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Abstract

Background and Aims: Molecular genetic studies of alcohol and nicotine use have identi-

fied many genome-wide association study (GWAS) loci. We measured associations

between drinking and smoking polygenic scores (PGS) and trajectories of alcohol and

nicotine use outcomes from late childhood to early adulthood, substance-specific versus

broader-liability PGS effects, and if PGS performance varied for consumption versus

problematic substance use.

Design, setting, participants and measurements: We fitted latent growth curve models

with structured residuals to scores on measures of alcohol and nicotine use and prob-

lems from ages 14 to 34 years. We then estimated associations between the intercept

(initial status) and slope (rate of change) parameters and PGSs for drinks per week

(DPW), problematic alcohol use (PAU), cigarettes per day (CPD) and ever being a regular

smoker (SMK), controlling for sex and genetic principal components. All data were ana-

lyzed in the United States. PGSs were calculated for participants of the Minnesota Twin

Family Study (n = 3225) using results from the largest GWAS of alcohol and nicotine

consumption and problematic use to date.

Findings: Each PGS was associated with trajectories of use for their respective

substances [i.e. DPW (βmean = 0.08; βrange = 0.02–0.12) and PAU (βmean = 0.12; βrange =

−0.02 to 0.31) for alcohol; CPD (βmean = 0.08; βrange = 0.04–0.14) and SMK (βmean

= 0.18; βrange = 0.05–0.36) for nicotine]. The PAU and SMK PGSs also exhibited cross-

substance associations (i.e. PAU for nicotine-specific intercepts and SMK for alcohol

intercepts and slope). All identified SMK PGS effects remained as significant predictors

of nicotine and alcohol trajectories (βmean = 0.15; βrange = 0.02–0.33), even after

adjusting for the respective effects of all other PGSs.

Conclusions: Substance use-related polygenic scores (PGSs) vary in the strength and

generality versus specificity of their associations with substance use and problems over

time. The regular smoking PGS appears to be a robust predictor of substance use trajec-

tories and seems to measure both nicotine-specific and non-specific genetic liability for

substance use, and potentially externalizing problems in general.
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INTRODUCTION

Alcohol and nicotine use, respectively, contribute to 3 (5.3%) and

7 million (12.3%) deaths world-wide each year, making both leading

causes of global mortality [1,2]. Studies have demonstrated that

genetic factors influence alcohol and nicotine use and risk for both

alcohol use disorder (AUD) and nicotine use disorder (NicUD). Twin

studies report heritability estimates of approximately 50% for AUD

[3] and NicUD [4], and large-scale genome-wide association studies

(GWAS) have identified hundreds of loci that exhibit genome-wide

significant associations with alcohol and nicotine use phenotypes

[5–7], providing new avenues for research on the genetic influences

on substance use.

Polygenic scores (PGS) are one method for modeling aggregate

genetic risk across the genome, and have provided valuable informa-

tion regarding the unique and shared genetic influences on alcohol

and nicotine use. PGS can be generated from a GWAS discovery sam-

ple by weighting genetic variants relative to the strength of their asso-

ciation with a given phenotype to calculate a measure of individual

genetic risk in a target sample. For example, PGS calculated from

GWAS-identified associations for alcohol use have demonstrated

associations with alcohol-related outcomes in independent samples

[8–10]. PGSs for alcohol and nicotine use have also been associated

with use of other drugs (e.g. cannabis, cocaine, amphetamines,

ecstasy, hallucinogens) [5,11], suggesting that these PGS also index

non-specific genetic influences on substance use.

While studies using PGS are beginning to trace the contours of

the genetic architecture of substance use, they have yet to examine

the influence of aggregate genetic risk on patterns of substance use

over time. This is an important next step, because alcohol and nicotine

use exhibit strong age-related mean level trends, with typical initiation

in adolescence followed by peak use in young adulthood and norma-

tive declines in heavy use and substance use disorders (SUDs) by age

30 years [12]. Understanding the etiology of substance use then

requires accounting for these normative patterns of emergence, esca-

lation and decline, and there is some evidence that genetic influences

for substance use vary throughout development [13,14].

Initial efforts using PGSs to examine associations with alcohol

and nicotine use developmental trajectories have had modest success.

A PGS for cigarettes smoked per day predicted later cigarette smoking

and NicUD in early adulthood [15,16], but not alcohol use [15],

suggesting that the PGS measured substance-specific genetic influ-

ences on nicotine use. Evidence for longitudinal associations of

alcohol-related PGS has been mixed. One study found that a PGS for

AUD was associated with alcohol use in males at age 15.5 years and

greater increases of alcohol use at age 21.5 years [17], while other

studies examining alcohol use in college student drinkers over a

4-year time-span with an environment enriched for substance use

have returned both positive [18] and null results [19]. Most prior

studies were limited by smaller GWAS discovery samples relative to

recent large-scale GWAS of alcohol and nicotine use outcomes.

We address these limitations using PGS measures derived from

large-scale GWAS of alcohol consumption (i.e. drinks per week; DPW)

[5] and problematic alcohol use (PAU) [7], given prior evidence

suggesting differences in the polygenic architecture of alcohol use

versus alcohol use problems [20,21] and PGS for cigarettes per day

(CPD) [5] and for initiation of regular smoking (SMK) [5]. The nicotine-

related PGSs have demonstrated varying degrees of genetic correla-

tion (rg) with nicotine dependence (rg = 0.42 and 0.95 for SMK and

CPD, respectively) [6], and therefore may index varying degrees of

nicotine use versus NicUD or nicotine-specific effects versus external-

izing effects more broadly.

