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ABSTRACT 

Objective: This review aims to present the current understanding of endotoxin tolerance (ET) in chronic 

inflammatory diseases and explores the potential connection with periodontitis.  

Summary: Subsequent exposure to lipopolysaccharides (LPS) triggers ET, a phenomenon regulated by 

different mechanisms and pathways, including toll-like receptors (TLRs), nuclear factor kappa-light-

chain-enhancer of activated B cells (NFκB), apoptosis of immune cells, epigenetics, and microRNAs 

(miRNAs). These mechanisms interconnect ET with chronic inflammatory diseases that include 

periodontitis. While the direct correlation between ET and periodontal destruction has not been fully 

elucidated, emerging reports point towards the potential tolerization of human periodontal ligament cells 

(hPDLCs) and gingival tissues with a significant reduction of TLR levels. 

Conclusions: There is a potential link between ET and periodontal diseases. Future studies should 

explore the crucial role of ET in the pathogenesis of periodontal diseases as evidence of a tolerized oral 

mucosa may represent an intrinsic mechanism capable of regulating the oral immune response. A clear 

understanding of this host immune regulatory mechanism might lead to effective and more predictable 

therapeutic strategies to treat chronic inflammatory diseases and periodontitis. 
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Clinical relevance (100 words) 

Scientific rationale for the study: The mechanism of endotoxin tolerance (ET) could play a critical role 

in modulating the inflammatory response. Hereby, we discuss the potential involvement of ET in the 

development and progression of periodontitis disease. 

Principal findings: Here, we present the current understanding of the mechanisms involved in the 

activation of ET and the emerging findings that demonstrate that low doses of LPS can induce ET 

leading to reduced production of inflammatory cytokines. 

Practical implications: A clear understanding of ET might lead to innovative therapeutic strategies to 

treat chronic inflammatory diseases and periodontitis. 
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INTRODUCTION 

The innate immune response is the first line of defense against pathogens. When the innate 

immune response detects pathogens through the pattern recognition receptors (PRRs), a fast, non-

specific response is mounted, triggering an inflammatory response. Unregulated responses can lead to 

uncontrolled inflammation that can be localized or systemic, leading to septic shock or the development 

of autoimmune diseases (Lopez-Collazo & del Fresno, 2013). Nonetheless, the immune system is 

endowed with adaptive capabilities mainly through long-term immunological memory. Similar to the 

adaptive properties of the immunological memory, emerging evidence has pointed towards the ability 

of the innate immune system to adapt its immune response through a process known as trained immunity 

(Conrath, Beckers, Langenbach, & Jaskiewicz, 2015; Kurtz, 2005).  Trained immunity is defined as a 

higher degree of the immune response following a second pathogen challenge when compared to the 

first response. Such lasting reprogramming of innate immune cells is mediated by epigenetic events 

rather than a specific transcriptional program (Netea, Schlitzer, Placek, Joosten, & Schultze, 2019). It is 

important to note that erroneous trained immunity can lead to disease progression spanning from 

inflammatory response to a continuous process of immunotolerance (Netea et al., 2020).  

Endotoxin tolerance (ET) constitutes a functional program from the innate immunity capable of 

damping the inflammatory reaction to subsequent LPS stimuli (del Fresno et al., 2009; Draisma, 

Pickkers, Bouw, & van der Hoeven, 2009; Foster, Hargreaves, & Medzhitov, 2007; Novakovic et al., 

2016; Vergadi, Vaporidi, & Tsatsanis, 2018). ET is described as a cell’s reduced capacity to respond to 

a second endotoxin challenge (D. Liu, Cao, Zhou, & Xiong, 2019). This is the case of innate immune 

cells like monocytes and macrophages that, upon exposure to low doses of bacterial lipopolysaccharide 

(LPS), produce lower amounts of pro-inflammatory cytokines while sustaining the production of anti-

inflammatory cytokine (Kopanakis et al., 2013).  

Here, we present the current understanding of the mechanisms involved in the activation of ET 

in slow, long-term inflammation (chronic inflammatory diseases) and the development of septic shock. 

Furthermore, we discuss the potential involvement of ET in the development and progression of 

periodontitis disease.  
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UNDERSTANDING ENDOTOXIN TOLERANCE 

What is endotoxin tolerance? 

