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Abstract: Cluster analysis with functional data often imposes normality assumptions on outcomes, and is
typically carried out without covariates or supervision. However, non-normal functional data are frequent-
ly encountered in practice, and unsupervised learning, without directly tying covariates to clusters, often
makes the resulting clusters less interpretable. To address these issues, we propose a new semiparametric
transformation functional regression (STFR) model which enables us to cluster non-normal functional data
in the presence of covariates. Our model incorporates several unique features. First, it omits the normality
assumptions on the functional response, which adds more flexibility to the modelling. Second, our model
allows clusters to have distinct relationships between functional responses and covariates, and thus makes
the clusters formed more interpretable. Third, unlike various competing methods, we allow the number of
clusters to be unspecified and data-driven. We develop a new method, which combines penalized likelihood
and estimating equations, to estimate the number of clusters, regression parameters and transformation
functions simultaneously; we also establish the large sample properties such as consistency and asymp-
totic normality. Simulations confirm the utility of our proposed approach. We use our proposed method
to analyze Chinese housing market data and garner some interesting findings. The Canadian Journal of
Statistics xx: 1–30; 2021 c© 2021 Statistical Society of Canada

1. INTRODUCTION

Functional data have been routinely collected in many fields, such as economics, pharmacy, bi-
ology, and climatology (Horváth & Kokoszka, 2012; Li & Hsing, 2010a,b; Li et al., 2010; Yao,
2007; Yao & Müller, 2010; Yao et al., 2010, 2005a; Yao, 2005b), and analyses of these data may
provide valuable insights for decision makers in these fields. For example, the past two decades
have witnessed the skyrocketing housing prices in most cities in China, while the housing mar-
kets in a small number of cities have been relatively steady. The sharp market inequality has
intrigued scholars and investors (e.g., Zhang et al. 2017; Jia et al. 2018), and has sparked interest
in understanding how this inequality aligns with the local economy, geography and demograph-
ics, and also which markets are at risk of a “real estate bubble” and which are deemed “healthy.”
Hence it is crucial to study the change trends in housing prices across cities, and to identify the
patterns along with local economic conditions and demographic features. Of particular interest
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is the detection of various types of relationships between these trends and the corresponding
macroeconomic factors, and to classify cities or markets accordingly. The results may help to
identify cities with over-heated housing markets.

On the surface, the problem seems to fall into the traditional cluster analysis of function-
al data, for which various methods are available. For example, the two-step method converts
the infinite-dimensional clustering problem into a finite-dimensional one and then use finite-
dimensional clustering methods (Abraham et al., 2003; Chiou & Li, 2007; Peng & Müller, 2008;
Bouveyron & Jacques, 2011; Giacofci et al., 2013; Jacques & Preda, 2013, 2014b; James & Sug-
ar, 2003; Ray & Mallick, 2006; Samé et al., 2011); distance-based clustering, including those of
Cuesta-Albertos & Fraiman (2007), Ferraty & Vieu (2006), Ieva et al. (2013), Tarpey & Kinat-
eder (2003) and Tokushige et al. (2007), involves clustering that uses the curve data directly; see
Jacques & Preda (2014a) for a comprehensive review. However, none of these approaches can
classify functional data while accounting for covariates.

Limited research has been published concerning cluster analysis on functional responses with
covariates. For example, McLachlan (2004), Muthén (2001) and Titterington et al. (1985) pro-
posed a growth mixture model (GMM); Nagin (1999, 2005) suggested group-based trajectory
modeling (GBTM) to identify clusters of individuals based on functional responses as well as
covariates. Shi & Wang (2008) developed a mixture of Gaussian process functional regression
models to classify relationships between curve responses and covariates. However, these ap-
proaches required the functional response to follow a Gaussian distribution, which is violated
by our motivating data; see Figure 2. Misleading results may occur when such an assumption is
violated. For example, Bauer & Curran (2003) showed that, for non-normal data, multiple groups
can be falsely identified when, in fact, there is only one group. Moreover, as our numerical stud-
ies revealed, misspecifications of the polynomial growth curves, which were commonly assumed
by these models, may lead to unreliable estimation and classification. Finally, all these methods
require the number of clusters to be known a priori, whereas detecting the number of clusters
is a centerpiece in cluster analysis. To our knowledge, little research has focused on this topic,
and most published work has relied on the Bayesian information criterion (BIC) (Nagin, 2005;
Schwarz, 1978; Shi & Wang, 2008; Andruff et al., 2009; Jones et al., 2001), which may involve a
marked computational burden. Additionally, large sample results with the BIC are not available,
making it difficult to evaluate its validity for model selection.

We propose a semiparametric transformation functional regression model for clustering a
functional response with covariates. Our model relaxes the restrictive conditions on the response,
the growth curves, and the number of clusters. To introduce the idea, we first note, for a continu-
ous random variable Y with distribution function F , Φ−1(F (Y )) has a standard normal distribu-
tion, where Φ is the standard normal distribution function. This indicates the existence of normal
transformation functions, at least in the absence of covariates. Now, with covariates X and an
unknown transformation function H(·), we denote by fk(H(Y )|X) the conditional probabili-
ty density of the transformed responses in the kth cluster, which we assume is a normal density
function given the covariatesX . Hence, the conditional distribution ofH(Y ) givenX is a normal
mixture. In addition, we also assume we can specify a semiparametric model with an unknown
growth curve. Finally, with penalization on the group probability, we identify clusters that best
fit the data. We develop a new method, which combines penalized likelihood and estimating e-
quations, to estimate the number of clusters, regression parameters and transformation functions
simultaneously. We also establish this method’s large sample properties such as consistency and
asymptotic normality. We apply our STFR model and the competing methods for clustering to
analyze a Chinese housing market dataset. Our model provides a better fit than the competing
alternatives, and generates some interesting results that may shed light on the determinants of
real estate markets in China.
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The remainder of the paper is organized as follows. Section 2 introduces our proposed model
and the associated method of estimation, and provides a BIC-type procedure for selecting tuning
parameters. Section 3 develops the theoretical properties, including

√
n-consistency, asymptotic

normality, and the model selection consistency. In Section 4 we report the results of simulation
studies and comparisons with alternative competing clustering methods, while Section 5 concerns
our analysis of the Chinese housing market data. We conclude the paper with a brief discussion
of possibilities for future research. All of the technical proofs may be found in the corresponding
Supplementary Materials.

