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EXECUTIVE SUMMARY

This report was prepared for the Office of Naval Research in fulfillment of Task 1 of contract
N00014-20-C-1099, titled “Data-Model Fusion for Naval Platforms and Systems.” The objective
of Task 1 is to develop a rigorous, generic framework for naval applications of Data-Model Fusion.

Data-Model Fusion (DMF) is a concept developed at Martin Defense Group (legacy Navatek), in
conjunction with the University of Michigan, to describe:

1. Data: information from sensors, expert knowledge, reports, inspections, surveys, or other
sources regarding physical components, systems, platforms or fleets within available
operating conditions

2. Model: digital representations (e.g., empirical equations, physics-based models, networks,
ontological characterizations, etc) of those components, systems, platforms or fleets within
simulated operating conditions.

3. Fusion: the integration of said data and models to bring both into agreement. Our data-
model fusion approach uses data science techniques and machine learning methods to
improve state estimates, update model parameters, identify operational areas or anomalies,
and inform decision-making.

Our integration approach utilizes and expands upon the state-of-the-art in data science and
Artificial Intelligence (Al)-based decision support to provide real-time actionable diagnostic
and/or prognostic information on the state of real-world physical platforms. When a digital model
is operationally coupled via sensors to a specific real-world component, system, platform, or fleet,
we refer it as a digital twin. Use cases for twins involve managing degrading systems, improving
performance, updating design approaches, and optimal planning for a fleet of similar platforms.
Digital twins are not a necessary component in data-model fusion, but they are frequently used as
a basis for analysis and decision-making in our real-world system applications.

This report is a compilation of six separate reports, with an overall focus on defining a fundamental
framework for data-model fusion in the naval domain. We start in Chapter 1 with a literature
survey of approaches, gaps, and opportunities in data-model fusion. Next, we define in Chapter 2
a unified theory of digital twins, followed in Chapter 3 by a delineation of digital twin types in the
naval domain. In Chapter 4 we discuss techniques for data persistence that enable storage of the
geometry models, measurements, and environmental data needed by twins. In Chapter 5 we shift
our focus back to data-model fusion, providing a survey of tools and techniques that can be used
to inform naval systems design and operation. We develop methods for understanding and
managing the implications, risks, and opportunities of digital naval engineering with respect to the
design and operation of autonomous naval platforms and systems. Chapter 6 was written to serve
as a primer on Al-based decision support methodologies, tools, and techniques for practicing naval
research engineers and scientists. Finally, we conclude this report with a discussion on technology
transfer, capability gaps, and opportunities for further research.
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CHAPTER 1 SURVEY OF FUSION APPROACHES AND
OPPORTUNITIES

Author: Matthew Collette’
1 - University of Michigan, Department of Naval Architecture and Marine Engineering
Date: July 2021

Marine Structures Design Laboratory Report Number: 2021-001

Abstract: Digital twins are becoming commonplace in discussions of future marine platforms.
However, the community still lacks a standard definition and understanding of the state-of-the-art
for such approaches. This report provides: a review of the historical development of digital twins,
a formal definition of a digital twin that is contrasted to other definitions in the literature, a review
of digital twin use cases, and a deep dive into the fusion step where a twin brings a numerical
model and real-world observations into agreement. Digital twins are seen as an evolutionary
development joining several related fields, with origins in the early 1990s. Use cases for twins
involve managing degrading systems, improving performance, updating design approaches, and
optimal planning for a fleet of similar platforms. Through a detailed review of 32 papers focused
on the fusion step in twins, the state-of-the-art in fusion is documented. Fusion approaches appear
to be in active development, with significant progress at the component level. Further work is
needed for larger systems, integration into decision making, quantifying uncertainty, and to help
select particular algorithmic approaches for differing applications.

SECTION 1.1 INTRODUCTION

The phrase "Digital Twin" has become commonplace over the last decade. Built upon a mixture
of existing computational frameworks and an increased ability to sense the as-built world, twins
have promised improved performance and safety for large engineering systems such as naval
vessels. However, real-world success stories have been far fewer, with careful blending of data,
simulation, and decision-making required to benefit from the twin approach. This report explores
the current state-of-the-art of digital twins, focusing on two particular aspects of the twin system:
(1) the potential applications of the twin for naval vessels and (2) the mechanics of fusing data
with computational models, known as the fusion step. These two components are not
comprehensive — the overall needs of the twin system are explored further in the next section.
However, the needs and fusion approaches are linked and form the internal core of most twin
systems and represent a logical starting point for exploring digital twins. The remainder of this
document is divided into four sections. First, an overview of digital twins, fusion approaches, and
the history of the concept are presented. Second, a review of potential applications for digital
twins on naval vessels, drawing upon academic, commercial, and governmental literature. Third,
a detailed academic literature search on fusion methods is presented, with the current state-of-the-
art examined in detail. Fourth, the state-of-the-art in fusion methods is then contrasted with the
desired applications for naval digital twins to determine areas needed for future research.
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SECTION 1.2 TWINS AND FUSION

SECTION 1.2.1 WHAT IS A TWIN?

The term digital twin has become nebulous over time, as related concepts and commercial products
have used the term "digital twin" to describe their products or procedures. To restore a stricter
definition to this term, we examine the qualities that are unique to the digital twin in the marine
setting. Wincott and Collette [1] proposed that a system must have each of the following
characteristics to be considered a digital twin:

1. A real-world system of interest: Twins are specific to real-world systems. A simple
twin may model one particular vessel or component on a vessel, while a more complex
twin might span a fleet of similar vessels and integrate knowledge across the fleet.
However, the ability to track discrete, real-world systems is key to the twin. While some
talk about "design stage" digital twins, such a term only applies to an in-development
twin or planned reuse of design-stage engineering products. Digital twins can interface
or build upon model-based system engineering approaches, but the twin is not complete
until there is a specific physical system in the real world.

2. One or more digital representations of the system: A true twin requires some sort of
digital representation of the real-world object. Here, twins can differ dramatically in the
complexity of this representation, which could be as simple as a regression equation or
machine learning product, and as complex as a high-fidelity coupled CFD and FEA
simulation. The digital representation may focus on engineering prediction (e.g., a
simulation model) or may instead focus on data storage and integration (a geometric or
product structure model). Twins may include more than one level of model fidelity or
modeling approach and may switch between them as needed.

3. Fusion to join the real-world system and the digital representation: The twin must be
able to relate events in the real world to the digital model. Making such a relationship
can be as simple as inputting visual inspections (e.g., coating health or corrosion data to a
structural twin) periodically, or it could comprise a multi-channel monitoring system in
real-time. Many twins may fuse more than one type of information — e.g., visual
inspections combined with weather records and recorded strains. This step involves both
data acquisition and integration of the data with the digital representations.

4. A decision that will depend on the output of the fusion step: To differentiate between
a twin and a monitoring or validation campaign, we also introduce the concept that a twin
must influence a decision. This decision could be advisory (e.g., recommending optimal
deployment scheduling of a fleet of assets for equal use), or it could be fully automated
with final authority over some part of the vessel's operation.

In a deeper examination into the architecture of digital twins on this project, a revised definition
was proposed that moved item 4, the decision-making requirement out of the formal twin, but into
a twin system [2]. The idea behind this revision is that decision-making may require input from
multiple, independent twins and other data sources. Additionally, different decision frameworks
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could be proposed for the same twin for differing decisions. A sketch of this definition is shown
below. The image shows that the same first three requirements remain, with the decision moved
to a different layer of the framework.

Digital
Representations

Data
Integration

Mechanisms to
acquire and
integrate data

Figure 1: Revised Twin Scope Proposed with Decision Making System Complimentary — After [2]

Regardless of if the decision-making system is integrated into the formal twin, or considered as
part of the twin system, a consistent vision of a twin emerges from this discussion. A twin must
have a specific, real-world system or systems that it is trying to model. A twin must have one or
more digital representations of the physical system and some sort of fusion approach to gather data
from the physical world and integrate it with the digital model. A twin must also address decision-
making in some form, either directly coupled to the twin or by providing input to a wider decision
system. Few other specific marine definitions of twins have been proposed. Erikstad provides one
in the context of wind turbine simulation, which is more detailed but broadly similar to the themes
proposed here [3], and a broader recent literature review has also been published [4].

The terms digital thread and digital systems model have also become widely used over the last
several years. Both of these are distinct from the definition of a digital twin. Kraft [5] provides a
recent series of definitions from the U.S. military community’s perspective on the differences
between these, which is reproduced below directly from Kraft's paper [5]:

Digital System Model - A digital representation of a weapon system, generated by
all stakeholders, that integrates the authoritative data, information, algorithms, and
systems engineering processes that define all aspects of the system for the specific
activities throughout the system lifecycle.

Digital Thread - An extensible, configurable, and Agency enterprise-level
analytical framework that seamlessly expedites the controlled interplay of
authoritative data, information, and knowledge in the enterprise data- information-
knowledge systems, based on the Digital System Model template, to inform
decision-makers throughout a system's life cycle by providing the capability to
access, integrate and transform disparate data into actionable information.
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Digital Twin - An integrated multi-physics, multi-scale, probabilistic simulation of
an as-built system, enabled by Digital Thread, that uses the best available models,
sensor information, and input data to mirror and predict activities/performance over
the life of its corresponding physical twin.

The definition of twin proposed by Kraft is slightly less specific than the working definition
proposed here but entirely compatible. It can be seen that the digital system model and digital
thread refer to activities carried out early in the design process (before a physical system exists)
and associated infrastructure and knowledge management activities. These definitions, and indeed
the concept of the system model and the digital thread, show both the potential for reuse of design
stage models, as well as the challenges in tracking and making information available to twins
throughout the product lifecycle.

In a recent review of digital twin literature for manufacturing applications, Negri [6] summarized
16 twin definitions that have appeared in the literature over recent years. Few of the definitions
are as specific as the definition proposed here. These 16 definition summaries by Negri were
compared to the four components of our current definition and shown in the table below:

Table 1: Comparison of Twin Definitions

Component of Current Definition The number of times this appears in other's
definition summarized in [6]

A specific real-world system of interest 13/16

One of more numerical models 16/16

Fusion to join digital/physical 4/16

A decision that depends on the twin 4/16

From this table, it is clear that the relationship between a physical system and a numerical model(s)
is well established and common. However, many previous authors do not include the fusion and
decision steps in their definitions, even if the systems are envisioned to use these components.
This could be a result of a modeling bias, where past research has focused on the ability to actually
perform the computations required for the modeling side of the twin, or worried primarily about
the data flow and infrastructure required for the twin to work. The lack of formal discussion on
these two aspects of the twin to date has motivated the present work's focus on these aspects of the
twin system, starting with fusion models in this report.

SECTION 1.2.2 BRIEF HISTORY OF THE TWIN APPROACH IN THE MARINE FIELD

Answering the question of who first came up with the concept of the digital twin is difficult. The
first publication that proposed what would be recognized as the core of a modern twin is credited
to work done at the University of Michigan by Grieves in 2002 [7], which specifically proposed a
virtual computational space mirroring the physical world in the context of automotive systems.
However, a similar system with virtual and real-world spaces had, in fact, been presented for
seakeeping decision making in Sweden almost a decade earlier by Huss and Olander [8]. Erikstad
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noted that product lifecycle management (PLM) systems developed in Norway by the DNV
maritime corporation integrated corrosion and thickness measurements for future performance
prediction in the mid-1990s, basically the same time as Huss and Olander [9]. The work of Pegg
and Gibson, which is functionally similar, dates back to 1993 [10]. While these structural
modeling approaches were temporally slower (often integrating manual field observations), they
were fundamentally the same architecture now adopted for twins and that proposed by Grieves.
Glaessgen and Stargel [11] credit the twin to DARPA's DSO but provide no evidence of prior
publication to that of Grieves. It appears that the concept of the digital twin emerged organically
from advances in sensing and computation in several places around the world. While its origin
cannot now be precisely determined, no publication with a prior date to that of Huss and Olander
has been found. Since this time, the twin concept has exploded, with rapid growth in papers,
software, and products related to digital twins. This review will focus on the marine field twins,
with occasional references to review articles or other major publications in the related fields
(primarily aerospace and manufacturing to date).

The broad origin is likely a reflection that the twin concept is best seen as a development of prior
work instead of a new departure. Figure 2 shows a partial list of existing technology that has
contributed to the modern digital twin. Several of these approaches, such as vibration-based
machinery monitoring approaches, probabilistic crack inspection and repair, and PLM data
systems predate twins, yet provide valuable functionality to the modern twin toolbox.
Additionally, the recent growth in machine learning, accurate global weather models, as well as
the decrease in the cost of computational power and sensing have helped make twins practical.
Thus, we can see twins as emerging from the maturity and interaction of a number of engineering
developments. Once these foundational technologies were mature enough and inexpensive
enough, a twin becomes a logical approach for increasing platform performance.

PLM-based data management
Bridge decision support
Probabilistic crack inspection and repair
Increased communication and data flow
Global weather models

Machine learning

Pattern-based SHM

Vibration-based machine monitoring

Wl

> TIME
Figure 2: Historical Contributors to Current Twin Approach

The modern twin today then touches on several areas of related development, as shown in Figure
3. The concept of developing detailed simulation models underlies model-based systems
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engineering (MBSE). If such models are built during design, using them operationally becomes
attractive, and in that way, MBSE can enable digital twins. Likewise, PLM and Digital Thread
systems provide a backbone infrastructure capable of handling the data storage and retrieval
necessary for twins. Structural health monitoring and condition-based maintenance also closely
approximate twins, although in many cases, they do not have a detailed underlying numerical
model, instead using pattern matching and thresholds to determine when intervention is required.
Finally, the increasing desire to support autonomous vessels, where human crew members cannot
monitor the vessels in real-time, and to support operability decisions even with a human crew has
led to an interest in adapting digital twins for these use cases. Thus, the twin field today is broad
and is expected to grow in conjunction with these related fields.

PLM
Digital Thread

MBSE Autonomy

Digital Twin

Operational

SHM & CBM Suspoit

Figure 3: Overlap Between Twins and Related Disciplines

As shown in Figure 2, condition-based monitoring of machinery has been one of the primary
forerunners of digital twin approaches. Vibration monitoring, electrical insulation testing,
electrical power analysis, and other diagnostic approaches have been in use for decades. Most of
these approaches started using simple degradation models or models learned from data without
simulation of physics. However, physics-based models are now complementing data-driven
models in some applications. Furthermore, hybrid models, which merge both approaches using
fusion, are also growing in interest. Guo, Li, and Li [12] provide a recent review focused on both
physics, data-driven, and hybrid models, while Kim, An, and Choi [13] provide a textbook
introduction to these approaches with accessible code and examples. Alaswad and Xiang [14]
provide a recent overview of non-physics degradation models used in this application. Marine-
specific examples from the last three years include a recent review on corrosion modeling [15],
deep-learning approaches for autonomous ship systems [16], wind-turbine mechanical systems
[17][18], and propulsion systems [19].

Concurrently, product lifecycle management (PLM) approaches were also growing in popularity.
Such approaches keep extensive product data and often engineering models with specific physical
objects throughout the life of the object. In the marine field, an early area of application of such
approaches was tracking corrosion and other structural defects over time. The emergence of the
widespread use of FEA in the 1990s meant that many ships now had 3-D FEA models that could
be updated with structural thickness gauging and other inspection data. Additionally, inspection
data, photographs, and crack records could be easily stored and categorized. Such twins had limited
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numerical components beyond PLM — often, an FEA model was simply re-assessed against
existing criteria, and rough forecasts of when corrosion would require the replacement of structural
members could be made. Canada took the lead in this area, merging hydrodynamic loading, FEA
models, and inspection results into a multi-level assessment system that could support operational
deployment and repair decisions [10]. In the commercial world, ABS SafeShip [20] was one of
the earlier examples of a similar approach, developed to leverage the 3-D FEA models created
during design through the SafeHull application. While the inspection process and result input to
the FEA model was still manual, and the fusion process could take several weeks, these approaches
are among the first to have all aspects required to be considered a true twin.

The updatable structural model has proven popular beyond commercial vessels. A naval example
is the Canadian experience with the Victoria/Upholder class diesel-electric submarines purchased
from the United Kingdom. At some point in their service lives before purchase, these submarines
suffered both denting and corrosion of their pressure hulls. This damage was significant enough
that engineering analysis of each vessel was necessary to confirm if it was safe to return to service.
Through a series of papers and reports, the development of a program known as SubSAS has been
partially revealed [21][22]. This program appears to have built a forward-only twin where exact
pressure hull measurements can be translated into non-linear finite element models and the
collapse of the hull in its current state accurately modeled. Additional work covered modeling the
impact of repairing some pressure hull areas with weld metal filler and experimental validation of
the collapse behavior based upon scale experimental models.

The U.S. Navy proposed a system where inspection data and operational history would be merged
to create ship-by-ship digital twins that could project future fatigue life and corrosion renewals as
necessary [23]. Bureau Veritas has outlined an inspection approach for offshore structures that
updates approval models, both hydrodynamic and FEA models, with in-service measurements.
The unique model of each platform is then used to support service life extension decisions and
future inspection requirements [24].

Canada has continued to lead in the development of marine digital twins. A broad scientometric
study of intelligent maintenance approaches for military platforms examined twins among other
approaches [25]. The scientometric study provides an extensive overview of the current literature
around both digital twins and the more general condition-based maintenance world. Two figures
from this report are reproduced below. Figure 4 shows a concept map generated from research
article keywords around intelligent maintenance in the marine world. The map shows core
concepts at the center, with branches dealing with detailed monitoring and data interpretation
methods. Interestingly, the world of the composite structural health monitoring is completely
separate from the other topics, and in the main group of the map, again, the structural monitoring
approaches develop in a distinct region that is only loosely connected to the machinery monitoring
topics. This further supports the idea that twins are building on existing approaches, approaches
that have been developed with a degree of independence between disciplines.

Figure 5 expands upon Figure 4, presenting a cross-reference between different intelligence-based
maintenance approaches and specific marine system components. The intensity of the connections
supports the notion that structural and machinery approaches are the two largest active areas.
Additionally, it appears that different keywords have developed in each area, with conditioned-
based maintenance correlated more strongly with machinery systems and structural health
monitoring corresponding to structural considerations. This table complements the conclusions
drawn from Figure 4, providing more evidence that twins will be built upon existing discipline-
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specific approaches that have already achieved some degree of maturity. However, these
approaches may not use the same language or underlying techniques. At the platform level, a twin
may want to integrate concerns across these different domains. Such an approach would need to
find a mapping between the different terminology and approaches used in each discipline.
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Correlation. Developed by [25]
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Figure 5: Textual Keyword Publication Count for Intelligence Maintenance Papers in Marine Domain, Developed by [25]

Building on the concepts first introduced in the work of Pegg [10], Thompson [26] has proposed
following a ship's service life with the twin, using weather hindcasts, recorded ship position,
heading, and speed, with numerical seakeeping. Reasonable accuracy was achieved compared to
full onboard measurements. Such an approach greatly reduces the monitoring cost, as no strain
gauges need to be installed onboard the vessel. Thompson [27] has recently summarized the
existing progress made in Canada into an overview report, outlining how the data gathered by the
twin can be used for operational guidance, standards updating, and logistics support.

Most of the twins presented above would be categorized as forward-only, not reflective. This
distinction is discussed in more detail in section 1.2.3, but briefly, a forward-only twin integrates
real-world observations into an evolving digital model but does not try to correct the underlying
digital model by comparing past predictions to current state information. Structural degradation
updating is one area where underlying parameters (e.g., corrosion, fatigue crack growth
parameters) are accessible. The current authors have worked to couple a variety of machine-
learning techniques to make structural marine twins reflective, including work on updating wave
loading and fatigue growth parameters [28]-[31]. Such reflective approaches have been extended
by others to address inspection planning and long-term logistics [32], [33]. However, to date, most
of these reflective twins are only using simple component-based failure models, not full FEA
models of the vessel, and the inclusion of real-world structural data has not yet been attempted.

A related area where twin applications have been developed is that of course and speed guidance
for operators. Typically, such guidance is provided on a much shorter timescale than structural
twins, with guidance ranging from roughly ten days ahead to immediate support on the bridge for
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making course and heading changes. Perera and Guedes Soares [34] divide such approaches into
two categories. The first category is weather routing, which they define as a pre-voyage plan for
the vessel to minimize exposure to high sea states (to optimized time, fuel consumption, structural
damage, or other variables of importance to the owner). Weather routing is typically done days in
advance. The second category is what they refer to as safe ship handling, where the system
provides near real-time guidance on speed and heading choices to the navigation team. Weather
routing does not require a true twin — simply avoiding areas of rough weather can be accomplished
without modeling the vessel itself, but both weather-routing and safe ship handling approaches
now do include some methods that would be classified as twins as they use a ship-specific
numerical model.

Huss and Olander [8] provided one of the earliest ideas for such a twin in 1994. Using the ship as
a wave buoy, the vessel's current motions are used to approximate the sea state that the vessel is
in. Then, hydrodynamic models are used to provide operator guidance and evaluate the probability
of dangerous situations occurring. This is a complete twin, fusing motions with an inverse
seakeeping model to determine wave parameters, then running those wave parameters through a
forward model to predict motions and dangerous situations. Since then, this concept has been
extensively extended. Nielsen has a notable body of work for large containerships, using this
concept for operator guidance, structural fatigue damage rate prediction, and fault detection [35]—
[38]. In a similar timeframe, submarine maneuvering digital twins were developed to provide
feedback for autopilot systems and guidance on the impact of submarine maneuvering. These
models make extensive use of online machine learning methods to update the underlying model as
the submarine's condition change [39][40].

At a slightly longer timescale, work done by Dong et al. [41] and Nichols et al. [42] has explored
using forward-only twins to provide optimal mission-level planning and routing decisions in a
naval context. These twins use some sort of decision-making framework, forecast weather, and
operational parameters such as speed and heading to give hours-to-days guidance on optimal
routes. Perera and Guedes Soares review similar commercial concepts from the European research
community [34].

SECTION 1.2.3 CATEGORIZING TWINS

Given the diversity of applications of digital twins encompassed by the twin definition, it is clear
that a more descriptive way of categorizing subtypes of twins would aid in discussing and
comparing twins. Several authors have proposed categorization systems for twins. Most notably
in the marine field, Erikstad [9] has extended the concept of design patterns from object-oriented
software programming to that of twins. Erikstad provides six primary patterns of twins based on
the types of fusion logic, data, and purpose of the twin. Taylor et al. [43] use a variety of cyber-
physical system architectures and comparisons to manufacturing-base twins to categorize twins
and describe them. Fonseca and Gaspar [44] examine the twin primarily from a software and data
storage perspective, proposing a layered architecture approach for understanding twins.

The above categorizations are useful at a high level to understand how twins are put together.
However, in this work, a slightly more invasive categorization of twins is proposed. Based on the
literature review, four primary axes emerge that separate twins into sub-categories. Each of these
axes is a continuum, not a binary division between the respective endpoints. These provide another
view for categorizing twins that will be used in reviewing the literature on fusion methods below.
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1. Volume of Data the Twin Uses: Twins can be placed on an axis running from data-rich
to data-poor. Data-rich twins typically get thousands or more data points directly related
to their fusion approach and decision criteria. This opens up the ability to use a wide
variety of machine learning approaches to build successful twins. Examples would
include rotating machinery twins or seakeeping twins with many observations. Data-poor
twins may not have a single observation of the target of their prediction. These twins
must rely more heavily on the numerical models to predict un-observed physics, and their
fusion will address the calibration of these models. Examples would include a twin
guarding against structural collapse or capsize.