ET constitutes a reduced response to LPS stimuli (hypo-responsiveness) upon subsequent 

exposures of low levels of LPS, precluding excessive innate immune response when faced with a 

pathogenic threat (Bauer, Weis, Netea, & Wetzker, 2018) (Figure 1). 

ET has been reported in many systemic inflammatory diseases, including sepsis, acting as a 

protective mechanism to prevent self-destruction by attenuating inflammatory pathways (tolerant 

response). Emerging evidence suggests that the mechanism of ET may play a crucial function as an 

immune cell adaptation to continuous bacterial infection (chronic LPS exposure). Nonetheless, ET can 

also result in harmful effects on tissue integrity as a hypo-responsiveness phase follows an acute pro-

inflammatory response to bacterial insults as seen during sepsis (Rackov, Shokri, De Mon, Martinez, & 

Balomenos, 2017) (Figure 2). 

The mechanism of ET was first described in the early 1900s when the injection of fever-

inducing LPS was employed in the treatment of tumors and various inflammatory diseases. Interestingly, 

continuous administration of LPS resulted in tissue tolerization, a condition in which a gradual 

increment in LPS dosage was required to obtain similar therapeutic results (Bennett & Nicastri, 1960). 

Similarly, rabbits receiving daily injections of bacteria demonstrated a progressive downregulation of 

the immune response that lasted for a short period (Beeson & Roberts, 1947a, 1947b; Van Epps, 2006). 

Following studies have shown a significant reduction in the mortality of hosts receiving a lethal dose of 

endotoxin after the activation of ET (Berry & Smythe, 1965; Greisman, Young, & Carozza, 1969; 

Milner, 1973; Neter, 1969). Furthermore, ET can develop after infection and/or tissue damage in which 

cells from the innate immune system undergo a refractory state (Lopez-Collazo & del Fresno, 2013). In 

vitro studies showed that exposure to low doses of LPS results in tolerized cells capable of down-

regulating inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), 

IL-12, IL-1β, and the mitogen-activated protein kinase kinase kinase (MAP3K). Interestingly, low doses 

of LPS resulted in the up-regulation of anti-inflammatory cytokines such as IL-10, transforming growth 

factor-beta (TGF-β) and IL-1 receptor antagonist (IL-1RA). This LPS tolerant phenotype is also 
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characterized by inhibiting MAPK activation and impaired nuclear factor kappa-light-chain-enhancer 

of activated B cells (NFκB) nuclear translocation (Kopanakis et al., 2013; West & Heagy, 2002). 

ET also activates high phagocytosis levels, decreased antigen presentation, reduces expression 

of class II major histocompatibility complex, and impair microbial killing (Grondman et al., 2019; 

Landelle et al., 2010; Lopez-Collazo & del Fresno, 2013). Patients with acute ischemic stroke present 

monocytes exhibiting ET and enhanced risk for pathogen colonization (Hernandez-Jimenez et al., 2017). 

Reports suggest that around one-third of stroke patients die due to the potential impairment of the 

immune defense.  

LPS from various bacteria do not have the same ability to activate toll-like receptors (TLR) and 

trigger an immunological response. Thus, not all LPS have the same capacity to induce ET. When 

comparing LPS from Escherichia coli and Porphyromonas gingivalis, higher concentrations of P. 

gingivalis LPS are needed to induce ET (Martin, Katz, Vogel, & Michalek, 2001). Macrophages also 

respond differently to ET signals. Cellular polarization dictates the pro-inflammatory (M1 polarization) 

or anti-inflammatory (M2 polarization) differentiation of macrophages and consequently its response to 

ET (Das et al., 2015). Macrophages of different phenotype seem to respond differently to ET; for 

instance, M1 macrophages exposed to P. gingivalis LPS appears to be less sensitive to ET than M2 

macrophages. As a matter of fact, LPS from P. gingivalis suppresses the expression of TNF-α, IL-1β, 

IL-6, and NFκB factors from M2 macrophages (Al-Shaghdali, Durante, Hayward, Beal, & Foey, 2019; 

Foey & Crean, 2013). However, induction of ET using E. coli LPS does not interfere with TNF-α 

production while IL-10 and IL-6 are suppressed in M1, but not in M2 macrophages (Al-Shaghdali et al., 

2019). 

