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ABSTRACT

Pregnancy represents a period when the mother undergoes significant
immunologi changes to promote tolerance of the fetal semi-allograft. Such
toleranc m the exposure of the maternal immune system to fetal antigens,
a procgs@as been widely investigated at the maternal-fetal interface and the
adjacent dgaining lymph nodes. However, the peripheral mechanisms of maternal-
fetal crosure poorly understood. Herein, we hypothesized that specific innate
immune €ells ifteract with fetal antigens in the maternal circulation. To test this

hypothes$utilized a mouse model of transgenic male mice that express the
chicken ovalbumin (OVA) antigen under the beta-actin promoter, which were

allogeneimated with wild type females to allow for the tracking of the fetal
antigen. @ntigen-carrying Ly6G+ and F4/80+ cells were identified in the
mater i tion, where they were more abundant in the second half of
pregnancy. ; innate immune cells displayed unique phenotypes: while Ly6G+
cells expressed high levels of MHC-II and CD80 together with low levels of pro-
ianammaSry cytokines, F4/80+ cells upregulated the expression of CD86 as well as
the anti-i atory cytokines IL-10 and TGF. In vitro studies using allogeneic
GFP+ pla particles revealed that maternal peripheral Ly6G+ and F4/80+ cells
phagocx&e fetal antigens in mid and late murine pregnancy. Importantly,
cytotro“ﬂerived particles were also in vitro engulfed by CD15+ and CD14+
cells from preghant women, providing translational evidence that this process also
occurs in h s. Collectively, this study demonstrates novel interactions between
specifi{al circulating innate immune cells and fetal antigens, thereby

shedding light on the systemic mechanisms of maternal-fetal crosstalk.
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INTRODUCTION

Pregnancy represents a period of significant immunological changes in the
mothertHow her to tolerate the fetal semi-allograft [1-5]. Among these
adaptatioaest—characterized are those that occur at the site of contact
betwee-n Ematernal and fetal tissues, i.e. the maternal-fetal interface [6]. In this
compart t mpd the adjoining tissues (e.g. the uterine-draining lymph nodes) [7-
14], expm the maternal immune system to fetus-derived antigens initiates the
establish t of tolerance [15-17] by promoting the induction of regulatory T cells
(Tregs) |8, 7]. Other mechanisms of maternal-fetal tolerance may include
effector T- haustion [28, 29] and the enrichment of the homeostatic immune
microenvﬁt by innate immunoregulatory cells [30-37]. The placenta also
contributmcal tolerance by expressing immunomodulatory non-classical MHC

molec HLA-G) that inhibit NK cell responses [38-40] as well as inhibitory

checkpoint li s such as PD-L1 [41, 42]. Together, these and other [4, 43] cellular
processes mediate the local mechanisms of maternal-fetal tolerance.
Anglestablished hallmark of pregnancy is the transfer of fetal cells into the

maternalgion [44-46] (and vice versa [47-50]), a phenomenon termed fetal or
c

maternal himerism, respectively. Fetal microchimerism is detected as early as
seven& gestation [46], and the abundance of such cells (as well as their

genetim steadily increase throughout pregnancy [46]. Such a process not

only pani@ in the mechanisms of maternal-fetal tolerance [51, 52] but can also
have long- effects, given that fetal or maternal cells are observed in the
circulaﬁeg mother and offspring, respectively, for decades after delivery [45,
47]. In addition to fetal cells, the placenta can also release microparticles and

exosomes into the maternal circulation, either due to apoptotic turnover or by active
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6
secretion [53-63]. Specifically, placenta-derived particles serve as modulators of
maternal systemic immune responses [54-56, 59, 60, 64-67] and, similar to fetal

cells, thelrﬁcentrations increase as gestation progresses [53, 56, 68]. However,

the inter. tween placenta-derived microparticles and maternal circulating
| -f_" have not b Il explored
immune gells have not been well explored.

Prﬂmstudies have established that the phenotypes and functions of
neutrophi d monocytes in the maternal circulation are highly impacted
througho reggnancy [69-71]. Neutrophils from pregnant women exhibit an

enhancegsa of activation as evidenced by the increased expression of cell

surface m (e.g. CD14 and CD64) [69, 70], higher basal intracellular reactive
oxygen igsy (IROS) levels [69, 70, 72] and reactive oxygen metabolite release
[73], anm phagocytic activity [74-76] compared to those from non-pregnant
wome imi , monocytes from pregnant women display increased cell surface
marker ex n (e.g. CD11b, CD18 and CD64) [69, 70, 77, 78], greater basal

iROS production [69, 70], enhanced cytokine responses [56, 79], and perturbed
phagocyti€ activity [75, 80] compared to those from non-pregnant women. Yet,
whether Qate immune cells interact with fetal-derived antigens in the maternal

circulation known.

T&éim ;)f this study was to investigate whether maternal circulating Ly6G+
cells (iwphils) and F4/80+ cells (i.e. monocytes/macrophages) capture fetal
antigens @wout gestation. Specifically, we utilized transgenic male mice that
express th ken ovalbumin (OVA) antigen under the beta-actin promoter, which
were al ically mated with wild type females to allow for the tracking of the fetal
antigen [9, 81-83]. First, we explored the localization of the fetal antigen in Ly6G+

and F4/80+ cells in the myometrium and periphery as well as their kinetics

This article is protected by copyright. All rights reserved.
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throughout pregnancy. Second, using flow cytometry, we characterized the
phenotypes and cytokine profiles of fetal antigen-carrying Ly6G+ and F4/80+ cells
and confir their maternal origin. Third, functional in vitro studies were utilized to
investigam the fetal antigen can be phagocytosed by maternal peripheral
N _ _ . :
Ly6G+ apd F4/80+ cells during mid and late murine gestation. Lastly, to demonstrate
the transw value of our findings in mice, we performed in vitro studies using
maternal eral CD15+ cells (i.e. neutrophils) and CD14+ cells (i.e. monocytes)

from se d third trimester pregnancies to explore whether cytotrophoblast-

S

derived particleg can also be engulfed by such innate immune cells.

Ul

Author Man
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MATERIALS AND METHODS
Mice
#Tg(CAG-OVAL)Q%Jen/J (Act-mOVA Il) (hereafter referred to as B6
CAG—OV&BALB/CBW (BALB/c) female and male, C57BL/6 female and
C57BL76E(hereafter referred to as B6 non-CAG-OVA), C57BL/6 Actb-Egfp
(GFP+) e,land DBA/2 female mice were purchased from The Jackson Laboratory
(Bar HaM), bred in the animal care facility at the C.S. Mott Center for Human
Growth welopment, Wayne State University, Detroit, MI, and housed under a
circadian cyclgy (light:dark = 12:12 h). Eight- to twelve-week-old females were
examine(&etween 8:00 and 9:00 am for the presence of a vaginal plug, which

indicated s post coitum (dpc). Upon observation of vaginal plugs, female mice

were rerrmom mating cages and housed separately. Pregnancy at 4.5 dpc was

iyo by using trypan blue to stain the implantation sites, followed by

washing wi phosphate-buffered saline (PBS; Fisher Scientific Chemicals, Fair
regnancy at 10.5 dpc was confirmed by a weight gain of = 2 g.
Postparth/c females (PP; 48 - 60 h after delivery) were also included in this
study. AIQiments were approved by the Institutional Animal Care and Use
Committee ayne State University (Protocol No. A 09-08-12, A 07-03-15, 18-03-

0584, @-3506).