2. THE MODEL AND ITS ESTIMATION

2.1. Model and objective function
Let (Yi(t), Xi(t)), i = 1, · · · , n be independent realizations of (Y (t), X(t)), where t ∈ [t0, t1]
with 0 ≤ t0 < t1 <∞ being two fixed constants, and X(t) is a p−dimensional covari-
ate vector which includes time-dependent as well as time-independent components. Instead
of observing the full trajectories Yi(·) and Xi1(·), · · · , Xip(·), we measure them at sparse
and irregular time points. To adequately describe the subject-specific time points underlying
the measurements, we assume there are ni measurements for Yi(·) and Xi1(·), · · · , Xip(·)
at time points ti = (ti1 · · · , ti,ni) from [t0, t1]. For notational simplicity and without loss
of generality, we hereafter assume this bounded set is [0, 1], and the measurement time tij
is randomly distributed on [0, 1]. Let Yij = Yi(tij) and Xij = (Xi1(tij), · · · , Xip(tij))

′
, j =

1, · · · , ni; then Yi = (Yi1, Yi2, · · · , Yi,ni)′ and Xi = (Xi1,Xi2, · · · ,Xi,ni)′ represent the se-
quences of measurements on individual i over ni time points. For a non-random function H ,
let f(H(Yi)|Xi, ti) denote the conditional probability density of the transformed responses
H(Yi) = (H(Yi1), H(Yi2), · · · , H(Yi,ni))

′ given time-dependent covariates Xi and time points
ti. We assume that H(·) is chosen such that H(Yi) given Xi, ti follows a mixture of K normal
densities, i.e.,

f(H(Yi)|Xi, ti) =

K∑
k=1

πkfk(H(Yi)|Xi, ti),
K∑
k=1

πk = 1, (1)

with πk ≥ 0, where πk is the marginal probability that an individual belongs to cluster k and
fk(H(Yi)|Xi, ti) is the multivariate normal density function with mean µik and covariance ma-
trix ∆i(γk), where γk is an m-dimensional parameter vector. We assume µik = gik + Xiβk,
where gik = (gk(ti1), gk(ti2), · · · , gk(ti,ni))

′, gk(·) is an unknown smooth function, βk is a pa-
rameter vector with dimension p, and Xi is a matrix of covariates with dimension ni × p. We
assume the covariance matrix ∆i(γk) follows some parametric structure, but we do not require
any particular structure, such as AR(1) or blockwise diagonal, on the covariance matrix. In par-
ticular, the covariance matrix can be a linear combination of various covariance matrices with
certain structures. The model specified in Equation (1) generalizes the existing models. When
H(x) = x, gk(·) is specified and the true number of clusters is known, our model includes the
group-based trajectory modelling proposed by Nagin (1999, 2005) as a special case. In this pa-
per, we propose to estimate K, along with π = (π1, · · · , πK)′, the growth curve gk(·), and the
transformation function H(·) simultaneously.

Denote

G = {g(·) : |g(q1)(t1)− g(q1)(t2)| ≤ c0|t1 − t2|q2 , for any 0 ≤ t1, t2 ≤ 1}, (2)

where q1 is a nonnegative integer, q2 ∈ (0, 1], r = q1 + q2 ≥ 2, and c0 > 0 is a constant. The s-
moothness assumption identified in Equation (2) is often used in nonparametric curve estimation.
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With the assumption gk ∈ G for k = 1, · · · ,K, we approximate gk(·) by gnk(t) = α′kBn(t) for
k = 1, · · · ,K, where Bn(·) = {b1(·), · · · , bqn(·)}′ is a set of B-spline basis functions of order
r + 1 with knots 0 = t0 < t1 < · · · < tMn

= 1, satisfying max(tj − tj−1 : j = 1, · · · ,Mn) =
O(n−v). Here, qn = Mn + r + 1, and Mn is the integer part of nv with 0 < v < 0.5; see
Schumaker (2007). The resulting model for cluster k has the form

H(Yi)|Xi, ti ∼ N(Bn(ti)αk + Xiβk,∆i(γk)), (3)

where Bn(ti) = (Bn(ti1), · · · , Bn(ti,ni))
′. We denote µnik = Bn(ti)αk + Xiβk and

fnk(H(Yi)|Xi, ti) = (2π)−ni/2|∆i(γk)|−1/2

× exp

[
−1

2
{H(Yi)− µnik}′∆i(γk)−1 {H(Yi)− µnik}

]
We can base our inference on the logarithmic likelihood function,

Ln(θn;H) =

n∑
i=1

log

{
K∑
k=1

πkfnk(H(Yi)|Xi, ti)

}
, (4)

with θn = {βk,αk,γk, πk, k = 1, · · · ,K} and
∑K
k=1 πk = 1.

