0.043 0.043 0.003 0.043 0.043 0.001 0.041 0.041

g2(t) 0.002 0.061 0.061 0.002 0.061 0.061 0.003 0.056 0.056

g3(t) 0.005 0.055 0.055 0.005 0.055 0.055 0.010 0.053 0.054

♯cluster 0 0 0 0 0 0 0 0 0

homogeneity, and normality assumptions (Guo & Li, 2011; Burdekin & Tao, 2014) on the
relationships between the change trends in housing prices and local economic and demographic
conditions. However, these various assumptions may not be satisfied. For example, the normal
assumption may be problematic, as Figure 2 seems to suggest. Ren, Xiong & Yuan (2012) and
Zhang et al. (2017) did relax these conditions, but only attempted to classify the data without
considering covariates.

We used our proposed method to cluster the housing markets, after controlling for local
economic levels and demographics, based on the average housing price-to-income ratios from
2007 to 2014 in a total of 252 cities, which cover most of the urban areas of China. The
house price-to-income ratio is often used as an indicator of housing valuation and affordability
(Wu, Gyourko & Deng, 2012). For each city, our data included house prices (PRICEt), average
monthly income (INCOMEt), real estate investment (INVt), resident population size (POPt), and
total GDP (GDPt). A total of 1230 observations were included in the dataset with ni varying
from 1 to 8. The data were extracted from the official website of the National Bureau of Statistics
of China (www.stats.gov.cn).

First, we rescaled the time range to [0, 1]. Following housing demand–supply the-
ory (DiPasquale & Wheaton, 1992), we used the housing price-to-income ratio Yi(t) =
PRICEt∕INCOMEt in city i as the dependent variable, and the rates of growth GR(t) = (GDPt −
GDPt−1)∕GDPt−1, PR(t) = (POPt − POPt−1)∕POPt−1, and IR(t) = (INVt − INVt−1)∕INVt−1 as
predictors. In particular, we used the growth rates or the change rates of economic data, in lieu of
the original values, as predictors in the model since they can better capture the dynamics of GDP,
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TABLE 4: Resulting estimators of the proposed method with K(0) = 7 for Simulation 2.

5 10 50 ∞

𝜏 Bias SE RMSE Bias SE RMSE Bias SE RMSE Bias SE RMSE

𝜋1 0.008 0.027 0.028 0.007 0.027 0.028 0.004 0.027 0.028 0.004 0.026 0.026

𝜋2 0.037 0.091 0.098 0.028 0.088 0.092 0.007 0.084 0.085 0.006 0.083 0.083

𝜋3 0.045 0.090 0.100 0.035 0.087 0.094 0.012 0.084 0.085 0.011 0.085 0.085

𝜌1 0.015 0.049 0.052 0.007 0.049 0.050 0.004 0.045 0.046 0.010 0.045 0.046

𝜌2 0.024 0.073 0.077 0.028 0.066 0.072 0.015 0.057 0.059 0.007 0.058 0.058

𝜌3 0.007 0.058 0.058 0.003 0.059 0.059 0.006 0.055 0.056 0.014 0.057 0.059

𝛽1 0.042 0.059 0.072 0.030 0.058 0.065 0.011 0.059 0.060 0.012 0.053 0.054

𝛽2 0.021 0.067 0.071 0.009 0.063 0.064 0.002 0.062 0.063 0.003 0.067 0.067

𝛽3 0.063 0.082 0.103 0.040 0.076 0.086 0.013 0.074 0.075 0.008 0.070 0.070

𝜎2
1 0.002 0.012 0.012 0.000 0.012 0.012 0.001 0.011 0.012 0.001 0.012 0.012

𝜎2
2 0.023 0.026 0.035 0.016 0.019 0.025 0.008 0.016 0.018 0.003 0.015 0.015

𝜎2
3 0.028 0.046 0.054 0.021 0.040 0.046 0.007 0.037 0.038 0.001 0.036 0.036

g1(t) 0.013 0.040 0.042 0.010 0.042 0.043 0.003 0.042 0.042 0.002 0.043 0.043

g2(t) 0.008 0.058 0.059 0.012 0.057 0.058 0.006 0.057 0.058 0.002 0.061 0.061

g3(t) 0.031 0.060 0.068 0.021 0.056 0.060 0.006 0.054 0.054 0.005 0.055 0.055

Note: “𝜏 = ∞” represents a normal distribution.