=

Human subjec; and clinical specimens

Hu aternal peripheral blood samples were obtained at the Perinatology
Researc ch, an intramural program of the Eunice Kennedy Shriver National
Institute of Child Health and Human Development, National Institutes of Health, U.S.

Department of Health and Human Services, Wayne State University (Detroit, Ml),

This article is protected by copyright. All rights reserved.
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9
and the Detroit Medical Center (Detroit, MI). The collection and use of human
materials for research purposes were approved by the Institutional Review Boards of
Wayne University and the National Institute of Child Health and Human
Develop articipating women provided written informed consent prior to

 E—— _ ,
sample gllectlon. Samples were obtained from healthy women with normal

pregnancwe second or third trimester.

Hematomosin staining of fetal and myometrial tissues

Fejuse nd the surrounding myometrial tissues were collected from dams at
10.5 dpcﬁpc, and 18.5 dpc and placed into Tissue Tek OCT freezing medium
(Sakura USA, Inc., Torrance, CA) (n = 3 - 10 each). Sagittal cuts of 16 pm

thicknesken from each fetus. Slices were mounted on slides and fixed with

4% p hyde (Electron Microscopy Sciences, Hatfield, PA) for 30 minutes
(min) at 4° lides were stained with hematoxylin (Thermo Fisher Scientific,
Waltham, or 1 min and 10 seconds (s), and immersed in clarifier for 5 s and

blueing agent for 20 s, rinsing the slides with distilled water after each step. The
slides wgn stained with eosin (Thermo Fisher Scientific) for 45 s and
dehydrate a series of alcohol baths and xylene prior to applying coverslip. All
hematoxyii osin (H&E) images were taken using the Vectra Polaris Multispectral

Imagin (PerkinElmer, Waltham, MA, USA) at 4x magnification.

Ut

Confocal scopy of fetal and myometrial tissues

A

and the surrounding myometrial tissues were collected from dams at
10.5 dpc, 16.5 dpc, and 18.5 dpc and placed into Tissue Tek OCT freezing medium

(n =3 - 10 each). Sagittal cuts of 16 um thickness were taken from each fetus. Slices

This article is protected by copyright. All rights reserved.
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were mounted on slides and fixed with 4% paraformaldehyde (Electron Microscopy
Sciences) in 1X phosphate buffered saline (PBS; Life Technologies, Grand lIsland,
NY) for in at 4°C. Slides were then rinsed with 1X PBS (Life Technologies,
Grand Is permeabilized with 0.25% Triton X-100 (Promega Corporation,
Madiso-n,Mr 5 min at room temperature (RT), rinsed again with 1X PBS and
blocked wi bovine serum albumin (BSA; Sigma-Aldrich, St Louis, MO) diluted
in 1X P\m% min at RT. The primary OVA-FITC (Cat #: 200-4233-0101,
Rocklanwwochemicals, Inc. Gilbertsville, PA, USA) antibody or rabbit 1gG
isotype con rof\was added and the slides were incubated for 1 h at RT. The slides
were was ith 1X PBS, CD11b-Alexa Fluor 594 antibody (Cat #: 101254,
BioLegerﬁDlego CA) was added, and the slides were incubated for 30 min at
RT. Aftermrg slides were mounted with ProLong Gold Mounting medium with
4' 6-digmidi phenylindole (DAPI) (Life Technologies). Immunofluorescence was
visualized a Zeiss LSM 780 laser scanning confocal microscope (Carl Zeiss

Microscopy, Jena, Germany) at the Microscopy, Imaging, and Cytometry Resources

Core of Wayne State University School of Medicine (https://micr.med.wayne.edu/).

The 561 Q of an "in-tune" tunable white laser was used to excite Alexa Fluor
594, the 4 line of the tunable white laser to excite FITC, and the 405 nm diode

laser t DAPI.

hi

{

v

Cell sorting
Da 10.5 dpc and 18.5 dpc were euthanized and peripheral blood was

obtaine

A

rdiac puncture (n = 10 each). Peripheral leukocytes were incubated
with the CD16/CD32 monoclonal antibody (mAb) (Fcylll/ll receptor; BD Biosciences,

San Jose, CA) followed by staining using CD11b-PECF594, Ly6G-APC-Cy7 and

This article is protected by copyright. All rights reserved.
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F4/80-PE mAbs (BD Biosciences), after which the cell suspensions underwent
intracellular staining with either OVA-FITC antibody or rabbit IgG-FITC isotype
controlﬁre resuspended in 500 yL of FACS buffer and sorted using a BD
FACSAriﬁer (BD Biosciences) and BD FACSDiva Software Version 6.1.3.
The somed CD11b+Ly6G+OVA+ or CD11b+F4/80+OVA+ cells were then
resuspenged mith 200 uL of FACS buffer. Cytospin slides of sorted cells were
prepareduisherbrand Superfrost microscope slides (Thermo Fisher Scientific)
and a Sh ytospin 3 cytocentrifuge (Thermo Fisher Scientific) at 800 rpm for 5
min. After centfugation, all slides were washed with 1X PBS and the cells were
fixed with 4% raformaldehyde for 20 min. After fixation, the slides were washed
with 1X lﬁed, and mounted using ProLong Diamond Antifade Mountant with

DAPI. Im@re obtained with an Olympus BX60 fluorescence microscope at 40x

magnificati ith digital zoom.

Leukocyte isolation from the maternal peripheral blood and myometrium
Identiﬁcam fetal antigen-carrying immune cells throughout pregnancy and
postpartug

Da ated with B6 CAG-OVA or non-CAG-OVA males were euthanized at

4.5 dp, c, 16.5 dpc, 18.5 dpc, and in the postpartum period and peripheral

3

L

blood ed by cardiac puncture. Non-pregnant females were also included

4

as controls. My@metrial tissues from the implantation sites were collected (n =2 — 14

each), and_ es of the uterine horns were taken. Isolation of leukocytes from

A

myome ues was performed as previously described [84]. Briefly, tissues were
minced using fine scissors and enzymatically digested with StemPro Cell

Dissociation Reagent (Life Techologies) for 35 min at 37°C. Leukocyte suspensions

This article is protected by copyright. All rights reserved.
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were filtered using a 100-um cell strainer (Fisherbrand; Fisher Scientific, Fair Lawn,
NY) and washed with FACS buffer [0.1% BSA and 0.05% sodium azide (Fisher

Scientific icals) in 1X PBS] immediately prior to immunophenotyping.

Immun-ops?otyping of fetal antigen-carrying immune cells in mid and late
pregnanc

Dan.S dpc (mid pregnancy) and 16.5 dpc (late pregnancy) were
euthaniz eripheral blood was obtained by cardiac puncture (n =9 — 12 each).
Myometri@es from the implantation sites were collected (n = 9 — 11 each).

