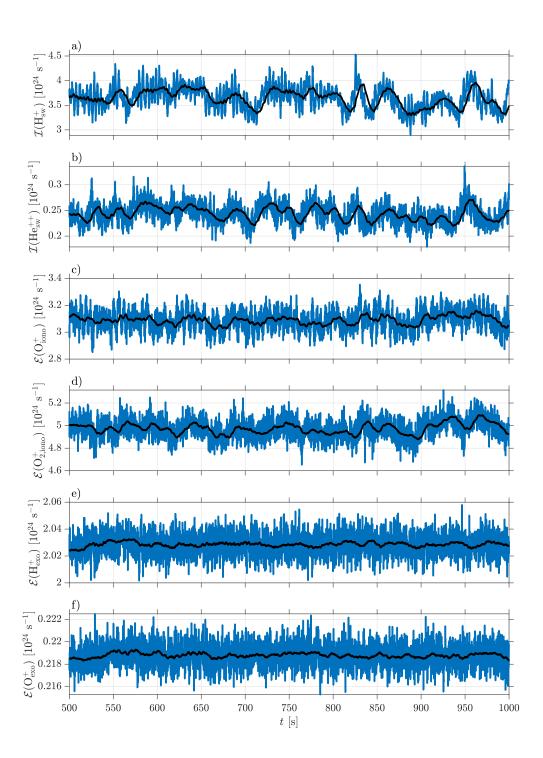
Supplementary Material for "Ultra-low Frequency Foreshock Waves and Ion Dynamics at Mars"

R. Jarvinen^{1,2}, E. Kallio¹ and T. I. Pulkkinen^{3,1}


¹Department of Electronics and Nanoengineering, School of Electrical Engineering, Aalto University, Espoo, Finland

²Finnish Meteorological Institute, Helsinki, Finland ³Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, Michigan, USA

Movie S01. Dynamics of the solar wind proton scalar, kinetic temperature (top panels) and the B_z component of the magnetic field (bottom panels) on the XY (z = 0) plane in Run 1 (left panels) and Run 2 (right panels).

Movie S02. Dynamics of the oxygen ion (O⁺) density on three perpendicular planes in Run 1 (top panels) and Run 2 (right panels).

Movie S03. Dynamics of the oxygen ion (left: O^+ and right: O_2^+) densities on the yz plane in the heavy ion plume in Run 1. The white star shows the point P3 location.

Figure S04. Time series of global solar wind ion precipitation rates (a and b) and global planetary ion escape rates (c-f) in Run 2. The black line gives the running average over 10 s.