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Abstract 

Gait and balance abnormalities develop commonly in Parkinson’s disease and are among the 

motor symptoms most disabling and refractory to dopaminergic or other treatments including 

DBS. Efforts to develop effective therapies are challenged by limited understanding of these 

complex disorders. There is a major need for novel and appropriately targeted research to 

expedite progress in this area. The Scientific Issues Committee of the International Parkinson 

and Movement Disorder Society has charged a panel of experts in the field to consider the 

current knowledge gaps and determine the research routes with highest potential to generate 

groundbreaking data.  
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Introduction 

Gait and balance disturbances play an important role in the quality of life, morbidity, and 

mortality of patients with Parkinson's disease (PD). The current pharmacological and surgical 

treatments, albeit helpful with other aspects of PD, provide modest benefit, leaving patients 

with gait impairment, postural instability and frequent falls1-4.  Understanding these complex 

disorders has long stimulated research giving rise to a large collection of original studies and 

reviews. Modern imaging technologies and experimental models have contributed considerable 

information to analyzing the function of neural circuits in the control of posture and the 

generation of locomotion patterns5, 6. However, review of the prolific literature also reveals a 

series of shortcomings in the analysis of any type of data, i.e., demographics, imaging, 

kinematics, and drug or surgical trials. Most studies suffer from variability in the definition or 

classification criteria of freezing or other gait and postural abnormalities7-9. In addition, the 

characteristics of these disorders, some with episodic presentation or varied features, pose 

significant challenges for standardized assessment in clinical studies. In the experimental field, 

these disorders have not been reproduced well in Parkinson models, clearly a major limiting 

factor for research progress. As a result, our understanding of the underlying biology of gait and 

balance abnormalities in PD, a significant source of disability for the majority of patients, 

remains insufficient to develop effective therapeutic approaches.  
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The loss of postural control and altered locomotion patterns in PD typically cause impaired 

balance, instability, falls, slow walking with reduced step length, en bloc turns, festination, and 

freezing of gait (FOG) (see reviews in10-12). Festination is defined as accelerated stepping, which 

can be related to inability to adjust the size of steps to the progressively increased body 

inclination along with loss of control of body position during walking. FOG is defined as inability 

to progress despite attempts to walk. FOG is characterized by a brief, episodic absence or 

marked reduction of forward progression of the feet despite the intention to walk.  Impaired 

balance is the consequence of abnormal reactive and anticipatory postural responses producing 

instability and propensity to fall. Anticipatory postural adjustments (APA) are also thought to 

impact locomotion patterns, and plausibly play a role in freezing, although APA in the context of 

FOG may have different biological substrates than in postural instability related to falls.  

However, the present discussion will be centered on FOG and impaired postural control in its 

multiple dimensions as the major gait disorders in PD, and they will be treated together for the 

purpose of identifying common research directions. Numerous studies have proposed different 

mechanisms that could presumably be involved in such gait disorders. However, most of the 

clinical data are correlational, and the scarce non-human experimental data have only made 

incremental progress. Therefore, the focus of this panel discussion is on research directions to 

address the critical knowledge gap–the “pathophysiology” of postural control and FOG in PD. 

We begin by summarizing the neural substrates thought to play a mechanistic role in order to 

discuss research strategies to advance our current knowledge. Subsequently, such strategies 

will be discussed with examples of potential experimental approaches. 

 

Discussion of the current knowledge on pathophysiology  
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A large network of cortical, basal ganglia, thalamic, cerebellar, brainstem, and spinal circuits 

participates in the mechanisms underlying gait disorders in PD13-16. Whether symptoms are 

related to a generalized breakdown in this large network or a localized dysfunction affecting a 

particular circuit is not clear. Figures 1 and 2 show a simplified representation of this multiple 

circuit network. 