2. Timescale of the Twin Fusion and Decision: Twins can address problems on widely
varying timescales. Seakeeping and stability-related twins may provide immediate
guidance to the bridge watch team on heading and speed recommendations. Such twins
must be able to integrate data, perform fusion, and make recommendations in near real-
time. This implies very high autonomy and normally some sort of edge computing vs.
cloud computing approach. On the other end of the spectrum, structural lifecycle twins
may optimize fleet deployments and maintenance intervals over a decade-long time
window. Such twins can fuse measurements, human inspection reports, and related data
sources slowly, with extensive human involvement in the fusion process.

3. Volume of State Information that Must Be Tracked: Depending on their area of
application, the physical state data that the twin needs to track over time can range
widely. Detailed material failure models may be needed to understand the development
of metallic microstructures, residual stresses, and other three-dimensional state variables
throughout the structure. Battery models may need to understand the evolution of the
chemistry in the battery over time. Long-term data management and validation is a key
component of such twins, as the degradation of the system is usually path-dependent.
However, other twins do not require such in-depth state vectors. Seakeeping and
operability twins may only require the vessel's outer geometry and current mass
properties, and prior operations need not be tracked at all to understand future motions.

4. Forward or Reflective Twins: Twins can be categorized based on their structure as well.
Forward-only twins incorporate data from the physical object in the real world into a
fixed numerical prediction model. This model then makes future predictions that are
acted upon. An example of a forward-only twin would be a crack growth prediction
model, which gets updated crack lengths from inspections, and then re-predicts future
crack sizes using a crack propagation model. In this approach, the underlying numerical
crack growth model is unchanging, though its input, starting crack size, varies. In a
reflective twin, the twin compares the prediction it made to future observations and tries
to reduce the error between prediction and observation by adjusting the numerical model.
To return to the crack growth model, a dynamic Bayesian network modeling the same
crack growth problem would study each observation and adjust the parameters of the
crack growth model to give better agreement with all observations to date before
predicting future crack size. This would be a reflective model. Another example would
be the difference between using a machine learning model that is trained once and then
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used to make future predictions and a machine learning model which continues to re-train
itself with incoming observations. Forward or reflective remains a spectrum of
possibilities, as the frequency of updating the underlying model can range from near-real-
time to batch updates every few years.

Understanding where each twin application falls on these axes is critical to understanding what
sort of technology challenges the twin will have to tackle to be successful. While these are not the
only ways to differentiate twins, these four approaches directly address the type of fusion logic
that would apply, the timescale of the computations and decisions, the data structures involved,
and if the twin will refine itself over time. These four axes help compare twins — two twins with
very different values on these axes would be expected to look very different internally, even if they
both meet the twin definition discussed in section 1.2.1.

SECTION 1.2.4 SUMMARY

Digital twin is a broad concept. To focus the discussion on the marine community, we defined a
canonical digital twin comprised of four different steps: a real-world physical object, one or more
numerical models, fusion logic to link them, and input into a decision-making process. This
definition is widely compatible with other definitions proposed to date. References to historical
twins in the marine field were reviewed, and it was determined that research on systems meeting
the modern definition of a twin was underway in the marine community a full decade before the
term twin was first used. The marine community has a rich heritage in twins, with more than 25
significant papers reviewed above. While the definition of twin is helpful to scope what is or is
not a twin, a four-category classification scheme was also proposed to further classify twins.

SECTION 1.3 POTENTIAL APPLICATIONS

We conducted a broad literature survey of the digital twin field, with a focus on marine
applications. Scientific and popular articles were surveyed, as well as government publications.
The survey looked beyond data-model fusion to capture all potential applications. A preference
for either a direct marine application or a technology that could apply to a marine system was used
to sort out twins from radically different fields (e.g., manufacturing real-time control). As these
papers were found, a bottom-up affinity diagram approach was used to sort them into groups and
themes. This approach was made in an iterative manner, with four top-level themes emerging,
followed by 16 sub-themes under those higher-level themes. The first top-level theme was using
a digital twin to monitor degradation for sustainment, repair, or to ensure safety. This was the
most common theme. In the marine field, there were extensive examples of structural health
monitoring and some machinery condition-based maintenance examples as well. Many condition-
based maintenance systems for machinery are fairly robust (e.g., vibration measurement) and may
not be showing up in recent publications as they are an established field of practice. Specific papers
and topics within this subject are listed below:

1. Remaining life assessment of the structural system, accounting for corrosion, fatigue, and
other deformations [3][27][45][46][29][47][48][10][49][50]
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2. Inspection and repair scheduling and short-term integrity protection by detecting faults
and modifying operations for both structural and mechanical systems [3][51]

3. Capturing true environmental load history of the platform to update inspection and
maintenance [3]

4. Forecasting future mechanical and electrical systems condition [52] [53] [54][55][56]
[571[58]

5. Manage spare parts, support additive manufacturing for some parts by assuring data
availability [52]

6. Optimizing the timing of interventions/repairs for increased effectiveness [59] [55]

The second most frequent theme was using a digital twin to improve the operation and control of
a vessel. Within this broad field, optimizing fuel consumption by controlling vessel trim, draft,
and engine room parameters stood out as a particularly active field, especially in commercial
service. Simulating future missions was also common, especially to handle damage onboard or to
predict how the vessel will respond in conditions that it has not yet encountered. Finally, another
cluster of papers described twins that provide real-time operational guidance to crew members
around maneuvering the vessel in waves and safety hazards. These systems gave guidance about
potential changes in heading, as well as providing operators with visibility into the rate of structural
fatigue damage occurring on the hull. Such damage accumulation is not visible to human crews
and hence is not always considered when mission planning or maneuvering a vessel. Specific
papers within this theme are listed below:

7. Updating control systems based on in-service experience for system or overall vehicle
dynamics [3][60][39]

8. Predicting future performance/mission simulation, including modifications for damage or
degradation, or improved predictions in un-observed conditions [3][61][62][28][63]

9. Providing real-time feedback to the vessel operator on safety or cumulative damage (e.g.,
fatigue) [27] [54] [61]

10. Optimizing fuel consumption, system configuration, and validating system performance
[59][64] [54][56][65][66][67][68]

11. Demonstrate and document performance for authorities [59]

One of the roots of digital twins is in product lifecycle management (PLM) systems, which
integrate 3-D geometry models, part and component information, and other models into a single
repository over the asset's lifetime. Such PLM approaches composed the third major theme of
digital twin applications. In this theme, the majority of the papers dealt with updating design codes
and standards based on in-service feedback from observations. Related papers dealt with design
verification, planning alternations, and serving as a single model of the system through life. These
areas mainly had one or two papers in them. However, much like condition-based maintenance in
the first theme, a dedicated search for PLM systems would undoubtedly turn up many more papers.
This is especially true given that Grieves [7] identified twins as the natural extension of PLM
systems.

12. Updating design codes, uncertainty, and standards-based on actual performance in the
ocean [3] [27][54][69]

13. Planning for alternations and modifications [27][70]

14. Checking I.T. systems before installation [71]
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15. Providing a single, consistent representational model of the system for all stakeholders

[5]

The fourth theme explored was that of fleet optimization, which goes beyond the work in
optimizing a single vessel to look at optimal employments of fleets of vessels. This could be to
match the characteristics of particular vessels with forecast conditions to optimize the ability to
complete a mission. Alternatively, a longer-term twin application could look to balance fatigue
exposure over a class of similar vessels to maximize asset lifetime. This theme had far fewer
papers and tended to be more press-release-style papers about future system possibilities than deep
academic papers. Overall, this theme appeared to be the least developed, and it could be argued
that this theme is really another decision layer that could simply be layered on the outputs from
vessel-level twins. Given the development still needed at the vessel level, this state is not
surprising.

16. Optimize deployments and use of fleet of assets or maintenance [23][3][72] [54]

SECTION 1.4 LITERATURE SEARCH AND ASSESSMENT OF CURRENT FUSION
TECHNIQUES

A more detailed literature review was made of 32 papers focused on the fusion step of the twin
process. The fusion step is one of the more novel steps in the twin process and is essential to tie
the virtual and real platforms together. Each paper was read, and a brief summary of the fusion
approach was noted in an annotated bibliography format. These entries are contained in Appendix
A at the end of the document. A matrix of criteria was used to rank the fusion method in each
paper. These criteria consisted of the following terms:

1. The year the paper was published
2. The four criteria introduce in section 1.2.3:
o Whether the twin was data-rich or data-poor. Three broad division points were
used here, data-rich twins were those that used more than 1,000 data points (not
1,000 individual data streams, just more than 1,000 observations across all data
streams), data-poor twins used ten or fewer, and all other twins were ranked as
intermediate
o The timescale of the decision, divided into immediate decisions, decisions over a
days-to-weeks timeframe, and decisions over a months-to-years timeframe
o State information used, which was ranked by stateless systems (e.g., no history
kept), recent history used for comparison or updating, or complete history through
manufacturing
o Whether the twin was forward or reflective
3. An additional list of characteristics that evolved as the papers were reviewed:
o Which types of data sources were used?
The number of individual data streams
Which types of numerical models were used?
The field of application
The level of development
Which mathematical fusion approach was used?
What type of system was the fusion method applied to?

O O O O O O
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4. A survey of which components was included in each twin:
o Did it discuss the sensing step in detail?
Did it discuss the fusion step in detail?
Did it discuss the decision step in detail?
Did it include a hierarchy of one or more systems or models?
Did it include uncertainty in the approach?

O O O O

The publication count by year is given in Figure 6, which shows increasing research intensity in
the last five years, with a sudden jump in 2020. This tracks closely with results from Collette and
Wincott [1], which showed a growing interest in twins in the popular literature in the early 2000s,
followed by a much more recent and exponential uptick in scholarly publications in this area. This
again shows the relative novelty of the field and the high rate of current research in this area.
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Figure 6. Publication Count by Year

In terms of the four twin criteria introduced in this paper, the results showed that many fusion-
oriented twins straddled boundaries between the categories proposed, suggesting that these
boundaries may be relatively flexible. This means that the total of the observations frequently
exceeded 32 -the numbers of papers reviewed, as some methods applied across categories. In
terms of the data-rich and data-poor twins, there was a clear bias towards data-rich fusion methods,
with 20 papers addressing approaches where the data points available exceeded 1,000, with eight
papers in the intermediate state and only four papers in the data-poor category with fewer than 10
data points. The current state of the field reflects perhaps related developments in machine
learning, which has largely prioritized developments of data-rich black-box modeling approaches,
such as deep learning via neural networks. It may also reflect the spillover from condition-based
maintenance of rotating machinery systems, which generally feature continuous measurements.

The timescale of the decision was more varied, with 16 addressing immediate decisions, 22
addressing days to weeks decisions, and 14 addressing months to years. This last category had the
fewest "unique" entries — the overwhelming majority of systems that provided long-term guidance
also were able to provide the days-to-weeks guidance as well.
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The state information was much more clustered. The majority of the papers (20) used no state
information. This was representative of trained machine learning models that simply looked for
differences in the input signal momentarily, without making time comparisons. Ten methods used
recent history, while only two integrated data from manufacturing. This indicates that full
integration between manufacturing and design-oriented digital thread approaches and fusion in
digital twins is still somewhat lacking. In part, this may be a result of the difficulty in replicating
a full digital thread in a research environment, making exploration of this aspect of fusion difficult.

Surprisingly, of the 32 papers reviewed, 25 used the more complex reflective twin approach, where
fusion attempts to identify and reduce errors in future predictions, not simply update the state
information. Seven approaches used fusion in a forward-only sense, focusing on state updates.
Overall, the analysis of the four criteria points to a varied landscape for digital twins. This both
emphasizes the importance of having a good taxonomy to understand twins and the amount that
the underlying physics of the problem to be solved influence the form and functional design of the
fusion method and wider twin. The analysis of the fusion papers shows that reflective twins of
varying decision timescales are now widely being explored. The analysis also shows that data-
poor and state-rich twins are perhaps underexplored corners of the fusion and twin landscape.

The broader review of twin characteristics was also illuminating. Data stream diversity was very
low; 31 papers used simple time-histories of numerical readings (e.g., strain, motion, acceleration).
Three papers used human-developed soft input, and three used image-based inputs. The number
of individual input channels (e.g., a single sensor that may produce many readings) was also
tracked and is shown in Figure 7. The majority of fusion approaches today are focused on a
relatively low number of inputs, with five or fewer the most common and the majority of systems
having fewer than ten input channels. However, there is clearly interest in larger systems, as the
largest paper looked at more than fifty channels, and seven looked at using more than 20 channels.
From this analysis, it is clear that fusion systems today are dominated by low numbers of simple
data sources, but there is interest in broadening both the types of inputs and the number of inputs.

14
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Number of Data Sources

Figure 7: Count of Number of Papers vs. Number of Individual Data Sources Used in Fusion

DISTRIBUTION STATEMENT A. Approved for public release, distribution unlimited. 22 of w3



Approved, DCN# 43-9451-22

The types of models updated by the fusion method also varied. By far, the most common approach
was to have a physics-based model of a single component, 22 of the papers used this approach.
The next most common approach was constructing an abstraction — which could be a machine
learning model, or a network-based model, to handle the fusion tasks. This is a different approach
as it does not try to replicate the physics of the problem directly during fusion but instead functions
as an independent predictor of the future responses or adds a correcting step to the output of the
physics-based model. Only four papers used 3-D CAD models of the system that could attempt to
act as a PLM or central repository of geometry, models, and data through-life. This again shows
that while tying twins and fusion approaches into digital threads from manufacturing onwards has
been discussed, it is still relatively rare to see this occur in the research field to date.

In terms of fields of application, the naval domain was the best represented, with thirteen papers
addressing marine-focused systems. Eight addressed aerospace systems, while civil engineering
structures had six systems, with no other domain having more than one system. This indicates that
at the moment, mobile platforms are dominating the twin discussion, and this focus does line up
well with the historical interest in this approach from the marine domain as well as both the U.S.
Air Force and NASA. The underlying physics involved in each model also varied. Structural
concerns were the most commonly referenced with 20 papers on this topic, followed by six
addressing fluid-related performance, three for mechanical components, and two dealing with
general dynamic responses, and one focused on an electrical system. This structural and fluid
focus also tracks with the marine, aero, and civil fields being the most common fields seen.

The fusion technologies used were also diverse. Regression-type approaches were the most
common, with ten methods overall using these, including six using artificial neural networks and
four using more basic fitting and regression approaches. After this, Bayesian networks were the
next most common, with eight papers using them and another three using simpler Bayesian
updating of variables. The large amount of Bayesian networks seen were surprising, given that
these approaches can struggle with large amounts of data. Two methods used simple, direct
updating from observations. There were another eight methods proposed, including bond graphs,
decision trees, and methods that combined multiple approaches in their fusion technique, but not
more than one paper used each of these. The range of methods encountered is likely a function of
the diversity in application domains as well as the difference across the four categories identified
in section 1.2.3 The range of methods underlines that a toolbox of techniques will be required to
span the physics and twin requirements of modern military platforms.

The maturity of the methods was skewed towards early-stage research. Twenty-three papers were
from purely academic explorations, including thirteen that used experiments and ten that only used
synthetic data. A further six had a prototype in the real world, and three described fully operational
systems. This tracks with the idea that digital twins are relatively new, and hence fusion methods
are currently being matured. However, the increased indexing and availability of academic papers
could also have influenced this result, with commercial or governmental agencies less likely to
publish descriptions of their twins as frequently.

Finally, while the focus of this literature review was on the fusion step in the twin process, the
papers were reviewed to see how the current fusion literature interacts with the rest of the proposed
twin systems. From this analysis, the dominant conclusion is that the fusion literature is not
particularly well integrated with these system-level concerns. Of the 32 papers, only six dealt with
decision-making from the twin, another six dealt with uncertainty, and two dealt with a hierarchy
of multiple components in the fusion step. This is compatible with the academic focus of the
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existing literature, which is more likely to explore distinct components of the fusion process in
isolation for each paper. However, similar to the lack of integration of digital thread approaches,
these areas will need to be explored to fully realize twin systems for real-world applications.

The literature review confirmed several aspects of the twin model. First, the four different ways
of categorizing twins proved useful in practice when looking at fusion methods. Second, there is
a clear need for a variety of fusion approaches. The need for variety is driven by the variety in
applications, important physics, categorization, and numerical techniques fusion methods must
address. Third, the field is relatively immature, with an academic focus on smaller problems and
lower numbers of data sources, and without evidence of extensive integration with digital thread
approaches, large system problems, or the wider issues of decision making and uncertainty.

SECTION 1.5 ANALYSIS OF GAPS AND NEEDS

Based on the analysis in the preceding three sections, there is a clear need for future developments
in both twin systems and, more specifically, in the fusion step. Four major need areas were
identified: monitoring degradation for maintenance and logistics, improving operational
capability, supporting design, and optimizing fleet utilization. All of these twin areas are active in
the research community. Additionally, these areas are expected to become even more important
as crewless platforms become more common, and automated computational systems have to take
the place of human crews for mission performance and maintenance concerns. Furthermore, the
review of the types of twins and fusion techniques published to date shows that a variety of internal
calculations and algorithmic approaches are needed as the characteristics of the physical systems
change. This was shown in the differences between data-rich and data-poor twins, differing levels
of state information, differing decision timescales, and the growing desire to take advantage of the
more complex reflective fusion approaches. Overall, the current situation indicates that further
research into fusion algorithms is important so that future twins can support the community's
needs.

Perhaps the most obvious gap is the need for a deeper understanding of the potential algorithmic
approaches to fusion. As noted in section 1.4 the reviewed fusion techniques used a wide variety
of algorithmic formulations. While neural networks and Bayesian nets are the most popular, the
best way of applying these techniques to marine fusion problems is not yet clear. Internal research
at Michigan is currently looking into basic formulation questions for both of these techniques.
However, it is clear that the understanding around each of these methods is not mature enough to
give near-optimal performance when applied to new problems. Additionally, a range of different
techniques beyond neural networks and Bayesian networks were identified in section 1.4. These
methods have appeal for specific fusion problems but are even less understood in the context of
fusion than the neural networks and Bayesian approaches.

A second clear gap is in the ability of current fusion approaches to handle larger systems. Here,
there are several clear areas where "larger" systems are relatively unexplored. The raw number of
data inputs explored to date tends lower to fewer than ten input streams. While such data density
may be able to capture component responses, it is likely to be insufficient to capture all of the
relevant variables for even sub-systems on larger platforms. A second approach, that of building
a higher-level fusion approach to integrate many component-level twins, could also be used to
solve this problem. However, this hierarchal approach was even rarer in the literature reviewed to
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date. Integration with decision-making was also shown to still be lacking in the literature, and
applications of manufacture-to-operation digital thread approaches are also scarce. Overall, as
fusion approaches move from individual components, it is clear that their maturity decreases
rapidly, and more research is needed in these areas.

Uncertainty and reliability aspects of fusion were also sparsely discussed in the literature. As twins
start to support decision-making, the level of confidence in the fused result is an important output
of the fusion method. This becomes even more important in the context of crewless systems,
where the decision loop maybe fully automated without a human crew member evaluating the
recommended course of action. Short timescale decisions are especially important in this regard,
as relying on off-vessel help may not be possible. While such concepts have been discussed, few
fusion approaches proposed algorithmic solutions for this part of the twin problem. Related to
integrating uncertainty and reliability is the need for decisions where multiple twins could be used
— e.g., a higher fidelity model and a lower fidelity model. Having the decision process switch
between models based on uncertainty and accuracy needs or when data is not available for certain
models is also unexplored.

While the focus in this report was on fusion methods, it is also clear that there is an overall low
level of integration of fusion methods into end-to-end digital twins. The literature search revealed
a fairly low crossover between fusion research and decision-making in general. Likewise,
integration into digital thread approaches or other whole-of-life data models were lacking. More
work in demonstrating end-to-end twins would be helpful for this aspect of the work.

SECTION 1.6 CONCLUSION

Digital twins represent a new capability to use numerical engineering tools in operational support.
Twins today are built on several existing areas of research, such as condition-based maintenance
and structural health monitoring. The development of digital twins from these underlying
technologies has spanned nearly thirty years at this point, with the initial concept of what would
be recognized as a twin today being developed in the early 1990s. However, twins have their own
unique structure, and a formal definition for such twins was proposed that integrates much of the
existing literature and previous definitions.

There is a strong pull for the capabilities of twins today. Four major areas of need and development
were documented in the community. The first is to use the twin to improve maintenance, safety,
and logistics of degrading systems such as mechanical or structural systems. The second area was
to improve in-service performance through enhanced modeling and control of the platform. The
third was to serve as a unified lifecycle model of the platform and provide feedback from the
platform to update design standards and approaches. The fourth was to perform optimization over
a fleet of similar vessels. The first two of these areas have seen more publications and interest to
date than the second two.

A key challenge in digital twins is the need to fuse the numerical models with real-world
measurement and data. A comprehensive review of fusion approaches through 32 existing papers
on fusion methods revealed that the existing fusion methods are well suited to component-level
problems, but extensions to larger problems, system-level hierarchies, or considerations around
uncertainty and reliability are largely unexplored. Additionally, the algorithmic formulation of the
fusion steps varies widely depending on the physics involved and the types of data available. A
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broad understanding of optimal or general formulations for this problem is not currently available.
Overall, while twins hold promise for improving operational capability, reliability, and safety,
more research work is needed in the above-mentioned areas before twins can reach their full
potential.
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SECTION 2.1 MOTIVATION & SCOPE

For the purposes of maintaining consistency within this study, we established a standardized
definition of digital twins. We use this definition as the basis for our preliminary taxonomy, which
describes the components (systems, sensors, simulations, inferences, etc.) and relationships that
comprise digital twins. Within this taxonomy we explored three vital areas of practice: data
acquisition, data integration, and systems models.

SECTION 2.2 STANDARDIZED DEFINITION AND PROPOSED TAXONOMY
In formalizing a definition for digital twins, we begin with the following from Collette:

“For naval applications, we define a twin as a system that includes [the] following
four components: (1) a real-world system of interest, (2) one or more digital models
of this system, (3) sensor data plus fusion logic to join 1 & 2, and (4) a decision
that will change based on twin output.” [25]

This was used, alongside observations from the literature review as discussed in the Chapter 1
Survey of Fusion Approaches and Opportunities, to develop the following set of conditions. A
digital twin requires:

Condition 1 (C1): A specific, real-world component, system, or process.
Condition 2 (C2): One or more digital representations of C1.

Condition 3 (C3): Mechanisms for acquiring and integrating data such that C2 reflects C1
over time.

These conditions provide a fair mapping to the three common elements of digital twins that were
identified in the survey, those being: a system of interest, a virtual representation of that system,
and a continuum of data being shared between them. A Venn Diagram, depicted in Figure 8, was
developed as a simple visualization to showcase the overlapping elements that comprise a digital
twin. The diagram will be discussed more throughout the remainder of this paper.
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Figure 8. Elements of a digital twin

Next, we explain each condition in more detail and expound on the rationale behind the
terminology used.

“Condition 1: A specific, real-world component, system, or process.”

