New Phytologist Supporting Information

Article title: Extending beyond Gondwana: Cretaceous Cunoniaceae from western North America

Authors: Keana K. Tang, Selena Y. Smith, and Brian A. Atkinson

Article acceptance date: 16 December 2021

Fig. S1 "Fan" shaped phyloscan tree for Ceratopetalum suciensis shows most parsimonious positions indicated by the black branches on the tree. Most parsimonious positions +1 are indicated by the green branches while a gradient from yellow to gray show subsequent parsimonious positions. The bar graph on the left shows the numbers of steps and color gradients of the most parsimonious positions. To get a better view of the results, the phyloscan output will need to be viewed at a greater magnification on a pdf reader (see separate file).

Fig. S2 "Long" shaped phyloscan tree for Ceratopetalum suciensis shows most parsimonious positions indicated by the black branches on the tree. Most parsimonious positions +1 are indicated by the green branches while a gradient from yellow to gray show subsequent parsimonious positions. The bar graph on the left shows the numbers of steps and color gradients of the most parsimonious positions. To get a better view of the results, the phyloscan output will need to be viewed at a greater magnification on a pdf reader (see separate file).

Fig. S3 "Fan" shaped phyloscan output for Tropidogyne pentaptera shows most parsimonious positions indicated by the black branches on the tree. Most parsimonious positions +1 are indicated by the green branches while a gradient from yellow to gray show subsequent parsimonious positions. The bar graph on the left shows the numbers of steps and color gradients of the most parsimonious positions. To get a better view of the results, the phyloscan output will need to be viewed at a greater magnification on a pdf reader (see separate file)..

Fig. S4 "Long" shaped phyloscan output for Tropidogyne pentaptera shows most parsimonious positions indicated by the black branches on the tree. Most parsimonious positions +1 are indicated by the green branches while a gradient from yellow to gray show subsequent parsimonious positions. The bar graph on the left shows the numbers of steps and color gradients
of the most parsimonious positions. To get a better view of the results, the phyloscan output will need to be viewed at a greater magnification on a pdf reader (see separate file)..

Fig. S5 "Fan" shaped phyloscan output for Platydiscus peltatus shows most parsimonious positions indicated by the black branches on the tree. Most parsimonious positions +1 are indicated by the green branches while a gradient from yellow to gray show subsequent parsimonious positions. The bar graph on the left shows the numbers of steps and color gradients of the most parsimonious positions. To get a better view of the results, the phyloscan output will need to be viewed at a greater magnification on a pdf reader (see separate file)..

Fig. S6 "Long" shaped phyloscan output for Platydiscus peltatus shows most parsimonious positions indicated by the black branches on the tree. Most parsimonious positions +1 are indicated by the green branches while a gradient from yellow to gray show subsequent parsimonious positions. The bar graph on the left shows the numbers of steps and color gradients of the most parsimonious positions. To get a better view of the results, the phyloscan output will need to be viewed at a greater magnification on a pdf reader (see separate file)..

Table S1 Living Ceratopetalum fruits that were μ CT scanned and segmented for morphological comparison.

SPECIES	COLLECTOR	HERBARIUM	ACCESSION \#
C. succirubrum	Schodde 2178	L.H. Bailey Hortorium	BH 95696
C. succirubrum	T.G. Hartley 10967	Harvard University Gray Herbarium	A00969699
C. succirubrum	B. Hyland 10185	Harvard University Gray Herbarium	A00969700
C. apetalum	F.A. Rodway 2668	Harvard University Gray Herbarium	A00969698
C. corymbosum	T.G. Hartley 14046	Harvard University Gray Herbarium	A00969697
C. gummiferum	R. Coveny 11751	Harvard University Gray Herbarium	A00969696
C. virchowii	R. Booth 2772	Harvard University Gray Herbarium	A00969701

Table S2 Scan parameters for extant Ceratopetalum fruits.