We examined respective PGS associations with trajectories of

alcohol and nicotine use (quantity and frequency) and problems (AUD

and NicUD criteria) from late childhood to young adulthood (ages 14–

34), a period that covers normative initiation, peak use and elevated

risk for SUDs. Strengths of this approach include the ability to make

stronger inferences about when in the developmental progression of

substance use (e.g. initiation of use, escalation of use) these genetic

influences have their effects, and the long follow-up period ensures

that polygenic influences for alcohol and nicotine use are likely to

have been expressed for most people. A second aim was to examine

whether the associations between polygenic measures thought to

index regular use versus problematic use differed for phenotypical

measures of consumption (quantity/frequency) and substance use dis-

order (AUD and NicUD). A final aim was to examine whether the

associations of the respective alcohol and nicotine-related PGS were

limited to the specific substance or generalized to trajectories of

both alcohol and nicotine outcomes, and to determine if there

was evidence of incremental predictive utility throughout the

respective PGSs.

METHODS

Participants

Participants were members of the Minnesota Twin Family Study

(MTFS), a longitudinal study of 3762 (52% female) twins (1881

pairs) investigating the development of SUDs and related condi-

tions [22–24]. All twin pairs were the same sex and living with at

least one biological parent within driving distance to the University

of Minnesota laboratories at the time of recruitment. Exclusion

criteria included any cognitive or physical disability that would

interfere with study participation. Twins were recruited the year

they turned either 11 years old (n = 2510; the younger cohort) or

17 years old (n = 1252; the older cohort). Twins in the younger

cohort were born from 1977 to 1984 and 1988 to 1994, while
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twins in the older cohort were born between 1972 and 1979.

Families were representative of the area they were drawn from in

terms of socio-economic status (SES), mental health treatment his-

tory and urban versus rural residence [22]. Consistent with the

demographics of Minnesota for the target birth years, 96% of par-

ticipants reported non-Hispanic white ethnicity and race.

The younger cohort was assessed at ages 11 [meanage

= 11.78 years; standard deviation (SD) = 0.43 years] and 14

(meanage = 14.90 years; SD = 0.31 years), and all twins were

assessed at target ages 17 (meanage = 17.85 years; SD = 0.64 years),

21 (meanage = 21.08 years; SD = 0.79 years), 24 (meanage

= 24.87 years; SD = 0.94 years) and 29 (meanage = 29.43 years;

SD = 0.67 years). A subgroup of twins from the younger cohort

were also assessed at age 34 (meanage = 34.62 years;

SD = 1.30 years). Supporting information, Table S1 provides the

number of participants for each assessment and descriptive statistics

for the study measures. Analyses were conducted both with and

without participants who consistently abstained from substance use

across time. Conclusions were similar throughout these models, so

we report models using the full sample. Participation rates ranged

from 80 to 93% among those recruited for a given follow-up assess-

ment. The total sample included 1205 monozygotic (51.5% female)

and 676 dizygotic (52.8% female) twin pairs [22,25].

Alcohol use and AUD

All alcohol and nicotine variables were assessed during structured

clinical interviews, while the use variables were also assessed using a

computerized self-report questionnaire at ages 11, 14 and 17 that

was completed in private. Alcohol variables included the average num-

ber of drinks per occasion in the past 12 months (i.e. alcohol quantity)

and DSM-III-R symptoms of alcohol abuse and dependence (the diag-

nostic system when the study began, hereafter referred to as AUD

symptoms). Free responses to alcohol quantity and the number of

alcohol abuse and dependence symptoms were converted to scales

that ranged from 0 to 8 (corresponding integer values were used for

lower values (e.g. 1 = 1 symptom) with AUD symptoms capped at

8 and drinks per occasion coded as 7 = 7–9 drinks and 8 = 10 or more

to reduce skew due to a small number of high values). The life-time

prevalence of DSM-III-R AUD (≥ 3 symptoms of abuse or depen-

dence) was 26%.

Nicotine use and NicUD

Nicotine variables included average cigarettes per day (or equivalent

form of tobacco, e.g. chewing tobacco) and DSM-III-R symptoms of

nicotine dependence (hereafter referred to as NicUD). Free responses

were converted to a 0–6 scale for nicotine quantity (0 = 0, 1 = 1,

2 = 2, 3 = 3, 4 = 4–6, 5 = 7 or more) and NicUD symptoms (number

of symptoms capped at 6 to reduce skew). The life-time prevalence of

DSM-III-R NicUD was 33%.

PGS methods

PGS were generated using the largest GWAS of nicotine and alcohol

use traits to date. The DPW (average number of drinks per week;

n = 941 280), average number of cigarettes per day (CPD;

n = 337 334) and ever smoked regularly in life-time (SMK;

n = 1 232 091) PGSs were calculated using results of the GWAS and

Sequencing Consortium of Alcohol and Nicotine use (GSCAN) [5], and

the PAU PGS was calculated using results from the largest GWAS of

AUD and the problems subscale of the Alcohol Use Disorder Identifi-

cation Test (AUDIT-P) to date (n = 435 563) [7]. The MTFS sample

was removed from the original GSCAN discovery sample to avoid

overlap with the target sample [5]. PGS were created for participants

of European ancestry, confirmed via principal components analysis

[26], in the MTFS target sample following imputation to the most

recent Haplotype Reference Consortium reference panel [27] and

restricted to autosomal HapMap3 variants with a minor allele fre-

quency ≥ 0.01 and an imputation quality > 0.7. The resulting filtered

variants (�1 million variants) were then submitted to LDpred [28] to

generate beta weights in the MTFS sample, including variants of all

significance levels (P-value ≤ 1). Individual PGS were then calculated

in PLINK [26] for all individuals with phenotypic and genotypic data

for the present study (n = 3225).