Traditionally, digital twin applications have primarily been of physical products, which are
captured in the terms “component” and “system”, where a component represents the most
foundational base element of an entity, and a system represents a composition of multiple
interdependent parts. For example, a digital twin of a system could be a vessel’s propulsion system,
and that of a component could be the shaft of that propulsion system. While digital twins have not
been applied extensively to processes, they do have potential in this space, and the term “process”
is adopted to include such applications. For example, one could imagine creating a digital twin of
a design activity, which corresponds to a process. The phrase “real-world” is taken directly from
Collette and is meant to extend beyond other definitions’ use of the term “physical”. Lastly, the
term “specific” indicates that a digital twin maintains a one-to-one correspondence with a single,
unique instance and does not consider a class of instances. For example, one could create a digital
twin of a car, but not of all Jeep Renegades. Future work will explore different types of digital
twins and their delineating characteristics.

“Condition 2: One or more digital representations of C1.”

The phrase “digital representations” was adopted over the more commonly used term “model”,
which is generally associated with physics-based models or geometrically driven CAD models.
This association is further reinforced by the fact that digital twins are often depicted as virtual,
geometrical skeletons of their corresponding real-world system. “Representations” is meant to
expand the potential and to be more inclusive toward using empirical equations, networks,
ontological characterizations, and other such methods. For example, an empirical representation
could facilitate evaluating the wear of a bearing, while an ontological representation could
facilitate diagnosing faults in a propulsion system. The phrase “one or more” is meant to detract
from the idea that a digital twin must be comprised of a single, exhaustive model. As demonstrated
in the empirical-ontological example above, digital twins may often be used to conduct distinctly
different types of analysis (diagnostics, health assessments, etc.), each with corresponding types
of representations. The merging of multiple representations into one generally has no immediate
benefits and often has negative consequences that will detract from the twin’s flexibility and
efficiency. Our definition is meant to support and inspire digital twins to contain multiple different

Technical data contained herein may be subject to restrictions as noted on Title Page 33
DISTRIBUTION STATEMENT A. Approved for public release, distribution unlimited. 33 of ’5@



Approved, DCN# 43-9451-22

representations based on the inferences that will be required. Lastly, the phrase “of Condition 1”
better scopes the digital twin and more importantly delineates the twin from its environment. While
certain inferences may require or benefit from observations of the environment, our definition does
not consider its environment to be included within the digital twin.

“Condition 3: Mechanisms for acquiring and integrating data such
that C2 reflects C1 over time.”

The third condition establishes two processes essential to creating a digital twin by using the
terminology “mechanisms to acquire and integrate data.” This phrase signifies that there is a
connection between the real-world system and the digital representation. The phrase “mechanisms
to acquire ... data” is used to generalize the source of data. Sensors are often prescribed as the
method of automatic data collection; however, this is not always be feasible or cost-effective. For
example, a sensor may not be the most accurate or effective means of updating a digital
representation informing that a propulsion system has been repaired - it may be simpler to update
the digital representation using manual input from the mechanic who worked on the system. The
proposed terminology is meant to generalize the sources of collection to include reports,
inspections, surveys, and other such sources. On the other hand, “mechanisms for...integrating
data” is meant to update the digital representation “over time”, which signifies its dynamic nature.
While acquiring data relates to the real-world system, integrating data relates to the digital
representations.

There are certain elements not included in these conditions, namely features and decision-making.
While certain features, such as artificial intelligence and machine learning techniques, may
improve twin performance, they should not be considered requisite components since a digital twin
could exist and function without them. In regard to decision-making, our definition views digital
twins as supporting, but not encompassing, decision-making processes. While this makes sense
for multiple reasons, the primary one is that the community has created or posed digital twins for
manned, unmanned, and autonomous applications. In other words, there are digital twins made to
inform human decision makers, and there are those made to operate independently of human
influence. Both applications cannot be digital twins unless decision-making is seen as a separate
entity. While Collette’s definition does not encompass decision-making, it does highlight the
importance of considering how the digital twin will be used regarding the decisions that must be
informed. Future work will extensively discuss decision-making and its role associated with digital
twins.

The digital twin environment which arises through the three conditions provides a good first step
towards defining a holistic and generic taxonomy. However, the Venn Diagram shown in Figure
8 reveals overlap regions between these three conditions which necessitates further exploration
and discussion. These overlap regions, depicted separately in Figure 9, provide a perspective into
capabilities of digital twins.
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Data acquisition is the intersection of “real-world system” and “mechanisms to acquire and
integrate data”. In addition to identifying what needs to be acquired about the real-world system,
we also identify how that information is acquired. An example of data acquisition is via sensor
strain gauge on a shaft in specified propulsion system. Human observations are also classified as
data acquisition. For example, if a bearing is replaced on the shaft, the mechanic has that
information.

Data integration is the intersection of “mechanisms to acquire and integrate data” and “digital
representations.” The technique to integrate data is dependent on the method of presenting
information. Suppose a free body diagram of a shaft in a propulsion system is the digital
representation, and the information available is strain gauge sensor data. An application
programming interface (API) is a technique that could foster the available data to the free body
diagram. Data integration can also be as simple as human input, such as manually inputting strain
gauge data into a free body diagram.

The last intersection of two conditions is between a “real-world system” and “digital
representations,” referred to as system models, which is where inferences are made that will be
valuable towards informing a decision. For example, a free body diagram of a specified shaft in a
propulsion system that can represent loads is a system model. When the system model is analyzed
such that information is inferred about pump that was not transparent before.
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Figure 10. Elements of a digital twin with overlap regions defined

While the overlap regions provide insight into capabilities of digital twins. Overlap regions
themselves are not digital twins as they lack the intersection of a third condition. All overlap
regions can be observed independently, but to view a digital twin, they must be interrelated.
Consider data acquisition; it is the capability to acquire information about the real-world system.
However, identifying mechanisms to acquire data is determined by information or inferences
required about the real-world system. System models allows this through its ability to represent
the real-world system in digital representations. A digital twin is then created when data that has
been acquired about the real-world system is being integrated into the digital representation. The
development of a digital twin is the intersection of the three overlap regions, that being the center
region in Figure 10.

SECTION 2.3 CONCLUSIONS

This report recognized a lack of unity in defining and understanding digital twins. This led to a
unified definition and taxonomy of digital twins. While this preliminary taxonomy for digital twins
is part of a larger research goal, it is our hope to provide a basis of discussion and collaboration,
inspiring future evolution of this work and ultimate adoption across the Department of Defense.

The following chapters of this report discuss the different types of digital twins as well as their
delineating characteristics. Decision-making and its relation to digital twin is also discussed more
extensively.
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SECTION 3.1 MOTIVATION & SCOPE

This section will address twin definitions, methods, and relationships to other twins and decision-
makers. Per our defined taxonomy, a digital twin requires a “specific, real-world component,
system, or process”. We briefly discussed the rationale behind the terms “component, system, and
process” but did not elaborate on either the nuances that delineate these different types or the
proposed utility associated with making such distinctions, this is the focus of the research presented
here.

As potential applications of digital twins continue to expand, twin intents and objectives evolve to
solve new problems. By constraining the scopes of digital twins, various types of digital twins can
be identified to help focus on the evolving missions and goals for applied twin technologies.

This report begins by investigating how industry and academia have approached the concept of
delineating types of digital twins, presents a purpose-driven classification for digital twins in the
naval domain, and identifies areas for further research into types of digital twins.

SECTION 3.2 SURVEY OF DIGITAL TWIN TYPES

Sources across academia and industry have proposed that there are different types of digital twins
that can be distinguished based on characteristics about their system of interest. This section
explores these sources to detail key considerations for classifying digital twins and to provide
clarity and mutual understanding among the developers, suppliers, and users of future digital twin
technology. Due to different baseline definitions of digital twins across industry and academia
discussed Chapter 2 A Standardized Definition and Preliminary Taxonomy for Digital Twins,
digital twins have been posed as ranging from simple data collection tools to uber-models of
systems that provide a base to solve any type of problem. A standardized delineation of digital
twin types can be used to better prescribe the expectations and responsibilities for digital twins
between these two extremes.

Sources that expound upon types of digital twins [1-13] typically differentiate them with respect
to the system characteristics (i.e. what the digital twin aims to represent) using three main system
qualities: quantity, hierarchical level, and abstraction. A digital twin’s quantity refers to the
number of objects the digital twin represents and whether they are combined into a system or
relatively unconnected. The numerical distinction is primarily between “single” or “many” [1]-
[6]. For example, a digital twin may be an asset or a system of connected assets [1], [2], [4]. A
digital twin’s hierarchical level refers to how the interrelationships among digital twins create an
embedded or implicit hierarchy of digital twins, i.e. where digital twins envelop and roll up into
larger digital twins, and where the digital twin in question may fall within that hierarchy. The
hierarchical level of a digital twin is less strictly identified, but the distinction is made by
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characterizing digital twin relationships. Usage of the hierarchical distinction in digital twins is
more directly applicable in manufacturing [4] and shipping [7]. For example, DHL describes a
specific application for interrelated hierarchies of digital twins in logistical supply chain setting
and how the collected data and relationships can be leveraged to optimize the operations, such as
the relationships between the products themselves, the warehouse distribution systems, and the
global scale logistics networks [7]. Scully designates six different classified types of digital twins
based on their “hierarchical level” ranging from information models to multi-system digital twins
[5]. The hierarchical levels exist within systems that have distinct hierarchical characteristics, like
the relationship between a cog and the machine that the cog is a part of. Embedded digital twins
can contain these relationships in reality or perception according to the characteristics of the
hierarchy itself [7]. A digital twin’s abstraction, in this case, refers to the state of the system’s
existence, e.g. physical object, class, or process. The term “abstraction” is used for classifying
digital twins by the level of physical substance of the system they represent. Various literature
describe a digital twin’s level of abstraction as: physical product [1], [2], [5], [7]-[10], pre-
production or design [1], [5], [9], process [2], [4], [5], [8], [11], [12], or performance [4], [5], [13].
The difference in abstraction is that the digital twin for a physical product is linked to a product
that both exists and sends data to its virtual counterparts, whereas more abstract subjects like
processes or classes link the digital twin to a process or a class of objects for evaluation or design
analysis, respectively.

In the naval domain, shipboard digital twins have been created or proposed throughout academia
with respect to the distributed power system [14], fouling-speed loss relationships [15], structural
fatigue and ship motions [16], propulsion system monitoring and calibration [17], and entire vessel
platforms [18], [19]. An industry application of digital twin work in the marine context is Akselos
[20], who introduced high-fidelity reduced order modeling of offshore marine structures, primarily
in the energy sector. As it pertains to the level of abstraction, the current digital twins in the field
of naval architecture and marine engineering are highly specific; these twins inform decisions
using collected data from real-world products and systems.

The discussion of digital twin classifications is dominated by distinctions based on characteristics
of the twin’s real-world system (i.e. what that system physically consists of), such as the
classification shown in Table 2 given by Baldwin [21]. Baldwin’s original system classification
framework includes mathematical representations for each system along with biological examples,
each of which are omitted here.

Table 2. System Attributes and Taxonomy [21]

System Type Characteristic Attribute(s) Description
Component Existence Physical entity
Sub-System Process Transforms inputs into outputs via a process
Simple system Autonomy Able to meet a stated system goal without outside
help
Composite SoS Diversity, Connectivity, Able to exchange information to provide mutual
Belonging support; outputs predictable
Complex SoS Emergence Unpredictable outputs
Adaptive SoS Adaptability Able to change architecture of system in response
to outside pressures
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Baldwin’s systems framework uses both the characteristics and the decision-making processes of
the system to delineate the different systems; however, as explained in the Task 1.2 report, our
framework for types of digital twins is independent of the means for decision-making for the real-
world system. It is apparent that a framework for types of digital twins can be based on the real-
world system characteristics, but distinction is limited by subjectivity and relativity of the systems
themselves. When separating systems characteristically, Steinberg et. al argues that the
differentiation of assemblies and parts is specific to perspective, and partitioning is based on which
characterizations of the situation, or system, are of interest to the user [22]. Distinguishing digital
twins solely by the characteristics of the real-world system is not an entirely objective process.
Instead, it may be more useful to classify twins based on their application or purpose, with the
intent of maximizing the utility in making such distinctions.

The purpose of a digital twin is inherently tied to the goals of the system operator and the decisions
the twin is being used to inform. Using the purpose of the twin to differentiate between twin types
creates opportunity to tailor digital twins more closely to what they aim to do and eliminates the
implied necessity for the digital twin to perfectly model all aspects of the real-world system of
interests. By keeping the objectives of the creator and user at the forefront, a purpose-driven
classification helps prevent any subjective or arbitrary delineation that can arise when
differentiating by system characteristics.

SECTION 3.3 CLASSIFICATION OF DIGITAL TWIN TYPES IN THE NAVAL DOMAIN

While most digital twin classification schemas have been based on the characteristics of their
corresponding systems, it is more useful in a naval context to differentiate twins by how they are
used (i.e., the types of questions they are used to inform). This is due to the dynamic, diverse, and
highly interconnected problem landscape the naval domain presents. The flexibility and
subjectivity in classifying digital twin types can help provide modularity within the naval and
marine industry by relating the twin purpose to their context. Accounting for the objectives of
developers and users, we pose the following types of twins: component, system, platform, and
fleet. These posed types aim to highlight differences in twins based on the decisions they are meant
to inform in addition to encapsulating the key characteristics of each specific system of interest.

SECTION 3.3.1 COMPONENT

The component digital twin is the “atom” of our classification scheme and represents the most
basic twin from which a system operator would collect useful information for decision-making.
While a “component” may be composed of subsystems or interconnected sub-components, there
may be little to no utility in representing those parts in additional granularity if they do not alter a
decision being made. The value of the component twin comes from modeling a single part from
which inherent, observable, and pertinent information can be gleaned that satisfies the goals of the
digital twin and, in turn, the decision-maker. When it comes to the hierarchical levels characterized
throughout the literature survey, the component digital twin represents the lowest hierarchical level
that warrants a digital twin.

For example, consider a shaft bearing (Figure 11) used as one component in a representative
shafting system to monitor and predict shaft vibrations. We can outfit the bearing with force and
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displacement sensors, ensuring this data is collected and integrated with an appropriate dynamic
digital representation, thereby creating a component digital twin of the shaft bearing. With such
sensors and an appropriate model (or models), it would be possible to monitor parameters specific
to the bearing and infer shaft vibrations considering this bearing as a component.

While the bearing is made up of smaller individual parts (such as its case, skirts, or balls), creating
digital twins of these sub-components may not provide utility in the context of modeling and
predicting shaft vibrations. If the context of the decision were to change, such as in the case of
predictive maintenance of the bearing itself, this may require the bearing subcomponents to be
reconsidered as components themselves, so long as they yield relevant information to the decision
being made, and the parameters of these components are observable (and/or inferable) and useful.

Figure 11. Component digital twin: shaft bearing displacements

As such, a component digital twin represents the most fundamental element required to answer a
question within a given context. While this delineation remains somewhat subjective, it is more
apparent when considered contextually. What is deemed an effective component twin should be
considered relative to the question being posed. Is there additional value in considering finer-
grained components? Are parameters of these fine-grained components observable or inferable?
Does the information provided by measuring and modeling these components impact decision-
making? These questions are critical considerations in developing a useful digital twin, and must
be carefully considered in the full context of the digital twin taxonomy (See Chapter 2
Standardized Definition and Proposed Taxonomy).

SECTION 3.3.2 SYSTEM

What we call a “system” digital twin is comprised of complementary components and/or
subsystems whose interrelationships demonstrate emergence, where the whole is greater than the
sum of its parts. Components serve specific functions and contain specific goals, while systems
achieve a goal through the coordination of component goals states and their associated
interdependencies. Components within a system may be coupled directly, such as through physical
connections or through logical dependencies to attain a goal but may also be indirectly coupled
through their spatial locations or how they are used through time. Systems also exist on a spectrum
of complexity which is characterized by the number and nature of these interdependencies. More
complex systems are likely to exhibit more emergent behaviors and pose more of a challenge to
creating effective system digital twins.
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As an example, consider the simple propulsion system shown in Figure 12. This representative
system is comprised of four components: the engine, the reduction gear, the shaft, and the
propeller. The goal of this system is to create and provide thrust. Each of these components has a
specific function and role in the system — the engine generates rotation, the gear and the shaft
transmit rotation to the propeller, and the propeller converts rotation to thrust. Data from each
component can help the digital twin model and determine the system’s efficiencies or faults.
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Figure 12. System digital twin: propulsion system efficiency

Each component of this example system has a different relative goal, and the goal of the overall
system is not directly tied to any specific individual component. Sensors are available to provide
component-centric feedback, and the combination of sensor data must be aggregated to provide
system-level information. For example, flowmeters and RPM sensors on the engine might be used
to determine fuel efficiency, strain gauges on the shaft may be used to inform the condition of the
shaft, and pressure sensors and distribution models about the actual thrust output from the
propeller. An effective system digital twin would integrate this information with an appropriate
system model to yield information about the propulsion system’s performance.

An important aspect of a system level twin is that it requires the aggregation of component
information and interdependencies to achieve a higher, system-level goal which is still well-
defined. In this case, a goal may be to produce the maximum amount of thrust using the minimum
amount of fuel. This goal is still quantifiable and measurable but exists at a higher level than any
single component, and the twin requires a model that carefully coordinates and integrates its
components to achieve its purpose.

While this simple example is included to succinctly illustrate how a system twin differs from a
component twin, systems can be far more complex. The system digital twin can correspond to
systems with greater numbers of components and complex interdependencies and model them
accordingly. While this added complexity serves as a challenge in developing useful and effective
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system twins, it does not impact the fundamental nature which delineates such systems from
components.

SECTION 3.3.3 PLATFORM

The third type of digital twin we pose is the “platform™ digital twin, which consists of multiple
diverse systems. A naval vessel is comprised of numerous complex systems which work in tandem
during operations with very different purposes and goal states. Similar to the component-system
twin interaction, the platform level twin considers also encapsulates emergence. However, the
goals and decisions made at a platform level are fundamentally different from those that exist at
component or system levels, due to the presence of coordinating diverse system goals. These
platform level goals are broader and more abstract than for a specific component or system. Due
to their level of abstraction, the number and diversity of possible goals are much larger, and do not
directly translate to a finite set of system or component goal states.

Consider a specific naval vessel as a real world system of interest for which a platform digital twin
is developed that collects data from the various critical subsystems to assess the vessel’s condition
(Figure 13). In this case, consider these critical subsystems as the propulsion, armament,
navigation, and communications systems. The process and scope of assessing the condition of the
entire vessel is different than that of assessing, for example, the state of one of its engines, or of
the radar. Moreover, the vessel’s overall status extends far beyond the condition of any individual
system. The scope required to assess these components and systems are narrower, and the goals
and associated decisions to be made for each are more well defined. Determining a holistic
platform perspective would require the careful consideration of components, systems, and their
associated interdependencies in tandem. However, the combination of potential component and
system states do not directly translate to a single platform state, especially when considering
exogenous factors to the platform such as the environment.

Communications

_._._.A_._Im

Figure 13. Platform digital twin: naval vessel holistic data modeling

In addition to the combinatorial difficulties, ‘rolling up’ component and system parameters
suggests the behavior of each system is quantifiable in a similar manner. In this example, the
platform-level assessment requires an assessment of each system’s condition and weighs condition
against criticality. However, the criticality of each system is inherently dynamic — changing over
time with the vessel’s current state, mission, and environment. For example, in the presence of an
immediate threat, the status of the weapons system may be more critical than that of the vessel’s
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structural health. However, this is highly dependent on the vessel mission and objectives,
encompasses largely varying timescales, and may shift rapidly (e.g. in the presence of a damaging
event to the vessel, the hull structure could become the most critical system). As such, it is not
straightforward (nor in some cases possible) to establish a single function which combines the
statuses of its diverse subsystems into a holistic and useful ship-wide assessment for decision-
making.

These difficulties suggest that a platform level digital twin is not simply a synthesized perspective
of the associated component and system level twins. The diversity of onboard systems
distinguishes the platform digital twin and makes it infeasible and insufficient to consider the
platform as a large scale “system twin”. While sensors associated with components and systems
will certainly be useful in informing such a platform level twin, unique models and perspectives
are required to translate this data into the more abstract platform level models for decision-making.

SECTION 3.3.4 FLEET

Beyond the platform level digital twin, here we pose an additional digital twin which considers
multiple platforms. Each platform within a fleet twin can operate independently but is linked with
other platforms spatially and temporally. Fleets are characterized by the coordinated efforts of
platforms to attain higher-level objectives. Relationships between platforms may be organized and
explicit, such as entities within a supply chain, or random and disjointed, such as cars on a city
street [23]. Platforms within a fleet are often diverse and are developed for specific functions and
are developed (perhaps not explicitly) for the purpose of exhibiting emergence. The naval fleet is
an intuitive example of a maritime fleet digital twin application, whereby vessels of various classes
and roles are monitored and managed to complete strategic objectives.

Digital twins of fleets are valuable in capturing the logistical nature of platform interdependencies.
Such twins are more focused on the macro-behaviors of vessels and can be queried to inform more
strategic decisions. For example, in the context of Figure 14, a fleet level twin would be useful in
determining the most effective allocation of vessels to survey a given area.

Current vessel
locations

Desired coverage
area

Figure 14. Fleet digital twin: naval fleet logistics question

In this example, the fleet digital twin must consider the distances of vessels from the desired area
and determine the time frames in which each vessel can converge on that area. Additionally, such
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a twin may consider each platform’s capabilities and the relevance to accomplish the mission.
While this example is simple, there is the high potential for such a twin to become extremely
complex for useful application in naval fleets. Regardless, these high-level queries are unable to
be answered using the other types of twin and warrant a delineation as it pertains to the fleet use
case and applicability for decision makers.

SECTION 3.3.5 SUMMARY

In this classification scheme, four different types of digital twins were proposed to delineate digital
twin types based upon their purpose and intended value rather than on the characteristics of the
real-world system of interest. While the presented digital twin types have been framed in the
context of the naval domain, the types remain extensible to the various hierarchies and levels
associated with other domains. Table 3 presents a summary of the presented digital twin types, and
the associated characteristics of each.

Table 3. Summary of proposed digital twin types

Digital Twin Type Digital Twin Purpose Naval Domain Examples
Component g:éﬁein;:rlzgggé elemental - information ~ for Gear, shaft, bearing, propeller...
Capture interdependencies and relationships . .
System between components Pump, engine, propulsion system...
Platform dCizi/[;trL;reeS ;:tt:rr;ilsependenmes between disparate Naval vessel
Fleet Capture coordinated macro-behaviors between Naval fleet
platforms.