Species	Collector	KV	Current ($\boldsymbol{\mu A}$)	Effective pixel size $(\boldsymbol{\mu m})$	Filter
C. succirubrum	Schodde 2178	78	87	6.81	None
C. succirubrum	T.G. Hartley 10967	92	130	12.03	None
C. succirubrum	B. Hyland 10185	92	130	12.03	None
C. apetalum	F.A. Rodway 2668	85	125	None	
C. corymbosum	T.G. Hartley 14046	85	125	None	
C. gummiferum	R. Coveny 11751	85			
R. Booth					
2772					

Table S3 GenBank accession numbers for $r b c L$ and trnL sequences used in the phylogenetic analyses.

Family	Species	$r b c L$	trnL $c-d$ (intron)	$\operatorname{trnL} e-F$
Brunelliaceae	Brunellia colombiana	AF291937.1	AF299181.1	AF299234.1
Brunelliaceae	Brunellia oliveri	AF291938.1	AF299182.1	AF299235.1
Cunoniaceae	Ackama paniculosa	AF291921.1	AF299161.1	AF299214.1
Cunoniaceae	Ackama rosifolia	-	AF299162.1	AF299215.1
Cunoniaceae	Acrophyllum australe	AF291926.1	AF299168.1	AF299221.1
Cunoniaceae	Anodopetalum biglandulosum	AF291932.1	AF299175.1	AF299228.1
Cunoniaceae	Bauera rubioides	L11174.2	AF299183.1	AF299236.1
Cunoniaceae	Bauera sessiliflora	-	AF299184.1	AF299237.1
Cunoniaceae	Caldcluvia paniculata	AF291922.1	AF299163.1	AF299216.1
Cunoniaceae	Callicoma serratifolia	AF291928.1	AF299170.1	AF299223.1
Cunoniaceae	Ceratopetalum apetalum	KM895900.1	-	-
Cunoniaceae	Ceratopetalum gummiferum	L01895.1	AF299176.1	AF299229.1
Cunoniaceae	Codia discolor	AF291929.1	AF299171.1	AF299224.1
Cunoniaceae	Cunonia atrorubens	AF291918.1	AF299154.1	AF299207.1
Cunoniaceae	Cunonia capensis	-	AF299156.1	AF299209.1
Cunoniaceae	Davidsonia jerseyana	-	AF299185.1	AF299238.1

Cunoniaceae	Davidsonia johnsonii	-	AF299186.1	AF299239.1
Cunoniaceae	Davidsonia pruriens	AF291934.2	-	-
Cunoniaceae	Eucryphia cordifolia	AF291931.1	AF299173.1	AF299226.1
Cunoniaceae	Eucryphia lucida	L01918.2	-	-
Cunoniaceae	Eucryphia moorei	-	AF299174.1	AF299227.1
Cunoniaceae	Geissois superba	-	AF299166.1	AF299219.1
Cunoniaceae	Gillbeea adenopetala	AF291927.1	AF299169.1	AF299222.1
Cunoniaceae	Hooglandia ignambiensis	AY549641.1	AY549639.1	AY549640.1
Cunoniaceae	Pancheria engleriana	-	AF299158.1	AF299211.1
Cunoniaceae	Platylophus trifoliatus	AF291933.1	AF299177.1	AF299230.1
Cunoniaceae	Pseudoweinmannia lachnocarpa	AF291925.1	AF299167.1	AF299220.1
Cunoniaceae	Pullea glabra	AF291930.1	AF299172.1	AF299225.1
Cunoniaceae	Schizomeria ovata	-	AF299178.1	AF299231.1
Cunoniaceae	Schizomeria serrata	JX236031.1	-	JX236028.1
Cunoniaceae	Spiraeanthemum ellipticum	AF291935.1	AF299179.1	AF299232.1
Cunoniaceae	Spiraeanthemum samoense	AF291936.1	AF299180.1	AF299233.1
Cunoniaceae	Spiraeopsis celebica	AF291923.1	AF299164.1	AF299217.1

Cunoniaceae	Vesselowskya rubifolia	AF291920.1	AF299160.1	AF299213.1
Cunoniaceae	Weinmannia bangii	AF291915.1	AF299145.1	AF299198.1
Cunoniaceae	Weinmannia fraxinea	-	AF299149.1	AF299202.1
Cunoniaceae	Weinmannia madagascariensis	AF291916.1	AF299152.1	AF299205.1
Cunoniaceae	Weinmannia minutiflora	-	AF299150.1	AF299203.1