 

Molecular mechanisms and regulation of endotoxin tolerance 

TLR-4 is a vital factor in the regulation of ET (D. Liu et al., 2019). LPS binds to PRRs, such as 

TLR-4, and triggers an innate immune response, leading to the production of inflammatory cytokines 

(Takeda & Akira, 2015). The binding of LPS activates two signaling pathways by inducing the 

formation of a dimer consisting of TLR-4/MyD88 and TLR-4/TIR domain-containing adapter-inducing 
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interferon-β (TRIF), respectively. In turn, MyD88 causes inflammatory cytokines production through 

the NFκB signaling pathway, while the TRIF pathway induces interferon (IFN) type 1 via interferon 

regulatory factor 3 (IRF3) activation. On the other hand, NFκB can also be activated by the TRIF/ 

MAP3K7/ inhibitor of the NFκB kinase subunit beta (IKKB) signaling pathway (D. Liu et al., 2019; 

Takaesu et al., 2003; Takeda & Akira, 2015). Other molecules like Src homology two domain-

containing inositol polyphosphate 5-phosphatase 1 (SHIP1), tumor necrosis factor-alpha-induced 

protein 3 (TNFAIP3), and interleukin-1 receptor-associated kinase-3 (IRAK3) also play a critical role 

in the activation of ET in different cell types (Lopez-Collazo & del Fresno, 2013; Lyroni et al., 2017). 

Figure 3 depicts currently known molecular and regulatory mechanisms related to ET. 

Apoptosis of immune cells has recently been suggested to be an important indicator of ET in 

sepsis as the presence of bacterial endotoxin can trigger immune cells apoptosis (Rimmele et al., 2016; 

van der Flier et al., 2013). This is the case of macrophages that undergo apoptosis due to the increased 

production of nitric oxide (NO) mediated by the presence of endotoxin in the culture media (Yamamoto, 

He, Klein, & Friedman, 1994). Furthermore, TNF-α is a cytokine suggested as an ET indicator due to 

its ability to induce tissue damage and cell death during sepsis. Interestingly, TNF-α has been found to 

activate inflammatory response due to cellular exposure to LPS and also, able to induce a tolerance-like 

state (Loosbroock & Hunter, 2014). Anti-inflammatory cytokines, such as IL-10 and TGF-β, can 

negatively regulate monocytes and activate macrophages through IRAK3 and suppressor of cytokine 

signaling 1 (SOCS1) signaling pathways. SOCS1 has been found to downregulate NFκB signaling 

pathway after LPS treatment (Nakagawa et al., 2002). 

Recently, epigenetic modifications and microRNAs (miRNAs) have emerged as novel critical 

regulatory of ET (Seeley & Ghosh, 2017; Vergadi et al., 2018). Epigenetic changes refer to shifts in 

gene expression that are not encoded in the DNA sequence, including chemical alterations of the DNA 

and associated proteins (i.e., histones). As a result, chromatin remodeling leads to the activation or 

inactivation of genes (Larsson, Castilho, & Giannobile, 2015). Specific epigenetic changes, such as 

histone modifications, are known to lead to chromatin re-organization and the control of several genes 

related to ET (Y. Liu et al., 2019). One specific gene regulated by the methylation of histone H3 is 
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IRAK3. The trimethylation of the IRAK3 promoter gene at histone H3 lysine 27 (H3K27me3) is 

observed in unstimulated macrophages. However, upon LPS stimuli, this silencing marker is removed, 

resulting in recruitment of the CCAAT/enhancer-binding protein-beta (C/EBP-β) to the promoter of 

IRAK-M and gene transcription (Lyroni et al., 2017). Most recently, ex-vivo treatment with β-glucan 

has been shown to reverse the epigenetic immune tolerance of human macrophages while reinstating 

normal cytokine release levels (Novakovic et al., 2016). 

Additionally, miRNAs regulate gene expression through post-transcriptional modifications. 

