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Abstract 
The quest to elucidate nervous system function and dysfunction in disease has focused 
largely on neurons and neural circuits. However, fundamental aspects of nervous 
system development, function and plasticity are regulated by non-neuronal elements, 
including glial cells and the extracellular matrix (ECM). The rapid rise of genomics and 
neuroimaging techniques in recent decades has highlighted neuronal-glial interactions 
and ECM as a key component of nervous system development, plasticity and function. 
Abnormalities of neuronal-glial interactions have been understudied but are increasingly 
recognized to play a key role in many neurodevelopmental disorders. Here, we consider 
the role of myelination and the ECM in the development and function of CNS motor 
circuits and the neurodevelopmental disease dystonia. 
 
Introduction 
Dystonia manifests as prolonged involuntary twisting movements that occurs either in 
isolation or combination with other neurological symptoms 1, 2. The pathophysiology of 
dystonia is complex with cellular and circuit dysfunctions from multiple regions 
implicated thus far 3. Functional and molecular deficiencies observed in animal models 
and in multiple inherited forms of dystonia include cholinergic dysfunction 4-10, impaired 
inhibition 11-15, abnormal connectivity 16-22 and deficits in plasticity 23-25. These core 
features highlight the varied mechanisms contributing to dystonia pathophysiology, 
which lead to remarkably similar motor deficits. Many of these phenotypes emerge 
during CNS maturation, which is supported by recent studies using animal models 
manipulating TorsinA (Tor1A or DYT1) expression demonstrating its importance during 
a “critical period” of neurodevelopment 23, 26-28. These findings and the recent 
identification of several monogenic variants with high diagnostic value in early onset 
dystonias 29-31 offer strong support to the premise that dysregulation of 
neurodevelopmental mechanisms is a key feature of dystonia pathophysiology. 
 
Advances in sequencing technologies have expanded our understanding of the genes 
associated with dystonia 2, 32, 33. Genetic mutations causing isolated (TOR1A, THAP1, 
GNAL, ANO3, PRKRA, KMT2B, GCH1 and HPCA) and combined dystonia (ATP1A3, 
SGCE, TAF1, SLC2A1/GLUT1, PNKD, PRRT2, VPS16, VPS41, KCTD17) are all 
ubiquitously expressed in the CNS (Figure 1; single cell portal, BROAD Institute; 
https://singlecell.broadinstitute.org/single_cell). Most dystonia associated genes are 
expressed in both neuronal and glial cells (Fig. 1), with only ATP1A3 expression 
exhibiting neuronal restricted expression (confirmed in single cell portal, BROAD 
Institute and https://www.brainrnaseq.org). These observations are consistent with the 
possibility that dystonia etiology is not limited to mechanisms originating from neuronal 
cells. Here, we examine emerging evidence implicating abnormalities of the 
extracellular matrix, myelination, and axon-glia interactions in motor function and 
dystonia pathogenesis.  
 
 
 
White matter and oligodendrogenesis in motor learning and plasticity 

https://singlecell.broadinstitute.org/single_cell


 

Generation of white matter (WM) in the brain is a gradual postnatal process as 
observed in humans and rodents whereby oligodendrocyte cells (referred to as OLs) 
wrap axons with a myelin sheath that supports rapid neurotransmission 34. These 
myelinating glial cells differentiate from oligodendrocyte progenitor cells (OPCs). Peak 
myelination in the developing brain occurs concomitant with peak synaptogenesis, with 
the bulk of it occurring in the first 2 years in humans and first 3 weeks in rodents 35-37. 
However, myelination continues through puberty in both animals and humans 37, 
including changes in myelinated white matter volumes in frontal brain regions that can 
be detected in humans up to 40 years of age 38, 39. Thus, critical periods during the 
emergence of sensory and motor function coincide with the differentiation of OPCs into 
myelinating OLs. 
 
Studies in mice have established that motor learning promotes key aspects of 
oligodendrogenesis, including increased OPC proliferation, generation of mature 
myelin-producing OLs 40, 41, and myelin sheath remodeling 42. Increased 
oligodendrogenesis from motor learning is a critical aspect of “adaptive myelination”, 
whereby neural activity promotes the generation of myelinating OLs 43, 44. In an elegant 
approach, Gibson et al. demonstrated that optogenetic stimulation of layer V projection 
neurons in the premotor cortex promotes oligodendrogenesis, increases myelin 
thickness and altered motor function 45. 
 
