Influence of ethylenediaminetetraacetic acid on regenerative endodontics: a systematic review

AH dos Reis-Prado, MSc,¹ LG Abreu, PhD,² RR Fagundes, DDS,¹ SC Oliveira, DDS,¹ MC Bottino, PhD,³ AP Ribeiro-Sobrinho, PhD,¹ F Benetti, PhD,¹

¹Restorative Dentistry, Universidade Federal de Minas Gerais (UFMG), School of Dentistry, Belo Horizonte, MG, Brazil; ²Child's and Adolescent's Oral Health, Universidade Federal de Minas Gerais (UFMG), School of Dentistry, Belo Horizonte, MG, Brazil; ³Cariology, Restorative Sciences and Endodontics, University of Michigan School of Dentistry, Ann Arbor, Michigan, 48109, USA.

Running title: EDTA and regenerative endodontics

Keywords: EDTA, Guided Tissue Regeneration, Growth factor(s), Tissue Engineering, Stem cells, Systematic review.

Corresponding author:

Prof. Francine Benetti

Department of Restorative Dentistry, Universidade Federal de Minas Gerais (UFMG),

School of Dentistry, Belo Horizonte, MG, Brazil.

R. Prof. Moacir Gomes de Freitas, 688 - Pampulha

CEP. 31270-901, Belo Horizonte, MG.

Tel.: (0055) 17 98112-3199

E-mail: francine-benetti@ufmg.br

This is the author manuscript accepted for publication and has undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the <u>Version of Record</u>. Please cite this article as <u>doi: 10.1111/IEJ.13728</u>

Abstract

Background The effects of ethylenediaminetetraacetic acid (EDTA) on regenerative endodontic procedures (REPs) are controversial, because, despite releasing growth factors from dentine, some studies show negative effects on cell behaviour.

Objectives To investigate the influence of the use of EDTA in REP on the growth factors' release, cell behaviour, and tissue regeneration.

Methods A systematic search was conducted (PubMed/Medline, Scopus, Cochrane Library, Web of Science, Embase, OpenGrey, and reference lists) up to February 2021. Only in vivo and in vitro studies evaluating the effects of EDTA on the biological factors of dentine, pulp/periapical tissues, and cell behaviour were eligible. Studies without a control group or available full text were excluded. The growth factors' release was the primary outcome. Risk of bias in the in vitro and in vivo studies was performed according to Joanna Briggs Institute's Checklist and SYRCLE's RoB tool, respectively.

Results Of the 1848 articles retrieved, 36 were selected. Among these, 32 were in vitro, three animal studies, and one with both models. The EDTA concentrations ranged from 3%-15%, at different times. Regarding growth factors' release (17 studies), 15 studies found significant transforming growth factor (TGF)- β release after dentine conditioning with EDTA, and most found no influence on vascular endothelial growth factor (VEGF) release. Regarding cell behaviour (26 studies), eight studies showed no influence of EDTA-treated dentine on cell viability; whereas, five, nine, and six studies showed higher cell migration, adhesion, and differentiation, respectively. No influence of EDTA conditioning was observed in animal studies. In vitro studies had a low risk of bias, whereas animal studies had high risk of bias. Meta-analysis was unfeasible.

Discussion This review found that EDTA increased TGF- β release and improved cell activity. However, well-designed histological analyses using immature teeth models are needed.

Conclusions High quality in vitro evidence suggests that EDTA-treated dentine positively influences TGF- β release, cell migration, attachment, and differentiation; further research to evaluate its influence on tissue regeneration is necessary due to low methodological quality of the animal studies.

Funding Coordenação de Aperfeiçoamento de Pessoal de Nível Superior: 88887.489995/2020-00.

Conflict of interest The authors state no conflicts of interest.

Registration PROSPERO: CRD42020205417.

DR. ALEXANDRE HENRIQUE DOS DOS REIS-PRADO (Orcid ID : 0000-0002-5866-7137)

DR. MARCO C BOTTINO (Orcid ID : 0000-0001-8740-2464)

DR. ANTONIO PAULINO RIBEIRO-SOBRINHO (Orcid ID : 0000-0002-3598-7592) PROF. FRANCINE BENETTI (Orcid ID : 0000-0002-5459-353X)

Article type : Review Article

Treatment of immature necrotic teeth is challenging, due to incomplete root formation and open apex of these teeth (Law 2013, Albuquerque et al. 2014). Regenerative endodontic procedures (REP) are a promising biological approach (Albuquerque et al. 2014, Verma et al. 2016) with long-term success rates ranging between 95% and 100% (Alobaid et al. 2014). REP may be helpful in restoring the physiologically functional dentition through the repair of damaged dental structures (Law 2013). In addition, sensory and defence mechanisms of the pulp-dentine complex may also be repaired after REP (Hargreaves et al. 2013).

REP relies on the use of scaffolds, stem cells' availability, and growth factors' release (Hashimoto et al. 2018). The dentine matrix plays an important role in REP, since it acts as a reservoir of various growth factors. Root canal disinfection and an appropriate conditioned dentine for stem cell adhesion and differentiation are crucial for achieving promising results (Verma et al. 2016, Deniz Sungur et al. 2019). Although there is no standard irrigation protocol for REP (Kim et al. 2018, Shamszadeh et al. 2019), sodium hypochlorite (NaOCl) remains the most common irrigant used (Bucchi et al. 2017, Bracks et al. 2019) due to its well-established properties, such as antimicrobial effect and solvent potential of the tissues (Galler et al. 2011). In addition, the complementary use of ethylenediaminetetraacetic acid (EDTA) may help to reduce the amount of endotoxins of the contaminated root canal (Herrera et al. 2016), but mainly, conditioning dentine with EDTA after NaOCl irrigation and before induced bleeding in REP is important for exposing bioactive

molecules entrapped in the dentine matrix (Gonçalves et al. 2016, Bucchi et al. 2017, Bracks et al. 2019), such as transforming growth factor (TGF)- β and angiogenic factors as vascular endothelial growth factor (VEGF), which play a key role in pulp-dentine complex regeneration.

REP outcomes are strongly related to cellular responses (Galler et al. 2015). TGF-β1 is one of the most important stimulating molecules for the recruitment, proliferation, and differentiation of stem cells (Galler et al. 2015, Gonçalves et al. 2016, Bracks et al. 2019). Besides enhancing odontoblastic differentiation and reparative dentinogenesis (Kucukkaya Eren et al. 2021), TGF-β1 also shows substantial anti-inflammatory effects by regulating pro-inflammatory cytokines (Bracks et al. 2019). Moreover, the vascular formation after intracanal bleeding plays a critical role in cellular activity (Galler et al. 2015). Thus, bioactive molecules, such as VEGF secreted by EDTA-treated dentine and delivered from periapical blood, also present potent angiogenic effects (Zeng et al. 2016) in promoting stem cell differentiation into endothelial cells (Gonçalves et al. 2007, Sakai et al. 2011).

In addition to promoting the expression of bioactive molecules from treated dentine, the use of EDTA after NaOCl is also recommended in REP to reduce cytotoxicity (Chae et al. 2018, Kim et al. 2018), thus optimizing cell activity and tissue regeneration (Conde et al. 2016). However, some studies showed no influence of EDTA-treated dentine on cell viability (Chae et al. 2018, Li et al. 2020), while others have shown some negative effects from this conditioning on cell behaviour, such as impaired stem cell survival and migration (Deniz Sungur et al. 2019, Aksel et al. 2020), which might negatively influence tissue regeneration. To our knowledge, no previous systematic review has been conducted to evaluate whether EDTA yields a more favourable environment for tissue regeneration after REP. Thus, this systematic review evaluated the influence of EDTA conditioning on factors associated with REP, through the assessment of in vivo and in vitro studies. The release of growth factors from EDTA-treated dentine was the primary outcome evaluated. The effects of EDTA-treated dentine on cell behaviour and on different parameters of tissue regeneration were also assessed.