Isolation ﬂocytes from myometrial tissues was performed, as previously

describe olated leukocytes were utilized for immunophenotyping.

ping of leukocytes in the maternal peripheral blood and

Identification of fetal antigen-carrying immune cells throughout pregnancy and

postpartts

MQperipheral blood (150 pL) and leukocyte suspensions from the

myometriu

incuba@we CD16/CD32 mAb (Fcylll/ll receptor; BD Biosciences) for 10 min,

and suwy incubated with specific fluorochrome-conjugated anti-mouse mAbs

ere centrifuged at 1250 x g for 10 min at 4°C, and cell pellets were

(Table SEO min at 4°C in the dark. After washing, the cells were fixed and
permeabili ith the BD Cytofix/Cytoperm kit (BD Biosciences) prior to staining
with intr r Abs. For intracellular staining, OVA-FITC antibody or its isotype
control (Table S1) were then added to the cells, which were then incubated for 30

min at 4°C in the dark. Following staining, cells were acquired using the BD

This article is protected by copyright. All rights reserved.
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LSRFortessa flow cytometer (BD Biosciences) and FACSDiva 8.0 software (BD
Biosciences). Immunophenotyping included the identification of CD45+Ly6G+OVA+
(or CD4£>*§+OVA-) cells and CD45+F4/80+OVA+ (or CD45+F4/80+OVA-) cells

in the m

N
v10 (Flov!o, Ashland, OR).

Immunopgping of fetal antigen-carrying immune cells in mid and late

pregnanm

Matern perlpheral blood (150 pL) and leukocyte suspensions from the

and peripheral blood. Data were analyzed using FlowJo software

myometrﬁe stained using the LIVE/DEAD Fixable Blue Dead Cell Stain Kit

(Life Tec s) or Fixable Viability Stain 510 (BD Biosciences) prior to incubation
with extrm and intracellular mAbs, as described above. Immunophenotyping
includ identification of surface markers (MHC-II, CD80, CD86, CD206, and
CD62L) a tokines (IFNy, TNFa, IL-10, and TGFB) expressed by viable

CD11b+Ly6G+OVA- or CD11b+Ly6G+OVA+ cells and CD11b+F4/80+OVA- or
CD11b+R&/80+OVA+ cells in the maternal peripheral blood at mid (10.5 dpc) and

late (16.®uregnancy. The expression of the same cell surface markers and
s re

cytokine evaluated on viable CD11b+Ly6G+OVA+ cells and

CD11@VA+ cells in the myometrial tissues at mid (10.5 dpc) and late (16.5

dpc) piw The expression of the MHC class | molecules H2K® and H2K® was
evaluated on vs:ble CD11b+Ly6G+OVA+ and CD11b+F4/80+OVA+ cells from the
maternal ipieral blood (50 pL) at mid-gestation (10.5 dpc). Data were analyzed

using ftware v10.

Phagocytosis assays

This article is protected by copyright. All rights reserved.
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Generation of GFP+ placental particles

To obtain GFP+ placental particles, DBA/2 female mice were mated with
GFP+ malﬁnd the placentas were collected at 17.5 dpc. After collection, the
placenta ced in a Petri dish with PBS and the expression of GFP was
determlng by ex vivo imaging with the IVIS Spectrum in vivo imaging system
(PerkinElwﬂ. An excitation filter of 465 nm and an emission filter of 520 nm
were use determine GFP expression. GFP+ placenta-derived particles were

prepared ngl a mechanical tissue homogenizer. Whole cells and large cell

S

fragments  w. removed by centrifugation at 1,000 x g for 5 min. Tissue

4

homogen m one placenta were divided into four aliquots, and GFP+ placenta-

1

derived i were collected by centrifugation at 16,000 x g for 5 min. One aliquot

of placenta ed particles was opsonized with 50 pL autologous plasma for 30

a

min at 345 used for phagocytosis assays.

M

Phagocytosis of placenta-derived particles or E. coli by murine maternal peripheral

Ly6G+ a:s F4/80+ cells

w od samples were collected from pregnant C57BL/6 dams (mated

with BAL ales) at 10.5 or 16.5 dpc (n = 6 each). Whole maternal blood (50 uL)

was t@ated with 10 pL of GFP+ placenta-derived particles or 10 yL of

pHrodw E. coli BioParticles (Life Technologies) for 15 min at 37°C or on ice.

After incu@the cells were washed with FACS stain buffer (BD Biosciences) and
centrifuged 0 x g for 5 min. The cells were then incubated with anti-mouse
CD11[<EJOF594, anti-mouse F4/80 APC, and anti-mouse Ly6G APC-Cy7
antibodies (Table S1) in FACS staining buffer (BD Biosciences) for 30 minutes at

4°C in the dark. After incubation, erythrocytes were lysed using Ammonium-Chloride-

This article is protected by copyright. All rights reserved.
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Potassium (ACK) lysing buffer (Lonza, Walkersville, MD), and the resulting
leukocytes were collected after centrifugation at 400 x g for 5 min. Finally, the cells
were Wasﬁand resuspended in 500 yL of FACS staining buffer and acquired
using th ortessa flow cytometer and FACSDiva 9 software. The analysis
I _ ,
and flgurss were performed using FlowJo software version 10. The percentage of
active phuc cells was calculated as the percentage of phagocytic cells at 37°C
minus the

ntage of phagocytic cells on ice.

Phagocytosis cytotrophoblast-derived particles or E. coli by human maternal

periphereﬁ+ and CD14+ cells
H eripheral blood samples were collected from healthy pregnant

women msecond or third trimester by venipuncture into collection tubes
contaigi (n = 4 — 6 each). Peripheral blood mononuclear cells (PBMCs) and
polymorpho ar neutrophils (PMNs) were isolated using Polymorphprep™ (Alere
Technologies, Oslo, Norway), following the manufacturer’s instructions. After
gradient §separation, PBMCs and PMNs were washed with 1X PBS (Life
Technolo@?ells were resuspended in RPMI 1640 medium (Life Technologies)
suppleme ith 5% human serum (Sigma Aldrich) and 1% penicillin/streptomycin
antibioti ife Technologies) at a concentration of 5 x 10° cells/mL. Swan71 human
first-triwtotrophoblast cells [86] were maintained in Dulbecco’s modified
Eagle’s m@(ufe Technologies) supplemented with 10% fetal bovine serum (Life
Technologi nd 1% penicillin/streptomycin antibiotics. Swan71 cells were
collecte beled using Vybrant® DiO cell-labeling solution (Life Technologies),

and then 1 X 10" DiO-labelled Swan71 cells were homogenized using a mechanical

tissue homogenizer. Whole cells and cell nuclei were removed by centrifugation at
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2000 x g for 5 min, after which the labelled Swan71-derived particles were collected
by centrifugation at 16,000 x g for 5 min. The Swan71-derived particles were
opsonize!ﬁ 100 pL human sera for 30 min at 37°C. Then, 5 X 10°/100uL of

combine nd PMNs were incubated with 20 yL of Swan71-derived particles

N o . . , .

or 20 uL @f pHrodo™ Green E. coli BioParticles for 15 min at either 37°C or on ice.

