New Phytologist Supporting Information

Article title: Extending beyond Gondwana: Cretaceous Cunoniaceae from western North America

Authors: Keana K. Tang, Selena Y. Smith, and Brian A. Atkinson

Article acceptance date: 16 December 2021

Fig. S1 "Fan" shaped phyloscan tree for *Ceratopetalum suciensis* shows most parsimonious positions indicated by the black branches on the tree. Most parsimonious positions +1 are indicated by the green branches while a gradient from yellow to gray show subsequent parsimonious positions. The bar graph on the left shows the numbers of steps and color gradients of the most parsimonious positions. To get a better view of the results, the phyloscan output will need to be viewed at a greater magnification on a pdf reader (see separate file).

Fig. S2 "Long" shaped phyloscan tree for *Ceratopetalum suciensis* shows most parsimonious positions indicated by the black branches on the tree. Most parsimonious positions +1 are indicated by the green branches while a gradient from yellow to gray show subsequent parsimonious positions. The bar graph on the left shows the numbers of steps and color gradients of the most parsimonious positions. To get a better view of the results, the phyloscan output will need to be viewed at a greater magnification on a pdf reader (see separate file).

Fig. S3 "Fan" shaped phyloscan output for *Tropidogyne pentaptera* shows most parsimonious positions indicated by the black branches on the tree. Most parsimonious positions +1 are indicated by the green branches while a gradient from yellow to gray show subsequent parsimonious positions. The bar graph on the left shows the numbers of steps and color gradients of the most parsimonious positions. To get a better view of the results, the phyloscan output will need to be viewed at a greater magnification on a pdf reader (see separate file)..

Fig. S4 "Long" shaped phyloscan output for *Tropidogyne pentaptera* shows most parsimonious positions indicated by the black branches on the tree. Most parsimonious positions +1 are indicated by the green branches while a gradient from yellow to gray show subsequent parsimonious positions. The bar graph on the left shows the numbers of steps and color gradients

of the most parsimonious positions. To get a better view of the results, the phyloscan output will need to be viewed at a greater magnification on a pdf reader (see separate file).

Fig. S5 "Fan" shaped phyloscan output for *Platydiscus peltatus* shows most parsimonious positions indicated by the black branches on the tree. Most parsimonious positions +1 are indicated by the green branches while a gradient from yellow to gray show subsequent parsimonious positions. The bar graph on the left shows the numbers of steps and color gradients of the most parsimonious positions. To get a better view of the results, the phyloscan output will need to be viewed at a greater magnification on a pdf reader (see separate file)..

Fig. S6 "Long" shaped phyloscan output for *Platydiscus peltatus* shows most parsimonious positions indicated by the black branches on the tree. Most parsimonious positions +1 are indicated by the green branches while a gradient from yellow to gray show subsequent parsimonious positions. The bar graph on the left shows the numbers of steps and color gradients of the most parsimonious positions. To get a better view of the results, the phyloscan output will need to be viewed at a greater magnification on a pdf reader (see separate file)..

Table S1 Living *Ceratopetalum* fruits that were μ CT scanned and segmented for morphologicalcomparison.

SPECIES	COLLECTOR	HERBARIUM	ACCESSION #
C. succirubrum	Schodde 2178	L.H. Bailey Hortorium	BH 95696
C. succirubrum	T.G. Hartley	Harvard University Gray	A00969699
	10967	Herbarium	
C. succirubrum	B. Hyland 10185	Harvard University Gray	A00969700
		Herbarium	
C. apetalum	F.A. Rodway	Harvard University Gray	A00969698
	2668	Herbarium	
C. corymbosum	T.G. Hartley	Harvard University Gray	A00969697
	14046	Herbarium	
C. gummiferum	R. Coveny	Harvard University Gray	A00969696
	11751	Herbarium	
C. virchowii	R. Booth 2772	Harvard University Gray	A00969701
		Herbarium	

Table S2 Scan parameters for extant *Ceratopetalum* fruits.