The types presented above increase in abstraction, scope, and complexity moving down the table.
While there exists a natural progression in goals from component to system level twins in terms
of the capabilities and values, the jump gets larger in progressing into the platform and fleet level
twins due to more abstract and diverse goals and decisions. Figure 15 shows the progression of the
types of digital twins as it relates to two axes: the diversity of the real-world system and the
abstraction of the question to pose to the digital twin. This graphic is simplified, but these
differentiating characteristics show the pattern of how the type of the digital twin is affected by
both its purpose and the system it represents. The types require different perspectives in
development and use.
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Figure 15. Types: system characteristics vs. purpose

Figure 15 shows the relationship between a system’s characteristics, the purpose of the system’s
digital twin, and the type of the digital twin in question, as well as highlights the subjectivity and
overlap of the typing classification framework outlined in this report. The more specific questions
for a digital twin represent those that have more tangible answers; for example, quantifying a
pump’s flow rate or the efficiency of an engine considering data from the real-world systems are
specific questions to pose to a digital twin. The more abstract questions are higher order, take more
information into account, and don’t necessarily have correct answers, such as logistics problems
and coordination efforts. The higher order questions should be asked of the platform and the fleet
digital twins in this framework. With respect to the characteristics of the real-world system,
represented here by the diversity of the system and its subsystems, the more homogenous systems
correspond to components and systems with closely related and alike subsystems, such as pumps
or electrical systems. For a pump, the homogeneity of components within it plays a role in
narrowing the type of the digital twin to either component or system, but the types of questions to
ask the pump digital twin may further delineate; for example, if a component digital twin for a
pump would answer questions that have specific answers and require little or no deeper analysis,
then a system digital twin for the same pump could answer more in-depth questions concerning
each component along with the entire pump holistically. The more diverse systems utilize
information from different types of components and subsystems, such as propulsion systems,
vessels, or fleets. The overlapping sections of the different types of digital twins represent the
scenarios where more metrics like its exact applications, user preferences, and design processes to
determine the best classification.

While this report presents the purpose-driven delineation, strategies to develop these twins to be
useful and accurate will be left to future work. It should also be noted that the examples presented
above are not exhaustive and are included as potential references to applicable systems of interest.
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SECTION 3.4 CONCLUSIONS & FURTHER CONSIDERATIONS

The classification scheme in this report is a result of a survey into the different types of digital
twins in industry and academia. This survey uncovered that many of these definitions are focused
on system-specific delineations of digital twin types, rather than the purpose for which they were
created, or the decisions they are meant to inform. The four types of digital twins defined in the
previous section include component, system, platform, and fleet digital twins, differentiated based
on what they do and purpose they serve, rather than what they consist of or what they model. The
presented digital twin types are not meant to form a strict hierarchy, but instead are meant to
motivate a careful consideration of different digital twin types based on the context and their
intended use. While the presented types have been framed in the naval context, these definitions
remain applicable to other domains as well.

It is our hope that the presented digital twin types will begin to lay the groundwork for systems of
digital twins, both within and beyond the naval domain. Doing so will require significant additional
research, including strategies to manage digital twin interfacing, capturing appropriate information
flows, and how to implement and validate such twins in practice. Although this is a lofty goal,
focusing on purpose-driven delineations of digital twins should help address these fundamental
concerns.
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Author: Matthew Collette’
1 - University of Michigan, Department of Naval Architecture and Marine Engineering
Date: March 2022

Marine Structures Design Laboratory Report Number: 2022-001

Abstract: To perform data-model fusion, future digital twins require robust data persistence
approaches to store geometry, models, measurements, and environmental factors necessary for
twin computations. However, surveys and standards for data persistence approaches appear
lacking in this field. This report provides a brief introduction to this topic by reviewing over 30
papers in five different communities that have similarities to the naval digital twin community: the
structural updating community, the machinery monitoring community, the lifecycle assessment
community, the offshore wind turbine community, and the digital thread community. The survey
reveals that data labeling, interchange, cleansing, and transfer seem to be the primary challenge
with raw storage capabilities not appearing frequently. Data sources are notably heterogeneous,
with unstructured data such as human inspection reports representing an extra level of challenge.
While specific technical areas have developed some standards addressing these challenges, there
are no well-established approaches that can be used off the shelf for data-model fusion. Instead,
using the experiences of these communities, a data-model fusion project would need to develop its
own persistence approach. In doing so, the offshore wind turbine community looks especially
attractive owing to high-level similarities between their challenges and that of data-model fusion.

SECTION 4.1 INTRODUCTION

As digital twin applications proliferate, the need to record geometry, parameters, and sensed data
has grown. Most twins rely on keeping a digital model in sync with a real-world platform so that
they can perform prognoses and update underlying computational models. As part of this process,
twins may have a requirement to store extensive data. Such information may include
manufacturing and as-built information on the platform, operational histories, weather exposure,
inspection reports, and sensed data. Especially for rapid sensing systems, including machinery
control systems and strain gauge measurements, raw data storage for these signals may be a
daunting challenge. Indeed, a completely high-fidelity digital twin has been shown to be most
likely computationally infeasible [1]. Thus, a background literature review on how different twin
industries have approached the data persistence problem will be helpful in moving forward with
marine digital twins and data-model fusion approaches.

SECTION 4.1.1 DIGITAL TWIN DEFINITIONS

Before proceeding with a study of persistence, a basic overview of twins is required. An overview
is especially important, as many other product lifecycle management data solutions have been
proposed over the years. With the emergence of software platforms targeting sales in this domain,
many terms have lost their specific meaning and become blended. In this regard, we will adapt
the definitions present by Kraft [2] that helps track the U.S. military community's perspective on
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the differences between several related terms. The following is reproduced below directly from
Kraft's paper [2]:

Digital System Model - A digital representation of a weapon system, generated by
all stakeholders, that integrates the authoritative data, information, algorithms, and
systems engineering processes that define all aspects of the system for the specific
activities throughout the system lifecycle.

Digital Thread - An extensible, configurable, and Agency enterprise-level
analytical framework that seamlessly expedites the controlled interplay of
authoritative data, information, and knowledge in the enterprise data- information-
knowledge systems, based on the Digital System Model template, to inform
decision-makers throughout a system's life cycle by providing the capability to
access, integrate and transform disparate data into actionable information.

Digital Twin - An integrated multi-physics, multi-scale, probabilistic simulation of
an as-built system, enabled by Digital Thread, that uses the best available models,
sensor information, and input data to mirror and predict activities/performance over
the life of its corresponding physical twin.

Wincott and Collette [3] extend this further by developing a twin's unique aspects. To count as a
twin, a system must have each of the following characteristics:

1. A real-world system of interest: Twins are specific to one real-world platform. This
separates them from digital systems models and digital threads, though they may call on
models, simulations, or data stored in either of those two systems to function.

2. One or more digital representations of the system: A true twin requires some sort of
digital representation of the real-world object. This could be as simple as 3-D CAD files
from the digital system model or as complex as multi-discipline simulations spanning
millions of degrees of freedom.

3. Fusion to join the real-world system and the digital representation: The twin must be
able to relate events in the real world to the digital model. Again, a range of approaches
fit under this concept of fusion, from human inspection data to complex machine learning
fusing multiple sensor streams into a computational model.

4. A decision that will depend on the output of the fusion step: To differentiate between
a twin and a monitoring or validation campaign, we also introduce the concept that a twin
must influence a decision. However, recent work within the current contract has removed
item 4 from the strict definition of a twin, as some decisions may result from consulting
multiple twins (e.g., a mission go/no go decision depending on machinery health and
expected platform motions.) Two twins may only deliver information on their part of the
problem to a supervisory decision system.
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From these definitions, we can see that the data domain that may need to be stored in a persistence
system is large and complex. A twin may need to:

e Access design-stage CAD models of the system and as-built manufacturing data

e Access design-stage computational models that may need to be updated

e Track the history of individual platforms, including weather, operational parameters, and
other relevant "background" information necessary to run the computational models

e Track sensors and health metrics on the platform, including control systems, vibration,
acceleration, pressure, temperature, voltage, current, strain, and a host of other modern
sensor data streams

e Track periodic inspections or human feedback, including natural language, images, and
other less-precisely defined information on the platform.

How to best organize, document, and store this data is not immediately apparent. Fonseca and
Gaspar [4] provide a good high-level summary of the challenges around creating twins, looking at
data persistence issues as well as broader data exchange, standardization, and business case
demands. Based on the increasing number of publications in this field, a literature search approach
was used to compare and contrast systems for data persistence.

SECTION 4.2 LITERATURE SEARCH PROCESS AND SOURCE

A broad literature search, using a variety of keywords involving digital twin and lifecycle data,
was run on several different search platforms for academic literature. In this process, digital twin
was not used as a fixed criterion — e.g., papers on related topics that did not directly address twins
were considered. However, as the literature review took place, pure product lifecycle management
(PLM) systems were dropped from the literature review. The functionality of these systems was
largely subsumed by the more complex systems that had been proposed. As most of these did not
deal with the related issues of data fusion and model updating, they were seen as of secondary
importance. From the remaining papers, five significant areas of development were identified:

1. Structural Model Updating: One of the oldest and simplest forms of a digital twin. In
this approach, 3-D finite element models created at the design stage are kept up-to-date
with corrosion and other structural damage or modification through life. By reassessing
the vessel periodically, structural safety is assured.

2. Machinery Monitoring: Monitoring of machinery systems, especially rotating
machinery, is also a well-established discipline. Early systems in this area did not meet
the full definition of a twin. Typically, statistical pattern matching on vibration signals
was used to diagnose possible deterioration of the system. Still, no consistent digital
model of the system was developed or updated as part of this process. However, these
systems are now both more advanced in their modeling approaches as well as requiring
extensive data persistence.

3. Lifecycle Assessment (LCA)/ Lifecycle Costing Analysis (LCCA): These
methodologies extend PLM to look at cost and environmental impacts. The models used
are often simple, but detailed product data is tracked from production through
manufacturing, operation, and disposal.
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4. Wind Turbines: Offshore wind turbines are typically remotely monitored for the health
of the machinery and blade structure of the turbine. Given the strong interactions between
the weather, control system, and resulting structural and mechanical loads, many of these
monitoring approaches have adopted an integrated, system-level view of the turbine. This
view necessitates archiving a large amount of data.

5. U.S. Military Digital Thread Approaches: The concept of a digital thread is primarily
discussed within the U.S. defense enterprise. While some commercial PLM approaches
attempt to come close in scope, the digital thread is likely the most comprehensive data
persistence strategy attempted to date. Thus, reviewing progress on this topic is essential
to capturing persistence approaches.

Each of these development areas will be reviewed in turn.

SECTION 4.2.1 STRUCTURAL MODEL UPDATING

During the 1980s and 1990s, the emergence of finite element analysis as part of structural design
and approval significantly changed the approach to designing marine structures. Complex
computer analysis could now link load estimations to structural response and approval criteria.
The desire to apply these tools for in-service assessment led to the realization that these design
tools and data structures should be archived through life. One of the first major efforts in this area
took place in Canada, where a project called ISSMM [5], "Improved Ship Structural Maintenance"
proposed to develop such a data persistence structure, noting:

One of the main advantages to be realized in creating a special purpose
comprehensive analysis tool such as ISSMM, is that it can readily contain most, if

not all, of the required load and structural data for analysis of the various failure
limit states. The most time consuming task in current ship structural analysis is
acquiring and implementing the necessary data. Often an analysis is limited by what
data is available and what can be put into the necessary format in the time allotted.
The database will contain all information necessary for the various modules of ISSMM:
weight distribution and lines plans for the seakeeping (loads) analysis; world wide
wave statistics, results for the Halifax Class of the linear 3-D sea loads analysis,
predefined operational profiles including global structural responses, the basic hull
girder structure finite element model and detail finite element meshes of critical
structure; materials data including information for nonlinear behaviour and fatigue
crack initiation and growth; and, second order (means, COV and distributions)
statistics of the structural parameters for reliability analysis. Accurate weight
distributions are being developed for the Halifax class with consistency between the
sea loads and structural models.

ISSMM was proposed to allow wide-ranging analysis types to be performed, capturing structural
corrosion, denting, cracking and allowing the current state of the structure to be assessed against
criteria quickly throughout the vessel's life. Such comprehensive through-life support approaches
have continued to be developed, including the "Achieving Service Life Program" for the U.S. Navy
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[6] and a similar program for submarines in Canada referred to as subSAS, of which only minor
details have appeared in the public domain [7].

The commercial world has readily adopted a related but different system to monitor and maintain
commercial vessel structures. Here, the focus is corrosion, coating condition, and other defects
that might need structural repair. These systems capture designs from the construction stage, using
this data as the baseline for updating structural component health through-life while often sharing
data with classification societies for approval. Li et al. have recently published an overview of the
data processing needs of such a system [8]. Given the central role many classification societies
play in this process, many have evolved similar systems. An example is DNV's "Hull Insight"
service, which also adds accurate weather hindcasting to estimate the structural loading a ship has
seen and forecast future repairs. Intellectual property concerns and business value for the shipyards
remain obstacles in fully implementing these systems, as reviewed by Thomson and Renard [9].
However, the use of such 3-D models, instead of PDF or paper drawings, throughout the approval
process may streamline some of these problems.

SECTION 4.2.2 MACHINERY MONITORING

Machinery monitoring also has a long history as a condition-based approach to maintenance,
similar to structural systems. Initial marine systems in this area were often vibration-based, using
portable sensors to periodically record vibrations near key bearings, pumps, or motors in shipboard
systems. Early systems simply compared vibratory signals from one reading to another without
attempting to make an integrated model of system health, and as such, the data storage
requirements were small. More recently, advanced machine learning methods are attempting to
use both edge computing and existing monitoring signals to infer machinery health. Recent
examples include [10]-[12], but much of the work in this regard has been for researching machine
learning methods applied to relatively isolated data sets.

More comprehensive machinery monitoring proposals have been made, but the details of their data
persistence are not widely available in the public domain. In the commercial world, optimizing a
vessel's fuel consumption by careful monitoring of the vessel's draft, trim, machinery parameters,
and control settings is now widely viewed as possible. Maersk is known to perform such
optimizations on vessels in its fleet, using the "Maersk Ships Performance System," but little has
been published about the system’s internal design. Classification societies are also moving into
this area, hoping to offer this as a service for owners who are not interested in developing their
own complex integration and machine learning expertise. Public documents on such systems do
not indicate a significant tie to the machinery health predictions to date. Systems appear to
integrate vessel position in the water, weather, fouling, and models for propellers, shafts,
generators, engines but without adaptive models for damaged or degraded machinery systems -
e.g. [13]-[15]. Lazakis used FEMCA and fault trees to find efficient groups of sensors to
predicting future failures vs. wide-scale monitoring of all possible data [16]. For data persistence,
the published work implies a combination of time-series data from machinery (vibration,
temperature, pressures, flows) depending on the model's aim, as well as macro-level platform
parameters (draft, trim, weather, speed) are necessary to build such models. Few real-world
examples with data are available in the literature. Abbasian et al. [17] present a "big data"
warehouse approach applied to a real-world offshore support vessel. Offboard weather, machinery
parameters, electrical bus loads, draft, and position are all recorded. Three thousand signals
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(features) were sampled every 5 seconds for 42 days of operation, resulting in over 7 million
records stored in a database format. However, of the 3,000 possible signals, only 80 were used for
further analysis in the paper.

SECTION 4.2.3 LIFECYCLE ASSESSMENT (LCA)/ LIFECYCLE COSTING ANALYSIS
(LCcA)

Lifecycle assessment and lifecycle costing methods are attempts to track both the environmental
impact and the overall costs of engineering projects. Such tracking requires decomposition of the
engineered structure into many components, tracking the manufacturing, operation, and disposal
of each while assigning multiple environmental impact measures and cost measures to each step.
In such approaches, gathering and tracking the relevant data is a key challenge in implementing
the method. Jeong et al. give a recent overview of this process for selecting propulsion systems on
a series of sample vessels [18]. From this work and others, it is clear that for LCA/LCCA, efficient
access and integration of data is a central challenge to conducting these methods. Indeed, unlike
more complex engineering simulations, in LCA/LCCA, the final calculation is usually an additive
assembly of impacts or costs, but one that must be done correctly for a large number of components
and operations onboard the vessel. Commercial software, with databases of lifecycle impact, such
as GaBi, appear widely used. The data challenge is primarily connecting the description of the
physical system and its operation to these databases.

Favi et al. [19] directly address these challenges, proposing a system that would link databases of
impacts into engineering CAD models, allowing rapid development of LCA/LCCA estimates
during ship design without extensive manual data entry. A proposed database architecture and
examples for three motor yachts are given. For land-side buildings, Lu et al. [20] present a review
of LCA and conventional building information modeling. The review indicated that three major
approaches were in common use, and approaches that integrate across all phases of the lifecycle
are still rare. In the context of ceramic tile manufacturing, Ferrari et al. [21] extended this approach
to capture real-world manufacturing performance using feedback from internet-of-things readings
in a factory. Commercial ERP, including SAP BusinessObjects were used as data translators and
databases.

SECTION 4.2.4 OFFSHORE WIND TURBINES

Offshore wind turbines are one of the strongest system-level examples of data persistence to date.
Offshore wind turbines have several simple sub-systems that are coupled and interact during
operation, including large and flexible structures, generators, and gearboxes. Additionally, many
of the loads on the structure can be strongly influenced by the blade pitch control strategy. To
monitor and analyze these turbines, it is necessary to integrate several different measurements,
including weather, machinery, control commands, and structural responses. Many countries
require active monitoring of a certain percentage of these turbines, which has resulted in several
recent studies exploring data persistence approaches for these problems. With the remote location
of offshore wind turbines, there is a strong desire to predict machinery failures ahead of time to
avoid costly downtime or unplanned visits to the turbines.

Papatzimos et al. [22] provide an overview of a recent system designed to reduce operational and
maintenance costs of offshore wind farms. A relational database approach was taken for
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persistence, with structured data directly manipulated in the database (including local weather,
wave buoy data, machinery, and structural health readings) and a distributed database approach
for reports, images, and other unstructured data. The authors note that the key problem is data
collection and processing, with data streams ranging from database queries to emails. Helsen et al.
[23] provide a very similar system, but instead of using a relational database, they choose a NoSQL
database approach. The differences between these two papers indicate that the persistence
approach may vary between applications. Martinez-Luengo et al. [24] addressed the challenge
between strain gauge data, which may have drop-outs and is sampled at a very high frequency,
and 10-minute weather observations for health monitoring with data compaction, cleansing, and
missing data imputation strategy. Indeed, the topic of making these data persistence schemes
adaptable over time has also been studied, though the results to date are primarily desk studies
[25]. The wind turbine industry appears to be actively researching the broader issue of data
persistence and is collecting a large amount of data from nearly-identical turbines worldwide.

SECTION 4.2.5 DIGITAL THREAD

Kraft laid out the U.S. Air Force's vision of a digital thread in 2016 [2], standardizing the
interrelationship between the digital systems models, thread, and twins as covered in the
introduction. However, the main bulk of Kraft's paper focused on design-stage data exchange and
re-use and its impact on acquisition programs. The broad issues of data persistence to support data-
model fusion were not explored in depth. Over the last five years, digital thread has become a focal
point for acquisition programs or early-stage design (e.g. [26]). Still, the amount of actual system
experience with the concept and the architectures for data persistence is less clear. This slower
pace of development is potentially a result of the longer lead time on military acquisition compared
to offshore wind turbines applications, where the focus on supporting operations and maintenance
is already well-established.

Despite the design focus at the outset of the digital thread definition, work since this time has
focused on implementing the broader concept throughout the engineering lifecycle. Kwon et al.
[27] present a detailed study of extending design-stage STEP data standards to include human
quality inspection in QIF format, using a knowledge graph approach. At the same time, Sousa [28]
explored further standards around integrating quality assurance into digital-thread-like
applications. In both works, the focus is primarily on data manipulation, and labeling, the storage
aspect of data persistence appears less critical. Gopalakrishnan et al. [29] provide a complete
example of this type of approach, using STEP and QIF approaches to store material microstructure
information for a gas turbine component through-life to allow downstream damage-tolerant safety
assessments to be made during the turbine’s operational lifecycle. This paper is one of the few that
ties together data exchange and labeling methods with a complete example.

At a higher level, Singh and Willcox [30] worked towards a mathematical definition of a digital
thread and developed a composite wing-box example. In this formulation, the digital thread's
primary focus was choosing sensor locations for model updating and design step sequencing to
reduce uncertainty in the design problem efficiently. While many existing data exchange standards
are discussed in the introduction, it is not clear that the final example used any of them. Pang et al.
[31] provide an even higher-level description focusing on a shipyard. Pang et al. identify similar
data types to be stored as was highlighted in the offshore wind turbine section above, and also note
the desire to integrate with existing model-based engineering and product lifecycle management
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commercial software for efficiency of implementation. Jagusch et al. [32] provide a high-level
discussion of the digital thread in shipbuilding but do not discuss specifics of the data persistence
necessary for their vision.

SECTION 4.3 COMPARISON OF APPROACHES AND FINDINGS

The literature search above revealed five major areas of development that could inform data
persistence approaches for data-model fusion projects: the structural updating community, the
machinery monitoring community, the lifecycle assessment community, the offshore wind turbine
community, and the digital thread community. It was clear that the maturity of these communities
varied widely — the structural updating and machinery community have decades of increasingly-
complex experience. In contrast, others, such as the digital thread approach, have less than a decade
of experience.

Despite this variety of maturity, several common themes could be seen across the different
disciplines investigated. Very few papers mentioned challenges in data scale — e.g., the ability to
store a large amount of data was not a critical factor. However, many papers also addressed
academic-scale proof-of-concept applications where gathering data from multiple assets for long
periods of time was not attempted. Thus, while this seems like a secondary challenge at the
moment, more extensive systems may struggle here in the future.

Many papers did discuss data labeling, ontologies, and transfer standards. It would appear from
the published record that such standardization and labeling of data is a central challenge. Cleaning
and processing data before analysis was also a commonly-mentioned challenge. Additionally, it is
also clear that we can collect data easier than we can fully understand it. Abbasian et al. [17]
experience of sampling 3,000 channels of data, but only investigating 80 in detail is the latest
example of the challenge being more making sense of the data than gathering the data. Similar
complaints have been published for decades now, including the challenge of "data to decisions"
and experience with marine monitoring systems that were not maintained after the data gathered
could not improve decision-making.

Any marine data-model fusion data persistence approach is likely to have to work with different
heterogeneous data sources. Table 4 below shows the different data sources explicitly mentioned
in the papers reviewed. As such, this must be seen as a lower bound — and likely far lower — to
what is being used in practice today. Data types include design-stage CAD models, weather and
operational data, time-history signals, and "unstructured" data such as images or human inspection
reports. While the literature presented several different data storage architectures for such data, a
larger challenge appears to be able to search and interpret such diverse data effectively.
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Table 4: Comparison of Mentioned Data Types by Disciplines

Data type

Structural
Updating

Machinery
Monitoring

LCA/
LCCA

Wind
Turbines

Digital
Thread

3-D CAD Models

X

X

X

Finite element models

X

X

Hydrodynamic
models

X

X

Weather models

<

Model updating from
field

Vessel
weather

position for

Ship position in the
water

Time signals from
machinery monitoring
systems

Commercial
databases/business
process software

Wave buoys and local
weather readings

Human
reports

inspection

Images and other non-
structured data

Control
logging

system

Based on the analysis of the written literature, it is likely that any data-model fusion system will
need to develop its own unique data persistence approach. The level of standardization appears
low at the current time, with only a handful of papers documenting the successful application of
existing data transfer standards to engineering problems. Selecting an applicable standard, or at
least a data labeling scheme (such as XML schema or UML/SysML defined data path), would help
formalize such a system. Data storage requirements seem likely to be met by existing database
systems; though relational databases seemed most common in the literature, it was clear that the

final choice of database architecture is not yet standardized.
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Of the five fields explored, the wind turbine industry experience is perhaps the best jumping-off
point for developing such data persistence approaches for marine data-model fusion problems.
Wind turbines share many similar sub-systems to marine vessels, having structural systems,
machinery systems, and electrical systems. They have periodic inspection reports from humans
and need to understand their environmental exposure history when performing analysis of the
recorded data. Additionally, there are many wind turbines in service offshore, with frequent
inspection and a growing research community focused on these data sets. Further analysis and
discussion of their approaches seems the most valuable way forward.

