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EXECUTIVE SUMMARY 

The Shiawassee floodplain is a hybrid floodplain located in mid-Michigan and is 
home to our study site, the Shiawassee National Wildlife Refuge (SNWR). The 
refuge was established in 1953 to designate an area for migratory birds to seek 
refuge during migration. This location is topographically quite flat and is the 
convergence of four different rivers, thus making it very prone to flooding. These 
factors drove many historic farmers to dike the tributaries of these four rivers to 
prevent their crop fields from flooding with water. Historic diking caused SNWR to 
be disconnected from the Shiawassee River. Through the Great Lakes 
Restoration Initiative, SNWR received funding to start a restoration project to 
reconnect these two features.  

A team was formed to study the effects of restoring this wetland and 
reconnecting it to the river. This team includes the United States Fish and Wildlife 
Service (recipients of funding and managers of this refuge), the United States 
Geological Survey (federal researchers with expertise in this area), and a 
master’s team from the University of Michigan (the person power to drive this 
study). 2021 marks the third year of consecutive monitoring for this study and is 
crucial for understanding 1) the multiple life cycles of taxa present at the refuge, 
2) successional changes over monitored years; while 3) establishing that funding
for this project has been effectively used, and 4) providing future monitoring
teams with robust data to better predict the future of SNWR. The team set out to
learn how abiotic and biotic elements change across refuge wetland units of
Maankiki South (MS), Maankiki North (MN), Maankiki Center (MC), Pool 1A
(P1A), and Shiawassee River (SHR) and sampling months, describe the
relationships between these elements, and to describe changes that have
occurred across the three years of monitoring. The elements sampled included
water quality, vegetation, aquatic macroinvertebrates, and fishes.

Water Quality: We describe each water quality variable sampled (temperature, 
dissolved oxygen, conductivity, turbidity, pH, and nitrogen and phosphorous 
levels) and provide statistical analyses of each variable across units, seasons, 
and in comparison to 2019 and 2020 data. 

● We found that refuge wetland units experienced harsh conditions of high
average temperatures and low dissolved oxygen levels in the summer
season, but refugia zones for aquatic organisms when there were
unfavorable conditions elsewhere also existed since water quality
conditions varied across different sampling sites.
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● We found that summer conditions in 2021 lasted longer than 2020, and
conductivity was consistently higher in all wetland units compared to the
2019 and 2020 sampling seasons.

● We found the frequency and impact of seiche event on our wetland units
were much smaller than our reference coastal wetland (ie. Pool2B next to
Lake Erie), which indicated the dissimilarity in hydrology between these
two study systems.

● Due to the lack of high turbidity data, we were unable to predict nutrients
level based on turbidity data.

● Future recommendations include sampling nutrients later in the season to
capture the effects of more frequent seiche events and creating a more
uniform schedule for the opening and closing of water control structures.

Vegetation: We describe the plant species located and identified throughout the 
refuge units, and the statistical analyses and indices used to determine quality of 
habitat, compared to the 2019 and 2020 sampling seasons across three 
previously sampled wetland units and one new wetland unit. 

● We found that IBI scores increased to medium across all units compared
to the 2019 and 2020 sampling seasons.

● We found that MC had the highest FQA and IBI scores even though it is
the most recent connection to the Shiawassee. MC also had the highest
number of invasive species compared to MS, MN, and P1A.

● We found that dissimilarity indices were influenced by water depth, which
we attribute to changes in nutrient cycling, seed dispersal, and seed bank
viability.

● Future recommendations include conducting a water quality assessment
when collecting vegetation samples to better understand the effects of
water quality on vegetation communities.

Macroinvertebrates: We describe the abundance, composition, and quality of 
aquatic macroinvertebrate communities across the three previously studied units 
and one new location within SNWR, and compare these findings to those of the 
2019 and 2020 sampling seasons. We also analyzed these data in their relation 
to water quality, vegetation, location, and season. 

● We collected 60 samples, similar to previous years, but we collected
thousands fewer individuals, and 5-10 fewer genera and families than
2019 and 2020, representing a strong decline in macroinvertebrate
richness and abundance which we attribute to a historic 2020 flood.

● We determined that SNWR could be identified as a ‘mid-fetch’ or low fetch
wetland based on distributions of macroinvert communities.

● We found that IBI in MN, MS, and P1A was moderately degraded, a step
down from 2020 scores, but MC had a first time score of mildly impacted.

● We found significant differences between units and months on CPUE, but
not vegetation zone.
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● Future recommendations include using floodplain wetland statistical tools
for analysis, fuzzy coding analyses, and sampling more evenly across
vegetation zones.

Fish: We describe the abundance, composition, and quality of fish communities 
throughout three previously studied units and two new locations within SNWR, 
and compare these findings to those of the 2019 and 2020 sampling seasons. 
We also analyzed these data in their relation to water quality, vegetation, 
location, and season. 

● We conducted fish sampling through multiple frame and mesh size fyke
nets, and electrofishing.

● We found more species than 2020 and similar amounts to 2019, though
unique species were found in all years. Most unique species in 2021 came
from the Shiawassee River.

● We found that community composition across all units were
homogeneous, which we attribute to harsh conditions only being tolerable
to a few wetland adapted species.

● We found the same abundant species as both 2019 and 2020, with the
most abundant species varying by unit but with Black Bullhead, Bowfin,
Pumpkinseed, Bluegill, and YOY sunfish being some of the most
abundant species across all units.

● Future recommendations include continued sampling to build robust
datasets, water depth analysis, and tracking of fish between the
Shiawassee River and SNWR.

Our research has implications for ecosystem variability and succession, as we 
found both increases and decreases in habitat quality, abundant species, and 
community compositions. This third year of sampling has shown evidence of 
succession following a large disturbance and provides insight into how restored 
wetlands vary over multiple years. 
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“Secretary of the Interior Douglas McKay today announced that the Migratory 
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Bird Conservation Commission, of which he is chairman, has approved the 
purchase of 9,185 acres and the lease of 1,783 acres of land in 12 national 

wildlife 
refuge units administered by the Fish and Wildlife Service in 10 States. 

A new refuge, designated as the Shiawassee National Wildlife Refuge in 
Saginaw County, Michigan, was authorized by Commission action and the initial 
purchase of 2,246 acres of land for this unit was approved. This refuge, which 
has the support of the Michigan United Conservation Clubs and the Saginaw 
Valley Regional Commission, will adjoin a unit which the State of Michigan is 

purchasing for management as a public shooting area.” 

Department of the Interior 
May 29, 1953 
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INTRODUCTION 

The Shiawassee National Wildlife Refuge (SNWR) 
is an ecologically and historically dynamic wetland 
system, providing crucial habitats for many resident 
and migratory species as well as valuable 
ecosystem services to nearby communities. SNWR 
is located in Saginaw, Michigan and is nested within 
the Shiawassee Flats, central floodplain and 
freshwater estuary within the larger Saginaw River 
system (Figure 1). The SNWR drainage area spans 
approximately 6,060 square miles, which equates to 
approximately 10.6% of Michigan’s water storage 
(U.S. Fish & Wildlife Service 1999). The major rivers 
of the watershed include the Tittabawassee, Cass, 
Flint, and Shiawassee which meet within a shared 
lowland floodplain, much of which is SNWR. These 
rivers then run downstream through the Saginaw 
Bay and then Lake Huron. The flat topography of the watershed allows for seiche 
events originating in Lake Huron to travel upstream the Saginaw River and 
influence SNWR hydrology, even though the refuge is 20 miles inland (U.S. Fish 
& Wildlife Service 2018). These uniquely coastal events result in SNWR being 
understood as an inland freshwater estuary. SNWR is located along Michigan’s 
climate-driven tension zone between hardwood and coniferous forests, making it 
an important stopover for migratory birds both as they enter and leave the boreal 
ecosystems of Canada and the arctic (Audubon 2016). Because SNWR was 
initially created as migratory bird habitat, the services it provides to migratory 
fishes and other wildlife are understudied (Jude and Pappas 1992; Langer et al. 
2018). Cultural ecosystem services enjoyed at SNWR include birdwatching, 
hunting, fishing, and hiking. Currently, recreational hunters buy deer tags for use 
on the refuge through a lottery system run by the Michigan DNR (U.S. Fish & 
Wildlife Service 2018).  Fishing is common in the surrounding rivers of SNWR 
and includes the Cass, Tittabawassee, and Flint rivers. Licensing dues for 
hunting and fishing are reinvested in refuge conservation efforts (Gable 2018). 
Another important ecosystem service the SNWR provides that affects the 
surrounding human population is its water holding capacity. SNWR demonstrated 
its flood mitigation capability during the historic 2020 Midland flood and left 
approximately 10,000 acres of the refuge inundated with 10 feet of water, likely 
sparing surrounding property (Ducks Unlimited 2020).   

The SNWR was created to designate and preserve migratory bird habitat, but did 
not initially address the health of its aquatic ecosystem. Historic land use 
alteration left the floodplains in the Shiawassee Flats disconnected from their 
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rivers, unable to provide hydrologic and habitat services. In the early 1800s, prior 
to European settlement, the Shiawassee Flats was a hybrid riverine floodplain 
and coastal wetland comprising approximately 50,000 acres of hardwood 
swamp, 25,000 acres of emergent marsh and shrub swamp, and several 
hundred acres of wet prairie (MNFI 2022). The federal Swamp Lands Act of 1850 
granted Michigan approval to drain and convert wetlands for agricultural 
purposes, a process known then as “wetland reclamation” (Dahl and Allord 
1996). This legislation reflected the tone of the Federal Government at the time, 
where drainage and alteration of wetlands was promoted (Dahl and Allord 1996). 
Saginaw County, Michigan reflected this trend with 96% of all wetlands in the 
area were destroyed since 1830 (Buchanan et al. 2013). Michigan was also a top 
lumber producer of white pine (Pinus albus) in 1850 (Schrouder et al. 2009; 
Ziegler 2010), leading to clear cutting forests across the state. Developers 
cleared large expanses of land for agriculture and constructed systemic ditches 
and dikes to mitigate overbank waterflow and prevent cropland flooding 
(Heitmeyer et al. 2013). Disconnecting tributaries from the main river led to water 
distribution being spread out across more land; however, the price for these 
actions reduced floodplain water storage, excess discharge sent to Saginaw Bay, 
and the gradual drying of wetlands (Zedler 2003; Schrouder et al. 2009). In 1953, 
under the authority of the Migratory Bird Conservation Commission (DOI), 2,246 
acres outside of Saginaw were designated for migratory bird habitat and named 
the SNWR (Department of the Interior 1953). This was to be one of multiple 
designated refuges which protect crucial wetland habitat for migratory birds, 
using this chain of refuges for travel and rest. The initial acreage was only the 
beginning of conservation efforts in the Shiawassee flats, with continued acreage 
being added over the course of the next 70 years. 
 
So that the SNWR ecosystem can best serve to provide ecosystem services to 
people and ecosystem function to wildlife, a long-term restoration plan was 
created for the refuge. In 2011, the United States Fish and Wildlife Service 
(USFWS) received 1.5 million dollars in funding from the Great Lakes 
Restoration Initiative (GLRI) to reconnect 994 acres of former farmland at SNWR 
to the Shiawassee River (U.S. Fish & Wildlife Service 2018). Goals for the 
SNWR restoration project are to restore hydrologic connection to historic river 
channels, the hybrid floodplains, and coastal wetlands (HMP 2018 Appendix). 
This project allows refuge managers to assist seasonal fish migrations in and out 
of the refuge through a series of gates. The restoration project consists of four 
phases, each one focused on the hydrologic reconnection of floodplain wetland 
units to the Shiawassee River and to each other (U.S. Fish & Wildlife Service 
2018). Phases directly relevant to unit monitoring have been completed (Phases 
I and II), as there are additional phases for refuge restoration outside the scope 
of our monitoring. Refuge management restored the first three wetland units by 
2018 with 2019 being the first operational year; the fourth unit, Maankiki Center, 
was flooded in 2020 (U.S. Fish & Wildlife Service 2018). Initial post-restoration 
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monitoring occurred in 2019 and 2020, with 2021 as the third consecutive year. 
Monitoring these new wetlands is pivotal as it is unknown how these wetlands 
will aid the functionality of the encompassing floodplains and Saginaw Bay. 
Restoration monitoring is conducted through a partnership with the School of 
Environment and Sustainability (SEAS) at the University of Michigan, where a 
team of 5 master’s students conduct annual monitoring of SNWR’s changing 
biotic community and abiotic conditions. 
 
Post-restoration monitoring for the previous two years does not provide enough 
information for refuge managers to make future management decisions or to 
ensure funding for the remainder of the monitoring. Data collected from previous 
years has been helpful for depicting initial short-term changes after restoration 
but does not convey the entire story of compounding changes taking place over a 
longer period after restoration. Each sequential year of monitoring allows for a 
better understanding of succession and multiple life cycles the biota undergo to 
fully establish themselves within wetland units. This third year of post restoration 
monitoring is crucial to reinforce that funding for this study has been effective and 
that data collected in 2021 will help guide successive studies. Refuge managers 
realize both societal and ecological needs must be met when choosing whether 
to open or close specific wetland gates, and the timing and duration of the 
open/closed gate can have lasting effects on future management. We are 
building upon previously established goals and methods created by the 
partnerships among the USFWS, United States Geological Survey (USGS), and 
the SEAS master’s project team. 

 

We conducted the third consecutive monitoring year during 2021, with the 
objectives to: 

 
● Characterize conditions within the 3 restored units and 1 long-connected 

reference unit for 2021 monitoring: 
o  Abiotic conditions–water quality 
o Biotic communities–vegetation, macroinvertebrate and fish 

assemblages. 
 

● Describe variation in abiotic and biotic elements among units and among 
months for 2021 monitoring. 

● Explore correlative relationships among the abiotic and biotic elements 
measured in 2021 monitoring. 

● Describe temporal patterns within and across the sampled units across 
2019-2021 monitoring.   

● Provide recommendations to USFWS and USGS for future monitoring and 
in support of future refuge management decisions. 
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Study System 

The refuge is split into 36 named management units based on hydrologic criteria 
or management goals and the ability to provide clear management objectives 
(U.S. Fish & Wildlife Service 2018). Refuge wetland units are separated by 
earthen dikes, with many having water control structures, allowing refuge 
managers to control the hydrologic connectivity of, and conditions within, the 
units. Water control structures warrant the movement of water between units, the 
Shiawassee River, and the Spaulding Drain when opened, or restrict the 
movement of water when closed. In addition to varying hydrological connectivity, 
differences in microtopography and biology result in ecologically distinct features 
within each unit. Refuge managers must take into account these differences in 
order to achieve conservation and management goals (U.S. Fish & Wildlife 
Service 2018). 

Monitoring work at SNWR spans four wetland units and two riverine locations, 
with objectives to sample water quality, vegetation, invertebrates, and fish. 
Monitored wetland units include Pool 1A (P1A), Maankiki North (MN), Maankiki 
South (MS), and Maankiki Center (MC), monitored riverine locations include 
Spaulding Drain (SPD) and Shiawassee River (SHR) (Figure 2). Refuge 
managers connected P1A to SPD, and subsequently the SHR in 1958, making it 
the longest-tenured river-connected unit in the SNWR; it serves as a long-term 
control site for the study of hydrologic connection. MN, MS, and MC hydrologic 
reconnection construction began in 2016, but were first fully flooded in 2017, 
2018 and 2020 respectively, thus previous monitoring only covered MS, MN, and 
P1A. The three Maankiki units are connected to the SHR via a single distribution 
basin, from which water flows into the units depending on which unit-specific 
control structures are open or closed (U.S. Fish & Wildlife Service 2018). P1A 
also has control structures that connect to MC and SPD.  

Two new sampling locations of SHR and SPD were added, in addition to the 
Phase I sampling locations (MC, MN, MS, P1A) because they serve to supply 
newly reconnected wetland units with fish and act as a reference as to what 
potential species may migrate into the units. Additional information on each 
wetland unit is listed in Appendix I. 
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Figure 2. Wetland unit locations and sampling sites at SNWR. Water 
nutrient, invertebrate, vegetation, and fish fyke sampling sites across the 
monitored pools at SNWR and in the Shiawassee River and Spaulding Drain. 
Abbreviations refer to wetland units: Maankiki North (MN), Maankiki South (MS), 
Maankiki Center (MC), and Pool 1A (P1A). 
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Methods shared across the monitoring efforts 

Our methods reflected previous sampling efforts in 2019 and 2020 (Lugten et al. 
2020, Dellick et al. 2021). SNWR sampling was based on research conducted at 
Crane Creek coastal wetlands in Oak Harbor, Ohio (Baustian et al. 2018). 
Studies at Crane Creek were based on methods from the Great Lakes Coastal 
Wetland Monitoring Program (Uzarski et al. 2016). The sampling schedule for 
2021 summer monitoring spanned May to August, with: weekly water quality 
sampling, biweekly macroinvertebrate sampling and fish fyke netting, monthly 
nutrient sampling, and vegetation sampling spanning one week in August. Spring 
sampling only spanned one day in late April, whereas fall sampling took place 
from October to November on a monthly basis with only fyke nets being utilized, 
each sampling event spanned one weekend (Table 1).  
 
When appropriate, we applied similar field sampling and data analysis methods 
across the four sampling categories–water quality, vegetation, 
macroinvertebrates, and fish–to produce the most cohesive results. Some 
equipment was reused across categories such as depth sticks, sondes, and 
quadrats. We used a depth stick and multiparameter sonde for collection of 
hydrologic data. For macroinvertebrate and vegetation monitoring, we used four, 
one-meter PVC pipes fitted together as 1m2 to represent the sampling area, 
which we refer to as a “quadrat.”  
 
 
Table 1. Sampling schedule from April to November 2021. This includes 
schedules for water quality (light blue), nutrients (orange), macroinvertebrates 
(purple), fish (blue), and vegetation (green). Note that the second row is the week 
of the year, and that some weeks may span across two different months. 
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Data Management 

Data collected for the federal government must adhere to standards for accuracy, 
completeness, and accessibility. As such, we worked with our federal clients to 
employ data management practices which incorporate Quality Assurance and 
Quality Control (QAQC) procedures throughout the project lifecycle (i.e., data 
collection, data entry, and data analysis). We created Metadata to assist data 
interpretation by future users, regulate QAQC checks of collected data, and 
provide detailed comments where necessary. 
 
We used the ArcGIS Online data collection platform, Survey123, to collect and 
store data, as well as Microsoft Access and Excel to organize and manipulate 
vegetation, macroinvertebrate, and fish monitoring data. We input all the original 
collected data into Survey123 forms on iPads or personal cell phones outfitted 
with the app (e.g., when iPads were not available) and uploaded the data to 
USFWS Survey123 accounts, then our USFWS and USGS partners reviewed 
them for user- or computer-generated errors and sent us the Excel data 
produced from Survey123. We performed a second check for any errors in the 
produced Excel data (e.g., missing data or entry errors.) by calculating the IQR 
(Interquartile Range) for numerical variables. We identified data points out of IQR 
as outliers, then investigated each of them: if the outlier was produced by an 
entry error, we removed it; or if it was a true outlier, we assessed it later in 
statistical analysis. Lastly, we manipulated data in Microsoft Access and Excel so 
that they were appropriate for statistical tests.  
 
We employed two different data management methods for water quality datasets. 
Water quality sampling included in situ water quality sampling via the YSI EXO3 
sonde (See methods in page 10), and nutrient sampling using grab samples for 
lab nutrient analysis (See methods in page 11).  Observations collected via the 
sonde used the data management method described above, while for associated 
water nutrient samples, we received data in Excel spreadsheets from the 
Heidelberg University Water Quality lab, then stored them on USFWS and USGS 
servers. We managed them the same as above using Microsoft Access and 
Excel, in preparation for statistical analysis. 
 
The QA procedures for data initially recorded on physical data sheets were 
different from data initially recorded on Survey123 as stated above. For 
electrofishing data, we first entered data on waterproof datasheets designed for 
the process, then transcribed the data into Excel spreadsheets (See methods in 
page 110). To QA these data, one member of our team cross checked all 
electronic entries to the original waterproof datasheets. If any inconsistencies 
were identified, a different reviewer from our team would make a final check of 
those inconsistencies, then we determined a final value. For macroinvertebrate 
identification data, we used paper sheets, Survey123 electronic datasheets, 
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Microsoft Excel and Access to manage data (See methods in page 71).  Each 
researcher first entered species identifications and invertebrate counts into a 
waterproof notebook. Upon completion of all identifications and counts, 
researchers then transcribed their data into Survey123 separately. We then 
downloaded these data to Excel, exchanged notebooks among team members, 
and reviewed all entries for inconsistencies. The reviewer then specified any 
errors in the original notebook and returned the notebook to the original 
researcher, where the researcher checked and corrected data where applicable. 
Once this initial QA was completed, we performed additional QC checks (i.e., 
IQR as above) to prepare data for statistical tests. 
 

Cross-year Data Management 

We also closely collaborated with our clients from USGS and USFWS to 
standardize the data collection methods, metadata techniques, cross-year data in 
format, and report writing structure, so that future student teams can take over 
project work from us more smoothly. Meanwhile, we tried to summarize the 
differences in cross-year data and created a log for it, recording things such as 
how research questions and sampling methods have evolved across years, so 
that not only our team, but also future researchers, can develop independent 
thinking and research ideas with ease based on these stories behind the scenes. 
Since this project is still considered in its early developing stage and faces 
annual change of its primary research team, we argued that this effort is 
particularly worthy in order to provide enough supplement information for the 
future researchers who may use the monitoring data for their own cross-year 
data analysis. 
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WATER QUALITY MONITORING 
 

INTRODUCTION 

Managers designed SNWR to restore wildlife habitats for waterbirds and other 
wildlife. In order to measure the success of these efforts, a water quality 
monitoring program was created to quantify the hydrologic and chemical 
processes in the refuge and how these change with restoration. We employed 
and refined a water quality protocol designed for SNWR to determine how water 
quality parameters are responding to restoration efforts. 

Water quality data help us understand the overall health of wetland ecosystems 
and habitat conditions for various flora and fauna (Weaver & Fuller 2007), and 
provides insights into how biotic communities respond to abiotic factors. In 2021 
we measured temperature (ºC), pH, conductivity (μS/cm), turbidity (FNU), and 
dissolved oxygen (DO) (mg/L), consistent with water quality protocols used in 
2019 and 2020 (Lugten et.al. 2020; Dellick et al. 2021). To support cross-year 
comparisons, we replicated many of the research objectives and sampling units 
from 2019 and 2020. However, in 2021 we had the opportunity to increase 
sampling to additional units and adjoining rivers, and months. In doing so, we 
encountered a greater variety of vegetation zones than previous years. 

Phosphorus and nitrogen are both limiting nutrients for vegetation and are 
common fertilizers in agricultural settings, and excess nutrient runoff is a source 
of pollution in aquatic habitats. Wetlands have the potential to retain excessive 
nutrients, but quantifying nutrient concentrations at large capacities is difficult 
because analyses are costly (Baustian et al. 2018). However, Baustian et al. 
(2018) found that it was possible to estimate TP by using proxy turbidity data at a 
broader temporal and spatial scale. We look to build upon this research and 
create a similar TP-turbidity curve for SNWR to inform managers about nutrient 
retention in monitored units. In 2021 we measured total phosphorus (TP) (mg/L) 
and total Kjeldahl nitrogen (TKN) (mg/L), consistent with the water nutrient 
sampling method used in 2020 (Dellick et al. 2021). 

We developed the following research objectives to guide our water quality and 
nutrient sampling and data analysis for the 2021 monitoring season: 
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RESEARCH OBJECTIVES 

● Characterize water quality parameters among monitored locations, 
months, and vegetation zones. 

● Determine correlations between different water quality parameters. 

● Determine whether there are significant differences in water quality 
parameters across months, monitored locations, and vegetation zones. 

● Determine how high turbidity events affect phosphorus and nitrogen levels 
in the wetland units, control structures, and surrounding rivers, and 
whether we can make reliable predictions for nutrient concentrations 
based on turbidity data. 

● Determine how nutrient levels in each monitored location change through 
years 2019-2021. 

 

METHODS  

Multi-Parameter Sonde Sampling 

As Lugten et al. (2020) found that distance from water control structures did not 
significantly affect water quality, we followed Delick et al. (2021) in using a 
random sampling method for collecting water quality data, and deployed it in 
conjunction with fish and macroinvertebrate sampling to analyze the relationships 
of these biotic communities and abiotic factors, as well as to maximize the 
efficiency of data collection (Dellick et al. 2021). To collect daytime water quality 
data in the management units and river channels, we used a YSI EXO 3 
handheld multiparameter sonde to collect in situ measurements of temperature 
(ºC), dissolved oxygen (DO) (mg/L), turbidity (total dissolved/suspended solids 
(mg/L)), pH (std units), and conductance (μS/cm).  So as to minimize sediment 
disturbance, a single researcher took these parameters in triplicate halfway down 
the water column before anyone else entered the area. Using the depth stick, we 
then measured water depth in the same location. We also identified sampling 
unit, date, coordinates, and vegetation zones. These data were input into ArcGIS 
Survey 123 then automatically uploaded to ArcGIS cloud storage. The water 
quality measurements were taken in association with each nutrient, 
macroinvertebrate and fish sample site in the monitored units and river channels. 
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Nutrient Sampling 

We followed methods from Dellick et al. (2021) in collecting samples for TP and 
TKN monthly from P1A, MS, MN, and MC, but we added sampling sites within 
SPD and SHR and at individual water control structures. Sampling efforts in April, 
October, and November were also added. We did not sample in September 
because our intention was to capture seasonal changes for summer and fall, and 
we felt that, as September is a transition month, it would not add much new 
information. To measure the relationship between TP and turbidity, we attempted 
to collect more nutrient samples during high turbidity events, specifically during or 
after storms, floods, and seiche events (Baustian et al. 2018). 

 

DATA ANALYSES 

During summer 2021 we gathered sonde data on 5 water quality parameters 
from 302 different sites and conducted analysis on the mean of triplicate 
measurements from each site using the R Studio. We referred to R code from the 
Dellick et al. (2021) UM-Shiawassee Master’s Project team and modified it to 
carry out our analyses. We investigated the effect of month, monitored location, 
and vegetation zone on the variation in water quality using ANOVAs and Tukey 
HSD test to detect where differences were, and visually categorized these 
differences using boxplots. We also tested the assumptions of normality and 
equal variance for ANOVA. We investigated correlation relationships between 
different water quality metrics using the Dellick et al (2021) data. We compared 
2019-2021 water quality data by using monthly average values. The sampling 
frequency and timing was basically consistent among 2019, 2020 and 2021 
(except during COVID), though the specific day of the year when we sampled for 
water quality ,or a specific taxa, may not have been the same (Table 2 and Table 
3). 

We created a turbidity-nitrogen regression model and a turbidity-phosphorous 
regression model using nutrient sample data from 2019-2021 to assess whether 
SNWR managers can use turbidity as a proxy for TP and TKN (Baustian et al. 
2018). In our analysis, we identified 2 data points which have low turbidity value 
but extremely high TP value from the turbidity-phosphorous regression plot and 
removed their relevant data rows from the data frame for all nutrient analysis. We 
strived to minimize removal of such outstanding data points because all data 
points contain information, still the removal of these data helped improve fit in 
regression plots. We made regression curves using Excel to visually present the 
relationship between nutrients and turbidity. 
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We calculated the annual average nutrient data for each monitored location from 
2019 to 2021, and visualized these using Excel line graphs, in order to examine 
temporal patterns in nutrient levels. 

 

Table 2. Location and time for water quality sampling from 2019 to 2021. 
Highlighted cells indicate presence of sampling effort. Number of unique 
sampling observations in each unit and month were entered into relevant cells 
from the year 2021. Abbreviations refer to wetland units and adjacent 
waterbodies: Maankiki North (MN), Maankiki South (MS), Maankiki Center (MC), 
Pool 1A (P1A), Shiawassee River (SHR), and Spaulding Drain (SPD). 

 
 

 

Table 3. Water quality samples by vegetation zone and year. Green 
highlights indicate a vegetation zone where water quality was sampled. Number 
of samples within each vegetation zone is available only for 2021 and is indicated 
by the number in the corresponding cell. Vegetation zones are coded for ease of 
use in the field and refer to dominant stands or habitat types: open water, no 
vegetation in relatively deep water; submerged aquatic vegetation (SAV); mixed 
emergent vegetation (MEV),; channel, open flowing water with no vegetation; 
dead Typha, dead Typha spp; Nymphaea, Nymphaea odorata, RB, 
Schoenoplectus tabernaemontani; Smartweed, Persicaria amphibia; forest, Acer 
saccharum; Cottonwood, Populus deltoides; Salix, Salix nigra and/or Salix 
exigua; Shore, denoting any vegetation located on shore adjacent to water; and 
Phalaris, Phalaris arundinacea. 
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RESULTS 

ANOVA summary 

There was no significant difference detected in water temperature across wetland 
units by applying ANOVA, which was also the case for 2019 and 2020 (Lugten et 
al. 2020; Dellick et al. 2021). We did observe significant differences between 
water quality metrics across months, vegetation zones, and wetland units, with 
the only exception of insignificant water temperature variation by units (Table 4). 

 
Table 4. One-way ANOVA result table. Each wetland water quality parameter is 
dependent variable; Month (April-Nov), Vegetation Zone (Submerged Aquatic 
Vegetation, Typha, Nymphaea, shore, forest, Phalaris, smartweed, river bulrush, 
Mixed Emergent Vegetation, cottonwood, Salix), and Unit (MC, MN, MS, P1A, 
SHR, SPD) are independent variables. Significance code: 0 " *** ",  0.01 " ** ",  
0.01 " * ", 0.05 " . " P-value less than 0.05 was highlighted in bold. F-value in an 
ANOVA was calculated as “variation between sample means / variation within 
the samples”, numbers in parenthesis are “between groups df”, “within groups 
df”, respectively. 
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Variation by month 

We did not find a difference in any water quality metrics between the summer 
months, but when we include spring or fall data, the seasonal pattern at SNWR 
immediately becomes apparent (Figure 3). Since we only had one sample effort 
in April, which was on the last day of the month, April data were retained in the 
boxplot mainly as supplementary information. We found water temperature was 
mostly high during May through August, then quickly dropped from October to 
November (Figure 3a), so these two months had significantly lower water 
temperatures than the others (Appendix II). Water temperature in May and June 
was sometimes lower than 20 °C, while in July and August it ranged from 20 °C 
to 25 °C for most of the time; in October and November, water temperatures fell 
to 18 °C and 7 °C respectively (Figure 3a). We found a significant decrease in 
DO from June onwards, followed by a significant increase in November, reaching 
a level similar to or even higher than the spring months; the variation in DO could 
be huge from May to August, ranging from 1 mg/L to 17 mg/L (Figure 3b). 
Conductivity constantly dropped from May to November (Figure 3c). Tukey HSD 
test showed that conductivity in May was significantly higher than June, then 
remained non-significantly changed from July to October, followed by a 
significant decrease in November (Appendix II). The general changing trend of 
pH was very similar to DO, higher from May to June, then lower from June to 
October, then higher again in November. This correlation between DO and pH 
was also demonstrated in the correlation analysis (Table 5). PH varied widely 
within the individual months of June, July and August, ranging from around 7.25 
to 10 (Figure 3d). Tukey HSD test showed that pH was significantly lower in 
October than in June and July (Appendix II). For turbidity, it was lower than 20 
FNU for the majority of our sampling time across May to November; most of our 
outstandingly high turbidity data were collected in June and November (Figure 
3e). July was significantly lower than May, June, and November in turbidity 
(Appendix II). 
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                             (a.)                                                                (b.)  

       
                            (c.)                                                              (d.)  

 
     
Figure 3. Water quality parameters by 
month. Boxplots of five water quality 
parameters (y-axis) measured April-Nov (x-
axis). Thick black bars represent the median 
for that month, grey boxes show the 
interquartile range from the 25th to the 75th 
percentile (IQR), and whiskers are the 
minimum and maximum (Q1 - 1.5 x IQR; Q3 
+ 1.5 x IQR).  Outliers are shown as dots 
above the whiskers. Note that we only had 
one sample in April. (a.) water temperature 
(°C); (b.) dissolved oxygen (mg/L); (c.)    

                                   (e.)                            conductivity (µS/cm); (d.) pH; (e.) turbidity                         
                                                                    (FNU) 
                                                             . 
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Variation by monitored locations 

Turbidity and temperature did not change much across monitored wetland units 
and river sites; while DO, conductivity and pH were relatively more different 
across units and sites (Figure 4). Water temperature was similar across wetland 
units and river sites (Figure 4a.), which was also confirmed by ANOVA and 
Tukey HSD tests (Table 4 and Appendix III). MS had lower DO levels than other 
units, and MC had the second lowest DO values, although not significantly lower 
than MN and SHR (Figure 4b.); the corresponding Tukey HSD test showed that 
MN and MS had significantly lower conductivity than most other units (Appendix 
III); MC had lower pH than most other units, while MN was the only wetland unit 
that had no significantly different pH value between SPD and SHR; though there 
was significant difference in turbidity across units, the magnitude of variation was 
neglectable. When compared to MN and MC, we found a relatively large variation 
in temperature, DO and conductivity in MS and P1A (Figure 4a.b.c). MN had the 
largest variation in pH among all the sampling units, followed by P1A and MS, 
while MC had the smallest pH variation among all the wetland pool units (Figure 
4d). Although the difference between minimum and maximum turbidity data in 
each wetland pool unit was very close, P1A had significantly more high turbidity 
outlier data points than the others (Figure 4e.).  
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                               (a)                                                                     (b) 

        
                                  (c)                                                                     (d)  

 
Figure 4. Water quality parameter by 
monitored locations. Boxplots of five water 
quality parameters (y-axis). Abbreviations 
refer to wetland units and river locations: 
Maankiki North (MN), Maankiki South (MS), 
Maankiki Center (MC), Pool 1A (P1A), 
Shiawassee River (SHR), and Spaulding 
Drain (SPD). Thick black bars represent the 
median values, grey boxes show the 
interquartile range from the 25th to the 75th 
percentile (IQR), and whiskers are the 
minimum and maximum (Q1 - 1.5 x IQR; Q3 
+ 1.5 x IQR).  Outliers are shown as dots  

                                   (e)                               above the whiskers.  (a.) water temperature   
                                                                      (°C); (b.) dissolved oxygen (mg/L); (c.)   
                                                                      conductivity (µS/cm); (d.) pH; (e.) turbidity   
                                                                      (FNU). 
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Variation by Vegetation Zone 

Water quality varied by vegetation zones in the 2021 sampling season. Water 
temperature in the forest zone was significantly lower than Nymphaea, shore, 
river bulrush, and Phalaris (Figure 5a, Appendix IV.1). We also found DO in the 
forest zone was significantly lower than SAV, Nymphaea, Typha, shore and 
Phalaris; DO in shore zone was significantly higher than river bulrush and mixed 
emergent vegetation; and SAV was significantly higher than river bulrush (Figure 
5b, Appendix IV.2). We found conductivity in the SAV zone was significantly 
lower than Nymphaea, river bulrush, and forest zones; forest was significantly 
higher than Typha and shore zones (Figure 5c, Appendix IV.3). We found that 
the pH in the SAV zone was significantly higher than river bulrush, mixed 
emergent vegetation, and forest zones; forest was significantly lower than 
Nymphaea, Typha, and shore zones(Figure 5d, Appendix IV.4). We found that 
turbidity in the shore zone was significantly higher than SAV, Typha, river 
bulrush, and forest zones (Figure 5e, Appendix IV.5). Regarding the magnitude 
of data variation within each single unit, if only considering the difference 
between the first and third quartile data: SAV, Typha and shore had relatively 
large variation in DO, pH and turbidity (Figure 5b.d.e.); while shore also had 
relatively large variation in temperature (Figure 5a). 
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                               (a)                                                            (b) 

 

                                (c)                                                            (d) 

 
Figure 5. Water quality parameter by 
vegetation zone. Boxplots of five water 
quality parameters (y-axis) measured in 
each major vegetation zone (x-axis). 
Vegetation’s abbreviation code: SAV: 
Submerged Aquatic Vegetation, RB: 
River Bulrush. Thick black bars represent 
the median for that month, grey boxes 
show the interquartile range from the 
25th to the 75th percentile (IQR), and 
whiskers are the minimum and maximum  

                                   (e)                                   (Q1 - 1.5 x IQR; Q3 + 1.5 x IQR).  (a.)  
                                                                           water temperature (°C); (b.) dissolved                                                                                                                                           
                                                                           oxygen (mg/L); (c.) conductivity (µS/cm);                                                                             
                                                                           (d.) pH; (e.) turbidity (FNU).  
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Correlation Analysis 

Using a Pearson correlation analysis, we identified significant correlations 
between nine pairs of variables. We observed a strong correlation between pH 
and DO (r= 0.71, p<0.000), a moderate correlation between conductivity and 
temperature (r= 0.4, p<0.000), and weak correlations between conductivity and 
pH (r= -0.25, p<0.000), and turbidity and temperature (r= -0.24, p<0.000) (Table 
5, Figure 6). Though we did find significant correlation between pH and 
temperature, as well as water depth and temperature, DO, pH and turbidity, their 
correlation coefficients were too small (<0.2) to warrant consideration (Table 5, 
Figure 6).  