Data analytical strategy

Latent growth models with structured residuals (LGM-SR; see

Figure 1) were used to model developmental trends in the alcohol and

nicotine use outcomes [29,30]. These models include intercept factors

that reflect status at the first time-point (age 14, as there was almost

no substance use at age 11) and slope factors that reflect the rate of

change during the course of the study. Slope factors were specified

using a latent basis approach. That is, the first and last basis coeffi-

cient were fixed to 0 and 1, respectively, and the intervening coeffi-

cients were estimated, which provides a parsimonious way of

capturing non-linear trajectories [31].* Intercept and slope factors

were allowed to vary to capture individual differences in growth. The

residual structure included occasion-specific latent factors that

account for deviations from the intercept and slope implied trajecto-

ries. The autoregressive paths linking adjacent residual factors capture

associations between variables over time after accounting for general

growth trends (Figure 1) and were included because not accounting

for residual autoregressive effects can lead to biased variance esti-

mates in the growth factors [32,33].

Unconditional LGM-SR models were first fitted to each outcome

(Figure1a). Conditional models were then fitted in which the growth

factors were regressed on a single PGS and the control variables

(1 PGS conditional latent growth model; Figure 1b). The control vari-

ables included participant sex and the first five genetic principal com-

ponents [34] to adjust for underlying ancestral substructure

(associations between the control variables and the intercept and

slope factors with and without PGS included can be found in the
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Supporting information). Sensitivity checks adjusting for birth cohort

were also completed; the inclusion of birth cohort as a covariate did

not affect the main conclusions. Conditional models were then esti-

mated in which the growth factors were regressed on two PGSs

simultaneously together with the control variables (2 PGS conditional

latent growth model; Figure 1c). The 2 PGS models included both

PGSs associated with a specific substance as predictors of the latent

growth factors. That is, the 2 PGS models either included the DPW

and PAU PGSs or the CPD and SMK PGSs. Finally, conditional models

were estimated in which the growth factors were regressed on all four

PGSs simultaneously together with the control variables (4 PGS condi-

tional latent growth model; Figure 1d). All major analyses were con-

ducted using Mplus version 8.4 [35] with full information maximum

likelihood estimation [36]. Every model included both twins from a

F I GU R E 1 Unconditional and conditional latent growth models with structured residuals. (a) The unconditional latent growth model; (b) the
1 PGS conditional latent growth model; (c) the 2 PGS conditional latent growth model; (d) depicts the 4 PGS conditional latent growth model.
R = residual factor; PGS = polygenetic risk score; CVs = covariates (first 5 eigenvalues and sex). Variances and mean structure omitted from figure
for clarity of presentation
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given twin pair; as the focus was on the general growth trends over

time throughout the sample, models were not stratified by zygosity.

95% confidence intervals (CIs) were derived using clustered (by family)

percentile bootstrapping (with 1000 draws). This procedure performs

well when estimating CIs for skewed variables such as substance use,

and accounts for the family-based clustering of the observations

(i.e. both twins from a given family of origin being included in the

models) [37]. The present analysis plan was not pre-registered on a

publicly available platform and should be considered largely explor-

atory in nature.

RESULTS

Descriptive information for the study variables is reported in Table 1.

Mean levels of the alcohol and nicotine use outcomes increased from

age 11 to 20 years, and then decreased from age 20 to age 34 years.

The rank-order stability of the alcohol and nicotine use outcomes

between adjacent time-points ranged from r = 0.33 to 0.79.

The univariate models for alcohol and nicotine use-related out-

comes all fitted the data well by conventional standards (Supporting

information, Table S1) [38]. Parameter estimates were consistent with

the observed trajectories, suggesting a rise in alcohol and nicotine use

throughout adolescence, and then a gradual decline in values after

age 20. There was a statistically significant degree of variability in all

the slope factors and all the intercept factors except the alcohol quan-

tity intercept factor (i.e. there was too little variability in alcohol quan-

tity at age 14 to effectively estimate the intercept factor variance;

Supporting information, Table S2). Covariances between the intercept

and slope factors were generally small and non-significant (probably in

part due to the low rates of endorsement in early adolescence); con-

versely, the autoregressive coefficients were typically statistically sig-

nificant and positive in sign, indicating that substance use beyond that

predicted by the growth model at one time-point was associated with

similarly elevated substance use at subsequent time-points. Correla-

tions among the respective PGSs in the MTFS sample are reported in

Table 2.