In our discussion of the functional anatomy of locomotion in humans, we begin with the central 

pattern generator (CPG) circuits in the spinal cord, which, as reminded by Griller and El 

Manira17, are essential not only for the propulsive component of locomotion, but also for a 

variety of other aspects of this complex motor behavior, including its rhythmicity and 

coordination.  These spinal cord CPG circuits are not merely segmental reflex loops made of 

proprioceptive afferents synapsing on alpha-motor neurons, but real processing interface hubs 

that control the timing, speed and strength of different muscle contractions and integrate the 

sensory feedback and instructive signals from a variety of supraspinal neural pathways localized 

in the brainstem and above to enable initiation, termination and direction of locomotion as well 

as to set the posture to follow the movements17. Moreover, once locomotion is initiated, spinal 

cord CPG circuits signal to the brainstem and cerebellum, which, in turn, send information back 

to the spinal cord to allow rapid corrections of locomotion and posture17. The picture that 

emerges from this succinct description is that the spinal cord CPG circuits play a key role in 

converting non-patterned commands originating from supraspinal locomotor centers into well-

coordinated, rhythmic movements and participate into reciprocal neural circuits that enable 

real-time adjustments of the movements and posture to perturbations occurring during 

locomotion.  
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Among key supraspinal nodes is the mesencephalic locomotor region (MLR), which has 

multiple connections to other significant nodes in this network. The MLR includes the 

pedunculopontine nucleus (PPN), the lateral cuneiform nucleus and the surrounding midbrain 

area. It is important to recognize the complexity of the MLR anatomy and connectivity, and that 

different cell types and circuits in this region likely have distinct functions. Although not fully 

elucidated, the MLR may play a role in initiating and controlling locomotion via descending 

projections modulating brainstem nuclei involved in locomotion and lower spinal circuits, but 

also ascending projections controlling dopaminergic systems and arousal18. For example, in 

mouse models, cuneiform glutamatergic neurons seem to be involved in high-speed 

locomotion, as are glutamatergic neurons in the caudal medulla (lateral paragigantocellular 

nucleus)19, 20. However, the mechanisms of exploratory and escape locomotion seem to be 

controlled by distinct neuronal populations of MLR areas19.  Studies of MLR stimulation have 

been associated with activation, modulation or inhibition of locomotion21-23 depending on the 

specificity of the targeted area. More recently, studies of PPN neurons with high cell resolution 

revealed that activation of glutamatergic neurons controls muscle tone and posture, and 

disrupts gait18, 23.  Of note, PPN DBS has been reported to improve FOG in patients with PD, 

although data remain controversial24, 25. Glutamatergic and cholinergic PPN neurons (ChNs) 

influence multiple spinal and cerebellar regions26. Glutamatergic PPN neurons project 

downstream to other brainstem motor centers but also project to SNc dopamine neurons and 

can modulate the phasic activity of dopamine neurons and DA levels27-29.  ChNs project to 

vestibular cerebellar circuits (medial vestibular nucleus), thalamic nuclei, and dopaminergic 

neurons in the midbrain (both SNc and VTA), and to the medioventral medulla, which projects 

into the reticulospinal tract 30. In turn, the PPN is innervated by basal ganglia output nuclei, 
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which are GABAergic, namely internal pallidum and substantia nigra pars reticulata. This 

suggests that PPN disinhibition is involved in locomotion, but the PPN also receives excitatory 

inputs from other regions (STN, cortex, midbrain) and the functional heterogeneity of PPN 

neurons complicate the interpretation of its control of locomotion. In addition to locomotion, 

the PPN is also involved in the arousal attention process in animal behavior, and has oscillatory 

activity in the gamma band frequency that correlates with both stepping and arousal 31. On the 

other hand, the reported morphological (ChN loss) or physiological changes of PPN/MLR in 

human postmortem studies and PD models have been largely variable and inconclusive32-34.  

 

Basal ganglia contribute to mechanisms of gait disorders through the modulation of 

descending midbrain and brainstem circuits but also through the modulation of thalamic and 

cortical circuits (Figure 1). However, a significant amount of clinical data is in conflict with a 

primary role of traditionally postulated basal ganglia mechanisms in gait disorders of PD. DBS of 

the subthalamic nucleus (STN) has shown variable effects on gait disorders 13,35, although 

various studies reported FOG improvement (see data review in36). Global motor effects of STN 

DBS including the reduction of “off” periods likely play a role in FOG changes37. While the 

occurrence of FOG is typically reduced by dopaminergic drugs, in many cases they do not help, 

and in a minority of patients these drugs worsen FOG38. Notably though, studies of the 

biomechanical components of anticipatory postural adjustments (APA) in gait initiation show 

changes that correlate with dopamine depletion in the striatum 39-41. Nevertheless, 

abnormalities of APAs in FOG have not consistently been established across clinical 

laboratories42. These clinical observations thus suggest that the nigrostriatal dopamine system, 

albeit a major contributor, may not be the only system involved 16. This is also supported by the 
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occurrence of similar gait disturbances in neurological disorders with spared dopamine system.  