SECTION 4.4 CONCLUSIONS

A picture of current data persistence approaches has emerged by reviewing recent developments
in 32 papers covering the structural updating community, the machinery monitoring community,
the lifecycle assessment community, the offshore wind turbine community, and the digital thread
community. The literature does not yet have a standardized approach for such persistence, but
challenges around data cleansing, transfer, labeling, and interchange seem to be common.
Information exchange standards have emerged in specific industrial sectors, but no common
standard approach appears to have become established across multiple industries. Storing large
amounts of data appears to be a secondary challenge at the moment and was not the focus of most
of the papers. Future data-model fusion approaches will likely have to develop their own data
persistence approach, picking and choosing from successful examples in related industries. In
doing so, the offshore wind turbine industry appears to be a strong starting point, owing to high-
level similarities between their systems and naval vessels.
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At a high-level, data-model fusion is an area of study concerned with integrating (or “fusing”) data
science and/or machine learning techniques with engineering modelling methods, while leveraging
the advantages of both. Digital twins provide numerous opportunities for utilizing system-specific
data in concert with engineering models, and as such, DMF presents a promising area that is both
complementary and significantly relevant toward furthering the capabilities of digital twin
technology.

We begin by defining DMF and presenting motivation for its study and application. Next, we detail
a survey of existing data-model fusion techniques, where each method is described alongside a
brief assessment of its appropriateness and applicability to different problem types. Finally, we
discuss the application of DMF within the context of digital twins, both for current constructs as
well as extensions to platform-level twins.

SECTION 5.1 BACKGROUND & MOTIVATION

Recent advances in computational capabilities have led to improvements in both physics-based
models and data science techniques. However, these advancements have generally been studied
and applied separately, limiting their potential positive impacts. DMF is a discipline concerned
with the integration of governing equations ! and data science or machine learning techniques, with
the intent of leveraging the advantages of both. Before discussing DMF in more detail, let’s first
review how these two different approaches (model-based and data-driven) have been used
traditionally.

Model-based approaches are familiar to the realm of engineering analysis. These methods typically
involve implementing models in the form of mathematical functions to describe the physics of the
system states and failure modes. These governing equations incorporate physical understanding of
the system into the estimation of state and how it will behave based on any given input. While
powerful tools, model-based approaches also have computational drawbacks, which have been
addressed traditionally by trading fidelity for efficiency. Low-fidelity representations strategically
ignore behaviors found in the real-world context of a system. Examples include the simplifications
used in Hooke’s law, linear wave theory, and the exclusion of air resistance in many applications
of the equations of motion. On the other hand, high-fidelity models offer more detail at increased
cost, either monetary or computational. For example, Computational Fluid Dynamics (CFD)
analysis offers a very robust simulation of fluid flows but quickly becomes computationally
infeasible for large search spaces. Regardless of fidelity, model-based approaches are generally
applied during the system design phase and not during post-production operation. As such, they
are rarely tailored to the specific instance of the system being analyzed.

! The term “governing equations” was chosen over the more commonly used “physics-based models” to remain
inclusive of behaviors that are not strictly physics-based, such as the laws of economics [1,2,3].
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While data-driven approaches have long been the study of statisticians and data scientists, they
have also become increasing popular in the engineering world, at least in part, for their advantages
in terms of efficiency and flexibility. These methods encompass a wide array of regression and
classification techniques, from simple polynomial curve fitting to deep convolutional neural
networks. Simply put, they leverage statistical correlations within data to make predictions, which
may be in the form of state estimates or anomaly detection. Although the training process may
require significant computational resources, the trained models often have much less
computational overhead than their model-based counterparts. Since they only rely on statistical
differences within data and not on the principals of physics or engineering, data-driven approaches
are extremely attractive as flexible, off-the-shelf solutions in many cases. While it comes with
many advantages, the sole reliance of machine learned models on observed data has notable
drawbacks. For one, the models do not typically generalize well, meaning that when presented
with samples beyond those experienced during training, they do not offer reliably accurate
predictions of the system’s behavior in that space. A similar issue is also experienced in data sparse
environments, which are commonly found in engineering applications. Data sparsity is not caused
solely by a lack of data but also by high dimensional state spaces (i.e., large input or output vectors)
and unbalanced targets (e.g., failure caused by a rare event). In engineering settings, it may not be
effective or even feasible to acquire the amount of data needed to fuel a purely data-driven model,
which necessitates new innovative methods for handling these scenarios.

As stated above, data-model fusion techniques integrate these two approaches to leverage their
advantages and offset their drawbacks, but how this is handled varies across different DMF
techniques. Raissi uses governing equations to constrain the space of admissible solutions to a
manageable size [4]. Others have based their machine learned model on physical laws (i.e. creating
a relationship between the model, the training set data, and a physical governing equation) and
have demonstrated accurate estimates with sparse datasets and low relative cost [14]. DMF
techniques, which are discussed in more detail in the following section, have been shown to
provide more accurate state forecasting than singular models and have been successfully applied
for predictive maintenance and health diagnostics. Many areas of autonomy could also benefit
from improved forecasting capabilities. In a statement to a defense writer’s group in July 2020,
DARPA Acting Director Peter Highnam conceded that there is still a major issue with the
robustness of Al-based systems, neural nets, and reinforcement learning [7].

Before moving onto current techniques, note that DMF is commonly confused with the concept of
sensor fusion or data fusion. Sensor fusion is the integration of data from multiple sources or
multiple types of sensors to reduce the uncertainty of the parameter being measured [8]. A simple
example of this is the coordination of cameras and LIDAR sensors on semi-autonomous vehicles
that create more accurate awareness of the surrounding environment than would be presented from
just one data source. While fusing sensor data in this way is of great interest in digital twin research,
it is different from the concept of DMF discussed throughout this report.

SECTION 5.2 SURVEY OF EXISTING TECHNIQUES

A search was conducted to identify current efforts that merge data-driven methods and model-
based approaches. The explored techniques are summarized in this section, and while not an
exhaustive list, they provide an adequate reflection of the current work in the space. Methodologies
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that fit within the definition of data-model fusion were included even without the explicit mention
of the term.

SECTION 5.2.1 PHYSICS-INFORMED NEURAL NETWORKS

Definition: Neural networks that are trained to solve supervised learning tasks while respecting
any given laws of physics described by general nonlinear partial differential equations.

An artificial neural network is a computational modeling tool that mimics the ability of neural
systems to capture and represent complicated, multi-dimensional, linear and nonlinear
relationships through a layered structure of units [9]. Physics-informed neural networks utilize
built-in governing laws to aid decision-making with incomplete information and generate a space
of admissible solutions when data is sparse or high cost. In comparison, traditional neural networks
are often limited by their need for large amounts of training data. In the proposed methodology in
[10], a problem defined by a non-linear partial differential equation has its complex-valued
solution approximated by a deep neural network. The scientific computing technique of automatic
differentiation is used to evaluate the derivative of the neural network with respect to both the
input coordinates and physical model parameters. Since the physics of a given problem can be
described by differential equations and these constraints help avoid over-fitting, this technique can
be trained with smaller datasets. However, for high dimensional problems (as opposed to those
with just one or two spatial dimensions) the requirement for many collocation points to enforce
the physical constraints may introduce a severe computational bottleneck.
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Figure 16. Physics is explicitly imposed by constraining the output of conventional neural architectures with weak inductive
biases. Governing equations represented by Partial Differential Equations (PDE) add an element of regularization to the output
of the analysis [32]

SECTION 5.2.2 PHYSICS-BASED MACHINE LEARNING

Definition: The implementation of physics-based models to ensure that predictions made via
machine-learned methods enforce physical constraints of a system or environment.

Physics-Based Machine Learning is a technique used for applications where the goal is to predict
high dimensional output quantities of interest. Its development was motivated by the need for
strong predictions grounded by physical constraints from relatively sparse data. In [11], low-
dimensional approximations of a high dimensional model are created using proper orthogonal
decomposition. Then machine learning methods use these low-dimensional snapshots as training
data to build a new, reduced-order model that maps inputs to the outputs of the original high-
fidelity model. The fusion of physical parameters come from data-driven models learning the
operators of the reduced models, which contain information about the dynamics of the system of
interest. Systems in science and engineering that respond to inputs with physical fields or quantities
are considered in the work. Importantly, the type of machine learning model used can be varied
and the limitations of each should be considered with choosing an appropriate strategy for a
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problem. Later work by Swischuk in [12] demonstrates that the physics-based machine learning is
able to accurately make predictions and enforce important physical constraints where the operators
of discretized governing equations are unknown or too complex. Svrivastava affirmed that fusion
techniques effectiveness at making predictions even with little or incomplete data [13].

SECTION 5.2.3 PHYSICS-BASED LEARNING MODELS

Definition: A Generic Learning Model (GLM) and training data set that is complemented with
physical behaviors and constraints inherent in physics-based intermediate models.

The Physics-Based Learning Models (PBLM) technique developed by Weymouth et. al requires
the use of a generic learning model (GLM), a fast physics-based intermediate model, and a small
set of high quality experimental or computational training data. The method expands traditional
GLMs that may require prohibitively large sets of data for complex problems and contain no
knowledge of the system outside of the data by cross-referencing predictions from semi-empirical
models (like physical governing equations) in order to make predictions. This technique expands
upon previous work for maneuvering predictions in a variety of ship hydrodynamics and ocean
engineering problems. PBLM obtains significantly improved prediction accuracy as compared
with traditional non-fusion methods while reducing data dependence and over-fitting. Recent
studies on seakeeping prediction also suggest that physics-based model predictions improve results
even in data rich contexts as compared to a pure machine learning model [15].
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Figure 17. Waterline elevation profile data and predictions for a ship hull over six Froude numbers. PBLM predictions (red line)
obtained significantly increased accuracy to modeling test data (hollow circles) as compared to GLM predictions (blue)[14]

DISTRIBUTION STATEMENT A. Approved for public release, distribution unlimited. 68 of ‘68



Approved, DCN# 43-9451-22

SECTION 5.2.4 FUSION PROGNOSTIC FRAMEWORK

Definition: A prognostic framework that incorporates data-driven predictions into a particle
filtering (PF) learning structure, such that predicted future measurements from the data method
have continuously updated system parameters from the PF approach which results in reliable state
forecasting.

This framework was developed to aid in applications that require system state estimation and
forecasting, and whose forecasts must be reliable and accurate to schedule maintenance and avoid
critical failure. Data-driven methods use pattern recognition to detect changes in systems but rely
on accurate and large historical datasets, while model-based methods use models or functions to
describe a system and techniques like PF to infer state variables where data is unavailable. This
fusion technique integrates both methods for a comparatively more effective prognostic
framework. First, a data-driven predictor is trained from historical data from similar systems, and
then tuned using available data from the system of interest. This data-driven predictor can be
trained using recursive learning algorithms and then fed into a PF learning model, which updates
the predictor’s model parameters as new information becomes available. Thus, physical
understanding of the system and the current conditions are embedded into state estimates and
forecasting. When implemented in a state prediction study, this DMF technique outperformed
traditional data-driven and particle-filtering based approaches. This technique also improved upon
the transparency of the pure data-driven method, meaning it may be more suitable for applications
where forecast reasoning transparency is required (e.g. earthquake prediction or stock market
forecasts). Depending on the application, the differences between the two specific components the
data-driven and degradation model may be large and, in that case, must be determined and
reconciled [16,17].
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Figure 18. A schematic diagram of system conditioning monitoring and prognosis. The DMF technique is utilized once the
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SECTION 5.2.5 BAYESIAN MODEL LEARNING

Definition: Framework in which Bayesian networks synthesize real world data with common
underlying structural models, fusing multiple types of evidence and improving underlying models
for better future forecasts.

Bayesian inference is a method of statistical inference in which Bayes' theorem is used to update
the probability for a hypothesis as more evidence or information becomes available. A Bayesian
network is a probabilistic graphical model that represents a set of parameters and their conditional
dependencies, which makes them able to incorporate different types of interdependent information
into a predicted outcome. It has proven to be a useful tool in data-sparse problems, where the
parameters of a model may be unknown. Physics-based equations and prediction models related
to observable outcomes can be integrated into Bayesian networks, which can then update beliefs
in the underlying parameters in the models to better reflect a real-world system. Bayesian networks
have been studied extensively in literature which applies learning methods to several marine
loading and fatigue applications. Collette et. al (4 Bayesian approach for shipboard lifetime wave
loading spectrum) reveals a major advantage of the Bayesian method “is that it enables the
inclusion of already-generated design knowledge as prior information. Therefore, even with
limited life cycle data, the Bayesian approach can still provide a reasonable prediction of future
performance.” In a preceding study of marine structures subject to fatigue, networks have been
used to update crack occurrence and length prediction for decision support [18,19,20,21].
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Figure 19. A proposed lifetime load uploading procedure using Bayesian models [19]

SECTION 5.3 APPLICATIONS

As demonstrated by the survey, there is already great interest in developing methods for integrating
data-driven and physics-driven techniques for engineering applications. This section describes
how DMF can be implemented in real-world applications and bring added value to a system. First,
an overview of the value of DMF techniques is given, followed by real-world applications that
already utilize fusion or present good use cases for the future. Examples from the maritime industry
are described, followed by examples of fusion in other sectors.
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The studies which looked to verify the effectiveness of a data-model technique often look to small-
scale experiments that modeled a real-world system or structure and measured how well the new
technique could make state estimates or remaining useful life (RUL) estimates and compared
results to traditional models. The positive results of these studies have important real-world
implications. The ability to accurately predict the RUL of a lithium-ion battery can be extended to
the RUL of another simple component of a more complex system. Improved prediction of crack
propagation would be hugely valuable for any civil engineering or naval architecture structure
subject to regular fatigue forces.

For digital twins — whose useful applications include RUL assessments, maintenance planning
based on load history, early damage detection and shutdown prevention, inspection support, and
design feedback and improvements, as identified by Report 1.2 — the value of fusion techniques
are very attractive. For high value, high complexity assets, the accuracy of the predictions made
using their twins is extremely important. However, the computational cost of making the
assessments or predictions must remain low enough to justify the benefits. Results of DMF studies
have demonstrated that fusion techniques may be a key component of improving twin output. In a
discussion of successful fusion techniques, Raissi states that “specific applications that can readily
enjoy these benefits include, but are not limited to, data-driven forecasting of physical processes,
model predictive control, multi-physics/multi-scale modeling and simulation” [1].

Within the scope of maritime technology, there are multiple ongoing efforts that could benefit
from the implementation of DMF techniques. In a bid to develop advanced condition-based
maintenance management processes for ship machinery, Japan’s NYK Group moved forward with
research plans that would install sensors on ship engines and steam turbines and share data with
the classification society and machinery manufacturers in real time. The goal is to collect detailed
operational data such as vibration and temperature of bearings, which will inform operators of the
condition of the engine. Information on engine condition will be used in turn to inform predictions
of machinery failure and remaining useful life (RUL) assessments. Moving towards a more
autonomous future, the U.S. Navy is funding $2.7 billion to develop and field unmanned platforms
over the next five years [22], and the establishment of condition-based maintenance systems will
support the development of autonomous vessels [23]. DMF may be a critical component of
realizing those goals.

Another representative maritime example is Askelos’ digital twin of Shell’s Bongo Main FPSO.
The twin is a structural, physics-based model of the offshore facility located 120 km southwest of
the Niger Delta in Nigeria at a depth of more than 1000m. It represents the entire physical
counterpart in exact detail and is updated with loading conditions and inspection data on a regular
basis, providing the ability to carry out structural assessments based on its current condition.
Akselos was selected as a partner by Shell Nigeria Exploration and Production Company in pursuit
of key operational objectives, such as identifying areas for priority inspection, reducing personnel
onboard the asset, and reducing need for physical inspection where possible. DMF techniques
provide new tools for industry to protect their high value assets and extend their useful lives [24].

The benefits of DMF can also be extended to different types of digital twins. Its strength in
forecasting is highly applicable when considering fleet operations, maintenance, and logistics.
There is an entire field of study dedicated to the understanding and optimization of production and
transportation systems, whose increased efficiency can represent significant economic benefits.
Several literature reviews of design and planning methods of platform problems have been
conducted in pursuit of identifying current shortcomings in these methods. Colledani et. al studied
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various modeling techniques for products, process chains, and entire manufacturing systems and
noted that “the main drawback is that existing models generally consider products, processes and
production systems separated from one another... none of the existing works seems to be able to
jointly represent products, processes and production systems data, information and knowledge,
satistying all the requirements” of each of those system levels [28]. In his dissertation on system-
of-systems design, Frommer [29] identifies the platform problem as one that is large in scope,
involving many entities with varying capabilities whose resources are spread out but connected
through information, and whose individual parts are capable of independent operation. His work
is focused on how individual assets can be designed for high performance levels but that will also
form an “optimal fleet whose capability is greater than the sum of its parts” [29]. Given their
dynamic and complex nature, fleets are difficult to characterize and model, especially given the
various and changing relationships between their subsystems. Baykasoglu goes a step further and
breaks intermodal transportation fleet planning problems down not just into separate components,
but also into strategic, tactical, and operational decision-making levels [30]. The interdependencies
among the sub-problems must be addressed within a fleet architecture, and, therefore, the sub-
problems cannot be considered as lone entities. The advantages of DMF techniques could help
address the complexity of the problem of fleet modeling and decision-making, as well as the
underlying need to keep the solution computationally affordable.

An example of how model fusion and utilization of various learning data-driven methods could
inform maintenance planning at a platform level comes from work done by the University of
Michigan Data Science Team with the City of Detroit’s Operations and Infrastructure Group [32].
The research sought to uncover and understand the existence of patterns and trends in the
significant and highly complex maintenance data of the fleet of vehicles owned and operated by
the city of Detroit. The complexity arose “from inter-relationships between vehicle type, system
repair type, and time (both absolute time and vehicle lifetime)”. Tensor decomposition techniques
were used to discover temporal patterns in vehicle maintenance, and then differential sequence
mining and neural network models were used to predict maintenance sequences with demonstrated
success. The research recognized the unique problem planning and decision-making for a fleet of
vehicles and, more generally, sub-systems.

SECTION 5.4 FUTURE CONSIDERATIONS

Data-model fusion is a promising concept that deserves further study and investment. This report
described DMF and presented a literature review of existing fusion techniques, demonstrating how
the integration of different modeling methods can be used to make more accurate, robust, or
efficient predictions than either approach used in isolation. Future research into DMF may be
focused on creating novel techniques from different types of models or studying how it could be
utilized in new digital twins. Increased interest in optimizing platform and fleet-level systems,
enabled by improved computational capability of the last decade, also represents a promising
future area of application for DMF. For naval efforts, future work can utilize current techniques
and system information to build more robust predictive models to predict demand, maintenance
costs, and vehicle downtime (repair duration), and to assess maintenance effectiveness.
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This section outlines the major branches of decision-making approaches developed to date,
provides some examples of how they might interact with digital twins developed on this project,
and forms a reference for engineers working on demonstrator systems. The report addresses the
following three specific objectives:

1. To provide an overview of decision-making methodologies, techniques, tools, and
references to further resources.

2. To serve as an aid to engineers/scientists developing decision-making strategies through
guidance on selecting appropriate methodologies and tools.

3. To demonstrate decision-making strategies through a varied set of examples.

SECTION 6.1 OVERVIEW

As was shared in Chapter 2 A Standardized Definition and Preliminary Taxonomy for Digital
Twins, decision-making should not be considered a requisite component of a digital twin since the
digital twin could exist and function without the Decision Maker. In regard to decision-making,
our definition views digital twins as supporting, but not encompassing, the decision-making
processes. However, for many roles envisioned for digital twins, the twin will be interfacing with
either on-board or off-board decision makers for the platform. Therefore, to better understand the
decision-making needs a digital twin should support we have provided this summary of decision-
making approaches.

Decision-making is a critical aspect of how agents, whether they be human, robot, or otherwise,
effect a desired change in their environments. Decision-making spans numerous fields of research,
from traditional decision theory to autonomous systems trained to choose actions through
reinforcement learning algorithms. In its most simple incarnation, decision-making involves an
agent that chooses amongst a set of possible actions. How a decision is reached varies widely
depending on the agent, the type of decision-making problem, and the environment in which the
agent acts. An agent may simply react to external stimuli in some predefined manner. In more
complex problems, an agent may plan multiple sequences of actions, predicting the outcome of
those actions, and weighing uncertain risks and rewards before selecting a final course of action.
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This survey focuses on introducing common methods and important considerations when
developing an algorithmic decision-maker, through:

Section 6.2: Questions to ask about the decision-making problem when selecting an
approach.

Section 6.3: Representations and abstractions of decision-making problems.

Section 6.4: Common approaches and methodologies to building a decision-maker and/or
solving decision-making problems.

Section 6.5: Examples implementations of decision-makers on a diverse set of systems.

The survey is written with the intention that a newcomer to decision-making can understand
important considerations when designing their own agent, as well as the ability to select a
preliminary approach with resources to pursue a more in-depth solution. We cover a wide range
of decision-making approaches and representations that can be applied to building an autonomous
decision-maker, from mathematical optimization and reinforcement learning to goal-driven
autonomy and case-based reasoning. Additionally, the examples serve as a starting point for the
development of future decision-makers based on the approaches covered in this survey.

SECTION 6.2 CHARACTERIZE THE DECISION

This section details a list of questions that are used to define the attributes of the domain and the
decision that needs to be made. The questions cover the type of environment an agent is interacting
with, such as if the environment is static or dynamic, the uncertainty that is present in the
environment, and whether the agent has information on the entire environment or only what it can
perceive at a given time step. The questions also address the effects of a decision, determining if a
decision can be revisited or if it is a one-shot decision and if the decision space is continuous or
there is a set number of actions available to the agent. These questions will be used to inform which
type of decision-making method should be used for a given use case. These questions also highlight
the relationship between decision-making frameworks and digital twins which may provide
information to the decision-making frameworks. The capabilities of the digital twin, and the types
of information it can provide, will help define the applicable decision-making frameworks for each
problem.

SECTION 6.2.1 STATIC OR DYNAMIC ENVIRONMENT?

First, the environment an agent is operating in needs to be classified as either static or dynamic
based on the source of the variables that may change them. For a static environment, only the
agent’s actions can change the environment. It is important to note that dynamic movement of the
agent does not qualify the environment it operates in as dynamic. For example, in the case of
robotic navigation in an office with no moving objects or people, the environment — the office —
would still be considered static even if the robot’s movement causes changes to it. There is nothing
changing inside the environment except for changes the agent makes to its own location or those

DISTRIBUTION STATEMENT A. Approved for public release, distribution unlimited. 77 of 171‘)3



Approved, DCN# 43-9451-22

of objects it interacts with. Another example would be speech recognition. The context for
recognition is not changing, only the audio that is being input.

In a dynamic environment, changes happen in the environment out of the agent’s control. Having
other agents in an environment makes it dynamic because they will cause changes outside of the
agent’s control. For example, robotic navigation in an office with people. Compared to the static
office with no other agents (people), there are now changes happening in the environment that are
outside of the agent’s control, such as people moving between offices or moving objects in the
environment. Understanding if an agent will operate in a static or dynamic environment is crucial
to choosing a proper decision-making algorithm.