 

Table 5. Pearson correlation coefficient table for averaged water quality 
parameters (N=276). Abbreviations refer to water quality parameters: average 
temperature (avg.Temp), average pH (avg.pH), average dissolved oxygen 
(avg.DO), average conductivity (avg.Cond), average turbidity (avg.Turb), and 
average depth (avg.Depth). Significance codes refer to statistical significance of 
a correlation between two parameters: 0 " *** ",  0.001 " ** ",  0.01 " * ", 0.05 " . " 
Statistically significant values are bolded (P < 0.05). Diagonal values represent a 
variable's correlation with itself, which is always 1; zero represents no correlation.  
Only half the table is reported, as the bottom half is the mirror image of the top. 
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Figure 6. Scatter plot correlation matrix for five average water quality 
parameters. For all samples, N=276; left and right y-axes show units for the 
parameter labeled in the to right or left, respectively; top and bottom x-axes show 
units for the parameter labeled below or above, respectively.  Linear, increasing 
scatter plots indicate a strong positive correlation. Abbreviations refer to water 
quality parameters: average temperature (avg.Temp), average dissolved oxygen 
(avg.DO), average conductivity (avg.Cond), average turbidity (avg.Turb), and 
average depth (avg.Depth).  
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Cross Comparison of 2019-2021 data 

In 2021 we obtained data from November for the first time, and it seems the 
overall seasonal pattern in average water quality parameters was consistent from 
2019 to 2021. In 2021 we observed a peak in average water temperature of 
around 25°C in June, followed by a drop to the lowest observed average water 
temperature of around 7°C by November (Figure 7). Although data were not 
available for every month across all years, the general seasonal variation pattern 
in average temperature showed a late spring or early summer peak followed by a 
decline. Growing season temperature patterns varied among years with an 
earlier increase and later decrease in 2021, compared to other years- this 
resulted in an extended summer season. By contrast, 2020 had a much shorter 
summer season but more extreme summer temperatures. DO was less 
consistent across years. In 2021, we found that average DO declined steadily 
from April to October, and increased dramatically in November resulting in a 
higher measurement compared to the April results, a 5.5 mg/L increase (Figure 
8); this change was likely due to weather conditions. In 2019 and 2020, 
conductivity remained relatively constant, but in 2021 it dropped slowly and 
monotonically from April to November (Figure 9). However, in any month where 
all three years were sampled, conductivity in 2021 exceeded previous years’ 
measurements by around 200 µS/cm. Where pH data were available across all 
years, we found negligible change in average monthly pH before June, then a 
steady decline from June to October; our additional pH data from November 
2021 showed a fall increase similar to that seen for average DO (Figure 10). 
Finally, we observed a sharp drop in spring turbidity, followed by negligible 
fluctuations from June to October (Figure 11). 

 

Figure 7. Average water temperature for sampling months 2019-2021. 
Calendar months (3-11, Mar-Nov) are numbered on the x-axis, and temperature 
(°C) on the y-axis. Monthly average is labeled above the corresponding month. 
Years are identified by color: blue (2019), red (2020), and green (2021). Data is 
only available for three months in 2019, and five months in 2020. 
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Figure 8. Dissolved oxygen for sampling months 2019-2021. Calendar 
months (3-11, Mar-Nov) are numbered on the x-axis, and dissolved oxygen (DO, 
mg/L) on the y-axis. Monthly average is labeled above the corresponding month. 
Years are identified by color: blue (2019), red (2020), and green (2021). Data is 
only available for three months in 2019, and five months in 2020.  Note that 
dissolved oxygen increases with declining temperature, so the November value 
shows a natural increase. 
 
 

 
Figure 9. Average conductivity for sampling months 2019-2021. Calendar 
months (3-11, Mar-Nov) are numbered on the x-axis, and conductivity (µS/cm) on 
the y-axis. Monthly average is labeled above the corresponding month. Years are 
identified by color: blue (2019), red (2020), and green (2021). Data is only 
available for three months in 2019, and five months in 2020. Note that 
conductivity monotonically declines in 2021. 
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Figure 10. Average pH for all sampling months 2019-2021. Calendar months 
(April-Nov) are numbered on the x-axis, and pH on the y-axis. Monthly average is 
labeled above the corresponding month. Years are identified by color: blue 
(2019), red (2020), and green (2021). Data is only available for three months in 
2019, and five months in 2020.   
 
 

 
Figure 11. Average turbidity for all sampling months, 2019-2021. Calendar 
months (3-11, Mar-Nov) are numbered on the x-axis, and turbidity (Formazin 
Nephelometric Unit, FNU) on the y-axis. Monthly average is labeled above the 
corresponding month. Years are identified by color: blue (2019), red (2020), and 
green (2021). Data is only available for three months in 2019, and five months in 
2020.  Note that conductivity monotonically declines in 2021. 

 

 

 



 25 

Linear Regression between Turbidity and Nutrients 

The regression model cannot make predictions of TP and TKN concentration 
based on turbidity, with all four models having significance at 0.05 level, but show 
fairly low R-squared values (Table 6). However, R-squared and adjusted R-
squared both nearly doubled after two distinctively high TP data points were 
removed (turbidity = 15.29 FNU, TP = 0.5313 mg/L, TKN = 1.222 mg/L; turbidity 
= 7.27, TP = 0.6127 mg/L, TKN = 2.795 mg/L) (Table 6, Figure 12, Figure 13). 
Additionally, assumptions of "Normality of residuals" and "Homogeneity of 
residuals variance" were violated in these models.  

 

Table 6. Turbidity as a proxy for nutrient flux during storm events, 2019-
2021. Four regression model summaries (linear model, lm; ordinary least 
squares, OLS): turbidity (Turb) as an explanatory variable for total phosphorus 
(TP), with and without outliers, and total Kjeldahl nitrogen (TKN), with and without 
outliers nutrient and turbidity data from 2019 to 2021 and its corresponding 
subset data without outstanding outliers. Significance code: 0 " *** ",  0.001 " ** ",  
0.01 " * ", 0.05 " . " 

 

 
 
 



 26 

 
Figure 12. Turbidity as a proxy for total phosphorus, 2019-2021. A linear 
regression model of Turbidity (Formazin Nephelometric Unit, FNU, x-axis) as an 
explanatory variable of total phosphorus (TP, mg/L, y-axis), using all available 
data, including outliers shown as red points.  Linear equation and R2 (effect size 
= 90.1%) shown above. Sampling locations (not labeled) include all four wetland 
units, Shiawassee river, and Spaulding drain (MC, MN, MS, P1A, SHR, SPD) 
measured May-Aug, 2019-2021. 
 
 

 
Figure 13. Turbidity as a proxy for total Kjeldahl nitrogen, 2019-2021. A 
linear regression model of Turbidity (Formazin Nephelometric Unit, FNU, x-axis) 
as an explanatory variable of total Kjeldahl nitrogen (TP, mg/L, y-axis), using all 
available data, including outliers shown as red points.  Linear equation and R2 

(effect size = 90.1%) shown above. Sampling locations (not labeled) include all 
four wetland units, Shiawassee river, and Spaulding drain (MC, MN, MS, P1A, 
SHR, SPD) measured May-Aug, 2019-2021. 
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Temporal change of nutrients in different monitored locations 

TP followed the same pattern of change across years in the majority of sampling 
locations, while TKN was less consistent. TP dropped in all monitored locations 
between 2019 and 2020, followed by an increase between 2020 and 2021 with 
the only exception of MS; the range of TP variation between 2019 and 2021 was 
0.072 ~ 0.350 mg/L (Figure 14). TKN increased in MN, MS and SPD between 
2019 and 2020, and decreased in these locations between 2020 and 2021; TKN 
decreased P1A and SHR between 2019 and 2020, and increased in these 
locations between 2020 and 2021; the range of TKN variation between 2019 and 
2021 was 0.704 ~ 1.948 mg/L (Figure 15). 
 

 
Figure 14. Average annual total phosphorus for all sampling locations, 
2019-2021. Variation in total phosphorus (TP, mg/L) in each wetland unit and 
river location for years 2019-2021. Note that MC only has one sampling year 
(2021), so it is represented as a point.  Unlike all other sampling locations, MS 
monotonically decreases.  

 

Figure 15. Average annual total Kjeldahl nitrogen for all sampling locations, 
2019-2021. Variation in total phosphorus (TP, mg/L) in each wetland unit and 
river location for years 2019-2021. Note that MC only has one sampling year 
(2021), so it is represented as a point, obscured by MC. 
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DISCUSSION 

What does this water condition mean to aquatic lives? 

Our results indicated that SNWR wetland units were harsh environments for 
many aquatic organisms during summer months, June to August, but there were 
also potential refugia within wetland units to support the survival of some 
species. Daytime temperature during June and August remained as high as 23 
ºC, with DO less than 5 mg/L for nearly half of the time; most fish species are 
distressed in such conditions, except for some very tolerant species such as 
sunfishes carp, and catfish (Edwards and Twomey 1982; Stuber et al. 1982; 
Volkoff and Rønnestad 2020; Sikora et al. 2022). Variation among wetland units 
did not significantly affect summer water temperatures, showing there were likely 
few temperature refugia in our wetlands for non-heat-tolerant species, at least for 
those locations where we sampled water quality. By contrast, DO values varied 
by wetland units, reflecting heterogeneity in the local environment. The low DO 
values in summer can be explained by either high temperature, stagnant water, 
or the coverage of plant species. Some plant species such as duckweed (Lemna 
spp.), hybrid and narrow-leaved cattail (Typha × glauca and Typha angustifolia) 
may spread across the water surface and reduce the contact area between water 
and air, eventually reducing the local DO level (Schrank and Lishawa 2019; 
Gomez et al. 2021). The relatively high DO values more frequently occurred in 
units MC and P1A rather than in MS and MN; and in SAV and shore vegetation 
zones rather than forest and river bulrush zones. Such heterogeneity can support 
survival of aquatic organisms in two potential ways, first is simply to provide the 
essential oxygen, second is to create shelter for some highly hypoxia adaptive 
species from predation by the less hypoxia-tolerant predators (Domenici et al. 
2007). Theoretically, aquatic organisms can immigrate and emigrate freely 
among sub-habitats within these wetland units seeking their own habitable 
location (Gomez et al. 2021), but hypoxia dead zones may sometimes block 
emigration, thus trapping and killing the organisms that can’t escape. We 
observed fish kill phenomenon in P1A and hypothesized its reason as such a 
“hypoxia trap”. Conductivity, pH, and turbidity did not severely influence the 
survival of species. Our sampled conductivity was mostly below 800 µS/cm and 
pH was neither below 7 nor higher than 9 for the majority of our sampling efforts; 
these findings were within the normal ranges for the survival of most aquatic 
species (U.S. EPA 2022). 

Some observed water quality phenomena were not expected, and we 
hypothesized as to the cause of these events. First, DO was most strongly 
correlated with pH (r=0.71) rather than temperature (r=0.16). DO is not affected 
by pH in the sense of a physical-chemical reaction, but can be indirectly 
associated with it. High temperatures in summer can increase solid solubility in 
water, while reducing oxygen solubility. Meanwhile, nutrients may more easily be 
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released into the water and speed up the process of decomposition of decaying 
organic materials, which further reduces DO in water (USGS 2018). This process 
may either release or absorb chemicals, which contributes to pH reduction, 
eventually causing a much stronger correlation relationship between pH and DO 
rather than temperature and DO. Second, we noticed that the conductivity was 
distinctively higher than the previous two years in every sampling month and with 
an approximately fixed difference. A possible reason for this is that we connected 
the wetland units with the rivers this year for a longer period of time, so that they 
received more ions from the catchment and runoff nearby. Conductivity clearly 
dropped from April to November, indicating the ions were constantly removed 
from water solution. These may be absorbed by vegetation or by soil particles 
and settle down to the substrate (Matagi et al. 1998).  

 

Why were we unable to predict nutrients using turbidity? 

We still cannot construct a significant regression model to predict water nutrients 
by using turbidity in our SNWR wetland units, as Baustian et al. (2018) did for 
Pool 2B adjacent to Lake Erie. Three specific reasons for this are the narrow 
range of variation in our turbidity data, the relatively weak seiche event in SNWR, 
and the low level of connectivity between SNWR wetland units and the rivers 
nearby. First and the most direct reason is that we did not collect much high 
turbidity data during our sampling season, simply because the turbidity was 
mostly low. Even if there is a strong correlation between turbidity and nutrients, 
our data that contained mostly low turbidity values may not be able to support a 
strong model. Across the sampling season in 2021, turbidity in SNWR was less 
than 40 FNU for both river and wetland units, and even the highest turbidity we 
sampled during the seiche event in November did not exceed 90 FNU. By 
contrast, seiche events in Pool2B usually lead to turbidity ranging from around 
100 FNU to more than 1000 FNU (Baustian et al. 2018), which provided a much 
larger turbidity span for exploring the statistical relationship between turbidity and 
nutrients. 

Such differences in turbidity between SNWR wetland units and Pool2B indicated 
that turbidity in these two wetland systems may respond to the same process 
(e.g., seiches) at very different magnitudes. One reason is probably due to the 
inequivalent volume of water adjacent to these two wetland systems. Pool2B sits 
right next to Lake Erie (only 1.5 km linear distance apart), so seiche events in 
Lake Erie can easily push large amounts of water into Pool2B and cause high 
turbidity. By contrast, SNWR wetland units sit in a flood plain right next to 
Shiawassee River which floods periodically (Heitmeyer, et al. 2013). Therefore, 
SNWR wetland units are more influenced by river dynamics than by Lake Huron 
which is around 33.5 km away in linear distance. The kinetic energy directly 



 30 

brought by a large water body as a Great Lake is probably larger than by smaller 
water bodies such as a river, thus SNWR wetlands may experience a smaller 
velocity of influx flow and lower total suspended solids and turbidity than Pool2B. 

Another reason for such differences in turbidity between our study units and 
Pool2B is their different proximity to the water source nearby. Most of our studied 
SNWR wetland units had less connectivity to their nearby rivers than Pool2B to 
its nearby lake, thus it was harder for our units to recruit sediments from the 
rivers and create high turbidity data. P1A was an interesting case; it was the only 
wetland unit that directly and continuously connected with the river and thus had 
accumulated a relatively thick layer of silt sediments since opening in 1959 
(Heitmeyer et al. 2013, Figure 13B). Additionally, our top eight turbidity data 
points for 2021 sampling were all collected from P1A, which was not surprising 
since P1A was recognized as the most silty unit to walk through during our field 
work experience. Interpreting our turbidity data, field work experience, and a 
LiDAR topographic map of SNWR (Heitmeyer et al. 2013, Figure 13B), the 
second siltiest and highly turbid unit was probably MS, closely followed by MN, 
with MC considered as the least turbid unit. This ranking order matched well with 
their proximity to the river, since MS, MN and MC were all periodically connected 
to the river rather than continuously connected like P1A. All three Maankiki units 
(MS, MN, MC) were connected with the river by a “distribution basin” so they 
were considered to have a “secondary connection” with the river, and among 
these, MC even experienced a “tertiary connection” with the river, in which case 
the water had to flow from the west side through a 1000m long by 100m wide 
channel to reach the main body of MC, or traveled from the east side through 
P1A first to reach MC. Compared with MC, MS and MN can directly get river 
water flowing in through the distribution basin, therefore they more often had 
relatively higher turbidity than MC. 

 

Assumptions and limitations 

We assumed that our water quality and nutrient data can accurately represent 
the environment in their corresponding sampling months and units, which ignored 
the impact of individual, short-term events. For example, weather events such as 
rain and wind can increase DO and turbidity (US EPA 2016), which may bring in 
extreme outlier data and lead to inaccurate representation of the monthly value if 
we only conduct sampling on such days. This happened to our November data 
collection when we only sampled for three continuous days, where every single 
day was windy or rainy. In this case, we may have overlooked water quality on 
days that were calm, which could have falsely represented water quality for 
November. Some other factors can also influence the sampled water quality, but 
not to the extent that weather can. Since we conducted most of our water quality 
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sampling between 9 am and 3 pm, the impact of daytime water temperature 
variation was considered as neglectable. However, the real temperature situation 
in different layers of the water column may be more complex than we assumed 
(Jacobs et al. 2008). Our individual sampling efforts can also be influenced by 
very localized events. For example, turbidity value can increase due to sampler’s 
movement or fish’s movement, but these cases rarely or only occasionally 
happened, thus would not bring in considerable error to our data. Compared with 
water quality data, nutrient data were much more likely subject to an individual 
event’s influence since we only had 4 to 6 sampling efforts in each month. 
Nutrient data were all conducted on the same day of that month, thus not able to 
represent the monthly nutrient regime very accurately. Therefore, we only did a 
preliminary comparison of the nutrient data across units and months, and we 
interpreted the result cautiously. 

In some cases, sample size may limit our ability to interpret our data. We only 
collected 1 sample in the last day of April to represent April’s environmental 
condition; 4 and 37 samples in SPD and SHR respectively, compared with 
around 65 samples in each of the wetland units; less than 5 samples for 
vegetation zones dead Typha, smartweed, cottonwood, Salix, and Phalaris. 
Interpretation involving these categories may not accurately reflect the true 
condition, thus should be treated cautiously. For the nutrient analysis, we have 
not yet gathered enough high turbidity data, which is one of the key reasons that 
our regression models were not significant. Therefore, there is still a chance that 
we can obtain a regression model for accurately predicting nutrient level in 
SNWR wetland units using turbidity data. 

 

Implications for management and science 

We suggest that future research focus more on the heterogeneity within each 
wetland unit and for future monitoring to conduct more sampling efforts in the 
spring season from the last frozen day to May. First, we already understand the 
average summer season conditions of each wetland unit through the three-year 
monitoring and have found large variation in DO within the units. As for the next 
step of our investigation, seeking out high DO refugia during summer may help 
us summarize the characteristics of such DO refuge spots and identify potential 
ones in our wetlands, eventually helping us better manage those less hypoxia 
tolerant species such as Largemouth Bass (French and Wahl 2018). Second, 
compared with the harsh summer season, spring season is much more favorable 
for many non-heat-tolerant fish species to live and spawn, thus we should 
conduct more frequent water quality monitoring in the spring time to understand 
the abiotic factors which may affect their foraging or reproduction. Additionally, 
since there is an annual recurring pattern in water quality, it is cost effective to 
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invest in spring sampling for at least a few years and collect some data for long-
term use. 

 

We suggest a more standardized schedule for operation of water control 
structures across years, and conducting further research on fish migration and 
reproduction patterns during spring. So far, we have found the seasonal water 
quality pattern to be fairly similar through the years, indicating that the seasonal 
changing patterns were basically predictive from the aquatic wildlife’s 
perspective, which favored the colonization process of some species in certain 
spots. However, connection with river water can change the water quality in 
wetland units; for instance, we have found conductivity and TP were generally 
much higher in 2021 than 2020. This change or disturbance may or may not be 
expected by some less tolerant wetland species, depending on the magnitude of 
change. For example, if the river happens to be loaded with high nutrients such 
as TP and TKN during a certain period of time, connection with the river might 
lead to eutrophication in our units, thus influencing the manager’s choice to 
whether or not connect the units to the river. We may need to further investigate 
the tolerance levels of SNWR aquatic species in their different life stages, so that 
we can better evaluate the ecological effect of wetland connection. 

For the development of the turbidity-nutrient model, we suggest conducting more 
nutrient sampling in the fall season when seiche events frequently happen. 
Three-year monitoring has already shown us that turbidity in summer season 
was rather low for both rivers and wetland units, so if we want to keep exploring 
the relationship between turbidity and nutrient level in the SNWR wetland units, 
we suggest allocation of more effort in fall season targeting high turbidity data. 
Also, from a cost-benefit perspective, if we can prove that there is no significant 
difference in water nutrient levels across wetland units as well as across different 
water stratifications in the summer season, we may be able to reduce sampling 
efforts in summer when water is relatively stagnant within the units and exchange 
less with the rivers nearby, then translocate these efforts to fall season sampling. 

Lastly, it is probably more appropriate to consider SNWR wetland units dynamic 
in the context of the river floodplain more so than Lake Huron. From the 
comparison between SNWR wetland units and Pool2B, we found there were 
significant differences between these two wetland systems regarding the 
magnitude of their response to seiche events. Therefore, although there is 
implicit link between Lake Huron’s dynamic and upstream river influence, SNWR 
was still directly influenced by rivers more than the lake. More focus should be 
given to river dynamics when we try to synthesize information for analyzing the 
abiotic and biotic process in the SNWR units. 



 33 

VEGETATION MONITORING 
 

INTRODUCTION 

Vegetation within SNWR wetland units was deemed an important variable to 
survey in the post restoration process due to: (1) its expression of wetland 
condition; and (2) it’s impact on macroinvertebrates and fishes, as well as 
migratory waterfowl and waterbirds. The hydrologic reconnection of Maankiki 
Marsh allowed for water to inundate the restored wetland units giving rise to a 
habitat supportive to a potentially wide variety of aquatic plants. Previous 
monitoring (2019 and 2020) documented introduction and succession of many 
native and invasive species(Lugten et al. 2020; Dellick et al. 2021). Wetland plant 
communities are shaped by various factors including, but not limited to; 
topography, hydrology, water quality, seed banks, disturbance and management 
practices (Keddy and Reznicek 1986; Johnston and Brown 2013). Emergent and 
submerged vegetation across the refuge provide; food sources, spawning 
habitat, and seasonal refuge for macroinvertebrates, fishes, and migratory birds 
(Jude and Pappas 1992; De Szalay and Resh 2000; Wilcox et al. 2002).  

The wellbeing of vegetation communities across the refuge is essential for 
supporting current biota.  Also, successional changes in biodiversity can only be 
understood through continuous monitoring. A prosperous vegetation community 
bolsters counts and diversity macroinvertebrates and fishes; and similarly 
provides optimal habitat for migratory waterfowl and waterbird communities for 
which SNWR was created to protect and preserve. Annual monitoring is 
necessary as it captures fluctuations in dominant plants, variations in weather, 
and natural hazards across years. A great representation of this is how the 
historic 2020 Midland flood influenced the vegetation communities at SNWR. We 
developed the following research objectives to guide our vegetation sampling 
and data analysis for the 2021 monitoring season: 

RESEARCH OBJECTIVES 

● Determine the emergent, submergent/floating species, groundcover, 
understory, and overstory species present. 

● Determine the variation in structure, composition, and abundance of 
species between each vegetation zone in a unit. 

● Determine the variation in structure, composition, and abundance of 
species across the vegetation zones for all units. 
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● Determine how vegetation varies across units- based on native, exotic, 
and invasive species present. 

● Observe composition change among units and vegetation zones across 
years 2019-2021. 

 

METHODS 

Vegetation Zone Delineation 

To understand the vegetation zones present and determine sampling locations, 
we used  images from Google Maps and modified these in ArcGIS to determine 
the number and distribution of sampling quadrats (Figure 16). A stratified 
sampling design was utilized to capture variation in vegetation zones within and 
across units. Vegetation zones were based on dominant vegetation (e.g. Phalaris 
sp. or Typha sp.) or plant structure (e.g. Submerged Aquatic Vegetation; SAV) 
(Lugten et al. 2020). The largest vegetation zone was deemed dominant in each 
unit and received a higher number of samples (15), while remaining vegetation 
received a lower number of samples (10). Distribution of each sample/quadrat in 
a vegetation zone was randomly determined using GIS. Spacing between 
sampling points was manually determined by our team and varied based on 
acreage of vegetation zone with 100 m spacing as the maximum and 10 m the 
minimum. Distances between sampling points differ and were inconsistent based 
on satellite-surveyed area coverage, maneuverability and in situ vegetation 
coverage. Vegetation zones with smaller coverage may have some spacings as 
small as 10 m.  
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Figure 16. Overview of all vegetation zones, to better clarify dispersion of 
vegetation sampling points described in Figure 2. Vegetation zones include: 
Submerged Aquatic Vegetation (SAV), Forest, Nymphaea, Mixed Emergent, 
Typha, Salix, and Phalaris.Locations for each vegetation sample are depicted to 
better show dispersion of sampling sites across vegetation zones. Abbreviations 
refer to wetland units and river locations: Maankiki North (MN), Maankiki South 
(MS), Maankiki Center (MC), Pool 1A (P1A), Shiawassee River (SHR), and 
Spaulding Drain (SPD). 
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Table 7. Environmental conditions of wetland units. Description of unit 
vegetation zones and number of zones, vegetation zone area and total 
vegetation zone area, as well as average water depth for a given vegetation zone 
are shown. 

 

 

Our surveying app this year ran into technical difficulties and deleted two 
sampling points from the dominant vegetation in Pool 1A (Nymphaea); thus the 
results will show only 13 sampling points for this vegetation zone. 

 

Vegetation Survey 

We sampled vegetation structure and composition in all four units–MC, MS, MN, 
and P1A–from August 9 to August 13 2021. We conducted vegetation sampling 
in August when many of the herbaceous wetland species were flowering, making 
their identification easier. We uploaded SNWR unit maps overlaid with random 
sampling points to ArcGIS Survey123, and navigated to sampling locations on 
foot. If team members were not able to get to a precise location, we would 
distance ourselves from other unsampled locations (by approximating 10 meters 
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traversed) and use a random number generator to try and collect the sample in 
question within the same vegetation zone as the planned sampling point. After 
arriving at the sampling point, a 1 m2 quadrat was haphazardly tossed to 
determine where the vegetation sample was to be collected. Wherever the 
quadrat landed, we measured depth inside the quadrat to the nearest centimeter; 
if no standing water was available, a depth of 0 cm was recorded. All data were 
captured using the ArcGIS Survey 123 (ESRI Inc. 2021) app on an iPad, or a 
mobile phone (if the iPad battery died). Documented information included: GPS 
coordinates, site information, sample number, water depth, vegetation 
zone,sampled species, plant coverage, and time. 

Plant identification, in the field, was determined by the team to the lowest 
taxonomic level possible, and plant coverage was assessed visually. We entered 
coverage of the quadrat as a percentage, this was determined through group 
averaging. Team members were first calibrated to each other’s estimation 
abilities at the beginning of the sampling week. When sampling, team members 
silently guessed percent coverages for a specific species; after 10 seconds, 
estimations were announced and the average between numbers was 
documented (values typically differed by about 5%). We used guides created by 
previous student teams and the application Picture This Plant Identifier (Glority 
LLC) to aid in field identification. Additionally, SNWR biological technician Eliza 
Lugten assisted our plant identification and sampling. Unfamiliar plants were 
documented in surveys, however they were not identified through USGS 
expertise, as in previous years, due to mislabeling and inadequate storage 
preparation.   

Our team identified aquatic quadrats from top to bottom of the water column, with 
floating species typically identified first before disturbing the water. Plants with 
smaller coverage were sampled next, then dominant species defining the 
vegetation zones, and submerged species were sampled last. Terrestrial 
quadrats were sampled from the ground to the top of vegetative growth- this was 
to account for smaller species with less coverage, before looking at larger 
species which take up more space and hide other species. Forest quadrats were 
sampled in a different manner, where the quadrat’s extent was expanded to a 
10m radius for overstory species present. If trees were considered understory, 
and were 4.6 m tall or less, the sampled vegetation only included what was 
captured in the quadrat. If trees were considered overstory, such as MS Forest 
and P1A Salix vegetation zones, and were greater than 4.6 m tall, the range 
surveyed included the center of the 1m quadrat and expanded to a radius of 10m 
(Figure 17).Radii were measured by diameter at breast height (DBH) and were 
visually defined using measuring tape.  
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Figure 17. A representation of how a forest sample would be conducted. The small 
square in the center of the circle represents the quadrat. If trees were considered 
understory (4.6 m tall or less), the radius of the circle was 3m (similar to what is shown in 
the picture). With larger trees and a present overstory (4.6m tall or more), a larger radius 
of 10m was used.  

 

DATA ANALYSES 

Vegetation survey data were analyzed through a series of tests to address the 
objectives set for the 2021 sampling season. We calculated the following 
parameters to assess the integrity of the wetland: species dominance 
(Importance Value Index), differences between vegetation zones (Non-metric 
Multidimensional Scaling and Principal Component Analysis), condition of a 
vegetation community based on species present (Floristic Quality Index), and the 
impact and current health of a vegetation community with introduced invasives 
(Index of Biotic Integrity). We used these parameters to explore differences 
among units and through time. 

Importance Value Index (IVI) 

This index characterizes a species’ dominance in a given area and takes into 
consideration any influence on other species. All sampled species for the 2021 
monitoring were included in the IVI calculation to determine influence based on 
abundance and frequency. We calculated IVI using formulas from Curtis and 
McIntosh (Curtis 1959): 
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Nonmetric Multidimensional Scaling (NMDS) Ordination of a Bray-
Curtis Dissimilarity Index 

We used the NMDS Ordination of a Bray-Curtis Dissimilarity Index to plot relative 
differences between IVI’s within and across vegetation zones and monitoring 
units in a 2-dimensional plane. Information was plotted using R Studio and was 
based on R code from both the 2020 and 2021 sampling teams using packages 
including “vegan”,”ggplot2”,and “ape” (Dellick et al. 2021). Differences between 
plotted samples are depicted with longer distances while similarities are depicted 
with shorter distances and clusters of points. Axes for this plot are unconstrained 
and the significance of a point’s placement is determined after the statistical test 
has been run. Interpreting results is dependent on groupings of points and 
evaluating sampling information which can depict abiotic and biotic factors 
contributing to the wetland vegetation structure and composition.  

 

Principal Component Analysis (PCA) 

The PCA test processes all similarities of IVI’s for the sampled vegetation units 
and produces a simplified result, with minimal information loss. This test plots 
observations in multidimensional space, but does so using Euclidean rather than 
Bray-Curtis distances. A PCA reduces the dimensionality of large, multivariate 
data sets into new, synthetic variables- called eigen vectors- which can be 
plotted in 2-dimensional space while maintaining as much variation from the 
original dataset as possible. A correlation plot of the eigen vectors was created to 
visualize the similarities and differences among sampled data points. 
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Floristic Quality Analysis (FQA) 

We conducted an FQA to assess all plant species in monitoring units at SNWR 
and the condition of these habitats. FQA’s cover a wide variety of variables, but 
for this research, we will only be using two variables, the mean conservatism 
index (C) and floristic quality index (FQI). C measures a plant’s specificity to a 
given habitat, while FQI measures the quality of the site based on the species 
present in comparison to regional scores (Coastal Wetland Monitoring Program 
2019). C is calculated by assigning a coefficient of conservatism to each species 
based on its probability of inhabiting an unaltered landscape (i.e. pre-European 
settlement; Herman et al. 1997). Species coefficients range from 0-10, with 10 
indicating a plant is restricted to areas without alterations and 0 indicating the 
plants most tolerant to landscape changes (Herman et al. 1997). The coefficients 
of conservatism for the entire community are then averaged to produce C, which 
predicts a plant’s adaptability. C is then modified to produce the FQI score 
(Herman et al. 1997), which is determined based on weighted FQI scores for the 
geographical region.  

We generated FQA values using an online calculator (Universal FQA Calculator) 
where all plant species and their respective coverages per sample were entered. 
The regional FQI used for this study was based on the 2014 Michigan 
assessment. FQI and C scores analyzed are for an entire monitored units and 
sub-wetland zones within a given units.The FQA assessment required some data 
to be reformatted as particular species of vascular plants, dead plants, and 
introduced plants to the region were not recognized due to the age of the 
regional FQI.  

 

Index of Biotic Integrity (IBI) 

We used the IBI to analyze wetland vegetation community health by quantifying 
the coverage and impact from invasive species as compared to reference 
conditions or pristine wetlands. To calculate IBI, the sampled area is 
differentiated into three different types: entire site, wet meadow/dry emergent 
(water level > 1cm), and flooded emergent/submergent (water levels < 1cm) 
(Coastal Wetland Monitoring Program 2019; Dellick et al. 2021). Each wetland 
type is then assessed with three variables including: invasive coverage, invasive 
frequency, and mean conservatism index (C, calculated through FQA). These 
nine metrics are assessed in addition to a tenth metric which represents the 
quality of submerged and floating species based on nutrients, sediments, and 
turbidity (Coastal Wetland Monitoring Program 2019).  A score from 0 to 5 is 
given to each of the ten metrics, with the quality of the wetland detailed as 
follows: 0 being ‘Very Low’, 1 being ‘Low’, 3 being ‘ Medium’, and 5 being ‘ High’. 
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These scores are then combined to produce an overall standardized score from 
0 to 50 representing the wetland’s health. ‘High’ scores indicate a wetland closer 
to reference (i.e. “pristine”) conditions and range from 41-50, ‘ Medium’ wetlands 
range from 21-40, ‘ Low’ wetlands range from 6-20, and ‘Very Low’ wetlands 
range from 0-5. Combined standardized scores are often paired with a 
descriptive score, transitioning these numeric results into worded results. 

 

Previous sampling teams (2019 and 2020) averaged water depth across a given 
vegetation zone then categorized the wetland zone type (i.e. wet meadow/dry 
emergent, or flooded emergent/submergent) to determine IBI scores (Lugten et 
al. 2020; Dellick et al. 2021) .We analyzed each quadrat sample based on water 
depth per quadrat instead of averaging sample depth for a vegetation zone. This 
change was utilized to fully capture the gradient of water levels within a 
vegetation zone and to better distinguish edges of wetland zones. Submergent 
zones were calculated utilizing only submerged aquatic vegetation (SAV) and 
Nymphaea samples. 
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RESULTS 

Overview 

We collected 189 samples across the 4 units in the one week span of vegetation 
sampling at SNWR. There were 101 identified species present: 93 of the species 
were native, 8 species were invasive, and 1 was a rare species (Barbarea 
orthoceras) (Figure 18). The rare species was identified in the MS Typha zone. 
Overall, P1A had the most total species observed at 76 and MN had the fewest 
species observed at 30. MS had the highest number of native species at 52, 
whereas the highest number of invasive species in a unit was 6 and all units 
except MN had these invasives present. The most common vegetation structures 
at SNWR were emergent and understory, with the least common structure being 
overstory. We observed 12 unknown species, which would increase the overall 
plant total to 113 species.  

 

Figure 18.  Summary vegetation structure and species type.  Structures 
include submergent/floating, emergent, groundcover and overstory. Species type 
includes native, invasive, and rare.  Number of species for each structure and 
type are located above each histogram bin, with colors of bin and number 
corresponding to wetland unit. Only species totals without unknowns are 
summarized. Number of species present ranged from 1 to 76.  
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Importance Value Index (IVI) 

IVI scores range from 0-100, which reflect the influence a plant has on other 
competing plants where a higher score indicates more influence. The IVI scores 
reflect species dominance across each vegetation zone in the four sampled 
wetland units (Table 8, 9, 10, 11). The top four dominant species in each 
vegetation zone highlighted here show high values for frequency and abundance; 
ultimately defining the coverage of this dominant vegetation. Species which were 
dominant across vegetation zones and units were Lemna minor and 
Ceratophylumn demersum. Lemna minor was present in 7 of the 15 total 
vegetation zones, and 3 of the 4 sampling units. Ceratophylum demersum was 
present in 8 of the 15 total vegetation zones and all 4 of the sampled units. 