Methods

Protocol

Reporting this systematic review was carried out according to the checklist of the Preferred Report Items for Systematic Reviews and Meta-analyses (PRISMA) (Page et al. 2021). A research protocol was registered at the International Prospective Register of Systematic Review (PROSPERO) database (CRD42020205417).

Eligibility Criteria

The inclusion criteria were: 1) in vivo studies that evaluated the effects of conditioned dentine with EDTA on the biological factors of dentine or pulp/periapical tissues in REP, and 2) in vitro studies that determined the effects of EDTA-treated dentine or EDTA dilutions on cell viability, migration, attachment, morphology, and on biological factors from dentine. Exclusion criteria were: 1) studies that examined the effects of EDTA conditioning on dentine, cells or pulp/periapical tissues without a control group or another irrigant without the EDTA-treated group, and 2) studies for which the full text was unavailable. There were no restrictions on the language and date of publication.

The population, intervention, comparison, and outcome (PICO) approach was used to address the following question: "Does EDTA conditioning during REP influence growth factors' release, cells' behaviour, or tissue regeneration?" The study population is composed of dentine, cells, or pulp/periapical tissues of humans or animals who/that had been submitted to irrigation/conditioning with EDTA. The intervention was irrigation/conditioning with EDTA; the comparison was irrigation/conditioning with other solutions. The primary outcome assessed was the effect of EDTA on the release of growth factors after EDTA-treated dentine. The secondary outcomes were the effects of EDTA-treated dentine or contact of cells with dilutions of EDTA on cell viability, migration, attachment, morphology and protein immunolabeling/expression; and on blood clot characterization, tissue inflammation, tissue in-growth, root length/root thickness, apical diameter, mineralization, and root/bone resorption in immature teeth (incomplete root formation and open apex) or extracted teeth with simulated open apex.

Search Strategy and Information Sources

Electronic searches were conducted in the PubMed/MEDLINE, Scopus, Cochrane Library, Web of Science, and Embase databases up to February 2021. Grey literature was consulted through OpenGrey, and manual searches were carried out in the

reference list of the selected articles. The search strategy used a combination of keywords and Medical Subject Heading (MeSH) terms associated with the Boolean operators "AND" and "OR" as shown in Supplementary File 1.

Study selection

Study selection was carried out independently by two authors (A.H.R.P. and R.R.F.) in a two-step process. The records were organized alphabetically by title and duplicates could be identified and removed manually. In Step 1, the authors appraised titles and abstracts of the studies retrieved from the search. In Step 2, full text of the remaining records was obtained for further evaluation by the authors. Only studies that fulfilled the eligibility criteria were included. Disagreements were solved through discussion, and when necessary, a third reviewer (F.B.) was consulted. Cohen's kappa coefficient for inter-investigator agreement during studies' selection was assessed (Landis & Koch 1977).

Data collection and analyses

Two authors (A.H.R.P. and R.R.F.) undertook data collection independently and in duplicate for all studies using a piloted data extraction form in an Excel spreadsheet. The following data were retrieved: first author's last name, year of publication, study design, experimental model, sample size, groups, experimental protocol, and analyses. Unavailable data were classified as not applicable. A third author (F.B.) revised the data. In cases of missing data, the authors were contacted twice by email.

Risk of Bias Assessment

Two investigators (A.H.R.P. and S.C.O.) independently assessed the selected studies' methodological quality according to their levels of evidence, as proposed by a modified version of the Joanna Briggs Institute's (JBI) Critical Evaluation Checklist for Experimental Studies (Yaylali et al. 2015, Dos Reis-Prado et al. 2021). The assessed items were as follows: clearly stated aim, sample size justification (the authors either described the sample size and power calculation methods or justified the sample size used in the study), sample randomization, blind treatment allocation, possibility of comparison between control and treatment groups, baseline equivalence of control and treatment groups, measurement standardization, reliable measurement

method, and appropriate statistical analysis. Each item was assessed on a 2-point scale: 0, not reported or reported inappropriately, and 1, reported and appropriate. A 10-criteria tool, "Systematic Review Centre for Laboratory animal Experimentation" (SYRCLE's RoB tool), was used for risk of bias assessment of the animal studies (Hooijmans et al. 2014). The assessed items included: adequate generation of allocation sequence, similarity of groups at baseline or adjustment of confounder due to differences between groups, adequate allocation concealment, random housing, blinded intervention/outcome assessment, sample randomization for outcome assessment, incomplete outcome data, selective outcome reporting, presence of other biases, and sample size justification to further characterize reporting in the selected animal studies. A judgment of "no" indicated a high risk of bias, "yes" represented a low risk of bias, and "unclear" indicated either lack of information or uncertainty. Discrepancies were resolved with a third examiner (L.G.A.).

Results

Study selection

Figure 1 displays a flowchart of the selection process of the studies. A total of 1848 articles were identified after searching the databases. After the first screening (Step 1), 55 articles were selected and submitted to a full-text review (Step 2). Then, 19 studies were excluded, in which 13 (Arslan et al. 2014, Nagata et al. 2014, Yassen et al. 2014, Yassen et al. 2015, Nerness et al. 2016, Saghiri et al. 2016, Ustun et al. 2018, Widbiller et al. 2018, Buldur et al. 2019, Bosaid et al. 2020, Ivica et al. 2020, Kandemir et al. 2020, Shawli et al. 2020) were outside of the proposed theme, and 6 had no control group (Graham et al. 2018, Ferreira et al. 2020) (Figure 1). A total of 36 studies were included in the qualitative analysis and are presented in Tables 1, 2, and 3.

The assessed Cohen's kappa coefficient for inter-investigator agreement during the studies' selection was 0.843 for PubMed, 0.970 for Scopus, 1.000 for the Cochrane Library and OpenGrey, 0.925 for the Web of Science, and 0.876 for the Embase. These values indicated an almost perfect agreement between/among reviewers according to the benchmark scale of Landis & Koch (1977). No additional records were found through manual search in the references lists. Characteristics of the included studies

Table 1 summarizes the studies that evaluated growth factors' release/expression (Galler et al. 2015, Gonçalves et al. 2016, Sadaghiani et al. 2016, Zeng et al. 2016, Duncan et al. 2017, Widbiller et al. 2017, Chae et al. 2018, Ranc et al. 2018, Deniz Sungur et al. 2019, Bracks et al. 2019, Cameron et al. 2019, Ivica et al. 2019, Liu et al. 2019, Aksel et al. 2020, Atesci et al. 2020, Li et al. 2020, Kucukkaya Eren et al. 2021). Table 2 summarizes information from the in vitro studies that evaluated cell behaviour (Ring et al. 2008, Huang et al. 2011, Martin et al. 2014, Pang et al. 2014, Kim et al. 2015, Park et al. 2015, Galler et al. 2016, Gonçalves et al. 2016, Kawamura et al. 2016, Mollashahi et al. 2016, Sadaghiani et al. 2016, Shrestha et al. 2016, Alghilan et al. 2017, Chae et al. 2018, Hashimoto et al. 2018, Prompreecha et al. 2018, Scott et al. 2018, Widbiller et al. 2019, Ivica et al. 2019, Liu et al. 2019, Deniz Sungur et al. 2019, Tunç et al. 2019, Aksel et al. 2020, Atesci et al. 2020, Li et al. 2020, Kucukkaya Eren et al. 2021), and Table 3 shows studies that evaluated tissue regeneration in immature teeth models (Yamauchi et al. 2011, El Ashry et al. 2016, Kawamura et al. 2016, Taweewattanapaisan et al. 2019). According to the study design, 32 studies were only in vitro, three studies were in vivo, and one study used both models.