These molecules represent a group of small non-coding RNAs of about 22 bp in length that binds to the 

target gene’s mRNA. miRNAs lead to the suppression of gene expression either by the degradation of 

a target mRNA or by preventing translation (Asa'ad, Monje, & Larsson, 2019). Further, the presence of 

differentially expressed miRNAs in periodontal diseases is known to impact the expression of TLR 

(Asa'ad, Garaicoa-Pazmino, Dahlin, & Larsson, 2020) and potentially influence the activation of ET. 

Both non-coding RNAs (e.g., miRNAs) and long non-coding RNAs (lncRNAs) are vital regulators of 

ET through the TLR pathway (Vergadi et al., 2018). The LPS inducible miRNA-155 and miRNA-146α 

have been identified to be coordinately regulated via gene colocalization and transcription factor binding 

(Doxaki, Kampranis, Eliopoulos, Spilianakis, & Tsatsanis, 2015). While miRNA-146α targets IRAK1 

and TNF receptor-associated factor-6 (TRAF6), miRNA-155 inhibits SHIP1 and SOCS1 (Nahid, Satoh, 

& Chan, 2011; X. Sun et al., 2018). Thus, these miRNAs influence critical components of TLR 

signaling. Additionally, several TLR-inducible lncRNAs can limit the excessive inflammatory 

responses by negatively regulating TLR signaling (Vergadi et al., 2018). Myocardial infarction 

associated transcript 2 (Mirt2) (Du et al., 2017), TNF-α heterogenous nuclear ribonucleoprotein L 

(THRIL) (Li et al., 2014), metastasis associated lung adenocarcinoma transcript 1 (MALAT1) (Zhao, 

Su, Song, Mao, & Mao, 2016), NFκΒ interacting LncRNA (NKILA) (B. Liu et al., 2015), long 

intergenic noncoding RNA p21 (lincRNA-21) (Zhou, Wang, Shao, & Wang, 2016), and 

Lymphotoxin/TNF-α locus lncRNA "Sense Transcript" (SeT) (Stratigi et al., 2015) are responsible 

molecules to suppress the expression of pro-inflammatory mediation, such as TNF-α, and thus, 

contributing to ET. 
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Endotoxin tolerance and sepsis 

Perhaps one of the most notable examples of ET is sepsis. Sepsis is a systemic inflammatory 

response to an infection that can trigger a cascade of events leading to multi-organ dysfunction and 

organ failure. A recent definition of sepsis is considered a life-threatening organ dysfunction caused by 

a dysregulated host response to infection (Singer et al., 2016). Moreover, a septic shock is caused by 

gram-negative bacteria in about 70% of cases, with a mortality rate of approximately 40% (Hernandez 

et al., 2019; Touyz, 2013).  

During sepsis, there is a deregulation of the innate immune response upon systemic bacterial 

infection leading to LPS-mediated stimulation of TLR and activation of ET. The following features have 

been proposed as hallmarks of sepsis, including 1) a decrease in lymphocyte proliferation in response 

to antigen stimulation, 2) decreased in production of IL-2 and IFN-γ by peripheral blood mononuclear 

cells, 3) a diminished monocyte expression of human leukocyte antigen-DR isotype (HLA-DR) and 

CD86; and of lymphocyte CD28, 4) an increase in cytotoxic T lymphocyte antigen-4 (CTLA4) 

expression, and 5) a decreased monocyte capacity to release pro-inflammatory cytokines in response to 

LPS (Monneret, Venet, Pachot, & Lepape, 2008). Furthermore, ET’s clinical features during sepsis 

comprise two main phases; an inflammatory stage followed by a tolerance phenotype phase of the host 

immune cells. This results in a high risk of secondary infections leading to an increased mortality rate 

(Lopez-Collazo & del Fresno, 2013). ET is often correlated with the late stage of sepsis when there is a 

pronounced hypo-inflammatory response due to decreased TLR-4/MyD88 signaling and M2 

macrophage polarization. Hence, explain the greater risk of secondary infections (Monneret et al., 2008).  