 

Table 8. Importance Value Index (IVI) for the three dominant MN vegetation 
zones. Three vegetation zones in MN (Phalaris, SAV, Typha) and the most 
abundant species in each zone ranked by importance value and labeled with the 
species’ vegetation structure. The highest ranking species for this unit was 
Phalaris arundinacea (97.42) and the lowest ranking species was Ceratophyllum 
demersum (19.74). Vegetation zones are coded for ease of use in the field and 
refer to dominant stands or habitat types: open water, no vegetation in relatively 
deep water; submerged aquatic vegetation (SAV); Typha is Typha sp.; and 
Phalaris is Phalaris arundinacea. 
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Table 9. Importance Value Index (IVI) for the four dominant MS vegetation 
zones. Four vegetation zones in MS (Forest, Phalaris, SAV, Typha) and the 
most abundant species in each zone ranked by importance value and labeled 
with the species’ vegetation structure. The highest ranking species for this unit 
was Phalaris arundinacea (95.18) and lowest ranking species was Echinocloa 
crusgalli (10.59). Vegetation zones are coded for ease of use in the field and 
refer to dominant stands or habitat types: submerged aquatic vegetation is any 
mixed floating or submerged vegetation (SAV); Typha is Typha spp; forest is 
Acer saccharum; Phalaris is Phalaris arundinacea. 
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Table 10. Importance Value Index (IVI) for the five dominant MC vegetation 
zones. Five vegetation zones in MS (Forest, Phalaris, SAV, Typha) and the most 
abundant species in each zone ranked by importance value and labeled with the 
species’ vegetation structure. The highest ranking species for this unit was 
Ceratophyllum demersum (80.47) and lowest ranking species was Lemna minor 
(14.77). Vegetation zones are coded for ease of use in the field and refer to 
dominant stands or habitat types: submerged aquatic vegetation is any mixed 
floating or submerged vegetation (SAV); mixed emergent is any mixed emergent 
vegetation, including that with SAV that is still mixed emergent dominant (MEV); 
Typha is Typha spp; Salix is Salix nigra and/or Salix exigua; Shore is any littoral 
zone with or without any vegetation; and Phalaris is Phalaris arundinacea. 
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Table 11. Importance Value Index (IVI) for the five dominant P1A vegetation 
zones. Four vegetation zones in MS (Nymphaea, Salix, SAV, Typha) and the 
most abundant species in each zone ranked by importance value and labeled 
with the species’ vegetation structure. The highest ranking species for this unit 
was Salix interior (67.74) and lowest ranking species was Vitis riparia (10.48). 
Vegetation zones are coded for ease of use in the field and refer to dominant 
stands or habitat types: submerged aquatic vegetation is any mixed floating or 
submerged vegetation (SAV); Typha is Typha spp; Nymphaea is Nymphaea 
odorata; Salix is Salix nigra and/or Salix exigua. 
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Invasive species 

Invasive species were assessed for their influence on native species (Table 12). 
Two invasive species Phalaris arundinacea and Typha angustifolia were found in 
all units.  Phalaris arundinacea was predominantly found in MC and had the 
widest coverage across the vegetation zones. This species also had the two 
highest IVI scores of 97.42 and 95.18, within MC and MN Phalaris zones, 
respectively. Typha angustifolia was found in equal coverages of vegetation 
zones in MC and MS, but its highest IVI scores were 63.97 and 50.82. Invasive 
species that were only found in one vegetation zone included Butomus 
umbellatus, Phragmities australis, and Typha x glauca, with IVI scores of 3.8, 
2.15, and 1.66 respectively. MC had the strongest presence of invasive species 
with multiple invasives found within the same vegetation zone. MC had the 
highest number of sampled vegetation units (5), but also had the highest variety 
of invasive species (5). MN had the lowest presence of invasive species with 4 
species spanning three vegetation zones - there were only two occurrences of 
more than one invasive species being in the same vegetation zone. 
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Table 12. Invasive species’ Importance Value Index. Seven invasive species 
zones (Butomus umbellatus, Cirsium arvense, Lythrum salicaria, Myriophyllum 
spicatum, Phalaris arundinacea, Phragmites australis, Typha angustifolia) from 
the wetland units and the most abundant species in each zone.  The highest 
importance values are bolded. Scores ranged from 1.00 to 97.42 and 
encompassed 8 invasive species. Vegetation zones are coded for ease of use in 
the field and refer to dominant stands or habitat types: submerged aquatic 
vegetation is any mixed floating or submerged vegetation (SAV); mixed emergent 
is any mixed emergent vegetation, including that with SAV that is still mixed 
emergent dominant (MEV); Typha is Typha spp; Nymphaea is Nymphaea 
odorata; Salix is Salix nigra and/or Salix exigua; Shore is any littoral zone with or 
without any vegetation; and Phalaris is Phalaris arundinacea. 
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Nonmetric Multidimensional Scaling (NMDS) 

This ordination technique plots multidimensional data using Bray-Curtis 
dissimilarity values and distance. The NMDS plot visualizes relative similarities 
and differences of observed vegetation community data (Figure 19).This plot is 
based on the vegetation composition for each zone, which can be based on a 
multitude of different factors. Clustered points indicate similarities of those 
communities while points with greater ordinal distance represent dissimilar 
communities. Point dispersal may be based on water depth and dominant 
vegetation zones. After an analysis of the point distributions across the x-axis, 
water depth seemed to be one of the explanatory factors. Averaged water depths 
for each of the vegetation zones revealed: Phalaris zones were the driest, Salix 
zones were the second driest, Typha zones were the third driest, and SAV zones 
were the wettest (Table 7). Note that these averages were taken from vegetation 
zones that had 2 or more samples, thus MS Forest, MC Mixed Emergent 
Vegetation, and P1A Nymphaea were not included in the calculation here. This 
trend is displayed on the x-axis with the left side having no standing water, and 
the right side having the most standing water depth. Zones that stood out in this 
trend were P1A Salix and MS Forest, as these samples had little to no standing 
water depth, and P1A Nymphaea which followed trends for all SAV zones. Three 
main clusters arose in this plot, Typha zones, SAV zones, and all of the MC 
vegetation points. Typha points across the four monitored units clustered 
together, this also occurred for SAV points. This indicates these vegetation zones 
are much more similar to each other, based on vegetation species composition, 
than to other vegetation zones within their monitoring pool. Salix points had the 
largest spacing of all vegetation zones indicating that, although these two zones 
have the same dominant vegetation, the units that they grew in are quite 
different. Another cluster was formed across units and vegetation zones and 
includes MC Salix, Phalaris, and Mixed Emergent Vegetation (MEV) as well as 
MS Forest points.  
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Figure 19. Plot of the 16 combinations of different vegetation zones and 
units sampled during the 2021 season. Abbreviations refer to wetland units 
and river locations: Maankiki North (MN), Maankiki South (MS), Maankiki Center 
(MC), and Pool 1A (P1A). Vegetation zones are coded for ease of use in the field 
and refer to dominant stands or habitat types: submerged aquatic vegetation is 
any mixed floating or submerged vegetation (SAV); mixed emergent is any mixed 
emergent vegetation, including that with SAV that is still mixed emergent 
dominant (MEV); dead Typha is dead Typha sp; Typha is Typha spp; Nymphaea 
is Nymphaea odorata; forest is Acer saccharum; Salix is Salix nigra and/or Salix 
exigua; and Phalaris is Phalaris arundinacea. 
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PCA 

Our PCA test results represent similarity with clusters of names and differences 
with spacings between names. The first graph had three outliers, P1A Salix, MS 
Phalaris, and MS Forest that were distanced from the cluster of the remaining 13 
combinations (Figure 20). MS Forest is the closest point to the cluster with about 
3.0 units of distance on the y-axis. P1A Salix is the furthest point away from the 
main cluster at approximately 17.5 units on the x-axis. MS Phalaris is similarly 
distanced from the cluster at approximately 16 units on the y-axis. Upon further 
analysis, all these outliers had more than 1 sampling quadrat with no standing 
water, indicating that the cluster depicts vegetation zones with any standing 
water. Water depth averages can be observed in Table 7. 

 

Figure 20. PCA graph showing all 16 vegetation zone and unit 
combinations. PCA ordination of all vegetation zones within each unit on two 
axes of variation, standardized principle component 2 (PC2) and standardized 
principle component 1 (PC1), with the percent of variation that each axis 
explains. Each “Unit_Vegetation zone” combination refers to the vegetation zone 
found with that unit. The first abbreviation refers to wetland unit: Maankiki North 
(MN), Maankiki South (MS), Maankiki Center (MC), and Pool 1A (P1A). The 
second abbreviation or word refers to vegetation zones, which are coded for 
ease of use in the field and refer to dominant stands or habitat types: submerged 
aquatic vegetation is any mixed floating or submerged vegetation (SAV); mixed 
emergent is any mixed emergent vegetation, including that with SAV that is still 
mixed emergent dominant (MEV); Typha is Typha spp; Nymphaea is Nymphaea 
odorata; forest is Acer saccharum; Salix is Salix nigra and/or Salix exigua; 
Phalaris is Phalaris arundinacea. 



 52 

We did a second PCA analysis to minimize the distance of outliers and better 
discern the placement of the 13 points within the main cluster.  This analysis did 
not include MS Forest. This analysis more clearly defined similarities between 
points in the cluster and generated a new combination of outliers (Figure 21). MS 
Phalaris is again an outlier, but now along the x-axis, and has the highest 
distance at approximately 15 units. MN Phalaris has the second highest distance 
at 11.5 units on the y-axis. P1A Typha and MC MEV are on opposite sides of the 
cluster and show differences compared to each other. Similar to the first PCA 
analysis, this second analysis also highlights that these new outliers also 
represent relatively dry plots. Upon review, the two new outliers for this plot (MN 
Phalaris and P1A Typha) had dry quadrats for almost half of the total sample. 
Both plots show that Phalaris zones for MN and MS were dry, whereas the 
Phalaris zone for MC was wet. All samples for MC Phalaris had more than 1cm 
of standing water. P1A showed different outliers between the two graphs, 
whereas the second graph shows P1A Typha closer to the cluster of vegetation 
samples. This can be attributed to all samples of P1A Salix having no standing 
water, and more than half of the samples for P1A Typha also having no standing 
water. 
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Figure 21.  PCA graph with MS forest zone removed to better assess all 
vegetation zones within cluster. PCA ordination of all vegetation zones within 
each unit on two axes of variation, PC2 and PC1, explaining 37.5% of the 
variation in vegetation zones by unit. Each “unit_vegetation zone” combination 
refers to the vegetation zone found within that unit. Abbreviations refer to wetland 
units: Maankiki North (MN), Maankiki South (MS), Maankiki Center (MC), and 
Pool 1A (P1A). Vegetation zones are coded for ease of use in the field and refer 
to dominant stands or habitat types: submerged aquatic vegetation is any mixed 
floating or submerged vegetation (SAV); mixed emergent is any mixed emergent 
vegetation, including that with SAV that is still mixed emergent dominant (MEV); 
channel is open flowing water with little to no vegetation; Typha is Typha spp; 
Nymphaea is Nymphaea odorata; Salix is Salix nigra and/or Salix exigua; 
Phalaris is Phalaris arundinacea. 
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FQA  

Our FQA results highlighted wetland units with higher counts of disturbance-
intolerant species (Table 14). To better understand the diversity of species 
across all units in the FQA results, vegetation structure was differentiated into 
categories to visualize tallies of all species. Categories were based on broad 
classifications in the Universal FQA Calculator (Universal FQA Calculator): forbs, 
grasses, rushes, sedges, shrubs, vines, and trees.  

The category with highest number of species was forbs (37) and the lowest was 
rushes(1) (Table 14). The unit with the most diversity was MS with an average of 
16 different species across 4 vegetation zones. Of those, an average of 14 
species were native. P1A also averaged 14 native species, with 15 total species 
across its 4 vegetation zones. MN and MC averaged 11 total species each , MN 
hosted 10 native species on average and MC hosted 9 native species on 
average. 

Vegetation structure composition for each pool helps drive the mean C scores. 
MC had the highest C score of 3.92 with more species that are site specific, 
whereas MS had the lowest C score of 3 but a higher count of species that are 
not site specific. MN had the second highest C score of 3.16 and P1A had the 
third highest C score of 3.12.  

Averaged FQI total scores and native species scores reflected the mean C score 
where MC had the highest scores of 13.58 (Native FQI) and 12.58 (Total FQI).  
MN had the lowest scores with 12.03 for native FQI and 10.8 total FQI, but had 
the second highest C score of 3.16 

 

Table 14. Vegetation structure, native and total species averages, C scores, 
and native and total FQI values were assessed in the FQA analysis. Mean C 
possible range is 0-10 with 10 as the highest, and FQI possible range varies from 
0-35 with >35 being exceptional. Abbreviations refer to wetland units: Maankiki 
North (MN), Maankiki South (MS), Maankiki Center (MC), and Pool 1A (P1A). 
Structures were defined from the FQA index (MDNR 2001). 
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IBI 

Each IBI metric is assigned a numeric score (0,1,3,5), which is then summed to 
produce the combined numeric score (0-50), this score is then assigned a 
corresponding combined descriptive score (Very Low, Low, Medium, High). The 
combined numeric scores were similar across all four units with the range 
spanning 5 points (Table 15). MC and P1A each had the highest IBI score of 28, 
while MN was the lowest (23). Each of the four units has a combined descriptive 
score of ‘Medium’ quality.  

Compared to previous years, the integrity of the monitored units increased, from 
a ‘Low’  combined descriptive score to a ‘Medium’ score (Tables 15, 16, 17). The 
MC unit had one of the highest individual unit scores even though it was recently 
hydrologically connected. 

 

Table 15. Four IBI parameters summed to create the Total IBI score. Sample 
areas include the entire wetland unit (Entire), Wet Meadow and Dry Emergent 
Zone, Flooded Emergent and Submergent Zone, and Submergent coverage. 
Each metric ranges from 1 to 5, with 5 being the highest rating. The metric ‘C’ 
represents the mean conservatism index . The Total IBI score is then compared 
to the IBI table to establish its Combined Standardized score which ranges from 
‘Very Low’ (0) to ‘High’ (50). Abbreviations refer to wetland units: Maankiki North 
(MN), Maankiki South (MS), Maankiki Center (MC), and Pool 1A (P1A). 
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Table 16. IBI scores from 2020 sampling season. Abbreviations refer to 
wetland units: Maankiki North (MN), Maankiki South (MS), Maankiki Center (MC), 
and Pool 1A (P1A).  Sample areas include the entire wetland unit (Entire), Wet 
Meadow and Dry Emergent Zone, Flooded Emergent and Submergent Zone, and 
Submergent coverage. Each metric ranges from 1 to 5, with 5 being the highest 
rating. The metric ‘C’ represents the mean conservatism index . The Total IBI 
score is then compared to the IBI table to establish its Combined Standardized 
score which ranges from ‘Very Low’ (0) to ‘High’ (50).  

 

 

Table 17. IBI scores from 2019 sampling season.  Abbreviations refer to 
wetland units: Maankiki North (MN), Maankiki South (MS), Maankiki Center (MC), 
and Pool 1A (P1A). Areas in grey were not sampled this year and include P1A 
Wet meadow/Dry emergent zone.  Sample areas include the entire wetland unit 
(Entire), Wet Meadow and Dry Emergent Zone, Flooded Emergent and 
Submergent Zone, and Submergent coverage. Each metric ranges from 1 to 5, 
with 5 being the highest rating. The metric ‘C’ represents the mean conservatism 
index . The Total IBI score is then compared to the IBI table to establish its 
Combined Standardized score which ranges from ‘Very Low’ (0) to ‘High’ (50). 

* note the Low/Medium score was given to P1A because it scored high in the 
Total IBI score compared to other low values. Abbreviations refer to wetland 
units: Maankiki North (MN), Maankiki South (MS), Maankiki Center (MC), and 
Pool 1A (P1A). 
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DISCUSSION 

2021 was the initial sampling year for MC, and this unit had some of the highest 
and lowest values across our analyses of vegetation structure and composition. 
Adding this new unit to the analyses changed historic observations made for the 
vegetation community at SNWR. 

Disturbance at SNWR as depicted by FQA 

Wetland unit MC had the highest C score and native and total FQI scores, 
indicating that: (1) MC had recruited a relatively diverse vegetation assemblage 
within 1 year of hydrologic reconnection; and (2) MC had the least amount of 
disturbance compared to the remaining units. Interestingly, MC matched and 
surpassed P1A’s results for this index, which has been hydrologically 
reconnected without disturbance for nearly 70 years, and thus serves as a 
reference unit for the restoration effort. P1A also housed plant species intolerant 
to change with both FQI scores second to MC, but had the third highest C score. 
This indicates that while many of the plants in P1A were tolerant of degraded 
habitat or disturbance, based on the C score, the overall site is capable of 
supporting plants intolerant of change. MS had the second highest native FQI 
score, and the third highest total FQI score, but the lowest C score. This 
indicates that the plants present are native species found within a disturbed site. 
MN had the lowest scores across both FQI scores and the third highest C score.  

While our SNWR FQA scores were somewhat low, this is not unusual for similar 
wetlands in the region. FQA scores depict historic land alterations, as higher 
FQA scores indicate plants, and ultimately sites, with little disturbance whereas 
lower scores indicate significant disturbance. Compared to other wetlands 
throughout the state of Michigan, Saginaw county wetlands experienced 50% or 
more wetland loss and land alteration- there were 14 other counties that were 
subjected to the same circumstances (U.S. EPA 1996). Locationally, all 15 of 
these counties (including Saginaw county) are in the southern half of the 
Saginaw watershed (U.S. EPA 1996). FQA studies within the Saginaw Bay 
region had relatively low scores, due to prevalent human disturbance, and no 
locations had pristine conditions (Stanley et al. 2005). Plants with the highest 
scoring C values were found in prairies as well as southern Michigan bogs and 
fens, which are generally rare habitats (Herman et al. 1997). Typically, plants 
found in undeveloped lands had C values between 0 and 2, whereas 85% of the 
native species found had C values of 4 or higher (Herman et al. 1997). Trends of 
disturbance and lower C values were observed with the mean C values for 
SNWR ranging from 3 to 3.92. 
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SNWR’s IBI scores and how they compare to other wetlands 

Results for IBI were similar to the FQA analysis, yet they indicate minimal 
differences between the wetland units at SNWR. FQA indicated that present 
vegetation experienced landscape changes and supports species tolerant to 
disturbance, whereas IBI depicted overall abiotic and biotic degradation from 
landscape alteration and invasive species dominance. MC and P1A were tied for 
the highest combined numeric IBI score with 28, MS had the third highest 
combined numeric score at 26, and MN had the lowest combined numeric score 
at 23. Although the combined descriptive scores for all units in the IBI analysis 
had a medium rank, the range of the combined IBI numeric score spanned only 5 
points; which indicates that the quality of wetland at MN is not much different 
than its counterparts.  

Compared to surrounding Saginaw Bay coastal wetlands, SNWR scores were 
not far off. The Great Lakes Coastal Wetlands Monitoring Program (Coastal 
Wetland Monitoring Program 2019) reported that metric scores for the Saginaw 
Bay marsh were as follows: the entire site averaged 3.9, flooded emergent zones 
averaged 4.5, and wet meadow zones averaged 4.2.  Across the 2019-2021 
monitorings, the metric scores for SNWR were: an average of 2.5 for the entire 
site, wet meadow zones averaged 2.0, and flooded emergent averaged 3.0. 
Using the CWMP’s Coastal Wetland Decision Support Tool (CWDST), we 
identified an inland wetland along the Saginaw River near Bay City.  Of the 
coastal wetlands in Saginaw Bay, it had the lowest rating of 1.5 out of 5 of 
approximately 20 sites (Figure 22), the remaining scores ranged from 1.6 to 3.1. 
IBI from CWMP across the state of Michigan defines the vegetation communities 
in coastal wetlands along Saginaw Bay as ‘moderately degraded’ to ‘degraded’ 
(Figure 23). 
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Figure 22. Screenshot from the Coastal Wetland Decision Support Tool 
website (link) where the IBI scores were presented for 22 of the surrounding 
coastal wetlands of Saginaw Bay, near to SNWR. IBI scores ranged from 0.6-5.0, 
with each of the wetlands in the red box being ranked from highest to lowest 
quality. These scores are calculated based off of the entire surveyed site metric, 
which ranges from 0-5, with 5 as the highest, and are not a cumulative IBI score 
for each site, which is what most of the results are based on Table 15. The 
Saginaw River wetland was identified as the closest to SNWR (which was not 
sampled for this assessment) and had the lowest score of 1.5. 
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Figure 23. This image was taken from Uzarski et al. (2022) and describes all 
coastal wetland vegetation communities across the Great Lakes. 
Information was compiled from sampling efforts spanning 2011- 2020. With 
‘Reference Conditions' being the highest quality of wetland, located mainly in the 
Upper Peninsula of Michigan, sites near industrialized areas show more 
degraded conditions. Saginaw Bay coastal wetlands ranged from moderately 
degraded to degraded (third and second lowest ranking, respectively).  
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Water depth impact on vegetation composition 

Unit hydrology and microtopography, and resulting trends in water depth, can 
influence unit differences in: seed bank viability, seed dispersal, and resulting 
vegetation composition across SNWR (Lugten et al. 2020; Dellick et al. 2021). 
NMDS and PCA analyses highlighted the differences in water depths between 
vegetation zones. 

Trends in the NMDS analysis showed a gradient of water depths observed from 
the left side of the x-axis to the right, with three notable clusters forming. All 
Typha zones clustered together, with SAV zones and the Nymphaea zone 
forming its own cluster. The differentiation can partially be accredited to water 
depth, as well as dominant species or those species present, possibly counting 
as another variable. Species composition may be able to describe why each unit 
point was at a certain location in a cluster or why the two clusters with uniform 
vegetation zones across units formed. Depth was not the only factor creating this 
plot, as MS Forest was a hidden outlier. MS Forest had an average water depth 
of 0.9 cm, yet was found close to MC Salix and MC Phalaris with water depths of 
58.8 and 41.8, respectively. Depths for samples within the Typha cluster were 
lower than these values (Table 7). Similarly, the MS unit stood out in the PCA 
analysis with factors such as water depth and sedimentation likely contributing to 
these results. The first PCA for this site (Figure 20) indicated that MS Forest and 
Phalaris zones were very different from the remaining 13 units in the cluster- with 
the MS Forest point removed, only the Phalaris point remained as an outlier in 
the second PCA plot (Figure 21). These vegetation zones were outliers in the 
PCA because of the low average water depth (Table 7).Calculating the average 
water depths for each unit revealed that MS was the shallowest unit, and MC 
was the deepest unit, with P1A and MN as the second and third shallowest, 
respectively. This could explain the diversity of species and outcomes from the 
various analyses. 

In managed diked wetlands, like SNWR, water levels can be manipulated to 
change vegetation communities, in order to establish habitats for waterfowl and 
waterbirds (Mitsch 1992; Mitsch and Gosselink 2015). A study conducted by 
Herrick et al. (2007) analyzed different wetland vegetation zones for species 
richness, based on seed banks and standing vegetation, in diked and undiked 
wetlands.Three of the seven sampled wetlands in this study were along Saginaw 
Bay. Herrick et al. (2007) found significantly higher species counts in diked 
wetland seed banks than undiked wetlands, in the following vegetation zones: 
sedge meadow/wet prairie, mudflat, shore, and floating/submerged. Analyzing 
the methods of this study (Curtis 1959), these zones can be compared to the 
vegetation zones used at SNWR with the floating/submerged zones representing 
SAV areas and mudflat representing areas in P1A that were not present in 2021 
(Lugten et al. (2020) found mudflats in their study). On the other hand, emergent 
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aquatic was a sampling zone in Herrick et al.’s (2007) study which was similar to 
Typha zones at SNWR; this zone had a higher presence of invasives but was not 
significantly different than undiked wetlands. Submerged/floating zones had 1 

invasive species per 1 m2, and mudflats had the highest number of invasive 

species in this test with 12 species per 1m2 (Herrick et al. 2007). Diked wetlands 
were considered to be “seed traps” which had high levels of organic matter and 
nutrients (Herrick et al. 2007). This type of wetland supports a wider variety of 
plant species, up to 20% by some analyses, due to the protection from open 
water with high velocities (Herrick et. al. 2007). Relating these findings to SNWR, 
conditions in MS promoted the highest number of total averaged species (Table 
14). Presence of upland plants may have increased the diversity in MS as these 
plants were able to rapidly grow and disperse their seeds across the unit. 
Increased water level, such as SAV areas, could have limited species diversity 
due to many upland and emergent plants being intolerant of a greater depth. In 
one study, periods of high water on a Great Lake coastal wetlands deterred 
woody plants and terrestrial species from growing close to the water, and 
changed the studied area from an emergent zone to a submergent zone. This 
disturbance also killed some emergent species like Typha (Keddy and Reznicek 
1986). Prevalent invasive species found in diked wetlands included Lythrum 
salicaria and Typha spp.; Lythrum salicaria had the highest densities in seed 
banks while Typha was found in large dense stands constricting seed bank 
diversity. Keddy and Reznicek (1986) concluded that this study noted that the 
lack of hydrological disturbance would allow for these species, which were also 
present at SNWR, to continue to flourish. Combined results from Herrick et al. 
(2007), Keddy and Reznicek (1986), and our 2021 analysis may depict what 
future vegetation community compositions look like for the diked wetlands of 
SNWR.  

While sampling vegetation in P1A, the team experienced considerably high levels 
of silt in this unit (approximately 2 ft high from bottom) which resulted in a lower 
water depth. P1A had a larger surface area with shallower water, due to high silt 
levels, which facilitated a wider variety of aquatic macrophyte species over time, 
compared to other units. The vegetation structure in the community can be 
influenced from the varied depths across units (Figure 24). P1A had one of the 
lowest and most uniform depths of all of the units; this may be caused by the 
direct and prolonged connection to SPD for 70 years. Diked wetlands typically 
accumulate organic material and nutrients that would normally be washed out of 
the wetland during high flows (Albert and Minc 2004; Herrick and Wolf 2005). In 
comparison, MS and MN had deeper depths- an increasing depth gradient was 
observed across both units moving from the southern edge of MS to the northern 
edge of MN.  
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Figure 24. LiDAR topographic maps for Shiawassee National Wildlife 
Refuge (Heitmeyer et al. 2013, Figure 13B). 

This change in gradient may be explained by 1) natural topography of SNWR 
and 2) slight alterations of topography to create a visitor road across the refuge. 
The northern edge of MN has the highest depth between these two units and has 
an established sightseeing route on a man-made dike. The depth for this area 
may have been trenched to create the dike, as referenced by Dellick et al.(2021). 
In comparison, MS has a higher elevation on the southern portion of this unit. 
This elevation and relatively flat area could possibly be attributed to historic land 
disturbances for restoration. The goals of the SNWR restoration project were to 
make heterogenous units and this difference in elevation facilitates with 
heterogeneity. Inundation and reconnection of these units began in 2017 for MN 
and 2018 for MS. Both units only have one water outlet, which is typically closed 
off from river connections as water level is often at a target height for this unit 
(Dellick et al. 2021). The 2021 sampling season was the driest for MS, as there 
was not enough snowmelt to contribute water for inundation compared to Lugten 
et al. (2020) and Dellick et al. (2021). MC had the highest depth of all the units 
but also had an elevated area across the center, this can be partially attributed to 
an artificially created low level barrier dike for the unit. This dike was created to 
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mitigate the fetch, or wave effects, from windy days.  Some of the material to 
create this was taken from within the unit, thus creating greater depths. MC 
experiences a secondary hydrologic connection to either side of the river. This 
could result in sediments entering and exiting this unit at a slower rate. 

 

Invasive Species impact on SNWR 

Spread of invasive vegetation throughout SNWR can be attributed to 
anthropogenic stressors such as diking, sediment deposition, or nutrient 
availability (Herrick and Wolf 2005; Dybiec et al. 2020). Although P1A was similar 
to MC in several analyses, it was starkly different in the amount of invasives 
present. MC had the highest number of invasive species per vegetation zone 
whereas P1A had third highest number of invasives per vegetation zone.This 
result could be attributed to the fact that P1A is a well established wetland unit, 
and could be considered a late successional habitat, thus minimizing niche 
openings for invasive species in this unit. Phalaris arundinacea was the most 
prominent invasive species for MC and was found in 4 of the 5 vegetation zones 
for this unit. The highest IVI scores for this invasive species were 97.42 and 
57.11. MS had the second highest number of invasive species and MN had the 
fewest species. Diked wetlands promote a significantly higher number of invasive 
plant species in seed banks and standing vegetation (Herrick and Wolf 2005). In 
the Herrick and Wolf (2005) study, the two most common invasive species found 
were Lythrum salicaria and Typha spp. t SNWR their highest IVI ratings were 
7.68 and 68.97, respectively. Lythrum salicaria was found in 3 of the 4 units, 
whereas Typha spp. was found in all 4 units, these two invasive species had the 
second and third highest dispersal across SNWR (Table 12). 

Hydrocharis morsus-ranae, also known as European Frogbit (EFB), was an 
invasive species also observed at SNWR in 2021 but similar to Dellick et al. 
(2021), was not captured in our vegetation survey. This species is concerning as 
it may impact wetland and recreational use of open water due to its ability to 
grow in dense mats, which can reduce light, nutrients, and dissolved oxygen in 
the water column, thereby harming other aquatic plants, as well as impeding 
recreational water traffic (Hansen et al. 2022). Cahill et al. (2021) found that, 
across 5 different sites throughout Michigan, the established populations of EFB 
were the most fecund in the Saginaw Bay area, and recommended that 
additional education and outreach is needed to mitigate its spread across the 
state. Dellick et al. (2021) mentioned that this species may have entered SNWR 
during the Midland flood of 2020. We observed this species during our aquatic 
macroinvertebrate and fish samplings. 
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Identifying the presence of certain invasive species, or in some cases native 
species, at SWNR can help determine impacts that may be occurring upstream 
or historic disturbances which may need to be addressed. Wetlands across 
Michigan have been subjected to anthropogenic stressors which have allowed 
invasive species to spread. Specific disturbances can give rise to certain invasive 
species observed in wetlands, with examples including: nutrient deposition giving 
rise to dense stands of Typha spp. which do not support other species, diking 
and dredging which disturb sediments and distribute Phragmites australis or 
Lythrum salicaria, and road density which promotes the creation of drainage 
ditches thus creating disturbed corridors for wetlands (Dybeic et al. 2020). 
Correlation between invasive species and various stressors is so strong, that the 
presence of an invasive species can be used as a rapid stand-alone assessment 
for disturbance as suggested by Trebitz and Taylor (2007). Comparatively, 
positive wetland health was attributed to the presence of Carex species, as well 
as others included in the Cypereaceae family (i.e., Schoenoplectus spp.) that are 
found in wet meadows (Dybeic et al. 2020). Carex spp, were found in two of our 
vegetation zones in small quantities (Appendix V) but did not contribute on as 
large of a scale as the Dybeic et al. (2020) study. 

 

Cross-year Analysis 

Assessing SNWR across three years of monitoring shows succession of the 
vegetation community. Overall trends across these years show decreased IBI 
and C scores for 2020 sampling, in comparison to 2019 and 2021 sampling, 
where 2021 had the lowest FQI values and 2019 had the highest values. Lugten 
et al. (2020) showed similar trends of MN scoring low for the FQA and IBI, while 
having the lowest occurrence of invasives. MS was the highest scoring site for 
FQA and IBI, in addition to having the highest amount of invasives. P1A scored 
between the other two units for this year. The lowest total IBI score for 2021 (23) 
was just above the highest score for 2019 (22) (Lugten et al. 2020). The FQA 
had a wider spread of values with 2019 C values ranging between 2.9 and 3.5, 
and total FQI between 23.5 and 11.2; the range of C values for 2021 was 3 – 
3.92  and the range of total FQI values was 10.8-12.58 (Lugten et al. 2020). 
Invasive plants for 2019 totalled 13 species with MS having the most invasive 
coverage, and for 2021 totalled 8 species with MC having the most coverage 
(Lugten et al. 2020). The 2020 sampling season had different results compared 
to both our 2021 sampling season and the 2019 sampling season. IBI scores all 
resulted in ‘low’ rankings, with the highest score being 17. Both P1A and MS had 
this score (Dellick et al. 2021). FQA analysis for 2020 resulted in MS having the 
highest C score of 2.8 and the range of total FQI scores between 11.5-16.4 
(Dellick et al. 2021). Invasive plants for the 2020 sampling team had 7 species 
with MN having the most invasive species coverage (Dellick et al. 2021). Before 
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sampling MC, MS had the highest results and spread of invasives across each of 
these tests. This may have been caused by the cross unit flow for MC distributing 
nutrients, seeds, and sediment. 

 

Study Limitations 

In situ sampling limitations included maneuverability and access, as well as 
sampling limitations. Sampling points were randomly scattered across each of 
the 4 sampled wetland units, but did not take into account how these locations 
would be accessed. Some samples required a different sampling spot than the 
initial intended spot because it could not be accessed due to 2021 sampling 
conditions. Density of plants for this growing season prevented access to some 
sampling points as well as water depth. Additionally, species that were portrayed 
in collected vegetation samples may not have been representative of all of the 
species present in SNWR. On several occasions, our team encountered 
European Frogbit–a highly invasive species–in all of the pools sampled, but our 
data do not show that this species was present. We do not know the number of 
species outside our sampled list.  Uncatalogued species in the refuge may have 
been in areas that were not accessible or were simply in areas that were not 
sampled. 

Information transfer and data analysis also encountered limitations. Unknown 
species were encountered during vegetation sampling but were not analyzed by 
USGS experts due to poor preservation; these specimens also could have 
contributed new species to the current array observed in 2021. Data entered 
from field sampling were recorded on ArcGIS Survey 123 and stored virtually 
through the ArcGIS website, transferring data from the website’s storage to 
individual computers caused 2 sampling sites to be deleted from the Nymphaea 
zone samples. This disappearance could have removed species which were only 
observed in this vegetation zone as well as disproportionately altering data 
analysis results from a lowered number of sampling points from the dominant 
vegetation zone. Data analysis may have also been altered due to outdated 
sources, the FQA analysis utilized a regional species guide from 2014. The date 
of this assessment does not accurately capture native or invasive species that 
have entered SNWR or accept vascular plants. Inputting plant species for this 
analysis resulted in the removal of 12 different species entries from the 
cumulative species list; at least 5 were recognized species and not accepted. 
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Implications for Management and Science 

We recommend continued vegetation monitoring to better cover and assess 
continued development of the vegetation community at SNWR based on Dellick 
et al. (2021) sampling procedures incorporated with updates from this report. 

If possible, we suggest continued randomized sampling of vegetation 
communities using ArcGIS. This app allows users to easily measure a season’s 
vegetation zones and manually determine the spacing of sampling points. This 
flexibility is exceedingly helpful as some in situ situations can hamper spacing. 
Additionally, some of the issues experienced through Survey 123 may have 
future surveyors considering paper documentation; this is so that information is 
not lost upon transferring onto the Survey 123 cloud from the field. In addition to 
the loss of 2 Nymphaea vegetation zone samples, there were naming 
conventions in Survey 123 which incorrectly identified one sample quadrat to 
other quadrats in that vegetation zone (i.e. Nymphaea sample 7 quadrat is 
placed with sample 8 quadrats and is incorrectly named “ sample 8”) as well as 
some of the unique identifications given to each sample being mixed up. With 
time, we were able to find and fix all the errors, but paper documentation of each 
sample would eliminate this concern.  