Of the 33 in vitro studies, three studies used dentine discs alone (Galler et al. 2015, Duncan et al. 2017, Widbiller et al. 2017), while most studies used dentine discs and different stem cells. The roots of permanent human teeth with stem cells (Ring et al. 2008, Huang et al. 2011, Martin et al. 2014, Prompreecha et al. 2018, Atesci et al. 2020, Li et al. 2020) or alone (Zeng et al. 2016, Widbiller et al. 2017, Chae et al. 2018, Ranc et al. 2018, Cameron et al. 2019) were also used as an experimental model. Among these studies, EDTA concentrations ranged from 3%-15% at different exposure times. The second most frequent irrigating agent used after EDTA was 0.5%-6% NaOCI.

For the in vivo category, four animal studies were evaluated (Yamauchi et al. 2011, El Ashry et al. 2016, Kawamura et al. 2016, Bracks et al. 2019). Two studies only used 17% EDTA as the irrigating solution (Yamauchi et al. 2011, Bracks et al. 2019), while other studies also used guanidine hydrochloride (GdnHCl) (Kawamura et al. 2016) and mixture tetracycline citric acid and detergent (MTAD) (El Ashry et al. 2016). Regarding the regenerative protocols, three studies performed pulpectomies associated or not with an induction of periapical lesion in canine (Yamauchi et al.

2011, El Ashry et al. 2016) and mice posterior teeth (Bracks et al. 2019), while one used a subcutaneous tooth roots transplant into immunodeficient mice comparing an EDTA-treated tooth to an untreated control (Kawamura et al. 2016).

Growth factors release and expression

Among the 17 studies that evaluated the growth factors' release/expression (Table 1), transforming growth factor (TGF)- β was assessed in 16 studies. EDTA effectively released TGF-\beta1 at 7 days (Bracks et al. 2019) or at all periods in 12 studies using concentrations of 10% (Galler et al. 2015, Gonçalves et al. 2016, Sadaghiani et al. 2016, Duncan et al. 2017, Widbiller et al. 2017), 12% (Liu et al. 2019), and for the most part of studies, 17% (Chae et al. 2018, Ranc et al. 2018, Bracks et al. 2019, Cameron et al. 2019, Ivica et al. 2019, Atesci et al. 2020). One available study reported an increase in TGF-B1 release, mainly after ultrasonic activation (Widbiller et al. 2017). Additionally, only two other studies found a significant TGF- β 1 release in dentine conditioned with 17% EDTA under sterile conditions without biofilm (Cameron et al. 2019), or when a combination with adipose-derived mesenchymal stem cells (adMSCs) was applied, also increasing vascular endothelial growth factor (VEGF), bone morphogenetic protein 2 (BMP-2), and fibroblast growth factor (FGF)-2 (Atesci et al. 2020). Conversely, 7 studies found no significant differences in TGF- β release after dentine conditioning with EDTA, compared to their control groups without EDTA (Sadaghiani et al. 2016, Zeng et al. 2016, Cameron et al. 2019, Deniz Sungur et al. 2019, Aksel et al. 2020, Atesci et al. 2020, Kucukkaya Eren et al. 2021).

When the expression of growth factors was evaluated with ELISA and PCR assays, 10% and 17% EDTA without any cell association or technique combination did not influence VEGF expression in 4 studies (Sadaghiani et al. 2016, Bracks et al. 2019, Atesci et al. 2020, Li et al. 2020), FGF in 2 studies (Zeng et al. 2016, Atesci et al. 2020), and BMP-2 in 1 study (Sadaghiani et al. 2016). On the contrary, one study that used immunogold localization visualized by scanning electron microscopy (SEM) showed that conditioning with 10% EDTA (5 and 10 min) enhanced the number of BMP-2 and VEGF particles released (Sadaghiani et al. 2016), in addition to a PCR analysis that found a great expression of nerve growth factor (NGF) at 14 days and insulin-like growth factor (IGF) at all evaluated periods after irrigation with 17% EDTA (Bracks et al. 2019).

The results of a proteomic assay showed that 10% EDTA extracted a significantly greater quantity of expressed angiogenic-associated growth factors (PDGF-AA, VEGF-A), BMP-7, brain-derived neurotrophic factor (BDNF), placenta growth factor (PIGF), hepatocyte growth factor (HGF), and some integrin growth factor-related family (IGFBP) (Ducan et al. 2017). On the other side, 10% EDTA did not influence the expression of fibroblast growth factor members (FGF), glial cell-line-derived neurotrophic factor (GDNF), IGFBP-2, mast/stem cell growth factor receptor (SCF-R), and insulin, in addition to decreasing the expressions of FGF-4, NGF receptor, epidermal growth factor receptor (EGFR-1), and growth/differentiation factor (GFD-15).

Assessment of cell behaviour using in vitro studies

Among the 19 studies that evaluated cell viability (Table 2), most studies (n=10) showed no influence from use of 17% EDTA-treated dentine (Ring et al. 2008, Galler et al. 2016, Kim et al. 2015, Park et al. 2015, Alghilan et al. 2017, Chae et al. 2018, Deniz Sungur et al. 2019, Liu et al. 2019, Widbiller et at. 2019, Li et al. 2020). On the other hand, 6 studies showed a reduction in cell viability, whereas the other 6 reported higher cell viability after using EDTA for conditioning or after performing an irrigation activation protocol.

Out of the 11 studies that evaluated cell morphology, 9 found the presence of elongated- to flattened-shaped cells with fibroblastic-like appearances in EDTA-treated dentine. Regarding cell migration (n=7), 10%-17% EDTA-treated dentine or extracts of different dilutions of EDTA for different exposure times significantly enhanced cell migration in 5 studies. Similarly, among 13 studies that evaluated cell attachment, 8 found a higher adherence to conditioned dentine with EDTA. One study showed a reduction in cell adhesion in the dentine after EDTA conditioning (10 and 15 min), while the others reported no influence from EDTA.

For cell differentiation or mineralization protein assay, all 7 articles (Pang et al. 2013, Martin et al. 2014, Park et al. 2015, Galler et al. 2016, Kawamura et al. 2016, Sadaghiani et al. 2016, Hashimoto et al. 2018) that performed this evaluation using real-time polymerase chain reaction (RT-PCR) found an increased odontoblastic differentiation and expression of mineralization markers, such as dentine sialophosphoprotein (DSPP) and dentine matrix acidic phosphoprotein (DMP)-1, after EDTA conditioning.

In matrix dentine extracts and dentine discs, 10% EDTA significantly increased alkaline phosphatase (ALP) and osteopontin (OPN) expression at 21 and 14 days, respectively (Sadaghiani et al. 2016). One study observed that 5-10 minutes of 10% EDTA did not influence runt-related transcription factor 2 (RUNX2) (Sadaghiani et al. 2016).

Tissue regeneration of immature teeth models

Data of tissue regeneration using immature teeth models are presented in Table 3. One animal study using 17% EDTA irrigation in REPs protocols found that this solution did not display influence on the presence of inflammatory cells (El Ashry et al. 2016). Regarding tissues' in-growth in the root canal space, one article found no statistical difference, while another reported a decrease in the regenerative area in the EDTA-treated group (El Ashry et al. 2016, Kawamura et al. 2016). Two studies using dogs' teeth (Yamauchi et al. 2011, El Ashry et al. 2016) observed no significant improvement in 17% EDTA irrigation in the root length/thickening and periapical radiolucencies. No influence on bone resorption was observed. One study showed higher apical diameter closure, while another reported no EDTA influence.