TABLE 5: Resulting estimators of the proposed method with X generated from Brownian motion for
Simulation 3.

𝜋1 𝜋2 𝜋3 𝜌1 𝜌2 𝜌3 𝛽1 𝛽2 𝛽3 𝜎2
1 𝜎2

2 𝜎2
3 g1(t) g2(t) g3(t)

Bias 0.003 0.027 −0.030 0.002 −0.002 −0.018 0.034 0.077 −0.111 −0.002 −0.006 −0.033 0.004 0.010 0.023

SE 0.031 0.065 0.065 0.049 0.048 0.059 0.098 0.133 0.150 0.023 0.024 0.037 0.049 0.055 0.054

RMSE 0.031 0.070 0.072 0.049 0.048 0.061 0.104 0.153 0.187 0.023 0.024 0.049 0.050 0.056 0.059
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FIGURE 2: Histogram of the price (left) and price/income (right).
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TABLE 6: Estimated coefficients of parameters for data of China Housing Market.

Cluster 1 Cluster 2

Est. SE P-Value Est. SE P-Value

𝜋 0.953 0.013 0 0.047 0.013 0.0002

GR(t − 1) −0.017 0.008 0.0335 −0.620 0.095 0

PR(t − 1) −0.015 0.009 0.0955 −0.316 0.072 1e−05

IR(t − 1) −0.031 0.070 0.6578 −0.040 0.074 0.5888

population, and investment over time, and also facilitate horizontal and vertical comparisons
across different markets.

Allowing impacts to have a 1-year lag, we regressed Yi(t) on GRi(t − 1),PRi(t − 1), and
IRi(t − 1) with

H
(
Yi(t)

)
= gk(t) + Xi(t − 1)′𝜷k + 𝜖i(t),

for k = 1,… ,K, where Xi(t − 1) = (GRi(t − 1),PRi(t − 1), IRi(t − 1))′, and 𝜷k = (𝛽k1, 𝛽k2, 𝛽k3)′.
As an initial number of clusters, the values K(0) = 7 and K(0) = 10 yielded the same results,
so we used K(0) = 7. We adopted the cubic B-spline approximation, with the number and
locations of the interior knots chosen based on the strategy outlined in Section 4. The tuning
parameter 𝜆 = 1∕200 was selected by minimizing the BIC defined in Equation (17). Our
method identified two clusters in 252 cities, with estimated probabilities of 0.947 and 0.053
corresponding to clusters 1 and 2, respectively. The estimated coefficients and corresponding
estimated standard errors (SE) are reported in Table 6. The SE is based on 200 bootstrap
samples, where 200 was adopted by monitoring the stability of the SE. The estimates of
the transformation function H and growth curves g1, g2 are displayed in Figure 3, which
reveals that the transformation curve resembles a logarithm transformation, and that g1, g2
have different change trends. In order to demonstrate how we benefitted from using our
proposed method, we split the original data into four subgroups of roughly equal size. Three
of these groups were used as training data, and the remaining quarter served as a validation
dataset. We compared our proposed method with the logarithm transformation and Box–Cox
transformation by using the out-of-sample prediction error (PE) = 1

n

∑n
i=1

1
ni

∑ni
𝑗=1

||Ĥ−1
−d(i)

(
Wi𝑗

)
−

Yi𝑗
||∕||Ci

||, where Wi𝑗 =
∑K

k=1 I
(
𝛿
−d(i)
ik = 1

){
ĝ−d(i)

k

(
ti𝑗
)
+ Xi

(
ti𝑗
)′
𝜷
−d(i)
k

}
and Ci = max𝑗

(
Yi𝑗 , 𝑗 =

1, 2,… , ni
)
, d = 1,… , 4. The estimates Ĥ−d(i), ĝ

−d(i)
k ,𝜷

−d(i)
k , 𝛿

−d(i)
ik were computed by omitting

the dth record in the data to which the ith sample belongs. We then evaluated the Box–Cox
transformation with 𝜆 = 0.2, 0.25, 0.5, 1, 2, 3. Table 7 suggests that our fitted model has a smaller
PE than both the logarithm and the Box–Cox transformations.