Dopamine projections to various basal ganglia nuclei, and even to brainstem circuits could play 

a role, but a relation to non-dopaminergic mechanisms may be highly relevant as they become 

further compromised with disease progression 43. Postural adjustments, the sequence effect, 

and small steps are particularly important for various walking conditions, such as turning, and 

frequently trigger FOG. There is evidence from animal studies that striatal neurons participate 

in the control of both locomotion and turning 44.  It is important to consider that abnormal 

patterns of activity from basal ganglia output to brainstem regions could play a key role in FOG 

mechanisms.  In PD, neuronal activities in the internal pallidum/substantia nigra pars reticulata 

undergo significant changes including excessive synchronization with pathological (beta band) 

oscillations45.  Such changes in these inhibitory projections to the brainstem locomotor areas 

may disrupt locomotion patterns and postural adjustments and, depending on the behavioral 

context, ultimately cause stepping blocks (FOG).  

 

Dysfunction in various nodes of the large network controlling posture and locomotion could be 

compensated by processing of sensory inputs through the thalamus, particularly visual, 

vestibular and proprioceptive information during postural changes. Molecular imaging studies 

have shown thalamic and metathalamic changes in patients with PD that correlate with falls 

and FOG46. Therefore, thalamic circuits participating in the control of body posture may 

underlie inadequate postural adjustments that trigger FOG in PD, for example during turning47. 

It is important to note that these mechanisms may play a role in locomotor paradigms that are 

typically triggering FOG, i.e., gait initiation, turning, doorway, etc.  Connections of the medial 

thalamic nuclei with cortical associative and limbic areas are enhanced with the appearance of 
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FOG in patients with PD48. The increased coupling to those non-motor cortical areas has been 

interpreted as compensation to deficient sensorimotor integration or reinforcement of 

malfunctioning circuits49. The cerebellum, a major player in postural control, may also be 

involved in FOG mechanisms and FOG triggering. Turns are a common trigger of FOG, and 

clearly, the postural control of turning could be a lead mechanism50. In particular, the vestibular 

system, including the cholinergic vestibular projections to the cerebellum (vermis, 

flocculonodular lobules) are thought to be a significant contributor based on PET imaging 

studies in patients with PD where the onset of gait disorders was associated with cerebellar and 

metathalamic cholinergic changes, including the medial geniculate body51. The medial 

geniculate body has intrinsic involvement with processing of ponto-cerebellar vestibular 

information that is critical for postural control and navigation. Using a vesicular acetylcholine 

transporter ligand (VAChT; 18F-FEOBV) for PET, it is now possible to visualize distinct and 

prominent uptake in the flocculus, nodulus and vermis regions52. The flocculo-nodular lobules 

also known as the vestibular cerebellum (also including part of the vermis) are the regions of 

the cerebellum that receive vestibular and visual information. The flocculo-nodular lobules are 

involved in vestibular reflexes, eye movements and balance. For example, the cerebellar 

flocculus is intimately related to the control of compensatory eye movements, providing 

stabilization of the retinal image during involuntary head rotation53. The cholinergic system in 

the cerebellar flocculus exerts a neuromodulatory effect on vestibular-ocular reflexes, and may 

be involved with vestibular compensation54, 55. Animal studies have identified that cerebellar 

cholinergic projections may originate in the medial vestibular nucleus, directly innervating both 

the cerebellar cortex and cerebellar nuclei53. However, in spite of the strong rationale and the 
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reported connectivity changes of thalamic56 and cerebellar57 regions in PD, data to ascertain the 

role of these network nodes in FOG mechanisms are lacking.  

  

Breakdown of cortical circuits could cause decoupling of the nodes executing the gait program 

when the subject tries to initiate gait or during walking. Frontal regions including the SMA and 

PMA may also participate in the generation of automatic motor patterns of gait 58. The fact that 

dual tasking is another typical trigger of FOG9, 59, 60 suggests that deficits in associative cognitive 

areas contribute to disrupting gait automation61, 62. Altered cognitive management of tasks and 

automation could thus cause FOG in various behavioral contexts. Notably, attentional and 

emotional factors that may cause disengagement of motor cortical circuits are known to 

precipitate freezing episodes. Likely, the ‘limbic system’ and its multiple cortical connections 

influence the coupling and uncoupling of automated programs. Neuroimaging studies have 

shown changes in limbic areas in patients with PD and FOG63, 64. Clinical data supporting cortical 

involvement in FOG also derive from studies using transcranial magnetic stimulation (TMS) and 

electrophysiology65, 66. The TMS studies particularly implicate the SMA67 and the prefrontal 

cortex68 as relevant for understanding and treating FOG69.   