Standardized path coefficients from the single (1) PGS, two

(2) PGS (adjusting for the other within substance PGS; e.g. co-varying

T AB L E 1 Descriptive statistics for substance use variables across time

Age (years) 14 17 20 24 29 34

Alcohol use disorder

Mean 0.08 0.50 0.90 0.97 0.60 0.45

SD 0.59 1.26 1.57 1.59 1.31 1.21

n 1952 2908 2456 2943 2316 802

Autocorrelation 0.38 0.45 0.52 0.49 0.46 –

Alcohol quantity

Mean 0.57 2.08 3.66 3.31 2.65 2.31

SD 1.21 2.76 2.55 2.19 1.90 1.69

n 1787 3033 2442 2926 2314 798

Autocorrelation 0.33 0.40 0.52 0.54 0.52 –

Nicotine use disorder

Mean 0.27 0.76 1.11 1.04 1.00 0.82

SD 1.03 1.64 1.77 1.69 1.67 1.47

n 1952 2907 2457 2946 2316 801

Autocorrelation 0.46 0.56 0.69 0.74 0.68 –

Nicotine quantity

Mean 0.45 1.17 1.73 1.55 2.03 1.18

SD 1.09 1.57 1.78 1.77 1.58 1.70

n 1787 3036 2447 2922 3225 796

Autocorrelation 0.54 0.70 0.79 0.49 0.45 –

SD = standard deviation; n = number of respondents; autocorrelation = correlation between scores at one time-point and the immediately subsequent

time-point (e.g. between scores at ages 14 and 17).

T AB L E 2 Correlations between PGSs within MTFS sample

1 2 3 4

1. Drinks per week

2. Problematic alcohol use 0.33

3. Cigarettes per day 0.05 0.10

4. Regular smoking 0.23 0.24 0.16

PGS = polygenic score; MTFS = Minnesota Twin Family Study.
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for DPW in the PAU 2 PGS analysis and vice versa) and four (4) PGS

(adjusting for all other PGS simultaneously; e.g. co-varying for CPD,

DPW and PAU in the SMK 4 PGS analysis) models can be found in

Table 3.

Single (1) PGS model results

Drinks per week (DPW)

In the single PGS models, the DPW PGS had significant

associations with the intercept and slope factors of AUD and

the slope factor for alcohol quantity. The DPW PGS also had

significant cross-substance associations with the intercept factors

for NicUD and nicotine quantity. DPW PGS effect sizes were small

(βmean = 0.08; βrange = 0.02 to 0.12) and comparable to the PAU PGS.

Problematic alcohol use (PAU)

The PAU PGSs had significant associations with the intercept

and slope factors of AUD and alcohol quantity. The PAU PGSs also

had significant cross-substance associations with the intercept factors

for NicUD and nicotine quantity. Effect sizes were small and

comparable to the DPW PGS, with no statistically significant

differences between the two PGS, but slightly larger effects for the

PAU (βmean = 0.12; βrange = −0.02 to 0.31).

Cigarettes per day (CPD)

The CPD PGS had significant associations with the intercept and

slope factors for NicUD and the intercept for nicotine quantity (βmean

= 0.08; βrange = 0.04–0.14).

Regular smoking (SMK)

The SMK PGS had significant associations with the intercept

and slope factors of NicUD and nicotine quantity. The SMK

PGS also had significant cross-substance associations with the

intercept and slope factors for AUD and the intercept for alcohol

quantity. Effect sizes were small to medium, and slightly larger for

the SMK PGS (βmean = 0.18; βrange = 0.05–0.36) relative to the

CPD PGS.

Two (2) PGS model results

Alcohol use PGSs (DPW and PAU)

When the DPW and PAU PGSs were included in the same model

(2 PGS model) most PAU PGS effects observed in the single PGS

model remained significant (βmean = 0.10; βrange = −0.03 to 0.30);

however, the DPW effects were reduced to the point that most

CIs included zero (βmean = 0.05; βrange = 0.01–0.09). Adjusting for

the effects of DPW, the PAU PGS had significant associations with

the intercept and slope factors for AUD, the intercept factors for

alcohol quantity, NicUD and nicotine quantity. Only the association

between the PAU PGS and the slope factor for alcohol quantity

was no longer significant ( = 0.03, 95% CI = −0.04, 0.11) after

adjusting for the DPW PGS. In contrast, only the association

between the DPW PGS and the intercept factor for AUD remained

significant ( = 0.09, 95% CI = 0.03, 0.19) after adjusting for the

PAU PGS.

Nicotine use PGSs (CPD and SMK)

When the CPD and SMK PGSs were included in the same model

(2 PGS model), the SMK PGS (βmean = 0.17; βrange = 0.04–0.35)

exhibited notably stronger associations than the CPD PGS (βmean

= 0.05; βrange = 0.02–0.09). Adjusting for the effects of CPD, the

SMK PGS continued to have significant associations with intercept

and slope factors for NicUD, nicotine quantity and AUD, and the

intercept factor for alcohol quantity and the effect sizes nearly the

same as those in the 1 PGS model (Table 3). In contrast, none of the

associations between the CPD PGS and the growth factors for the

nicotine and alcohol use measures remained significant after adjusting

for the SMK PGS.

Combined alcohol and nicotine PGS (4 PGS) model
results

When the four alcohol and nicotine PGSs were included in the same

model (i.e. examining respective PGS effects while adjusting for the

other three PGSs simultaneously), the SMK PGS exhibited the most

robust associations across both the alcohol and nicotine outcomes

(βmean = 0.15; βrange = 0.02–0.33). After adjusting for all other PGSs

simultaneously (i.e. co-varying for CPD, DPW, and PAU), the SMK

PGS continued to have significant associations with the intercept and

slope factors for NicUD, nicotine quantity, and AUD, as well as the

intercept factor for alcohol quantity with only a modest decline in

effect sizes (Table 3). The PAU PGS continued to have significant

associations with the slope factor for AUD ( = 0.08, 95% CI = 0.02,

0.13) and the intercept factor for NicUD ( = 0.08, 95% CI = 0.01,

0.16) when co-varying for the other PGSs. The DPW continued to

have a significant association with the intercept factor for AUD

( = 0.08, 95% CI = 0.02, 0.16) after adjusting for the other PGSs. None

of the associations for the CPD PGS remained significant after

adjusting for the other PGSs. Figure 2 depicts exemplar substance use

growth trajectories from ages 14 to 34 years for people with high and

low scores (i.e. � 1.5 SD around the mean) on one of the four respec-

tive PGS, those with high or low scores across all four PGS and people

with average scores on each PGS.
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DISCUSSION