While changes in myelination in animal models can be quantitatively assessed though 
many techniques and reagents post-mortem, in humans and live animal studies, WM 
tracts are commonly assessed using the MRI technique diffusion tensor imaging (DTI). 
This techniques measures water diffusion as a proxy for the integrity and organization of 
axonal tracts 46, 47. Fraction anisotropy (FA), a measure of the orientation-dependence 
of water diffusion, is a DTI parameter that is commonly used to assess tract integrity 46, 

47. FA values are higher in WM tracts compared to grey matter due to the highly 
organized axonal bundles that restrict water diffusion along defined paths 47, 48. While 
higher FA values positively correlate with axonal myelination 48 and low FA values are 
observed in demyelinating disorders 46, WM integrity is also dependent on axon density, 
caliber, and the presence of other glial cells. Thus FA is a biomarker of microstructural 
architecture 47, but is not exclusive to changes in myelination. 
 
Several DTI studies indicate that motor skill learning causes WM structural changes. 
For example, corticospinal tract FA values increase with extensive piano practicing 49, 
while juggling training increases FA in the intraparietal sulcus 50. Interestingly, the 
whole-body movement paradigm Quadrato Motor Training (QMT) induces FA increases 
across multiple WM regions, including the corticospinal tract, anterior thalamic 
radiations, and uncinate fasciculi 51. Motor learning also induces WM changes in 
laboratory models. Learning a highly skilled reaching task increased FA in the WM of 
sensorimotor cortex contralateral to the trained limb compared with untrained control 
rats, and ex vivo myelin staining density correlated with learning rate 52.  
 
A critical question is whether the activity-induced myelination and oligodendrogenesis is 
necessary for motor learning and skill. This question was addressed directly by 



 

disrupting the generation of new OLs in animals learning the skill of running on a wheel 
with unequally placed rungs 40, 41. These investigators conditionally deleted from OPCs 
Myrf, a factor critical for differentiation of OPC to OL. This perturbation impaired the 
generation of myelinating OLs and caused deficits in the wheel task, particularly in the 
early stages of motor learning 40, 41. Similar motor learning deficits were observed in 
studies using cuprizone induced demyelination in mice performing skilled reaching, 
where demyelination is followed by incomplete OL replacement and motor learning 
defects 42.  
 
Genetic links between white matter, oligodendrocyte dysfunction and dystonia 
Parallel to the work linking white matter and motor learning are clinical and laboratory 
studies implicating alterations of white matter in the pathophysiology of dystonia. 
Changes in WM microstructure have been reported in patients with twelve different 
forms of inherited dystonia - either in isolation or combination with other neurological 
symptoms (Table 1). Eight of the mutated genes implicated in primary (Table 1: 
THAP1,YY1, TUBB4A)) and secondary dystonia (Table 1: SLC2A1/GLUT1, BAP31, 
FA2H, SLC16A2/MCT8 and POLR3) have an established role in myelination. Several 
additional studies have reported microstructural WM changes in idiopathic dystonias 53. 
For example, significant changes in FA values have been reported in subjects with 
cervical dystonia in the putamen, corpus callosum 54 and internal globus pallidus 55, 56. 
Similar findings have been reported in patients with “writer’s cramp” (a form of task 
specific dystonia) and spasmodic dysphonia (47-49).  
 
Studies of THAP1 function are first direct demonstration of a primary dystonia gene 
functioning in the oligodendrocyte lineage 57, 58. DYT-THAP1 (DYT6 dystonia) is caused 
by loss of function mutations in THAP1 59, a transcription factor with an atypical zinc-
dependent DNA-binding domain 60, 61. More than 100 mutations have been reported in 
the protein coding region of this gene 62. We reported that, despite its ubiquitous 
expression (Fig.1) 57, THAP1-regulated pathways are highly enriched within the OL 
lineage 57. Mice conditionally deficient for Thap1 in the entire CNS (using Nestin-cre) or 
conditionally deficient for Thap1 in the OL lineage (using Olig2-Cre) exhibit severe 
myelination defects during the first month of life 57. Ultrastructural studies demonstrate a 
reduced density of myelinated axons in the WM despite normal axon number 57.  
 