 

Postural instability, a cardinal symptom of PD that may also develop as part of the brain aging 

process, may evolve to significant balance dysfunction as disease progresses. Both cortical 

(various areas) and subcortical circuits may contribute to loss of balance, particularly in aging 

patients. Experimental lesions of cortical cholinergic terminals that induce ‘attention deficits’ 

can increase the propensity to fall in rodents with combined lesions of striatal dopaminergic 

terminals 70. Freezing with the same characteristics as in patients with PD has not been 
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observed in these animals, but stance and walking instability frequently coexist with FOG in 

patients with PD, which may result from different or common underlying mechanisms. Patients 

with frontal lesions may have a “frontal gait disorder” that includes FOG 71-73. Likely, multiple 

cortical circuits involving attention, emotion, and associative functions play a role in both 

postural control and locomotion automation processes (Figure 2). Cognitive decline has been 

largely implicated in gait disorders mostly based on correlation data in clinical studies 74, 75, but 

experimental tests of disrupted frontal circuits are lacking.  

 

Finally, it is critical to consider that the aforementioned nodes involving different brain regions 

may be partial contributors to the altered mechanisms of postural control and locomotion. A 

major consideration should be given to the robust basal ganglia output to brainstem regions 

that control locomotion76, as an essential part of the network affected in PD. Presumably, the 

altered pattern of activity of the basal ganglia output nuclei in PD may also affect projections to 

the MLR/PPN creating functional changes in the core control of gait and posture. Such changes 

could be compensated by multiple mechanisms in the network that also influence these 

brainstem regions77, but those mechanisms may become compromised as the disease evolves. 

Therefore, FOG and loss of balance may be governed by dopamine depletion with the addition 

of dysfunction in glutamate, GABA and other signaling mechanisms participating in the large 

network of posture-gait control (Figure 2).  

 

 

Filling the Gaps, Research Strategies 
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As discussed above, the large motor network controlling posture and locomotion spans from 

the spinal cord to the cortex including several midbrain and subcortical circuits, and is also 

influenced by other networks (non-motor systems), rendering the study of underlying 

mechanisms of gait disorders highly complex. Furthermore, different components of this 

network and multiple systems could be affected due to the extended neurodegenerative 

process or functional changes in PD. The available clinical and experimental data support a 

combination of dysfunctional circuits rather than a single node mechanism disrupting the whole 

network 12, 13, 78. However, this notion as well as further data interpretations into underlying 

pathophysiology are still untested hypotheses.  After discussing the types of data generated 

thus far, it became clear that there is a major need for progress from the past 

associative/observational studies to novel “functional/operative” studies.  It is necessary to 

design experimental models with dynamic operating features to test circuit activity and 

interactions inside and outside the motor network in different behavioral contexts.  These types 

of models rely on current technological advances, which provide a variety of tools to selectively 

challenge a circuit or cellular population with high resolution and even microscale time 

precision 79-81.  In addition, a combination of different probes (biochemical, electro-

physiological, genetic, imaging) should be applied to studies in experimental models for 

rigorous testing of candidate mechanisms. Also important, inferences derived from these 

experimental models require further analysis in patients with gait disorders.  In the clinical 

phase, the design of appropriate tests in patients is key to reveal the mechanisms analogous to 

human motor behavior.  Therefore, our analysis favors research strategies that are based on 

developing hypothesis-driven, dynamic studies to manipulate circuits in the posture/gait 

network and their connections to other networks–a systems neuroscience strategy.  A sequential 
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approach from experimental to clinical tests should also be taken in order to extrapolate model 

findings to disease dysfunction.   

Such “multi-scale approach” has two components, a preclinical modeling/testing and a clinical 

analysis, that are interdependent. Modeling can be refined based on the analysis of clinical 

information (reversed translational approach82-84), and discoveries from animal models need to 

go back to human testing for validation.  A key aspect for this scheme is to apply modern 

strategies of systems biology85 analyzing big datasets to study gait disorders in patients with PD.  