To address the scale of sampling and potential species that were not surveyed 
this year, we recommend creating a species accumulation curve (SAC), similar to 
that used for fishes. This test would be able to predict the total number of species 
present at SNWR even if they were not captured in our samples. One example of 
this test being used for wetland vegetation analysis was Spieles (2005), a SAC 
was utilized to determine vegetation composition in mitigation wetland banks 
throughout the United States. This test will better assist monitoring teams in 
determining the proportion of species documented from the predicted total 
species, and what impact management actions will have on undocumented 
species. We also recommend creating a cumulative list of species found with 
annual updates of new species from each monitoring to better position future 
monitoring teams. This can track newly sampled species that are introduced or 
have been present as well as introductions of new invasive species. Providing 
this list to new teams and utilizing it each year can quickly compare species 
presence and absence. Additionally, we recommend an agreed upon naming and 
preservation process for unknown species. Communication for labeling unknown 
species was challenging as our team was divided in half to sample all sites. 
Naming each sample similarly as information is put into Survey 123 (i.e., Unit 
name,Vegetation zone, Sample number, Unknown number) would be able to 
differentiate species at a fast rate. Designating one team member at the 
beginning of vegetation sampling week to press each unknown species, would 
ensure that all unknowns are preserved adequately. If a plant species is too large 
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for pressing with books, coordinating with USFWS or USGS to use a plant press 
may also be an option.  

Sampling for water chemistry and nutrients is recommended for vegetation sites 
where sonde sampling is applicable. This additional information can help 
managers better understand: 1) the microhabitats outside of typical fish and 
aquatic macroinvertebrate sampling locations which can determine unsampled 
refugia, and 2) nutrient and sediment dispersal for an entire unit. Water quality 
and nutrient sampling across the three years of post-restoration monitoring has 
primarily occurred along the edges of units where wading is feasible (Figure 
2).This suggested sampling would be different than those conducted in other 
sections of this report as sites would be spread throughout wetland units and 
vegetation zones. Water quality has been concurrently sampled with 
macroinvertebrates and fish, these sites are located in areas that are easiest to 
maneuver due to the weight of equipment and time constraints. Nutrient and 
sediment dispersal across each wetland unit can better depict the abundance 
and types of vegetation species present. Invasive species typically spread faster 
from increased nutrient dispersal and sedimentation, since they quickly find open 
areas to grow and can outcompete natives (i.e., bare ground elevated from 
sedimentation) (Zedler and Kercher 2010). Invasive plants are able to effectively 
utilize phosphorus over native plants because of their growth rate and allocation 
efficiency in leaf area and shoot growth (Zhang et al. 2022). Determining the 
nutrient load of vegetation zones can delineate areas where invasive species 
spread is possible, which would be helpful for future management. This can 
influence plant communities, thus impacting species in higher trophic levels.  

We also recommend accessing and interpreting EFB surveys of nearby bodies of 
water. The 2021 and 2020 sampling teams noted that this invasive species was 
present, yet were not able to capture it in vegetation surveys. Reviewing 
literature of EFB presence and density in bodies of water near SNWR may serve 
as some sort of monitoring for this concerning invasive species, even if its 
presence cannot be recorded in annual data sets.  

A bathymetry survey is recommended to better understand the water depths 
across SNWR. This information can help predict the potential for vegetation 
communities across sampled wetland units. Water depth can also reveal 
sediment accumulation across units. Heitmeyer et al. (2013) detailed that P1A 
had a uniform and high elevation compared to the remaining units. Our team 
determined that this may be due to sediment accrual over 70 years from 
hydrological connection to SPD. This was evidenced as no other site had such a 
high level of silt throughout the unit (approximately 2 ft of silt). The northwestern 
corner of MN had the highest water depth along with the majority of MC. 
Analyzing the plant communities and results across these sites may suggest that 
a higher water depth for MC can bolster the variety and health of this unit. 
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Although P1A had some similar scores in the results, we posit this to its 
longstanding hydrologic connection and succession over multiple decades. 
These vegetation communities will ultimately influence macroinvertebrate and 
fish communities, which can impact the variety of birds at SNWR. 
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AQUATIC MACROINVERTEBRATE 
MONITORING 

 

INTRODUCTION 

Aquatic macroinvertebrate communities are important bioindicators, and an 
essential part of wetland communities, and SNWR managers wish to know how 
hydrologic reconnection of MS, MN, and MC will affect communities of these 
primary consumers.  Moreover, numerous waterfowl such as mallards, American 
black ducks, and blue-winged teals are priority refuge resources that, along with 
other waterbirds, rely on invertebrates as food for at least part of their life cycle 
(Stafford et al. 2016; U.S. Fish & Wildlife Service 2018).  Fishes common to 
SNWR, such as brown bullhead and common carp, also rely on and likely affect 
assemblages of aquatic invertebrates (Batzer 1998). Vegetation also plays a role 
in controlling invertebrate distributions and abundance, and abiotic factors like 
water depth, temperature, nutrient balance, and hydrology also exert influence 
(Cooper et al. 2014; Stafford et al. 2016). Given the complexity of these 
interactions and SNWR’s need to determine the effects of reconnection on this 
essential food web component, we set out to monitor SNWR’s invertebrate 
communities during the 2021 sampling season. 

RESEARCH OBJECTIVES 

● Characterize aquatic macroinvertebrate richness and abundance, and 
variation among units, vegetation zones, and months. 

● Determine variation of aquatic macroinvertebrates across years 2019-
2021 

● Explore the relationship between water quality parameters and aquatic 
macroinvertebrate communities and taxonomic diversity. 

● Examine aquatic macroinvertebrates as bioindicators of restoration 
success. 
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METHODS 

Field Sampling 

In recent decades ecologists have refined their use of aquatic invertebrate 
diversity in wetland health assessments of Saginaw Bay marshes (Cooper et al. 
2014). Following an initial sampling season in 2019, Lugten et al. (2020) in 
collaboration with SNWR management established sampling protocols for the 
refuge. Delick et al. (2021) further refined the protocols during the 2020 field 
season, and we again implemented these with a few modifications.  

We sampled for two days near the beginning of each month for June, July, and 
August; in May sampling took place across three days. Each sampling session 
took place across all four management units: MS, MN, MC, and P1A. Within 
each unit, we sampled all vegetation zones that were accessible by wading, and 
where standing water indicated the likelihood of aquatic biota. Due to changing 
water levels throughout the season, this resulted in sampling a variety of 
vegetation zones: Typha, Nymphaea, submerged aquatic vegetation (SAV), 
Salix, Phalaris, and flooded forest; all of which were represented in previous 
years’ samples. We also sampled in three new zones: smartweed, river bulrush, 
and dead Typha. 

In order to avoid unnecessary sediment disturbance, we used a sonde to capture 
triplicate water quality parameters before collecting invertebrates. We next 
conducted a blind toss of a 1m quadrat, and then estimated percent cover of 
vegetation and measured water depth within it. 

We used a 0.5 mm mesh D-net to make nine sweeps in the water column within 
the quadrat’s bounds, taking care to sample all vegetation, the water bottom, and 
open water. We then deposited the contents of the net into a white tray, this 
coloration aids in locating macroinvertebrates.We repeated this process three 
times and deposited all contents into one tray. 

From the tray, we first collected highly visible individuals that might represent 
unique taxa, and then we selected a small section of the tray and collected 
exhaustively using pipettes or tweezers before moving to another section. We 
collected for a combined effort of thirty minutes across 4 researchers, and 
deposited all specimens into a vial containing 80% ethanol (ETOH) solution. 
Vials were labeled by unit name, sample number, and date sampled (e.g. MC 02 
06072021). Later, we sorted and counted specimens using dissecting 
microscopes, and identified and labeled them according to keys in Merritt and 
Cummins (2008), with unknown specimens stored for later identification by 
experts. 
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We identified specimens using methods derived from the Great Lakes Coastal 
Wetland Monitoring Program (CWMP) and two taxonomic identification manuals 
(Hilsenhoff 1975; Thorp and Covich 2010). In 2019, Lugten et al. (2020) identified 
samples to family; in 2020, Dellick et al. (2021) identified to genus. We further 
refined identification techniques during 2021 by adopting the lowest operational 
taxonomic unit (LOTU) as the primary measure of taxonomic richness. Using this 
method, we completed identification to genus, but in rare cases where genus-
level identification was beyond our expertise, we identified to family (various 
families), subfamily or tribe (Chironomids only), and in rare instances, to higher 
levels (Oligochaeta, Hydracarina), thus providing this highest level of taxonomic 
resolution possible (Burton et al. 1999). In two cases, we used a split 
identification where the distinction between two taxa was not possible (Bezzia or 
Palpomea, Pseudochironomini/ Chironomini). This method involves uncertainty 
where, for example, there may be overlap between specimens identifiable to 
family and those from the same family identifiable to genus.  However, the 
method also allows us to account for any unknown genera without 
undercounting, and because most taxa are known, we deemed the level of 
uncertainty acceptable. 

 

DATA ANALYSES 

Catch per unit Effort (CPUE) 

 We used Microsoft Access to standardize macroinvertebrate catch per unit effort 
(CPUE) for LOTU, where effort was calculated as the total number of a given 
taxon divided by the number of months sampling occurred, the number of 
samples within a vegetation zone, or the number of units. We also calculated 
total CPUE by dividing taxon counts by the number of total sampling efforts, in 
this case 60. 

 

Analysis of Variance (ANOVA) 

We used the R software program in base R and the ‘cars’ and ‘dplyr’ packages 
for all statistical tests. We tested datasets for normality and equal variance, and 
then ran analyses of variance (ANOVA) on both LOTU CPUE, as well as 
summed counts of invertebrates per month, unit, or vegetation zone. We also 
examined multiple linear regressions of pH, turbidity, temperature, and 
conductivity as independent variables plotted against LOTU CPUE.   
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Permutational Analysis of Variance (PERMANOVA) 

We also ran permutational analysis of variance (PERMANOVA) tests using the 
‘adonis’ package and created nonmetric multidimensional scaling (NMDS) plots 
using the ‘vegan’ and ‘ggplot2’ package. PERMANOVA uses an F-test to 
measure the sum-of-squares within and between groups, and randomly 
permutes the community matrix based on our distance measures of months, 
units, and vegetation zones. For all PERMANOVA, we constructed NMDS plots 
using Bray-Curtis dissimilarity indices and Euclidean distances condensed to 
three dimensions (k=3). To aid visualization, we presented only one NMDS plot 
most representative of our results out of the three possible dimensional 
combinations, and used ellipses to assist interpretation of 95% confidence 
intervals for each vegetation zone, unit, and month. We presented an NMDS plot 
which best described the variation. 

 

Index of Biotic Integrity (IBI) 

To construct indices of biotic integrity (IBI) for macroinvertebrates, we used 
Microsoft Excel, and followed Standard Operating Procedures for the Coastal 
Wetland Monitoring Program (Coastal Wetland Monitoring Program 2019) as well 
as Burton et al. (1999). Burton et al. (1999) developed different scores depending 
on the vegetation zones present in the wetland. Specific scoring is available for 
Typha only, and it utilizes points for each indicator taxa which are then summed 
and given one of four qualitative assessments from “degraded” to “reference 
conditions” (i.e. pristine). Lugten et al. (2020) and Dellick et al. (2021) used 
different methods, although these were also derived from Burton et al. (1999), so 
while our results are reliable, comparison across years may not be. 

 

Characterizations of Functional diversity and Successional Change 

We reviewed the literature on macroinvertebrates and characterized SNWR 
richness and abundance on three parameters.  First, we followed Burton et al. 
(2002) in their characterization of coastal wetland macroinvertebrate 
communities as high fetch, mid-fetch, and low fetch. We summed unit CPUE for 
those taxa that Burton et al. (2002) identified as strongly associated with each of 
those zones in order to identify fetch interactions with SNWR wetland units. 

Second, Pollock et al. (2017) uses an island biogeography framework to sort 
samples into strong, weak, and nonflying taxa and quantify colonization rates of 
more distant, nearer, larger, and smaller wetland units. We followed Sarramejane 
et al (2020) in coding primary dispersal method from affinity traits (the likelihood 
of a dispersal method for each LOTU, scored from 0-3) and summed unit CPUE 
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for each dispersal method by unit.  Note that a particular taxon may have more 
than one dispersal method, but we categorized taxon only on the highest scoring 
dispersal method. If a trait scored equally likely for two dispersal methods, as for 
chironomids, Hesperocorixa, Trichocorixa, Branchiobdellida (phoretic passive 
aerial dispersal), immature corixids, pleids, and Clinotanypus, then we divided 
the CPUE by half and added it to both dispersal methods. We followed Vieira et 
al. (2006) who suggested that trait affinities for families and genera without trait 
affinities can be derived by taking the family average from available genera. All 
trait affinities were established from Sarremejane et al. (2020), except in the case 
of Hyalella, Caecidotea, Hydrachnidae, and Nehalennia that were only available 
in Vieira et al. (2006) and trait affinities were established from comments. 

Third, we characterized successional change and catastrophic events at SNWR 
by comparing taxa across years 2020 and 2021 in all units. We arbitrarily chose 
a minimum of 0.5 unit CPUE (which equates to at least half the number of 
individuals as samples taken in any given unit) because demographic and 
environmental stochasticity may overtake comparisons below this level of 
measurement. We then highlighted units where any taxa decreased across years 
(red), increased across years (green), or where MC was significantly higher or 
lower than all other units. 
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RESULTS 

Overview 

From sixty sampling sites, we counted 5842 macroinvertebrates in 97 LOTUs, 
representing 14 orders, 47 families, and 71 genera (Table 18).  Delick et al. 
(2021) identified 7,763 individuals from 14 orders, 50 families, and 100 genera 
from 3 wetland units. Lutgen et al. (2020) identified 43 families in total, but did not 
identify specimens to genera. In total, Dellick et al. (2021) collected more families 
than did Lugten et al. (2020) or our team. However, our 2021 sampling team was 
the first to collect data in MC. Except for the family-level identifications in MN, 
there was a decline from 2020-2021 across all units at both the family and 
genera level. 

 

Table 18. Raw macroinvertebrate family and genera richness, 2019-2021. 
‘N/A’ represents years before MC was reconnected and sampling occurred. Note 
that while 2019-2020 shows no consistent variation in richness, 2020-2021 
shows a consistent decline across all years and taxonomic levels. Abbreviations 
refer to wetland units: Maankiki North (MN), Maankiki South (MS), Maankiki 
Center (MC), and Pool 1A (P1A). 

 Families Genera 

Unit 2019 2020 2021 2020 2021 

MC n/a n/a 35 n/a 45 

MS 41 37 27 52 33 

MN 32 34 37 53 40 

P1A 36 39 33 58 41 

Total 109 110 132 163 114 
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In order of greatest to least abundance, the 9 most common families are similar 
between all three years (Table 19). Additionally, Belostomatidae and Libellulidae, 
ranking in the top 9 in years 2019 and 2020, respectively, ranked 12th and 13th 
in abundance in 2021. Superficially, family abundance is similar between years, 
although major differences exist between CPUE, which for some families is 
highest in 2020, and for others is lowest in 2020. Overall, there is more similarity 
between 2019 and 2021, than between 2020 and the other two years. 

 

Table 19. The nine most abundant families ranked by total CPUE, 2019-
2021. Hyalellidae, Physidae, and Hydrachnidae only contain one genus in our 
sample; other families contain more than one subfamily, tribe, or genus. Note 
that Hydracarina in 2021 is the higher order for the family Hydrachnidae in 2020 
and 2019, but represent the same LOTU. 

2019 2020 2021 

Family CPUE Family CPUE Family CPUE 

Caenidae 28 Hyalellidae 67.8 Hyalellidae 21.2 

Hyalellidae 21.9 Coenagrionidae 18 Chironomidae 13.6 

Chironomidae 17 Caenidae 14.4 Caenidae 12.7 

Coenagrionidae 10.8 Chironomidae 5.7 Coenagrionidae 12.0 

Corixidae 6.1 Hydrachnidae 5.7 Corixidae 8.4 

Pleidae 3.1 Physidae 5.4 Physidae 4.8 

Physidae 2.8 Libellulidae 4.8 Hydracarina 3.0 

Hydrachnidae 2.8 Corixidae 4.7 Pleidae 2.8 

Belostomatidae 2.4 Pleidae 3.8 Aeshnidae 1.3 
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When we measured unit CPUE, we did not find that each unit had strongly 
different LOTUs (Table 20). We consistently found Hyalella, Caenis, and 
Chironomini in each unit, although there are significant differences in CPUE. 
Among the top five taxa in each unit, we only found Neoplea in P1A, and 
Trichocorixa and Hydracarina in MS, while other LOTUs we found in at least two 
of the units. When we separated the top nine taxa by unit CPUE, we found a 
higher proportion of flying taxa and a lower proportion of crawling and swimming 
taxa in MC, with these proportions narrowing in MS, MN, and P1A. 

 

Table 20. The five most abundant families ranked by wetland unit CPUE. 
Grey indicates a taxon common between all four units.  Where a LOTU did not 
go to genus-level identification, genus is blank and we only record the higher 
taxon, thus some families are shared between units, but the LOTU is not. 
Abbreviations refer to wetland units: Maankiki North (MN), Maankiki South (MS), 
Maankiki Center (MC), and Pool 1A (P1A). 

        

 MN MC  

 Higher Taxon Genus CPUE Higher Taxon Genus CPUE  

 Hyalellidae Hyalella 38.4 Caenidae Caenis 14.3  

 Caenidae Caenis 14.0 Hyalellidae Hyalella 13.1  

 Coenagrionidae Coenagrion 6.6 Coenagrionidae  8.7  

 
Corixidae  6.1 Chironomidae 

Pseudochironomin
i/Chironomini 

6.7 
 

 
Chironomidae 

Pseudochironomi
ni/Chironomini 

4.6 Physidae Physa 5.7 
 

 MS P1A  

 Higher Taxon Genus CPUE Higher Taxon Genus CPUE  

 Hyalellidae Hyalella 20.0 Hyalellidae Hyalella 16.3  

 Caenidae Caenis 8.5 Caenidae Caenis 12.8  

 
Chironomini 

Pseudochironomi
ni/Chironomini 

6.9 Chironomini 
Pseudochironomin

i/Chironomini 
9.1 

 

 Corixidae Trichocorixa 6.8 Physidae Physa 6.3  

 Hydracarina  5.4 Pleidae Neoplea 6.0  
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We produced three tables relating to macroinvertebrate community functional 
group and flood impact: Taxa by major dispersal method (Table 21), taxa by 
primary dispersal method (Table 22), and a cross year comparison of flood-
affected taxa by unit CPUE (Appendix VI). We found trends in all three results. 
Comparing flyers to nonflyers, we found that MC had the largest spread, as well 
as the most overall flyers, and that wetland unit age corresponds closely to the 
proportion of flyers to nonflyers in each wetland unit.  

Results for primary dispersal method largely follow those for flyers and nonflyers, 
but without the same trend by wetland unit age (Table 21 & 22). MC has the most 
aerial dispersers, and the fewest aquatic dispersers, although the difference 
between the number of aerial and aquatic dispersers has reversed, such that MC 
has the smallest difference between aerial and aquatic dispersers. 

 

Table 21. Unit CPUE of nine most common taxa organized by mobility. 
Summed unit CPUE of the nine most common taxa, sorted by wing presence or 
absence of the adult stage of each of the nine most common LOTUs. 

 Unit CPUE of nine most common taxa 

Wetland Unit MC MN MS P1A 

Flyers 41.33 30.64 21.08 31.25 

Crawlers & 
Swimmers 21.5 50.71 41.16 36.94 

 

 

 

 

 

 

 

 

 



 79 

 

Table 22. Unit CPUE of all taxa above 0.5 CPUE 2020 & 2021, summed by 
primary dispersal method. We coded primary dispersal method from affinity 
traits (the likelihood of a dispersal method for each LOTU, scored from 0-3) and 
summed unit CPUE for each dispersal method by unit. Active aerial dispersers fly 
to colonization sites.  Passive aerial dispersers are either blown to sites or are 
phoretic dispersers.  Active aquatic dispersers swim to colonization sites.  
Passive aquatic dispersers either drift or are phoretic dispersers. Abbreviations 
refer to wetland units: Maankiki North (MN), Maankiki South (MS), Maankiki 
Center (MC), and Pool 1A (P1A); years refer to the year the unit was sampled. 

          

  Summed unit CPUE Dispersal method of wetlands units, 2020-2021  

  

P1A 
2020 P1A 2021 MN 2020 MN 2021 

MS 
2020 MS 2021 

MC 
2021  

 Active Aerial 38.7 20.3 49.9 24.7 21.6 15.2 25.6  

 Passive Aerial 3 8.6 3.1 5.5 3.5 6.2 7.5  

 Active Aquatic 13.2 17 29.2 19.4 17 14.1 16.5  

 Passive Aquatic 83.7 45.8 170.4 51.8 38.1 43 30  

 Summed Aerial 41.7 28.9 53 30.2 25.1 21.4 33.1  

 Summed Aquatic 96.9 62.8 199.6 71.2 55.1 57.1 46.5  

 Difference 55.2 33.9 146.6 41 30 35.7 13.4  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
         



 80 

Influence of Vegetation Zone 

The macroinvertebrate counts grouped by vegetation zone were not significantly 
different from each other (p>0.0649; Figure 25). Our normality tests showed that, 
except for in the Phalaris zone, distributions failed the assumption of normality.  
However, the analyses of variance tests are particularly robust to non-normal 
distributions, and the macroinvertebrate counts did not fail a test for equal 
variance. While the 25th and 75th percentiles are relatively consistent across 
vegetation zones, the Typha zone and the SAV zone showed larger 75th 
percentiles and very large outliers.  

 

Figure 25.  A histogram of summed macroinvertebrate counts divided by 
the vegetation zone where they were found. Points represent samples farther 
than X1.5 the 75th percentile. Vegetation zones are coded for ease of use in the 
field and refer to dominant stands or habitat types: submerged aquatic vegetation 
is any mixed floating or submerged vegetation (SAV); mixed emergent is any 
mixed emergent vegetation, including that with SAV that is still mixed emergent 
dominant (MEV); channel is open flowing water with little to no vegetation; dead 
Typha is dead Typha sp; Typha is Typha spp; Nymphaea is Nymphaea odorata, 
River Bulrush is Schoenoplectus tabernaemontani; Smartweed is Persicaria 
amphibia; forest is Acer saccharum; Salix is Salix nigra and/or Salix exigua; and 
Phalaris is Phalaris arundinacea. 
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Normality tests performed on LOTU CPUE showed nonnormal results across 
vegetation zones except Phalaris. Unlike for macroinvertebrate counts, however, 
a test of equal variance on CPUE failed. Note, however, that we used dead 
Typha zone in our ANOVA, but not in NMDS plots. The histogram of 
macroinvertebrate CPUE by vegetation zones shows a greater variation in 
quartiles than that for macroinvertebrate counts (Figure 26). Again, because 
analyses of variance are robust to non-normal distributions, we proceeded with 
our analysis. CPUE does not vary by vegetation zone for any variable except 
dead Typha (Appendix VIII). We confirmed this variation with a post-hoc test, and 
found significant differences between dead Typha and Typha (p<0.0002473), 
dead Typha and river bulrush (p<0.0044711), dead Typha and Salix 
(p<0.0039626), and dead Typha and SAV (p<0.0005968). Dead Typha and 
forest was nearly significant (p<0.0562847).  

 
Figure 26. A histogram of macroinvertebrate CPUE divided into the 
vegetation zone where they were found.  Points represent samples farther 
than X1.5 the 75th percentile. Vegetation zones are coded for ease of use in the 
field and refer to dominant stands or habitat types: submerged aquatic vegetation 
is any mixed floating or submerged vegetation (SAV); mixed emergent is any 
mixed emergent vegetation, including that with SAV that is still mixed emergent 
dominant (MEV); channel is open flowing water with little to no vegetation; dead 
Typha is dead Typha sp; Typha is Typha spp; Nymphaea is Nymphaea odorata, 
River Bulrush is Schoenoplectus tabernaemontani; Smartweed is Persicaria 
amphibia; forest is Acer saccharum; Salix is Salix nigra and/or Salix exigua; and 
Phalaris is Phalaris arundinacea. 
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An NMDS performed on macroinvertebrate communities grouped by vegetation 
zone showed spread of ellipses across MDS1 and MDS2 (Figure 27). The 
ordination showed overlap between most vegetation zones, however, MDS1 
explained a high degree of variation in the forest macroinvertebrate community 
(Figure 27). The ellipse for forest was most dissimilar from all other ellipses. The 
ellipses for Nymphaea, Pharalis, smartweed, SAV, Typha, and river bulrush had 
significant overlap. MDS1 explained significant variation in the forest 
macroinvertebrate community, although other vegetation zones had a high 
degree of overlap in both dimensions. However, we did not find any significant 
difference based on vegetation zone (PERMANOVA, p>0.371, Table 23). 

 
Figure 27. Macroinvertebrate NMDS plot on Bray-Curtis Dissimilarity by 
vegetation zone.  Each colored shape represents a different vegetation zone, 
and ellipse colors correspond to shape colors. Note that ordination plots require a 
minimum of four samples, so some vegetation zones are represented without 
ellipses. Through computer or user error, we also produced two samples without 
a vegetation zone, labeled ‘N/A.’ Vegetation zones are coded for ease of use in 
the field and refer to dominant stands or habitat types: submerged aquatic 
vegetation is any mixed floating or submerged vegetation (SAV); mixed emergent 
is any mixed emergent vegetation, including that with SAV that is still mixed 
emergent dominant (MEV); channel is open flowing water with little to no 
vegetation; dead Typha is dead Typha sp; Typha is Typha spp; Nymphaea is 
Nymphaea odorata, RB is Schoenoplectus tabernaemontani; Smartweed is 
Persicaria amphibia; forest is Acer saccharum; Salix is Salix nigra and/or Salix 
exigua; and Phalaris is Phalaris arundinacea. 
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Influence of Month 

We tested normality and variance, and found an insignificant variation in CPUE 
between months (P> 0.697). While none of the four months were normally 
distributed, they did produce equal variance. A very large outlier for Hyalella 
visible in both the histogram for CPUE (38.428) may have influenced our sample. 
The large number of outliers may have skewed the macroinvertebrate counts, 
resulting in a false rejection of the null hypothesis.  

 

 

Figure 28. A histogram of macroinvertebrate CPUE by month.  Months are 
represented by calendar month.  A single large natural outlier representing 
Hyalella is visible above 35 CPUE in the histogram. 
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Our PERMANOVA of macroinvertebrate presence-absence by month revealed a 
significant difference between months (p>0.002, R2 = 0.128, Table 23). In 
ordination space, ellipses of macroinvertebrate communities by month partially 
overlapped, with the spread of the ellipses visible across MDS1 and MDS2 
(Figure 29). The community declines on MDS2 and increases on MDS1 from 
May to June, then increases on MDS2 and MDS1 from June to July, and finally 
increases on MDS2 from July to August.   

 

Figure 29.  Macroinvertebrate NMDS plot using Bray-Curtis Dissimilarity.  
Months are shown as distinct shapes and colors.  Ellipses are colored to 
correspond to each month.  June shows the largest variability across MDS 1 and 
MDS2. 

 

 

 



 85 

Influence of unit 

We ran a PERMANOVA and found significant variation in communities between 
units. The PERMANOVA by unit showed a significant difference between units 
(p>0.011, Table 23) with an R-squared value of 0.099, meaning that variation in 
units explained approximately 9.9% of the variation between communities. In 
ordination space, there was a small difference in the ellipse centers increasing 
across MDS3 and MDS2 between MS, MN, P1A, and MC (Figure 30). The 
variation was intermediate between the ordination space for vegetation zones 
and that for months. 

 

 
Figure 30. Macroinvertebrate NMDS plot using Bray-Curtis Dissimilarity.  
Wetland units are shown as distinct shapes and colors.  Ellipses are colored to 
correspond to each month. Abbreviations refer to wetland units: Maankiki North 
(MN), Maankiki South (MS), Maankiki Center (MC), and Pool 1A (P1A). 
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Table 23.  Permutational analysis of variance (PERMANOVA) effect size and 
significance (p-value), and ANOVA signficance (p-value) for 
macroinvertebrate communities tested against vegetation zone, month, and 
wetland unit. Effect size is higher for vegetation zone but still insignificant. 

Permutational Analysis of Variance (PERMANOVA) 

 Effect Size P-value 

Vegetation Zone 16.60% <0.371 

Month 12.20% <0.002 

Wetland Unit 9.90% <0.011 

ANOVA P-values 

 CPUE Count 

Vegation <0.000154 <0.0649 

Month <0.877 <0.697 

Wetland unit <0.841 <0.871 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 87 

Influence of water quality 

To examine relationships between water quality variables and macroinvertebrate 
communities, we used a linear regression model with temperature, conductivity, 
dissolved oxygen, turbidity, and pH as explanatory variables and 
macroinvertebrate count as a response variable. We found in checking model 
assumptions a strong correlation between dissolved oxygen and pH (73%), and a 
variance inflation factor of 2.78, suggesting high multicollinearity. The linear 
model results showed a significant correlation between macroinvertebrate count 
and pH (p>0.0211), however, the adjusted R-squared explains less than 1% of 
the variation (0.006). While multicollinearity and a small R-squared value (i.e., 
effect size) do not invalidate the results, they do suggest the effect of pH will be 
difficult to discern. 

Restoration Success 

The macroinvertebrate Index of Biotic Integrity has varied from year to year 
without a distinct trend. In 2021, we found that MN, P1A, and MS were 
moderately degraded, and that MC was moderately impacted. These values 
were slightly lower than in previous years. In 2020, the research teams rated all 
three units as mildly impacted, and in 2019 MN and MS were rated as 
moderately degraded, while P1A was mildly impacted, but these 2019 scores 
were later corrected for an error, resulting in all values being rated as mildly 
impacted (Table 24).   

Table 24. IBI scores for each unit and year. Possible scores from most 
anthropogenically impacted to most pristine are ‘degraded,’ ‘moderately 
degraded,’ ‘mildly impacted,’ and ‘reference’ conditions. Abbreviations refer to 
wetland units: Maankiki North (MN), Maankiki South (MS), Maankiki Center (MC), 
and Pool 1A (P1A).  Results are organized by sampling year.  Note that these 
are calculated differently from IBIs for vegetation and fish. 

Macroinvertebrate IBI Across Years 

Unit 2019 2020 2021 

MC N/A N/A 
Mildly 

Impacted 

MS 
Mildly 

Impacted 
Mildly 

Impacted 
Moderately 
Degraded 

MN 
Mildly 

Impacted 
Mildly 

Impacted 
Moderately 
Degraded 

P1A 
Mildly 

Impacted 
Mildly 

Impacted 
Moderately 
Degraded 
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DISCUSSION 

Excluding microcrustacia, the most abundant nine families of macroinvertebrates 
represented 80% of our catch: Hyalellidae, Chironomidae, Caenidae, 
Coenagrionidae, Corixidae, Physidae, Hydracarina, Pleidae, and Aeshnidae. 
Lugten et al. (2020) and Dellick et al. (2021) (representing sampling seasons 
2019 and 2020, respectively) found similar families and abundance, with some 
notable variation. In sampling season 2020 the nine most common families 
represented 86% of the total catch, and in 2020, 79.4% belonged to these 
families.  Because most (but not all) of the nine most common families represent 
only one or two LOTU, we should expect similar results from past years not just 
among families, but also genera. Furthermore, because marshes experience 
large fluctuations in water levels and summer water quality, we found the majority 
of taxa identified are tolerant of variation in water quality and levels. We also 
found SNWR macroinvertebrate communities across years to be representative 
of Great Lakes marsh macroinvertebrate distributions, with a few exceptions. 

Comparing our results to much larger datasets, Cooper et al. (2014) described 
ten cosmopolitan taxa that represent 61% of the community from samples across 
Great Lakes coastal marshes; with much smaller numbers of rare taxa 
representing the remainder of the sample. This is less than at SNWR, where the 
ten most common taxa represent 69.5% of our sample. This distribution results in 
what the authors called a “hollow species abundance curve,” comprising a small 
number (10-20) of widespread and abundant taxa and a large number of rare 
taxa, resulting in extremely low community evenness. Such a distribution has 
important implications for sampling effort, because we can represent the most 
common species with little effort, but a complete sample of all taxa will, in 
contrast, be quite difficult to obtain. Future researchers should not be surprised to 
field-pick most of their data from 10-20 hyperabundant LOTUs, and, conversely, 
find occasional, anomalous individuals that are superficially unrepresentative of 
the community. 

However, SNWR’s ten most common taxa are not most similar to those found in 
Saginaw Bay marshes, but are instead a combination of taxa common to 
Saginaw Bay and other Great Lakes marshes (Cooper et al. 2014).These are 
important distinctions, because taxa can be used as indicators for several 
different wetland features: quality, fetch, and biogeography. For example, SNWR 
contains high relative abundance of Ischnura and coenagrionids in its ten most 
common taxa, which is more like Saginaw Bay communities; but also high 
relative abundance of Physa and corixids across all three years, which is more 
like Great Lakes marshes in general. On the other hand, the SNWR study units 
have never recorded Gammarus, Mesovelia, or oligochaetes in their top ten taxa, 
all three of which are common to both Saginaw Bay and Great Lakes wetlands 
(although we have recorded them low in the top twenty). Thus, SNWR may 
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uniquely represent an interesting combination of the most common taxa from 
Saginaw Bay and other Great Lakes wetlands. All the wetlands from which we 
are comparing results are coastal, lacustrine marshes, so we should expect 
differences both because SNWR is a uniquely inland floodplain wetland with 
coastal effects, and because it is a recently restored wetland. There are several 
other reasons that taxa may not exactly match Saginaw Bay taxa, but we believe 
the results showed that SNWR is not simply an “inland coastal estuary” (U.S. 
Fish & Wildlife Service 2018), but rather a restored hybrid wetland, with abiotic 
and biotic conditions representative of both coastal lacustrine wetlands and 
inland floodplain wetlands, and perhaps others. 

 

Is fetch a defining feature of SNWR? 

Fetch is the length of water over which wind has blown without obstruction, and 
is one of the more important physical variables influencing macroinvertebrate 
communities in GLCWs (Burton et al. 2002; Burton et al. 2004; Cooper et al. 
2014). This hydrologic feature is likely less dominant in SNWR than in fringing 
marshes, drowned river mouths, open embayments, and other coastal Great 
Lakes marshes (Burton et al., 2004). Burton categorized three fetch 
communities: high-fetch marshes containing higher densities of Sigara, 
Trichocorixa, Oligochaeta, and Bezzia; low-fetch marshes containing higher 
densities of Gammarus, Crangonyx, Caecidotea, Chironomini, and Tanytarsini; 
and finally mid-fetch marshes containing higher densities of Hyalella, 
Tanypodinae, Libellulidae, Caenis, Callibaetes, Physa, and Hydracarina. We 
used characteristic invertebrate taxa from Burton et al. (2002), and while Burton 
et al. (2004) and Cooper et al. (2014) both agree with these groupings, specific 
taxa representative of each fetch category vary by region, and we discuss these 
differences below. 

Overall, the low-fetch marsh taxa represented 9.48 total CPUE (number of 
individuals collected by each taxa divided by total number of sample sites, 60) 
whereas the high-fetch taxa represented 3.9 total CPUE, and the mid-fetch taxa 
represented 42.85 total CPUE. While there was some uncertainty with regard to 
identification due to differences between Burton et al. (2002) and our study (see 
metadata), under current biotic and abiotic conditions our data showed that 
SNWR macroinvertebrate communities represented a mid-fetch marsh.  

When the fetch taxa are analyzed by unit CPUE, all units have more taxa 
representative of mid-fetch marshes than low-fetch marshes except MS, and 
more low fetch than high fetch taxa. The only exception is MS, where high-fetch 
(9.17) and low-fetch (8.17) taxa were similar, but with significantly more mid-fetch 
taxa (45.69). This is due in part to the large number of Trichocorixa present. 
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However, it is a very common genus in freshwater systems, so its presence is 
not necessarily definitive on the influence of fetch. 