After incm the PBMCs and PMNs were washed and centrifuged at 300 x g for
Il

5 min fo y incubation with mouse anti-human CD15 BV650 (BD Biosciences)

and mouquman CD14 BUV395 (BD Biosciences) antibodies in FACS staining

buffer for inutes at 4°C in the dark. Finally, the cells were washed and
resusperﬁ 500 pyL of FACS staining buffer and acquired using the BD
LSRFort w cytometer and FACSDiva 9 software. The analysis and figures

were pem using FlowJo software version 10. The percentage of active
phagogdi was calculated as the percentage of phagocytic cells at 37°C minus

the percent f phagocytic cells on ice.

Immunofluorescence and confocal microscopy of in vitro phagocytosis

MQDHM leukocytes were isolated from whole blood using CD11b

itenyi Biotec, San Diego, CA). Briefly, 300 yL mouse whole blood

i

MicroBea

was | with ACK lysing buffer for 5 min on ice to remove erythrocytes.

1

t

Leuko collected by centrifugation at 400 x g for 5 min. CD11b+ cells were

G

selected by igblation using CD11b MicroBeads, following the manufacturer's

instruction 11b+ cells were placed into eight-well Lab-Tek chamber slides

A

(Themo Scientific) with RPMI 1640 medium (Life Technologies). Chamber
slides were incubated for 15 min at 37°C. After incubation, 10 uL of GFP+ placental

fragments or 10 pL pHrodo™ Green E. coli BioParticles were added to RPMI 1640
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medium for 30 min at 37°C. Cells were then fixed with 4% paraformaldehyde and
immediately used for immunofluorescence staining. Next, slides were blocked using
AntiboW/Block (PerkinElmer, Boston, MA) for 30 min at RT. Slides were then
incubate anti-mouse CD11b Alexa Fluor 594 followed by incubation with
goat a-ntEG Alexa Fluor 594 (Table S1). Immunofluorescence signal was
visualizedgusing a Zeiss LSM 780 laser scanning confocal microscope as described
above. IMuorescence signals for Alexa Fluor 647, Alexa Fluor 594, and green
fluoresc e excited with a 633 nm HeNe laser, a 550 nm HeNe laser, and a
488 nm line of \ultiline argon laser, respectively. The DAPI signal was excited with a
405 nm di er.

M PBMCs and PMNs were seeded into a four-well Lab-Tek chamber
slide witml 1640 medium supplemented with 5% human serum and 1%
penicilli ycin antibiotics at a concentration of 5 x 10° cells/mL. Cells were
incubated f at 37°C to allow for attachment to the chamber slide. Unattached
cells were then removed, and new medium was added. Next, 20 pL of Swan71
fragment§lor 20 uL of pHrodo™ Green E. coli BioParticles were added to RPMI 1640
medium h at 37°C. After incubation, cells were then fixed with 4%
parafoer

de and washed with 1X PBS. Next, slides were blocked using

Antibo nt/Block (PerkinElmer, Boston, MA) for 30 min at RT. Slides were then

1

L

incuba ouse anti-human CD14 (BD Biosciences) at RT for 1 h. Following

B

incubation, slidgs were washed with PBST [1X PBS containing 0.1% Tween 20

(Sigma-Aldg and goat anti-mouse IgG Alexa Fluor 594 (BD Biosciences) was

A

added a bated for 30 min at RT. Next, slides were incubated with mouse anti-
human CD15 Alexa Fluor 647 (BD Biosciences) for another hour at RT. Finally,

slides were washed and mounted with Prolong Gold Antifade Mountant with DAPI.
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Immunofluorescence signals were visualized using a Zeiss LSM 780 laser scanning

confocal microscope as described above.

StatisticQ

H . .

Statistical analyses were performed using SPSS v19.0 (IBM Corporation,
Armonk, ) @t GraphPad Prism version 8.0.1 for Windows (GraphPad Software,
San Dieg0; . The Shapiro-Wilk test was performed to determine the normality of

the data. proportions of immune cells carrying the fetal antigen throughout

pregnancy, Shapiro-Wilk normality test was applied, after which the statistical

WS

significaEeen groups was determined using the Kruskal-Wallis test followed
by Dun -hoc test. The statistical significance between groups for the

immunopfe ing at 10.5 dpc and 16.5 dpc as well as the human and murine

d

phago eriments was determined using Mann—-Whitney U-tests. A p value <

0.05was c red statistically significant.

Vi

Online lemental Material

i

Table S$1 f antibodies used for immunophenotyping and microscopy

G

Fig. S staining control for the localization of Ly6G+ and F4/80+ cells

in the al tissues in the second half of pregnancy

uth

Fig. S2. L nd F4/80+ cells in the myometrial tissues in the second half of

A

pregna A antibody staining control)
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Fig. S3. Expression of OVA in maternal circulating T cells and proportions of

Ly6G+ and F4/80+ cells in the myometrial tissues and maternal circulation

from nonl-ﬁnant, pregnant, and post-partum dams

N .
Fig. S4. Immmunophenotyping of fetal antigen-carrying Ly6G+ and F4/80+ cells

in the m@ial tissues during mid and late gestation

Fig. S5. wytosis of Escherichia coli by murine maternal Ly6G+ or F4/80+

cells an n maternal CD15+ or CD14+ cells in the second and third

trimestewﬂgnancy

Author Ma
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RESULTS
Localization of the fetal antigen to Ly6G+ and F4/80+ cells in the myometrium
and m“rculation throughout pregnancy

F s are released into the maternal circulation [44-46], a fraction of
which %r@zed in the reproductive tissues [87, 88]. However, whether such
antigens are nd in tissue-resident innate immune cells is unknown. Herein, we
first inves the presence of the fetal antigen in Ly6G+ and F4/80+ cells residing
in the m m surrounding the embryo using a model of B6 CAG-OVA males
mated with wilthtype BALB/c females (Fig. 1A). The myometrial tissues surrounding
the fetus centa were collected at 10.5 days post coitum (dpc), 16.5 dpc, or
18.5 dpcglhi A). H&E staining provided an anatomical overview to serve as a
referenc@sequent immunofluorescence staining (Fig. 1A). Given that CD11b
(a cell arker for cells of myeloid origin) is expressed by both monocytes
and granul s [89-93], we evaluated the intracellular expression of the OVA
protein inside 11b+ cells in the myometrial tissues from 10.5 dpc, 16.5 dpc, and
18.5 dpcSConfocaI microscopy revealed localization of the OVA protein inside of
myeloid he myometrium, suggesting that local innate immune cells carry the
fetal antig ig. 1A). Isotype staining confirmed that the visualization of the OVA
protein@ch cells was not due to non-specific staining (Fig. S1). To further
demonH specificity of the observed OVA signal in myometrial CD11b+ cells,
we similaEuated the intracellular expression of the OVA protein in dams mated
with B6 no -OVA males (Fig. S2). A positive OVA signal was not observed in
myommm cells from dams mated with B6 non-CAG-OVA males when

using the anti-OVA antibody (Fig. S1A ) or isotype control (Fig. S2B).
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Next, we explored whether fetal antigen-carrying cells could be detected and
visualized in the maternal circulation during mid-pregnancy (10.5 dpc). Ly6G+OVA+
and F4/ A+ cells were detected in the maternal circulation. Intracellular
immunofl e staining was utilized to confirm the expression of OVA in sorted
innate |msune cells (Fig. 1B). These findings show that innate immune cells carrying

the fetal @are present in the myometrium and can be detected in the maternal

circulation:

The IocaE(an stemic proportions of fetal antigen-carrying Ly6G+ and F4/80+

cells cha oughout pregnancy

Gi t the fetal antigen (OVA) was detected in Ly6G+ and F4/80+ cells in
the myom\ and maternal circulation, we next investigated whether the
proporgi hese OVA+ cells changed throughout pregnancy. B6 CAG-OVA

males wer ted with wild type BALB/c (non-CAG-OVA) females, and the
myometrial tissues and maternal peripheral blood were collected at 4.5 dpc (early
pregnandy; Trypan blue staining was utilized to detect implantation sites), 10.5 dpc

(mid pre@, 16.5 dpc (late pregnancy), and 18.5 dpc (term pregnancy) as well

(PP) (Fig. 2A). The populations of Ly6G+OVA+ and F4/80+OVA+

E

as postpa

cells wer rmined in the myometrium and maternal circulation at each time point.