The clinical component of this multi-scale approach, thus, needs to innovate with a “systems 

biology strategy”, which applies “big data” analyses from a variety of sources (transcriptomics, 

metabolomics, proteomics, etc.) combined with physiological and imaging data to draw 

inferences from multiple interacting systems. Such analyses may identify pathway/node/system 

associations by common indicators from different data sources in a way that is similar to 

multivariate principal component analyses–PCA based algorithms used in many applications to 

analyze covariance in big datasets86. These new insights from systems biology (clinical analyses) 

could be a powerful tool to refine modeling and advance the preclinical assessment of 

hypotheses (systems neuroscience). The ultimate dissection of a mechanism will also require a 

bidirectional approach, which includes a clinical test/validation of the model findings.  

Summarizing, we therefore propose to prioritize the following path to advance our 

understanding of gait disorders in PD:  

• A multi-scale approach based on systems biology strategies in clinical studies and 

associated experimental modeling.  

• Systems neuroscience strategies to develop testable experimental models of the 

interacting circuits and networks that control gait and postural balance and may be 
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functionally impacted in PD. These strategies should use advanced technologies and 

analysis of multiple measures to address discrete mechanistic hypotheses.  

• A human testing phase related to the designed modeling studies consisting of adaptive 

paradigms to investigate model findings in patients and validate them as 

pathophysiologic mechanisms in PD.  

There are many examples of the potential of systems biology strategies to shed light on 

molecular, cellular and circuit pathways involved in neuropsychiatric disorders.  To provide an 

overview of the potential of the systems neuroscience strategy, next we will exemplify its 

application for addressing two known hypotheses on the mechanisms of gait disorders in PD, 

i.e.: (I) lack of motor automation associated with cognitive and attentional deficits, and (II) 

altered postural control and sensorimotor integration 

A. Motor automation with cognition/attentional deficits.  

• Phase 1, Modeling. Dopamine depletion in PD may alter the execution of complex 

motor programs, and likely those that are automated such as locomotion87. It is critical 

that we understand the descending circuits controlling locomotion, and how basal 

ganglia output can control these circuits. It is also critical to determine where in the 

brain dopamine depletion causes problems in locomotion, if at all.  Deficiencies in 

execution could be compensated by attentional reinforcement of the program 

execution, but such compensation may fail due to co-existence of impaired attention 88, 

89. Therefore, gait abnormalities and possibly freezing could also result from 

disengagement of automation by shortage of supportive associative (cortical) circuits 

that are involved in behavior-directed attention. A strategy to address this hypothesis 

would be to develop a model where the interaction between these systems could be 
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specifically tested, i.e., manipulation of activity in attentional circuits in conditions of 

intact or depleted dopamine while assessing gait in various behavioral contexts.  A 

distinction should be made between self-paced gait and cued gait in these tests because 

the underlying mechanisms of locomotion control are likely different. Cued gait that 

may not rely on the automated process as much as on sensory information may be 

intact in models of dopamine depletion and may not be sensitive to attentional states. 

In addition, cued gait may not be associated with postural or other abnormalities in the 

animal model that are compatible with FOG. 

Neurons of the nucleus Basalis of Meynert and Substantia Innominata provide cortical 

cholinergic innervation, which participates in mechanisms of attention, and lesions of 

these neurons (ChNs) in rodents with dopamine depletion lead to impaired attention 

and increase the frequency of falls 44, 47, 90.  The activity of basal forebrain ChNs could be 

selectively excited and suppressed using optogenetics to assess specific, time-linked 

effects on motor performance. Therefore, the premise in this example that automated 

locomotion in PD is affected by a shortage of attention could be tested by optical driving 

of basal ChN activity in animals with dopamine depletion while performing different 

motor tasks during walking. Both neuron excitation and inhibition could be tested in this 

model to confirm the specific effects of attentional circuits. In addition to this direct 

assessment of the circuit function, complementary analyses of morphology, signaling 

molecules, and network activities (cellular and field potential recordings, fiber 

photometry, or calcium imaging) would add supporting information to characterize the 

pathophysiologic mechanism91, 92.  