SECTION 6.2.2 SEQUENTIAL OR ONE-SHOT (EPISODIC) DECISION-MAKING?

Beyond understanding if an environment is static or dynamic, it must be known how an agent’s
decisions and actions will affect future decisions. The time horizon for how far out the agent makes
decisions must be understood to properly design how an agent will make decisions. To understand
the time dependent impacts on decisions, the agent's experience is divided into atomic "episodes"
where each episode consists of the agent perceiving and then performing a single action.

In sequential decision-making, decisions are made in a series. Current decisions affect future
decisions or rely on previous ones. Most environments (and agents) are sequential. For example,
path planning for robotic navigation. In order to reach its goal, the agent will plan out a path to
take from A to B. This path consists of a series of smaller decisions where each decision feeds into
the next.

For one-shot/episodic decision-making, the decision is one that will never be possible to revisit.
The choice of action in each episode depends only on the episode itself. The agent does not look
to optimize for future decisions. An example would be expert advice systems. In this case, an
episode is a single question and answer given by the agent. The agent’s answer does not need to
plan for future question because the questions are independent episodes.

SECTION 6.2.3 FULLY VS PARTIALLY OBSERVABLE ENVIRONMENT?

The final question related to the environment the agent is acting in refers to the agent’s ability to
perceive the environment. In many real-world environments, it will not be possible for the agent
to have perfect and complete perception of the state of the environment. The agent will make
observations of the state of the environment, but these observations may be noisy and provide
incomplete information. Please note: the “complete state” of an environment refers to information
that is relevant to the agent (that is to say, your robotic agent may not care that the walls of the
room are blue when it is path planning).

In a fully-observable environment, the agent has sensor(s) that can sense or access the complete
state of an environment at each point in time. There is no need to maintain the internal state to
keep a history of the world. One example would be a chess board. If the agent can access the state
of all pieces at once, this is fully observable. Another example would be an image which is being
processed with image recognition software. The image is fully observable even if it has not been
classified or categorized.
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In a partially-observable environment, the agent has sensor(s) that can sense or access part of the
state of an environment at each point in time. The agent may utilize a memory system in order to
compile more information about the environment. This problem is also referred to as the problem
of “incomplete perception,” “perceptual aliasing,” or “hidden state.” Often, if other agents are
involved, their intentions are not observable, but their actions are. For example, a robotic agent
might observe whether it is in a corridor, an open room, a T-junction, etc., and those observations

might be error prone or incorrect because on the robot’s sensing capabilities.

SECTION 6.2.4 DETERMINISTIC OR NON-DETERMINISTIC ENVIRONMENT?

Where different aspects of the environment affect which decision-making strategy is deployed,
consideration must also be taken as to if there is uncertainty in both the environment and the
outcomes of which decision is made. In a deterministic environment, any action taken by an agent
has a single guaranteed effect. There is no element of uncertainty or randomness in the
environment. Given a particular input state, it will always produce the same output. For example,
in a Tic-tac-toe game, the outcome of the game is determined by who gets three symbols in a row.
There is no randomness to the outcome of the decision. The outcomes of the other agent’s moves
may be unknown, however that is captured in whether the environment is static or dynamic. Ifthe
agent decides to place its mark in location X, the mark will always land at location X and not
another random box.

In a non-deterministic environment, the environment contains some inherent randomness. Given
an input state, it will not always produce the same output. This randomness can be
stochastic/probabilistic or purely random. Uncertainty could also come from lack of a good
environment model, or lack of complete sensor coverage. For example, a robot in the outdoors.
The robot may attempt the same action twice, such as solar charging. In one instance it may
succeed because it has access to sunlight. In another, it may fail because there was cloud cover.
Unlike the Tic-tac-toe game, the outcome of the decision to charge can have multiple outcomes,
the agent took the same action in both scenarios, “solar charge,” but the action resulted in different
outcomes: success or failure to charge.

SECTION 6.2.5 DISCRETE DECISIONS VS CONTINUOUS DECISIONS?

The final question for determining which type of decision-making strategy to implement refers to
the quantity of actions that the agent can choose from in the environment. For discrete decisions,
only a finite number of actions can be performed within the environment. The agent must choose
from one of these specified actions. Time can also be quantified in fixed steps as opposed to a
continuous flow. For example, a game of chess. This has a set number of moves the agent can
make and time proceeds where each turn is a discrete step.

For continuous decisions, an infinite number of actions can be chosen from to be performed within
the environment. This does not necessarily mean the agent has full control over the environment,
only that it is not limited in its options for actions to take. Time moves continuously with new data
constantly being processed. An example would be setting a course with a steering wheel. There
are an infinite number of setting for the angle of the turn. The agent can be designed to limit the
angles of the wheel that can be selected; however, the actual settings are infinite.
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SECTION 6.3 STATE-SPACE REPRESENTATIONS AND SPECIFICATIONS

In order to properly frame a decision-making problem, the agent and environment must be
structured to properly implement the algorithms that will be defined in section 6.4. This chapter
will build the definitions to structure the state space where an agent will act. The definitions in this
chapter are developed to design the state space while considering the questions described in section
6.1. All domains can be described with some combination of the following variables:

V — The vocabulary used to describe states and actions and events.
S — The State Space of an Agent.

A — The Actions available at a given State.

T — The Transition properties between States.

C — The Constraints on the State Space.

O — The Observations of an Agent.

R — The Reward associated with a given State.

G — The Goals of the Agent.

K — The Knowledge the Agent has of the State Space

SECTION 6.3.1 VOCABULARY (V)

All automated decision processes require some encoding of the environment that we can interact
with programmatically. The choice of vocabulary must consider two main factors: what
information can you extract from the environment itself, and what kinds of decisions will you
make with this abstraction. This section considers some commonly used abstractions for decision-
making, as well as the types of domains where each abstraction may be used.

SECTION 6.3.1.1 OCCUPANCY GRID

In a spatial environment, neighboring states are locations that are related by the Euclidean distance
between them. This is true for tracking the location of an object or an obstacle in the real world.
We can model spatial environments using occupancy grids which discretize the observed space
using a grid. Within the grid, cells are identified by an index for their location along each axis. It
then iterates over the grid and calculates the probability of occupation for each cell. The resulting
map of the space is the representation of the state at that time.

For example, consider the problem of a robot trying to localize itself. Suppose it has an initial
location that it knows as fact and has access to a map of the room split into a grid as described
above. As it moves through the room, the robot receives information about its change in location
from a series of sensors such as an accelerometer, wheel rotation sensor, distance sensor, and/or
cameras. At any given point in time, all of these sensors provide information about how much and
in which direction the robot has moved since the last time step. Each sensor comes with inherent
error, however, and this error compounds over time. Many different mathematical approaches
exist to solve this problem and predict the location of the robot with an assigned probability (e.g.,
a Kalman filter). By providing the probability at each point in the grid and displaying it, either in
a visual way with graded color over the map or numerically as a list of tuples, we arrive at a better
representation of the state than one predicted position would provide.
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This method may also be used to determine the locations of objects external to the robot. As seen
in Figure 20, the probabilities of object locations are depicted with shades of gray.
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Figure 20: Occupancy Grid of objects in a room. Black circle at center represents location of robot perceiving said objects.

SECTION 6.3.1.2  FACTS

Expert systems and other knowledge-based reasoners use facts to represent the state of the system.
Facts may be flat assertions about variables, relationships between them, or any other user defined
classification. The list of facts asserted at a given time is the state of the system at that time. As
an example, consider a farm as the environment. A flat assertion fact about this system might be

farm has-chickens X

where “X” is an integer number of chickens on the farm. To further describe the environment, we
might assert a fact to establish a relationship between variables such as:

coop is-near stye

Subject Matter Experts (SMEs), in addition to flat assertion facts, can define facts to classify
elements of the system. Such facts may be harder to attain via pure logic.

We can also use facts to classify elements of the system in ways defined by subject matter experts
(SMEs) that might be harder to attain via pure logic. Say an additional fact is,

farm has-pigs Y
where “Y” is significantly smaller than “X.” Through rules set by a SME, a deduction would be

farmer prefers chickens
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Notions of preference, or other subjective measurements we wish to take, would be harder to
establish logically in another state representation format, but in series of facts combined with SME
input they are created easily.

SECTION 6.3.1.3  CONTINUOUS AND DISCRETE VARIABLES

One of the most common methods of state-space representation is using state space vectors
(described in section 6.3). In these vectors, each of the variables chosen to describe the system —
whether observed or calculated — is assigned an axis and plotted along it. These variables may be
either continuous or discrete. Continuous variables may be plotted anywhere along their axis and
be assigned any real value in that range. For example, the temperature of a room may be 67.6°F,
95.123°F, 25°F, or any other real, possible value. The only limit to precision is the tool used to
measure the temperature, but as a continuous variable it may be assigned any real number and
plotted at that point along a line.

Discrete variables may not be assigned any numeric value, but instead are limited to a discrete
subset of values. Some variables may naturally be discrete. For example, the number of children
in a classroom will always be an integer value, and therefore will be plotted as discrete. Continuous
variables may also be turned into discrete variables by setting partitions of continuous data and
assigning labels to those partitions. For the temperature example above, a room at 25°F may be
labeled as “cold”, the 67.6°F room may be considered “warm,” and the 95.123°F room may be
labeled as “hot.” For plotting, “cold” might be assigned the value 1, “warm” might be assigned
the value 2, and “hot” might be assigned the value 3. Therefore, along the discrete temperature
axis, you may be in one of three positions.

SECTION 6.3.1.4  BINARY VARIABLES

Binary variables are the most basic way of describing the state of a system. These variables
provide two options for each question asked. For example, a system may be “on” or “off”, a coffee
may be “hot” or “iced”, and a pool might be “filled” or “empty”. In each of these cases where
either of two states is possible, one state may be represented by a 1 or TRUE, and the other by a 0
or FALSE.

SECTION 6.3.2 STATE SPACE (S)

The state space S describes the environment of the decision-making problem. A state space can
consist of a broad range of variable types for representing the environment. Mostly commonly, an
individual state within the state space is a continuous real number, or discrete (integer or binary)
variable. For example, a state space can represent the velocity of a vehicle as a continuous number,
or the velocity could be binned into a binary variable where 0 represents the vehicle being stopped,
and 1 represents the vehicle moving forward.

As demonstrated by the previous example, the designer of the state space must make important
decisions on the state representation. There are two primary considerations when selecting a state
space: 1. Does the state space represent the decision-making problem with high enough fidelity to
gain value from the solution to the problem? 2. Can a solution to the decision-making problem be
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reached the state space in the time required by the application? The answers to each question are
highly application-dependent and often rely on expert knowledge for both the design of the state
space, and the solution to the decision-making problem. If the state space is too large, consider
breaking up the problem into smaller, easier to solve, sub-problems.

SECTION 6.3.21  STATE SPACE REPRESENTATIONS
SECTION 6.3.2.1.1 STATE SPACE VECTOR

One of the most simple and common ways to represent a state space is as a set of vectors. In this
representation, a state variable is the smallest possible subset of system variables that can fully
describe the state of the system. These variables are represented by increments along a Euclidean
Graph with a dimension for each modeled state. The state is represented by a vector in this graph,
defined by the locations of the set of state variables at the given time step. This vector can be
represented by a matrix for easier manipulation and computation. Actions are represented by
transfer functions, typically differential equations, or difference equations, using the state variables
and some user defined inputs and outputs to describe transitions from an initial state to future
states.

SECTION 6.3.2.1.2 KNOWLEDGE BASE

Knowledge bases are used to define the state for implementations of expert systems. Knowledge
bases represent the state of the system through a set of facts and rules. Facts about the system may
describe measured numeric values of state information such as sensor outputs. They may also
describe relationships between components or discretized or otherwise abstracted information
about the state of a physical or virtual system. Rules take facts or objects as inputs and through
logic create either new facts or instances of objects. When new objects are created, they are used
as inputs to other rules such that when an iteration of the program is complete a set of facts is the
output. This set of facts can be used as the state space representation for case-based reasoning
(CBR) or other expert systems.

SECTION 6.3.2.1.3 GRAPHS

Another common method of representing the state space of a system is with a graph. Graphs come
in many forms, but always include a set of nodes and edges. Every modeled variable has a
representative node containing its relevant information. The relationships between nodes, whether
causal, correlational, or other, are represented by edges. Edges may take the form of arrows, lines,
or curved lines depending on the type and implementation of the graph. A few common types of
graphs are detailed below.

SECTION 6.3.2.1.3.1 PLANNING GRAPH

Planning graphs are used to describe propositional problems and contain a series of levels
corresponding to time steps in the proposed plan where level 0 is the initial state. In each level,
there is a set of literals and a set of actions which describe what might be possible at that time step.
Persistence actions, or actions that maintain the state, must be included for completeness. Mutual
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exclusions also must be included to increase search efficiency across different potential paths.
Mutual exclusions are represented by a curved line and can apply to both sets of literals as well as
sets of actions.

SECTION 6.3.2.1.3.2 CAUSAL GRAPH

Causal graphs represent the decision-making state space using probabilistic graphical models of
observed variables and their relationships with one another. In such a graph, each modeled
variable is represented as a node. When a given variable affects another, all else held constant, an
arrow is drawn from the affecting node to the node of the impacted variable. The set of variables
that point to a given variable are called its “parents” or “direct causes.” These parents are
represented by the term Pa(Y) where Y represents the impacted variable. This form of model
usually includes error terms or omitted factors, but these are typically excluded from the graph. If
two variables have error terms that depend on one another, then the error terms are included and
connected in the graph via a bidirected arc.

Figure 21 A Transportation planning task. Deliver parcel pl from C to G and parcel p2 from F to E, using the cars cl, c2, ¢3
and truck t. The cars may only use inner-city roads (thin edges), and the truck may only use the highway (thick edge). [1]

SECTION 6.3.3 ACTION SPACE (A)

The action space A is a representation of the actions the decision-maker can take to affect the
environment and state space in some way. Like the state space, the designer can represent the
action space by both continuous real numbers and discrete choices. For example, an autonomous
vehicle may have a discrete choice between taking route A, which is short but has difficult terrain,
or route B, which is a longer, but with easier terrain. On the other hand, navigation along each
route depends on continuous actions sent to the vehicle’s motors.

SECTION 6.3.4 TRANSITION MODEL (T)

A transition model T describes how the state of the environment changes based on actions from
the decision-maker. The transition model aids decision-making for a broad set of approaches by
predicting the response of the environment to possible actions taken by the decision-maker. This
allows the decision-maker to shape the state of the environment in predictable ways. The transition
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model for a system may be explicitly defined by an expert, learned from data collected on the
environment, or produced using a combination of expert knowledge and data.

One common form of the transition model, used in Markov Decision Processes, is the discrete time
case in a stochastic environment:

Pr(s;|se—q, ar—1)

Where the model computes the probability, Pr, of being in a state at time t, s;, if the state at time
t — 1 is given as s;_q, and the action is a,_;. This form uses the Markovian assumption that the
state of the next time step depends only on the previous time steps (and not time steps preceding
that one).

Examples of transition models commonly used in practice are:

e Robot and vehicle motion models: describe how the position, heading, velocity, etc. of the
vehicle change from time step to time step based on actions, such as steering wheel angle.

e Dynamical systems models: general description of the future state of a system based on
initial conditions.

e Models from a simulator: if a simulator of the decision-making environment is available,
the transition model can be learned through data from the simulator. For example,
simulations from the video game Pong may be used to learn a transition model for better
decision-making in the game.

SECTION 6.3.5 OBSERVATIONS (0)

In many cases, the state of the environment is not fully observable, but instead partially observable.
An autonomous vehicle may have noisy sensor measurements on the state of the environment, but
a complete description of the environment state. For example, the location of an adversary may be
occluded by an object. Observations are commonly described by continuous or discrete set of
measurements on the environment, such as by an accelerometer, GPS, imagery, or LiDAR.

Many decision-making approaches use an observation model to make sense of the observations
collected on an environment. Partially Observable Markov Decision Processes (POMDPs) and
Kalman filters require observation models which form a mapping from the state of the environment
to the expected observation, given that state. Most commonly, this is a static (not time-dependent)
mapping expressed by:

Pr(o;| s;)

Which expresses the probability of an observation o, given the state s; at time t. Partial
observability of the environment makes the decision-making problem much more challenging but
is necessary to consider to many real-world applications.

SECTION 6.3.6 CONSTRAINTS (C)

Constraints are bounds placed on the state space (and sometimes the action space) that the
decision-maker must avoid violating. For example, the designer of an autonomous drone may
include a constraint in the planner that requires the drone to return to base for recharging before
the drone’s battery depletes. Different approaches to decision-making incorporate constraints in a
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variety of different methods. Forward simulation of the environment, perhaps through a transition
model, can aid in predicting whether a constraint will be violated.

SECTION 6.3.7 VALUE JUDGMENTS (R)

We use R to describe value judgments that shape the decision-making problem. Different fields of
research use different terms to express these value judgments, including: cost, loss, reward, risk,
utility, regret, etc. Many approaches center around making decisions that maximize or minimize
these value judgments. The decision-making problem may seek to maximize reward or minimize
cost. While the exact definition and use of each term varies from approach to approach, most
implementations of these value judgments require a level of design. In some cases, the design is
simple. A simple design may be minimizing the cost, in dollars, of manufacturing a product. More
complicated value judgments may have multiple objectives, such a cost that penalizes deviation
from a mission plan at the same time as fuel. The field of multi-objective optimization explores
these tradeoffs in objectives.

SECTION 6.4 DECISION-MAKING METHODS

The algorithms and classes of algorithms used to make decisions in each representation are
described in this section. There are often multiple methods that apply to the same set of decisions;
however, it is up to the designer to identify which tool is best for their application. In this section
each of the algorithm classes listed below will first be defined, then guidance for when the
algorithm classes are best applied will be given. The algorithm classes will also be formulated to
align with the definitions described in section 6.3 State-space representations and specifications,
and when available, off-the-shelf implementations of the algorithms will be provided. The
algorithm classes described in this section are:

Optimization-based approaches
Search-based planning
Reinforcement learning

Expert systems

Belief-space planning
Case-based reasoning
Goal-driven autonomy

Game theory

SECTION 6.4.1 OPTIMIZATION-BASED APPROACHES

Description: Optimization-based approaches to decision-making revolve around the definition of
an objective function and subsequent selection of an action that minimizes (or maximizes) that
objective function. The objective function defines what is important to the decision-maker, such
as maximizing the return on an investment, or minimizing the fuel consumption of an autonomous
vehicle. Often, optimization problems augment the objective function constraints that limit the
feasible solution space. For example, the autonomous vehicle must minimize fuel consumption,
subject to the constraint that it reaches a specific location.
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While mathematical optimization is powerful due to its generality, the challenge in real-world
applications is to define the optimization problem such that a numerical solver finds a good, if not
optimal, solution in a reasonable amount of time. This is particularly difficult for high-dimensional
problems and/or problems with poorly structured objective functions (e.g., non-convex functions).
However, optimization problems that are structured appropriately for off-the-shelf solvers can
achieve fast, reliable solutions.

A general decision-making optimization problem may be structured as:

minimize J(a)
subject to g(a) <0

In other words, find the action a that minimizes the objective function J, subject to some general
constraint g(a)<=0. Solvers exist to handle general optimization problems, such as MATLAB’s
fmincon or SciPy’s optimize. However, we recommend attempting to formulate decision-making
problems, especially problems with many variables, with structures amenable to fast solvers. For
problems with continuous decision variables, examples of this include linear programming
(MATLAB or SciPy’s linprog), quadratic programming (MATLAB’s quadprog or Python
CVXOPT), or convex programming (CVXOPT).

Many problems contain discrete/integer/binary decision variables. Further specialized solvers exist
for these types of problems (see MATLAB’s Mixed Integer Linear Programming or GUROBI
Optimization). Evolutionary algorithms, such as genetic algorithms, may also work very high
dimensional cases, but can be unreliable. In general, the designer must structure the optimization
problem carefully and choose an appropriate solver.

The general formulation may be extended to cover sequential decision-making to find sequences
of actions. For example:

minimize J(ay, ..., Ar_1,Sg, «+» ST)
subject to g(ag, .., Ar—1,Sg, -, S7) < 0
and S¢ = f(St-1,A¢-1)

where the transition model, f, between states becomes part of the optimization problem.
Optimization as an overall approach has been widely developed in sub-fields, including examples
in Model Predictive Control (MPC), trajectory optimization as well as a wide range of robot
planning problems.

Optimization problems can similarly be formulated to handle uncertainty. Uncertainty in the
environment implies that a distribution of possible outcomes exists when making a decision. The
designer of the optimization problem may, for example, may wish to minimize the objective
function J of a decision on average. Some most common forms of this problem include:

e Maximizing Expected Utility: from decision theory, select the decision that maximizes the
“expected utility” of a decision with a probabilistic outcome, see:
https://www.cs.cornell.edu/courses/cs5846/2010fa/cs5S76wk1.pdf

e Empirical Risk Minimization: minimize the average loss of a model, such as a neural
network, in predicting an outcome based on data. Commonly used in supervised machine
learning problems and often solved with stochastic gradient decent. For general review of
related statistical learning problems, see
https://web.stanford.edu/~hastie/Papers/ESLIL.pdf
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e Chance Constrained/Stochastic Optimization: optimize the expected value of the objective
function, subject to a “chance constraint” on the probability of an event occurring, see
https://stanford.edu/class/ee364a/lectures/chance constr.pdf

Another approach to stochastic optimization is to apply structural reliability theory, where the state
variables are assumed to have known stochastic properties, but their scalar values are unknown.
Kim and Frangopol examined such a framework for making decisions when to monitor ship
structures for fatigue (e.g., the actions relate to requesting more sensor data to characterize the
ship’s condition) [2]. They were able to generate Pareto fronts of optimal service lives, delay in
detecting damage and reliability in service, the chose rewards for this problem. However, as a
multi-objective formulation, selecting a single the final decision relies on another decision-making
step.

When to Use: A broad array of decision-making problems can take advantage of optimization-
based approaches. However, it is best applied in small, well-scoped problems with clear objectives
and constraints so that reliable numerical solvers can be used.

Problem formulation (S,A4,T, C,R)

e S — The state of the system, or if the decision-making problem is sequential, the state of
the system as it varies through time

e A — The actions (or decisions) need to be encoded as the variables in the system of
equations, so that the optimizer can find the appropriate values for them

e T — The transition function for system dynamics, how the actions affect the system, are
inherently built into the system of equations. For example, a moving system will calculate
a change in position using the last position, the velocity, and the time step

e C — The set of constraints

e R — The reward value that you are trying to minimize or maximize, calculated from the
value of the states and the costs of the actions

Pros: Extremely broad applicability.

Cons: The optimization problem must be carefully defined, as solutions can easily become
computationally infeasible. See Kim and Frangopol for an example of a discussion of
computational cost, especially when the reward is multi-objective [2].