1

{

The in presence of OVA by CD4+ and CD8+ T cells was also examined,

G

but these cells did not carry the fetal antigen in the maternal circulation (Fig. S3A).
The rtion of myometrial Ly6G+OVA+ cells drastically increased from 4.5

dpc to 1O c and was largely maintained until term (18.5 dpc), subsequently

declining in the PP period (Fig. 2B). The proportion of myometrial F4/80+OVA+ cells

peaked at 10.5 dpc and showed a slower decline from this point to PP (Fig. 2C). In
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the maternal circulation, a large proportion of Ly6G+OVA+ cells was observed at

each time point, including PP (Fig. 2D). The proportion of peripheral Ly6G+OVA+

cells f(h similar trajectory to that in the myometrial tissues but with less
variation,a increasing from 4.5 dpc to 10.5 dpc and then modestly declining
_ (. . :

in the PRy period (Fig. 2D). In contrast, the proportion of F4/80+OVA+ cells in the
maternaldion was lower than that of Ly6G+OVA+ cells at each time point, yet
followed a rall similar trend (Fig. 2E). To confirm the presence of OVA+ cells in
the myorw and maternal circulation, we repeated the above experiment using
tissues obtaingéd from dams mated with B6 non-CAG-OVA males (Fig. S3B). A

positive O nal was not detected in Ly6G+ or F4/80+ cells in the myometrial

1;

tissues ( & D) nor in the peripheral blood (Fig. S3E & F).

F

al ﬁ are found in the maternal circulation during pregnancy and persist
throug t-partum period; yet, these are rare [44, 45, 47]. Therefore, we
confirmed aternal origin of phagocytes carrying the OVA antigen in the
myometrium and peripheral blood (Fig. 3A & B). Ly6G+OVA+ and F4/80+OVA+ cells
in both tl'mmetrium (Fig. 3C) and periphery (Fig. 3D) expressed H2K? (maternal
MHC-I h e) and lacked H2K® (paternal MHC-I haplotype), indicating their
maternal@

T her, these results indicate that the proportions of fetal antigen-carrying
Ly6G+Heutrophils) and F4/80+ cells (monocytes/macrophages) in the
maternalEtion and myometrium are highest during the second half of
pregnancy decline after delivery. Hereafter, we primarily focused on
investig e phenotypic and functional properties of such innate immune cells in
the maternal circulation to further explore systemic maternal-fetal crosstalk, a poorly

understood phenomenon.
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Fetal antigen-carrying Ly6G+ and F4/80+ cells in the maternal circulation

{

display u phenotypes
w racterized the phenotypes of Ly6G+OVA+ and F4/80+0OVA+ cells
N

in the magernal circulation during mid and late pregnancy to determine whether these

cells werga distinct from their OVA- counterparts. Maternal peripheral blood was

G

collected .5 dpc and 16.5 dpc from wild type BALB/c females mated with B6

CAG-OV |g8s, and immunophenotyping of Ly6G+0OVA+ or Ly6G+OVA- cells and

S

F4/80+0 F4/80+OVA- cells was performed (Fig. 4A). We first examined the

U

expressio ajor histocompatibility complex class Il (MHC-II), an essential

[}

molecule jgen presentation by antigen-presenting cells (APCs) [94], and found

that the fle sion of MHC-II was significantly higher on Ly6G+OVA+ cells

al

comp G+OVA- cells in the maternal circulation at 10.5 dpc and tended to

increase at dpc (Fig. 4B). A similar trend was observed for the expression of

M

MHC-II by +0OVA+ cells, although this did not reach significance (Fig. 4C). We

also investigated the expression of the co-stimulatory molecules CD80 and CD86

|

[95] by and OVA- innate immune cells. The expression of CD80 by

O

Ly6G+O ells was elevated in the maternal circulation (peripheral blood)

compar Ly6G+OVA- cells at both 10.5 dpc and 16.5 dpc (Fig. 4D). However,

h

L

the ex f CD80 by F4/80+OVA+ cells was similar to that of F4/80+OVA-

cells (Fig. 4E). Although the expression of CD86 by Ly6G+OVA+ cells did not differ

Gl

from that 6G+0OVA- cells (Fig. 4F), the expression of this co-stimulatory

molecu

A

increased by F4/80+OVA+ cells compared to F4/80+OVA- cells at

10.5 dpc and 16.5 dpc (Fig. 4G). No significant differences were observed in the
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expression of the activation markers CD206 [96-99] and CD62L [100-103] by OVA+

and OVA- innate immune cells (Fig. 4H-K).

{

performed immunophenotyping of myometrial Ly6G+OVA+ and

F4/80+0O to measure expression of the molecules that were determined in

[
OVA+ ingate immune cells in the maternal circulation (Fig. S4A). Comparative

analysis betwagn OVA+ and OVA- immune cells in the myometrial tissues was not

G

possible s ery few OVA- leukocytes were found in these tissues. Therefore, we

report di between 10.5 dpc and 16.5 dpc. We found that the phenotypes of

>

OVA+ myometRal innate immune cells differed between 10.5 dpc and 16.5 dpc (Fig.

U

S4B-K).

1

T these data show that fetal antigen-carrying Ly6G+ cells (i.e.

neutrophils) F4/80+ cells (i.e. monocytes) display unique phenotypes in the

a

mater on.