 17 

• Phase 2, Human studies. Loss of attentional compensation resulting from involvement 

of the cholinergic system may occur later in the time course of the disease, which can 

explain variable therapeutic responses to dopaminergic treatments.  Therefore, it may 

be important to analyze patients longitudinally at different disease stages to assess the 

timing for a cholinergic participation, likely with an attention deficit.  Studies in patients 

with PD can use different methods to manipulate attention while walking, a typical 

example is the use of dual tasks. The key to testing the role of the basal cholinergic 

circuit lies in imaging technologies that can evidence significant activity changes, such as 

fMRI or FDG-PET, comparing patients with and without FOG, and normal subjects. 

However, to study gait and balance disorders there has been a critical limitation of 

imaging procedures that require decubitus position of the subject.  Some recent 

advances to achieve real-life in vivo imaging could overcome this problem. A recently 

developed PET “helmet” may soon be used for imaging during real performance of the 

gait task with attentional distractions.  This FDG-PET analysis may provide the data to 

analyze activity in the basal cholinergic circuit during the interference of attention with 

gait automation leading to FOG in patients, and thereby validating or rejecting the 

experimental model findings on the role of this circuit. Human studies should always try 

to surpass the correlational analyses done in the past by including, if suitable, 

pharmacological tests or other interventions in order to manipulate the system or circuit 

under study. In this example, the repetition of the PET-behavioral protocol under the 

effect of cholinergic drugs could be used. In addition, the combination of FOG 

assessment methods can provide timely association of FOG to the circuit activity 

changes as measured by PET.  For example, kinematic sensor signals may be used to 
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identify the onset of a freezing episode. This information allows the investigator to 

compare the average regional cerebral glucose metabolism preceding and 

during/following the freezing episode. Also important, EMG data could be used to 

document whether or not the observed freeze was associated with leg trembling since 

the pathophysiology may differ. Tests in the “off” and “on” states could determine the 

contribution of dopamine. Obviously, the design of adaptive paradigms to test model 

findings in human studies will often depend on technological advances, of which the PET 

helmet is a good example. Other approaches for human studies are provided in the next 

example. 

 

B. Postural control and sensorimotor integration.  

• Phase 1, Modeling. Processing of visual, vestibular and proprioceptive information to 

control body posture during motion is altered in PD. As discussed above, impaired 

balance during postural adjustments may disrupt locomotion, and this could underlie 

FOG episodes and falls. Small steps and execution of movement sequences may require 

such adjustments especially in certain walking conditions that commonly trigger FOG, 

for example with turning or passing through a doorway 93, 94.  Freezing has been difficult 

to reproduce in rodents, but gait abnormalities, postural instability and falls have been 

reported in various models, including following peripheral sensory (vestibular) lesions95. 

There may be species differences in postural control of locomotion, but FOG, which is 

not seen with peripheral sensory lesions in humans, is presumably related to central 

mechanisms, principally the major role of the basal ganglia modulation of brainstem 

regions controlling posture and locomotion, and potentially the contribution of 
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integrating sensorimotor information (visual, vestibular, proprioceptive) at the cortical 

level.  In this example of a systems neuroscience research strategy, we will focus on the 

integration of sensorimotor information. Several thalamic areas including the VPL 

nucleus, geniculate nuclei (metathalamus), colliculi and pulvinar (visual and auditory 

signals), as well as the entorhinal cortex (spatial navigation) participate in processing 

sensory information. For the purpose of this example, we will focus on the thalamus, 

cerebellum and basal ganglia, as primary sensorimotor processing circuits that transfer 

information to various cortical areas including frontal associative areas. The cerebellar 

and basal ganglia projections, likely with distinct behavioral roles96, use different 

thalamic relays, mostly the ventral posterior lateral nucleus pars oralis (VPLo) and the 

ventral lateral nucleus pars oralis (VLo), respectively. This configuration creates a 

favorable scenario to separately analyze the signals from those nodes. 

A possible strategy to study the potential contribution of sensorimotor integration to 

the mechanisms of posture control and FOG could be based on stepwise studies, 

focusing first on thalamocortical circuits. To dissect the role of these thalamic circuits in 

deficient postural balance, recordings of their activities need to be analyzed together 

with body posture adjustments in behaving animals.  Combined expression of calcium 

indicators in neurons of the VPL, VPLo and VLo could be used to assess the global 

function of these regions (multifiber photometry) in relation to postural changes with 

different turning tasks comparing normal with dopamine-depleted states in rodents. 