Tools: MATLAB (fmincon, quadprog, linprog, Mixed integer linear programming); Python
(linprog, CVXOPT, SciPy optimize)

SECTION 6.4.2 SEARCH-BASED PLANNING

Often a decision cannot be well-formulated into an optimization problem: the value function may
be non-convex, too many degrees of freedom, or some other complicating factor that will cause an
optimizer to take too long to find a solution or fail to converge outright. In some cases, an easy-
to-find acceptable solution can become preferable to a hard-to-find optimal one. Most search-
based methods are guaranteed to find solutions if they exist, with some computational cost, if the
transitions and the utility of the individual decisions are defined.
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Minchen

Figure 22 A graph of connections between cities in Germany https.//en.wikipedia.org/wiki/Breadth-first_search

Search-based planners seek to find a sequence of actions that will take the system from a known
starting state to a known goal state. Typically, a search algorithm will begin at the starting state,
and recursively evaluate the next states that are accessible from the current state by applying each
action until the goal state is found in the evaluation. Two common examples of this method are
breadth-first and depth-first search.

Consider the problem of finding a path from the city of Frankfurt to Stuttgart. Figure 22 shows the
distances and travel links that connect several German cities. A breadth-first approach will first
identify all the cities that can directly be reached from Frankfurt: Mannheim, Wurzburg, and
Kassel, then all the cities that can be reached from those cities and so on. Figure 23 (a) shows the
state of the search tree when the goal location, Stuttgart, is found and the path is returned. A depth-
first search approach also begins with the known starting state, but rather than fully expand each
node in the order in which they were found, a depth-first search expands nodes as they are found.
In the previous example, this search method would first find Mannheim, then find Karlsruhe, and
so on. Figure 23 (b) shows the state of the search tree for a depth-first search when the goal location
is found. Note that the paths found by the two methods differ in length and cost. If given a different
goal, say Augsburg, depth-first search would have found a path with fewer node expansions than
breadth-first. One major drawback to depth-first searches is that they are not guaranteed to find a
solution and may get stuck searching indefinitely if the planning horizon is infinite.

Most research in search-based planning focuses on identifying heuristics to guide a search towards
the goal faster, without compromising a completeness guarantee. Heuristics provide a guess at the
true cost of an action, and if the guess strictly underestimates the true cost, then the sequences of
actions can be guaranteed to be optimal within the chosen representation used for the search. The
most used heuristic-based search algorithm is A*, which performs a breadth-first style search but
orders the nodes to expand by the cost and a heuristic [3].

When to use: Searched based methods require that the problem can be modeled like a graph,
where the states, transitions, costs, and goals are known (or knowable). Given an arbitrary state
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the system needs to know what states each of its action will take it to, and at what cost. Search is
also best used when there is a known heuristic to guide the search, for example in a path planning
algorithm the Euclidean distance between a candidate node and the goal node will always
underestimate or exactly guess the cost to the goal.

Frankfurt
I
Mannheim
I
Frankfurt Karslruhe
S A R S I
Mannheim Wiirzburg Kassel Augsburg
Karlsruhe Niirnberg Erfurt Miinchen Miinchen
o L [
Augsburg Stuttgart Nirnberg
I:I:|

Wiirzburg Stuttgart

L Erfurt

Figure 23 (A) Lefi: Search tree of a breadth-first search when seeking a path from Frankfurt to Stuttgart. (B) Right: Search tree
of a depth-first search seeking a path from Frankfurt to Stuttgart.

S — The state (or states) of the system. If the transition model describes how the state is changed
by an action, then only the current state is needed as all future states can be calculated from that
one. If the transition model only describes the probability of moving to another pre-defined state,
then the entire state-space must be constructed first. For example, the map of cities in Germany is
needed before it can be searched.

e A —The set of actions that the system can take.

e T — The transition model, either edges on a graph or descriptions of how the state will
change with a given action and set of conditions

e R —The value judgement, this is not necessary for finding a goal, however if there is a cost
to minimize that cost must be encoded.

Pros: Search is a well-developed method with significant progress in the development of general
heuristics [4, 5, 6, 1]. Able to determine sequences of actions to achieve goals.

Cons: Requires that the effects of all actions are predictable, and finite. Typically, does not scale
well in very complex domains without well-defined heuristics, and heuristics may need to be
domain specific.
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SECTION 6.4.3 REINFORCEMENT LEARNING

Reinforcement learning (RL) is a policy estimation method useful for when the immediate reward
or cost of an action is not well known. Any reinforcement learning problem begins with a
formulation called a Markov Decision Process (MDP), which is a problem formulation that models
the states, actions, transitions, and value judgements of state/action pairs. MDPs carry the
assumption that the domain is Markovian, meaning that the transition to any given state is only
dependent on the previous state and the action taken from that state.

While an RL agent seeks to model the entire set of reachable states it does not need them a priori,
rather the agent will explore the space and after each learning episode will update its model with
new states and updated transitions probabilities and rewards. After enough time exploring the
space, the agent will have learned a policy from anywhere in the reachable state space towards the
state of highest utility. This type of reinforcement learning is exemplified in Q-Learning [7].

If the state space, transition function, and value function is known ahead of time then value
iteration can be used to develop a policy like that of what Q-learning would find. This policy would
again try to maximize the expected utility of the actions or decisions taken [8]. A similar method
to value iteration is policy iteration, which instead instantiates an arbitrary policy and updates the
policy until the value of that policy converges [9].

When to Use: This technique is useful for situations where the transition models or the reward
function is not well defined, but the system has a simulation or some other tool for exploring the
state space repeatedly to develop a policy.

Problem formulation (S,A,T,R,y)

e S —The complete set of states that are reachable from the starting state, either precomputed
or found through exploration

e A —The set of actions for the system to take

e T — The transition function between states

e R — The value judgement of each state, for training a reinforcement learning agent the
reward function can simply be based on achieving a goal and the value will be propagated
to the intermediate states.

e y — A discount factor, this is a value between 0 and 1 used to weigh the importance of
immediate reward versus future reward. A high discount factor will take immediate actions
that may be less desirable with the expectation that a more desirable action will be available
in a future state as a result of this action.

Pros: Once a policy is developed, there is no further computational costs for running that policy.
This is particularly useful when rapid decisions are needed, as there may not be time or
computational resources for running a planner or an optimizer.

Cons: Once the policy is developed, it is only valid for parts of the state space that the agent has
already seen. Changes to the policy will require additional data and training time.

Use Cases: When the state-space is well constrained and well understood, then a reinforcement
learning approach is appropriate.

Tools: Value iteration, Q-Learning, Policy iteration
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SECTION 6.4.4 EXPERT SYSTEMS

Expert systems are one of the earliest attempts at capturing knowledge from a subject-matter expert
and encode it into a reasoning system capable of emulating the decision-making process of that
expert. This knowledge is captured as a set of rules for inferring information from the information
that is already available. An expert system uses a reasoning engine for processing these rules on
the current knowledge base.

There are two main types of reasoning engines used with expert systems: forward-chaining and
backward-chaining. Forward-chaining reasoning engines look at the current set of knowledge
about the system and infers everything it can about the system given its set of rules. A backward-
chaining system looks at possible facts and applies rules backwards to find if that fact could be
true. Forward-chaining is useful for when you want to know everything you can about the system,
and backward-chaining is useful when you need to query the system for specific facts.

The rules for inferring new facts about the state of the system can also be treated as decision or
actions. If the preconditions for a rule are found to be true and the rule results in a desired outcome,
then the decision maker will decide to take the action (apply the rule). An example of this process
is shown in Figure 24.

One downside to the use of an expert system is the intensive process of gathering information from
subject-matter experts and encoding that information into rules. Recent work with expert systems
seeks to learn new rules by themselves by using large amounts of data and machine learning
techniques, in a paradigm called intelligent systems.

BACKWARD CHAINING
GoAL: Make $20.00

RULE: If the lawn is shaggy and
the car is dirty and you mow
the lawn and wash the car,
then Dad will give you $20.00

: ]
Does the lawn Does the car need
need mowing? washing?

¥

Do you have a mcwer?

: >
hose? bucket? rags?

v v R/
gas? electric? push?

***» The inference engire will test each rule or ask the
user for additional information.

Figure 24 Backward chaining expert system [10]
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When to use: Expert systems are useful for domains in which an expert’s knowledge is often
critical for making decisions. Previous domains include medical diagnosis, identifying organic
compounds. In a maintenance problem, an expert system can be used to identify faults and
corrective procedures.

Problem formulation (S, K)

e S — What is the current state of the system
e K —The set of rules that make up the expert system

Pros: An expert system encodes information that is well established by experts, rather than
needing to learn that information by itself over time.

Cons: Encoding expert knowledge is an expensive process, requiring many hours of the expert’s
time and that of the developer to encode the knowledge into rules. Additionally, as the domain
changes and new relationships form, the expert system needs to be updated continuously to keep

up.
Tools: CLIPS reasoning system, PROLOG

SECTION 6.4.5 BELIEF SPACE PLANNING

Rarely are autonomous systems able to observe every aspect of their environment. In most cases
their sensor measurements are a proxy for the information they are trying to acquire, like measuring
the number of turns of a wheel and the time elapsed to estimate speed. In more complex
environments suitable proxies may not exist, and so a belief state on the value of interest can be
used to estimate what that value might be based on other observations and the actions taken by the
agent. This type of problem is often formulated as a Partially Observable Markov Decision Process
(POMDP).

In their work, Platt et al. provide a method for continuous state space planning using linear-
quadratic regulator and seek to minimize the covariance in the belief that the system will end up
in a desired state [11]. This approach is like a model-predictive controller, but rather than minimize
the error between the controlled trajectory and the reference trajectory they minimize the
uncertainty that the system will be in some desired region of the state space. They found their
approach to be locally optimal in regions where the state dynamics are deterministic, and the
observation dynamics are linear.

Additional work uses a hierarchical approach to planning and separate the tasks of planning and
estimating the current state of the world. Kaelbling demonstrates this approach with hierarchical
planning in the now (HPN) which takes a determinized approximation of the problem, and then
develops plans through that determinization [12]. In HPN they include the probability of each
transition in the cost of that action, in order to develop plans that can trade off between optimizing
a cost and maximizing the likelihood of success. Once they have a plan and execute part of that
plan, they can use observations from the world to update the belief they made the intended
transition or not.

Like belief-space planning is risk-constrained planning, which instead of developing plans that
minimize the chance the system fails to reach a goal minimizes the chance the system takes an
undesirable trajectory or enters a catastrophic state [13, 14].
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When to use: Belief space planning is best for problems with a high degree of uncertainty in the
state and the results of an agent’s actions. This type of planning works for both discrete and
continuous problems if the dynamics in the system can be reasonably linearized.

Problem formulation (B, A, T, G)
The problem formulation in belief space planning is like an MDP, with a few differences.

e B — The belief state-space. Instead, the representation of the current state, this models the
probability of the system being in any one state

e A —The set of actions that the system can take

e T — The transition function that defines how the agent moves from state to state as well as
the uncertainty that is introduced during the transition

e G — A set of goal states that the system is trying to achieve.

Different implementations of belief space planners will extend on this formulation, although all
need at least these 4 components.

Pros: Belief space planning provides the system a method to develop plans with some guarantees
on the chance that the system will successfully reach the goal. In cases where it is more important
to achieve a goal and avoid a catastrophic failure than optimize a value function, this is very
desirable.

Cons: Belief space planning is rather complex and requires maintaining an estimate of the current
state of the system, which involves reasoning over many possible states all at once. The
requirement that the underlying system dynamics be fairly linearizable (at least with existing
techniques) limits the systems to which belief space planning is applicable.

Tools: BHPN

SECTION 6.4.6 CASE BASED REASONING

Much like how legal cases are argued and decided, case-based reasoning (CBR) makes decisions
by drawing from previously encountered examples. This technique is particularly useful when the
state space cannot be reasonably enumerated or sufficiently interrogated to derive a policy or plan.
The method does not require an explicit domain representation, rather it only needs to identify the
significant features of a case. Perhaps most importantly, CBR can learn over the lifetime of the
system, adding each unique case to its memory and remembering any adapted solution. CBR
consists of a 4-step process [15]:

1. Retrieve the set of similar cases to the current case

2. Reuse information about the prior cases and their solutions
3. Revise prior solutions to fit the current case

4. Retain the new case and the revised solution

The full cycle is shown in Figure 25.
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Figure 25: The CBR process

e A vocabulary: the knowledge necessary for choosing the features used to describe the
cases.

e Similarity measures: The ability to compare two cases and measure how similar they are

e Adaptation knowledge: the knowledge necessary to adapt existing solutions to new cases,
as well as the knowledge to evaluate the proposed solutions

When to use: Case base reasoning is helpful for when the exact outcomes of the actions are not
known, and the domain is too complex to reason over like in reinforcement learning or planning.
Case base reasoning is also good for leveraging the knowledge of a subject matter expert who can
populate the initial case base.

Problem formulation (V, K)

The formulation of the case-based reasoning system is largely going to depend on how the designer
implements it. As described before, the system will at a minimum need

e V —the vocabulary to describe cases
e K —Knowledge about how to detect similar cases and adapt solutions
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Pros: Does not require offline training and is robust to new parts of the state space. Borrows
knowledge from previous examples to speed up the learning process

Cons: Requires an expressive ontology of the system, which takes significant development time
with a subject matter expert.

SECTION 6.4.7 GOAL-DRIVEN AUTONOMY

Unexpected scenarios become inevitable when dealing with long-term deployments of any system.
A component might break, a plan might fail, or some previously held assumption may be found to
be false. When a system finds that it’s previous goals (if it had any) are no longer achievable, it
needs some method to generate new goals that still support mission objectives or partially achieve
the now defunct goals.

A goal-driven autonomy (GDA) process consists of 4 steps:

1. Monitor — Check for discrepancies between the expected state and the observed state. Did
something change (or not change) that wasn’t expected? Is there a new goal from a user

that takes priority?

2. Diagnosis — what caused the discrepancy? Is there some logic to explain what has
happened?

3. Generate goals — Propose some concrete goals that will let the system recover from the
change

4. Select a goal — Evaluate the proposed goals and select the best one
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( GDA Controller \
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Figure 26 The ARTUE Goal-Driven Autonomy system
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The first full implementation of GDA was in the Autonomous Response to Unexpected Events
(ARTUE) system [16]. That system is shown in Figure 26:

e Environment is a tuple (S,4,E,T)

e The planner takes in the environment, the current goal (g), and the current state and returns
a series of actions (A) that satisfy the goal, as well as a sequence of expectations (X)

e The GDA controller executes the GDA process, which first monitors for differences
between the observed state and the expectations, finds explanations for the differences with
its knowledge (K), produces a set of goals (G) and selects one of those goals to pursue. It
then sends that goal to the planner to get a series of actions to execute.

Not all GDA processes will require a planner, however, and so at minimum the GDA process only
needs a state description, a set of expectations, a goal description, and knowledge to diagnose
discrepancies.

When to use: A goal-driven autonomy process enables a system to be self-directed when either
its goals are unachievable or perhaps not well defined. Long-duration missions and missions where
graceful degradation is preferred over outright failure are prime candidates for a GDA process

Problem formulation (5,4, X, K, G)

S — The set of all states possible in the environment

A — The set of actions or decisions for the agent to make

X — The set of current expectations on the system

K — Underlying knowledge of the environment that enables reasoning about why
discrepancies occur

e G —The set of goals for the agent to consider

Pros: A goal driven autonomy process lets the system “gracefully degrade” so that when an initial
set of goals becomes impossible or less desirable to achieve the system can adjust to new goals.

Cons: Developing expectations often requires that the plan or policy is developed in a way that
each state along the plan can be precomputed, so the complexity of environment that a GDA
system can operate in is limited by the complexities of the plans that can be developed. Further,
the knowledge to reason about discrepancies between observed states and expected states is
difficult to encode.

Tools: ARTUE

SECTION 6.4.8 GAME THEORY

Game theory is the study of mathematical models of strategic interaction among rational decision-
making agents. Its concepts can be applied in many fields including computer science, systems
science, and social science. The modern definition of game theory for computer science includes
the study of interactions between self-interested agents [17]. Here we will examine how game
theory could be applied to decision-making in an autonomous framework. Unlike the other
techniques reviewed so far, there have been far fewer demonstrated applications of game theory
for this problem. Thus, this section will provide a high-level overview of the approach, but without
the details and assessments that were provided for other topics. Game theory remains an excited
avenue for both further research and wider test applications. Within the decision-making domain,
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game theory can be applied to multi-agent systems in the principles of task sharing/allocation [18],
coalition formation [19], negotiation/bargaining, etc. Agents want to make choices that optimize
the outcome, but in order to do so it will need to use strategic reasoning to determine what other
agents in the scenario are likely to do (where each agent is optimizing for its own outcomes).

“The classic game theoretic question asked of any particular multi-agent encounter is: What is the
best — most rational — thing an agent can do?”

When to use: Useful when the agent is uncertain what the result of taking an action will be.
Specifically, it is useful in multi-agent scenarios where the environment is unpredictable. Such
multi-agent scenarios may include interactions like negotiation and coordination. Specific game
types and representations need to be developed based on the characteristics of each application.
General guidance for this, in the context of system decision-making, is still a topic of research.

SECTION 6.4.9 SUMMARY

The decision approaches discussed in this section are summarized in Table 5. The types of state-
space representation used by each method, following the definitions from section 6.2, along with
the strengths and weakness of each method are summarized. The table shows clearly that the
current variety of decision-making frameworks is an important strength when considering coupling
with a digital twin. Frameworks can address a variety of problem descriptions, from purely
numeric optimization and search-based approaches to more language-driven expert systems
approaches and case-based reasoning approaches. If a digital twin is to be part of a decision
framework, it is important during the design of the twin to also specify and explore the decision
approach that will be coupled to the twin. Such co-design can ensure the information available
plays to the strengths of the decision approach, and that the decision problem remains tractable,
avoiding the commonly-encountered problem where monitoring data is gathered and prognosis
calculations take place, but the resulting information is not used in decision-making.
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SECTION 6.5 EXAMPLES OF DECISION-MAKING IN NAVAL APPLICATIONS

Decision-making systems for autonomous vessels are not extensively published to date. Most of
the marine industry’s work in decision support has applied primarily to multi-attribute decision-
making during the design phase of the vessel, with a variety of optimization-related methods
explored as well as smaller forays into the methods covered in this report. Operational decision-
making studies are slightly more common, with a recent review paper covering a range of
techniques applied to oil-spill response[20], as well as a similar review paper covering weather
routing frameworks [21]. Navigation challenges for autonomous vessels have also received
extensive discussion in the literature. Component or single sub-system decision-making systems
have been more widely studied, such as the structural system review by Kim and Frangopol (2018).
However, the state-of-the-art does not extend to a platform-level or fleet-level decision support
system as of the present time.

To illustrate the potential for these decision-making techniques to grow into the area of
autonomous platform support, two hypothetical example scenarios will be described. First an
example of how decision-making can affect a fleet of ships at a command level. The decision-
making algorithms will be used to assign tasks to multiple ships to maximize mission effectiveness.
The second example will demonstrate the impact of decision-making on a platform level problem.
This example will illustrate the importance of decision-making on a ship where multiple systems
must interact to achieve a specified goal. These examples will demonstrate how to characterize the
decision, define a problem as a state space, and select a decision-making approach to address the
challenges in multiple use cases.

SECTION 6.5.1 FLEET LEVEL EXAMPLE
SECTION 6.5.1.1 DESCRIPTION OF THE SYSTEM OR PROBLEM

Describe the system or the problem for which decision-making is required. Specifically identify
the decision(s) that needs to be made.

For this example, there is a fleet of ships. A digital twin representation of a fleet considers multiple
platforms. Each platform within a fleet twin can operate independently but is linked with other
platforms spatially and temporally. Fleets are characterized by the coordinated efforts of platforms
to attain higher-level objectives. Relationships between platforms may be organized and explicit,
such as entities within a supply chain, or random and disjointed, such as cars on a city street [22].
Platforms within a fleet are often diverse and are developed for specific functions and are
developed (perhaps not explicitly) for the purpose of exhibiting emergence. The fleet digital twin
consists of the positions of the agents (ships) and high-level logistical information (e.g., range they
can travel, speed they can travel, available resources, etc.). The decision to be made concerns
resource allocation (i.e., ships/agents) to tasks in order to maximize the number of goals/tasks that
are completed. Tasks may have different priorities, timings, or requirements to be completed (i.e.,
only certain types of ships can complete some tasks).

This is very similar to the Orienteering Problem, which can also have variations to include time-
windows and service times.
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SECTION 6.5.1.2 DEFINE THE DOMAIN USING QUESTIONS FROM SECTION 6.2
Provide answers to each of the questions from section 6.2 for this domain.

The environment is dynamic. There are changes in the outside world that are outside of agent’s
control. This may be caused by other vessels or changes in goals due to outside influence. This
problem involves sequential decision-making. The task one ship/agent is given will affect how
tasks are distrusted among the rest. Decisions may be revisited as the environment or goals change.
This is a non-deterministic environment. A ship may be allocated to do a specific task but does
not determine that it will be able to complete its mission. This is a continuous domain. The agent
can choose from infinite options for solutions including not allocating a resource/ship to a goal at
all or allocating multiple resources/ships to one goal if needed. A ship/resource may also be
allocated for a specific amount of time before a different ship becomes available which may be
better equipped to handle that task. The environment is partially-observable. The agent cannot
always know the state of all other ships (outside of the controllable fleet) in the world. Other factors
such as weather patterns are also likely to be partially observable.

SECTION 6.5.1.3 CHOOSE THE REPRESENTATION(S) APPROPRIATE FOR THE
DOMAIN

Identify which representation, or representations, from section 6.3 that is appropriate for describing
the domain and the reasoning about for making decisions.

This problem could be represented by an occupancy grid with some additional variables to hold
high-level logistical information. This representation allows for the representation of the spatial
environment.

SECTION 6.5.1.4  SELECT AND GO THROUGH A DECISION-MAKING PROCESS FOR
THE DOMAIN

Identify which decision-making process is most appropriate given the representation selected in
the last step, and step through some example decisions that would be made using that method. If
one of the complex decision-making processes is used, go through that process: what decisions are
made along the way and with what tools.

This problem could be solved using optimization-based approaches. This would involve defining
an objective function whose goal is to maximize the number of tasks or maximize the overall
reward (if each task has an assigned reward value, priority may equal reward in this case).

An example decision would be assigning a resource to Task A. Task A can only be completed by
one of the vessels in the largest class in the fleet, must be completed 6 days from now, takes 2 days
to complete, must be complete at a specific location, and has a high priority. In this case, the reward
function would need to consider what resources are currently available in the this class of vessel,
what resources will be available for the time window that is required, and how long it takes various
possible ships to navigate to the location. It may also decide that a ship that is already allocated to
another lower priority task (B) should complete Task A instead because it is more important (has
a higher priority).
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SECTION 6.5.2 PLATFORM LEVEL EXAMPLE
SECTION 6.5.21  DESCRIPTION OF THE SYSTEM OR PROBLEM

Describe the system or the problem for which decision-making is required. Specifically identify
the decision(s) that needs to be made.

This example contains a single vessel. This vessel will include a set of diverse systems (i.e.,
power/energy, communications, armament, propulsion, etc.). The digital twin represents how each
system interacts with and is allocated power. The problem is to determine how power should be
allocated to achieve prioritized goals. Note that the goals and decisions made at a platform level
are fundamentally different from those that exist at component or system levels, due to the presence
of coordinating diverse system goals. These platform level goals are broader and more abstract
than for a specific component or system. Due to their level of abstraction, the number and diversity
of possible goals are much larger, and do not directly translate to a finite set of system or
component goal states. As such decision-making strategies will vary across the different levels of
the digital twin. A simple optimization solution will likely work well for a component or structural
element, but for a more complex system with multiple goals would likely perform poorly.