Since the number of clusters is unknown, we begin with a bigger model that has the number
of clusters K ≥ K0 with K0 being the true number of clusters. This implies that some clusters
are redundant or can be merged. As πk = 0 indicates that the kth cluster is not necessary and can
be deleted from the model, cluster detection corresponds to the selection of nonzero {πk, k =
1, . . . ,K}, which, however, cannot be achieved by directly penalizing (πk, k = 1, . . . ,K)′. To
see that, we denote δik = 1 if Yi arises from the kth cluster, and δik = 0 otherwise, and denote
δi = (δi1, · · · , δiK)′; then the complete data for individual i is Di = {Yi, δi,Xi}. The expected
complete-data log-likelihood function is

n∑
i=1

K∑
k=1

(bik [log(πk) + log{fnk(H(Yi)|Xi, ti)}]) , (5)

where bik = E{δik|Yi,Xi, ti}. Since Equation (5) contains log(πk), which has a gradient that
increases quickly when πk is close to zero, the Lp-type penalties cannot directly set small values
of πk to zero and and hence we need to consider imposing a penalty on log{πk} for sparsity.
Following Huang et al. (2017), we consider the penalized log-likelihood function,

Qn(θn;H) = Ln(θn;H)− nλ
K∑
k=1

log

{
ε+ πk
ε

}
, (6)

where ε > 0 is small , say 10−6 or o{n−1/2(log n)−1} (Huang et al., 2017). With this, we can
show that there is a positive probability of some estimated values of πk equalling zero exactly,
resulting in the estimation of the number of clusters.

Since Qn(θn;H) involves the infinite-dimensional function H(·) and hence a direct maxi-
mization is infeasible, we resort to a two-stage approach. We first use a series of estimating equa-
tions to estimate the transformation functionH . We then estimate θn by maximizingQn(θn;H)
withH replaced by its current estimate. We repeat the procedure until convergence or the number
of iterations exceeds 100. This iterative estimator may converge to a local minimizer since the
objective function is non-convex. These local minimizers may differ from each other. Multiple
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initial values are recommended so that the optimum value can be identified. Since the choice
of initial values plays a vital role in non-convex optimization, we have designed a strategy for
selecting the initial values. Specifically, by noting that H is monotonic increasing, we use the
Box-Cox transformation (with a ρ) to select an initial value for H(·). With a fixed large K, a
specified H and a B-spline approximation of the nonparametric mean function gk(t), fitting this
semiparametric model has been reduced to a linear regression problem without the penalty term
on πk, enabling us to apply the common mixture regression statistical software, such as the R
package flexmix(Leisch, 2004). This way, we can easily obtain the initial values as desired. For
the choice of value that maximizes the resulting log-likelihood function. Our simulation studies
suggest that this strategy will work well in practice.

2.2. A penalized EM algorithm for θn given H

To estimate θn given H , we propose to use a penalized expectation-maximization (EM) algo-
rithm (Dempster et al., 1977). Since the complete data for individual i is Di = {Yi, δi,Xi}, the
penalized complete-data log-likelihood function is

Qc(θn;H) = logLc(θn;H)− nλ
K∑
k=1

log

{
ε+ πk
ε

}
, (7)

where

logLc(θn;H) ∝
n∑
i=1

K∑
k=1

(δik [log(πk) + log{fnk(H(Yi)|Xi, ti)}]) . (8)

We estimate θn by maximizing E{Qc(θn;H)|Yi,Xi, , ti, i = 1, · · · , n} with respect to θn. To
proceed, we differentiate E{Qc(θn;H)|Yi,Xi, , ti, i = 1, · · · , n} with respect to θn and set the
derivatives to zero, thereby obtaining the following estimation equations:

n∑
i=1

E(δik|Yi,Xi, ti)
πk

−
n∑
i=1

E(δi1|Yi,Xi, ti)
1−

∑K
j=2 πj

+
nλ

ε+ 1−
∑K
j=2 πj

− nλ

ε+ πk
= 0,

for k = 2, · · · ,K, (9)
n∑
i=1

E(δik|Yi,Xi, ti)
{

tr
(

∆i(γk)−1
∂∆i(γk)

∂γkj
∆i(γk)−1

[
∆i(γk)− {H(Yi)− µnik}⊗2

])}
= 0,

for k = 1, · · · ,K, j = 1, · · · ,m, (10)

αk =

{
n∑
i=1

E(δik|Yi,Xi, ti)Bn(ti)′∆i(γk)−1Bn(ti)

}−1

×
n∑
i=1

E(δik|Yi,Xi, ti)Bn(ti)′∆i(γk)−1 {H(Yi)− Xiβk} , (11)

βk =

{
n∑
i=1

E(δik|Yi,Xi, ti)X′i∆i(γk)−1Xi

}−1

×
n∑
i=1

E(δik|Yi,Xi, ti)X′i∆i(γk)−1 {H(Yi)−Bn(ti)αk} , (12)
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with
∑K
k=1 ‖αk‖ = c0 for identifiability; γkj is the j-th component of γk and a⊗2 = aa′. Given

that ε is so small that 1
πj+ε

≈ 1
πj

for any πj , we arrive at an approximating solution of the
estimating equations identified in Equation (9), namely

π̂k = max

{
0,

1

1−Kλ

[
1

n

n∑
i=1

E(δik|Yi,Xi, ti)− λ
]}
. (13)

Some π̂k may be shrunk to zero and the constraint
∑K
k=1 π̂k = 1 may not be satisfied. However,

this result neither decreases the likelihood function nor affects the estimate of the posterior prob-
ability E(δik|Yi,Xi, ti) in the E-step or the update of πk in the M-step. In this particular case we
normalize π̂k by enforcing

∑K
k=1 π̂k = 1 after the EM algorithm converges. Then, we estimate

θn by repeatedly using equations (10)-(13) until θn converges. For each step, the values of πk,
αk, and βk on the left-hand side of the equations are replaced by the iterative values from the
previous step, and γk is estimated by Newton-Raphson iteration using Equation (10). To estimate
θn, we compute

E(δik|Yi,Xi, ti) =
fnk(H(Yi)|Xi, ti)πk∑K
j=1 fnj(H(Yi)|Xi, ti)πj

. (14)

At the rth step, E(δik|Yi,Xi, ti) is estimated by the left-hand side of equation (14) with the
unknown parameters and functions replaced by the estimators from the previous iteration.