These data could then be paired with analysis of neuronal firing in the connected 

associative cortical area using the same turning tasks.  Results of these studies may 

indicate whether sensorimotor integration is disrupted at the afferent level (e.g., the 
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cerebellar or basal ganglia circuit) or the cortical processing of the information itself.  

The subsequent study would consist of operative tests using optic or chemogenetics to 

perturb negatively and positively the neuronal activity in selective circuits and generate 

confirmatory functional (behavioral) data. This challenging part may require assessment 

of different technologies and animal models since there are gait differences across 

species that may create problems to reproduce the gait abnormalities seen in patients.  

While postural instability and falls are well reproduced in rodent models of PD, FOG has 

been more difficult.  Freezing episodes have been occasionally reported in some 

models, e.g.: PPN activation23.  Nevertheless, non-human primates with severe toxin-

induced parkinsonism develop FOG and are especially useful to assess specifically 

freezing episodes during turning or other conditions of postural adjustments 16, 97. These 

studies could be designed with modern electrophysiologic and optogenetic technologies 

for animal research, such as chronic implants of electrode arrays and fiber optics, as well 

as minimally invasive optogenetic stimulation79. 

• Phase 2, Human studies. In this example of human studies to investigate the role of 

postural control and sensorimotor integration it is important to discuss first the 

pathophysiology of different types of FOG. As noted earlier, there are at least two 

prominent types of FOG, failure to have any movement and rapid alternating trembling 

of the legs.  The first maybe the failure to initiate a motor program, but the nature of 

the second is obscure.  The similarities and differences need to be explored clinically and 

physiologically.  Neural activity of the brain can be monitored while walking with EEG, 

which can now be supplemented with deep brain recording using the new DBS 

recording systems with enhanced resolution for the STN and its surroundings including 
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the SNr, plus LFP recordings of some cortical areas.  FDG PET or rCBF SPECT studies 

could be performed with “ictal” radioligand injection, i.e.: during the freezing episode98-

100. The tracers are trapped in the brain during the episode and the supine imaging 

taken after the episode can thus reveal changes related to FOG subtypes. Another point 

mentioned above is the pathophysiology of sequence effect, the serial reduction in size 

or speed of movements with every step in a sequence (e.g.: while the patient is writing 

or walking).  This has long been recognized as an important component of Parkinson 

bradykinesia101, and progressive shortening of steps can trigger a freeze albeit not 

consistently.  The sequence effect is less responsive to dopamine than is the slowness, 

and this may be one of the reasons that FOG is not very dopamine responsive.  The 

physiology of the sequence effect has hardly ever been investigated, and, since the 

sequence effect can be seen in hand movements as well as walking, it should be 

relatively accessible to study.  Studies with neuroimaging, EEG, and brain excitability 

using transcranial magnetic stimulation could be undertaken to assess the role of the 

network nodes in the sequence effect102.  Ambulatory EEG may be more problematic 

due to contaminating movement artifacts103, 104; however, when properly dealt with EEG 

shows an increase in cortical synchronization with FOG105. Understanding these 

physiological aspects is important to interpret data obtained in circuit studies that may 

vary depending on the particular postural control. 

Analysis of differences in the activities of the thalamic targets between patients with 

and without FOG, and normal subjects may be approached with PET-ligand studies using 

GABA ligands, such as 11C-flumazenil (basal ganglia projections) and newly developed 

ligands for ionotropic glutamate (NMDAR and AMPAR) receptors (cerebellar 
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projections)106.  Comparison of L-Dopa off and on in these PET studies can assess the 

impact of dopamine replacement also in the cerebellar circuit by network effects. The 

correlation of differences induced by L-Dopa with dopamine-responsive FOG may 

confirm the PET-ligand binding results.  Although, as mentioned above, it is important to 

design pharmacological assessments, in this case the use of GABAergic and 

glutamatergic drugs will have diffuse effects in the gait network.  If results in the model 

revealed that sensorimotor integration was disrupted at the cortical process, human 

studies to test such findings may also be designed.  Transcranial magnetic stimulation 

can be used to assess the role of connected associative cortical areas during postural 

adjustments while walking comparing patients with and without FOG107. These data can 

be paired with EEG analysis during the performance of the same tasks108.  