One record stated that irrigation with 17% EDTA improves mineralized tissue formation (Yamauchi et al. 2011), while another study found no EDTA influence (El Ashry et al. 2016). Regarding cell differentiation, one study found less odontoblastic/endothelial differentiation of dental pulp stem cells (DPSCs) in the EDTA-treated group; however, higher cell differentiation was observed in the group that used EDTA combined with Dulbecco's modified Eagle's medium (DMEM) containing mobilized DPSCs (Kawamura et al. 2016).

Synthesis of results

Meta-analysis was not performed due to wide variations among studies in methods for assessment, irrigation protocols, and different concentrations and time of exposure of EDTA. Included studies also failed to report the dispersion measure (standard deviation) of the measure of effect (mean difference).

Risk-of-bias assessment within in vitro and animal studies

Risk-of-bias analyses are presented in Supplementary File 2 and Figure 2. Regarding the critical appraisal of in vitro studies (Figure 2A), a high risk of bias was observed

only for the absence of sample randomization and justification of the sample size. All studies presented a possible comparison between the control and treatment groups at entry and a reliable outcome assessment tool. A low risk of bias was found in the clearly stated aim, baseline equivalence among the groups, clear conditioning protocols, measurement standardization, and appropriate statistical approach. Figure 2B summarizes the risk of bias of animal studies by using the SYRCLE tool. Information to judge most domains was frequently missing. A low risk of bias was observed for incomplete outcome data, selective outcome reporting, and the presence of other sources of bias. Overall, the eligible animal studies showed a high risk of bias.

Discussion

This systematic review primarily evaluated the effects of conditioning dentine with EDTA on the release of growth factors in REP; also analysed was the influence of conditioning of dentine with EDTA on stem cell behaviour and in tissue regeneration with data from 36 included in vitro and in vivo studies. We found that EDTA-treated dentine at different concentrations effectively released TGF- β , in addition to improving cell morphology, migration, adherence, and differentiation.

REP is currently considered one of the most favourable treatments for immature permanent teeth with pulp necrosis (Taweewattanapaisan et al. 2019, Ulusoy et al. 2019), promoting root development and apical closure (Deniz Sungur et al. 2019, Ulusoy et al. 2019). The European Society of Endodontology (Galler et al. 2016) and the American Association of Endodontists' clinical guidelines (2018) have recommended the use of 17% EDTA after NaOCl for REP to optimize cell viability and differentiation and to enhance the release of growth factors from the dentine matrix (Chae et al. 2018, Kim et al. 2018).

NaOC1 was noted to be the most common irrigation solution after EDTA in this systematic review, probably due to its organic solvent potential and antimicrobial effectiveness (Galler et al. 2011, Gonçalves et al. 2016). The presence of a sterile environment plays a crucial role in the success of REP, since there is an impact on the chemotaxis of mesenchymal stem cells, and consequently, on the mineralized tissue neoformation (Verma et al. 2016). Nevertheless, NaOC1 is known to show negative effects on stem cells' survival (Trevino et al. 2011, Martin et al. 2014), in addition to being a potential irritant for periapical tissues, especially at high concentrations (Gonçalves et al. 2016). Therefore, additional conditioning with EDTA may neutralize the cytotoxicity provoked by NaOCl, enhancing cellular spreading and the liberation of bioactive molecules from the conditioned dentine (Galler et al. 2011, Chae et al. 2018, Aksel et al. 2020).

The expression of signaling molecules following dentine demineralization might modulate cellular activity from the periapical area (Gonçalves et al. 2016, Taweewattanapaisan et al. 2019), thus playing a crucial role in the intracanal tissues' neoformation (Bracks et al. 2019). A total of 16 studies evaluated the release of endogenous growth factors from dentine using different irrigating protocols with dentine discs. The most assessed protein was TGF- β . This growth factor performs well as a substantial chemoattractant/stimulant of the activation of stem cells (Gonçalves et al. 2016). In addition, TGF- β shows the ability to induce odontoblastic differentiation and contribute to dentinogenesis (Chae et al. 2018, Kucukkaya Eren et al. 2021).

Most articles demonstrated an effective release of TGF- β 1 after dentine conditioning with 10-17% EDTA. Widbiller et al. (2017) found an increase in TGF- β 1 liberation using only ultrasonic activation, which might be associated with an improved superficial erosion in the dentine, dissolution of the smear layer, and other debris removal, thus exposing growth factors entrapped on the dentine surface. A significant release of TGF- β 1 in EDTA-treated dentine was also reported in two studies (Cameron et al. 2019, Atesci et al. 2020) under sterile conditions or when associated with adMSCs. These findings support the importance of other pillars of tissue engineering for clinical success of REP, such as the presence of a sterile environment and stem cells in the root canal.

Angiogenesis occurs especially during the early stages of wound healing (Liao et al. 2011). Among the studies that investigated VEGF release, a molecule that supports angiogenic activity (Wibdiller et al. 2017), most reports found no influence on irrigation with EDTA (Bracks et al. 2019, Atesci et al. 2020, Li et al. 2020). Moreover, Sadaghiani et al. (2016), using ELISA assay, found no significant effects of EDTA-treated dentine on this protein. The reason for these findings might be explained by the longer observation periods, which included the very short half-life of VEGF and its basal levels in dentine (Atesci et al. 2020). On the other hand, when adMSCs were added, EDTA-treated dentine effectively released this protein; the

presence of these cells, which were not receiving sufficient oxygen, might have also induced VEGF production (Bracks et al. 2019).

Whereas TGF- β may have immunosuppressive effects against the production of pro-inflammatory cytokines (Maciel et al. 2012), the conditioning of the dentine with EDTA during REP did not influence tissue inflammation (El Ashry et al. 2016). In other analysis, one study found a high expression of IL-1 in the group of EDTA-treated dentine using real-time PCR (Bracks et al. 2019). These controversial results may have taken place due to differences in the methods of analysis, since the presence of pro-inflammatory cytokine does not exactly depend on the presence of inflammatory cells (Benetti et al. 2018). Moreover, inflamed areas are associated with an increased vascularity (Liao et al. 2011), especially during the initial phases of healing. Furthermore, the interaction between stem cells in inflamed tissues and their potential to control the inflammatory reaction that promotes tissue healing is less understood (Liao et al. 2011). Taweewattanapaisan et al. (2019) reinforced the importance of a minimal inflammatory reaction for an ideal scaffold for stem cell homing.

The conditioning of dentine with EDTA did not show superiority in the analysis of cell survival. Differences regarding stem cells' lineages, periods of analysis, solutions, and methods of assessment among the studies may have impacted the results. Overall, most studies showed a positive influence of the conditioning of dentine with EDTA on cell migration, attachment, and differentiation. For cell morphology, irrigation with EDTA was associated with the presence of an oblong and fibroblastic-like appearance with flattened morphology. EDTA treatment is capable of exposing organic components in the superficial dentine layer, such as collagen and glycosaminoglycans, which play a crucial role in cell attachment (Oyarzun et al. 2002, Hashimoto et al. 2018). Moreover, this systematic review found an increased amount of TGF- β released from EDTA-treated dentine, being that TGF- β is a potent chemoattractant that promotes cell migration into dentine and cell differentiation when in contact with dentinal tubules (Galler et al. 2015, 2016, Gonçalves et al. 2016, Chae et al. 2018, Hashimoto et al. 2018).

The few in vivo studies included have evaluated blood clot and tissue regeneration using, for the most part, dentine conditioning with 17% EDTA, as proposed by current clinical protocols (Galler et al. 2016, AAE 2018). This assortment of protocols made it difficult to systematically discuss these data. In most

studies, the use of EDTA positively influenced the majority of the included parameters related to tissue healing or regeneration. Additionally, the animal studies showed a high risk of bias and a low reporting quality using SYRCLE's RoB tool, in which limitations were observed mostly in the absence of randomization, intervention, and blinded outcome. Randomization and blinding are essential items of the "Animal Research: Reporting In Vivo Experiments" (ARRIVE) guidelines (du Sert et al. 2020) and they increase the internal validity of the study.