Although mid fetch may be a defining feature of SNWR, anthropogenic influences 
complicate our interpretation. Cooper et al. (2014) found that percent agriculture 
in the watershed and fetch have higher influence on Saginaw Bay wetlands than 
ambient water quality. Cooper et al. (2014) also found similar directional 
influences on an NMDS axis of macroinvertebrate communities for these two 
features. Our multiple regression analysis on four water quality parameters as 
explanatory variables for macroinvertebrate CPUE produced significant results 
for pH and dissolved oxygen, but with an effect size of only 0.6%. Such a small 
response supports the conclusion of Cooper et al. (2014) that ambient water 
quality is not an important explanatory variable for macroinvertebrate 
distributions in the region, and that we should look to fetch and agriculture to 
describe distributions, among other factors. 

The four tributaries that drain into SNWR have predominantly agricultural 
watersheds; in fact Cooper et al. (2014) defines HUC 6 (Hydrologic Unit Code 6), 
the watershed that contains SNWR, as an “agricultural watershed.” So, if 
agriculture and fetch have similar effects on macroinvertebrate communities in 
SNWR, as Cooper et al. (2014) found for Saginaw Bay marshes, then SNWR 
should have the macroinvertebrate abundances of a high-fetch marsh. But 
instead, we find the extremely low levels of Gammarus, Crangonyx, and 
Caecidotea at SNWR, taxa that are usually more common in high fetch wetlands, 
and very high dominance of highly tolerant and widespread taxa such as 
Hyalella, Physa, and Caenis. SNWR is not only low in Gammarus relative to 
Saginaw Bay marshes, but as previously mentioned, also in relation to GLCW 
sites across Michigan. In fact, Zapelloni et al. (2021) showed that Hyalella 
density and sex ratio were not affected by phosphorus concentrations, a 
chemical that could be indicative of agricultural runoff. Moreover, Physa acuta is 
a globally invasive species (Van Leeuwen et al. 2013), a pattern that suggests a 
high tolerance to agricultural freshwater habitats.  Even though SNWR does not 
have nutrient concentrations indicative of eutrophication, other factors upriver 
(low quality or absent riverine edge habitat, other less well-monitored, high 
sediment loads; see Water Quality, this report) could sufficiently affect 
macroinvertebrate metapopulations to reduce recruitment into the refuge. Indeed, 
regional and even global macroinvertebrate distributions may have declined so 
much that pristine wetlands will not provide a suitably large metapopulation to aid 
recruitment into the refuge of more sensitive species (Hallmann et al. 2017). 

Furthermore, because agricultural runoff, watershed channelization to control 
farm irrigation, and sedimentation from tillage have historically negatively 
affected Saginaw Bay water quality; some of these effects may now be diverted 
into and concentrated within SNWR’s largest marsh units, meaning watershed-
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level effects that were once felt at upriver sites or outlets to the Saginaw Bay are 
now felt in the SNWR floodplain itself.  Specifically, Cooper et al. (2014) reported 
that 61% of Saginaw Bay wetland macroinvertebrate abundance was 
represented by ten cosmopolitan taxa. Although SNWR communities appear to 
contain a mixture of organisms common to Saginaw Bay marshes and other mid-
fetch Great Lakes coastal marshes, they also show an even higher concentration 
of cosmopolitan taxa than most Great Lakes coastal wetlands (GLCW), with just 
ten taxa representing 73.5% of SNWR marsh abundance. Lugten et al. (2020) 
and Dellick et al. (2021) found even higher relative abundance of their top ten 
taxa, and although the abundances of each taxa varied, almost all families and 
genera remained in the top ten across all three years. This high abundance of 
cosmopolitan taxa could be due to the recent restoration of our sampling units, or 
the negative effects of agriculture in the watershed. However, another author 
characterized every Michigan watershed by their level of agriculture or 
development, and found a strong negative correlation between agriculture and 
macroinvertebrate functional diversity, voltinism, and lifespan (Kovalenko et al. 
2014). He reported some of the highest levels of agriculture in HUC 6. 

Burton et al. (2004) does suggest a different characterization of low and high-
fetch taxa for Saginaw Bay. However, among the 8 taxa in that study 
representative of fetch distributions, they are either identified to a level beyond 
our expertise (e.g., Stylaria, Ischnura verticalis) or absent from our findings (e.g., 
Hydra, Nectopsyche, Agraylea).  Even if recalculated using the Burton et al. 
(2004) taxa, we are confident the result would categorize SNWR as a low fetch 
wetland, because of the importance of Hydracarina and Caecidotea both in our 
samples and low-fetch Saginaw Bay marshes.  Finally, across both studies as 
well as the later Cooper et al. (2014) effort in Saginaw Bay wetlands, there is a 
negative correlation between crustacean abundance and fetch, but SNWR has 
very high densities of Hyalella. Cooper et al. (2014) nonetheless states that his 
results are applicable basin-wide; this was regardless of taxonomic level or 
whether Saginaw Bay wetlands were considered. All three papers also note that 
fetch taxa are broadly categorized by vegetation zones, specifically an outer 
Scirpus zone, an inner Scirpus zone, and a Typha zone (these are also the 
primary vegetation zones used in IBI metrics). If fetch had any sort of dominant 
influence at SNWR, even if entirely distinct from its effect on GLCWs, we might 
observe at least some significant differentiation by vegetation zone. But our 
NMDS did not show any significant differences across the eight vegetation zones 
we sampled. Therefore, these results only further confirm the discordance 
between the influence of agriculture and fetch at SNWR, and the incomparability 
of SNWR and Saginaw Bay marshes.  

The similar effects of agriculture and fetch on macroinvertebrate distributions 
suggest either that fetch is not a dominant influence at SNWR or that the tests for 
influence of fetch that are calibrated against Great Lakes marshes are not useful 
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at SNWR. That is, if fetch and agriculture are multicollinear, we would expect 
SNWR macroinvertebrate communities to reflect a high fetch wetland. A final 
possibility is that the presence of dikes at the refuge combined with its distance 
from the coast reduces fetch. But our discussion instead shows a wetland with 
very strong influence from agriculture and a macroinvertebrate distribution 
characteristic of a low or mid-fetch wetland. If diking and distance from Lake 
Huron also affect taxa, these effects will have to be separated out in future 
research. SNWR is not a Great Lakes coastal marsh, but requires a different 
designation. 

 

Is Burton’s IBI useful at SNWR? 

Multiple abiotic explanations could account for the lack of a clear trend in IBI 
scores either between units or years, but here we will only offer three: 
methodology, flooding, and island biogeography. 

First, some methodological issues exist. The marsh sites used to calibrate the IBI 
all around Saginaw Bay contain an inner and outer Scirpus zone, SNWR does 
not have any Scirpus vegetation zones, but only the Typha zone (Burton et al. 
1999). SNWR instead has patches of SAV, river bulrush, Salix, floodplain forest, 
and even those that are still entirely unsampled like purple loosestrife (Lythrum 
salicaria) or undersampled like mixed emergent vegetation (MEV). GLCWs also 
receive more lacustrine hydrologic influence from fetch, seiche, and storm 
events; whereas SNWR, while receiving those lacustrine influences, primarily 
absorbs water from its tributaries, and most immediately the Shiawassee River. 
All of these factors mean that Burton et al. (1999) even if it provides a roughly 
accurate direction of change from year to year, does not necessarily capture 
refuge quality or details of macroinvertebrate abundance and change. We must 
stretch the usefulness of the current macroinvertebrate IBI by using only Typha 
zone communities which undoubtedly represent only a small portion of refuge 
richness, given the many other zones that we undersampled or tossed from the 
IBI analysis. 

Second, so far as we are aware, none of the wetlands from which our IBI was 
developed have undergone quite such complete drainage, conversion to 
farmland, and subsequent restoration as has SNWR, although a few are 
otherwise heavily altered (Burton et al. 1999; Uzarski et al. 2004; Coastal 
Wetland Monitoring Program 2019). That is, SNWR is a complex of diked 
wetlands managed for waterfowl populations, ecosystem services, and wildlife 
conservation. Our research and current refuge managers are attempting to 
understand fish movements for future management goals, as well. Constructed 
wetlands will not behave the same way as natural wetlands, and they are not 
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intended to do so; the reference conditions that define a pristine GLCW will never 
be applicable. Wetlands near SNWR received a ‘moderately degraded’ rating, in 
comparison to other aquatic macroinvertebrate IBI analysis across the state 
(Appendix XI). It is entirely possible that a floodplain wetland with a high 
macroinvertebrate richness measured with some other tool will not attract desired 
waterfowl as well as one that artificially ranks lower or higher with the current IBI 
tools. 

Waterfowl wetlands favor ducks and geese that prey on macroinvertebrate 
communities (Batzer and Boix 2016). Lamellar density and foraging habit (diving 
or dabbling) affect the invertebrates that waterfowl select.  While the IBI 
assessment is modeled on lake fringing wetlands, the study units are more like 
floodplain wetlands (Brinson 1993; Burton et al. 1999). Dikes produce similar 
hydrogeomorphic effects as enclosed flooding wetlands or perhaps depressional 
wetlands, but when managers open water control structures or water levels are 
low, the SNWR marsh units can more closely mimic fringing wetlands through 
diel water level changes and seiche events (Batzer and Boix 2016; U.S. Fish & 
Wildlife Service 2018). Nonetheless, the units are never completely open to the 
river except through the water control structures, so less water mixing must occur 
than in a fringing wetland, which is completely unprotected from its lake source. 
Mudflats, sandflats, and shallow water on fringing wetlands attract shorebirds, 
but these are not as often available at SNWR as waterfowl habitat. Increasing 
macroinvertebrate abundance can benefit waterfowl, but tradeoffs exist between 
macroinvertebrate richness and abundance, and waterfowl abundance. For 
example, MC has the most variable habitat as measured both by our FQA and 
IVI (see “Results'' and “Discussion,” in Vegetation section, this report) and the 
bathymetric report by Heitmeyer et al. (2013), and our macroinvertebrate NMDS 
by unit showed MC with perhaps the largest positive values for its ellipse (Figure 
30), as well as the IBI that rated that unit as less impacted than the others. 
Because the more typical waterfowl wetlands of MN and P1A have lower IBI 
scores (and those animals were most often observed there during the field 
season), it is our thesis that management for waterfowl in MC could in fact 
degrade the macroinvertebrate richness of that unit. Currently MC contains large 
open-water habitat managed for American white pelicans, and MEV vegetation 
zones, as well as dense stands of Salix and tree cover more suitable to birds that 
roost and hide, rather than waterfowl that require long take off and landing water, 
and unobstructed views of potential predators. 

While NMDS axes are not reducible to single influences, a number of abiotic and 
biotic explanations exist for MC’s unique plant and animal distributions. MC’s 
center is farthest from the distribution basin and has the most variable 
bathymetry. Moreover, MC’s variable bathymetry results in greater habitat variety 
for avian predators that segregate based on water depth, potentially resulting in 
top-down selection on different macroinvertebrates that segregate by water 
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depth, and thus resulting in the higher macroinvertebrate richness in that unit, as 
shown in our IBI (Brinson 1993; Heitmeyer et al. 2013). Another possible 
influence on macroinvertebrate abundance is benthivorous fish presence, 
specifically carp and bullhead, which can also exert a strong influence, but we did 
not find significant differences in fish presence between units, so this unlikely an 
explanatory factor (Batzer 1998). The most likely explanation is that MC is more 
protected from river influences and offers refugia to longer lived 
macroinvertebrates like the coenagrionids found in higher abundance there than 
in other units (Appendix VI).  MC’s variability and distance from the river also 
provides refuge from the negative effects of extreme river fluctuations typical of 
modern, anthropogenically degraded rivers, which fluctuations have a larger and 
more negative effect on macroinvertebrate communities than river systems with 
fewer dams (Moi et al. 2020). The dikes may also function like dams or 
obstructions to animal dispersal and water movement, adding harsh variability to 
the system that decreases macroinvertebrate richness and abundance more still 
than natural wetlands (Pollock 2017). We discuss these results on MC more in 
“Successional Change or Biogeography,” below. 

Finally, the dramatic management history within the watershed may have 
resulted in a significant, long-term effect on the successional trajectory of the 
SNWR study units (Janssen et al. 2021). The IBI was developed nearly a quarter 
century before our use, so climate change, invasive species introductions, 
changes in nutrient cycling, and novel anthropogenic pollutants could obscure 
the original macroinvertebrate assemblages and with them the definitions of a 
“healthy” wetland (Batzer & Boix 2016).  

Thus, SNWR contains habitat, management decisions, and hydrogeomorphology 
that make it similar to waterfowl wetlands, floodplain wetlands, coastal wetlands, 
agricultural wetlands, and because of its human history, even constructed 
wetlands. This hybrid designation merits special attention and could add flexibility 
to management decisions. Separating out the effects of each of these to define a 
macroinvertebrate community is beyond the scope of this work, but strongly 
recommended in future efforts. 

 

Flooding and Macroinvertebrate Communities 

While we identified some of the methodological and biotic influences on IBI, it is 
likely that abiotic events also influenced our NMDS and IBI results. Time lags are 
natural to population growth and decay, Lotka-Volterra models, trophic cascades, 
and a number of other ecological phenomena, and large resource influxes will 
often result in lagged responses. We found in reviewing our data that the 2020 
Edenville dam failure and subsequent flood (see introduction) induced a 
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widespread decline in taxonomic richness, evenness, median relative abundance 
of indicator taxa, and Shannon and Simpson Diversity results. This change 
accounts for the fact that all the units remained stable at “mildly impacted” from 
2019 to 2020, and then declined (except MC—see below) to “moderately 
degraded” in 2021. While we have discussed the different methods that Dellick et 
al. (2021) used in their IBI and we later discuss the other abiotic and biotic 
influences on our IBI scores, our results clearly show that the 2020 flood 
incontrovertibly affected macroinvertebrate communities in a way consistent with 
the observed decline in IBI scores (Table 24 & Appendix VII). Indeed, in the case 
of GLCWs, large hydrologic events are a prevailing factor in macroinvertebrate 
community dynamics, especially large storm events when hydraulic forces 
restructure sediment, deposit large nutrient loads, redistribute propagules, and 
alter vegetation zones (Batzer & Boix 2016).  Moreover, during extreme events, 
some taxa may increase, others decline, and still others show relatively little 
change. We observed many of these changes predicted by the literature across 
all units and major taxa, and discuss these results below.  Finally, although our 
analysis of CPUE also showed results consistent with flooding in MC, we did not 
have a comparable 2020 dataset for that unit, so we will not discuss it here, but 
in our later section on successional change and island biogeography theory (see 
below). Unless otherwise specified, results below only refer to P1A, MN, and MS. 

During extreme fluctuations in water levels, macroinvertebrate communities may 
show a delayed response of one to several years (Cooper et al. 2014). 
Researchers have observed both little change concurrent with extreme events 
(fluctuations greater than one meter), and a significant change in major taxa one 
to several years after those events (Burton et al. 2002; Uzarski et al. 2004; 
Cooper et al. 2014). After a large drop in water levels in Great Lakes marshes 
during 1997-2001, Hyalella abundance increased ~30-40% in the next several 
years, insect abundance decreased ~25% in a single year, and chironomid 
abundance decreased 10% (Cooper et al. 2014). If we assume this delayed 
response but with response to an extreme increase in water levels, the same 
taxa changed in the opposite direction, one year after flooding.  When we 
compared total CPUE across years, Hyalella decreased by ~45 CPUE, and 
chironomids increased by ~8 CPUE. Contrary to the aforementioned GLCW 
research, however, we observed a decrease in insects like libellulids, 
coenagrionids, and caenids, although corixids increased. However, the 
differences between a lacustrine decrease in water levels and a riverine flood are 
likely sufficiently large to cause a different response. The late successional 
communities characteristic of long established GLCW would also respond 
differently to catastrophic events. 

Our results also showed declines within units consistent with literature and 
assumptions about the life history of different macroinvertebrate taxa. Cooper et 
al. (2014) determined that crustaceans predictably increased in response to 
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water level decreases. We found the same strong negative relationship: 
Caecidotea and Gammarus, the only other major crustacean taxa at the refuge 
besides Hyalella, also declined in all wetland units from 2020 to 2021 by an order 
of magnitude. While Hyalella declined even more dramatically, we found a slight 
increase in MS Hyalella from 2020 to 2021, likely due to the slightly higher 
elevation of that unit.  The likely lower abundance of fish (with the exception of 
the outlier bullhead sampled in the disconnected remnant drainage ditch, coded 
as the forest zone of MS) as well as low water level more suitable to Hyalella 
probably resulted in the slight increase observed in that unit, even though P1A 
Hyalella declined by nearly 70% and MN by 65%. 

Another taxon that showed inconsistent variation as a result of the flood was 
Oligochaeta. We again found declines in all units except MS, and this may be 
due to the difference in elevation. Oligochaetes are bottom dwelling taxa (Vieira 
et al. 2006), so the higher elevation of MS may also have prevented sediment 
deposition by burying them after the flood. Rader et al. (2008) also report 
Oligochaetes as hardier organisms that could withstand the effects of flood, thus 
accounting for their variable response in the slightly more protected MS.   

While it is possible to theorize about variable responses to the flood depending 
on the taxon and unit, we observed the strongest evidence of flooding in the 
eleven other LOTUs that declined and the nine that increased within all three 
units from 2020 to 2021. Along with crustaceans, and with the exception of 
Physa, all major gastropods, molluscs, and leeches declined within units from 
2020 to 2021. This included Planorbella, Sphaeriida, Branchiobdellida, 
Helobdella, and Glossiphioniidae.  The literature does not show a clear reason 
for Planorbella declines in response to floods (Vieira et al. 2006; Serremejane et 
al. 2020), and the family is reported as an aquatic passive disperser capable of 
living in water up to 3 m deep (i.e. the approximate depth of some flood refugia at 
SNWR). Nonetheless, Cooper et al. (2014) does show a negative correlation 
between gastropod abundance and water level, so our findings are consistent. 
We discuss Sphaeriida later (see “Successional Dynamics or Island 
Biogeography?” in this discussion), but the dramatic declines in that taxa are 
clearly also a result of flooding and the group’s intolerance of sedimentation. Our 
review of the literature did not result in a clear reason for the decline of leeches, 
though like gastropods that use suction to attach to substrates, they may have 
declined due to a simple inability to hold onto substrates and hosts, been buried 
by sediment, or for some other reason. Interestingly, some genera are primarily 
passive aerial dispersers, likely because they preferentially choose avian hosts. 
There is enough variation between genera and uncertainty in the life history and 
behavior of these animals that their declines may be due as much to 
environmental or demographic stochasticity as to some identifiable trait. 
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Finally, Physa (Physidae) was a superabundant LOTU both within the SNWR 
wetland units, nationally, and as a globally invasive organism (Physa acuta).  
Although it does not follow similar declines as other gastropods, molluscs, and 
leeches, its global population biology suggests a hardiness and tolerance unique 
among macroinvertebrates. The higher abundance of that organism could be due 
to a higher likelihood of selfing, a higher tolerance to poor water quality, or a 
seemingly unusual dispersal ability for a gastropod (Vieira et al. 2006; 
Sarremejane et al. 2020). In another study, flooding did not cause strong gene 
flow in Physa acuta, suggesting that floods also do not cause large movements 
of their populations in rivers. 

Insects at the SNWR showed a more variable and complex response to flooding 
than did the crustaceans, gastropods, molluscs, and leeches. The already 
superabundant chironomids increased by 100% in MS, more than 100% in MN, 
and almost 200% in P1A. Although we do not have data on 2020 abundances of 
chironomid subfamilies and tribes, we have already mentioned that the literature 
supports an increase in Chironomids after floods. Nonetheless we suspect that 
closer examinations of the LOTUs or identifications of previous years’ sample 
collections to our LOTUs could reveal differences at the level of subfamily and 
tribe. 

In contrast to chironomids, coenagrionids and corixids showed variable 
responses. The coenagrionids were the most abundant odonates at the refuge in 
2019, 2020, and 2021, and Ishnura and other coenagrionids are also the most 
abundant odonates in Saginaw Bay coastal wetlands (Cooper et al. 2014). Within 
SNWR, total coenagrionid CPUE (across all units) decreased by 30%, and 
immature coenagrionids and Ishnura sharply declined within all units, while 
Enallagma also declined within units except in MN where it showed a 10% 
increase.  A substitution of Coenagrion apparently filled the niche, because that 
genus increased in all units by roughly the same CPUE as Ishnura decreased. 
The relatively smaller Coenagrion increase in MS may again be due to the unit’s 
elevation. The literature on traits suggests potential mechanisms for these niche 
substitutions. Coenagrion have a slightly shorter life cycle, and a slightly higher 
affinity for passive aquatic dispersal, making them more likely to establish after 
catastrophic flooding.  Because Ishnura – a dominant genus in Saginaw Bay 
coastal wetlands – are declining at the refuge, we can infer less recruitment from 
GLCW metapopulations, and a possible long term replacement of Ishnura with 
Coenagrion at the refuge. That replacement implies the refuge is indeed a hybrid 
floodplain wetland, with organisms more suitable to the shorter-term fluctuations 
on floodplains.  Another major genus replacement also points towards the 
riverine regime. 

Like chironomids, corixid total CPUE doubled at SNWR from 2020 to 2021, 
above even its 2019 levels, but some LOTUs declined while others increased. 
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Immature corixids and Trichocorixa all increased significantly to substitute for 
Hesperocorixa declines, especially in the case of MN. Trichocorixa have higher 
lifelong fecundity, more than one potential reproductive cycle per year, and a 
greater affinity for active aquatic and aerial dispersal; Hesperocorixa have lower 
lifelong fecundity, fewer reproductive cycles in a year, and only a weak affinity for 
active aerial and aquatic dispersal (Sarremejane et al. 2020). While more regular, 
extreme flooding and greater annual fluctuation of water levels does not preclude 
the continued presence of Hesperocorixa at the refuge, it will  reduce the 
establishment of stable populations and continue their replacement with higher 
densities of Trichocorixa. 

All these population fluctuations took place in a single year, which is much faster 
than the several years of population restructuring observed in Cooper et al. 
(2014). But the water level decline in that study was a slow three-year drop of 1m 
from 1998 to 2001, whereas the 2020 flood increased water levels by 
approximately three meters in only one to five days, and we are using three 
years of IBI scores, rather than a fifteen-year dataset. But researchers have also 
observed declines in macroinvertebrate taxa richness and density across 
different habitats after floods, and it is to those studies, rather than GLCW 
research that we should look for comparisons (Giller et al. 1991; Rader et al. 
2008). SNWR also recorded a steep decline in richness and abundance from 
sampling season 2020 to 2021, considerably lower even than 2019 results (Table 
20). While surprising, this universal drop in macroinvertebrate quality, 
concomitant with habitat-wide niche replacement one year after a major storm 
event is in fact a common result of flooding (Rader et al. 2008). 

The ecological cascade caused by the flood underscores the refuge’s floodplain 
hydrologic regime. We have already shown from comparisons of SNWR with 
basin-wide macroinvertebrate surveys and fetch categorizations that the refuge is 
only partly comparable to GLCWs. The dramatic results of flooding only further 
confirm SNWR is far more influenced by river events like flooding, and is not an 
inland coastal wetland, but a hybrid wetland. 

Nonetheless, due to changes in sampling and analysis between years, as well as 
other confounding factors, and even regardless of other factors, at least 5-10 
years of continuous monitoring would likely be necessary to observe the full 
effects of the catastrophic Edenville dam failure. While analysis of the 
anthropogenic industrial chemicals released into the refuge and the difference 
between anthropogenic and natural flooding is beyond the scope of this work, 
flooding is overall a natural process and can be beneficial in the creation of new 
wetlands. Moreover, community-level responses to the flood might not have long-
term consequences if successional dynamics have a greater influence than this 
single flooding event. Before drawing any conclusions, then, we must consider 
that the Edenville dam failure occurred simultaneously with the reconnection of 



 99 

MC to the floodplain, and only two years after restoration of MN & MS. As much 
as it was an environmental disaster for surrounding communities, the 2020 flood 
could also be seen as a natural hydrologic reconnection event of MC to the river 
and the natural recreation of that wetland to its precolonial condition. In order to 
fully understand our results, then, we will have to disentangle responses to the 
flood from the complex successional dynamics already present at the refuge. 

Can we use successional dynamics to compare wetland units? 

Research on wetland succession is extremely limited (Batzer and Boix 2016). 
Researchers have noted that wetland succession, particularly macroinvertebrate 
succession, is not a “linear, directional, deterministic process” (Batzer and Boix 
2016).  Instead, there are numerous possible successional paths that occur at 
different rates, depending on local biotic and abiotic factors, and even then, 
resulting differences between successional stages may not be clear.  Moreover, 
our comparison of P1A, MS, MN, and MC represent a “space-for-time 
substitution,” wherein the younger units are compared to the older units to 
approximate how a single unit might change over time, thus ignoring the unique 
features of each.  For those reasons, we offer only a preliminary assessment 
here. 

Adult flying hemipterans, dipterans, and coleopterans are often early colonizers 
(Batzer and Boix 2016). However, unit CPUE of these orders produced a 
negative correlation with age: MC had 24.7, MS had 25.88, MN had 30.33, and 
P1A 36.69. These numbers do not rule out clear successional change initiated by 
those orders, because even if they are early colonizers, their initial abundance 
may still be smaller than in the more established populations of the older wetland 
units. These findings do not exclude successional change as a driving force but 
instead point to the dynamic, nonlinear nature of wetland succession.  More 
importantly, the catastrophic flood restructured the entire community and SNWR 
may be temporarily mimicking an early successional wetland. 

The most basic outline of succession involves vegetation. Our PERMANONA of 
macroinvertebrate counts returned significant differences between units, but we 
cannot easily extrapolate to real-word variation. In the NMDS ordination of counts 
by unit, MS has a larger ellipse than the others with a long spread across MDS2. 
In the ordination of counts by vegetation, the forest zone has an ellipse separate 
from all other zones, and we only sampled the forest zone in MS. The sampling 
site is likely a section of remnant irrigation channel in which large silver maples 
have grown, and is disconnected from the main channel parallel to the dike, such 
that standing water acts as a depressional wetland. 

Another unique feature of MS is that the Typha zone did not regrow until June, 
months later than other units. We coded this as dead Typha in May, and sampled 
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SAV or forest zone in MS for the remainder of the season, and we did not sample 
living Typha in MS until July. MS is at a slightly higher elevation than the other 
units, which probably prevented regrowth of Typha until precipitation increased 
and water levels rose (Brinson 1993). The higher elevation also encouraged 
water to pool in the remnant channel that is now forest zone. 

These factors created a unique sampling site in MS with highly skewed 
distributions of macroinvertebrate communities. But NMDS ordinations are robust 
to non normal distributions, so our ellipse for MS likely reflects the unit’s high 
elevation, small number of vegetation zones, or some combination of other 
unique features, rather than failures of the model. We have already shown that 
the MS macroinvertebrate community did not respond to flooding like the other 
units.  Although the metacommunity is consistent across units, within MS 
Hyalella and Oligochaetes increased unlike P1A and MN, and genera like Anax 
and Coenagrion increased less in MS than in P1A and MN, as well as having a 
much smaller overall CPUE in MS. Additionally, chironomids and hemipterans 
made up almost all the CPUE for those units. Their extreme abundance may also 
be due to the shallow, low-oxygen, warm water at SNWR throughout much of the 
summer. These factors suggest that short-term water level fluctuations and 
occasional flooding, rather than biotic succession of slower growing, competitive 
organisms replacing faster-growing, uncompetitive organisms, controls short 
term assemblage structure and population abundance at SNWR. Long term 
processes are likely only observable in longitudinal datasets, where, for example, 
P1A’s faster recovery rate from flood events may become apparent. 

The flooding regime and local hydrogeomorphology overtaking obvious signs of 
succession is visible in other taxa as well. The IBI scores are based on median 
relative abundance of Odonata, Gastropoda, Amphipoda, and Sphaeriida, as well 
as taxa richness of Crustacea and Mollusca, Shannon and Simpson indices, and 
overall richness and evenness. Although sphaeriids are a good indicator of 
GLCW wetland quality, they were almost entirely absent from our study site, and 
sphaeriid IBI scores were the same for all units (0). The 2020 sampling season 
found a CPUE of 9.1 for sphaeriids in MN (Dellick et al. 2021). They also 
combined their macroinvertebrate data from vegetation zones and rated it all as 
Typha zone, whereas we only used macroinvertebrate data collected in the 
Typha zone to rate our IBI. That likely produced some of the different results 
between IBI scores. But in 2021, we did not identify Sphaeriids in the top five or 
ten CPUEs for any wetland unit, and our total Sphaeriida CPUE was 0.51 
(Appendix VI).  Moreover, as already mentioned, 2020 reported higher total 
richness and abundance, suggesting that methodological differences alone 
cannot account for all of the change in IBI. 

An alternative, ecological explanation is that sphaeriid clams prefer depths less 
than 2m in firm substrates, and 25 cm in soft substrates, but their abundance 
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declines at depth, and they are bivoltine (occasionally multivoltine) only in stable 

environments (Vieira et al. 2006). So a large flood depositing massive quantities 
of sediment would likely reduce sphaeriid abundance. In fact, that family’s 
preference for shallow, firm sediment may exclude them from future colonization 
of SNWR except temporarily and in isolated areas.  Thus, floodplain dynamics at 
SNWR may preclude permanent establishment of a sphaeriid clam population, 
and a successful implementation of the Burton IBI metrics.  Moreover, 
successional stages in SNWR units are not dominated by hydraulic forcing that 
alters vegetation zones, as in lacustrine wetlands, but by flooding, as in 
floodplain wetlands. 

We cannot assume a simple successional model of wetland quality, and 
comparisons between old units (P1A), young units (MN, MS), and new units 
(MC) may not reveal clear information based on temporal differences alone.  At 
the very least, too much variation exists between these units to treat them as 
simply “space-for-time” substitutes of one another, and continued development of 
macroinvertebrate richness and abundance will likely depend on whether the 
macroinvertebrate communities are managed with similar care as those of 
waterfowl, fish, and the other wildlife on the refuge.  Simply put, aquatic 
macroinvertebrates are the base of all wetland life. 

 

Island Biogeography Theory in Maankiki Center (MC) 

Many of the IBI scores were the same between units. MC and MS had slightly 
higher richness, evenness, and Shannon and Simpson Index scores than the 
other two units, and the same scores as each other. But MC had a higher relative 
abundance of odonates and Gastropods, as well as a higher taxa richness of 
odonates than MS, a higher number of flying taxa among its 10 most abundant 
taxa, and a higher number of active aerial dispersers among all taxa in all units in 
2021 with unit CPUE greater than 0.5. 

The higher median relative abundance and median taxa richness of odonates in 
MC may be due to its age, its size, or its distance from the river. However, it is 
striking that MC is both the youngest and the largest unit, and the only one that 
scored as mildly impacted. Another unique feature of MC is its greater distance 
from the Shiawassee River and the Spaulding Drain. While the unit itself is 
directly linked to a retention basin shared with MN and MS, the water from the 
basin releases into a long, deep, steep-banked channel that extends for ~1.5 km 
before opening into the central floodplain of the unit.  Numerous environmental 
filters could act on macroinvertebrates here, especially a greater number of bird, 
fish, and macroinvertebrate predators. This channel might also act to increase 
sediment deposition before water reaches the center of the unit. Unlike the other 
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units, the bathymetry at MC’s center is considerably varied, separating sections 
of MC from each other and providing more habitat patches and colonization 
opportunities for a variety of plants and wildlife (Brinson 1993). These features 
mean that water and propagules must travel twice the distance from the river or 
through a connection with P1A if they are to reach the varied habitat in the most 
protected patches of MC, and even then they are not guaranteed to find suitable 
habitat.  However, if aquatically dispersed animals do find habitat, they will be 
more protected from fetch, opportunistic predation by riverine species, and other 
pressures. In contrast, aerial dispersers have a more direct route to colonization 
in MC. Such features not only make MC more variable, they also agree with 
Island Biogeography Theory (IBT) as it applies to macroinvertebrate communities 
(Pollock 2017). 

Pollock applied IBT to SNWR macroinvertebrate communities in 2017, and found 
macroinvertebrate richness at SNWR was negatively correlated with channel 
distance (shortest swimming distance from the river’s edge to the sample site) 
and dike height.  However, neither MC, MN, or MS were connected in 2017, so 
he was not able to sample them.  Several of our results now speak to the unique 
features of MC and implications for IBT. 

We found that although the flood significantly reduced richness and abundance 
across all units, and subsequently wetland quality, MC still had the highest CPUE 
of flyers and active aerial dispersers in 2021. Note that by calculating dispersal 
method instead of only physical trait, we estimated how each LOTU accessed a 
wetland unit.  Dispersal trait affinities estimate the likelihood of a species using 
active or passive and aerial or aquatic dispersal based on observations, time in 
each life stage, and other facts.  Therefore, it is likely that a wetland will have 
more or fewer realized aerial dispersers in proportion to flying taxa abundance 
depending on environmental conditions, but it is unclear how the catastrophic 
flood altered dispersal method.  Including both dispersal method and physical 
trait allowed us to examine the complexity of these functional groups. 

Part of the reason for the difference between our results for physical trait and 
dispersal method is also the immense decline in abundance and diversity after 
the flood.  Because water overtopped the dikes, we should expect the 
biogeographical signal to diminish.  However, this is not sufficient evidence to 
ignore its influence. While 2020 saw higher unit CPUE of active aerial dispersers 
in MN and P1A, this only confirms the dominance of the flooding regime, with 
biogeographic effects swamped by the dominance of the hydrologic regime.  
Additionally, small ponds and microhabitats may have built up MC’s flying 
macroinvertebrate population prior to reconnection in 2020, but we do not believe 
the regime shift initiated by the flood and reconnection allowed for continued 
maintenance and recruitment of those microhabitats, even if slower growing Salix 
and cottonwood stands remained after the flood.   
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Setting aside those differences, MC is particularly interesting given its age. MC 
had fewer total Hyalella, Caecidotea, Neoplea, and Trichocorixa than any unit in 
2020 or 2021, more immature coenagrionids and chironomids than any unit in 
2020-2021, and a higher number of Leucorrhinia (Libellulidae) than any other 
unit. The unit received higher FQA scores, meaning that the vegetation there is 
more sensitive to disturbance, and higher IVI scores, meaning it has a greater 
diversity of vegetation. The unit also received a ‘mildly impacted’ invertebrate IBI 
grade, and had a higher conductivity and lower pH than other units. We also 
found that among the nine LOTUs with the highest CPUE in each unit, MC had 
the most flyers and the least non-flyers, while P1A had the most similar CPUEs 
for flyers and non-flyers, with MN and MS having intermediate values. These 
tight correlations between unit age, decreasing abundance of flyers, and 
increasing abundance of nonflyers suggest they are each in a different 
successional phase corresponding to their age. Alternatively, IBT could be at 
play, but most likely both succession and biogeography are interacting at the 
refuge. 

MC has both a larger abundance of flyers, and the highest richness of odonate 
flyers among the units, these being the strongest flyers with longer dispersal 
distances, and often longer life spans. For example, Aeshnid dragonflies have 
dispersal distances of up to 100 km, while adult sphaeriid dispersal is 11-100 m, 
larval dispersal is 10 m or less, and they can only exit water temporarily, for 
example when dispersing by attaching to larger animals (Vieira et al. 2006). Our 
results suggest that the colonization stage of MC succession is underway, 
favoring strong flyers that colonized the unit as soon as habitat became 
available, while weak swimmers like Hyalella and Neoplea, and crawlers like 
physids will take longer to fully establish a self-sustaining population. But 
because Hyalella are a multivoltine, highly tolerant taxon, they are still likely to 
remain at higher proportions. Nonetheless, MC Hyalella are lower than any other 
unit in 2021 or 2020, suggesting either the effects of flooding did not overwhelm 
the biogeography of MC, or that its early successional stage still resulted in 
reduced recruitment and population growth, despite any population influx from 
the flood. Alternatively, it may be difficult to disentangle the effects of flooding 
from the different age and biogeography of MC. 