Using a longitudinal design, we extended prior studies investigating

genetic influences on substance use by showing that PGSs for alco-

hol and nicotine use phenotypes were each associated with problem

use in middle adolescence and a greater rate of increase in alcohol

and nicotine use problems throughout young adulthood. Our find-

ings show that alcohol and nicotine use-related PGS are statistically

significant predictors of trajectories for problematic alcohol and

nicotine use, and extend prior cross-sectional studies by demon-

strating that polygenic liability for alcohol and nicotine use are infor-

mative regarding the developmental progression of alcohol and

nicotine use.

We also examined whether associations with PGSs differed for

regular use versus SUD symptoms. For alcohol, DPW and PAU PGSs

exhibited similar predictive power independently, although most

DPW PGS effects decreased below significance when both PAU and

DPW were included in the same model. Multiple factors may explain

differences in performance between the PAU and DPW PGSs. The

PAU phenotype was largely defined by life-time AUD diagnosis, while

DPW was the average number of weekly drinks over shorter reporting

periods (past week/past 12 months). The greater severity and broader

reporting period might account for some of the differential perfor-

mance of the PAU and DPW PGS in the MTFS sample. Sample char-

acteristics of the discovery samples (e.g. treatment-seeking versus

population-based) and levels of substance use problems in the target

sample [9,10] might also account for differences between the PAU

and DPW PGSs. PGS may perform better in target samples with simi-

lar degrees of problematic substance use found in the PGS discovery

sample. The PAU PGS was derived from a sample with elevated rates

of drinking and AUD diagnosis (i.e. the Million Veteran Program

[MVP]), while DPW contains large samples (e.g. 23andMe;

n = �404 000) that are less representative of the population at large

(e.g. high SES, relatively healthy, lower alcohol-related problems). The

F I GU R E 2 Growth trajectories from 4 PGS conditional growth models. Age in years presented on the x axis, substance use scores presented
on the y axis. Trajectories are based on the parameter estimates from the full 4 PGS models. The lines depict trajectories for those with average
scores on all four PGSs (solid black line) and either high or low scores (�1.5 standard deviation around the mean) on either the drinks per week
PGS (dotted blue line), problematic alcohol use PGS (dashed blue line), cigarettes per day PGS (dotted orange line), regular smoking PGS (dashed
orange line) or all four PGSs (dashed black line)
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MTFS sample is a community-based sample that is representative of

its target population, including prevalence of SUDs (e.g. 26% and 33%

meeting criteria for AUD and NicUD, respectively). Also, the

multiple assessment schedule of the MTFS increased the detection of

positive diagnoses and peak substance use, which aids in accurately

capturing problem use, similar to the longitudinal assessment of AUD

available via electronic-health records in the MVP in the PAU discov-

ery sample.

For nicotine use, we found that the CPD PGS was only associated

with problematic nicotine use, consistent with prior estimates of

a high genetic correlation between CPD and nicotine dependence

(rg = 0.95) [6]. In contrast, the SMK PGS was a statistically signifi-

cant predictor of all alcohol and nicotine use outcomes, even after

adjusting for the CPD, PAU and DPW PGSs, indicating the SMK

PGS indexes genetic influences that have general effects on misuse

of multiple substances. The SMK PGS has also been associated with

the use of multiple other substances (e.g. alcohol, cannabis, cocaine)

[5], and has been found to load strongly onto a latent factor com-

posed of externalizing (EXT) traits [39]. Using the same sample as in

this report, we have also shown that these non-specific effects

extend beyond substance use to include externalizing problems

(rule-breaking and aggression) from ages 11 to 17 years (i.e. prior to

peak substance use), even after adjusting for contemporaneous

nicotine use [40]. The notion of common genetic influences across

substances is also consistent with multivariate twin studies that pos-

ited a common genetic etiology to account for the co-occurrence

and family transmission of substance use problems, antisocial behav-

ior and disinhibited personality traits [41–43]. Taken together, these

findings are consistent with the interpretation that the SMK PGS

measures genetic influences on nicotine use and behavioral disinhi-

bition more broadly, while the other substance use-related PGSs are

relatively substance-specific. Efforts to extend these findings to

additional substances (e.g. cannabis) and to directly compare the

effects of the SMK PGS to the EXT PGS [39] are under way.

While the ability to use PGS to demonstrate associations with

longitudinal trajectories of substance use is promising, substantial

advancement is needed before PGSs have clinical relevance for SUDs.

Stratifying individuals based upon ‘polygenic risk’ has been shown to

aid in mitigating adverse health outcomes for some health conditions

(e.g. coronary disease) [44]; similar success has yet to be demon-

strated for SUDs. Concerns related to clinical utility include that cur-

rent SUD PGS account for a relatively small proportion of variance for

clinical phenotypes (�5%), especially in comparison to other risk fac-

tors (e.g. SES, family history) and the potential for patient discrimina-

tion based upon genetic information [45–47].