According to SYRCLE'S RoB tool, blinding refers to all measures used, if any, to blind caregivers/researchers and outcome assessors from knowing which treatment was applied (Hooijmans et al. 2014). In animal studies, the investigators are usually responsible for the way the animals are housed. As housing can influence study outcomes, randomizing the housing conditions within the animal room is essential to providing a comparable between the evaluated groups (Hooijmans et al. 2014). Random allocation is crucial in cases in which blind evaluations are not possible, mainly by the professionals responsible for application of the interventions and to house the animals (du Sert et al. 2020). For instance, most selected studies that showed no blinding performance during intervention should at least provide a prior randomization of the samples. Hence, these non-reporting domains are more likely to report exaggerated effects in eligible animal studies.

These limitations of the animal studies demonstrate that important changes have to be made to the way research using animal models are performed in REP. Thus, a continuous update with additional well-designed histological analyses and clear descriptions using immature teeth and optimal conditions of EDTA treatment for REP are warranted in order to improve report quality and provide stronger evidence.

In this current systematic review, a modified version of the JBI critical appraisal tool was selected for assessing quality of the in vitro studies. Although most studies in the review had high-quality evidence, which may lead to more accurate conclusions, some issues, such as the absence of adequate sample randomization and no justification of sample size, were reported. A high level of methodological heterogeneity among the studies was also found and, therefore, all these limitations should be considered when the results of this systematic review are evaluated. In addition, the review of these in vitro and animal studies have the limitation of transferability findings to the clinical practice, thus clinical studies and patient-

centered outcomes after REP with EDTA irrigation should be also performed using randomized and long-term analyses.

The studies included in this review provide an understanding of influence related to the use of EDTA in the treatment outcome after REP. The present findings provide evidence that EDTA conditioning induces positive effects during REP, because they might favour tissue neoformation and accelerate the repair process, since there is increased TGF- β 1 release of the dentine and improved stem cell migration and differentiation, mainly in the initial periods. Besides, the results of the risk of bias assessment provide important information about the methodological improvements needed for future laboratory research in the area of regenerative endodontics. Future well-designed histologic analyses and randomized clinical trials comparing effectiveness between/among EDTA and other irrigation agents for immature permanent teeth with pulp necrosis are needed to address these limitations and provide a strong level of evidence.

Conclusion

High quality in vitro evidence showed significant liberation of TGF- β 1 from EDTAtreated dentine and the presence of flattened fibroblastic-like cells after irrigation with different concentrations of EDTA at periods ranging from 1-10 min of exposure, in addition to enhanced cell migration, attachment, and differentiation. However, further research to evaluate its influence on tissue regeneration is necessary due to the low methodological quality of the animal studies.

Acknowledgment

This research was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) – 88887.489995/2020-00.

Conflict of Interest

The authors have explicitly stated that there are no conflicts of interest in connection with this article.

References

- Aksel H, Albanyan H, Bosaid F, Azim AA (2020) Dentin conditioning protocol for regenerative endodontic procedures. Journal of Endodontics **46**, 1099-104.
- Albuquerque MTP, Valera MC, Nakashima M, Nör JE, Bottino MC (2014) Tissueengineering-based strategies for regenerative endodontics. Journal of Dental Research **93**, 1222–31.
- Alghilan MA, Windsor LJ, Palasuk J, Yassen GH (2017) Attachment and proliferation of dental pulp stem cells on dentine treated with different regenerative endodontic protocols. International Endodontic Journal **50**, 667-75.
- Alobaid AS, Cortes LM, Lo J, Nguyen TT, et al. (2014) Radiographic and clinical outcomes of the treatment of immature permanent teeth by revascularization or apexification: a pilot retrospective cohort study. Journal of Endodontics **40**, 1063-70.
- American Association of Endodontists (AAE) (2018) AAE Clinical Considerations for a Regenerative Procedure [Online]. Chicago: American Association of Endodontists. Available at: https://www.aae.org/specialty/wp-content/uploads/sites/2/2018/06/ConsiderationsForRegEndo_AsOfApril2018.
 pdf
- Arslan H, Capar ID, Saygili G, et al. (2014) Efficacy of various irrigation protocols on the removal of triple antibiotic paste. International Endodontic Journal 47, 594-9.
- Atesci AA, Avci CB, Tuglu MI, Ozates Ay NP, Eronat AC (2020) Effect of different dentin conditioning agents on growth factor release, mesenchymal stem cell attachment and morphology. Journal of Endodontics 46, 200-8.
- Benetti F, Gomes-Filho JE, Ferreira LL, et al. (2018) Concentration-dependent effect of bleaching agents on the immunolabelling of interleukin-6, interleukin-17 and CD5-positive cells in the dental pulp. International Endodontic Journal 51, 789-99.
- Bosaid F, Aksel H, Makowka S, Azim AA (2020) Surface and structural changes in root dentine by various chelating solutions used in regenerative endodontics. International Endodontic Journal 53, 1438-45.

- Bracks IV, Espaladori MC, Barros P, et al. (2019) Effect of ethylenediaminetetraacetic acid irrigation on immune-inflammatory response in teeth submitted to regenerative endodontic therapy. International Endodontic Journal 52, 1457-65.
- Bucchi C, Valdivia-Gandur IM, Sánchez-Bizjak R, Tallón-Walton V, Manzanares-Céspedes C (2017) Regenerative endodontic therapy: a systematic review of clinical protocols. International Journal of Clinical and Experimental Medicine 10, 2006-15.
- Buldur B, Oznurhan F, Kaptan A (2019) The effect of different chelating agents on the push-out bond strength of Proroot MTA and Endosequence root repair material. European Oral Research 53, 88-93.
- Cameron R, Claudia E, Ping W, Erin S, Ruparel NB (2019) Effect of a residual biofilm on release of transforming growth factor B1 from dentin. Journal of Endodontics **45**, 1119-25.
- Chae Y, Yang M, Kim J (2018) Release of TGF-B1 into root canals with various final irrigants in regenerative endodontics: an in vitro analysis. International Endodontic Journal 12, 1389-97.
- Conde MC, Chisini LA, Demarco FF, Nör JE, Casagrande L, Tarquinio SB (2016) Stem cell-based pulp tissue engineering: variables enrolled in translation from the bench to the bedside, a systematic review of literature. International Endodontic Journal **49**, 543-50.
- Deniz Sungur D, Aksel H, Ozturk S, Yılmaz Z, Ulubayram K (2019) Effect of dentine conditioning with phytic acid or etidronic acid on growth factor release, dental pulp stem cell migration and viability. International Endodontic Journal 52, 838-46.
- Dos Reis-Prado AH, Abreu LG, Tavares WLF, et al. (2021) Comparison between immediate and delayed post space preparations: a systematic review and metaanalysis. Clinical Oral Investigations **25**, 417-40.
- du Sert NP, Ahluwalia A, Alam S, et al. (2020) Reporting animal research: Explanation and elaboration for the ARRIVE guidelines 2.0. PLoS Biology **18**, e3000411.
- Duncan HF, Smith AJ, Fleming GJ, et al. (2017) Release of bio-active dentine extracellular matrix components by histone deacetylase inhibitors (HDACi). International Endodontic Journal 50, 24-38.