2.3. Estimation of H given θn

For any given y, we have

Pr(Yij ≤ y|Xi, ti) = Pr(H(Yij) ≤ H(y)|Xi, ti)

=

K∑
k=1

πkPr(H(Yij) ≤ H(y)|δik = 1,Xi, ti)

=
K∑
k=1

πkΦ

{
H(y)−α′kBn(tij)− X′ijβk√

σkj

}
,

where σkj denotes element (j, j) of ∆i(γk). We estimate H(y) by solving

n∑
i=1

ni∑
j=1

[
I (Yij ≤ y)−

K∑
k=1

πkΦ

{
H(y)−α′kBn(tij)− X′ijβk√

σkj

}]
= 0, (15)

for any given y in the support of Yij . Specifically, let v1, · · · , vsn denote the distinct points of Yij ,
i = 1, 2, · · · , n, j = 1, 2, · · · , ni. Given y = vs, s = 1, · · · , sn, we estimateH(y) by solving the
equation

n∑
i=1

ni∑
j=1

[
I (Yij ≤ y)−

K∑
k=1

πkΦ

{
θ −α′kBn(tij)− X′ijβk√

σkj

}]
= 0. (16)

for θ. Equation (16) that the estimator Ĥ(y) is a nondecreasing step function with jumps that
occur only at the observed values of Yij . Varying y among {v1, · · · , vsn} and repeating the esti-
mation procedure for each y, we obtain the whole curve estimator of H(·). We use the Newton-
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Raphson algorithm to solve equation (16), with a moderate computational cost. Coupled with
the closed-form estimator for θn at each step, the implementation of our proposed method is
straightforward. Unlike traditional nonparametric approaches (Horowitz, 1996), our approach
does not involve nonparametric smoothing or the need to select smoothing parameters.

2.4. Selection of the tuning parameter λ
Estimating K relates to the selection of the tuning parameter λ and the number of interior knots
Mn. Through our simulation studies, we found that our proposed algorithm is not sensitive to
the choice of the number of knots, which is consistent with observations in the literature made
by other investigators; see Winsberg & Ramsay (1981). For smooth functions, 3-6 knots seemed
adequate, as we later recommend. We consider a BIC-based procedure to select λ, which yields
model selection consistency for linear regression models (Wang et al., 2007). Specifically, we
choose λ by maximizing

BIC(λ) = logLn(θn;H)− 1

2
DFλ log

(
n∑
i=1

ni

)
, (17)

where DFλ is the generalized degree of freedom, which can be consistently estimated by the
number of nonzero parameters; see Zhang (2010) for corresponding results involving generalized
linear models. In our numerical studies, we selected λ using a grid search, which seemed to work
well.

3. LARGE SAMPLE PROPERTIES

Denote the estimators of θn andH by θ̂n and Ĥn, respectively. Also define ‖f‖∞ = supt |f(t)|,
Pf =

∫
f(x)dP (x) and Pnf = 1

n

∑n
i=1 f(xi) for any function f , and for c0 > 0,

Θ = {θ = (β,π,γ,g) ∈ RKp ⊗ [0, 1]K ⊗RK×m ⊗ GK , ‖β‖+ ‖π‖+ ‖γ‖ ≤ c0}

where β = (β1, · · · ,βK),π = (π1, · · · , πK),γ = (γ1, · · · ,γK),g = (g1, · · · , gK), and ‖ · ‖
is the Euclidean norm. Furthermore, we define a distance metric

d(θ1,θ2) =
(
‖β1 − β2‖2 + ‖π1 − π2‖2 + ‖γ1 − γ2‖2 +

K∑
k=1

‖gk,1 − gk,2‖22
)1/2

,

where ‖gk,1 − gk,2‖22 =
∫ 1

0
{gk,1(t)− gk,2(t)}2dt. Let θ0 = (β0,π0,γ0,g0) be the true value

of θ, and K0 be the true number of clusters. Without loss of generality, we suppose the first K0

components of π0 are non-zero with
∑K
k=1 πk0 = 1 and π10 ≥ π20 ≥ · · · ≥ πK0 > 0 for iden-

tifiability. Theorems 1 to 3 summarize the large sample properties under the following regularity
conditions; the proofs may be found in the Supplementary Materials.

(A1) {X(t), t ∈ (0, 1)} is bounded.
(A2) gk0 ∈ G, k = 1, · · · ,K0 and θ0 is an interior point of Θ.
(A3) There exists [y, ȳ] such that 1

N

∑n
i=1

∑ni
j=1 I(Yij /∈ [y, ȳ]) = op(n

−1/2), where N =∑n
i=1 ni.

(A4) The transformation function H(y) is strictly increasing with a continuous first derivative over
y ∈ [y, ȳ], and satisfies a restriction H(a) = b for constants a and b 6= 0.

(A5) ∆/δ ≤ c0 uniformly in n, where δ = min
1≤i≤Mn

|ti − ti−1|, ∆ = max
1≤i≤Mn

|ti − ti−1| =

O(n−υ).
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Condition (A1), for mathematical convenience, is commonly used in the nonparametrics and
semiparametrics literature (Zhang et al., 2015; Horowitz, 1996, 2001; Fan & Gijbels, 1996). The
boundedness assumption for the regressor X(t) is technical to simplify the proofs and may be
relaxed to allow bounded high-order moments. (A2) is commonly assumed in the semiparamet-
ric literature (Chen & Tong, 2010). Condition (A3) is used to avoid the tail problem, which is
also required by Lin et al. (2012), while Condition (A4) is a common requirement for the trans-
formation function (Zhou et al., 2008). Condition (A5) is often assumed for spline analysis (Lu
et al., 2009).