Limitations of the study include that the PGS were generated

from GWAS of European ancestry. The degree to which our results

generalize to other ancestral groups is uncertain [48]. This limitation

has the potential to proliferate health disparities if these findings are

only applicable to individuals of European ancestry, further prioritizing

the importance of extending efforts to diverse ancestry groups [49].

Additionally, genetic influences on substance use are influenced by

environmental factors, and genetic and environmental influences vary

developmentally [15,50]. Studies examining how PGSs interact with

environmental influences longitudinally are needed.

Despite these limitations, our findings are a successful extension

of prior work by demonstrating substance-specific and generalized

PGS effects on longitudinal trajectories of alcohol and nicotine use

problems throughout late childhood and early adulthood. The results

also provide initial evidence that the SMK PGS may index non-specific

genetic risk for substance use and externalizing behaviors in general.

This effort serves as a key step in demonstrating the influence of alco-

hol and nicotine PGS across developmental periods in which individ-

uals initiate substance use, increase quantity and frequency of use

and begin to experience substance use problems. Our hope is that this

work will aid in mitigating adverse health outcomes related to prob-

lematic substance use in the future.

DECLARATION OF INTERESTS

None.

ACKNOWLEDGEMENTS

This work was supported by United States Public Health Service

grants R37 AA09367 (M.M.), R01 AA024433 (B.M.H.), T32

AA007477 (B.M.H.) and T32 AA028259 (J.D.D.) from the National

Institute of Alcohol Abuse and Alcoholism and R01 DA034606 (B.M.

H.), R37 DA005147 (W.G.I.), R01 DA013240 (W.G.I.), R01 DA044283

(S.I.V.), R01 DA037904 (S.I.V.), R01 DA042755 (M.M./S.I.V.) and U01

DA046413 (S.I.V.) from the National Institute on Drug Abuse.

AUTHOR CONTRIBUTIONS

Joseph Deak: Conceptualization; formal analysis; investigation;

funding acquisition; project administration. D. Angus Clark: Conceptu-

alization; formal analysis; investigation; methodology; project adminis-

tration; resources; software; visualization. Mengzhen Liu: Data

curation; formal analysis; methodology. Jonathan Schaefer: Investiga-

tion; methodology. Seonkyeong Jang: Data curation; formal analysis;

methodology. C Emily Durbin: Conceptualization; investigation;

supervision. William Iacono: Conceptualization; data curation; funding

acquisition; project administration. Matthew McGue: Conceptualiza-

tion; data curation; funding acquisition; project administration. Scott

Vrieze: Conceptualization; data curation; formal analysis; project

administration. Brian Hicks: Conceptualization; data curation; formal

analysis; funding acquisition; investigation; methodology; project

administration; supervision. Frederic C. Blow, Ph.D. is the PI on this

Institutional T32 award. This funding supported Brian M Hicks

(B.M.H.)

ORCID

Joseph D. Deak https://orcid.org/0000-0002-0540-6080

Mengzhen Liu https://orcid.org/0000-0001-6550-6959

ENDNOTE

*Alternative specifications of the growth model (e.g. piecewise
models) were considered, and lead to the same conclusions as
reported here.

POLYGENIC EFFECTS ON ALCOHOL AND NICOTINE USE 1125

https://orcid.org/0000-0002-0540-6080
https://orcid.org/0000-0002-0540-6080
https://orcid.org/0000-0001-6550-6959
https://orcid.org/0000-0001-6550-6959


REFERENCES

1. World Health Organization (WHO). Global Status Report on Alcohol

and Health. Geneva, Switzerland: WHO; 2018.

2. World Health Organization (WHO). WHO Report on the Global

Tobacco Epidemic, 2017: Monitoring Tobacco Use and Prevention

Policies. Geneva, Switzerland: WHO; 2017.

3. Verhulst B, Neale MC, Kendler KS. The heritability of alcohol use dis-

orders: A meta-analysis of twin and adoption studies. Psychol Med.

2015;45:1061–72.
4. Agrawal A, Verweij KJH, Gillespie NA, Heath AC, Lessov-

Schlaggar CN, Martin NG, et al. The genetics of addiction—a transla-

tional perspective. Transl Psychiatry. 2012;2:e140.

5. 23andMe Research Team, HUNT All-In Psychiatry, Liu M, Jiang Y,

Wedow R, Li Y, et al. Association studies of up to 1.2 million individ-

uals yield new insights into the genetic etiology of tobacco and alco-

hol use. Nat Genet. 2019;51:237–44.
6. Quach BC, Bray MJ, Gaddis NC, Liu M, Palviainen T, Minica CC, et al.

Expanding the genetic architecture of nicotine dependence and its

shared genetics with multiple traits. Nat Commun. 2020;11. 5562.

https://doi.org/10.1038/s41467-020-19265-z

7. Zhou H, Sealock JM, Sanchez-Roige S, Clarke TK, Levey DF,

Cheng Z, et al. Genome-wide meta-analysis of problematic alcohol

use in 435,563 individuals yields insights into biology and relation-

ships with other traits. Nat Commun. 2020;23:809–18.
8. Salvatore JE, Aliev F, Edwards AC, et al. Polygenic scores predict

alcohol problems in an independent sample and show moderation by

the environment. Genes. 2014;5:330–46.
9. Savage JE, Salvatore JE, Aliev F, et al. Polygenic risk score prediction

of alcohol dependence symptoms across population-based and clini-

cally ascertained samples. Alcohol Clin Exp Res. 2018;42:520–30.
10. Barr PB, Ksinan A, Su J, Johnson EC, Meyers JL, Wetherill L, et al.