- El Ashry SH, Abu-Seida AM, Bayoumi AA, Hashem AA (2016) Regenerative potential of immature permanent non-vital teeth following different dentin surface treatments. Experimental and Toxicologic Pathology **68**, 181-90.
- Ferreira LN, Puppin-Rontani RM, Pascon FM (2020) Effect of intracanal medicaments and irrigants on the release of transforming growth factor beta 1 and vascular endothelial growth factor from cervical root dentin. Journal of Endodontics 11, S0099-2399(20)30580-X.
- Galler KM, Buchalla W, Hiller KA, et al. (2015) Influence of root canal disinfectants on growth factor release from dentin. Journal of Endodontics **41**,363-8.
- Galler KM, D'Souza RN, Federlin M, et al. (2011) Dentin conditioning codetermines cell fate in regenerative endodontics. Journal of Endodontics **37**, 1536-41.
- Galler KM, Widbiller M, Buchalla W, et al. (2016) EDTA conditioning of dentine promotes adhesion, migration and differentiation of dental pulp stem cells. International Endodontic Journal **49**, 581-90.
- Gonçalves LF, Fernandes AP, Cosme-Silva L, et al. (2016) Effect of EDTA on TGF-β1 released from the dentin matrix and its influence on dental pulp stem cell migration. Brazilian Oral Research **30**, e131.
- Gonçalves SB, Dong Z, Bramante CM, Holland GR, Smith AJ, Nör JE (2007) Tooth slice-based models for the study of human dental pulp angiogenesis. Journal of Endodontics **33**, 811-4.
- Graham L, Cooper PR, Cassidy N, Nor JE, Sloan AJ, Smith AJ (2006) The effect of calcium hydroxide on solubilisation of bio-active dentine matrix components. Biomaterials 27, 2865-73.
- Hargreaves KM, Diogenes A, Teixeira FB (2013) Treatment options: biological basis of regenerative endodontic procedures. Journal of Endodontics **39**, S30–43.
- Hashimoto K, Kawashima N, Ichinose S, Nara K, Noda S, Okiji T (2018) EDTA treatment for sodium hypochlorite-treated dentin recovers disturbed attachment and induces differentiation of mouse dental papilla cells. Journal of Endodontics 44, 256–62.
- Herrera DR, Martinho FC, de-Jesus-Soares A, et al. (2016) Clinical efficacy of EDTA ultrasonic activation in the reduction of endotoxins and cultivable bacteria. International Endodontic Journal **50**, 933-40.

- Hooijmans CR, Rovers MM, de Vries RBM, Leenaars M, Ritskes-Hoitinga M, Langendam MW (2014) SYRCLE's risk of bias tool for animal studies. BMC Medical Research Methodology 26, 14-43.
- Hristov K, Gateva NH, Stanimirov P, Ishkitiev N, Tsikandelova R, Mihaylova Z.Influence of citric acid on the vitality of stem cells from apical papilla. Acta Medica Bulgarica 45, 31-35
- Huang X, Zhang J, Huang C, Wang Y, Pei D (2011) Effect of intracanal dentine wettability on human dental pulp cell attachment. International Endodontic Journal 45, 346-53.
- Ivica A, Deari S, Patcas R, Weber FE, Zehnder M (2020) Transforming growth factor beta 1 distribution and content in the root dentin of young mature and immature human premolars. Journal of Endodontics 46, 641-7.
- Ivica A, Zehnder M, Mateos JM, Ghayor C, Weber FE (2019) Biomimetic conditioning of human dentin using citric acid. Journal of Endodontics 45, 45-50.
- Kandemir Demirci G, Güneri P, Çalışkan MK (2020) Regenerative endodontic therapy with platelet rich fibrin: case series. Journal of Clinical Pediatric Dentistry 44, 15-9.
- Kawamura R, Hayashi Y, Murakami H, Nakashima M (2016) EDTA soluble chemical components and the conditioned medium from mobilized dental pulp stem cells contain an inductive microenvironment, promoting cell proliferation, migration, and odontoblastic differentiation. Stem Cell Research & Therapy 7, 77.
- Kim KW, Yassen GH, Ehrlich Y, Spolnik K, Platt JA, Windsor LJ (2015) The effects of radicular dentine treated with double antibiotic paste and ethylenediaminetetraacetic acid on the attachment and proliferation of dental pulp stem cells. Dental Traumatolology **31**, 374-9.
- Kim SG, Malek M, Sigurdsson A, Lin LM, Kahler B (2018) Regenerative endodontics: a comprehensive review. International Endodontic Journal **51**, 1367-88.
- Kucukkaya Eren S, Bahador Zırh E, Zeybek ND, et al. (2021) Effect of benzalkonium chloride addition to EDTA on attachment and proliferation of dental pulp stem cells on dentin and on transforming growth factor-β1 release. Odontology **109**, 313-20.

- Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics **33**, 159-74.
- Law AS (2013) Considerations for regeneration procedures. Journal of Endodontics 39, 44-56.
- Li Y, Ge H, Wu L, et al. (2020) Pretreatment of root canal with photodynamic therapy facilitates adhesion, viability and differentiation of stem cells of the apical papilla. Photochemistry and Photobiology **96**, 890-6.
- Liao J, Al Shahrani M, Al-Habib M, Tanaka T, Huang GT-J (2011) Cells isolated from inflamed periapical tissue express mesenchymal stem cell markers and are highly osteogenic. Journal of Endodontics **37**, 1217-24.
- Liu L, Leng S, Yue J, et al. (2019) EDTA enhances stromal cell-derived factor 1αinduced migration of dental pulp cells by up-regulating chemokine receptor 4 expression. Journal of Endodontics **45**, 599-605.
- Maciel KF, Neves de Brito LC, Tavares WLF, et al. (2012) Cytokine expression in response to root canal infection in gnotobiotic mice. International Endodontic Journal **45**, 354-62.
- Martin DE, De Almeida JFA, Henry MA, et al. (2014) Concentration-dependent effect of sodium hypochlorite on stem cells of apical papilla survival and differentiation. Journal of Endodontics **40**, 51-5.
- Mollashahi NF, Saberi E, Karkehabadi H (2016) Evaluation of cytotoxic effects of various endodontic irrigation solutions on the survival of stem cell of human apical papilla. Iranian Endodontic Journal **11**, 293-7.
- Nagata JY, Soares AJ, Souza-Filho FJ, et al. (2014) Microbial evaluation of traumatized teeth treated with triple antibiotic paste or calcium hydroxide with 2% chlorhexidine gel in pulp revascularization. Journal of Endodontics 40, 778-83.
- Nerness AZ, Ehrlich Y, Spolnik K, Platt JA, Yassen GH (2016) Effect of triple antibiotic paste with or without ethylenediaminetetraacetic acid on surface loss and surface roughness of radicular dentine. Odontology **104**, 170-5.
- Oyarzún A, Cordero AM, Whittle M (2002) Immunohistochemical evaluation of the effects of sodium hypochlorite on dentin collagen and glycosaminoglycans. Journal of Endodontics **28**, 152-6.
- Page MJ, McKenzie JE, Bossuyt PM, et al. (2021) Updating guidance for reporting systematic reviews: development of the PRISMA 2020 statement. Journal of

Clinical Epidemiology **134**, 103-12.