Theorem 1. Under Conditions (A1)-(A5), λ
√
n→ 0, λ

√
n log n→∞, and ε =

o
(

1√
n log(n)

)
, the estimated number of components ŝn → K0 with probability tending to

one.

Theorem 2. Under Conditions (A1)-(A5), λ
√
n→ 0, and ε = o

(
1√

n log(n)

)
,

Ĥn(y)
a.s.→ H0(y) uniformly over y ∈ [y, y],

d(θ̂n,θ0) = Op(n
−min( 1−υ

2 ,rυ)),

where r is a smooth parameter defined in equation (2), and 0 < υ < 0.5 is given for determining
the spline basis Bn(·).

The choice of υ = 1/2r + 1 yields the optimal rate of convergence nrυ for the non-
parametric function (Stone, 1980).

Theorem 3. Under Conditions (A1)-(A5) with r ≥ 2 and 1
4r < v < 1

2 ,
√
nλ→ 0 and ε =

o
(

1√
n log(n)

)
,

√
n(Υ̂−Υ0)→ N(0, I−1(Υ0)),

where Υ = {βk,γk, πk, k = 1, · · · ,K0}, Υ0 is the true value of Υ, and I−1(Υ0) is defined in
the Supplementary Materials.

4. SIMULATION STUDY

Since our proposed method allows the transformation function as well as the distribution of
the functional data to be unknown, we investigated whether our approach is more robust than
alternative existing parametric or semiparametric procedures that need to specify the distributions
of the response curves, and, if so, whether the robustness of our approach comes at the expense
of reduced efficiency. We compare our method with: (i) the model with correct transformation
(CT), where the transformation function is correctly specified and the growth curve is estimated
by B-splines, and (ii) the untransformed model (WOT), with the growth curves estimated by
B-splines. The CT and WOT methods are used to evaluate the efficiency and robustness of our
proposed method, respectively. We also assess the accuracy of cluster selection. Finally, as our
method assumes a Gaussian distribution for the transformed responses within each cluster, we
investigate the sensitivity of our method to departures from this assumption. We used the criteria
of bias, standard error (SE), and root-mean-square error (RMSE), defined by

bias =

[
1

ngrid

ngrid∑
i=1

{Eĝ(ti)− g(ti)}2
]1/2

, SE =

[
1

ngrid

ngrid∑
i=1

E{ĝ(ti)− Eĝ(ti)}2
]1/2
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and RMSE =
[
bias2 + SE2

]1/2
, where ti (i = 1, . . . , ngrid) denote the grid points on which

g(·) is estimated. For each parameter configuration detailed below, we generated N = 200, 400
independent data sets, and used the cubic B-spline approximation with the number of knots
Kn = n1/3, the knots were placed at theKn-quantiles of the observation times and ngrid = 200.
We approximated Eĝ(ti) by the sample mean based on these N simulated data sets.

Simulation 1. We generated observations from a three-component mixture model with π1 =
π2 = π3 = 1/3. The data in cluster k were obtained using

H(Yi(tij)) = gk(tij) +Xiβk + εi(tij),

for k = 1, 2, 3, whereXi is generated from U(0, 1) with coefficients β1 = 1, β2 = 2 and β3 = 3;
g1(t) = exp(t)− 1, g2(t) = sin(πt), and g3(t) = −0.5t2 + 0.5; εi(t) denotes a Gaussian pro-
cess with mean zero and a covariance function cov(εi(t1), εi(t2)) = σ2

k × ρ
|t1−t2|
k with σ2

1 =
0.1, ρ1 = 0.3, σ2

2 = 0.15, ρ2 = 0.35, σ2
3 = 0.2, ρ3 = 0.4. For each individual i, ni = 5, and the

observation time tij was sampled from a uniform distribution on U(0, 1). We considered two
transformations: the logarithm transformation H(y) = 4log(y) (Case 1) and the Box-Cox trans-
formation H(y) = (y0.5 − 1)/0.5 (Case 2).

TABLE 1: Performance of the proposed method, CT and WOT for Case 1 in Simulation 1.

Proposed(K(0) = 7) CT(K = K0 = 3) WOT(K = K0 = 3)

bias SE RMSE bias SE RMSE bias SE RMSE

Case 1

π1 0.003 0.026 0.026 0.002 0.024 0.024 0.039 0.043 0.058

π2 0.002 0.079 0.079 0.005 0.039 0.040 0.217 0.073 0.229

π3 0.000 0.082 0.082 0.002 0.040 0.040 0.256 0.064 0.264

β1 0.006 0.055 0.056 0.006 0.047 0.047 0.246 0.150 0.288

β2 0.006 0.066 0.066 0.001 0.058 0.058 0.022 0.139 0.141

β3 0.000 0.070 0.070 0.007 0.054 0.055 0.268 0.165 0.315

ρ1 0.009 0.045 0.046 0.005 0.046 0.046 0.026 0.070 0.075

ρ2 0.008 0.063 0.064 0.006 0.050 0.050 0.079 0.173 0.190

ρ3 0.012 0.054 0.055 0.008 0.046 0.046 0.070 0.038 0.079

σ2
1 0.000 0.012 0.012 0.002 0.010 0.010 0.191 0.111 0.221

σ2
2 0.002 0.015 0.015 0.004 0.017 0.017 0.263 0.044 0.267

σ2
3 0.001 0.033 0.033 0.006 0.017 0.018 0.153 0.017 0.154

g1(t) 0.002 0.042 0.042 0.001 0.029 0.029 0.059 0.059 0.084

g2(t) 0.004 0.061 0.062 0.002 0.042 0.042 0.117 0.286 0.310

g3(t) 0.003 0.055 0.055 0.005 0.048 0.048 0.123 0.049 0.133

]cluster 0 0 0 * *

*K(0) in the proposed method is the initial value for the number of clusters, K0 is
the true number of clusters.