 

 

ENDOTOXIN TOLERANCE AND CHRONIC INFLAMMATION 

The interrelationship between endotoxin tolerance and chronic inflammatory diseases 

The presence and activation of ET have been reported in diseases and conditions such as trauma, 

surgery, pancreatitis, and cystic fibrosis. Of interest, cystic fibrosis is characterized by repeated 

infections leading to the inflammation of the lungs and progressive tissue destruction that result in a 
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compensatory anti-inflammatory response syndrome (CARS), a condition often referred to as the 

clinical manifestation of ET (Biswas & Lopez-Collazo, 2009; Lopez-Collazo & del Fresno, 2013). 

CARS is an autoimmune suppression state observed during significant insults to the human body, such 

as extensive burns, large tissue injuries, and sepsis (Ward, Casserly, & Ayala, 2008). Like CARS, ET is 

defined as a hypo-responsiveness disease presenting a reduced response of myeloid cells to 

inflammatory stimuli, particularly those initiated by bacterial LPS (Vergadi et al., 2018). Compromised 

epithelial barrier has a severe impact on the maintenance of chronic inflammatory diseases. Loss of 

epithelial protection often results in endotoxemia, that is, the accumulation of LPS in the blood, leading 

to chronic stimulation of myeloid cells and potential association with ET (Carron et al., 2019). One 

example of endotoxemia is found during chronic inflammation of end-stage renal disease (ESRD), 

where the loss of intestinal epithelium integrity and consequent bacterial presence in the bloodstream 

results in binding of LPS to LPS-binding proteins (LBP), activation of MyD88 and TRIF, and the 

production of pro-inflammatory cytokines, leading to chronic inflammation (Carron et al., 2019). The 

connection between endotoxemia and the development of ET was demonstrated in patients with acute 

respiratory distress syndrome (ARDS). The development and severity of ARDS are associated with the 

endotoxemia levels and the development of tolerance as judged by the reduced ability of monocytes to 

release cytokines (Buttenschoen et al., 2008).  

The role of circulating LPS and their influence in ET and chronic systemic diseases has been 

discussed (van Lier, Geven, Leijte, & Pickkers, 2019). From experimental human models of 

endotoxemia, intravenous administration of LPS results in neutrophilia, mono- and lymphocytopenia 

after 2 to 4 hours, associated with a marked upregulation of reactive oxygen species (ROS) (Kiers et al., 

2017; Pillay et al., 2010). Plasma cytokine levels (e.g., TNF-α, IL-1β, IL-6, IL-10) have a distinct, dose-

dependent, and highly reproducible time course that returns to baselines values 6-8 hours after the LPS 

challenge (Kiers et al., 2017). TNF-α leads the LPS-induced inflammatory response by peaking at 90-

120 minutes followed by IL-1β, IL-6, and IL-10 and reaching maximum plasma concentrations at 

approximately 3 hours (van Lier et al., 2019). This experimental model has been used to induce short-

lived, well-tolerated, and controlled inflammatory responses, like those observed in sepsis, to explore 
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the role of endotoxemia-induced organ-specific effects in the immune system, serum, cardiovascular 

system, kidneys, lungs, respiratory muscle, and gastrointestinal tract.  

Conversely, subclinical serum LPS may be a risk factor for conditions characterized by a non-

resolving inflammation as observed in atherosclerosis (Geng et al., 2016). Interestingly, epithelial cells 

of the nasal cavity and airway present a tolerant phenotype in healthy individuals. A second signal 

stimulating the Fc-gamma receptor III (FcγRIII) and LPS stimulation of TLR-4 was needed in these 

cells to break this immune tolerance (Golebski et al., 2019). 

 

ENDOTOXIN TOLERANCE AND PERIODONTAL DISEASE 

Periodontal disease is a form of chronic inflammatory disease 

Periodontal disease development is an intricate relationship between disease susceptibility, 

bacterial colonization, and host response. Although oral hygiene and the microbial community are 

critical factors in developing periodontitis, the imbalance in the host susceptibility is the final element 

for the disease. Recent findings suggest that the host immune response may play an integral role in 

chronic periodontitis susceptibility (Hajishengallis, 2015). Whole blood cell cultures obtained from 

periodontitis-affected and non-periodontitis patients were stimulated with P. gingivalis LPS, revealing 

increased IFN-γ levels only in periodontitis (Nogueira-Filho et al., 2014). These data support the notion 

that periodontitis alters the systemic immune cell response. LPS from other periodontal pathogens are 

also known to show similar effects. The low dose of bloodstream LPS (endotoxemia), similar to that 

found in periodontitis patients, appears to be sufficient to prime monocytes capable of affecting immune 

and inflammatory cells (Nakamura, Nitta, & Ishikawa, 2004). This study involved pretreating blood 

samples obtained from seven systemically and periodontally healthy individuals with or without 