Using polygenic scores for identifying individuals at increased risk of

substance use disorders in clinical and population samples. Transl

Psychiatry. 2020;10:196. https://doi.org/10.1038/s41398-020-

00865-8

11. Chang L-H, Couvy-Duchesne B, Liu M, et al. Association between

polygenic risk for tobacco or alcohol consumption and liability to licit

and illicit substance use in young Australian adults. Drug Alcohol

Depend. 2019;197:271–9.
12. Jackson KM, Sartor CE. The natural course of substance use and

dependence. In: Sher KJ, editorThe Oxford Handbook of Substance

Use and Substance Use Disorders. New York, NY: Oxford University

Press; 2016. p. 67–134.
13. Malone SM, Taylor J, Marmorstein NR, McGue M, Iacono WG.

Genetic and environmental influences on antisocial behavior and

alcohol dependence from adolescence to early adulthood. Dev Psy-

chopathol. 2004;16:943–66.
14. Bergen SE, Gardner CO, Kendler KS. Age-related changes in herita-

bility of behavioral phenotypes over adolescence and young adult-

hood: a meta-analysis. Twin Res Hum Genet. 2007;10:423–33.
15. Vrieze SI, Hicks BM, Iacono WG, McGue M. Decline in genetic influ-

ence on the co-occurrence of alcohol, marijuana, and nicotine depen-

dence symptoms from age 14 to 29. Am J Psychiatry. 2012;169:

1073–81.
16. Belsky DW, Moffitt TE, Baker TB, et al. Polygenic risk and the devel-

opmental progression to heavy, persistent smoking and nicotine

dependence: evidence from a 4-decade longitudinal study. JAMA

Psychiatry. 2013;70:534–42.
17. Li JJ, Cho SB, Salvatore JE, et al. The impact of peer substance use

and polygenic risk on trajectories of heavy episodic drinking across

adolescence and emerging adulthood. Alcohol Clin Exp Res. 2017;

41:65–75.
18. Ksinan AJ, Su J, Aliev F, et al. Unpacking genetic risk pathways for

college student alcohol consumption: the mediating role of impulsiv-

ity. Alcohol Clin Exp Res. 2019;43:2100–10.

19. Su J, Kuo SI-C, Meyers JL, Guy MC, Dick DM. Examining interactions

between genetic risk for alcohol problems, peer deviance, and inter-

personal traumatic events on trajectories of alcohol use disorder

symptoms among African American college students. Dev Psycho-

pathol. 2018;30:1749–61.
20. Kranzler HR, Zhou H, Kember RL, et al. Genome-wide

association study of alcohol consumption and use disorder in

274,424 individuals from multiple populations. Nat Commun. 2019;

10:1–11.
21. Sanchez-Roige S, Palmer AA, Fontanillas P, et al. Genome-wide asso-

ciation study meta-analysis of the alcohol use disorders identification

test (AUDIT) in two population-based cohorts. Am J Psychiatry.

2019;176:107–18.
22. Iacono WG, Carlson SR, Taylor J, Elkins IJ, McGue M. Behavioral dis-

inhibition and the development of substance-use disorders: findings

from the Minnesota twin family study. Dev Psychopathol. 1999;11:

869–900.
23. Keyes MA, Malone SM, Elkins IJ, Legrand LN, McGue M, Iacono WG.

The enrichment study of the Minnesota twin family study: increasing

the yield of twin families at high risk for externalizing psychopathol-

ogy. Twin Res Hum Genet. 2009;12:489–501.
24. Wilson S, Haroian K, Iacono WG, et al. Minnesota center for twin

and family research. Twin Res Human Genet. 2019;22:746–52.
25. McGue M, Zhang Y, Miller MB, et al. A genome-wide association

study of behavioral disinhibition. Behav Genet. 2013;43:363–73.
26. Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ.

Second-generation PLINK: rising to the challenge of larger and richer

datasets. Gigascience. 2015;4:s13742-015.

27. Das S, Forer L, Schönherr S, et al. Next-generation genotype imputa-

tion service and methods. Nat Genet. 2016;48:1284–7.
28. Vilhjálmsson BJ, Yang J, Finucane HK, et al. Modeling linkage dis-

equilibrium increases accuracy of polygenic risk scores. Am J Hum

Genet. 2015;97:576–92.
29. Curran PJ, Howard AL, Bainter SA, Lane ST, McGinley JS. The sepa-

ration of between-person and within-person components of individ-

ual change over time: a latent curve model with structured residuals.

J Consult Clin Psychol. 2014;82:879.

30. Berry D, Willoughby MT. On the practical interpretability of cross-

lagged panel models: rethinking a developmental workhorse. Child

Dev. 2017;88:1186–206.
31. Wu W, Selig JP, Little TD. Longitudinal data analysis. In:

Little TD, editor. Oxford Handbook of Quantitative Methods. In:

Statistical Analysis. 2 New York, NY: Oxford University Press.

p. 387–410.
32. Kwok O, West SG, Green SB. The impact of misspecifying the

within-subject covariance structure in multiwave longitudinal multi-

level models: a Monte Carlo study. Multivar Behav Res. 2007;42:

557–92.
33. Sivo S, Fan X, Witta L. The biasing effects of unmodeled ARMA time

series processes on latent growth curve model estimates. Struct

Equat Model. 2005;12:215–31.
34. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA,

Reich D. Principal components analysis corrects for stratification in

genome-wide association studies. Nat Genet. 2006;38:904–9.
35. Muthén LK, Muthén BO. Mplus User’s Guide. 8th ed. Los Angeles,

CA: Muthén & Muthén. p. 1998–2017.
36. Allison PD. Missing data. In: Millsap RE, Maydeu-Olivares A,

editorsThe SAGE Handbook of Quantitative Methods in Psychology.