Of the eight dystonia genes with a role in myelination, six genes (Table 1; THAP1, 
SLC2A1/GLUT1, FA2H, YY1, SLC16A2/MCT8 and TUBB4A) have an established 
function within the oligodendrocyte lineage of which five (Table 1: THAP1, FA2H, YY1, 
SLC16A2/MCT8 and TUBB4A) have a regulatory role in the generation of mature OL. 
Thus far, mutations for THAP1, FA2H, YY1 and SLC16A2/MCT8 have been established 
to result in loss-of-function 63-68. Studies using mouse models have demonstrated that 
both THAP1 and YY1 regulate the generation of mature OLs from OPCs 57, 69. 
Interestingly, THAP1 and YY1 are co-bound transcription factors that share a large 
number of target genes, and YY1 binding is functionally dependent on THAP1 binding 
57, 64. The THAP1 null CNS has normal numbers of OPC and immature OLs, but a clear 
defect in the progression to mature myelinating OLs both in vitro and in vivo 57. While 
the mechanism of actions of these six genes implicated in dystonia may vary, their loss 



 

of function would commonly affect myelination resulting from their actions within the OL 
lineage.  
 
ECM-mediated plasticity in motor learning and function 
CNS axon-glia interactions are profoundly influenced by the ECM, a complex three-
dimensional milieu composed of fibrous proteins (e.g., collagen, elastin), 
glycosaminoglycans (GAGs, a class of long unbranched mucopolysaccharides), and 
GAG-modified proteins (proteoglycans “GAG-PG”) 70. The brain ECM is estimated to 
occupy ~20% of the adult brain 71 acting both as a physical scaffold and a signal 
organizing center affecting growth, synaptic activity and neural plasticity 72-74. 
Consequently, the ECM has a broad influence on both the development and plasticity of 
the CNS, including motor learning and function.  
 
Brain ECM exists in both diffuse and condensed forms 75. The best characterized CNS 
ECM structure is the perineuronal net (PNN). PNNs are lattice-like structures composed 
of CSPGs (chondroitin sulfate proteoglycans) typically surrounding parvalbumin-positive 
(PV) GABAergic interneurons 74. The appearance of the defined PNNs around 
interneurons in the striatal matrix occurs at the end of a critical developmental period (~ 
3 weeks of age) that correlates with the appearance of adult-like gait from an immature, 
predominantly forelimb dependent ‘crawl’ 76. Enzymatic ablation of these striatal CSPGs 
impedes the transition to a mature gait 77 suggesting an important role in motor function 
during development. PNNs also form around PV neurons during critical periods of 
postnatal development in the somatosensory cortex 78, 79. Sensory deprivation leads to 
quantitative and qualitative changes in PNNs in the mouse barrel 78 and somatosensory 
cortex 80. These observations establish a role for ECM composition and dynamics in 
establishing sensory and motor function during CNS development.  
 
Despite their necessary role in establishing motor function during development, the 
effect of CSPGs on motor function is complex and not binary or unidirectional. For 
instance, injuries in the CNS lead to acute accumulation of CSPGs, which inhibit neural 
plasticity and oligodendrogenesis 72, 79, 81-87. Motor learning deficits following focal motor 
cortex ischemia 88 or cervical spinal cord injuries 89 are ameliorated by enzymatic 
ablation of the accumulating CSPGs; these observations suggest that lesion-induced 
ECM accumulation inhibits motor recovery. Multiple GAG species, in their free forms 
and as proteoglycans, have been demonstrated to inhibit oligodendrocyte maturation in 
vitro and in vivo 72, 81-87, 90-93.  
 