Aggregatibacter actinomycetemcomitans LPS, followed by further LPS stimulation. The pre-treatment 

with A. actinomycetemcomitans LPS significantly enhanced the production of IL-1β and IL-6 from 

whole blood, suggesting the role of trained innate immunity (Nakamura et al., 2004).  

 

The link between endotoxin tolerance and periodontal disease 

For years, it was suspected that LPS led to the exaggerated innate immune response resulting in 
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tissue destruction observed with periodontitis (Bainbridge, Coats, & Darveau, 2002). Currently, little is 

known on the mechanism by which ET regulates periodontal homeostasis by providing sufficient 

tolerance to the presence of a healthy and balanced oral microbiota (Figure 4). However, the unbalance 

of the protective effects of ET poses a question on the potential mechanisms by which ET becomes 

dysfunctional. First, the presence of a dysbiotic oral microbiota may fail to activate the mechanism of 

ET, leading to the exacerbation of the inflammatory response and consequently tissue destruction. 

Conversely, excessive activation of ET mediated by a dysbiotic microbiota or the loss of epithelial 

barrier and consequently the development of endotoxemia may either prevent the recruitment of 

inflammatory cells or reduce the ability of monocytes to release cytokines resulting in uncontrolled 

bacteria-induced tissue destruction (Figure 4). It remains unknown whether the progression from a 

healthy periodontium to periodontitis is driven by an overly robust or insufficient immune response. 

Figure 4 illustrates our view of the potential role of ET in the pathogenesis of periodontal disease.  

Despite the fact that the clearance of periodontal pathogens through an inflammatory response 

relies heavily on the recognition of LPS, it has been shown that low doses of LPS can induce ET leading 

to reduced production of inflammatory cytokines (Rios, de Lima, Moretti, & Soriano, 2016; Seeley & 

Ghosh, 2017). In periodontitis, biofilm can disrupt the gingival tissues, resulting in a compromised 

epithelial barrier, and periodontal pockets followed by colonization with gram-negative bacteria (Touyz, 

2013). Subsequently, this can further lead to endothelial damage and a leak of bacterial products into 

the bloodstream (endotoxemia), which supports the link between periodontitis and septic shock 

syndrome (Touyz, 2013). 

As noted in vitro, isolated gingival fibroblasts have demonstrated a marked difference in LPS 

tolerance between healthy and inflamed gingiva (Kang, Hu, & Ge, 2016). The induction of pro-

inflammatory cytokines (i.e., IL-6, IL-8, IL-1β, and TNF-α) by P. gingivalis LPS occurred at 

significantly lower levels among fibroblasts isolated from inflamed gingiva affected with periodontitis 

compared with fibroblasts obtained from healthy patients, and thus, suggesting increased tolerance in 

disease. Conversely, monocytes exposed to either P. gingivalis or E. coli LPS are downregulated for 

TLR-2 and TLR-4 at the mRNA and protein levels and reduce IL-1β mRNA and TNF-α secretion 

(Muthukuru, Jotwani, & Cutler, 2005). 
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Monocyte cultures can be tolerized upon exposure to LPS from P. gingivalis. The conditioned 

media from tolerized monocytes have a direct negative impact on the migration and apoptotic process 

of neutrophils while simultaneously increasing the concentration levels of ROS (Zhu et al., 2016). As 

such, the role of ET becomes more crucial in periodontal diseases as neutrophil apoptosis has been 

suggested to influence the progression of periodontitis. Using an ET model, the exposure of human 

periodontal ligament cells (hPDLCs) to P. gingivalis LPS showed that they could not develop ET 

(Blufstein, Behm, Nguyen, Rausch-Fan, & Andrukhov, 2018). In contrast, a significant reduction of 

TLR-4 was observed in pretreated cells compared to non-pretreated cells. The pre-treatment with P. 

gingivalis LPS did not decrease IL-6, IL-8, and monocyte chemoattractant protein-1 (MCP-1), thus 

indicating that these cells may play an important role in sustaining the inflammation in periodontal 

disease. Another study using a similar model reported that hPDLCs differ in pro-inflammatory cytokines 

and TLRs after the first and second dose of the same LPS (Wu, Zhang, Wang, Zhang, & Tan, 2015). 