Species	Collector	KV	Current (µA)	Effective	Filter
				pixel size	
				(µm)	
C. succirubrum	Schodde	78	87	6.81	None
	2178				
	2170				
C. succirubrum	T.G.	92	130	12.03	None
	Hartley				
	10967				
C. succirubrum	B.	92	130	12.03	None
	Hyland				
	10185				
	E A	05	105	10.77	Nana
C. apetalum	F.A.	85	125	10.67	None
	Rodway				
	2668				
C. corymbosum	T.G.	85	125	10.67	None
	Hartley				
	14046				
C. auronifamum	D	05	125	10.7	Nono
C. gummijerum	K.	0.5	123	10.7	None
	Coveny				
	11751				
C. virchowii	R. Booth	94	101	10.05	None
	2772				

			trnL c-d	
Family	Species	rbcL	(intron)	trnL e-F
	Brunellia			
Brunelliaceae	colombiana	AF291937.1	AF299181.1	AF299234.1
Brunelliaceae	Brunellia oliveri	AF291938.1	AF299182.1	AF299235.1
	Ackama			
Cunoniaceae	paniculosa	AF291921.1	AF299161.1	AF299214.1
Cunoniaceae	Ackama rosifolia	-	AF299162.1	AF299215.1
	Acrophyllum			
Cunoniaceae	australe	AF291926.1	AF299168.1	AF299221.1
	Anodopetalum			
Cunoniaceae	biglandulosum	AF291932.1	AF299175.1	AF299228.1
Cunoniaceae	Bauera rubioides	L11174.2	AF299183.1	AF299236.1
Cunoniaceae	Bauera sessiliflora	-	AF299184.1	AF299237.1
	Caldcluvia			
Cunoniaceae	paniculata	AF291922.1	AF299163.1	AF299216.1
	Callicoma			
Cunoniaceae	serratifolia	AF291928.1	AF299170.1	AF299223.1
	Ceratopetalum			
Cunoniaceae	apetalum	KM895900.1	-	-
	Ceratopetalum			
Cunoniaceae	gummiferum	L01895.1	AF299176.1	AF299229.1
Cunoniaceae	Codia discolor	AF291929.1	AF299171.1	AF299224.1
	Cunonia			
Cunoniaceae	atrorubens	AF291918.1	AF299154.1	AF299207.1
Cunoniaceae	Cunonia capensis	-	AF299156.1	AF299209.1
	Davidsonia			
Cunoniaceae	jerseyana	-	AF299185.1	AF299238.1

Table S3 GenBank accession numbers for *rbcL* and *trnL* sequences used in the phylogeneticanalyses.

	Davidsonia			
Cunoniaceae	johnsonii	-	AF299186.1	AF299239.1
	Davidsonia			
Cunoniaceae	pruriens	AF291934.2	-	-
	Eucryphia			
Cunoniaceae	cordifolia	AF291931.1	AF299173.1	AF299226.1
Cunoniaceae	Eucryphia lucida	L01918.2	-	-
Cunoniaceae	Eucryphia moorei	-	AF299174.1	AF299227.1
Cunoniaceae	Geissois superba	-	AF299166.1	AF299219.1
	Gillbeea			
Cunoniaceae	adenopetala	AF291927.1	AF299169.1	AF299222.1
	Hooglandia			
Cunoniaceae	ignambiensis	AY549641.1	AY549639.1	AY549640.1
	Pancheria			
Cunoniaceae	engleriana	-	AF299158.1	AF299211.1
	Platylophus			
Cunoniaceae	trifoliatus	AF291933.1	AF299177.1	AF299230.1
	Pseudoweinmannia			
Cunoniaceae	lachnocarpa	AF291925.1	AF299167.1	AF299220.1
Cunoniaceae	Pullea glabra	AF291930.1	AF299172.1	AF299225.1
Cunoniaceae	Schizomeria ovata	-	AF299178.1	AF299231.1
	Schizomeria			
Cunoniaceae	serrata	JX236031.1	-	JX236028.1
	Spiraeanthemum			
Cunoniaceae	ellipticum	AF291935.1	AF299179.1	AF299232.1
	Spiraeanthemum			
Cunoniaceae	samoense	AF291936.1	AF299180.1	AF299233.1
	Spiraeopsis			
Cunoniaceae	celebica	AF291923.1	AF299164.1	AF299217.1

	Vesselowskya			
Cunoniaceae	rubifolia	AF291920.1	AF299160.1	AF299213.1
	Weinmannia			
Cunoniaceae	bangii	AF291915.1	AF299145.1	AF299198.1
	Weinmannia			
Cunoniaceae	fraxinea	-	AF299149.1	AF299202.1
	Weinmannia			
Cunoniaceae	madagascariensis	AF291916.1	AF299152.1	AF299205.1
	Weinmannia			
Cunoniaceae	minutiflora	-	AF299150.1	AF299203.1