Genetic links between ECM and dystonia 
Thus far three genetic causes of inherited dystonias have interactions with or contribute 
to ECM homeostasis (Table 1; THAP1, SGCE and VPS16). ɛ-sarcoglycan (SGCE) is a 
transmembrane glycoprotein interacting with extracellular ECM and the intracellular 
cytoskeleton 94. Recent studies have identified that THAP1 is involved in the lysosomal 
regulation of ECM components 58. THAP1 regulates catabolism of GAGs, the major 
ECM components in the OL lineage 58. Loss of THAP1 in OPCs results in the 
accumulation and secretion excess GAGs, inhibiting OPC maturation through an auto-
inhibitory mechanism 58. THAP1 regulates GAG catabolism by binding to and regulating 



 

the GusB (MPS7) gene encoding the GAG-catabolizing enzyme β-glucuronidase 58, 
which resides in the lysosomes and whose loss of function is responsible for the 
lysosomal storage disorder, mucopolysaccharidosis type VII (MPS VII) or sly syndrome 
95. Interestingly, loss-of-function variants in the homotypic fusion and vacuole protein 
sorting (HOPS) complex genes VPS16 and VPS41 have been identified to cause early 
onset dystonia 96. HOPS is a conserved protein complex known to mediate lysosomal 
(endosome-lysosome and autophagosome–lysosome) fusion events 97. Two recent 
studies have identified patients with homozygous VPS16 variants are associated with a 
novel disease, resembling mucopolysaccharidosis-plus syndrome that include 
developmental delay, delayed myelination, skeletal abnormalities and high-normal 
glycosaminoglycan excretion 94, 98.  
 
Concluding remarks 
There is increasing evidence for the role of extra neuronal mechanisms in 
neurodevelopmental and neurodegenerative disorders. In this brief review we have 
curated and discussed a growing body of work linking abnormalities of myelination and 
ECM biology to dystonia pathogenesis and pathophysiology. The roles of other glial 
populations (e.g., astrocytes and microglia) in motor function are relatively well studied 
but have not been examined in the context of dystonia. This omission is especially 
pertinent given recent studies demonstrating microglial-astrocyte crosstalk with 
themselves and with oligodendrocytes. Similarly, astrocytes and microglia have 
established role in ECM generation and regulation. Given the wide range of cellular and 
physiological pathways implicated in dystonia pathogenesis, the roles of these extra 
neuronal mechanisms and neuronal-glial interactions are important future directions to 
pursue to unravel the cellular and molecular mechanisms of neurodevelopmental 
disease, including dystonia. 
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Figure legends 

 

Figure 1: CNS cell type specific expression of dystonia genes: Dot plot showing the 

expression pattern of inherited dystonia genes (rows) derived from single nucleus RNA-

seq of mouse cortex (single cell portal, BROAD Institute) 99. The relative expression 

genes in various cell types of (columns) is scaled (0-1 = blue to red) relative to each 

gene's expression across all cells. The size of the dot represents the relative expression 

in the given cell type. 

 

Table legends 

 

Table 1: Reference to prior studies for inherited dystonia genes and their relation to 

white matter, oligodendrocytes and ECM. 

 



 

 
 

Table 1: White matter & ECM abnormalities associated with dystonia. 

  Evidence of white matter abnormalities  

Gene Phenotype Neuroimaging Myelination Functional role in 
oligodendrocyte 

lineage 

Role in ECM 

TOR1A DYT-TOR1A 18    

THAP1 DYT-THAP1 100 57, 101 57, 58 58, 102 

KMT2B DYT- KMT2B 103, 104    

VPS16 DYT-VPS16 and MPS-plus 
syndrome-like disease 
 (Mucopolysaccharidoses) 

98 98  94 

SGCE DYT- SGCE    105 

SLC2A1/
GLUT1 

Paroxysmal dyskinesias 
dystonia 

106, 107 108 108  

BAP31 Deafness, dystonia, and 
cerebral hypomyelination 

109 109   

FA2H Spastic Paraplegia; dystonia 110 111-113 112, 113  

SLC16A2
/MCT8 

Allan-Herndon-Dudley 
syndrome 

114-116 115-120 115-117, 120  

YY1 DYT-YY1 and 
Gabriele-de Vries syndrome 

 69 69  

POLR3 POLR3-related leukodystrophy 121, 122 121, 122   

TUBB4A 
 

DYT-TUBB4A and 
Leukodystrophy including 
Hypomyelination with Atrophy 
of Basal Ganglia and 
Cerebellum. 
 

123, 124 123 125, 126  
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