- Pang N-S, Lee SJ, Kim E, et al. (2014) Effect of EDTA on attachment and differentiation of dental pulp stem cells. Journal of Endodontics **40**, 811-7.
- Park M, Pang N-S, Young Jung II (2015) Effect of dentin treatment on proliferation
 and differentiation of human dental pulp stem cells. Restorative Dentistry &
 Endodontics 40, 290–8.
- Prompreecha S, Sastraruji T, Louwakul P, Srisuwan T (2018) Dynamic irrigation promotes apical papilla cell attachment in an ex vivo immature root canal model. Journal of Endodontics **44**, 744-50.
- Ranc V, Žižka R, Chaloupková Z, Ševčík J, Zbořil R (2018) Imaging of growth factors on a human tooth root canal by surface-enhanced Raman spectroscopy. Analytical and Bioanalytical Chemistry 410, 7113-20.
- Ring KC, Murray PE, Namerow KN, Kuttler S, Garcia-Godoy F (2008) The comparison of the effect of endodontic irrigation on cell adherence to root canal dentin. Journal of Endodontics **34**, 1474-9.
- Sadaghiani L, Gleeson HB, Youde S, Waddington RJ, Lynch CD, Sloan AJ (2016)Growth factor liberation and DPSC response following dentine conditioning.Journal of Dental Research 95, 1298-307.
- Saghiri MA, Asatourian A, Garcia-Godoy F, Sheibani N (2016) Effect of biomaterials
 on angiogenesis during vital pulp therapy. Dental Materials Journal 35, 7019.
- Sakai VT, Cordeiro MM, Dong Z, Zhang Z, Zeitlin BD, Nör JE (2011) Tooth slice/scaffold model of dental pulp tissue engineering. Advances in Dental Research 23, 325-32.
- Scott MB 2nd, Zilinski GS, Kirkpatrick TC, Himel VT, Sabey KA, Lallier TE (2018)
 The effects of irrigants on the survival of human stem cells of the apical papilla, including endocyn. Journal of Endodontics 44, 263-8.
- Shamszadeh S, Asgary S, Nosrat A (2019) Regenerative endodontics: a scientometric and bibliometric analysis. Journal of Endodontics **45**, 272-80.
- Shrestha S, Torneck CD, Kishen A (2016) Dentin conditioning with bioactive molecule releasing nanoparticle system enhances adherence, viability, and differentiation of stem cells from apical papilla. Journal of Endodontics **42**, 717-23.

- Taweewattanapaisan P, Jantarat J, Ounjai P, Janebodin K (2019) The effects of EDTA on blood clot in regenerative endodontic procedures. Journal of Endodontics 45, 281-6.
- Tomson PL, Grover LM, Lumley PJ, Sloan AJ, Smith AJ, Cooper PR (2007) Dissolution of bio-active dentine matrix components by mineral trioxide aggregate. Journal of Dentistry **35**, 636-42.
- Trevino EG, Patwardhan AN, Henry MA, et al. (2011) Effect of irrigants on the survival of human stem cells of the apical papilla in a platelet-rich plasma scaffold in human root tips. Journal of Endodontics **37**, 1109-15.
- Tunç H, Islam A, Kabadayı H, Vatansever HS, Çetiner S, Yilmaz HG (2019)
 Evaluation of low-level diode laser irradiation and various irrigant solutions on the biological response of stem cells from exfoliated deciduous teeth.
 Journal of Photochemistry and Photobiology B: Biology 191, 156-63.
- Ulusoy AT, Turedi I, Cimen M, Cehreli ZC (2019) Evaluation of blood clot, plateletrich plasma, platelet-rich fibrin, and platelet pellet as scaffolds in regenerative endodontic treatment: A prospective randomized trial. Journal of Endodontics 45, 560-6.
- Ustun Y, Düzgün S, Aslan T, Aktı A (2018) The efficiency of different irrigation solutions and techniques for the removal of triple antibiotic paste from simulated immature root canals. Nigerian Journal of Clinical Practice 21, 287-92.
- Verma P, Nosrat A, Kim JR, et al. (2016) Effect of residual bacteria on the outcome of pulp regeneration in vivo. Journal of Dental Research **96**, 100-6.
- Widbiller M, Althumairy RI, Diogenes A (2019) Direct and indirect effect of chlorhexidine on survival of stem cells from the apical papilla and its neutralization. Journal of Endodontics 45, 156-60.
- Widbiller M, Driesen RB, Eidt A, et al. (2018) Cell homing for pulp tissue engineering with endogenous dentin matrix proteins. Journal of Endodontics 44, 956-62.
- Widbiller M, Eidt A, Hiller K-A, et al. (2017) Ultrasonic activation of irrigants increases growth factor release from human dentine. Clinical Oral Investigations 21, 879–88.
- Yamauchi N, Yamauchi S, Nagaoka H, et al. (2011) Tissue engineering strategies for immature teeth with apical periodontiti. Journal of Endodontics **37**, 390-7.

- Yassen GH, Al-Angari SS, Platt JA (2014) The use of traditional and novel techniques to determine the hardness and indentation properties of immature radicular dentin treated with antibiotic medicaments followed by ethylenediaminetetraacetic acid. European Journal of Dentistry **8**, 521-7.
- Yassen GH, Sabrah AH, Eckert GJ, Platt JA (2015) Effect of different endodontic regeneration protocols on wettability, roughness, and chemical composition of surface dentin. Journal of Endodontics **41**, 956-60.
- Yaylali IE, Kececi AD, Kaya BU (2015) Ultrasonically activated irrigation to remove calcium hydroxide from apical third of human root canal system: A systematic review of in vitro studies. Journal of Endodontics **41**, 1589-99.
- Zeng Q, Nguyen S, Zhang H, et al. (2016) Release of growth factors into root canal by irrigations in regenerative endodontics. Journal of Endodontics 42, 1760-6.

6 Solution of the second secon

Figure legends

Figure 1. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flowchart.

Figure 2. Risk of bias assessment of the included studies. (A) Assessment of the risk of bias in the in vitro studies according to the percentage of scores attributed to each evaluated study (Joanna Briggs Institute's Critical Appraisal Checklist); (B) Risk of bias of the selected animal studies (SYRCLE's RoB tool for assessing risk of bias).

r Manus Autho

Experi-

Author	mental	Groups	Experimental protocol	Growth factor release	Outcomes
	model (n)				
Kucukkaya	Human	PC: cells, NC: no treatment, G1: 1 min	Dentine discs preparation,	TGF-β1, ELISA (pg/mL). PC: > 600 = NC: 600 =	EDTA solutions had
Eren et al.	dentine discs	EDTA +cells, G2: 1 min EDTA, G3: 5	conditioning protocols with or without	$G1: > 700 = G2: \cong 600 = G3: > 700 = G4: 600 =$	no significant effect
2021	and DPSCs	min EDTA + cells, G4: 5 min EDTA,	17% EDTA or 0.008% BAC, DPSCs	$G5: \cong 700 = G6: > 600 = G7: > 700 = G8: > 600 =$	on the TGF-β1
	(n = 9)	G5: 10 min EDTA + cells, G6: 10 min	seeded on dentine discs, analyses at 24	G9: \cong 700 = G10: \cong 600 = G11: > 600 = G12: >	release
	U)	EDTA, G7: 1 min EDTA + BAC +	and 72 h	500 # G13: ≅ 1300	
		cells, G8: 1 min EDTA + BAC, G9: 5			
		min EDTA + BAC + cells, G10: 5 min			
		EDTA + BAC, G11: 10 min EDTA +			
	Π	BAC + cells, G12: 10 min			
		EDTA+BAC, G13: cells without disk			
Aksel et al.	Human	Second protocols of the study. G1-G5:	Discs preparation, conditioning	TGF- β , ELISA (pg/mL). G6: \cong 780 = G7: \cong 780 =	EDTA did not
2020	dentine discs	groups used for analyses not	protocols, discs placed in 12-well	G8: 872 = G9: 799 = G10: ≅ 780	increase TGF-β
	(n = 3)	considered in this table; G6: optimized	plates with PBS for 24 h, analysis		release
		EDTA, G7: EDTA with NBs, G8:			
		EDTA + 5 min USA, G9: EDTA with			
		NBs + USA, G10: PBS			
Atesci et al.	Human	NC: DW, G1: 17% EDTA, G2: 10%	Root fragments disinfection, irrigation	ELISA (pg/mg). TGF- β 1. NC: \cong 100 § = G1: > 200	There was no
2020	roots/dentine	CA, G3: 1% IP6, G4: 37% PHA, PC:	protocols for 5 min (G1, G2, G3, G5,		significant
	discs and	DW + adMSCs, G5: 17% EDTA +	G6, G7) or 30 s (G4, G8), final	370 # G5: ≅ 700 = G6: > 600 = G7: ≅ 580 # G8: ≅	difference in EDTA
	adMSCs	adMSCs, G6: 10% CA + adMSCs,	irrigation with PBS, cell seeding in	980; VEGF. NC: $\cong 0 \$ = G1: $\cong 1 \$ = G2: $\cong 1 \$ =	without adMSC
	(n = 4)	G7: 1% IP6 + adMSCs, G8: 37% PHA	half of the group, incubation for 3 d,	$G3: \cong 1 \$ = $G4: \cong 1$; PC: $\cong 8 \$ # $G5: \cong 24 = G6: \cong$	regarding TGF-β1,
		+ adMSCs	analysis	$33 = G7: \cong 20 \# G8: \cong .57; BMP-2. NC: \cong 60 \$ \#$	VEGF and FGF-2,