The authors hypothesized that since the oral cavity is continuously exposed to a large amount and a 

diversity of periodontal pathogens, hPDLCs are exposed to a “negative regulation of immune response” 

due to this repeated exposure to pathogens. These findings indicate ET’s induction by LPS, leading to 

down-regulation of TLRs and the production of inflammatory cytokines.  

Moreover, periodontal disease is characterized by rampant tissue destruction mediated by 

matrix metallopeptidases (MMPs). A reduction in MMPs would be expected in LPS tolerized 

individuals; however, this is not the case as one study identified the secretion of MMP-9 was not affected 

by LPS tolerance (Muthukuru & Cutler, 2015). Conversely, tissue inhibitor of metallopeptidase-1 

(TIMP-1), the main antagonist of MMP-9, is greatly upregulated in monocytes that have been induced 

to a tolerant state.  

Compared to LPS from other gram-negative bacteria such as E. coli, P. gingivalis LPS induces 

much lower levels of pro-inflammatory cytokines, including IL-1β, IL-6, and TNF-α (Martin et al., 

2001). P. gingivalis LPS is also known to trigger a state of imbalanced immune tolerance through 

continuous secretion of IL-8 and a decreased production of TNF-α (Zaric et al., 2010). These events can 

lead to enhanced migration of neutrophils to the site of infection and reduced apoptosis. The low toxicity 

of P. gingivalis LPS compared to other gram-negative bacteria and the pattern of pro-inflammatory 
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cytokines induced after primary and secondary stimulation play a critical role in the chronic 

inflammatory state seen in periodontal disease.  

In addition to the downregulation of host response, modifications of LPS signaling by P. 

gingivalis may affect the immune response. Patients with chronic forms of periodontitis are well known 

to have increased TLR-2 and TLR-4 positive cells and IL-1β levels within the inflamed gingival tissues. 

Interestingly, the numbers of TLR-2 cells increase linearly with inflammation. In a study using 

peripheral blood monocytes, the first stimuli of LPS resulted in the upregulation of TLR-2 and TLR-4 

mRNA. In contrast, a second stimulus downregulated both receptors at the mRNA and protein levels. 

Along with the TLR receptor, mRNA levels of IL-1β were also found to be reduced and TNF-

α secretion levels were decreased by 10-folds. However, cytokines such as IL-6, IL-8, and IL-10 were 

also negatively impacted by the re-stimulation at a lesser degree than TNF-α (Muthukuru et al., 2005). 

Additionally, TLR-4 response to LPS varies significantly depending on phosphorylation patterns of the 

lipid A component. A clear example, 1’-phosphorylated lipid A demonstrated more pronounced TLR-4 

activation than 4’-phosphorylated lipid A (Coats, To, Jain, Braham, & Darveau, 2009).  

The exposure of THP-1 cells to P. gingivalis LPS stimulated NFκB activation and TNF-α 

release upon re-stimulation with the same LPS (Hajishengallis, Martin, Schifferle, & Genco, 2002). 

Conversely, NFκB-dependent transcription inhibition was observed in pretreated cell lines with E.coli 

LPS and restimulated with P. gingivalis LPS. Although P. gingivalis LPS treated cells could not become 

tolerant to subsequent exposure to E. coli LPS, P. gingivalis LPS inhibited the E. coli LPS-induced 

TNF-α and IL-6 release when added simultaneously into the same cell line. The re-stimulation of THP-

1 monocyte cells using P. gingivalis and E. coli LPS resulted in decreased TNF-α and IL-1β but 

increased IL-10 levels (Y. Sun et al., 2014). Cells treated with LPS following retreatment with P. 

gingivalis LPS showed downregulation of TLR-2. In contrast, when restimulated with E. coli LPS, a 

decrease in TLR-4 was observed and associated with the irregular expression of IRAK3 and SOCS1 

genes. In a similar study, the pre-treatment of THP-1 cells with E. coli LPS resulted in a decrease of 

TLR-4, TNF-α, IL-1β and IL-6 levels without changes in expression of CD14 (Martin et al., 2001). 