Tables 1 and 2 report the biases, empirical SEs, and RMSEs for our proposed method with
the initial number of clusters K(0) = 7, as well as the observed results for the CT and WOT
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TABLE 2: Performance of the proposed method, CT and WOT for Case 2 in Simulation 1.

Proposed(K(0) = 7) CT(K = K0 = 3) WOT(K = K0 = 3)

bias SE RMSE bias SE RMSE bias SE RMSE

Case 2

π1 0.004 0.026 0.026 0.002 0.024 0.024 0.205 0.079 0.220

π2 0.006 0.083 0.083 0.004 0.040 0.040 0.122 0.108 0.164

π3 0.011 0.085 0.085 0.002 0.040 0.040 0.082 0.092 0.124

β1 0.012 0.053 0.054 0.005 0.047 0.047 0.246 0.150 0.288

β2 0.003 0.067 0.067 0.001 0.058 0.058 0.022 0.139 0.141

β3 0.008 0.070 0.070 0.007 0.054 0.055 0.268 0.165 0.315

ρ1 0.010 0.045 0.046 0.005 0.046 0.046 0.297 0.039 0.299

ρ2 0.007 0.058 0.058 0.005 0.050 0.050 0.000 0.135 0.135

ρ3 0.014 0.057 0.059 0.009 0.046 0.046 0.060 0.085 0.104

σ2
1 0.001 0.012 0.012 0.002 0.010 0.010 0.077 0.051 0.093

σ2
2 0.003 0.015 0.015 0.004 0.017 0.017 0.234 0.045 0.238

σ2
3 0.001 0.036 0.036 0.006 0.017 0.018 0.271 0.026 0.272

g1(t) 0.002 0.043 0.043 0.001 0.029 0.029 0.132 0.067 0.148

g2(t) 0.002 0.061 0.061 0.002 0.042 0.042 0.067 0.164 0.177

g3(t) 0.005 0.055 0.055 0.005 0.048 0.048 0.049 0.104 0.115

]cluster 0 0 0 * *

*K(0) in the proposed method is the initial value for the number of clusters, K0 is
the true number of clusters.

estimators for Cases 1 and 2, respectively. When implementing the CT and WOT methods, the
number of clusters was correctly specified as K = K0 = 3, whereas our proposed method was
initialized with a larger number of clusters than the true value, and yielded #cluster, the estimated
number of clusters. Tables 1 and 2 indicate that the WOT resulted in large biases and variances
(with biases even dominating the corresponding SEs), suggesting that misspecifying of trans-
formation functions may lead to biased and unstable estimates of the regression parameters and
the growth curves. In contrast, our method does not require the specification of transformation
functions and hence avoids the bias and instability that results when transformation functions are
misspecified. Furthermore, our proposed method yielded estimates with corresponding estimated
biases and variances that were close to those values obtained when the transformation functions
were correctly specified. This result suggests that our proposed method achieves robust results
with little loss of efficiency. Moreover, our method is able to estimate the number of clusters
accurately.

Figure 1, which displays the average estimates of the transformation function and the growth
curves based on the 200 simulations, together with the corresponding 95% pointwise confidence
intervals, shows that the estimates, on average, are very close to the true functions.

Since our proposed method requires an initial number of clusters, we also investigated its be-
haviour using different initial numbers of clusters K(0) = 7, 14, and 21, respectively, for Case 2.
Table 3 shows that despite the differing initial values ofK(0), the resulting estimates were almost
the same, suggesting that our proposed approach appears to be robust to the initial specification
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of the number of clusters.
Simulation 2. Our proposed method assumes a Gaussian distribution for the transformed

responses. To investigate the robustness of our method to this particular assumption, we gen-
erated data using parameter settings that were similar to those used in Case 2 of Simulation 1,
except that the εi(t) were generated from a mixed distribution with each component being the
centralized and scaled gamma distribution σ × (Gamma(τ, 1)− τ)/

√
τ ; also, the correlation

was introduced via a normal copula function. Taking τ = 5, 10, 50, Table 4 reports the observed
results for K(0) = 7.

A useful rule to evaluate the severity of bias, as suggested by Olsen & Schafer (2001), in-
volves checking whether the standardized bias (bias over SE) exceeds 0.4. When τ ≥ 10, both
the skewness and the excess kurtosis were less than 1, and our proposed estimators were nearly
unbiased. When both the skewness and the excess kurtosis were approximately 1, our proposed
estimators yielded observed results that were moderately biased but nonetheless acceptable.

TABLE 3: Performance of the proposed method, the CT and the WOT for Case 2 in Simulation 1.