Table S4 Augmented data table from Gandolfo and Hermsen（2017）for fossil species of Ceratopetalum．Additional data was collected from Holmes and Holmes（1992）and Barnes and Hill（1999）．

800						
			$\begin{aligned} & \stackrel{\rightharpoonup}{\tilde{0}} \\ & 0 . \\ & \stackrel{\rightharpoonup}{<} \end{aligned}$	$\begin{aligned} & \overrightarrow{\tilde{0}} \\ & \stackrel{0}{\mathbb{Z}} \end{aligned}$	苞	
	in		$\stackrel{\rightharpoonup}{i}$	\cdots	？	＋
		$\begin{aligned} & \tilde{\tilde{U}} \\ & \stackrel{0}{0} \\ & \stackrel{0}{0} \end{aligned}$		\＃	苞	
$\begin{aligned} & \text { 帚 } \\ & \text { تِ } \end{aligned}$	$\begin{aligned} & \overrightarrow{\tilde{U}} \\ & \dot{0} \\ & \stackrel{0}{2} \end{aligned}$	$\begin{aligned} & \vec{u} \\ & \overrightarrow{y y} \\ & \frac{0}{4} \end{aligned}$	$\begin{aligned} & \vec{y} \\ & \text { 蕃 } \\ & \frac{0}{4} \end{aligned}$	\＃	有	有
$\begin{aligned} & \text { in } \\ & \text { B } \\ & \vec{y} \end{aligned}$	－	n	m	＋	m	10
$\begin{gathered} 00 \\ =0 \\ =0 \\ \hline \end{gathered}$	$\stackrel{7}{\text { m }}$	$\begin{aligned} & \text { N } \\ & \underset{\sim}{\infty} \\ & \underset{\sim}{n} \end{aligned}$	$\stackrel{N}{n}$	$\begin{aligned} & n \\ & \underset{\sim}{n} \end{aligned}$	$\stackrel{+}{~}$	$\stackrel{7}{3}$
	$\frac{0}{1}$	$\hat{6}$	$\begin{aligned} & n \\ & n \\ & n \\ & n \end{aligned}$	$\frac{0}{2}$	안	च

$\begin{aligned} & 00 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \ddot{0} \\ & .0 \\ & \ddot{U} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & Z \end{aligned}$	$\begin{aligned} & \ddot{0} \\ & .0 \\ & \ddot{Z} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & Z \end{aligned}$	$\begin{aligned} & \ddot{0} \\ & .0 .0 \\ & \ddot{Z} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & Z \end{aligned}$	$\begin{aligned} & \ddot{0} \\ & .0 \\ & \ddot{Z} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & Z \end{aligned}$		
$\begin{aligned} & \stackrel{\times}{0} \\ & \stackrel{0}{\sigma} \\ & \text { on } \end{aligned}$	$\begin{aligned} & 0 \\ & 0_{0}^{2} \\ & \text { O} \end{aligned}$			$\begin{aligned} & \stackrel{0}{0} \\ & \sum_{0}^{2} \\ & 0 \end{aligned}$	$\begin{aligned} & \text { O} \\ & \text { O } \\ & 0 \\ & 0 \end{aligned}$	皆
		$\begin{aligned} & 3 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \text { Z } \\ & 0 \\ & 0 \end{aligned}$			$\begin{aligned} & 3 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \text { Z } \\ & \text { Z } \\ & \hline \end{aligned}$	悉
$\begin{aligned} & 4.0 \\ & \dot{0} \cdot \tilde{3} \\ & \dot{Z} \cdot \end{aligned}$	in	in	ir	in	in	8
$\begin{aligned} & \stackrel{0}{0} \\ & \stackrel{0}{2} \\ & \tilde{n} \end{aligned}$	$\begin{aligned} & \text { E } \\ & 0 \\ & 0 \\ & \text { B } \\ & \text { U } \end{aligned}$			$\begin{aligned} & : \cong \\ & \text { U } \\ & \text { ה } \\ & \text { ה } \\ & \text { U } \end{aligned}$	$\begin{aligned} & \text { õ } \\ & \text { y } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	

Table S1 Augmented data table from Gandolfo and Hermsen (2017) for extant species of Ceratopetalum. Additional data was collected from Rozefelds and Barnes (2002).