M

Fetal antigen-carrying Ly6G+OVA+ and F4/80+OVA+ cells display a

homeostatic cytokine profile in the maternal circulation

£

N investigated the expression of pro-inflammatory (IFNy and TNFa)

O

and anti-in matory (IL-10 and TGFB) cytokines by Ly6G+OVA+ or Ly6G+OVA-

cells an +OVA+ or F4/80+0OVA- cells. Maternal peripheral blood was collected

h

1

at 10. 6.5 dpc from wild type BALB/c females mated with B6 CAG-OVA

Gl

males, and immiunophenotyping of OVA+ and OVA- neutrophils and monocytes was
performed 5A). The expression of IFNy by Ly6G+OVA+ cells was significantly

decreas

A

ared to that of Ly6G+OVA- cells at 10.5 dpc and 16.5 dpc (Fig. 5B).
Similarly, the expression of TNFa by Ly6G+OVA+ cells was reduced compared to

that of Ly6G+OVA- cells at 10.5 dpc and 16.5 dpc; yet, significance was only
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reached at 10.5 dpc (Fig. 5C). No significant differences in the expression of IL-10

and TGFB were observed between Ly6G+OVA+ and Ly6G+OVA- cells (Fig. 5D &

{

E). Althou e expression of IFNy and TNFa was similar between F4/80+OVA+

and F4/8 lIs (Fig. 5F & G), the expression of IL-10 by F4/80+OVA+ cells

[
was greager than that of F4/80+OVA- cells at 10.5 dpc and 16.5 dpc; yet, significance
was only geaalged at 16.5 dpc (Fig. SH). Interestingly, the expression of TGF@ by
F4/80+0 Is was greater than that of F4/80+OVA- cells at both 10.5 dpc and

16.5 dpc (Eig.

=
o

USG

a performed immunophenotyping of myometrial Ly6G+OVA+ and

F4/80+OVA+ _cells to measure expression of cytokines that were determined in

n

OVA+ i ells in the maternal circulation (Fig. S4A). We report that cytokine
expressimVA+ myometrial innate immune cells partially differed between 10.5
dpc a (Fig. S4L-S).

Coll ly, these results suggest that fetal antigen-carrying Ly6G+ cells (i.e.
neutrophils) and F4/80+ cells (i.e. monocytes) exhibit homeostatic functions in the
maternalcirculation by expressing low levels of pro-inflammatory cytokines or

increase of anti-inflammatory cytokines, respectively.

O

Matern irculating Ly6G+ and F4/80+ cells phagocytose placenta-derived

Ih

partic ine pregnancy

Gl

Up to thig point, our results suggest that maternal innate immune cells capture

the fetal a present in the maternal circulation. Therefore, we next investigated

A

whether es derived from GFP+ placentas of allogeneic pregnancies were
phagocytosed by maternal peripheral Ly6G+ cells and F4/80+ cells from wild type

BALB/c dams mated with B6 CAG-OVA males (Fig. 6A). Flow cytometry was utilized
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to determine the phagocytosis of GFP+ placental particles (Fig. 6B). Both maternal
Ly6G+ and F4/80+ cells were capable of phagocytosing placenta-derived particles at
10.5 dpc 16.5 dpc (Fig. 6C & D). Consistent with the similar proportions of
Ly6G+O\a4/80+OVA+ cells observed between 10.5 dpc and 16.5 dpc, the
proporﬁo@agocytosis did not differ between these gestational time points for
either celldypen(Fig. 6C & D). As expected, Ly6G+ and F4/80+ cells phagocytosed E.
coli eﬁicimhich served as a positive control for phagocytosis, and again no
differencWe observed between 10.5 dpc and 16.5 dpc (Fig. S5A-D).
Immunof@nce illustrated the uptake of placenta-derived particles by maternal
peripheral id cells (CD11b+ cells) (Fig. 6E). These data offer functional
evidence ternal circulating Ly6G+ cells (i.e. neutrophils) and F4/80+ cells (i.e.

monocytphagocytose placenta-derived particles during mid and late murine

gestati

Maternal circulating CD15+ <cells and CD14+ cells phagocytose
cytotropfloblast-derived particles in human pregnancy

Lag demonstrate the translational value of our findings in mice, we
performe itro studies using maternal peripheral CD15+ (i.e. neutrophils) and
CD14+ ‘Is m;nocytes) cells from second and third trimester pregnancies to explore
whetthhoblast-derived particles can also be engulfed by such innate
immune @ig. 7A). Particles were derived from Swan71 cytotrophoblast cells,
which have conventionally utilized for the generation of exosomes for research
into ma tal crosstalk [61, 104, 105]. Flow cytometry was utilized to determine

the phagocytosis of DiO-labelled cytotrophoblast-derived particles (Fig. 7B).

Consistent with our findings in mice, maternal CD15+ and CD14+ cells
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phagocytosed cytotrophoblast-derived particles during the second and third trimester

(Fig. 7C & D). Such phagocytic activity appeared to be greater in the third trimester

compare! e second, but this increase did not reach statistical significance (Fig.
7C & ofluorescence imaging further demonstrated the uptake of
I

cytotro blast derived particles by maternal phagocytes (Fig. 7E & F). As expected,
maternalg neutrophils and CD14+ monocytes also efficiently phagocytosed E.

coli (Fig These findings provide translational value to our observations in

mice by Wtrating that maternal CD15+ cells (neutrophils) and CD14+ cells

(monocytes capable of capturing fetus-derived antigens in the maternal

cwculaho& the second and third trimester.
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DISCUSSION

The immune mechanisms implicated in maternal-fetal crosstalk have been
extenshstigated in the uterine decidua, given that this is the primary site of
interactioan the mother and the developing fetus [1-3, 5]. Another
establighm of maternal-fetal interaction is the intervillous space, which has
primarily beermgtudied in the context of in utero transmission of pathogens [106-110]
and tranQntal transfer of antibodies [111-115]. Fetal antigens can also be
found in wternal circulation [17, 44, 45, 116-119], where their concentrations
increase as gegtation progresses [46, 85, 120-124]; however, their fate is largely

unknownﬂ we provide evidence that fetal antigens can be encountered by

neutroph onocytes in the maternal circulation.

Nelt 'Is are the dominant immune cell type in the circulation and therefore

play a le in host responses in both humans and mice. Pregnant women
display gre umbers of neutrophils in the circulation compared to non-pregnant
women -128], a phenomenon that is also observed in mice [129, 130]. Yet,

neutrophil{inumbers also vary throughout gestation [125]. A recent high-dimensional
study co the cellular dynamics of circulating neutrophils during normal
gestation, provided evidence of the responsiveness of these innate immune
cells t@ of stimuli [131]. Indeed, neutrophils from pregnant women possess
a distir‘lﬁype from that of non-pregnant women, which is characterized by the
enhancedEssion of activation markers such as CD14 and CD64 [69, 70].
Importantl rophil responsiveness towards chemotactic agents (i.e. evidence of
Ieukoc@ion), including those derived from reproductive tissues, is increased
as gestation progresses and may serve as a biomarker for pregnancy complications

[71, 132-135]. Consistently, neutrophil effector functions such as ROS production
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[69, 70, 72] and neutrophil extracellular trap (NET) formation [136] are boosted in
pregnancy compared to the non-pregnant state. Regarding phagocytosis, one of the

main funci'ﬁ of neutrophils, conflicting reports have suggested that this capability

may be or improved in pregnancy [74-76]. In the current study, we

_ N _ . ,

dlscoveri that maternal neutrophils can phagocytose fetal antigens derived from
the placenghout gestation. To our knowledge, this is the first demonstration
that such ocess occurs in the maternal circulation, providing evidence that

neutroph ipate in systemic maternal-fetal crosstalk.