Thousand Oaks, CA: Sage Publications; 2009. p. 78–89.
37. Falk CF. Are robust standard errors the best approach for interval

estimation with nonnormal data in structural equation modeling?

Struct Equ Model Multidiscip J. 2018;25:244–66.
38. West SG, Taylor AB, Wu W. Model fit and model selection in struc-

tural equation modeling. Handbook Struct Equat Model. 2012;1:

209–31.

1126 DEAK ET AL.

https://doi.org/10.1038/s41467-020-19265-z
https://doi.org/10.1038/s41398-020-00865-8
https://doi.org/10.1038/s41398-020-00865-8


39. Karlsson Linnér R, Mallard TT, Barr PB, Sanchez-Roige S, Madole JW,

Driver MN, et al. Multivariate analysis of 1.5 million people identifies

genetic associations with traits related to self-regulation and addic-

tion. Nature Neuroscience. 2021. 24:1367–76. https://doi.org/10.
1101/2020.10.16.342501

40. Hicks BM, Clark DA, Deak JD, Liu M, Durbin CE & Schaefer JD et al.

Polygenic risk score for smoking is associated with externalizing

psychopathology and disinhibited personality traits but not internal-

izing psychopathology in adolescence. Clinical Psychological

Science 2021;216770262110021. https://doi.org/10.1101/2020.

07.29.227405

41. Hicks BM, Foster KT, Iacono WG, McGue M. Genetic and environ-

mental influences on the familial transmission of externalizing disor-

ders in adoptive and twin offspring. JAMA Psychiatry. 2013;70:

1076–83.
42. Kendler KS, Prescott CA, Myers J, Neale MC. The structure of

genetic and environmental risk factors for common psychiatric and

substance use disorders in men and women. Arch Gen Psychiatry.

2003;60:929–37.
43. Krueger RF, Hicks BM, Patrick CJ, Carlson SR, Iacono WG,

McGue M. Etiologic connections among substance dependence, anti-

social behavior, and personality: modeling the externalizing spec-

trum. Published online 2009.

44. Khera AV, et al. Genetic risk, adherence to a healthy lifestyle, and

coronary disease. N Engl J Med. 2016;375:2349–58.
45. Lambert SA, Abraham G, Inouye M. Towards clinical utility of poly-

genic risk scores. Hum Mol Genet. 2019;28:R133–42.
46. Torkamani A, Wineinger NE, Topol EJ. The personal and clinical util-

ity of polygenic risk scores. Nat Rev Genet. 2018;19:581.

47. Driver MN, Kuo SI-C, Dick DM. Genetic feedback for psychiatric

conditions: where are we now and where are we going. Am J Med

Genet Part B Neuropsychiatr Genet. 2020;183:423–34.
48. Mostafavi H, Harpak A, Agarwal I, Conley D, Pritchard JK,

Przeworski M. Variable prediction accuracy of polygenic scores

within an ancestry group. eLife. 2020;9:e48376.

49. Martin AR, Kanai M, Kamatani Y, Okada Y, Neale BM, Daly MJ. Clini-

cal use of current polygenic risk scores may exacerbate health dispar-

ities. Nat Genet. 2019;51:584.

50. Rose RJ, Dick DM, Viken RJ, Kaprio J. Gene–environment interaction

in patterns of adolescent drinking: Regional residency moderates lon-

gitudinal influences on alcohol use. Alcohol Clin Exp Res. 2001;25:

637–6.

SUPPORTING INFORMATION

Additional supporting information may be found in the online version

of the article at the publisher’s website.

How to cite this article: Deak JD, Clark DA, Liu M,

Schaefer JD, Jang SK, Durbin CE, et al. Alcohol and nicotine

polygenic scores are associated with the development of

alcohol and nicotine use problems from adolescence to young

adulthood. Addiction. 2022;117:1117–27. https://doi.org/10.

1111/add.15697

POLYGENIC EFFECTS ON ALCOHOL AND NICOTINE USE 1127

https://doi.org/10.1101/2020.10.16.342501
https://doi.org/10.1101/2020.10.16.342501
https://doi.org/10.1101/2020.07.29.227405
https://doi.org/10.1101/2020.07.29.227405
https://doi.org/10.1111/add.15697
https://doi.org/10.1111/add.15697

	Alcohol and nicotine polygenic scores are associated with the development of alcohol and nicotine use problems from adolesc...
	INTRODUCTION
	METHODS
	Participants
	Alcohol use and AUD
	Nicotine use and NicUD
	PGS methods

	Data analytical strategy

	RESULTS
	Single (1) PGS model results
	Drinks per week (DPW)
	Problematic alcohol use (PAU)
	Cigarettes per day (CPD)
	Regular smoking (SMK)

	Two (2) PGS model results
	Alcohol use PGSs (DPW and PAU)
	Nicotine use PGSs (CPD and SMK)

	Combined alcohol and nicotine PGS (4 PGS) model results

	DISCUSSION
	DECLARATION OF INTERESTS
	ACKNOWLEDGEMENTS
	AUTHOR CONTRIBUTIONS
	ENDNOTE
	REFERENCES