K(0) = 7 K(0) = 14 K(0) = 21

bias SE RMSE bias SE RMSE bias SE RMSE

π1 0.004 0.026 0.026 0.004 0.026 0.026 0.003 0.026 0.026

π2 0.006 0.083 0.083 0.006 0.082 0.083 0.014 0.072 0.074

π3 0.011 0.085 0.085 0.002 0.084 0.084 0.011 0.075 0.075

β1 0.012 0.053 0.054 0.011 0.053 0.054 0.010 0.053 0.054

β2 0.003 0.067 0.067 0.003 0.067 0.067 0.007 0.063 0.064

β3 0.008 0.070 0.070 0.008 0.070 0.070 0.003 0.066 0.066

ρ1 0.010 0.045 0.046 0.009 0.045 0.047 0.008 0.045 0.046

ρ2 0.007 0.058 0.058 0.006 0.056 0.057 0.003 0.053 0.053

ρ3 0.014 0.057 0.059 0.014 0.057 0.059 0.016 0.053 0.053

σ2
1 0.001 0.012 0.012 0.001 0.012 0.012 0.002 0.012 0.012

σ2
2 0.003 0.015 0.015 0.002 0.015 0.015 0.002 0.014 0.014

σ2
3 0.001 0.036 0.036 0.002 0.036 0.036 0.008 0.032 0.033

g1(t) 0.002 0.043 0.043 0.003 0.043 0.043 0.001 0.041 0.041

g2(t) 0.002 0.061 0.061 0.002 0.061 0.061 0.003 0.056 0.056

g3(t) 0.005 0.055 0.055 0.005 0.055 0.055 0.010 0.053 0.054

]cluster 0 0 0 0 0 0 0 0 0

Simulation 3. We investigated the case of a time-dependent covariate. We generated the data
using parameter settings that were similar to those used previously in Case 1 of Simulation 1,
except that we generated Xi(t) from Brownian motion. Table 5 summarizes the observed results
that were obtained using an initial number of clustersK(0) = 7. Our conclusions paralleled those
derived from the results of Simulation 1.

5. ANALYSIS OF THE CHINESE HOUSING MARKET (2007-2014)

Rising housing prices in most of the Chinese cities between 2007-2014 had led to a public outcry
over the seriously overheating markets in these regions, while the corresponding real estate mar-
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FIGURE 1: The estimated growth curves and transformation function for Cases 1 and 2 of Simulation 1
(solid: true function; dashed: 95% confidential limit; dotted: average of the estimated growth curve).

TABLE 5: Resulting estimators of the proposed method with X generated from Brownian motion for
Simulation 3.

π1 π2 π3 ρ1 ρ2 ρ3 β1 β2 β3 σ2
1 σ2

2 σ2
3 g1(t) g2(t) g3(t)

bias 0.003 0.027 -0.030 0.002 -0.002 -0.018 0.034 0.077 -0.111 -0.002 -0.006 -0.033 0.004 0.010 0.023

SE 0.031 0.065 0.065 0.049 0.048 0.059 0.098 0.133 0.150 0.023 0.024 0.037 0.049 0.055 0.054

RMSE 0.031 0.070 0.072 0.049 0.048 0.061 0.104 0.153 0.187 0.023 0.024 0.049 0.050 0.056 0.059
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kets in a small number of cities were stable in the same time period (Zhang et al., 2017). From the
perspective of public policy as well as personal investment, it is therefore of substantial interest
to study how such inequality may be linked to local economy, geography and demographics, and
which particular markets were more alike compared to other markets. Previous studies in a sim-
ilar vein often made restrictive conditions, e.g., linear relationships, homogeneity and normality
assumptions (Guo & Li, 2011; Burdekin & Tao, 2014) on the relationships between the change
trends in housing prices and local economic and demographic conditions. However, these vari-
ous assumptions may not be satisfied. For example, the normal assumption may be problematic,
as Figure 2 seems to suggest. Ren et al. (2012) and Zhang et al. (2017) did relax these conditions,
but only attempted to classify the data without considering covariates.

We used our proposed method to cluster the housing markets, after controlling for local e-
conomic levels and demographics, based on the average housing price-to-income ratios from
2007 to 2014 in a total of 252 cities, which cover most of the urban areas of China. The house
price-to-income ratio is often used as an indicator of housing valuation and affordability (Wu
et al., 2012). For each city, our data included house prices (PRICEt), average monthly in-
come (INCOMEt), real estate investment (INVt), resident population size (POPt), and total
GDP(GDPt). A total of 1,230 observations were included in the dataset with ni varying from
1 to 8. The data were extracted from the official website of the National Bureau of Statistics of
China (www.stats.gov.cn).
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FIGURE 2: Histogram of the price and price/income, left is for price and right is for price/income.

First, we rescaled the time range to [0, 1]. Following housing demand-supply
theory (DiPasquale & Wheaton, 1992), we used the housing price-to-income ratio
Yi(t) = PRICEt/INCOMEt in city i as the dependent variable, and the rates of
growth GR(t) = (GDPt −GDPt−1)/GDPt−1, PR(t) = (POPt − POPt−1)/POPt−1, and
IR(t) = (INVt − INVt−1)/INVt−1 as predictors. In particular, we used the growth rates or
the change rates of economic data, in lieu of the original values, as predictors in the model s-
ince they can better capture the dynamics of GDP, population and investment over time, and also
facilitate horizontal and vertical comparisons across different markets.
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Allowing impacts to have a one-year lag, we regressed Yi(t) on GRi(t− 1), PRi(t− 1),
and IRi(t− 1) with

H(Yi(t)) = gk(t) + Xi(t− 1)′βk + εi(t),

for k = 1, · · · ,K, where Xi(t− 1) = (GRi(t− 1), PRi(t− 1), IRi(t− 1))′, and βk =
(βk1, βk2, βk3)′. As an initial number of clusters, the values K(0) = 7 and K(0) = 10 yielded
the same results, we used K(0) = 7. We adopted the cubic B-spline approximation, with the
number and locations of the interior knots chosen based on the strategy outlined in Section 4.
The tuning parameter λ = 1/200 was selected by minimizing the BIC defined in Equation (17).
Our method identified two clusters in 252 cities, with estimated probabilities of 0.947 and 0.053
corresponding to clusters 1 and 2, respectively. The estimated coefficients and corresponding es-
timated standard errors (SE) are reported in Table 6. The SE is based on 200 bootstrap samples,
where 200 was adopted by monitoring the stability of the SE. The estimates of the transfor-
mation function H and growth curves g1, g2 are displayed in Figure 3, which reveals that the
transformation curve resembles a logarithm transformation, and that g1, g2 have different change
trends. In order to demonstrate how we benefited from using our proposed method, we split
the original data into four subgroups of roughly equal size. Three of these groups were used as
training data, and the remaining quarter served as a validation dataset. We compared our pro-
posed method with the logarithm transformation and Box-Cox transformation by using the out-
of-sample prediction error (PE) = 1