However, the higher richness of odonate flyers at MC is strongly suggestive of a 
biogeographical influence.  These are longer lived species that in many LOTUs 
reproduce only two times or once a year, and require a richer resource pool to 
survive because they are the apex predators of the macroinvertebrate 
communities.  Pollock (2017) expected only these stronger flyers to surmount 
higher dikes and access the interior habitats of larger wetland units, and that 
appears to be what is happening.  Moreover, our summary of early colonizers 
(see above section on succesional dynamics) as predominantly dipertans, 
hemipterans, and coleopterans, with no clear relationship to wetland unit age 



 104 

also implies that MC’s communities are as much influenced by that units 
biogeography as its age. 

Finally, the research on IBT in wetland macroinvertebrate communities is 
incredibly sparse, or applies to exclusively lentic habitats like ponds.  So, there is 
no comparative literature on which to base our analyses here. But as a result of 
the interplay between successional dynamics and immigration rates of taxa 
capable of dispersing into the larger, more distant unit, two possible trajectories 
exist for MC. First, allogenic effects like river hydrology and sediment deposition 
are more characteristic of the early successional colonization phase, so they may 
within the next 1-3 years overtake the dispersal traits of flyers. The dominance of 
the flood regime may also become visible in this early colonization phase of MC 
and begin to homogenize its macroinvertebrate populations with those of the 
surrounding units, although the local characteristics of each unit will continue to 
play a role in their development. 

A second possibility is that the longer distance from MC to the Shiawassee River, 
in addition to its greater size and variable bathymetry will allow macroinvertebrate 
communities to develop differently from those of the surrounding units, even as 
dispersal occurs more and more between units. 

Implications for Science and Management 

We have shown throughout this and other sections that SNWR is not a simple 
inland coastal wetland, but a hybrid wetland.  Quantifying how the unique 
macroinvertebrate distributions fit within inland coastal wetlands, floodplain 
wetlands, waterfowl wetlands, and constructed wetlands will not be feasible if 
each of these habitat types is applied in turn. Instead, the progressive 
reconnection of P1A, MN, MS, and MC facilitates an incredibly detailed view of 
succession at SNWR, and the interactions among numerous macroecological 
theories such as aquatic island biogeography, and functional diversity. Framing 
science and management within these broader concepts will allow managers and 
scientists to characterize the refuge without resorting as closely to conventional 
wetland categories. 

Recommendations for Future Research 

While real time limitations exist, the literature everywhere emphasizes the 
segregation of macroinvertebrate communities by vegetation zones, and tests for 
IBI are dependent on sampling in named zones: inner Scirpus, outer Scirpus, 
and Typha zones. Many Scirpus spp. have been added to Schoenoplectus spp, 
of which Schoenoplectus tabernaemontani is present at SNWR. Greater effort 
should be put into sampling into any Scirpus or Schoenoplectus spp. zones to 
confirm the applicability of IBI to the SNWR.  
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The future monitoring efforts should include sampling in vegetation zones located 
in MC that have not yet been sampled but comprise large sections of the wetland 
unit, such as purple loosestrife (Lythrum Salicaria), angel snot (Nostoc 
commune), and a greater variety of mixed emergent and submerged aquatic 
vegetation zones which do not all contain the same plant communities, and 
therefore may harbor varying species assemblages.  Field work should also 
include fewer samples within SAV and Typha zones, and more samples within 
water smartweed (Persicaria amphibia) and Phalaris (Phalaris arundinacea), for 
which we were not able to apply NMDS ordination ellipses due to a paucity of 
samples.  Typha and SAV are easier to access but oversampling will impair 
proper and authoritative analysis.  Furthermore, if vegetation zones are not 
determinant of macroinvertebrate communities at SNWR as they are in GLCWs, 
then research should depart from this model, and better incorporate water depth 
and hydrogeomorphology into analyses. 
 
Finally, and with great humility, fish are dependent on macroinvertebrates and 
vegetation, so field researchers should give greater care to investigating these 
important taxa.  
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FISH MONITORING 
 

INTRODUCTION 

Coastal wetlands provide valuable habitat for fish species and serve as important 
habitats for spawning, refuge, and foraging (Uzarski et al. 2016). The floodplain 
wetland units of SNWR are no exception, and provide habitat for Great Lakes, 
riverine and resident wetland fish species. Wetland units are managed by water 
control structures that determine water flows between both managed wetland 
units and the Shiawassee River. These managed connections also impact the 
ability of fish to move between each respective wetland unit and the river, 
resulting in variable fish assemblages throughout the refuge. Similar to 
invertebrates, fish communities act as bioindicators and inform refuge staff of the 
health of each wetland unit (Cooper et al. 2018). We collected data on fish 
species richness, abundance, and length to inform refuge staff on the quality of 
each respective unit and for the SNWR floodplain complex as a whole. Refuge 
staff were especially interested in “species of interest”, Yellow Perch (Perca 
flavescens) and Walleye (Sander vitreus). 
  

RESEARCH OBJECTIVES 

 
● Characterize species assemblages in each wetland unit and river and 

compare these to previous year's findings (2019-2020). 
 

● Determine wetland health based on Indices of Biotic Integrity across units 
and between years. 
 

● Determine what sampling effort is needed to most accurately measure fish 
assemblages in wetland units. 
 

● Describe variations in species assemblages based on season, year, 
vegetation zone, and other abiotic factors. 
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SAMPLING SITES 

Our team monitored four wetland units and the Shiawassee River during the 
open water season from May to November of 2021, excluding September. Each 
month, within each wetland unit we set between two and four fyke nets in 
different vegetation zones and water depths to best sample the diverse fish 
communities and microhabitats. Our team also used electrofishing from May to 
August to sample areas that were too deep for fyke nets. Each month, within 
each unit we sampled two times to best sample fish communities that may be 
excluded from fyke net samples.  

Maankiki South (MS) 

We sampled for fish in three different vegetation zones in MS where sufficient 
water levels were available. SAV, flooded forest and Typha, were the 
predominant vegetation zones sampled.  Electrofishing sites were in the 
perimeter channel and in the western pool. 

Maankiki Center (MC) 

Sampling in MC consisted of variable sampling locations and occurred in 
vegetation zones of Phalaris, Typha, and SAV. Some sites were accessed by 
boat since perimeter channel depths prevent wading. MC is the largest of the 
Maankiki units and had the most spatial heterogeneity which provided 
opportunities to sample new areas and vegetation zones. Electrofishing sites for 
MC were in the eastern channel along the wildlife drive and the central pool 
within the unit. 

Maankiki North (MN) 

Sampling in MN consisted of sites on the north and south ends of the unit. Sites 
on the south end were accessible by wading given the low water levels during 
the field season, while sites on the north end were only accessible by boat due to 
the deep perimeter channels. Typha and SAV were the two dominant vegetation 
zones sampled. Electrofishing sites for MN were along northern and southern 
edges.  

Pool 1A (P1A) 

Sampling in P1A occurred in three vegetation zones: Typha, Nymphaea, and 
SAV. Low water levels and dense vegetation prevented continued electrofishing 
surveys but fyke nets were set throughout the entire sampling season. P1A has a 
high amount of accumulated sediment which in combination with dense 
vegetation can clog fyke nets and prevent fish from being able to pass through 
the internal cods. Electrofishing was unable to continue because there was not 
enough water within the unit for the electrofishing equipment to function properly. 



 108 

Shiawassee River (SHR) / Spaulding Drain (SPD) 

SHR sites served as reference sites for potential fish migration sources into 
wetland units. Newly reconnected wetland units provide additional spawning, 
feeding, and refuge habitat for riverine and Lake Huron fishes so the Shiawassee 
River sites provide a reference as to what species could potentially move into 
wetland units. Fyke nets were set near the MN and P1A dikes where it was 
accessible by wading. Electrofishing sites flowed downstream in the SPD until 
SHR and continued upstream. 
 
 

METHODS 

Fyke Netting 

Fyke Netting followed sampling protocols developed by Lugten et al. (2020) and 
followed by Dellick et al. (2021). Fyke nets are a passive method of fish capture 
that relies on fish behavior and movement during their diurnal cycles. A net has 
four distinct sections: a lead, two wings, and a fyke trap. The lead and wings are 
attached to the frame of the trap and pulled taught, and then securely staked into 
the sediment (Uzarski et al. 2016; Lugten et al. 2020). We placed nets in various 
transitional areas where fish are moving between vegetated areas and open 
water as fish utilize vegetated areas as nursery habitats and protection from 
predators while they use open water for foraging, especially as they grow larger 
(Munsch et al. 2016). As fish swim and encounter the lead, they follow this down 
into the fyke trap and into the internal cods where they are captured and cannot 
escape. 
  
Sampling sites were determined by the distribution of dominant vegetation zones 
and water depth within target wetland units and exact placement being selected 
at random. Random placement sites were created by using a random number 
generator determining direction and step count for net placement. Direction was 
determined by creating ten equally sized sections while facing the desired 
wetland unit. One teammate would give a random number between one and ten, 
which would indicate direction on a plane from 0 to 180 degrees. Distance into 
the unit was determined by a teammate again shouting a random number (1 to 
100) which determined the amount of steps into the unit for net placement. Nets 
varied in both frame size (large or small) and mesh type (large or small), resulting 
in four unique net types. Frame size was dependent on water depth. Nets were 
not placed where water was too deep so that fish would be able to swim over the 
lead and frame or where water was too shallow so that the internal cods of the 
net were out of the water which would not allow fish to properly enter the net. 
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Mesh size was selected at random and has not been shown to impact fish catch 
at SNWR (Lugten et al. 2020). 

Sampling Protocol 

We used sampling protocols from preceding field seasons (2019 and 2020) to 
complete our monitoring (Lugten et al. 2020; Dellick et al. 2021). Fyke nets were 
set up by the team at the determined random sampling site and associated water 
quality metrics were taken in triplicate using a YSI EXO 3 handheld 
multiparameter sonde. This sonde recorded temperature (ºC), pH, conductivity 
(μS/cm), turbidity (FNU), and dissolved oxygen (DO) (mg/L). Team members 
recorded sampling site information, which included: net metrics (such as frame 
size and mesh size), water depth, vegetation zone, and site-specific observations 
or comments (Lugten et al. 2020). Data were recorded in Survey123 software 
using an iPad and iPhone (ESRI Inc. 2021). 
 

We set each net for two consecutive 24-hour sampling periods. After the first net 
set, another triplicate water quality metric was collected using the sonde. Fish not 
in the cod end but still in the net were manually passed through the internal 
funnels by team members, all fish were collected in a bucket and brought to 
shore. Any fish stuck in the lead or wings without passing through the frame were 
not counted. The fyke net was reset for the second 24-hour sampling period 
(Lugten et al. 2020). Fish were identified to species and the total count per 
species was recorded. Any fish unable to be identified was photographed and 
documented in order to determine species with the assistance of refuge staff and 
University of Michigan faculty. Lengths were recorded in centimeters for the first 
30 individuals of each species; after 30, individuals of that species were counted 
but not measured. Other general observations of deformities, lesions, visible 
parasites, or mortality were recorded. All fish were released away from the fyke 
net after data collection to prevent immediate recapture and pseudoreplication. 
This process was repeated for the second net set, with the only difference being 
the altogether removal of the nets afterwards. 
 
Fyke nets could be compromised by animal tampering, weather conditions, 
improper set up, or a combination of these factors. Our team considered 
compromised nets to be those with sufficiently large holes below the water 
surface and beyond the first cod that could allow for fish to escape, those with 
the cod end detached from its stake and/or open, or if wings or leads had 
become detached. Holes were repaired with a field kit on site, and wings 
reattached if there was a second set. Compromised nets were recorded and data 
from these sites still collected, but data from compromised nets were not 
included in any abundance calculations (Lugten et al. 2020). We recorded a total 
of 26 compromised nets out of a total of 144 nets (18%) throughout the course of 
our sampling in 2021 which spanned from May to November, excluding 
September. 
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Electrofishing 

 
We used electrofishing to collect fish in the deeper water within wetland units, 
following protocols outlined by Lugten et al. (2020). Electrofishing was used to 
sample areas where fyke netting was not possible due to depth and allowed 
sampling of fish assemblages that utilize deeper water. We used an Smith-Root 
Light-Duty E-Cat, which is a platform with detachable pontoons and projectable 
poles at the front of the craft that is transportable over short distances which 
allowed for us to sample different remote locations. Anodes hung off the front of 
the poles and into the water, where they were electrified with a generator placed 
on the platform. Electrical power was controlled through a control box which was 
adjusted to take into account environmental conditions like water conductivity 
and depth. Electrofishing efforts were led by federally certified Electrofishing 
Crew Chief (Sasha Bozimowski) from USGS Great Lakes Science Center; we 
provided assistance. 
  
Areas that were deemed suitable for electrofishing were determined by water 
depth where fyke nets were unusable, and where no obstacles (e.g. emergent 
vegetation) obstructed electrofishing. Samples were conducted as transects 
defined as ten minutes of shocking effort. At the beginning of each transect, 
water quality parameters including temperature, pH, conductivity, dissolved 
oxygen, and turbidity were collected using a YSI EXO3 water quality sonde. 
Water depth was measured at the start and the end of each transect as well as 
weather conditions such as temperature, cloud cover, and wind. During each 
transect, the electrofishing operator rowed the catamaran and controlled the 
electrical settings, while a student researcher operated a dead-man foot pedal 
controlling power supply to the system. In the event of any danger, the foot pedal 
operator would step off of the foot pedal, which would cut power to the system, 
and the electrofishing operator would also turn off the electrical box to ensure no 
power to the unit. As fish were shocked, they were netted using a non-conductive 
hand net and placed into a water filled cooler with bubbler to be measured back 
on shore. After the transect was complete, transect length (in seconds) and 
electrical settings (voltage amps, DC pulse per second, and percent power) were 
recorded. Additional information such as date, vegetation zone, and any 
observations the operator and netter may have had such as fish seen but unable 
to be collected were also recorded. Fish in the cooler were then brought to shore 
where they were identified to species, measured, and released back into the 
water. If more than 30 individuals of a species were caught, a random sample of 
30 measurements were taken and the remaining fish counted and examined for 
any abnormalities. 
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We conducted electrofishing transects two times in each of MS, MN, MC, SPD, 
and once in the Shiawassee River per month. Due to low water levels, P1A was 
sampled once in May but was unable to be sampled in subsequent months.  

DATA ANALYSES  

Indices of Biotic Integrity  

Indices of biotic integrity (IBI) were calculated following the CWMP IBI methods 
and specific vegetation calculations outlined by Cooper et al. (2018). We 
calculated IBI scores for each study unit based on vegetation zones and species’ 
presence and abundance. Since IBI metrics are based upon dominant vegetation 
zone, but not all vegetation zones sampled within the units were represented 
within the metrics built in Cooper et al. (2018), we used calculated IBIs for those 
vegetation zones sampled within SNWR that were consistent with published IB 
metrics, SAV and Typha spp. The SAV IBI metrics were calculated from SNWR 
samples collected from SAV and Nymphaea vegetation zones, while Typha spp. 
IBI metrics were calculated from SNWR samples collected from Typha + Phalaris 
+ Salix + Forest vegetation zones. Our 2021 field season IBI scores are 
comparable to those of the previous two field seasons (2019 and 2020) and other 
Great Lakes Coastal Wetlands.  

Non-metric Multidimensional Scaling  

Non-metric Multidimensional Scaling (NMDS) was used to assess differences in 
community composition across wetland units, and within and across months, and 
vegetation zones. Tests were run in R Studio and code was adapted from 
previous field teams to fit 2021 datasets. Analyses were run using the R 
packages of “vegan” and “tidyverse”. 

Catch Per Unit Effort 

Catch per unit effort (CPUE) was calculated for each species per sampling site 
for each month sampled. CPUE measures the relative abundance of a respective 
species as the ratio of total individuals collected divided by the sampling effort 
expended to catch those individuals. We calculated site CPUE by dividing the 
total number of fish collected at a site divided by the total number of nets set at 
the site which would be two if there were no compromised nets. We calculated 
species CPUE by dividing the total number of a given species by the total 
number of nets set.  
 
Sampling efforts and the subsequent CPUEs were affected by compromised 
nets. In total there were 26 compromised nets out of 144 total nets. If one net out 
of a sampling period was compromised, that net and its respective fish data were 
excluded from the CPUE calculation. 
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Species Accumulation Curve 

In order to evaluate whether sampling effort was sufficient to characterize fish 
species richness we used a species accumulation curve. Species accumulation 
curves show the number of unique species caught as a function of sampling 
effort. Curves that reach an asymptote denote that sampling efforts were 
sufficient to represent fish assemblages. Curves were generated in R Studio 
using the packages of “vegan”, “permute”, and “lattice”. 

ANOVAs 

To analyze differences of site fish CPUE based on wetland unit, vegetation zone, 
and sampling month we used ANOVAs. We ran six ANOVAS with three including 
an outlier and three without the outlier. The outlier was a MS site, in May, in the 
forest, that had a CPUE of 4569.5, which were mostly juvenile Black Bullhead 
(Ameiurus melas). That site accounted for more than half of the total fish caught 
during the 2021 sampling season.  

Linear Regression 

To analyze the effect of water quality on site CPUE, we used linear regressions 
to examine the effect of several variables which were temperature, dissolved 
oxygen (DO), conductivity, pH, and turbidity. 

 

RESULTS 

Overview 

We gathered data from a total of 118 fyke nets over the course of the sampling 
season, which spanned from May to November. Nets were spread across the 
five different sampling areas of MS, MC, MS, P1A, and SHR.  

Species Accumulation Curves 

Species accumulation curves were generated for each of the respective sampling 
units, in order to determine whether sampling efforts were sufficient in capturing 
species assemblages of each respective wetland unit (Figure 31; Figure 32). 
Sampling efforts in MC and P1A began to reach an asymptote at 25 and 27 sites, 
respectively; and these appear to have been sufficient. Efforts in MS, MN, and 
SHR did not reach asymptotes with the number of sites for each respective unit 
being 22, 25, and 19; and do not appear to be sufficient. 
 
Comparisons among years is only possible for MS, MN, and P1A because 2021 
was the first year that both MC and SHR were sampled. When compared to the 
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previous field seasons of 2019 and 2020, our data were more similar to that of 
2019 which suggested that sampling efforts were not sufficient to completely 
characterize fish communities throughout the SNWR wetland complex. SACs 
from the 2020 field season suggest that sampling efforts were sufficient to 
characterize fish assemblages, even though the 2019 field season found more 
species in each unit. 
 

 
Figure 31. Across years species accumulation curve (SAC) comparison. 
SACs from 2019, 2020, and 2021. SACs plot number of sampled sites (No. Sites, 
x-axis) against average number of species (Avg # Species, y-axis). Abbreviations 
refer to wetland units: Maankiki North (MN), Maankiki South (MS), Maankiki 
Center (MC), and Pool 1A (P1A). SACs for 2020 may not be comparable to other 
years due to the difficulty of sampling after catastrophic flooding. 
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Figure 32. Species accumulation curves for MC and SHR. These sites were 
not sampled in previous years. Abbreviations refer to wetland units: Maankiki 
Center (MC), and Shiawassee (SHR). SACs plot number of sampled sites (No. 
Sites, x-axis) against average number of species (Avg # Species, y-axis).  
 

Indices of Biotic Integrity 

 
We calculated Indices of Biotic Integrity scores (IBI) for the fish communities in 
each wetland unit and compared scores to applicable units from 2019 and 2020 
(Table 25). IBI scores range from 0 to 100, with 0 being the lowest quality and 
100 being the highest quality habitats (Cooper et al. 2018). Scores are 
categorized by ranges from degraded (<36), moderately degraded (36-45), 
moderately impacted (>45-50), mildly impacted (>50-60), and reference quality 
(>60). 
 
In the SAV vegetation zone, fish IBI scores for all three previously sampled units 
decreased in score from 2020 but stayed within the same scoring category. MC 
and SHR had first time scores of 31.81, placing them in the degraded category. 
In the Typha vegetation zone, IBI scores were relatively consistent with those 
from the previous sampling year. In MS, scores increased slightly from 40 to 45, 
but stayed in the same scoring category of moderately degraded. Scores for MN 
did not change, with 40 being the score for all three sampling years, placing it in 
the moderately degraded category. P1A stayed the same as the previous 
sampling year, with a score of 40, and a category of moderately degraded. MC 
had a first time score of 40, placing it in the moderately degraded category. SHR 



 115 

did not have any data for the Typha vegetation zone. Both MC and SHR were not 
sampled in previous years.  
 
 
Table 25. Unit IBI Scores across years in SAV and Typha. Numbers represent 
IBI scores and text states one of four possible qualitative scores, ranging from 
“degraded,” to “moderately degraded,” “moderately impacted,” mildly impacted,” 
and “reference conditions.”  MC and SHR were first sampled in 2021, so no data 
is available for 2019 and 2020. Abbreviations refer to wetland units: Maankiki 
North (MN), Maankiki South (MS), Maankiki Center (MC), and Pool 1A (P1A). 
Vegetation zones are coded for ease of use in the field and refer to dominant 
stands or habitat types: submerged aquatic vegetation is any mixed floating or 
submerged vegetation (SAV); Typha is Typha spp. 

UNIT 

Vegetation Zone Type: SAV Vegetation Zone Type: Typha 

2019 2020 2021 2019 2020 2021 

MS 
54.54 
Mildly 

Impacted 

22.73 
Degraded 

27.27 
Degraded 

 

55 
Mildly 

Impacted 

40 
Moderately 
Degraded 

45 
Moderately 
Degraded 

MN N/A* 
45.45 

Moderately 
Impacted 

36.36 
Moderately 
Degraded 

40 
Moderately 
Degraded 

40 
Moderately 
Degraded 

40 
Moderately 
Degraded 

P1A 
22.72 

Degraded 

40.91 
Moderately 
Degraded 

36.36 
Moderately 
Degraded 

35 
Degraded 

40 
Moderately 
Degraded 

40 
Moderately 
Degraded 

MC N/A N/A 
31.81 

Degraded 
N/A N/A 

40 
Moderately 
Degraded 

SHR N/A N/A 
31.81 

Degraded 
N/A N/A N/A 
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NMDS 

 
NMDS plots were made for the three grouping variables of: wetland unit, 
vegetation zone, and sampling month. Ellipses denote 50% variation within 
grouping variables explained, where sufficient data were available. 
PERMANOVAs were used to test for significance. 
 
An NMDS performed for fish communities by wetland unit shows no difference in 
community structure with spread of ellipses across MDS1 and MDS2 (Figure 33). 
Ellipses for MS and MC were most similar and overlapped significantly while P1A 
and MN ellipses had significant overlap. There were not enough data points for 
SHR to create an ellipse but both points fall within the P1A ellipse, suggesting it 
is most similar to P1A. PERMANOVA results showed community assemblages of 
fish by unit were significantly different (p < 0.05), with an R-squared value of 
0.1274. 
 

 
Figure 33. Fish Fyke NMDS for fish communities by wetland unit. Ellipses 
denote 50% variation within grouping variable. Abbreviations refer to wetland 
units and river locations: Maankiki North (MN), Maankiki South (MS), Maankiki 
Center (MC), Pool 1A (P1A), and Shiawassee River (SHR). 
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An NMDS performed for fish communities grouped by vegetation zone shows 
differences in community composition between vegetation zones (Figure 34). 
The ellipse for forest were most dissimilar from every other vegetation zone and 
had the least overlap with other ellipses. Ellipses of Typha, SAV, and mixed 
emergent have significant overlap. Ellipses were unable to be created for shore, 
river bulrush, forest, Nymphaea, and Phalaris due to insufficient data points, but 
they all broadly fall within theTypha, SAV, and mixed emergent vegetation zones. 
PERMANOVA results showed community assemblages of fish by vegetation 
zone were significantly different (P<0.05), with an R-squared value of 0.23365. 
 

 
Figure 34. Fish Fyke NMDS for fish communities by vegetation zone. 
Ellipses denote 50% variation within grouping variable. Vegetation zones are 
coded for ease of use in the field and refer to dominant stands or habitat types: 
submerged aquatic vegetation is any mixed floating or submerged vegetation 
(SAV); mixed emergent is any mixed emergent vegetation, including that with 
SAV that is still mixed emergent dominant (ME); Typha is Typha spp (TY); Lily is 
Nymphaea odorata, RB is Schoenoplectus tabernaemontani; forest is Acer 
saccharum; cottonwood is Populus deltoides (CTN); shore is dry littoral with or 
without vegetation present (SHO);  and Phalaris is Phalaris arundinacea (PHL). 
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An NMDS performed for fish communities grouped by month shows spread of 
ellipses across MDS1 and MDS2, with no differences in fish communities among 
months (Figure 35). The ellipse for the month of May was most dissimilar from 
the ellipses of every other month. The ellipse for November was also dissimilar 
but had more overlap with other ellipses than that of May. The ellipses of August, 
July, June, and October were similar with high overlap. PERMANOVA results 
showed community assemblages by month were not significantly different 
(p>0.05), with an R-squared value of 0.14163.   
 

 
Figure 35. Fish Fyke NMDS for fish communities by month. Ellipses denote 
50% variation within grouping variable. Each shape is a different color 
representing sample(s) taken during one month, and corresponds to an ellipse 
color.  Abbreviations represent months. 
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Abundance of Common Species 

We examined the most abundant fish species among wetland units and years, 
with Black Bullhead, Bowfin, Bluegill, Pumpkinseed, and YOY sunfish being the 
most abundant throughout SNWR (Figures 36; Figure 37; Figure 38). In addition 
to the overall most abundant species across all of the wetland units, any 
additional species that were the most abundant for that respective wetland unit 
are also shown.  
 
CPUE for each species caught over the past sampling years in each respective 
wetland unit are shown in Appendix IX. Cells with zeros indicate that none of that 
species were caught in that respective wetland unit during the sampling year. 
Columns for MC and SHR for the years of 2019 and 2020 were omitted since 
there are no data due to no sampling. Black Bullhead CPUE in MS was higher 
than in most other units with every year having a CPUE of over 56. CPUE of 
Black Bullhead in MS for 2021 is 436.364, which is much higher than any other 
value, due to a site with thousands of young of year black bullhead caught. Our 
2021 year caught Brook Stickleback (Culaea inconstans) for the first time in MS. 
Our 2021 year only caught two species of minnows, Emerald (Notropis 
atherinoides) and Golden Shiners (Notemigonus crysoleucas), which is vastly 
different to previous years which caught a wider diversity of minnow species.  
 
CPUEs across sampling years for the most abundant species found in MS 
changed over the course of sampling seasons (Figure 36). Bluegill (Lepomis 
macrochirus), Bowfin (Amia culva), and Goldfish (Carassius auratus) stayed 
relatively similar across sampling years with differences ranging from 0.5 to 6. 
CPUE for Pumpkinseed (Lepomis gibbosus) was 21.510 in 2019 but decreased 
to 5.636 by 2021. CPUEs for Central Mudminnows (Umbra limi) and YOY sunfish 
(Lepomis spp.) increased greatly from 2019 to 2021 with increases being 11.935 
and 62.318 respectively. CPUE for Black Bullhead showed the largest change 
across the years with an increase from 56.784 in 2019 to 436.364 in 2021. 
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Figure 36. CPUEs across sampling years for the most abundant fish 
species found in MS. CPUE comparisons are shown for seven species in MS 
across three sampling years. Black Bullhead data points are represented as 
squares. Secondary axis in blue represents CPUE for Black Bullhead.  
 
CPUEs for most abundant species in MN across years shows variability in 
species abundance (Figure 37). CPUEs for Bowfin, Pumpkinseed, and YOY 
sunfish stayed similar across sampling years with differences ranging from 2.5 to 
about 10. Black Bullhead CPUE decreased substantially from 2019 to 2020, 
going from 91.37 to 21.84, but showing almost no change in 2021 with CPUE 
being 21.92. CPUE for Bluegill had little change from 2019 to 2020, but 
increased from 2.74 in 2020 to 43.08 in 2021.  
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Figure 37. Total CPUE across sampling years 2019-2021 for the most abundant 
fish species found in MN. Lines are added to show trends, but do not refer to sampling 
efforts between years. Colors refer to different species (see legend). 

 
CPUEs across sampling years for the most abundant fish species found in P1A 
were highly variable (Figure 38). CPUEs for Bowfin, Pumpkinseed and YOY 
sunfish stayed relatively similar across sampling years, with changes ranging 
from 1 to 3. CPUE for Emerald Shiners and Goldfish both showed little change 
from 2019 to 2020, but showed large increases in 2021. Black Bullhead CPUE 
decreased from 2019 to 2020 and then showed little change in 2021. CPUE for 
Bluegill increased substantially from 2.571 in 2019 to 24.88 in 2020, but then had 
a substantial decrease to 11.00 in 2021.  
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Figure 38. CPUEs across sampling years for the most abundant fish species 
found in P1A.  

 
 
 
Baseline CPUEs for sampling of SHR and MC in the future were collected, as 
2021 was the first year either unit was sampled (Table 26). Four new species (for 
the 2019-2021 SNWR monitoring) were recorded in SHR: Longnose Gar 
(Lepisosteus osseus), Round Goby (Neogobius melanostomus), Greater 
Redhorse (Moxostoma valenciennesi), and Quillback (Carpiodes cyprinus). Four 
important game species, Largemouth Bass (Micropterus salmoides), Black 
Crappie (Poxomis nigromaculatus), Northern Pike (Esox lucius), and Yellow 
Perch were recorded in SHR, and Largemouth Bass, Black Crappie and Yellow 
Perch were caught in MC. 
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Table 26. Tables of CPUEs for abundant, important, and new fish species 
for SHR and MC. Blue shaded boxes represent the top five most abundant 
species for that respective unit. Species with * represent species that were 
recorded for the first time. Species with ^ represent important game species.   
 

Shiawassee River  Maankiki Center 

Species CPUE  Species CPUE 

Bluegill 3.684  YOY Sunfish 9.320 

Bowfin 2.842  Bluegill 9.120 

Pumpkinseed 2.789  Black Bullhead 6.800 

Round Goby* 0.526  Black Crappie^ 5.480 

Channel Catfish 0.368  Pumpkinseed 4.080 

Longnose Gar* 0.368  Bowfin 1.720 

Largemouth Bass^ 0.211  Largemouth Bass^ 0.760 

Yellow Perch^ 0.211  Yellow Perch^ 0.320 

YOY Sunfish 0.211      

Black Bullhead 0.158      

Northern Pike^ 0.105      

Black Crappie^ 0.053      

Greater Redhorse* 0.053      

Quillback* 0.053      

 
 
 
 



 124 

Influence of Unit, Vegetation, and Month 

Both ANOVAs for month and wetland unit were insignificant (p>0.05), meaning 
month or wetland unit had no impact on fish CPUE (Table 27). The ANOVA that 
included the MS outlier for vegetation zone was significant (p=0.031) but when 
the outlier was removed it became insignificant (p=0.315). To analyze specific 
differences between vegetation zones, a Tukey’s honestly significant difference 
test was run, which showed forest was significantly different from all other 
vegetation zones. 
 
Table 27. ANOVA results for fish CPUE based on Month, Vegetation, and Unit. 
Bold indicated significance (p<0.05).  

Parameter P-value (Forest Outlier 
included) 

P-value (Forest outlier 
removed) 

Month 0.166 0.704 

Vegetation zone 0.031 0.315 

Unit 0.248 0.304 

 

Influence of Water Quality 

Of all five variables tested on site CPUE only conductivity was significant 
(p=0.004) (Table 28). 
 
Table 28. Linear model results for water chemistry on site CPUE. Bold indicated 
significant (p<0.05). 

Water Quality Parameter P value 

Temperature (C) 0.14599 

Dissolved Oxygen (mg/L) 0.64140 

pH 0.39570 

Conductivity (µS/cm) 0.00381 

Turbidity (FNU) 0.64784 
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DISCUSSION 

Abundant and New Species 

Throughout fish sampling, there were species that were captured more frequently 
than others. Black Bullhead, Bowfin, Bluegill, Pumpkinseed, and YOY sunfish 
were by far the most abundant species found throughout SNWR and were found 
in every unit. Within these common species, Black Bullhead dominated species 
abundance and accounted for more than half of the total fish caught over the 
entirety of the field season. CPUE for Black Bullhead in MS was extremely high, 
due to a single net having over 4,000 individual (juvenile) Black Bullhead, and the 
site having 9,139 fish in total. Generally, having Black Bullhead as a dominant 
species within shallow wetland habitats is not surprising given their tolerance for 
warm, (sometimes polluted), and low DO waters (Rose 2006); however, the 
immense number of Black Bullhead collected was worth noting. The specific site 
where these Black Bullheads were caught was in a channel near the south end 
of MS, where waters were confined to a single small channel, essentially 
channeling all fish into our net.  
  
Other studies have shown that Yellow Perch are often a dominant species within 
Great Lakes Coastal Wetlands (GLCW), but our results showed very few Yellow 
Perch caught throughout the season. Langer et al. (2018) showed that Yellow 
Perch were not abundant in shallow wetlands, likely due to high productivity and 
resulting low dissolved oxygen (Langer et al., 2018). Another explanation for the 
low abundance of Yellow Perch is the distance from Lake Huron. Similar studies 
that have analyzed fish communities within GLCW are much closer to the 
respective Great Lake, while SNWR is twenty miles inland from Lake Huron 
making it a much longer migration for any Yellow Perch coming into SNWR to 
spawn from Lake Huron (Langer et al. 2018). While being a species of concern 
for SNWR, current conditions may not be suitable for the recruitment of Yellow 
Perch.   
  
There were also several new species caught for the first-time during sampling. 
While most new species were a result of sampling for the first time in the river 
and subsequently catching riverine species rather than wetland species, there 
were also new species caught within the wetland units. Brook Stickleback, 
Longnose Gar, Longear Sunfish (Lepomis megalotis), and Silver Lamprey 
(Ichthyomyzon unicuspis) were all caught within wetland units for the first time. 
The most unexpected was the Silver Lamprey due its normal habitat of larger 
rivers and streams and was most likely attached to a fish moving from the river 
into SNWR as it was in its adult parasitic stage (Fuller and Neilson 2011). Other 
riverine species caught that are noteworthy include Smallmouth Bass 
(Micropterus dolomieu) and Walleye, which are two important game species in 
the State of Michigan (Appendix X). Both were caught directly adjacent to P1A in 
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the spaulding drain and represent a chance for these two economically important 
species to enter SNWR.   
  

Community Composition and Island Biogeography Theory 

Island biogeography theory (IBT), which is described as species population 
dynamics as a result of size of isolated islands, or habitats, and its proximity to 
the mainland, or source populations, and the rates of extinction within each 
island; is critical in understanding fish dynamics within SNWR (Angeler and 
Alvarez-Cobelas 2005). Each respective wetland unit acts as an island while its 
connection to the Shiawassee River acts as the mainland housing the source 
populations. The connection timing, determined by refuge management, dictates 
when each wetland unit is connected to the river, and subsequently when fish 
can move among units and the river. Refuge units are the smallest islands in the 
summer when water control structures are closed, preventing the movement of 
fish across units and the river, and the largest during the spring and fall when 
water control structures are open, allowing movement across units. Extinction 
rates within each respective unit are also highest during the summer, when there 
is: no immigration due to closed control structures, challenging water quality 
conditions, and high numbers of piscivorous predators such as herons, 
kingfishers, snapping turtles etc. 
  
The most apparent difference in community composition came from the NMDS 
for fish communities by vegetation zones, with the forest being dissimilar from all 
other zones; and the PERMANOVA showed a significant difference between 
community assemblages and vegetation zones. In addition, the ANOVA for site 
CPUE and vegetation zone also showed a significant difference, with Tukey HSD 
tests showing the forest vegetation zone being the only significant difference 
between all vegetation zones. Both results can likely be attributed to one site 
within MS that had 9,139 fish, with 8,859 of those fish being black bullhead. This 
large collection of black bullhead likely skewed the data, and when removed for 
site CPUE and vegetation zone, the forest vegetation zone was no longer 
significantly different.  
  