Nonetheless, cells pretreated with a similar concentration of P. gingivalis LPS displayed an increase in 
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CD14 and TLR-2 associated with a decrease in IL-1β. It is important to point out that P. gingivalis LPS 

suppressed P. gingivalis FimA protein-induced NFκB-dependent transcription in a 3E10/huTLR4 cell 

line not expressing TLR-2 (Hajishengallis et al., 2002). Thus, it suggests that P. gingivalis and E.coli 

LPS do not compete for common signaling intermediates and that P. gingivalis may target components 

in the TLR-4 receptor complex. 

Observations from ligature-induced periodontitis models have shown that endotoxin-tolerant 

animals significantly reduced immune system protein mannose-binding lectin levels (Nowotny & 

Sanavi, 1983). While the direct correlation between ET and diminished periodontal destruction has not 

been extensively investigated, limited reports have explored the immunological response after exposure 

to bacteria. TLR-2 and TLR-4 positive cells were present in more significant numbers among gingival 

tissue biopsies from periodontitis patients (Muthukuru et al., 2005).  

The question remains open as to how ET can drive periodontal disease progression while 

reducing the host pro-inflammatory response. The study from the Fujihashi’s lab sheds light on this 

conundrum by demonstrating the presence of CD4+ T-cells in chronic periodontitis shifts from a pro-

inflammatory state characterized by the production of IL-6 and TNF-α to an IL-10 producing phenotype 

in an experimental periodontitis model (Kobayashi et al., 2011). 

 

CONCLUSIONS 

There is still a lack of knowledge on the regulatory machinery involved in the activation of ET 

and a clear understanding of the role of tolerized cells in disease progression or tissue defense against 

bacterial insults. Future research should elucidate the crucial role of ET in the pathogenesis of 

periodontal diseases and the intricated process that balances the host-bacteria interactions during health. 

It is also important to determine the potential imbalance of the ET machinery in patients presenting 

increased susceptibility to periodontitis and unresponsive to traditional periodontal therapy. A clear 

understanding of this host immune regulatory mechanism can lead to the development of effective and 

more predictable therapeutic strategies to treat chronic inflammatory diseases and periodontitis. 
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FIGURES LEGENDS 

 

Figure 1. Immune response and activation of tolerance to bacterial challenge. Graphical representation 

of LPS stimuli mediated by toll-like receptor (TLR) upon single stimuli or LPS rechallenge. LPS stimuli 

trigger NFκB signaling and enhanced inflammation (Inflammatory Phase). Sustained TLR activation 

mediated by rechallenge with LPS leads to the hypo-responsiveness of the innate immune system 

(Immunosuppression).  

Figure 2. Innate immune activation of naïve and endotoxin-induced tolerant cells. Graphical 

representation of naïve response of T-cells upon first LPS stimuli and chronic LPS exposure resulting 

in a tolerant response and overall hypo-responsiveness of the innate immune. The successful outcome 

is a result of reduced tissue damage mediated by a tolerant response. 

Figure 3. Current molecular and regulatory mechanisms associated with ET. Graphical representation 

of a cellular Naïve inflammatory response to LPS stimuli mediated by pattern recognition receptors 

(PRR) leading the TLR-4/MyD88 and TLR-4/TRIF signaling circuitry and activation of the NFκB pro-

inflammatory signaling. Tolerant signaling prevents ubiquitination of IkB, resulting in the inability of 

p65 to migrate to the nucleus. 

Figure 4. Graphical representation of ET in periodontal health and disease. ET plays a crucial role in 

maintaining the periodontium tissue integrity (Healthy Periodontium). Upon dysbiosis, LPS fails to 

trigger ET resulting in the increased inflammatory response and tissue destruction. Alternatively, 

dysbiosis led to excessive ET function and reduced inflammatory response along with enhanced 

bacteria-induced tissue destruction. 
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