Table 6 suggests that the effects of the covariates are similar in the two clusters, though perhaps
more significant in cluster 2. All the regression coefficients were estimated to be negative, which
seems to reflect the actual situation in China from 2007 to 2014. In particular, the growth rate of
GDP has a significant effect on the housing price-to-income ratios in both clusters. The effect of
the growth rate associated with the size of the resident population was more marked in cluster
2 than in cluster 1. These results suggest that the positive growth rate of GDP or POP actually
reduces the housing price-to-income ratios, whereas the growth rate of real estate investment
(INT) has no apparent effect on the housing price-to-income ratios in either cluster. These findings
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FIGURE 3: Estimates of the transformation H and mean functions g1, g2 (solid: average of the
estimated function; dashed: 95% confidential limit).

TABLE 7: Prediction error.

Proposed log 𝜆 = 0.2 𝜆 = 0.25 𝜆 = 0.5 𝜆 = 1 𝜆 = 2 𝜆 = 3

0.162 0.186 0.196 0.202 0.243 0.357 0.538 0.620

provide valuable insight into the housing market conditions in China during the observation period
2007–2014.

Figure 3 reveals that the two groups of cities exhibit different change patterns in housing
price-to-income ratios. In cluster 1, the ratios sharply decreased from 2007 to 2009, and then
stabilized, whereas in cluster 2 the ratio slightly increased from 2007 to 2009, and became stable
thereafter. In 2009, the central government introduced a series of regulations to manage the
housing markets, which explains the stability after 2009. The decline from 2007 to 2009 that
occurred in cluster 1 was due to the global financial crisis, whereas the housing markets in cities
belonging to cluster 2 were relatively healthy and withstood the impact of the financial crisis by
maintaining a steady rate of growth from 2007 to 2009.

To shed more light on these two clusters, we estimated the probability of each city belonging
to each cluster based on Equation (14); then, using the majority voting rule, we assigned each
city to cluster 1 or 2. Figure 4, which depicts the time series of housing price-to-income ratios
for each city, shows that most cities with higher housing price-to-income ratios belong to
cluster 1, while the rest form cluster 2. This is consistent with the observation that most of the
China cities were deemed overheated between 2007 and 2014. Since the price-to-income ratios
often serve as an important indicator for detecting market bubbles, our results highlight the
need to distinguish these two clusters when formulating and implementing housing regulation
policies.

It is generally believed that such housing regulation policies mainly affected the housing
prices in the major cities, such as Beijing, Shanghai, Guangzhou, Shenzhen, Chongqing,
Chengdu, Hangzhou, and Nanjing. However, after 2009, the government began to adopt real
estate policies based on local conditions, which seems to agree with the findings of this study.
Indeed, our estimated cluster 2 includes the major cities (Guangzhou, Shenzhen, Hangzhou,
and Nanjing) as well as some rapidly developing cities (Xiamen, Ningbo, Fuzhou, Dongguan,
Foshan, Zhuhai, Haikou, Sanya, Dalian, Lishui, Shaoxing, Taizhou, Wenzhou, and Zhoushan),
whose GDP usually grew faster during 2007–2014 than that of the cities estimated to belong to
cluster 1. In general, GDP growth was associated with increasing incomes in these cities, while
the corresponding housing prices grew relatively slowly during the same period. As a result, a
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FIGURE 4: Categorization of 252 Chinese cities into two clusters: red curves indicate cluster 1
and green curves cluster 2.

marked decline in the housing price-to-income ratios occurred in cluster 2, which is reflected
in the magnitude of 𝛽 for GR(t − 1) , which we estimated to be greater for cluster 2 than for
cluster 1.

6. DISCUSSION

We have proposed an STFR model to cluster non-Gaussian functional data. Our proposed
method can simultaneously estimate the unknown cluster number, transformation function,
growth curves, and regression parameters. Via theoretical and numerical studies, we have shown
that our proposed method performs well in selecting the number of clusters and in estimating the
various unknown parameters and functions.

There are several open questions. Though our methods have focused on continuous responses,
they can be extended to accommodate discrete responses as well. We envision such an extension
to be nontrivial. It is also possible to extend our methods to cope with high-dimensional
covariates by using a suitable penalty, but such an extension will require the development of
new theory in order to provide performance guarantees. These research questions warrant further
investigation.
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