Community composition across wetland units and the river was relatively 
homogenous with the only real difference in composition being in the MS forest 
vegetation zone, which can be attributed to an outlier. Communities that inhabit 
shallow water wetlands are more tolerant to physicochemical changes, while 
species that inhabit deep water wetlands are more sensitive to such changes 
(Langer et al. 2018). This community composition pattern is a good explanation 
as to why our 2021 communities were highly overlapping, given the low water 
levels throughout the sampling season. Water level fluctuation also facilitates the 
movement of fish species in and out of wetland ecosystems and also promotes 
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healthy biodiversity within the system (Langer et al. 2018). However, when water 
control structures are closed, the system is disconnected, and movement of fish 
is stopped. Although each wetland unit acts as a habitat island, the homogeneity 
of fish communities can possibly be attributed to the life history traits of fish that 
occupy the isolated wetlands units of SNWR. Fish that can tolerate and 
reproduce in the tough conditions of shallow water and isolated wetlands are 
more likely to persist in areas that are hydrologically disconnected for long 
periods of time (Baber et al. 2002). 
  

Study Limitations 

  
Fyke net sampling has inherent biases, previously acknowledged by both Lugten 
et al. (2020) and Dellick et al. (2021), and can lead to under or over 
representation of fish communities. Limitations stem from method bias, escaped 
fish, within net predation, compromised nets from Muskrats, predatory birds, and 
human error, and available sampling locations. Compromised nets were 
excluded from data analysis but they do represent a loss of data that if not 
compromised could have potentially changed results. Net set locations were 
limited by unit water depth, as our 2021 year had lower water levels throughout, 
preventing replication of previous years net sets. Fyke nets are also depth limited 
so sampling within the deeper portions of units, which may harbor different 
species, were limited.  
  
Limitations for electrofishing sampling were different from fyke netting, but 
followed in a similar manner. The greatest limitation was finding access points to 
get the equipment into the wetland unit and begin sampling. Due to its weight 
and awkward design, the electrofishing catamaran was difficult to carry down the 
sides of dikes and place into the water, making it difficult to sample areas that did 
not have navigable slopes. Additionally, being an oar-driven vessel, maneuvering 
within the water, especially during windy days, was difficult at times and resulted 
in the loss of fish as the netter was not able to scoop them up if only a few feet 
away from the vessel. Certainly valuable, electrofishing can sample where fyke 
nets are unable, but it also has its disadvantages so its deployment must be 
carefully considered in order to maximize effectiveness. 
 

Implications for Management and Science 

  
The IBI results for fish sampling were consistent with previous years, showing 
very little change within wetland units in terms of habitat quality category, which 
ranged from degraded to moderately degraded (Lugten et al. 2020; Dellick et al. 
2021). Interestingly, our results were consistent with other studies that have 
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covered coastal wetlands of the Great Lakes basin, showing that coastal 
wetlands of the Lower Peninsula of Michigan are most often moderately 
degraded (Cvetkovic and Chow-Fraser 2011, Appendix XI). Possible 
explanations are that the more southerly portions of the Great Lakes basin have 
higher anthropogenic impacts due to higher population density, and generally a 
milder climate suitable to human habitation (Cvetkovic and Chow-Fraser 2011). 
  
Fish may also not be the best metric to measure habitat quality because they are 
highly mobile and many species are often generalists (Cvetkovic and Chow-
Fraser 2011). Also, diked wetlands with the purpose of promoting waterfowl have 
adverse effects on fish communities since the connectedness of waterways has 
been severely reduced (Jude and Pappas 1992). This is especially present within 
SNWR, as units are only connected at certain locations and at certain times 
throughout the year, limiting species movement. Although fish can be important 
bioindicators of water quality, the specific purposes and goals of SNWR and 
limitations within the Saginaw Bay watershed do not directly align to meet the 
needs of wetland fish communities; meaning using fish as water quality indicators 
will more than likely result in some level of degraded designation. 
  
Water quality parameters have previously been shown to influence community 
composition; our results for CPUE only showed one significant difference 
indicator, conductivity (Janetski and Ruetz 2015). Although CPUE and NMDS 
measured two different metrics within our study system, it is still surprising that 
only one water quality parameter was a significant indicator for CPUE. Unlike 
Dellick et al. (2021), the effect of water conductivity on abundance is not as clear, 
as the removal of the large black bullhead site changes the results from 
significant to not significant. Conductivity is shown to be higher in wetlands that 
are connected, compared to wetlands that are isolated, but based on our data, 
does not influence the abundance of species caught (Cook and Hauer 2007). 
This trend in conductivity has been observed not only in our summer sampling, 
but spring and fall samples as well. Connectivity between wetland units and the 
river provides more opportunities for general water movement, fish movement, 
abundance of species, and potential diversity; so refuge staff must identify 
species of priority and adjust connectivity to target their needs accordingly, 
regardless of conductivity. In addition, connectivity plays a role in water depth 
and although we did not specifically analyze the effect of water depth on fish 
communities and abundance, it seems that it is a major contributor to what fish 
are present and in what abundance(Baber et al. 2002; Langer et al. 2018). 
Management decisions must compromise between open connectivity and the 
retention of water for suitable habitat, so identifying habitat needs for species of 
concern, such as Yellow Perch, are critical in order for management to make the 
proper decisions. 
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Of the various vegetation zones found throughout SNWR, only forest was shown 
to be significantly different from other vegetation zones. Again, this may be 
because of the immense number of Black Bullhead caught in the confined forest 
section of MS, but it is worth noting (given its structure) that it is certainly different 
from the marsh vegetation sampled elsewhere. Habitat heterogeneity is always 
valuable and provides opportunities for more species diversity, but the forest 
significance is likely a function of how water recedes and is retained in MS during 
low water periods. This forested section of MS acts as a refuge for fish during low 
water periods and serves as another source of fish when waters rise and refloods 
MS. 
  
Species accumulation curves across the wetland units and between years show 
a large degree of variation. Our SACs showed insufficient sampling across MS, 
MN, and P1A, which was consistent with sampling data from 2019 but 
inconsistent with the 2020 sampling. This is surprising given that there were 
more nets set in 2019 and 2021 compared to 2020. Typically, more samples 
provide better species representation composition for a given ecosystem 
(Moreno and Halffter 2001). A possible explanation for the differences in SACs is 
that there were temporal differences in sampling efforts between 2019, 2020, and 
2021. The 2020 group had an abbreviated sampling season due to COVID-19, 
and missed the first six weeks of sampling, which were essentially the spring 
samples. An example of a missed species would be Brook Stickleback, which 
were only caught in the spring and fall of the 2021 sampling season, but were not 
caught in 2020, potentially because of the missed spring samples. Another 
possible and more likely explanation is that the highly variable nature of the 
wetland’s changes habitat structure and the subsequent fish species that utilize 
SNWR. Some species, such as sunfish spp. and Bowfin, are present year round 
regardless of water levels (except complete drying), while other species only 
utilize SNWR seasonally and under specific conditions that are dependent on 
water levels (Jude and Pappas 1992). Habitat diversity is key in the utilization of 
wetlands by fish, and water levels within SNWR determine the amount of 
available habitat and the types of habitat available to fish to use (Jude and 
Pappas 1992). 2021 had lower water levels than both 2019 and 2020, potentially 
leading to fewer diverse habitats within SNWR for fish species to utilize. 
Additionally, wetlands with a longer connectivity duration have increased species 
richness and abundance, offering another explanation as to why the most 
common species are found throughout each wetland unit (Baber et al. 2002). 
  
Our observations within and between wetland units showed variation in fish 
abundance and structure, likely due to connectivity and water depth. To best 
understand the variation within each wetland unit, continued ecosystem 
monitoring to increase data sets and create more robust findings. MS, MN, and 
P1A now have three years of sampling data which can start to show trends but 
more data are needed to make the best informed decisions in terms of 
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management. MC only has one year of data thus far, and provides a baseline for 
future teams to compare against, especially due to its recent reconnection to 
SHR and early successional stages. There is also a need for continued 
monitoring of SHR as knowledge about what proportion of fauna from the river 
utilizes SNWR can be gained. Continued monitoring is needed in both MC and 
SHR to fully grasp the ecosystem variation and also to implement the best 
conservation and management strategies for not only fish, but 
macroinvertebrates, vegetation, and water quality. 
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CONCLUSION 

Ecosystem Variability 

Generally, the combination of water quality, vegetation, macroinvertebrates, and 
fish data illustrated several different pictures across the wetland units. IBI scores 
of macroinvertebrates when compared to previously monitored years for MS, 
MN, and P1A all lowered in value from mildly impacted to mildly degraded and 
fish IBI scores across these units remained the same from the previous years. 
Conversely, IBI scores for vegetation improved from low to medium across the 
previously sampled units. While it seems that habitat quality has improved based 
on vegetation data, our results showed a decline in macroinvertebrate scores 
possibly because of changes in water levels, from the Midland flood, which are 
highly influential to wetland fauna (Langer et al. 2018). MC and SHR were unique 
in that MC was recently reconnected to the river and that it is by far the largest 
and most heterogenous unit in terms of habitat, and SHR is a warm water river 
site  that is not suited for the application of coastal wetland biotic indices. MC 
was consistent with other units in terms of its fish and vegetation IBI scores but 
was categorized as mildly impacted for macroinvertebrates which is better than 
all other units. MC was also unique in that pH and conductivity were significantly 
lower and higher, respectively, than most other units. 
 
Community composition varied between units, indicating differences in 
restoration succession. NMDS for macroinvertebrates and fish showed notable 
variations in community structure by unit. For fish, this variation was likely due to 
differences in abundances of common species as over 9,000 Black Bullhead 
were caught in MS. Similarly, macroinvertebrate communities in MS were most 
dissimilar from every other unit, with the combination of these data showing MS 
to be the most dissimilar unit overall. FQA analysis showed the highest amount 
of site-specific vegetation species in MC, showing a unique community 
composition compared to all other wetland units. Fish community structure in 
SHR was most similar to P1A even though they are two completely different 
ecosystem types. This was not surprising as P1A is directly connected to SHR 
and shows that riverine fish are accessing wetland pools. More sampling within 
SHR would likely change NMDS results since species accumulation curves 
showed inadequate sampling and thus not the representative community. 
Continued sampling of SHR will also shed light on what potential species could 
move into wetland units given the proper habitat and corridors.   
 
Variation between units was attributed to a few key factors such as water level, 
water chemistry, and habitat structure. Like both Lugten et al. (2020) and Dellick 
et al. (2021), we attribute variation in water levels within wetland units to be the 
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main source of abiotic and biotic variation. On a broader scale the individual 
elevation, and more specifically unit micro-topography, play a large role in 
community differences with higher areas having shallower water and lower areas 
having deeper water. Water depth is extremely important in determining water 
chemistry, vegetation, macroinvertebrate and fish composition, and variation 
within each unit can alter the utilization of habitat by different species. Specific 
water chemistry, influenced by depth, then influences movements of fish 
throughout wetland units, and affects survival of both fish and 
macroinvertebrates. This potentially explains why IBI scores for 
macroinvertebrates and fish are lower than previous years, but vegetation IBI 
scores have increased; There is sufficient quality habitat within wetland units, but 
lower water depth prevents adequate utilization by wetland fauna. 
 
We understand that there is significant annual variation within SNWR which also 
accounts for a large portion of the variation between units. This is especially 
apparent when comparing water levels between years as 2020 had a historic 
flooding event, while our 2021 year had low water levels; in some cases we were 
not able to sample in previous years’ sampling locations due to low water.  
Uzarski et al. (2018) discussed that conflicting wetland indicator scores across 
each sampled taxa and water quality can be attributed to changes in temporal 
and spatial anthropogenic disturbance and uneven distribution of disturbance, 
thus creating different impacts for sampled taxa. Continued monitoring will help 
to understand how these annual variations influence SNWR wetland ecosystems. 
 

Research Recommendations 

To better prepare future monitoring teams, we provide recommendations on: 
sampling, surveying SNWR for more information, comparing SHR and SPD 
inputs into SNWR, and comparing results to other wetlands.  

Our recommendations for sampling include: using pipettes for macroinvertebrate 
sampling, collecting water chemistry data for vegetation sampling, and using 
SACs for vegetation and macroinvertebrate sampling. 

For macroinvertebrate sampling, the CWMP SOP does not include sampling 
recommendations on three key points. First, the SOP does not explicitly 
recommend pipettes, so we suggest creating clear guidelines for their use during 
field picking to reduce tool bias and improve CPUE accuracy.  In order to 
accurately assess macroinvertebrate abundances between units, sampling effort 
must be controlled, and the preference for or against pipettes strongly effects 
control of sampling effort. Second, lower numbers of Gammarus and Oligochaete 
suggest a shallow water bias could be affecting macroinvertebrate distributions.  
Because most researchers are less than 2 m tall (~6ft), and working in waders 
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means they do not sample in water deeper than 1 m (3ft), we recommend 
including more kayak or boat based sampling. Lastly, determining the control of 
vegetation zones on macroinvertebrate abundance necessitates sufficient 
sampling more thoroughly throughout MC, where numerous vegetation zones 
exist that were entirely unsampled (e.g., Lythrum salicaria), or had a small 
sampling size that was unusable in NMDS ordination plots (i.e., Phalaris, river 
bulrush, and smartweed/PSP).  We strongly recommend conducting more 
sampling events in these and other vegetation zones, especially the unique 
vegetation zones within MC. Although statistical methods can account for non 
normal distributions, the extreme bias towards edge habitat visible in our 
sampling map must be ameliorated in future efforts if management expects to 
fully understand macroinvertebrate communities at SNWR, most importantly the 
unique MC distributions.  

We also suggest collecting water quality samples during vegetation sampling to 
better understand the distribution of dissolved oxygen, temperature, and 
sediment which can determine refugia for aquatic macroinvertebrates and fishes. 
Understanding of the nutrient load and water quality present can give SNWR 
managers a better idea of areas that are susceptible to invasive plant spread, 
which can also determine the presence or absence of aquatic 
macroinvertebrates and fishes.  

Calculating SACs for vegetation and aquatic macroinvertebrates is 
recommended to gauge whether sampling efforts were sufficient to accurately 
characterize these assemblages. This would give a better understanding of 
potential undersampling or oversampling, depending on the results. SACs would 
potentially have implications for future sampling as sampling efforts may have to 
be adjusted to properly characterize both vegetation and aquatic 
macroinvertebrate assemblages. 

Continued research on surrounding rivers and waterways in future SNWR 
monitoring would greatly contribute to a deeper understanding of how these 
bodies of water impact the wetland units. Previously, we have taken water 
chemistry and nutrient samples from the SHR and SPD, this information has 
given our monitoring team a better understanding of the water, sediments, and 
nutrients moving into the refuge. We suggest directly comparing the difference in 
water quality sampling between the SNWR units and the river sites (SHR and 
SPD) to best understand the difference in sediment and nutrient deposition and 
transportation between these areas. We also suggest conducting more research 
on the water exchange dynamic after connecting wetland units with rivers. Some 
potential questions include: “How do the sediments from rivers get transported in 
different wetland units and how will the process change the bathymetry of each 
wetland unit?”; and “How will DO and water temperature change in different 
wetland units after connection with the river?”. Additionally, our team was the first 
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to sample the SHR and SPD for fish communities present, this research 
highlights species found on the edge of large and fast-moving bodies of water. 
Continuing this research would better help teams and managers understand the 
proportion of river fishes that utilize SNWR, helping managers toward the goal of 
supporting Yellow Perch populations. We also suggest that future teams consider 
sampling river sites for aquatic macroinvertebrates. Like fish, invertebrates are 
mobile and can be carried along the river by its flow; the communities of aquatic 
invertebrates may be vastly different than those in the sampled SNWR units.This 
information can better portray which species prefer lentic waters of wetland units 
or those that prefer lotic waters in SHR. Feasible river locations may be similar to 
those sampled by Coastal Wetland Management Program (CWMP) during their 
sampling event. Data collected from fish sampling, and potentially aquatic 
macroinvertebrate sampling, can also explain the migration of species into 
SNWR units.  

We recommend conducting a thorough bathymetry survey across all wetland 
units and that the succeeding monitoring team read and apply findings from the 
hydrogeomorphic analysis (GWS 2013) .This can help address questions of 
where sediment will accrue and what to expect for the new hydrologic flow 
across MC. During our sampling season, we noticed that there was a significant 
amount of silt in P1A, which may have accumulated from direct access to SPD 
over 70 years of connection. This accumulation alters multiple water chemistry 
variables and influences the biota living in this unit. If the approximately 2 ft of silt 
from P1A and dissolved solids from SPD will be dispersed throughout MC over 
time, it would be worthwhile to study the depths within of this unit to determine silt 
accumulation. A wide variety of water depths supports a larger variety of species, 
whereas a narrow range of water depths would no longer support as many 
species. Sediment redistribution creates different microhabitats (Angélibert et al. 
2004), with gradual changes in water depth and chemistry impacting wetland 
succession (Batzer and Boix 2016). These sediments can determine macrophyte 
communities, which is one of the most important factors in succession (Van de 
Meutter et al. 2008 ; Kim et al. 2014 ).  

We recommend comparing annual results for SNWR summer monitoring to 
additional older and established wetlands to help clarify hypothetical outcomes 
for SNWR in the future. Whether the biotic communities currently viewed in the 
control unit, P1A, will be similar to the other three remaining wetland units, after 
succession stabilization, is yet to be determined. Monitoring the health of P1A as 
well as comparing and contrasting the succession of surrounding units can help 
determine if species richness will greatly increase or decrease over time. 
Whether within Michigan or farther abroad, referencing well-studied floodplain 
wetlands will help set expectations for late successional wetlands and estimate 
what biotic communities will look like in the future. Additionally, we recommend 
that future teams and managers reconsider the metrics used for sampling 
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SNWR, most of the IBI metrics for fish and invertebrates were created for coastal 
wetlands. Results from IBI metrics used in our study may not be as relevant to 
the refuge and may portray a much more degraded status than intended.  

 

Management and Science 

Overland flow has a larger influence on barrier protected marshes, stream flow 
has a larger influence on riverine marshes, and lake water levels have a higher 
influence on lacustrine marshes. But all of those flows may be slowed or 
accelerated considerably by closing or opening water control structures in 
managed marshes. So, perhaps the most influential factor on the SNWR marsh 
units is their managed water budget and regime. Because of the strong influence 
of hydraulic forces from extreme events creating overland flow such as from 
floods and storm events; and diel, seasonal and irregular water movement from 
seiche events and fluctuating river levels; managerial decisions will inevitably be 
reactive, even though further research will allow increasingly fine tuned 
responses to those events. 

Describing SNWR as one specific wetland type is difficult because of the features 
unique to this location such as its topography, hydrology, and historic 
disturbances. The uniform, flat topography of the study units and their proximity 
to Lake Huron result in relatively strong lacustrine influences at SNWR. But 
channelization and development between SNWR and the Saginaw Bay also 
likely alters seiche events in complex ways (Schrouder et al. 2009). Although 
seiche events affect wetland unit dynamics, their effect is probably dampened by 
distance from Lake Huron (Trebitz 2006). Global change, and local 
anthropogenic change along the major tributary rivers in the SNWR watershed, 
create a flashy condition with strong annual riverine influences, and complex 
water movement within and around the refuge. These anthropogenic effects; 
along with invasive species, runoff, land alterations, and the refuge’s already 
complex hydrology; mean that it is difficult to model SNWR solely as an inland 
coastal marsh. Despite being located where a hybrid floodplain and Great Lakes 
marsh is expected, the study units were so historically altered that the 
Shiawassee flats were for a time functionally extinct. It is our thesis that historic 
and current alterations to SNWR in combination with the already hybrid 
categorization of watershed characteristics are so large that researchers will not 
properly understand SNWR dynamics if the only reference is Great Lakes coastal 
wetlands. 

The future of SNWR is quite variable, but with each successive year of 
monitoring, we try to depict what this revitalized wetland and floodplain will look 
like. We recommend that management use as a model not just inland estuarine 
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wetlands, but also floodplain wetland restoration, barrier protected wetlands, 
constructed wetlands, and novel anthropogenic factors like the effect of dike 
height on dispersal. SNWR’s marsh units are both too innovative in restoration 
ecology, too important to Michigan water management, and too complex in 
hydrogeomorphology and history to reference only a single model for future 
development. Global change has accelerated so quickly since 1953 when the 
federal government first purchased the land that models for future management 
and research should include realistic projections about management’s ability to 
recreate functionally extinct habitat and restore water quality, vegetation zones, 
as well as macroinvertebrate and fish assemblages as they once might have 
been.  Nonetheless, we hope this report will provide guidance on those topics for 
the benefit of the ecosystem, wildlife, and the people who hope to guide SNWR 
forward to an abundant, rich condition.
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APPENDICES 

Appendix I 

Introductions for each monitored location 

Pool 1A (P1A) 

Since its reconnection to the Shiawassee River in 1958, P1A has served as a reference 
unit for floodplain restoration. P1A is open to SPD spring through fall and then closed in 
the winter to retain adequate water levels for overwintering species in the unit. Several 
vegetation zones occur throughout P1A, including Salix (willow), Nymphaea (water 
lilies), Typha (cattails), and submerged aquatic vegetation (SAV). The unit is relatively 
flat with similar topography and several inches of sediment accumulation, but there is 
some variation due to modifications made by Canada Geese and Muskrats during nest 
construction.  

Maankiki South (MS) 

MS hydrologic reconnection construction began in 2016 and was first flooded in the 
spring of 2018. This unit is primarily closed, with reconnection to the river typically 
occurring in the spring to promote flooding and later closed to retain water levels 
throughout the summer. Connection to the Shiawassee River has varied however, with 
the control structure being opened in the March of 2019 to raise water levels, in May of 
2020 to receive anticipated flood waters from heavy precipitation and dam breach 
upstream on the Tittabawassee, in October of 2020, and in July of 2021 after heavy 
precipitation. Water levels are often lower compared to other units since MS is at a 
higher elevation. Water levels were also lower in 2021 due to less snow melt and spring 
precipitation; resulting with only the perimeter channels and a small area on the north 
side of the dike being inundated. The center area of MS was saturated but not 
inundated during monitoring. Vegetation throughout MS is characterized by zones of 
flooded forest, Typha, Phalaris, and SAV. 

Maankiki North (MN) 

Similar to MS, MN hydrologic reconnection construction began in 2016 but was flooded 
for the first time in the spring of 2017. It was also opened in May of 2019 for several 
days to raise water levels, May of 2020 to accept flood waters, and in July of 2021 after 
heavy and prolonged precipitation. MN is the lowest in terms of elevation and as a result 
has the highest water levels throughout the season, which resulted in limited fyke sets 
for the 2019 teams, but lower water levels allowed for net sets in 2020 and 2021. 
Similarly to MS, the perimeter of MN has deep channels that is the main cause for 
variable topography, with the interior of the unit being very uniform. Vegetation zones 
within MN include Typha, Phalaris, and SAV, but also has a row of dead trees on the 
north end which serves as a roosting site for various bird species, most noticeably 
double-crested cormorants (Phalacrocorax auritus). 
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Maankiki Center (MC) 

Like both MS and MN, MC was reconnected to the Shiawassee River in 2016 but was 
not fully flooded until 2020. Initial plans were to flood MC in the spring of 2020, but 
because of flooding and COVID-19 delays construction in adjacent units was delayed, 
requiring water control structures to remain closed, but it received flood waters in May of 
2020 from the Tittabawassee dam breaks. MC is a new study unit and all data collected 
in 2021 will be the first collected since reconnection to the Shiawassee River. MC is 
unique in that it is directly connected to P1A, in addition to the distribution basin. MC 
varies topography with deep channels around the perimeter and a set of interior berms 
that prevent erosion from wave fetch on the outer dikes and wildlife drive. Vegetation 
zones within MC vary and include Mixed Emergent, Typha, Salix, Phalaris, and SAV. 

Shiawassee River (SHR) & Spaulding Drain (SPD) 

The Shiawassee River and Spaulding Drain serves as a reference point for potential 
species movements into the SNWR wetland units. The rivers also supply the wetland 
with water through the various water control structures around SNWR. The Shiawassee 
also serves as a migratory pathway into the wetland for species coming from Saginaw 
Bay and Lake Huron. These sampling sites were added in 2021 and were not sampled 
in 2019 or 2020. Nets set in the river were within 100 feet of the shore given the 
topography of the river and increasing depth towards the middle. No macroinvertebrate 
or vegetation sampling were conducted due to time and manpower constraints, in 
addition to sampling in the rivers being primarily for reference of potential fish sources.  
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Appendix II 

 
Tukey HSD test for water quality parameters and months. 
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Appendix III 
Tukey HSD test for water quality parameters and units. 
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Appendix IV 

Tukey HSD test for water quality parameters and vegetation zones 
1.Tukey HSD test for average temperature and vegetation zones. 
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2.Tukey HSD test for average dissolved oxygen and vegetation zones. 
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3.Tukey HSD test for average conductivity and vegetation zones. 
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4.Tukey HSD test for log(average pH) and vegetation zones. 
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5.Tukey HSD test for log(average turbidity) and vegetation zones.
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Appendix V 

All plant species across sampled vegetation zones and units. 
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Appendix VI 

Major taxa associated with high and low fetch wetlands by unit. Taxa associated 
with wetlands that have stronger fetch, mid fetch, or low fetch. Total CPUE for the three 
functional groups, as well as relative unit CPUE is presented. *Bezzia or Palpomia is 
our SNWR 2021 LOTU, as the two genera are indistinguishable with our tools, but the 
high fetch taxa is solely Bezzia.  This does not change the conclusion. 

High Fetch LOTU CPUE 

MC MN MS P1A 

Sigara 0.22 0 0.08 0.19 

Trichocorixa 1.06 2.21 6.75 1.13 

Oligochaeta 0.56 0.14 1.42 0.63 

Bezzia or Palpomia 0.83 0.43 0.92 0.19 

Total 2.67 2.79 9.17 2.13 

Relative Unit CPUE 0.03 0.03 0.1 0.02 

Low Fetch LOTU CPUE 

MC MN MS P1A 

Gammarus 0.39 0.5 0 0.63 

Crangonyx 0 0 0 0 

Caecidotea 0.06 0.14 0.08 2.69 

Chironomini 6.67 4.64 6.92 9.13 

Tanytarsini 1.83 0.71 1.17 1.69 

Total 8.94 6 8.17 14.13 

Relative Unit CPUE 0.11 0.06 0.09 0.13 

Mid Fetch LOTU CPUE 

MC MN MS P1A 

Hyalella 13.11 38.43 20 16.25 

Tanypodinae 1.22 1.43 0.92 0.56 

Libellulidae 1.61 0.43 0.42 0.5 

Caenis 14.28 13.11 13.11 13.11 

Callibaetes 0.28 0.5 0.5 0.38 
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Physa 5.67 1.64 5.33 6.31 

Hydracarina 0.56 3.64 5.42 3.44 

Total 36.72 59.18 45.69 40.55 

Relative Unit CPUE 0.45 0.55 0.52 0.36 
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Appendix VII 

Macroinvertebrate unit CPUE from 2020 to 2021 ranked by Pool 1A unit CPUE. We 
arbitrarily included all taxa recorded above 0.5 unit CPUE in any one pool and year.  We 
highlighted taxa records that declined within each wetland unit from 2020-2021 (red) or 
increased within each wetland unit from 2020-2021 (green). We also highlighted MC records 
where the taxa was lower than all other wetland units and years (gold), lower than 2021 wetland 
units (yellow), higher than all other wetland units and years (dark blue), and higher than 2021 
wetland units (light blue).  Note that other trends not highlighted here are analyzed in the 
discussion section. 

P1A 2020 

P1A 
2021 MN 2020 

MN 
2021 

MS 
2020 

MS202
1 MC2021 

Hyalella 44.71 16.25 135.21 38.43 15.38 20 13.11 

Enallagma 12 0.19 2.71 3 3.06 0.08 0.78 

Caenis 11.86 12.81 15.14 14 15.75 8.5 14.28 

Ischnura 9.64 5.06 7.79 2.43 2.63 0.5 3.78 

Physa 9.14 6.31 2.07 1.64 5.19 5.33 5.67 

Neoplea 8.29 6 1 1 3.06 2.25 0.72 

Caecidotea 7.57 2.69 0.21 0.14 1.19 0.08 0.06 

Chironomidae* 5.93 17 4.29 9.57 6 12.08 14.72 

Immature 
Coenagrionidae 4.07 1.38 8.36 2.43 3.19 2.83 8.72 

Belostoma 2.79 1.94 1.14 0.57 1.19 1.17 1.17 

Oligochaeta 2.71 0.63 1.29 0.14 0.31 1.42 0.56 

Pachydiplax 2.57 0 1.14 0.07 0.69 0 0 

Planorbella 2.07 0.69 0.57 0.14 1.44 0.33 0.56 

Hydrachnidae 1.79 3.44 11.57 3.64 3.75 5.42 0.56 

Helobdella 1.64 0 0.86 0 2.31 0 0 

Hesperocorixa 1.57 1.56 23.14 2.5 1.25 0.75 0.61 

Sympetrum 1.57 0 0.07 0.14 0.88 0.08 0.17 

Gammarus 1.43 0.63 3.14 0.5 0.06 0 0.39 

Nannothemis 1.21 0 0 0.07 0.25 0.17 0 

Branchiobdellida 0.86 0 0 0 0 0 0 
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Erythemis 0.71 0.19 0.86 0.07 1.44 0.08 0.11 

Nehalennia 0.64 0 0 0.36 0.19 0 0 

Sphaeriidae 0.57 0.31 9 0.21 0.13 0 0 

Notonecta 0.5 0.19 0.21 0.36 1.63 0.33 0.78 

Anax 0.5 1.75 0.5 1.86 0.63 0.75 0.67 

Coenagrion 0.43 3 0.21 6.57 0 0.75 3.72 

Buenoa 0.43 0.19 0 0.21 0 0.17 0.5 

Libellulidae 0.36 0.13 1.86 0 0.88 0 0.11 

Immature Corixidae 0.29 4.94 5.07 6.14 0.88 3.67 2.72 

Glossiphoniidae 0.29 0.13 2.93 0 1.63 1.25 0.11 

Lestes 0.14 0.25 4.71 0 3.13 0 0.28 

Merragata 0.07 0 4.5 0 0.06 0 0 

Berosus 0.07 0.63 0.21 0.43 0 1.25 1.25 

Leptocerus 0.07 0.75 0 0.14 0.31 0.83 0 

Heliosoma 0.07 0 0 0.71 0.19 0 0.11 

Drunella 0 0 1.21 0 0 0 0 

Trichocorixa 0 1.13 0 2.21 0.31 6.75 1.06 

Bezzia or Palpomia 0 0.19 0 0.43 0.44 0.92 0.83 

Leucorrhinia 0 0.13 0.14 0.07 0.06 0.08 1.11 

Callibaetis 0 0.38 0.14 0.5 0.13 0.5 0.28 

Anopheles 0 0.06 0.64 0.71 0.5 0.17 0.17 

Immature Pleidae 0 0.69 0 0 0 0 0 

Clinotanypus 0 0 0.71 0 0 0 0 
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Appendix VIII 

Tukey Honestly Significant Difference Test of multiple comparisons of means for 
macroinvertebrate CPUE by Vegetation Zone. 
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Appendix IX 

Fish CPUE for all species recorded by fyke netting across all sampling years. CPUEs 
for each unit are grouped by colors, MS =  green, MN = yellow, P1A = blue, MC =  red, 
SHR = purple. Represents across year CPUEs and also total species list for fish 
sampling by fyke net.  

Species MS19 MS20 MS21 MN19 MN20 MN21 P1A19 P1A20 P1A21 MC21 SHR21 

Banded 
Killifish 0.667 0.000 0.682 0.000 0.000 1.320 0.400 0.000 0.778 0.000 0.000 

Black 
Bullhead 56.784 57.220 436.364 91.370 21.840 21.920 12.857 1.170 0.815 6.800 0.158 

Black 
Crappie 0.922 0.960 2.455 1.481 0.420 1.760 0.543 0.830 1.333 5.480 0.053 

Bluegill 7.882 1.700 1.273 4.593 2.740 43.080 2.571 24.880 11.000 9.120 3.684 

Bluntnose 
Minnow 0.118 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Bowfin 0.608 1.390 0.636 0.704 0.110 3.120 1.800 0.790 2.963 1.720 2.842 

Brook 
Silverside 0.000 0.000 0.000 0.000 1.210 0.000 0.000 0.000 0.000 0.000 0.000 

Brook 
Stickleback 0.000 0.000 0.273 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Brown 
Bullhead 0.039 0.000 0.045 0.111 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Central 
Mudminno

w 0.020 0.130 11.955 0.000 0.000 0.440 0.000 0.040 0.037 0.000 0.000 

Channel 
Catfish 0.000 0.000 0.000 0.000 0.000 0.040 0.229 0.000 0.333 0.000 0.368 

Common 
Carp 0.098 0.130 1.318 0.296 0.210 0.320 0.257 0.000 0.296 0.480 0.105 

Emerald 
Shiner 0.176 0.000 0.591 0.000 0.000 0.080 0.029 0.420 19.333 0.720 0.053 

Fathead 
Minnow 0.412 0.000 0.000 0.000 0.000 0.000 0.143 0.000 0.000 0.000 0.000 

Gizzard 
Shad 0.000 0.000 0.000 0.296 1.470 0.440 0.971 1.330 0.667 1.040 0.000 

Golden 
Shiner 0.373 0.090 0.818 0.259 0.320 0.360 0.057 2.290 1.222 0.040 0.000 

Goldfish 0.098 0.130 3.136 0.111 0.050 1.440 0.171 0.080 14.370 0.760 0.053 

Greater 
Redhorse 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.053 
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Green 
Sunfish 6.353 1.000 0.909 0.704 0.580 1.400 0.857 1.000 1.704 1.960 0.263 

Johnny 
Darter 0.020 0.000 0.000 0.037 0.110 0.000 0.000 0.000 0.111 0.000 0.000 

Largemout
h Bass 0.255 0.740 0.136 0.407 0.630 0.440 0.371 7.170 2.481 0.760 0.211 

Longear 
Sunfish 0.000 0.000 0.000 0.000 0.000 0.040 0.000 0.000 0.000 0.160 0.000 

Longnose 
Gar 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.368 

Northern 
Pike 0.157 0.000 0.045 0.407 0.000 0.280 0.343 0.330 0.000 0.000 0.105 

Pumpkinse
ed 21.510 2.390 5.636 1.519 7.840 11.640 6.543 9.500 9.296 4.080 2.789 

Quillback 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.053 

Round 
Goby 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.526 

Silver 
Shiner 0.039 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Spottail 
Shiner 0.059 0.000 0.000 0.037 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Tadpole 
Madtom 0.020 0.000 0.000 0.074 0.000 0.080 0.000 0.000 0.111 0.000 0.053 

Warmouth 0.059 0.170 0.000 0.148 0.480 0.000 1.429 3.380 0.000 0.000 0.000 

White 
Crappie 0.059 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Yellow 
Bullhead 0.000 0.000 0.136 0.037 0.000 1.360 0.086 0.000 0.000 0.320 0.000 

Yellow 
Perch 0.000 0.040 0.045 0.333 0.370 0.240 0.571 0.250 0.889 0.320 0.211 

YOY 
Crappie 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.040 0.000 

YOY 
Sunfish 0.000 0.260 62.318 0.000 2.370 4.440 0.000 6.000 1.667 9.320 0.211 
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Appendix X 

 

Species caught via electrofishing in each wetland unit, Shiawassee River, and 
spaulding drain. Represents total species list by electrofishing. X in table represents 
species was caught, blanks represent species were not caught.  
 