Consider as well that the agent has a network of sensors to provide feedback from the systems to
determine how power in consumed. As it would be impractical (impossible) to employ an array of
sensors that could provide feedback on all elements of the platform, the agent must also include
consideration of uncertainty in decision-making.

SECTION 6.5.2.2 DEFINE THE DOMAIN USING QUESTIONS FROM SECTION 6.2
Provide answers to each of the questions from section 6.2 for this domain.

This environment is dynamic. The crew of the vessel can cause changes to the system. The agent
does not have control of all aspects. This will involve sequential decision-making. How power is
allocated in one moment affects how the same decision may be handled in the next.

This is a continuous domain. The agent will have a constant influx of sensor feedback from the
systems. The agent can choose from an infinite number of ways to allocate energy based on this
feedback. This environment is partially-observable. Sensors provide feedback, but sensors are
often noisy, late, and wrong so cannot truly observe the whole environment. Sensors within the
systems also may not be able to tell you every detail of the system (i.e., is the light on in the cargo

bay).

SECTION 6.5.2.3 CHOOSE THE REPRESENTATION(S) APPROPRIATE FOR THE
DOMAIN

Identify which representation, or representations, from section 6.3 that is appropriate for describing
the domain and the reasoning about for making decisions.

This problem could be represented with continuous variables and state-space vectors. The
representation for this system will be determined by the sensor feedback in the form of continuous
values representing current, voltage, power, etc.

DISTRIBUTION STATEMENT A. Approved for public release, distribution unlimited. 102 ofl‘(jQ



Approved, DCN# 43-9451-22

In a more abstract way, this problem could also be represented as a graph. This graph would be
less specific in terms of values. Some of the nodes in the graph would be things like “provide
propulsion system with more power” or “power down weapons system.”

SECTION 6.5.2.4 SELECT AND GO THROUGH A DECISION-MAKING PROCESS FOR
THE DOMAIN

Identify which decision-making process is most appropriate given the representation selected in
the last step, and step through some example decisions that would be made using that method. If
one of the complex decision-making processes is used, go through that process: what decisions are
made along the way and with what tools.

This problem could be solved with an optimization-based approach. This would involve defining
objective-based functions to optimize the flow of power based on which resources required it.

SECTION 6.5.3 SUMMARY

While direct application of decision-support approaches to platform or fleet-based problems have
not been widely published, the ingredients for such applications are at hand. Building off work
done for operational considerations, two hypothetical decision problems were proposed,
appropriate representations developed, and decision strategies enumerated.  Given the
mathematical nature of most digital twins, it is likely that the optimization and search-based
decision frameworks will fit future decision problems well. However, an assessment of each
problem’s characteristics, against Table 5 at the end of section 6.4, is worthwhile as many other
techniques may have strengths for specific applications.

SECTION 6.6 CONCLUSIONS

While a digital twin system does not need to include a decision-making component, decision-
making as a discipline is highly tied to the types of information and models available in a digital
twin. Thus, for a digital twin interfacing with a decision-making system it is important to
understand the characteristics of both the physical process the twin applies to, as well as the twin
itself, in order to pick the best decision-making framework. In this chapter, the characteristics of
the decision-making framework were first reviewed in section 6.2 with a series of questions that
can help clarify the type of domain the decision will apply to. Then in section 6.4, an overview of
state-space representation approaches was made, covering the major approaches used by the
decision-making methods. In section 6.5, eight common decision-making frameworks were
briefly discussed, presenting their strengths, relationship to state-space descriptions, and the
challenges of applying each to automated decision-making. From the combined information in
section 6.5, it is possible to match potential decision frameworks with the problem description at
hand for any particular digital twin solution.

Section 6.5 presents an overview of decision-making in the marine community. Automated
decision-frameworks are in their infancy for autonomous platforms. To date, operational decisions
have been the focus of this work, with navigation, oil-spill response and weather routing all studied
in some depth. However, the application of decision-making to the general problem of maintaining
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a long-duration autonomous vessel is still largely unexplored. Two hypothetical examples, one
covering a fleet problem and one covering a platform problem were presented to show how the
information in this report can help structure the selection of a decision-making process. Using the
information in this report, and this approach, should help engineers select appropriate decision
frameworks when working with data-model fusion problems fed by digital twins.
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CHAPTER 7  APPENDIX

SECTION 7.1 ANNOTATED REFERENCES ON FUSION METHODS
In support of Chapter 1 Survey of Fusion Approaches and Opportunities.

Weymouth, Gabriel D., and Dick K. P. Yue. 2013. "Physics-Based Learning Models for Ship
Hydrodynamics." Journal of Ship Research 57 (01): 1-12.

Describes physics-based learning models using a variety of kernel-based regression
approaches supplemented by low-fidelity methods to approximate higher-fidelity
simulation. Fairly far from most applied fusion systems as really only exploring fusion
aspects, with little application.

Nielsen, Ulrik D., Zoran Lajic, and Jergen J. Jensen. 2012. "Towards Fault-Tolerant
Decision Support Systems for Ship Operator Guidance." Reliability Engineering &
System Safety 104 (August): 1-14. https://doi.org/10.1016/j.ress.2012.04.009.

Examines differences between predicted ship motions and actually measured ship
motions to identify possible faults in sensor data or the model. The approaches rely on
a bipartite graph to coordinate different sensor readings to detect possible sensor faults.
The formulation is developed for frequency domain motions with RAO seakeeping
solutions, demonstrated on a large containership application.

Zhu, Jiandao, and Matthew Collette. 2017. "A Bayesian Approach for Shipboard Lifetime
Wave Load Spectrum Updating." Structure and Infrastructure Engineering 13 (2): 298—
312. https://doi.org/10.1080/15732479.2016.1165709.

Proposes a learned hierarchal Bayesian network (HBN) model to correct a design-stage
loading prediction to agree with at-sea measurements. The scale, bandwidth, and
skewness of the loading process are modeled explicitly, and corrections based on sea
state, speed, and heading are developed. The model is able to forecast new operational
conditions by interpolation in the HBN approach. The approach is tested with
simulated data comparing frequency-domain and time-domain motions predictions.

Coraddu, Andrea, Luca Oneto, Francesco Baldi, Francesca Cipollini, Mehmet Atlar, and
Stefano Savio. 2019. "Data-Driven Ship Digital Twin for Estimating the Speed Loss
Caused by the Marine Fouling." Ocean Engineering 186 (August): 106063.
https://doi.org/10.1016/j.oceaneng.2019.05.045.

Proposes using a variant of the neural network and deep extreme learning machine
(DELM) to predict a vessel's speed in terms of 31 input variables. The difference
between predicted and measured speed is used to evaluate the vessel's current speed
loss owing to fouling. The approach is trained on real-world data from two commercial
ships and is shown to outperform the simpler methods in the ISO standard for detecting
fouling.
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Behjat, Amir, Chen Zeng, Rahul Rai, lon Matei, David Doermann, and Souma Chowdhury.
2020. "A Physics-Aware Learning Architecture with Input Transfer Networks for
Predictive Modeling." Applied Soft Computing 96 (November): 106665.
https://doi.org/10.1016/j.as0¢.2020.106665.

Develops a physics-aware neural network approach for the control of simple UAVs.
The physics model is downstream of several initial processing layers in the network
and is able to blend both simplified physics predictions and machine learning to adapt
to both changing UAV configuration and well as changing control inputs.

Jiang, Li, Sarah Signal, Bowen Jeffries, Brian Earley, Kurt Junghans, David Hess, and
William Faller. 2020. "A Hydrodynamic Digital Twin Concept for Underwater
Vehicles." In SNH 2020. Osaka, Japan.

Develop a neural network correction layer for a submarine maneuvering algorithm. A
simplified hydrodynamic model is used to predict the future position of a submarine-
based on control surfaces and power settings. A second machine learning layer then
corrects this model output. The machine learning layer can learn when deployed to
account for changes to the external configuration of the submarine. Notable as a
prototype system and for the large number (>50) variables tracked by the machine
learning approach.

Schirmann, Matt, Matt Collette, and James Gose. 2020. "Improved Vessel Motion
Predictions Using Full-Scale Measurements and Data-Driven Models." In SNH 2020.
Osaka, Japan.

Using a large (>10,000) point training set, a Neural Network correction model for
simplified ship motion predictions is developed for real-world research vessel data.
Even at the large data sizes used, including the physics-based prediction improved the
overall accuracy of the system when the model followed the overall trends of the data
(pitch and heave predictions). Where the model struggled (roll), pure data approaches
were shown to be as good as physics-informed models.

SECTION 7.1.1 MECHANICAL AND BATTERY SYSTEMS

Liu, J., W. Wang, F. Ma, Y. B. Yang, and C. S. Yang. 2012. "A Data-Model-Fusion
Prognostic Framework for Dynamic System State Forecasting." Engineering
Applications of Artificial Intelligence, Special Section: Dependable System Modelling
and Analysis, 25 (4): 814-23. https://doi.org/10.1016/j.engappai.2012.02.015.

Proposed a novel data-driven and model-driven combined model for battery health. A
trained Neural Network is used for diagnosis, while a concurrent particle filtering
method is used for longer-term prognosis through refining the parameters of a battery
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aging model. The method is applied to a set of battery aging data gathered in an
academic laboratory setting with good results.

Brahma, Indranil. 2019. "Extending the Range of Data-Based Empirical Models Used for
Diesel Engine Calibration by Using Physics to Transform Feature Space." SAE
International Journal of Engines 12 (2): 03-12-02—-0014. https://doi.org/10.4271/03-12-02-
0014.

A neural network approach to predict engine performance and emission data was extended
with a simple model. Rather than couple the models in series or parallel, the simple model
was used to produce a reduced feature set, then the neural network was trained on the reduced
feature set, with improved performance. For the engine example shown here, even
miscalibration of the simple model did not greatly reduce the accuracy of the result, indicating
that the form of the model was most important.

SECTION 7.1.2 STRUCTURES

An, Dawn, Nam H. Kim, and Joo-Ho Choi. 2015. "Practical Options for Selecting Data-
Driven or Physics-Based Prognostics Algorithms with Reviews." Reliability Engineering
& System Safety 133 (January): 223-36. https://doi.org/10.1016/j.ress.2014.09.014.

Very good review paper of data-based and physics-based modeling. Using a crack
growth example, neural networks and Gaussian process regression are compared to
physics-based models with parameter updates using both particle filtering and Bayesian
approaches. Has extensive references.

Hu, Zhen, Sankaran Mahadevan, and Dan Ao. 2018. "Uncertainty Aggregation and
Reduction in Structure—Material Performance Prediction." Computational Mechanics
61 (1-2): 237-57. https://doi.org/10.1007/s00466-017-1448-6.

Concentrated only on the reduction of uncertainty from a small number of observations
in systems with both a structural model and a material damage model. Uses Bayesian
networks as a reduction strategy.

Magoga, Teresa, Seref Aksu, Stuart Cannon, Roberto Ojeda, and Giles Thomas. 2019.
"Through-Life Hybrid Fatigue Assessment of Naval Ships." Ships and Offshore
Structures 0 (0): 1-11. https://doi.org/10.1080/17445302.2018.1550900.

A complete example of fatigue life prediction for a high-speed aluminum vessel,
including using FEA with monitoring histories, some updates from field inspection
results. Fusion approaches are not discussed in detail.

DISTRIBUTION STATEMENT A. Approved for public release, distribution unlimited. 108 ofl‘(jg



Approved, DCN# 43-9451-22

Karimian, Seyed Fouad, Ramin Moradi, Sergio Cofre-Martel, Katrina M. Groth, and
Mohammad Modarres. 2020. "Neural Network and Particle Filtering: A Hybrid
Framework for Crack Propagation Prediction." ArXiv:2004.13556 [Eess, Stat], April.
http://arxiv.org/abs/2004.13556.

Using a standard set of experimental data for shear in an aluminum lap joint, including
ultrasonic data, a two-step fusion approach was proposed. First, a neural network uses
the ultrasonic data to estimate the crack length. Then a Bayesian particle filtering
approach is used to update crack growth parameters.

Karve, Pranav M., Yulin Guo, Berkcan Kapusuzoglu, Sankaran Mahadevan, and Mulugeta
A. Haile. 2020. "Digital Twin Approach for Damage-Tolerant Mission Planning under
Uncertainty." Engineering Fracture Mechanics 225 (February): 106766.
https://doi.org/10.1016/j.engfracmech.2019.106766.

Provides a complete example of a mission replanning owing to fatigue crack growth.
Both pitch-catch ultrasonic and high-resolution imaging are used to gauge the length
of a crack in an aluminum panel. A Bayesian network fusion approach is then used to
provide a future state prognosis. This is coupled with mission planning to ensure the
crack stays below a critical size. Method proven with an experiment. Notable for the
complete scope of the application.

Zhang, Hepeng, and Yong Deng. 2020. "Weighted Belief Function of Sensor Data Fusion in
Engine Fault Diagnosis." Soft Computing 24 3): 2329-39.
https://doi.org/10.1007/s00500-019-04063-7.

Uses Dempster-Shafer theory with a new belief assignment method to examine engine
sensor data and change belief state in a list of specific, discrete failure modes. Builds
off of previous work in belief theory with a new weighting scheme. Very different
fusion approaches from other systems.

Kapteyn, Michael G., and Karen E. Willcox. 2020. "From Physics-Based Models to
Predictive Digital Twins via Interpretable Machine Learning." ArXiv:2004.11356 [Cs],
April. http://arxiv.org/abs/2004.11356.

Studied damage identification in UAV composite wing structure. A classification tree
approach was used. The trees were trained by an FEA simulation of the wing with
different levels of damage. Then, readings from 20 strain gauges were used to classify
the damage state of the wing. An advantage of the method is that the machine learning
approach is intelligible to the user, owing to the structure of the decision trees.

Kapteyn, Michael G., Jacob V. R. Pretorius, and Karen E. Willcox. 2020. "A Probabilistic
Graphical Model Foundation for Enabling Predictive Digital Twins at Scale."
ArXiv:2012.05841 [Cs, Math], December. http://arxiv.org/abs/2012.05841.
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Presents an overall Bayesian Network approach for calibrating a digital twin for an
AUYV through a series of experiments before flight. The goal is to remove the initial
uncertainty in the twin, so it can be trusted before being used in service (this part of the
approach is not described in detail). Only select details of the case study are presented.
No details of the Bayesian network approach are covered.

Bazilevs, Y., X. Deng, A. Korobenko, F. Lanza di Scalea, M. D. Todd, and S. G. Taylor. 2015.
"Isogeometric Fatigue Damage Prediction in Large-Scale Composite Structures Driven
by Dynamic Sensor Data." Journal of Applied Mechanics 82 (9): 091008.
https://doi.org/10.1115/1.4030795.

Presents a composite damage evolution model for large wind turbine blade structures.
A new FEA formulation and damage model are developed. Then, the FEA model is
used to simulate a fatigue test on an actual turbine blade. At four times during the
experiment, the FEA model is calibrated to match the experimental process by
modifying the tip displacement, so an accelerometer on the blade matches the
accelerations predicted by the FEA model. This fusion is done by simply iterating
through displacements until a match is achieved.

Straub, Daniel. 2009. "Stochastic Modeling of Deterioration Processes through Dynamic
Bayesian Networks." Journal of Engineering Mechanics 135 (10): 1089.
https://doi.org/10.1061/(ASCE)EM.1943-7889.0000024.

Proposed dynamic Bayesian networks as a fusion approach for general structural
degradation problems. The approach is then developed in detail for a series of
structural fatigue problems. Reliability calculation through the network shown to be
roughly equal to that of conventional methods, but the network is much more powerful
for fusing in-service measurements. Discretization is also discussed in detail; however,
only synthetic data is used in the evaluation and demonstration.

Gockel, Brian, Andrew Tudor, Mark Brandyberry, Ravi Penmetsa, and Eric Tuegel. 2012.
"Challenges with Structural Life Forecasting Using Realistic Mission Profiles." In 53rd
ATAA/ASME/ASCE/AHS/ASC  Structures, Structural Dynamics and Materials
Conference. Structures, Structural Dynamics, and Materials and Co-Located
Conferences. American Institute of  Aeronautics and Astronautics.
https://doi.org/10.2514/6.2012-1813.

Presents a forward-only digital twin model for an aircraft. Based on recorded flight
parameters, a CFD simulation is run to determine plane loading and possible damage.
Only a simple, short snippet of an actual flight is used. The method has significant
computational challenges, which are discussed in the paper. No reflective fusion is
used.
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Luque, Jesus, and Daniel Straub. 2016. ''Reliability Analysis and Updating of Deteriorating
Systems with Dynamic Bayesian Networks." Structural Safety 62 (September): 34—46.
https://doi.org/10.1016/j.strusafe.2016.03.004.

Expands on previous work by Straub on using Bayesian Networks to model structural
deterioration. Structural systems are considered, including a Daniels system of evenly
loaded tension rods, and a complex offshore frame structure. A hierarchal Bayesian
network approach is used, where common parameters between multiple structural
members are correlated. Inference approaches for this network structure are developed,
and updating with simulated data is demonstrated for both structures.

Groden, Mark, and Matt Collette. 2017. "Fusing Fleet In-Service Measurements Using
Bayesian  Networks."  Marine Structures 54  (Supplement C): 38-49.
https://doi.org/10.1016/j.marstruc.2017.03.001.

Presents a Bayesian network approach for fatigue inference on stiffened panels. Both
the number of cracks and the permanent set of the panel are used to update loading and
fatigue parameters for the panel. The ability of the network to fuse in-service
measurements to make prognosis is studied. Generally, the network can improve future
prognosis, but it requires a large number of observations to be successful. Only
simulated data is used to evaluate the network.

Pegg, N.G., and S. Gibson. 1997. "Application of Advanced Analysis Methods to the Life
Cycle Management of Ship Structures." Dartmouth, Nova Scotia, Canada: Defence
Research Establishment Atlantic.

Presents one of the earliest twin-like structural health monitoring systems for naval
vessels. A central database of loading and FEA models is updated by in-service
inspections results, including corrosion and fatigue cracking. With the updated
geometry, operability, safety, and repair decisions are made. The models are forward-
only in that the ship's current condition and load history are used to forecast future
performance without correcting the underlying simulation models.

Zhu, Jiandao, and Matthew Collette. 2015. "Updating Structural Engineering Models with
In-Service Data: Approaches and Implications for the Naval Community." Naval
Engineers Journal 127 (1): 63-74.

Expands upon previous work on load updating to couple the load updating model to a
fatigue crack growth model. This model uses a dynamic Bayesian network to fuse
crack size measurements with fatigue crack growth parameters, adjusting the growth
parameters to provide prognosis of future crack size. The resulting crack size is used in
a time-varying reliability plot to look at the safety of the vessel in future operations.
The loads from the load updating method are used as inputs and not further adjusted
during the dynamic Bayesian network part of the process.
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Tygesen, Ulf T., Michael S. Jepsen, Jonas Vestermark, Niels Dollerup, and Anne Pedersen.
2018. "The True Digital Twin Concept for Fatigue Re-Assessment of Marine
Structures." In. American Society of Mechanical Engineers Digital Collection.
https://doi.org/10.1115/0MAE2018-77915.

Tygesen, U. T., K. Worden, T. Rogers, G. Manson, and E. J. Cross. 2019. "State-of-the-Art
and Future Directions for Predictive Modelling of Offshore Structure Dynamics Using
Machine Learning." In Dynamics of Civil Structures, Volume 2, edited by Shamim
Pakzad, 223-33. Conference Proceedings of the Society for Experimental Mechanics
Series. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-
74421-6_30.

These two papers together present a S-stage digital twin approach for offshore
structures. The approach is sequential, covering first determining the errors between a
digital FEA model of the structure and the response of the structure as measured in-
service. A Bayesian updating approach is used on the FEA model, changing mass,
stiffness, and other element properties so that the predicted and measured responses are
brought into agreement. A similar validation-updating approach is then used for wave
loading, although here, a simpler updating method is used based on the coefficients in
Morrison's equation for drag on circular shapes. Finally, the ability of the tuned model
to answer life-extension questions is demonstrated.

Mondoro, Alysson, Mohamed Soliman, and Dan M. Frangopol. 2016. "Prediction of
Structural Response of Naval Vessels Based on Available Structural Health Monitoring
Data." Ocean Engineering 125 (October): 295-307.
https://doi.org/10.1016/j.oceaneng.2016.08.012.

Presents a fitting approach to predict the stress spectrum in conditions not yet
encountered based upon measurements in a smaller number of conditions. A regression
approach is taken, based on the forms of the wave energy spectra, accounting for both
low and high-frequency energy components. Based on at-sea data for a large
catamaran, the approach is shown to be quick and practical for developing custom
fatigue stress spectra.

Stull, Christopher J., Christopher J. Earls, and Phaedon-Stelios Koutsourelakis. 2011.
""Model-Based Structural Health Monitoring of Naval Ship Hulls." Computer Methods
in Applied Mechanics and Engineering 200 (9-12): 1137-49.
https://doi.org/10.1016/j.cma.2010.11.018.

Using a rapid FEA code and measured displacements, this fusion method attempts to
infer the location of corrosion damage or internal structural damage. A range of inverse
search approaches are discussed, and the method is successful at approximating most
damage cases when applied to a simplified hull.
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Kapteyn, M. G., D. J. Knezevic, D. B. P. Huynh, M. Tran, and K. E. Willcox. 2020. "Data-
Driven Physics-Based Digital Twins via a Library of Component-Based Reduced-Order

Models." International Journal for Numerical Methods in Engineering n/a (n/a).
https://doi.org/10.1002/nme.6423.

Presents a multi-phase approach to data model fusion. A larger aircraft FEA model is
broken into segments, and a reduced FEA model is made of each segment. Each
segment is simulated with different levels of structural damage, which are assumed to
be linked temporarily. A hidden Markov Model is used to estimate the transition
between damage states, and 24 strain measurements from in-flight data are used to
update the state probability as the aircraft flies.

Vega, Manuel A., Zhen Hu, and Michael D. Todd. 2020. "Optimal Maintenance Decisions
for Deteriorating Quoin Blocks in Miter Gates Subject to Uncertainty in the Condition
Rating Protocol." Reliability Engineering & System Safety 204 (December): 107147.
https://doi.org/10.1016/j.ress.2020.107147.

Mitre lock gate health was assessed by fusing subjective expert inspection with strain
gauge data from the gates. The gates move through six stages of deterioration, as
ranked by inspectors. However, the transition between states and assignments is not
always exact. Using Bayesian updating from the measured strain state in the gate and
an FEA model of the structure, more accuracy in state estimation is achieved. This is
then fed into an optimal maintenance algorithm which weighs the costs of different
actions to decide on an optimal path.

Dourado, Arinan, and Felipe A. C. Viana. 2020. "Physics-Informed Neural Networks for
Missing Physics Estimation in Cumulative Damage Models: A Case Study in Corrosion
Fatigue." Journal of Computing and Information Science in Engineering 20 (061007).
https://doi.org/10.1115/1.4047173.

Constructs a deep Neural Network for predicting aircraft corrosion and fatigue crack
growth. A simplified physical model is inserted as a special type of node in the
network, and layers containing this type of node alternate with layers that are purely
data-driven. The resulting network is then trained on partial fleet data and used to
predict crack sizes in the future.
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