Primary veins	Petals	Disk height	Ovary diameter (mm)	No. of styles	Style branch length (mm)	Stamens on fruit	Stamen filament length (mm)
3	Present	~ 0.7	$\mathbf{3 . 4 - 4 . 8}$	$\mathbf{2 - 3}$	~ 1.5	Present	$2.6-3.0$
3	Absent	$\mathbf{0 . 4 - 0 . 5}$	$\mathbf{3 - 4 . 4}$	$\mathbf{2 - 3}$	~ 1.5	Present	~ 2
3	Absent	$\mathbf{0 . 3 - 0 . 4}$	$\mathbf{3 . 6 - 4}$	$\mathbf{2}$	$0.6-1.0$	Present	1.9
3	Absent	$\sim \mathbf{0 . 4}$	$\mathbf{3 . 6 - 4 . 2}$	$\mathbf{2}$	~ 1.5	Present	$\mathbf{0 . 6 - 1 . 4}$
Many (>5)	Absent	$\sim \mathbf{0 . 6}$	$6.1-7.3$	$\mathbf{2 - 3}$	~ 1.5	Present	$\mathbf{1 . 5 - 2 . 3}$
Many (>5)	Absent	$\sim \mathbf{0 . 4}$	$6-8$	$\mathbf{2 - 3}$	~ 1.5	$?$	$\mathbf{1 . 8 - 2 . 3}$
3	Absent	$\sim \mathbf{0 . 4}$	$?$	$\mathbf{2}$	~ 1.6	Present	$\mathbf{1 . 5}$
3	Absent	$\mathbf{0 . 3 8}$	$\mathbf{3 . 6 2 - 4}$	$\mathbf{2}$	$\mathbf{2 . 4 7}$	Present	$\mathbf{1 . 2 1 - 1 . 8 9}$
$\mathbf{5}$		$\mathbf{0 . 6 0}$		$\mathbf{2}$	~ 1.5	Present	$\sim \mathbf{1 . 5}$

	No. of wings	Wing shape	Wing apex	Wing base	Wing length (mm)	Wing width (mm)
C. gummiferum	4-6	Narrowly to broadly obovate	Acute	Not constricted	9.8-16.1	2.7-6.7
C. apetalum	4-6	Obovate to ovate	Acute	Slightly constricted	6.3-8.9	2.1-4.3
C. corymbosum	4-6	Obovate to ovate	Acute	Slightly constricted	At least 7	?
C. hylandii	4	Narrowly obovate to lanceolate	Acute to obtuse	Slightly constricted	6.6-11.2	2.2-3
C, succirubrum	4-5	Elliptical to obovate	Acute	Slightly constricted	8.3-12.6	2.4-4.1
C. virchowii	4-6	Obovate to lanceolate	Acute	Slightly constricted	11.5-13.5	3.4-4.9
C. tetrapterum	4	Ovate to obovate	Acute	Slightly constricted	8.8-17	3.8-5.1
C. iugumensis	4	Narrowly to broadly obovate	Acute	Not constricted	4.8-5	4.8-5
C. macrophyllum	4-5	Obovate to lanceolate	Acute	Constricted	10-13	3.2-4.5
C. suciensis	4-5	Elliptic	Acute	Attenuate (gradual constriction)	11	~3-4

Methods S1

Phyloscan scorings justifications

The floral characters for Ceratopetalum gummiferum were scored based on observations of the $\mu \mathrm{CT}$ scanned specimen and data from literature (Dickison, 1975; Dickison 1984; Rozefelds \& Barnes, 2002; Bradford et al., 2004). Number of perianth parts, stamens, and carpels can vary as C. gummiferum can have up to six calyx lobes present. Individuals with six calyx lobes will have six petals, twelve stamens, and three carpels present. However, these individuals are rare within the species and genus (Rozefelds \& Barnes, 2002) so this variation was not scored within the phyloscan. Instead, C. gummiferum was scored to have four to five calyx lobes, eight to ten stamens, and two carpels present to account for the typical variation seen within the genus.