S

Feta tigen-carrying neutrophils displayed a unique phenotype

U

characteri the upregulation of MHC-II and CD80, suggesting that these

1

maternal immune cells exhibit APC-like functions. Previous reports have

shown that pregnant adult neutrophils are capable of antigen presentation due

a

to thei ili phagocytose antigens and express APC markers such as MHC-II,
CD80, and [137-139]. However, dendritic cells and monocytes are superior to
neutrophils In their capacity for antigen presentation [140]. Our study also

demonstrated decreased expression of the pro-inflammatory cytokines IFNy and

TNFa by fetal antigen-carrying neutrophils in the maternal circulation. These data

imply that, during pregnancy, circulating neutrophils exhibit anti-inflammatory

]

functions, a phenotype that has been termed “N2” [141-143]. These results are in

tandem with a previous report showing that neutrophils can exhibit homeostatic
I
functions during mid pregnancy [144]. Yet, additional research is required to explore
the contribution of neutrophils to fetal antigen presentation and tolerogenic
processes in the maternal circulation.
~—

Monocytes represent the primary subset of circulating mononuclear cells and

carry out two essential functions: i) to act as sentinels in the blood vessels, and ii) to
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transmigrate across the vessel endothelium to respond to tissue-derived signals or
threats [145]. Several reports have indicated that, similar to neutrophils, circulating
monocyte ers increase throughout pregnancy [78, 126, 127, 146], although this
is not &/ observed [77]. Peripheral monocytes display a gradually
enhangeEof activation as gestation progresses [77, 147], indicated by elevated
cytokine pagses [56, 79] and phosphorylation of key signaling molecules (e.g.
NF-kB) Q Moreover, pregnancy-derived circulating monocytes display
upregulawression of multiple activation markers such as CD11b, CD14, and
CDo64 [6@77, 78]. Indeed, we have recently reported that single-cell RNA
sequencing-derived signatures from monocytes and macrophages are modulated in
the mateﬁulation throughout gestation, and such signatures are increased in
women \mierwent preterm labor and birth, providing a potential non-invasive
bioma e pathological process of labor [148]. Consistent with studies of
peripheral phils, pregnancy has been separately reported to be associated
with decreased or enhanced phagocytic function by circulating monocytes [75, 80].
Herein, vs observed that peripheral monocytes are capable of engulfing placenta-
derived a@ establishing a potential mechanism whereby these innate immune
cells can p pate in systemic maternal-fetal interactions.

F ntigen-carrying monocytes exhibited a homeostatic phenotype
characw the upregulation of CD86 together with an increased expression of
TGFB an@. These findings are consistent with previous reports showing that
monocytes ophages exhibit immunoregulatory functions during pregnancy [30,
149, 1508 cifically, uterine macrophage populations display an alternatively
activated phenotype and are involved in embryo implantation and placental

development as well as in host defense [33-35, 151-154]. Yet, monocytes in the
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maternal circulation are less characterized, and we are currently engaged in the
investigation of their role during the second half of pregnancy. The systemic

depletion ﬁonocytes/macrophages induces preterm labor and birth, highlighting

the hom nctions of these cells during pregnancy [155]. Consistently, the
adopti\’e @r of M2-polarized (i.e. homeostatic) macrophages prevents preterm
birth in agi odels of intra-amniotic inflammation [155-157]. Collectively, these
data SUQQ;Z maternal peripheral monocytes display homeostatic functions
during pWy, which include the uptake of fetal antigens released by the
placenta.:

It is mentioning that fetal antigen-carrying neutrophils and monocytes
were als ed in the postpartum period (i.e. 48 - 60 hours after delivery), and
such ceIIMontinue to decline as time progresses. Yet, the presence of these
cells ibute to immunological memory [25, 26, 158-160].

A ce question derived from our study concerns the events initiated in
maternal neutrophils and monocytes upon fetal antigen uptake. One possibility is
that mat&nal circulating innate immune cells phagocytose the fetal antigen for
containm prevent aberrant antigen-specific T-cell responses that could
jeopardizglancy homeostasis. Another possibility is that maternal neutrophils
and m internalize the fetal antigen for processing and transport to the
uterinewlymph nodes to be presented by professional APCs, as has been
previousl@sad [145, 161-163], where indirect antigen presentation occurs [81].
A third possi is that the fetal antigen is processed and presented by maternal

neutrop monocytes to either circulating T cells or those in the lymphatic or

decidual tissues. However, each of the above hypotheses require mechanistic
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investigation to ascertain the fate of the fetal antigen in the maternal circulation and
how this process contributes to the mechanisms of maternal-fetal tolerance.
The ent study has some limitations. The sole use of the F4/80 marker
does not& distinguish between monocytes and macrophages; yet, it can be
N I .y , .
reasonat! presumed that the majority of circulating maternal OVA+ cells represent
monocytegereas those in the myometrium are primarily tissue-resident

macrophag&8®In addition, the characterization of the placenta-derived particles used

in the ¢ tudy, as well as the mechanisms whereby these particles are

S

engulfed Dy ntaternal phagocytes, warrants further investigation in future studies.

lEI

Lastly, fu | characterization of those maternal innate immune cells that are

n

capable fing fetal antigens is required.

InSu ry, herein we provide evidence that specific maternal innate immune

a

cells a of fetal antigen uptake and that such cells are most prevalent in the
second hal murine pregnancy. These innate immune cells displayed unique
phenotypes: while neutrophils expressed high levels of MHC-II and CD80 together
with low I@vels of pro-inflammatory cytokines, monocytes upregulated the expression

of CDBBQI as the anti-inflammatory cytokines IL-10 and TGFB. Importantly,

fetal antig take was also displayed by neutrophils and monocytes from pregnant

women viding translational evidence that this process also occurs in humans.

th

Collec : e findings demonstrate novel interactions between specific maternal

circulating innae immune cells and fetal antigens, thereby shedding light on the

U

systemic isms of maternal-fetal crosstalk.

A
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FIG. 1Ltion of the fetal antigen-carrying Ly6G+ and F4/80+ cells in the

myomet!al tissues and maternal circulation in the second half of pregnancy.

(A) BAL ales were mated with B6 CAG-OVA males, and the fetuses with
surroundi yometrial tissues were collected at 10.5 days post coitum (dpc), 16.5
dpc, or 18. . Representative images of the fetuses and surrounding myometrial

tissues from 10.5 dpc, 16.5 dpc, and 18.5 dpc stained with hematoxylin & eosin

(H&E) (4x magnification), and confocal microscopy imaging of DAPI+CD11b+OVA+
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cells (indicated by white arrows) in the myometrial tissues (100x magnification with

digital zoom) (n = 10 each). (B) Fluorescence-activated cell sorting (FACS) of

maternal icculating CD11b+Ly6G+OVA+ and CD11b+F4/80+OVA+ cells.
Represeaorescence microscopy images of sorted Ly6G+OVA+ and

N — L _
F4/80+O¥A+ cells. Blue = 4',6-diamidino-2-phenylindole (DAPI), red = CD11b, green

= OVA (4( rrYnification with digital zoom) (n = 10).
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FIG. 2. @ions of fetal antigen-carrying Ly6G+ and F4/80+ cells in the

myomet!al tissues and the maternal circulation throughout pregnancy. (A)

Represe‘ative,’mages of the uterine horns from BALB/c females mated with B6

CAG-0OV
postpartum . (B & C) Representative gating strategies and proportions of (B)
CD45 OVAH+ cells and (C) CD45+F4/80+OVA+ cells in the myometrial tissues

at 4.5 dpc, 10.5 dpc, 16.5. dpc, 18.5 dpc, and PP (n = 8 — 14 each). (D & E)

at 4.5 days post coitum (dpc), 10.5 dpc, 16.5 dpc, or 18.5 dpc and

Representative gating strategies and proportions of (D) CD45+Ly6G+OVA+ cells
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and (E) CD45+F4/80+OVA+ cells in the maternal circulation at 4.5 dpc, 10.5 dpc,

16.5. dpc, 18.5 dpc and PP (n = 8 — 14 each). Data are shown as box-and-whisker

plots whe idlines indicate medians, boxes indicate interquartile ranges, and

whiskersﬁninimum and maximum ranges. The p-values were determined
e R _____I» . . ,

using KrtskaI-Wallls tests followed by correction for multiple comparisons (p < 0.05).