n

∑n
i=1

1
ni

∑ni
j=1 |Ĥ

−1
−d(i)(Wij)− Yij |/|Ci|, where Wij =∑K

k=1 I(δ̂
−d(i)
ik = 1){ĝ−d(i)k (tij) + Xi(tij)′β̂

−d(i)
k } andCi = maxj(Yij , j = 1, 2, · · · , ni), d =

1, · · · , 4. The estimates Ĥ−d(i), ĝ
−d(i)
k , β̂

−d(i)
k , δ̂

−d(i)
ik were computed by omitting the dth record

in the data to which the ith sample belongs. We then evaluated the Box-Cox transformation with
λ = 0.2, 0.25, 0.5, 1, 2, 3. Table 7 suggests our fitted model has a smaller prediction error (PE)
than both the logarithm and the Box-Cox transformations.

TABLE 6: Estimated coefficients of parameters for data of China Housing Market

Cluster 1 Cluster 2

Est. SE p-value Est. SE p-value

π 0.953 0.013 0 0.047 0.013 0.0002

GR(t− 1) -0.017 0.008 0.0335 -0.620 0.095 0

PR(t− 1) -0.015 0.009 0.0955 -0.316 0.072 1e-05

IR(t− 1) -0.031 0.070 0.6578 -0.040 0.074 0.5888

Table 6 suggests that the effects of the covariates are similar in the two clusters, though per-
haps more significant in cluster 2. All the regression coefficients were estimated to be negative,
which seems to reflect the actual situation in China from 2007 to 2014. In particular, the growth
rate of GDP has a significant effect on the housing price-to-income ratios in both clusters. The
effect of the growth rate associated with the size of the resident population was more marked in
cluster 2 than in cluster 1. These results suggest that the positive growth rate of GDP or POP actu-
ally reduces the housing price-to-income ratios, whereas the growth rate of real estate investment
(INT) has no apparent effect on the house price-to-income ratios in either cluster. These find-
ings provide valuable insight into the housing market conditions in China during the observation
period 2007-2014.
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TABLE 7: Prediction error

Proposed log λ = 0.2 λ = 0.25 λ = 0.5 λ = 1 λ = 2 λ = 3

0.162 0.186 0.196 0.202 0.243 0.357 0.538 0.620
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FIGURE 3: Estimates of the transformation H and mean functions g1, g2 (solid-average of the estimated
function; dashed-95% confidential limit).

Figure 3 reveals that the two groups of cities exhibit different change patterns in housing
price-to-income ratios. In cluster 1, the ratios sharply decreased from 2007 to 2009, and then
stabilized, whereas in cluster 2 the ratio slightly increased from 2007 to 2009, and became sta-
ble thereafter. In 2009, the central government introduced a series of regulations to manage the
housing markets, which explains the stability after 2009. The decline from 2007 to 2009 that
occurred in cluster 1 was due to the global financial crisis, whereas the housing markets in cities
belonging to cluster 2 were relatively healthy and withstood the impact of the financial crisis by
maintaining a steady rate of growth from 2007 to 2009.

To shed more light on these two clusters, we estimated the probability of each city belonging
to each cluster based on Equation (14); then, using the majority voting rule, we assigned each
city to cluster 1 or 2. Figure 4, which depicts the time series of housing price-to-income ratios for
each city, shows that most cities with higher housing price-to-income ratios belong to cluster 1,
while the rest form cluster 2. This is consistent with the observation that most of the China cities
were deemed overheated between 2007 and 2014. Since the price-to-income ratios often serve as
an important indicator for detecting market bubbles, our results highlight the need to distinguish
these two clusters when formulating and implementing housing regulation policies.

It is generally believed that such housing regulation policies mainly affected the housing
prices in the major cities, such as Beijing, Shanghai, Guangzhou, Shenzhen, Chongqing, Cheng-
du, Hangzhou and Nanjing. However, after 2009, the government began to adopt real estate
policies based on local conditions, which seems to agree with the findings of this study. Indeed,
our estimated cluster 2 includes the major cities (Guangzhou, Shenzhen, Hangzhou and Nan-
jing) as well as some rapidly developing cities (Xiamen, Ningbo, Fuzhou, Dongguan, Foshan,
Zhuhai, Haikou, Sanya, Dalian, Lishui, Shaoxing, Taizhou, Wenzhou, and Zhoushan), whose
GDP usually grew faster during 2007-2014 than that of the cities estimated to belong to cluster
1. In general, GDP growth was associated with increasing incomes in these cities, while the cor-
responding housing prices grew relatively slowly during the same period. As a result, a marked
decline in the housing price-to-income ratios occurred in cluster 2 which is reflected in the mag-
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FIGURE 4: Categorize 252 Chinese cities into two clusters: red curves indicate cluster 1 and green curves
cluster 2.

nitude of β for GR(t− 1) , which we estimated to be greater for cluster 2 than for cluster 1.

6. DISCUSSION

We have proposed a semiparametric transformation functional regression model to cluster non-
Gaussian functional data. Our proposed method can simultaneously estimate the unknown cluster
number, transformation function, growth curves, and regression parameters. Via theoretical and
numerical studies, we have shown that our proposed method performs well in selecting the num-
ber of clusters and in estimating the various unknown parameters and functions.

There are several open questions. Though our methods have focused on continuous respons-
es, they can be extended to accommodate discrete responses as well. We envision such an ex-
tension to be nontrivial. It is also possible to extend our methods to cope with high-dimensional
covariates by using a suitable penalty, but such an extension will require the development of
new theory in order to provide performance guarantees. These research questions warrant further
investigation.
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