Characters for Ceratopetalum suciensis were scored using preserved floral characters present on the specimens. The semi-inferior ovary was scored as inferior due to the limited options in the character matrix. Number of perianth parts and perianth whorls were scored as missing because the lack of petals may be due to preservation or natural dehiscence rather than the absence of petals in the species. Anthers were not preserved so anther and pollen characters were scored as missing. Additionally, internal structures were not preserved so ovule characters were scored as missing.

A majority of the floral characters for the fossil flowers Platydiscus peltatus (Schönenberger et al., 2001) and Tropidogyne pentaptera (Poinar \& Chambers, 2017) were scored according to their published descriptions. All semi-inferior ovaries were scored as inferior ovaries in the character matrix. Data that was scored as missing for the flowers were due to lack of preservation or poor preservation making it difficult to accurately interpret the characters in the images of the specimens. Anther characters were scored according to a P. peltatus specimen in bud. However, anther dehiscence via a valve or slit could not be interpreted from the images and was not described so the anther dehiscence was scored as missing. For T. pentaptera, the number of perianth parts and whorls were scored as missing because the lack of petals may also be due to preservation or natural dehiscence rather than an absence in the species. The anther orientation of T. pentaptera, was scored as missing due to difficulty interpreting the image of the anther on the specimen. Due to the preservation in amber, internal structures could not be observed so the ovule characters were scored as missing. Pollen characters were scored as
missing because the characters were not described and could not be interpreted clearly from the image in the original publication.

Video S1 Digital scans showing cross sections of Ceratopetalum suciensis.

Video S2 Digital scans showing longitudinal sections of C. suciensis.

Video S3 Ceratopetalum suciensis three-dimensional reconstruction in rotation.

Video S4 Ceratopetalum succirubrum three-dimensional reconstruction in rotation.

Video $\mathbf{S 5}$ Both C. suciensis and C. succirubrum three-dimensional reconstructions in rotation side by side to show similarities.

Notes S1 Tree file with Ceratopetalum gummiferum grafted for the phyloscan method (see separate file).

Notes S2 Character list (Note S2a) and character matrices (Note S2b, S2c) used for the initial and secondary phyloscan analysis (see separate file).

Notes S3 Majority rules consensus tree files and .t files from MrBayes analyses (see separate file).

References

Barnes R, Hill R. 1999. Ceratopetalum fruits from Australian Cainozoic sediments and their significance for petal evolution in the genus. Australian Systematic Botany 12: 635645.

Bradford J, Fortune Hopkins H, Barnes R. 2004. Cunoniaceae. In: Kubitzki K., eds. Flowering Plants • Eudicots. The Families and Genera of Vascular Plants. Berlin, Heidelberg, Germany: Springer, 91-111.

Dickison WC. 1975. Studies on the floral anatomy of the Cunoniaceae. American Journal of Botany 62: 433-447.

Dickison W. 1984. Fruits and seeds of the Cunoniaceae. Journal of the Arnold Arboretum 65: 149-190.

Gandolfo MA, Hermsen EJ. 2017. Ceratopetalum (Cunoniaceae) fruits of Australasian affinity from the early Eocene Laguna del Hunco flora, Patagonia, Argentina. Annals of Botany 119: 507-516.

Holmes W, Holmes F. 1992. Fossil flowers of Ceratopetalum Sm. (family Cunoniaceae) from the Tertiary of eastern Australia. Proceedings of the Linnean Society of New South Wales 113: 265-270.

Poinar GO, Chambers KL. 2017. Tropidogyne pentaptera, sp. nov., a new midCretaceous fossil angiosperm flower in Burmese amber. Palaeodiversity 10: 135-140.

Rozefelds AC, Barnes RW. 2002. The systematic and biogeographical relationships of Ceratopetalum (Cunoniaceae) in Australia and New Guinea. International Journal of Plant Sciences 163: 651-673.

Schönenberger J, Friis E, Matthews M, Endress P. 2001. Cunoniaceae in the Cretaceous of Europe: evidence from fossil flowers. Annals of Botany 88: 423-437.