 

Conclusions 
 

This panel has held a critical discussion of the current knowledge gaps about gait abnormalities 

in PD, chiefly FOG and balance dysfunction, to determine the top research priorities.  It was 

clear that from phenomenology to causality and to therapeutics, in each area there are many 

unanswered questions, poor definitions, and conflicted, inconclusive or lacking data.  

Nevertheless, it stood out that a major barrier to advance the field was our poor understanding 

of the complex underlying pathophysiology with its diverse anatomical and physiological facets.  

The panel consensus then was that pathophysiology of FOG and balance dysfunction should be 

the targeted topic to set research priorities.    
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Various approaches have been taken in the previous research, but multidimensional strategies 

that could examine interacting systems have been seldom used. The pathophysiological 

mechanisms of FOG and postural control seem to involve a large brain network where motor, 

sensory, and cognitive/emotional systems intersect. The perspective view of the panel was that 

to unravel such mechanisms, it is necessary to develop ‘systems biology’ strategies taking a 

multi-scale approach for clinical analysis and experimental modeling, the latter beginning with a 

‘systems neuroscience’ strategy to study the circuits/networks involved.   

Therefore, the panel agreed to the following recommendations as top research priorities: 

• The application of “Multi-scale, Systems Biology” strategies, which transitions in both 

directions between clinical to modeling analyses. 

• The application of “Systems Neuroscience” strategies to develop hypothesis-driven 

dynamic studies of circuit function in posture/gait network and extra-network 

connections, whose dysfunction may become relevant after loss of adequate control by 

the basal ganglia output in PD.   

•  The application of such research strategies with the goal to address discrete hypotheses 

on pathophysiologic mechanisms and model FOG and balance dysfunction of PD.  

• The application of research approaches that use testable animal models of PD, 

particularly refining the existing models, such as the rodents and non-human primates 

that can reproduce parkinsonian FOG and balance disturbances. 

•  A broad, multidimensional approach that includes the analyses of biochemical, 

electrophysiological, genetic, imaging, and other data to address the hypothesis. 
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• A sequential experimental design that transitions from the modeling phase to a human 

testing phase based on developing adaptive paradigms for studies in patients. 

• The application of the latest advanced technologies that can serve better to test the 

hypotheses in both modeling and clinical phases. 

 

This panel discussion also led to the conclusion that there are multiple points to address related 

to refining the characterization, detection, and quantification of gait disorders in patients with 

PD. These points are key to design protocols in a variety of clinical studies aiming at 

investigating mechanisms as well as evaluating therapies. Furthermore, they are critical for the 

application of systems biology strategies, as discussed here. Some important clinical queries 

also need to be answered; for example, the development and progression of FOG and balance 

dysfunction, whose patterns in PD remain unclear. A detailed analysis of these clinical issues 

and the research approaches to address them require further discussion, and the MDS-SIC has 

undertaken such analysis with the preparation of a Viewpoint article109. 
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Figure Legends 

 

Figure 1. Motor network of posture/gait control. A fundamental circuitry between the 

brainstem (including the PPN/MLR) and the spinal cord via the brainstem-spinal cord pathways 

contributes to the generation of locomotor rhythms and the regulation of postural muscle tone. 

Signals from motor cortex conducted through the lateral corticospinal tract (CST) to the 

brainstem and spinal cord contribute to volitional gait control.  The regulation of appropriate 

postural balance and gait mediated by the basal ganglia and the cerebellum is conducted 

downwards through their connections with the brainstem and upwards to the cortex via the 

thalamus. CPG: central pattern generator; BS-SC: brainstem-spinal cord pathways; PPN/MLR: 

pedunculopontine nucleus/mesencephalic locomotor region.  

 

Figure 2. Multiple systems network in posture/gait control. Cognitive, emotional, and sensory 

(visual, auditory, vestibular, and proprioceptive) signals influence various nodes of the motor 

network (cortex, basal ganglia, cerebellum, brainstem). In addition, multiple interactions 

between the sensory, limbic, and cognitive systems modulate motor behaviors including gait 

and postural control. For example, the limbic system has dense connections with the prefrontal 

cortex (CTX) and the basal ganglia. The parietal, temporal, and occipital association cortices 

connect with the prefrontal cortex (cognitive system) via dorsal and ventral pathways. 

Descending motor signals are further integrated with proprioceptive sensory signals at the level 

of the spinal cord. CPG: central pattern generator; BS-SC: brainstem-spinal cord; CST: 

corticospinal tract 
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