Blue Iineﬁte changes in the trends for the proportions of Ly6G+OVA+ and

F4/80+0 lls throughout pregnancy.
Figure 3
A B BALBI/c control B6 control
i;\_/ii g g
- ) Ma(a;na\ nngir‘:’(HZK";‘ o Materr;al or\glf;l,(HZK")ulg’
€ Myometrium o Peripheral Blood
'J, - = .
R SR - TR (SR —
FIG. 3. Identification of MHC class | (H2K® or H2K") to determine the maternal
or fet iginmof Ly6G+OVA+ or F4/80+OVA+ cells in the maternal circulation

and my*e!rlum. (A) Representation of haplotypes: BALB/c females display an

t

H2K® hapl and B6 CAG-OVA males display an H2K" haplotype. (B) Positive
BALB/c s showing H2K® expression and B6 controls showing H2K®
expression e peripheral leukocytes. (C & D) Flow cytometry gating strategies

and plots showing the expression of H2K¢ haplotype, and the absence of H2K®,

confirming the maternal origin of Ly6G+OVA+ and F4/80+OVA+ cells (green
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maternal circulation (n = 4).
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henotyping of fetal antigen-carrying Ly6G+ and F4/80+ cells in

culation during mid and late gestation. (A) Flow cytometry gating

o determine the Ly6G+OVA- and F4/80+OVA- cells or Ly6G+OVA+

maternal circulation. Proportions of CD11b+Ly6G+OVA- (grey histograms/dots;
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negative OVA expression) or CD11b+Ly6G+OVA+ (red histograms/dots; positive
OVA expression) cells and proportions of CD11b+F4/80+OVA- (grey
histogram s) or CD11b+F4/80+OVA+ (red histograms/dots) cells expressing (B
& C) MH E) CD80, (F & G) CD86, (H & 1) CD206, or (J & K) CD62L in the
N :
maternalslrculatlon at 10.5 days post coitum (dpc) and 16.5 dpc (n = 9 — 12 each).
Data are ghowg as box-and-whisker plots where midlines indicate medians, boxes
indicate in artile ranges, and whiskers indicate minimum and maximum ranges.

The p-va re determined using Mann-Whitney U-tests.
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FIG. 5. Cytokine expression by fetal antigen-carrying Ly6G+ and F4/80+ cells in
the maternal circulation during mid and late pregnancy. (A) Flow cytometry
gating s’r used to determine the Ly6G+OVA- and F4/80+OVA- cells or
LyGG+O&E4/80+OVA+ cells (green histogram = OVA; grey histogram =
_ N _ , .

isotype) g the maternal circulation. Proportions of CD11b+Ly6G+OVA- (grey
histogram negative OVA expression) or CD11b+Ly6G+OVA+ (red

m ;

histogra positive  OVA expression) cells and proportions of
CD11b+mVA- (grey histograms/dots) or CD11b+F4/80+OVA+ (red
histogramE cells expressing (B & F) IFNy, (C & G) TNFa, (D & H) IL-10, or (E
& 1) TGFB maternal circulation at 10.5 days post coitum (dpc) and 16.5 dpc (n
=9 - 12& Data are shown as box-and-whisker plots where midlines indicate
mediansmmdlcate interquartile ranges, and whiskers indicate minimum and

maxm@ The p-values were determined using Mann-Whitney U-tests.

Flgure 6
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Phagocytosis of placenta-derived particles
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FIG. ocytosis of placenta-derived particles by maternal Ly6G+ and

F4/80+ cells in mid and late murine gestation. (A) Maternal peripheral Ly6G+

cells and F4/80+ cells were collected from wild type C57BL/6 dams mated with
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BALB/c males at 10.5 days post coitum (dpc) or 16.5 dpc and cultured with placenta-

derived particles from a GFP+ allogeneically-mated dam (n = 6 each). The uptake of

{

placenta-degived particles by Ly6G+ and F4/80+ cells was evaluated by flow

2

cytomet esentative gating strategy showing the uptake of GFP+ placenta-

[ ]
derived rticles by maternal peripheral Ly6G+ and F4/80+ cells. (C & D)

[

Proportiogs ofegctive (C) Ly6G+ cells and (D) F4/80+ cells that phagocytosed GFP+

G

placenta- d particles at 10.5 dpc or 16.5 dpc. Data are shown as scatter dot

plots wh indicate the mean and whiskers indicate the standard error of the

S

mean. P-values, were determined using Mann-Whitney U-tests. (E) Representative

U

confocalﬁopy images showing maternal peripheral myeloid cells (CD11b+

cells) al image) or after phagocytosing GFP+ placenta-derived particles

(bottom ‘.E Blue indicates DAPI (nuclei), red indicates CD11b, and green

indicat@a-derived particles. Scale bars represent 10 um.

Figure 7
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FIG. 7, ocytosis of cytotrophoblast-derived particles by maternal CD15+
neutrophils and CD14+ monocytes in the second and third trimester of human
pregnancy. (A) Maternal peripheral CD15+ neutrophils and CD14+ monocytes were

collected from pregnant women in the second or third trimester and cultured with
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particles derived from DiO-labelled cytotrophoblast cells (n = 4 — 6 each). The uptake
of cytotrophoblast-derived particles by CD15+ neutrophils and CD14+ monocytes
was evalu by flow cytometry. (B) Representative gating strategy showing the
uptake omblast-derived particles by maternal peripheral CD15+ neutrophils
and 051 Tonocytes. (C & D) Proportions of active (C) CD15+ neutrophils and (D)
CD14+ oaytes that phagocytosed cytotrophoblast-derived particles in the second
or third m Data are shown as scatter dot plots where bars indicate the mean
and whiwdicate the standard error of the mean. P-values were determined
using Mann- |tney U-tests. (E) Representative confocal microscopy images
showing aI peripheral CD15+ neutrophils alone (upper image) or after
phagocyt articles derived from DiO-labelled cytotrophoblasts (bottom image).
(F) Reprve confocal microscopy images showing maternal peripheral CD14+
mono (upper image) or after phagocytosing particles derived from DiO-
labelled ¢ hoblasts (bottom image). Blue immunofluorescence indicates DAPI

(nuclel), pink indicates CD15, red indicates CD14, and green indicates

cytotroph@blast-derived particles. Scale bars represent 10 um.
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