Middle Eocene (Early Eocene) Late Eocene – Early - Late Miocene Campanian **Cretaceous**) Oligocene Ypresian Middle Miocene (Late Early Age Stamens Present Present on fruit Absent Absent Absent Absent diameter 3.62-4 Ovary (mm) 1-1.2 ~2.1 ŝ **4**-5 6.5 Nectary disk Absent? Absent? Present Present Present Present Absent Present Present Absent Absent Absent Petals throughout throughout throughout throughout Diverge at distal half Secondary Diverge at distal half Diverge Diverge Diverge Diverge wing wing wing veins wing Primary veins 4 \mathfrak{c} \mathfrak{c} 4 \mathfrak{c} S 1.8-2.2 ~1.5-2 Wing width 4-5.5 (mm) 3-4 2-4 3-4 Wing length (mm) 5-5.5 7-10 ~10 6-9 1011

Table S4 Augmented data table from Gandolfo and Hermsen (2017) for fossil species of *Ceratopetalum*. Additional data was collected from Holmes and Holmes (1992) and Barnes and Hill (1999).

Species	No. of wings	Wing shape	Wing apex	Wing base
C. priscum	N	Narrow oblong	Obtuse	Not constricted
C. westermannii	N	Narrow obovate	Rounded	Not constricted
C. maslinensis	5-6	Narrow oblong	Acute to obtuse	Not constricted
C. wilkinsonii	S	Ovate to elliptical	Obtuse	Not constricted
C. edgardoromeroi	S	Narrow obovate	Rounded	Constricted gradually
C. suciensis	4-5	Elliptic	Acute	Attenuate (gradual constriction)

Primary veins	Petals	Disk	Ovary	No. of	Style branch	Stamens	Stamen filament
		height	diameter (mm)	styles	length (mm)	on fruit	length (mm)
3	Present	~0.7	3.4-4.8	2 -3	~1.5	Present	2.6-3.0
3	Absent	0.4-0.5	3-4.4	2-3	~1.5	Present	~2
3	Absent	~0.4	ć	2 -3	~1.5	i	1.8-2.3
3	Absent	0.3-0.4	3.6-4	7	0.6-1.0	Present	1.9
Many (>5)	Absent	~0.4	3.6-4.2	7	~1.5	Present	0.6-1.4
Many (>5)	Absent	~0.6	6.1-7.3	2-3	~1.5	Present	1.5-2.3
3	Absent	~0.4	6-8	7	~1.6	Present	1.5
3	Absent	~0.4	ż	2	~1.5	Present	~1.5
3	Absent	0.04- 0.08	5.4-5.9	7	1.1-2.1	Present	1.5-3.0
5	Absent	0.38- 0.60	3.62-4	5	2.47	Present	1.21-1.89

Table S1 Augmented data table from Gandolfo and Hermsen (2017) for extant species of*Ceratopetalum.* Additional data was collected from Rozefelds and Barnes (2002).

	No. of	Wing shape	Wing apex	Wing base	Wing length	Wing width
	wings				(mm)	(mm)
C. gummiferum	4-6	Narrowly to broadly obovate	Acute	Not constricted	9.8-16.1	2.7-6.7
C. apetalum	4-6	Obovate to ovate	Acute	Slightly constricted	6.3-8.9	2.1-4.3
C. corymbosum	4-6	Obovate to ovate	Acute	Slightly constricted	At least 7	ć
C. hylandii	4	Narrowly obovate to lanceolate	Acute to obtuse	Slightly constricted	6.6-11.2	2.2-3
C, succirubrum	4-5	Elliptical to obovate	Acute	Slightly constricted	8.3-12.6	2.4-4.1
C. virchowii	4 -6	Obovate to lanceolate	Acute	Slightly constricted	11.5-13.5	3.4-4.9
C. tetrapterum	4	Ovate to obovate	Acute	Slightly constricted	8.8-17	3.8-5.1
C. iugumensis	4	Narrowly to broadly obovate	Acute	Not constricted	4.8-5	4.8-5
C. macrophyllum	4-5	Obovate to lanceolate	Acute	Constricted	10-13	3.2-4.5
C. suciensis	4-5	Elliptic	Acute	Attenuate (gradual constriction)	11	~3-4

Methods S1

Phyloscan scorings justifications

The floral characters for *Ceratopetalum gummiferum* were scored based on observations of the μ CT scanned specimen and data from literature (Dickison, 1975; Dickison 1984; Rozefelds & Barnes, 2002; Bradford *et al.*, 2004). Number of perianth parts, stamens, and carpels can vary as *C. gummiferum* can have up to six calyx lobes present. Individuals with six calyx lobes will have six petals, twelve stamens, and three carpels present. However, these individuals are rare within the species and genus (Rozefelds & Barnes, 2002) so this variation was not scored within the phyloscan. Instead, *C. gummiferum* was scored to have four to five calyx lobes, eight to ten stamens, and two carpels present to account for the typical variation seen within the genus.