Species MS MN P1A MC SHR SP 

Bigmouth Buffalo X           

Black Bullhead X X   X     

Black Crappie X X X X   X 

Bluegill X X X X X X 

Bowfin X X X X X X 

Channel Catfish         X X 

Common Carp X X X X X X 

Emerald Shiner X         X 

Freshwater Drum           X 

Gizzard Shad X     X X X 

Golden Redhorse         X X 

Golden Shiner X X         

Goldfish X X   X X   

Green Sunfish X   X X     

Johnny Darter         X   

Largemouth Bass X X X X X X 

Longnose Gar       X     

Longear Sunfish       X     

Pumpkinseed X X   X X X 

Quillback         X   

Silver Lamprey     X       

Smallmouth Bass   X       X 
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Walleye           X 

Yellow Perch X X   X X X 

YOY Sunfish X           
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Appendix XI 

These images were taken from Uzarski et al. (2022) and describe all Great Lakes 
coastal wetland communities with aquatic macroinvertebrate and fish IBI scores. 
Information was compiled from sampling efforts spanning 2011-2020. With ‘Reference 
Conditions' being the highest quality of wetland, located mainly in the Upper Peninsula 
of Michigan, sites near industrialized areas show more degraded conditions. Saginaw 
Bay coastal wetlands ranged from moderately degraded to degraded (third and second 
lowest ranking, respectively).  

1.IBI scores for Invertebrate Communities in Great Lakes Coastal wetlands from 
2011-2020 
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2.IBI scores for Fish Communities in Great Lakes Coastal Wetlands from 2011-
2020
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Abstract 
 
Conventional fish sampling methods, such as fyke netting and electrofishing, pose safety 
concerns in rivers with high flows, deep water, or highly turbid waters. Imaging sonars, such as 
the Adaptive Resolution Imaging Sonar (ARIS), provide an alternative sampling method that can 
overcomes these limitations. In 2020 and 2021, an ARIS (Adaptive Resolution Imaging Sonar; 
Sound Metrics Corp.) unit was placed within the Shiawassee National Wildlife Refuge in Eastern 
Michigan to record fish activity between the Shiawassee River and the floodplain wetland units 
within the refuge. In 2020, a machine learning model was developed to analyze ARIS footage 
for fish activity (i.e. bi-directional movement). By the end of 2020, the model was able to count 
fish with a precision of 64.94%. In 2021, our objectives were (1) to process and store all current 
ARIS data; (2) to retrain the machine learning model to improve accuracy and to identify fish 
schools in addition to individual fish; and (3) to add a function to the post-processing code that 
calculates individual fish length. 
 
The machine learning model is trained on single images and takes .mp4 files as inputs, thus all 
ARIS footage (produced from the sonar unit as .aris format) must be converted to .mp4 file 
format. The conversion process took place on Open Science Grid. All .aris files and converted 
.mp4 files were stored on the Great Lakes Slurm High-Performance Computing Cluster at the 
University of Michigan. In 2021, scientists at Advanced Research Computing (ARC) within UM 
trained two machine learning models on the Great Lakes cluster. The first model was trained on 
3909 examples of fish and 207 examples of schools. The second model was trained on the 
same training set as the first model but with an additional 331 examples of fish and 901 
examples of schools for a total of 4240 examples of fish and 1108 examples of schools. The 
models were evaluated by true positive rate, false negative rate, false positive rate, and overall 
precision. Individual fish lengths were calculated using a formula provided by Sound Metrics 
Corp. 
 
I converted 6,856 .aris files spanning 2020 and 2021 to .mp4 format. The length function was 
implemented in the code but was not evaluated. The two 2021 models improved on the true 
positive rate and false negative rate from 2020, but the false positive rate and overall precision 
worsened. The poor false positive rate and precision likely stems from the model identifying 
small fish within schools as individual fish, thus one fish is counted as part of a school and as an 
individual. To rectify this, I recommend using fish length as a determiner of whether a fish 
should be counted as an individual. 
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Introduction 
 
The Shiawassee National Wildlife Refuge (SNWR) contains a large, hybrid river floodplain and 
coastal wetland that is undergoing a historic reconnection of long-diked floodplain areas with the 
Shiawassee River in central-eastern Lower Peninsula of Michigan. After being used for 
agricultural purposes for many years, the refuge was established in 1953 as a sanctuary for 
migratory birds. Today, the refuge is designated as a United States Important Bird Area, 
providing critical stopover habitat for Canada geese, ducks, and other migratory waterfowl and 
water birds (USFWS, no date.).  In addition to bird watching, the refuge provides opportunities 
for other recreational activities, such as hunting and hiking. Refuge wetlands also provide flood 
mitigation, drought prevention, and water quality protection for the surrounding areas such as 
the city of Saginaw (Mitsch and Gosselink, 2000). The U.S. Fish and Wildlife Service (USFWS), 
as managers of the refuge, is invested in preserving and expanding these ecosystem services 
through continued restoration efforts. 
 
The USFWS has partnered with the U.S. Geological Survey, Great Lakes Science Center and 
the University of Michigan, School for Environment and Sustainability (SEAS) to study the 
effects of hydrologic reconnection to the Shiawassee River on the ecology of the floodplain 
wetlands, including the dynamic relationships between Lake Huron, the Saginaw River and its 
tributaries, and the refuge wetlands. Restoration efforts on the refuge began in 2011 when 
Ducks Unlimited was awarded $1.5 million from Sustain Our Great Lakes to restore wetlands. 
The refuge’s current Habitat Management Plan includes four phases, with phase I being the 
initial wetland restoration. Phases II, III, and IV include further restoration, enhancement, and 
hydrologic connectivity and are funded by the Great Lakes Restoration Initiative (Dunton 2018). 
Since 2019, annual student teams from SEAS have conducted post-restoration monitoring on 
the refuge by collecting data on fish, invertebrates, vegetation, and water quality. At the time of 
the 2021 student team’s field study, restoration phases I and II had been completed. 
 
Many riverine and Great Lakes fish species are known to utilize lower river floodplain and 
coastal wetlands for a variety of reasons, but research on movements of fish between the Great 
Lakes, the rivers, and these wetlands - especially those recently reconnected - has been limited. 
However, we have a general idea of what we think is driving fish movements in and out of 
wetlands during specific seasons. When water levels are high in spring, fish can move upriver 
and into the wetlands for spawning. However, conditions become harsh and stressful for many 
fish species when water levels drop in summer and movement between the river and the 
wetland pools is thought to be limited. In fall, water levels rise, and fish may again move upriver 
and into the wetlands, but it is unknown how they utilize the wetlands during this season 
(Eggleston et al. 2020). Knowing how many fish, what size fish, and when fish move in and out 
of wetlands would enhance understanding of how fish are utilizing the wetlands, and thus 
associated evaluation of ecological restoration (Kowalski 2010). Monitoring of fish activity can 
be done using hands-on methods such as fyke netting or electro-fishing. These methods allow 
for fish identification and fish counting, but these have practical limitations among other biases 
related to assessing fish community. Hands-on sampling methods are limited by access and 
safety concerns in rivers with high flows, deep water, highly turbid waters, or in low light. Thus, 



 

 

2 

fish sampling has been limited during the critical spring and fall seasons when water levels are 
high and fast due to run-off and increased rainfall. It is during these times also that  fish activity 
is equally high. Furthermore, it is difficult to track fish activity over time using aforementioned 
methodologies because they represent fish activity/community composition at discrete time 
intervals (e.g. one net set for 24 hours).  
 
Hydro acoustic imaging sonars provide an alternative method of collecting data on fish 
movements that overcomes the limitations of other sampling methods in fast-moving, deep, or 
turbid waters. Imaging sonar can be placed underwater at various depths and conditions, and 
record fish activity continuously for months. Because imaging sonars use sound waves instead 
of light to form images, sonar cameras can capture fish activity in highly turbid or low to no light 
conditions. Sonar cameras, such as the Dual-Frequency Identification Sonar (DIDSON), have 
been used to study fish abundance and activity between the Great Lakes and coastal wetlands 
via visual inspection of the sonar footage and proprietary software’s, such as Echoview 
(Kowalski 2010; Eggleston et al. 2020). The Adaptive Resolution Imaging Sonar (ARIS) has 
been used to detect migrating sea lamprey with a machine learning model (Zang 2019). 
 
In 2020 and 2021, an ARIS unit was placed in SNWR at a water control structures that allows 
water and fish to move between the parent river system and the restored floodplain wetland 
units. We used the ARIS Explorer 3000 with a frequency of 3 MHz. In 2020, the ARIS camera 
was placed at a water control structure connecting one of the wetland pools (Pool 1A or “P1A”) 
and the Spaulding, which connects nearby to the Shiawassee River (see Study Area, p. 4). The 
camera collected data from March 18 to November 19, 2020. In 2021, the ARIS unit was also 
placed in the same spot as 2020 from April 9 to December 6, 2021. The ARIS unit was placed 
at a water control structure in the Maankiki Distribution Basin from March 8 to April 8 in an 
attempt to image spawning adult Northern Pike accessing three newly opened emergent marsh 
units (see Study Area, p. 4). 
 
The enormous amount of data collected by the sonar cameras is impractical to analyze by 
visual inspection alone, so in 2020 an initial machine learning model for the analysis of ARIS 
data was developed and tested (Dellick et al. 2021). The machine learning model was 
developed by the University of Michigan, Division of Information Technology Services, 
Advanced Research Computing (ARC) group to count fish and determine the direction that 
individual fish were swimming (i.e. into or out of the wetland units.) The 2021 UM SEAS student 
team labeled approximately 3,500 images to train and test the model. Of the images labeled, 
80% were used to train the model while 20% were used to test the model’s performance. The 
model had a true positive rate of 57.13%, a false negative rate of 42.87%, a false positive rate 
of 34.06%, and an overall precision rate of 64.94%. 
 
This initial version of the machine learning model was below that required by SNWR managers, 
and they desired additional functionality. The model was unable to detect fish when there were 
large schools of fish and had trouble detecting fish that overlapped one another. The model was 
also unable to calculate fish length or provide any metrics to indicate what types of fish the 
camera was capturing.  
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My objectives were: (1) to process and store all current ARIS data within a complex computing 
infrastructure; (2) to retrain the machine learning model to improve accuracy and to identify fish 
schools in addition to individual fish; and (3) to add a function to the post-processing code that 
calculates fish length. 
 
How the ARIS works 
 
Imagining sonars or acoustic cameras such as the ARIS use sound waves to produce images. 
Each transducer element emits an acoustic signal into the water. When the sound wave 
reaches an object, the wave bounces off the object and returns to the transducer element 
(Figure 1). The element then records the strength of that signal as well as the time between the 
emission and reception of the signal. The longer the time between emission and reception, the 
further away the object is from the camera. Hard, high-density objects, such as rocks, produce 
stronger signals than soft, low density objects and stronger signals will appear brighter in the 
resulting image. Objects in sonar images cast “shadows,” meaning that they block sound waves 
from traveling any further in that direction so any objects behind the initial object struck by the 
sound wave will not appear in the image. 

 
Figure 1. A transducer element (sender/receiver) emits a sound wave. The sound wave hits an 
object and returns to the transducer. The sound wave traveled a distance of r, meaning that the 

object is also a distance of r from the camera (Sound Metrics Corp. 2020). 
 
The ARIS consists of 128 transducer elements forming a linear array. Each element emits an 
acoustic beam and receives the returned signal. The transducer elements do not transmit or 
receive at the same time. Rather, they transmit and receive in a specific order within groups. All 
128 beams are then compiled together to form one image (Figure 2). The elements are oriented 
such that the beams are wider further from the camera. This produces a conical-shaped image, 
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with the cross-range or width being shorter near the camera and longer further from the camera. 
The areas in the bottom of an ARIS image are areas that are physically closer to the camera, 
while areas near the top of the image are physically farther from the camera. The range of the 
acoustic beam is determined by the frequency of the signal. A higher frequency produces a 
shorter range (e.g. 5 meters), while a lower frequency produces a longer range (e.g. 15 meters). 
Our ARIS model uses a higher frequency (3 MHz) with a range of 4 meters.  
 

 
 

Figure 2. A diagram showing how an image of a tire is formed and the resulting image. The 
ARIS beams are indicated by the “slices'' of the conical-shaped image on the left. The tire within 

the range of the camera appears in the resulting image but forms a shadow behind it (Sound 
Metrics Corp. 2020) 

 
Study Area 
 
The Shiawassee National Wildlife Refuge (SNWR) contains a large, hybrid river floodplain and 
coastal wetland with many management units (Figure 3). It is located within the Saginaw River 
watershed and is adjacent to the city of Saginaw, Michigan. The Cass, Shiawassee, 
Tittabawassee, and Flint rivers converge in the refuge to form the Saginaw River, which flows 
into Saginaw Bay and, ultimately, Lake Huron. When the area that is now the SNWR was 
agricultural land, many dikes were constructed to hold back the water from these rivers. As part 
of the restoration effort ongoing at SNWR, water control structures have been constructed to 
allow hydrologic reconnection between the historical floodplain areas and the river. These 
structures allow refuge managers to control the amount of water that flows into specific units at 
specific times of year. Opening the water control structures allows water and fish to move 
between the river and wetland the units. The ARIS camera was placed at open water control 
structures to capture this fish movement. For most of 2020 and 2021, the ARIS was placed at 
the water control structure connecting Pool 1A and the Shiawassee River (Figure 4). The ARIS 
was placed at the water control structure entering the Maankiki Distribution Basin connecting 
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the three Maankiki units (North, Center, and South) to the Shiawassee River for one month 
during 2021 (Figure 4). To access the Maankiki Distribution Basin, fish must swim along a 
channel constructed perpendicular to the Shiawassee River. 

 
Figure 3. Named management units and locations within SNWR. The red boundary encloses 

the area owned by USFWS. The blue boundaries enclose individual management units (Dunton 
2018). 

 

Figure 4. ARIS locations indicated by the star at the entrances to Pool 1A (left) and Maankiki 
Distribution Basin (right). The channel flowing from the Shiawassee River into the Maankiki 
Distribution Basin can be seen along the left edge of the Maankiki North unit (Google Maps 

2022) 
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Methods 
 
Converting File Formats: .aris to .mp4 
 
The machine learning model is trained on single images and takes .mp4 files as inputs, thus all 
ARIS footage (produced as .aris format) must be converted to .mp4 file format. This conversion 
process requires moving all ARIS files and the resulting .mp4 files across three separate 
computing or storage resources: the Great Lakes Slurm High-Performance Computing Cluster 
at the University of Michigan, Open Science Grid (OSG), and Amazon Simple Storage Service 
(S3). A high-performance computing cluster is a collection of servers or computers networked to 
complete tasks resulting in much higher processing speeds than those of a standard desktop 
computer. The Great Lakes cluster uses Slurm, a free and open-source application that 
manages the allocation of resources across the servers within the computing cluster. The Great 
Lakes cluster was used to store ARIS footage and execute simple jobs. OSG comprises 
thousands of computers distributed across the world (Pordes et al. 2007; Sfiligoi et al. 2009). 
These massive computing resources are accessible to OSG users. Because computing time on 
the Great Lakes cluster is a paid service, we applied for and received a grant from Extreme 
Science and Engineering Discovery Environment (XSEDE) for 200,000 CPU-hours on OSG to 
convert .aris format files to .mp4 format. S3 is a cloud storage service and S3 “buckets” are 
containers used to store files, similar to a folder on a standard computer. S3 buckets were used 
to store files as a “middle man” service between the Great Lakes cluster and OSG because we 
were not able to directly transfer files between them. We used an S3 compatible file service 
provided by the Open Storage Research Infrastructure (OSiRIS) to move files between the 
Great Lakes cluster and S3 and between OSG and S3. OSiRIS is a pilot project funded by the 
National Science Foundation to evaluate a software-defined storage infrastructure for their 
primary Michigan research universities.  
 
Footage from the ARIS was downloaded in the field and stored on several 5 TB hard drives. 
Each hard drive contained approximately one month of footage and each file contained 
approximately one hour’s worth of footage. The hard drives were then plugged into a desktop 
computer connected to the University of Michigan network. The ARIS footage was then 
uploaded via Windows Secure Copy (WinSCP) to the Great Lakes Cluster. WinSCP is a free 
software that facilitates the transfer of files from a local computer to a remote server, such as 
the Great Lakes cluster.  
 
ARC scientists created a tool to convert .aris format to .mp4 format and we housed this tool on 
OSG. Transfer the .aris files to OSG, we first added them to an S3 bucket – one for every day of 
ARIS footage. For example, we placed the 24 .aris files for each hour recorded on September 
12, 2021 in the “ARIS 9/12/2021” S3 bucket. As each .aris file was converted to .mp4, the .mp4 
files were outputted to a new S3 bucket corresponding to the day and year. The 24 .mp4 files 
for each hour on September 12, 2021 were placed in the MP4 9/12/2021 bucket. At the end of 
the conversion process, every .aris file in the ARIS S3 buckets had a corresponding .mp4 file in 
the MP4 S3 buckets. Next, the .mp4 files were transferred from S3 to the Great Lakes cluster. 
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Once the .mp4 files were on the Great Lakes cluster, they could then be converted to single 
frames for labeling or processed by the machine learning model.  
 
Documentation for this process as well as the scripts used can be found here: 
https://github.com/umich-seas-snwr-fish-count/osg-workflow 
 
Improving the Machine Learning Model 
 
To increase the accuracy and precision of the machine learning model, other members of the 
2022 UM SEAS student team and I labeled approximately 2,000 images containing single fish 
and approximately 2,000 images containing fish schools (Figure 5). Within each image, there 
may be multiple examples of fish or fish schools. We used the Python graphical image 
annotation tool labelImg to label the fish and fish schools within the images. Once the images 
were labeled, ARC scientists trained two machine learning models on the Great Lakes cluster. 
The first model was trained on 3909 examples of fish and 207 examples of schools. The second 
model was trained on the same training set as the first model but with an additional 331 
examples of fish and 901 examples of schools for a total of 4240 examples of fish and 1108 
examples of schools. 

Figure 5. An example of training images containing labeled single fish (left image) and a 
labeled school of fish (right image). The red box was drawn by the labeler to indicate the area of 

the image containing a fish or fish school. 
 

Both the 2020 and 2021 machine learning models utilized a convolutional neural network called 
ResNet50 from the Keras software library. A convolutional neural network is an algorithm using 
mathematical operations from functional analysis, such as convolution, to identify features or 
objects from an image in a way that mimics the human brain. The models were trained using 
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supervised learning. This means that fish were labeled in thousands of images and then 80% of 
the labeled dataset was used to show the computer what a fish looks like and the other 20% of 
the dataset was used to test accuracy and precision of the model’s ability to identify fish in new 
images. In the 2020 model, only single fish were labeled (Dellick et al. 2021), while in 2021 we 
labeled single fish and fish schools. 
 
The 2020 machine learning model took an .mp4 file as input and subsamples, using every other 
frame of the .mp4 video, to increase processing speed while maintaining information. The .mp4 
videos have a frame rate of 15 frames per second. The fish do not move dramatically within one 
second, thus subsampling for 7.5 frames per second retains the fish’s movement across the 
video. The machine learning model utilizes methods from PyImageSearch to keep track of the 
fish identified in the image. PyImageSearch is a website that publishes free algorithms and 
methods to complete computer vision and deep learning tasks. If an object is identified in the 
frame and the model is greater than 40% confident that the object is a fish, then a bounding box 
is drawn around the object (Figure 6). The object’s centroid, the center point of the bounding 
box, and the coordinates of the corners of the bounding box are calculated and recorded. The 
object is then assigned an ID number. For example, the first object identified and tracked is 
Object 1. In the next image, if 1) an object, Object 2, is identified, 2) the model is over 40% 
confident that the object is a fish, and 3) the centroid of this object’s bounding box is close to the 
original Object 1’s centroid, then Object 2 is not assigned a new ID. Instead, Object 1’s centroid 
is updated with Object 2’s centroid because the model has determined that Object 1 and Object 
2 are the same. In other words, the fish identified in the first frame is determined to be the same 
fish in the next frame, but in another location. This is how the model tracks a fish as it moves 
across frames. A fish is counted (i.e., the total fish count increases by one) when the fish has 
been identified for more than two frames. Thus, in this example, the fish count would increase 
by one. In the next frame, if there is no identified object whose centroid is close to Object 1’s 
centroid, then Object 1 is marked as having disappeared. An object is deregistered if it has 
disappeared for more than 40 frames. To deregister means that the object’s ID number is 
removed from the list of current ID numbers. The model also counts how many fish are 
swimming towards the left and right of the camera. When a fish is first identified, it’s position in 
the image frame is calculated. If the fish is to the right of the midline in the image, then the total 
right fish count is increased by one. The total left fish count is incremented similarly. The model 
outputs a .csv file containing the total fish, total right fish, and total left fish counted as well as a 
video with bounding boxes drawn around the fish identified by the model.  

 
Length Calculation 
 
We calculated fish length using a formula for sonar beam width provided by Sound Metrics 
Corp. (Formula 1). This formula takes the fish’s depth (distance) from the camera and beam 
angle as inputs. For our ARIS model, the beam spacing or beam angle was 0.25 degrees. We 
calculated depth from the camera by first locating the depth markers one, two, three, and four 
meters already provided on the .aris files (Figure 6). The depth markers correspond to arcs on 
the image, not straight lines, and the arcs intersect the bounds or the straight edges of the 
conical .aris video. The arcs also all have the same sagitta, the height of an arc. Thus, for any 
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arc intersecting the bounds of the image with the same sagitta as the depth arcs, we could 
calculate that arc’s depth from the camera. As mentioned above, when a fish is identified, its 
centroid is calculated and a bounding box is drawn around it (Figure 6). To determine the fish’s 
depth from the camera, we calculated the arc going through the centroid with the same sagitta 
as the depth arcs and then determined where that arc intersects the bounding lines of the 
image. The bounding lines are used as a kind of ruler because they have one, two, three and 
four meters marked.  
 

𝑏𝑒𝑎𝑚	𝑤𝑖𝑑𝑡ℎ	(𝑐𝑚) 	= 	𝑑𝑒𝑝𝑡ℎ	(𝑐𝑚)		𝑥		𝑠𝑖𝑛(𝑏𝑒𝑎𝑚	𝑎𝑛𝑔𝑙𝑒	°)          (Formula 1) 

Figure 6. An .aris image containing one fish. The fish is enclosed within the red bounding box 
and the fish’s centroid is the white circle in the middle of the red bounding box. The green arc 
represents the arc of consistent depth passing through the centroid of the fish. The white arcs 

are depth markers for one, two, three, and four meters distance from the sonar camera. 
 

Once we calculated depth, we computed the width of each sonar beam in centimeters. Based 
on our ARIS unit model, we know that there are 128 beams. Thus, the length of the whole arc 
intersecting the fish’s centroid is the beam width multiplied by 128. However, we needed the 
length of the arc within the fish’s bounding box. To find this, we first determined how long the 
arc within the bounding box is in pixels, which was calculated by a simple geometric formula 
(Formula 2). We computed the whole arc passing through the centroid the same way. Then we 
divided the whole arc length in pixels by 128 to get the beam width in pixels. Then we divided 
the length of the arc in the bounding box by the width in pixels. This gave us the number of 
beams covering the arc within the bounding box. Then, we multiplied the number of beams by 
beam width in centimeters to get the length of the arc within the bounding box in centimeters. 
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This length, as represented by the portion of the green arc within the red bounding box in Figure 
2, was our proxy for fish length.  
 
                                   𝑎𝑟𝑐	𝑙𝑒𝑛𝑔𝑡ℎ	 = 𝑟𝑎𝑑𝑖𝑢𝑠	𝑥	𝑐𝑒𝑛𝑡𝑟𝑎𝑙	𝑎𝑛𝑔𝑙𝑒	                         (Formula 2) 
 
The length calculation function was within the post-processing portion of the codebase, meaning 
that length was calculated after the .mp4 video had been analyzed by the model. When the 
model was running, the centroids and the coordinates of the corners of the bounding boxes for 
every fish were recorded as the fish moved across the camera. Thus, for every frame a fish 
appeared in, there was a record of the fish’s centroid and bounding box coordinates. To 
calculate the best estimate of the fish’s length, we used the bounding box with the largest total 
area. Since many fish could be identified when they were only partially in frame, the largest 
bounding box likely ensured that the full fish was in frame. Once the largest bounding box was 
determined, then the length was calculated and recorded. When the model was run, the lengths 
for every fish identified by the model were reported in a .csv output file.  

 
Evaluation of Model Performance 
 
The machine learning models are evaluated by: True Positive Rate, False Negative Rate, False 
Positive Rate, Precision, and mean Average Precision (mAP) values. Both machine learning 
model versions built in 2021 were tested on 1830 examples of known (visually identified) fish 
and 847 examples of known fish schools. All these metrics except mAP were calculated for 
each identification class (fish or fish schools). True Positive Rate is the rate at which the model 
recognizes an actual fish or a fish school. It is calculated as the ratio of false positives to the 
sum of the true positives and false negatives (Formula 3). False Negative Rate is the rate at 
which the model fails to recognize a fish or school of fish. It is calculated as the ratio of false 
negatives to the sum of the true positives and false negatives (Formula 4). False Positive Rate 
is the rate at which the model identifies a fish or school of fish incorrectly. It is calculated as the 
ratio of false positives to the sum of false positives and true positives (Formula 5). Precision is 
the ratio of true positives to the sum of the true positives and false positives. It is calculated as 
the ratio of true positives to the sum of true positives and false positives (Formula 6). Mean 
Average Precision is the average of the precisions for each identification class.  
 

𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒	𝑅𝑎𝑡𝑒	(𝑇𝑃𝑅) 	= 	 =>
>
=	 =>

=>	?	@A
                          (Formula 3) 

𝐹𝑎𝑙𝑠𝑒	𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒	𝑅𝑎𝑡𝑒	(𝐹𝑁𝑅) 	= 	 @A
>
=	 @A

=>	?	@A
                       (Formula 4) 

𝐹𝑎𝑙𝑠𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒	𝑅𝑎𝑡𝑒	(𝐹𝑃𝑅) 	= 	 @>
@>	?	=>

                                     (Formula 5) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛	 = 	 =>
=>	?	@>

                                        (Formula 6) 
 
The 2020 model did not have a mean Average Precision because it only had one identification 
class – fish. The 2021 models had a mean Average Precision, which was the average of the 
precision for fish and the precision for fish schools. A good model maximizes True Positive 
Rate, Precision, and mAP, while minimizing False Negative Rate and False Positive Rate 
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Results 
 
I converted 3137 .aris format files – spanning from March, 18 2020 to November, 19 2020 and 
3719 .aris files spanning from March 8, 2021 to December 2, 2021 – to .mp4 format. All .aris 
files and their corresponding .mp4 files were stored on the Great Lakes cluster. 
 
I implemented the length calculation function within the post-processing code, but it was not 
evaluated.  
 
ARC trained two machine learning models in 2021. The first model performed modestly at 
identifying individual fish with a precision rate of 57% and was very good at identifying schools 
of fish with a precision rate of 90%. The second model is considered more robust because it 
was trained on more data and with a more even distribution between examples of individual fish 
and fish schools. However, performance in identifying individual fish decreased to a precision 
rate of 45%, while performance in identifying fish schools remained strong with a precision rate 
of 91% (Table 1). Compared to the 2020 model for individual fish, both 2021 models increased 
the True Positive Rate and decreased the False Negative Rate. However, the False Positive 
Rate and overall Precision decreased substantially (Table 1). 
 
 

 2020 Model 2021 Model 1 2021 Model 2 

 Fish Fish  School Fish  School 

True Positive Rate 57% 67% 98% 73% 99% 

False Negative Rate 43% 33% 2% 27% 1% 

False Positive Rate 34% 51% 11% 90% 10% 

Precision 66% 57% 90% 45% 91% 

mAP N/A 74% 77% 

 
Table 1. Mean Average Precision for the 2021 models, and True Positive Rate, False Negative 
Rate, False Positive Rate, and Precision metrics for the 2020 model and for both 2021 models 

and both classes (fish and fish schools). 
 
Discussion 
 
Machine Learning Model Performance 
 
The model performance for individual fish is below what has been achieved in similar studies, 
while the performance for fish schools is on par. Similar studies have achieved False Positive 
Rates of 5% and False Negative Rates of 7% (Bothmann et al. 2016). Our model’s low 
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Precision for individual fish could be due to training image quality, a noisy background, or a 
confusing overlap in the individual fish and fish school classes. 
 
The effect of poor training image quality can negatively affect the model's ability to identify fish 
and lead to poor test results. The labeling team for individual fish consisted of four people 
labeling images independently, none with prior experience in the process. Although we each 
had a brief training on labeling images, we did not conduct any systematic quality control 
methods to determine if we were labeling consistently and accurately across labelers.  
 
One factor that could contribute to training inconsistency is the difficulty of visually identifying 
individual fish against the rocky background of the sonar images. The sonar range captures 
rocks on the benthos of the sampling area, resulting in an image background for the camera 
containing many rocks that are of a similar shape and size as the larger fish (Figure 5). When 
looking at a single frame, it can be difficult to tell if a certain object is a fish or a rock. I would 
toggle between multiple images, and I would then be able to see a fish moving amongst the 
rocks. Even when I did determine that there was a fish amongst the rocks it was still a challenge 
to determine where exactly the fish began and ended. Sometimes the fish’s tail or head would 
merge with a rock making it impossible to tell the exact boundary of the fish. Subsequently, if 
the labelers failed to label many fish in the rocks, then the model’s ability to identify fish amongst 
the rocks decreases because it lacks examples of fish amongst the rocks. By visually inspecting 
some labeled output videos, I found that the model does sometimes label rocks as fish and 
misses fish in the rocks, more than fish in the clear areas. This likely contributes to the high 
False Positive Rate and high False Negative Rate of individual fish. In addition, the model may 
correctly identify a fish, but if the testing image is mislabeled then that identification will be 
recorded as a false positive.  
 
The machine learning model has also been evidenced to identifying small fish within schools as 
individual fish. In response to the high False Positive Rate for individual fish, I examined the 
labeled output videos for three .mp4 videos I knew contained fish schools. I found that the 
model tends to label more individual fish within schools when the school contains fewer fish 
(Figure 7). Most likely this is due to my labeling methodology. When there were two or three 
small fish in a frame, I chose to label them as individual fish rather than a school. Edge cases 
where there are ten or fifteen individual fish that are visually distinct are simultaneously being 
labeled as a school and labeled for individual fish. For larger schools, the fish mostly blur 
together, but the model can still identify an individual fish if it is distinct enough. The model is 
trained to identify small fish as individual fish regardless of if they are in school or not. The 
model is correctly identifying a small fish as an individual, but the test images did not have small 
fish within schools labeled as individuals, thus resulting in a false positive.  
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Figure 7. Frames from model output videos where the model labeled individual fish within a 
small school (left) and a large school (right). 

 
Future of File Management 
 
The time and labor-intensive process of converting two years of .aris footage to .mp4 format has 
shown the importance of frequent and scheduled file conversions within USGS or the UM SEAS 
student team. Going forward, someone within the USGS or the UM SEAS team should have the 
regular responsibility of converting the previous month’s .aris footage to .mp4 format. ARC staff 
and I wrote the scripts necessary to semi-automate the conversion process, so the person 
responsible for converting the files would not need to have much coding knowledge or 
experience. ARC staff is also working with the USGS to replicate our workflow within their 
computing infrastructure so that the conversion and storage process can be done entirely within 
the USGS without the need for UM resources.  
 
Recommendations 
 
Installing a Flat Background to Minimize Noise 
 
Installing a flat background over the rocks would likely yield many benefits for model 
performance. With no rocks obscuring the fish, it will be easier and faster to label accurately. 
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With better training images and less background noise from the rocks, the model will also likely 
become more accurate. A flat background covering the rocks will also discourage the fish from 
milling and hiding in the rocks thereby focusing the ARIS work on studying fish actively 
swimming in and out of the wetland pools. Since having too many fish in one frame may 
decrease the model’s accuracy, keeping the fish moving past the camera will prevent the frame 
from becoming too crowded.  
 
Since we are using a sonar camera, the coloration of the background has no effect. My 
recommendation is to find a flat material that would not degrade in the water and is heavy 
enough to stay in place, such as a concrete slab. 
 
Quality Control and Training Two Models 
 
If retraining the model is required, I recommend performing some form of quality control on the 
training image process. The mislabeled images are likely from failing to label fish rather than 
mislabeling a fish (i.e. labeling a rock as a fish). There could be a review process in which two 
labelers review each other’s images with a focus on finding any fish in the rocky areas that are 
unlabeled. In addition, several labelers could label the same set of images and a script could be 
written with the help of ARC to compare how each person labeled the images.  
 
It may also be beneficial to explore training two separate models – one for individual fish and a 
separate one for fish schools. It may increase the accuracy of identifying individual fish if the 
model is optimized to only identify individual fish. Then both models could be run on the same 
.mp4 file to get counts of individual fish and fish schools. One potential drawback of this 
approach is overcounting small fish. Creating separate models would not eliminate the problem 
of counting individual fish within schools. However, it still may be interesting to see if having two 
separate models improve overall performance. 
 
Preventing the Overlap of Individual Fish and Fish Schools 
 
There are two avenues to explore in preventing the overlap of individual fish and fish schools. 
First, the model could be retrained with stricter parameters guided by ARC and the USGS on 
what should be labeled as an individual fish versus a fish school. However, I think there would 
still be edge cases where the model will identify the individual fish within a school. The second 
option is to use the length of the fish identified within a school to determine if it should be 
counted as an individual fish. Simply discarding all fish identified within schools would lead to an 
undercount of individual fish because larger fish do swim within the schools of small fish and 
can be identified by the model as distinct from the school. If the fish is larger than a specified 
length, then it gets counted as an individual. If not, then it is assumed to be a small fish within a 
school and not counted as an individual.  
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Improve Directionality Function 
 
The directionality function should be changed to determine what direction the fish is swimming. 
Currently, the model simply records the fish’s position relative to the midline (right or left) when it 
is first identified by the model and uses that as a proxy for directionality. If a fish is to the left of 
the midline when it is first identified, but leaves the frame to the right of the midline, then the fish 
was swimming to the right, but its direction is recorded as left. Because the model gives each 
fish a unique ID and tracks it through successive frames, we could instead determine the fish’s 
position relative to the midline in the last frame that it appears. This would not be difficult to 
change with the assistance of ARC.  
 
Ground Truthing Length, Species, and Camera Properties 
 
The length function needs to be tested for accuracy via ground truthing. In order to test length, 
an object of known length (e.g. a piece of wood, etc.) could be placed certain distances from the 
camera and then the .aris footage from that recording would need to be converted to .mp4 
format. A script could then be written with the assistance of ARC to use our length function to 
measure the object and compare the true measurement to the code-calculated length. 
Additionally, fish lengths estimated from the ARIS imagery could be compared with actual fish 
lengths collected via sampling (e.g. netting) near the camera.  These would not be “the same” 
fish as in the images but would represent the populations found in the vicinity. 
 
We would like to be able to identify fish species from ARIS images. The use of gill-netting or 
cast-netting could also be used to determine what species of fish are active near the camera 
and during what weeks or seasons. We briefly tried to visually identify fish species using the 
sonar footage, but quickly realized that we were unable to do so. We noticed that we were 
seeing the underside of the fish rather than the top view that we were expecting. For example, 
we could often see paired ventral fins plus the anal fin, or the long anal fin of a Channel Catfish 
Ictalurus punctatus. This limited our ability to identify fish species because many of the 
identifying features (i.e., distinctive dorsal fins)  cannot be seen from the bottom view. It appears 
that the ARIS produces a “wire-mesh” image that characterizes a 3-D view of the fish, often 
emphasizing the bottom view. It could be useful to place objects (or perhaps actual fish) with an 
identifiable top and bottom in front of the camera at different distances, times, and conditions to 
research what could be causing the camera to image the bottom view of an object rather than 
the top. It may also be beneficial to contact Sound Metrics, the producer of the ARIS, to discuss 
how the ARIS image formation process may be causing the bottoms of the fish to be seen.  
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