Characters for *Ceratopetalum suciensis* were scored using preserved floral characters present on the specimens. The semi-inferior ovary was scored as inferior due to the limited options in the character matrix. Number of perianth parts and perianth whorls were scored as missing because the lack of petals may be due to preservation or natural dehiscence rather than the absence of petals in the species. Anthers were not preserved so anther and pollen characters were scored as missing. Additionally, internal structures were not preserved so ovule characters were scored as missing.

A majority of the floral characters for the fossil flowers *Platydiscus peltatus* (Schönenberger *et al.*, 2001) and *Tropidogyne pentaptera* (Poinar & Chambers, 2017) were scored according to their published descriptions. All semi-inferior ovaries were scored as inferior ovaries in the character matrix. Data that was scored as missing for the flowers were due to lack of preservation or poor preservation making it difficult to accurately interpret the characters in the images of the specimens. Anther characters were scored according to a *P. peltatus* specimen in bud. However, anther dehiscence via a valve or slit could not be interpreted from the images and was not described so the anther dehiscence was scored as missing. For *T. pentaptera*, the number of perianth parts and whorls were scored as missing because the lack of petals may also be due to preservation or natural dehiscence rather than an absence in the species. The anther orientation of *T. pentaptera*, was scored as missing due to difficulty interpreting the image of the anther on the specimen. Due to the preservation in amber, internal structures could not be observed so the ovule characters were scored as missing. Pollen characters were scored as

missing because the characters were not described and could not be interpreted clearly from the image in the original publication.

Video S1 Digital scans showing cross sections of *Ceratopetalum suciensis*.

Video S2 Digital scans showing longitudinal sections of *C. suciensis*.

Video S3 Ceratopetalum suciensis three-dimensional reconstruction in rotation.

Video S4 Ceratopetalum succirubrum three-dimensional reconstruction in rotation.

Video S5 Both *C. suciensis* and *C. succirubrum* three-dimensional reconstructions in rotation side by side to show similarities.

Notes S1 Tree file with *Ceratopetalum gummiferum* grafted for the phyloscan method (see separate file).

Notes S2 Character list (Note S2a) and character matrices (Note S2b, S2c) used for the initial and secondary phyloscan analysis (see separate file).

Notes S3 Majority rules consensus tree files and .t files from MrBayes analyses (see separate file).

References

Barnes R, Hill R. **1999**. Ceratopetalum fruits from Australian Cainozoic sediments and their significance for petal evolution in the genus. *Australian Systematic Botany* **12**: 635–645.

Bradford J, Fortune Hopkins H, Barnes R. 2004. Cunoniaceae. In: Kubitzki K., eds. *Flowering Plants · Eudicots. The Families and Genera of Vascular Plants*. Berlin, Heidelberg, Germany: Springer, 91–111.

Dickison WC. **1975**. Studies on the floral anatomy of the Cunoniaceae. *American Journal of Botany* **62**: 433–447.

Dickison W. **1984**. Fruits and seeds of the Cunoniaceae. *Journal of the Arnold Arboretum* **65**: 149–190.

Gandolfo MA, Hermsen EJ. 2017. *Ceratopetalum* (Cunoniaceae) fruits of Australasian affinity from the early Eocene Laguna del Hunco flora, Patagonia, Argentina. *Annals of Botany* 119: 507–516.

Holmes W, Holmes F. 1992. Fossil flowers of *Ceratopetalum* Sm. (family Cunoniaceae) from the Tertiary of eastern Australia. *Proceedings of the Linnean Society of New South Wales* **113**: 265–270.

Poinar GO, Chambers KL. **2017**. *Tropidogyne pentaptera*, sp. nov., a new mid-Cretaceous fossil angiosperm flower in Burmese amber. *Palaeodiversity* **10**: 135–140.

Rozefelds AC, Barnes RW. **2002**. The systematic and biogeographical relationships of *Ceratopetalum* (Cunoniaceae) in Australia and New Guinea. *International Journal of Plant Sciences* **163**: 651–673.

Schönenberger J, Friis E, Matthews M, Endress P. 2001. Cunoniaceae in the Cretaceous of Europe: evidence from fossil flowers. *Annals of Botany* 88: 423–437.