				$\mathrm{G1:}\cong 240~ \S=\mathrm{G2:}\cong.~250~ \S=\mathrm{G3:}\cong 250~ \S=\mathrm{G4:}\cong$	but EDTA increase
				230; PC: \cong 150 # G5: \cong 400 = G6: \cong 400 = G7: \cong	BMP-2 release.
				$450 = G8: \cong 520; FGF-2. NC: \cong 1 \ $ = $G1: < 10 \ $ =	EDTA with adMSC
	5			G2: \cong 5 § = G3: \cong 10 § = G4: < 10; PC: < 10 # G5:	increased release of
				$> 80 \ \text{# G6:} \cong 40 = \text{G7:} > 20 \ \text{# G8:} \cong 99$	all growth factors
Li et al.	Human	G1: 10 min 1.5% NaOCl (20 mL), G2:	Preparation of root segment, irrigating	PDGF, qRT-PCR. G1: 1 =, G2: < 1 =, G3: > 3 #,	EDTA did not
2020	mandibular	NaOCl + 5 min 17% EDTA (10 mL),	protocols (PDT groups - irradiation for	G4: \cong 2.5 #; VEGF, qRT-PCR. G1: \cong 1 =, G2: > 2	influence PDGF and
	single-root	G3: NaOCl + PDT, G4: NaOCl +	120 s), final rinse with sterile saline,	=, G3: ≅ 7 #, G4 ≅ 7 #	VEGF expression,
	premolars	EDTA + PDT	SCAP with hydroxyapatite-based		with or without PDT
	and SCAPs		scaffolds seeded into root canals,		
	(n = 6)		incubation for 7 d, analyses		
Bracks et	Maxillary	NC: empty, G1: BC, G2: 17% EDTA	Endodontic access, pulpectomy,	TGF- β , RT-PCR. (7 d. NC: $\cong 0 =$, G1: $\cong 50 =$, G2:	EDTA increased
al. 2019	first molars	+ BC	groups allocation (G2 - irrigation with	$< 300 $ #; 14 d. NC: $\cong 0 =$, G1: $> 0 =$, G2: $> 0 =$; 21	TGF-β at 7 d, IGF at
	from Balb/c		1 min 17% EDTA), dried with sterile	d. NC: \cong 0 #, G1: > 100 =, G2: > 100 =). VEGF,	all pariods and NGE
	mice		paper points, intracanal bleeding with	RT-PCR. (7 d. NC: \cong 9 =, G1: \cong 6 =, G2: \cong 2 =; 14	at 1/ d EDTA no
	(n = 18)		#15 K-file 0.5 mm beyond the apical	d. NC: $\cong 2 =$, G1: $\cong 2 =$, G2: $\cong 13 =$; 21 d. NC: $\cong 2$	influenced in the
			foramen, coronal seal, euthanasia at 7,	=, G1: > 2 =, G2: \cong 4 =). IGF, RT-PCR. (7 d. NC:	VEGE expression
			14 or 21 d	$\cong 0 =$, G1: $\cong 0 =$, G2: 40 #; 14 d. NC: > 0 =, G1: > 0	viller expression
				=, G2: > 10 #; 21 d. NC: > 0 =, G1: \cong 0 =, G2: < 10	
				#). NGF, RT-PCR. (7 d. NC: $\cong 0 =$, G1: $\cong 0 =$, G2:	
				$>$ 0 =; 14 d. NC: \cong 0 =, G1: \cong 0 =, G2: $>$ 500 #; 21	
				d. NC: $\cong 0 =$, G1: $\cong 0 =$, G2: $> 0 =$)	
Cameron et	Human	Sterile versus infected root canals.	Sterile (control) and infected root	TGF- β 1, ELISA (ng/gm). Sterile root canal, control:	EDTA increased
al. 2019	teeth	Control: untreated, G1: 1,5% NaOCl,	canals with polymicrobial biofilm,	\cong 2.5 # G1: 0 # G2: \cong 8.5 = G3: \cong 7.5; Infected root	TGF- β 1 release from
	(n = 6)	G2: 17% EDTA, G3: 1.5% NaOCl +	disinfection protocols (10 mL of each	canals, control: < 2.5 # G1: 0 # G2: \cong 1 = G3: \cong 3.5	dentine under sterile
		17% EDTA	solution for 10 min), root segments		conditions. EDTA

			placed in 1 mL HBSS for 24 h, TGF-		released more TGF-
			β 1 quantification		β1 compared to
					NaOCl. EDTA did
					not influence TGF-
	\bigcirc				β 1 release in the
	-				presence of biofilm
					compared to control
Deniz	Human	G1: 17% EDTA, G2: 1% IP6, G3: 9%	Preparation of dentine discs,	TGF- β , ELISA (nm). 4h. G1: > 25 = G2: \cong 25 = G3:	EDTA did not
Sungur et	dentine discs	HEDP, control: DW	immersion in the solutions for 5 min,	$< 25 = \text{control:} > 25; 1 \text{ d. } \text{G1:} \cong 75 = \text{G2:} > 50 =$	influence TGF-β
al. 2019	(n = 3)		immersion in PBS, incubation at 37 $^{\circ}\mathrm{C}$	G3: < 75 = control < 75; 3 d. G1: < 100 = G2: 75 =	release compared to
			up to 28 d, analysis	G3: $100 = \text{control}$: $\cong 100$; 5 d. G1: $125 = \text{G2}$: $100 =$	other groups
				G3: > 125 = control: \cong 125; 7 d. G1: < 150 = G2: >	other groups
				$125 = G3: > 150 = control: 150; 14 d. G1: \cong 175 =$	
				G2: > 150 = G3: 200 = control: 175; 28 d. G1: < 200	
				= G2: 175 = G3: 225 = control: > 200	
Ivica et al.	Human	G1: 10% CA, G2: 17% EDTA; G3:	Preparation of dentine discs, 300 µL	TGF-β1, Slot Blot Protein Immunoassay (ng). G1:	EDTA increased
2019	dentine discs	PBS	of conditioning agents (CA, EDTA	382 ± 30 # G2: 66 ± 3 # G3: no staining	TGF-β1 release
	and human		and PBS) for 10 min, analysis		compared to PBS.
	bone				
	marrow-				
	MSCs				
	(n = 3)				
Liu et al.	Pulp tissue	For TGF-β1 release, NC: no EDTA	Cell culture, cells treated with EDTA	TGF- β 1, ELISA (pg/mL). NC: $\cong 400 =, G1: \cong 500$	EDTA increased
2019	from human	stimulation, G1: 5 min 12% EDTA+	in different time points and	#, G2: < 500 #, G3: < 500 #	TGF-β1 release.
	premolars or	fresh medium for 6 h, G2: 5 min 12%	concentrations, cells maintained in		
	third molars	EDTA + fresh medium for 12h, G3:	fresh medium for 6, 12 and 24 h,		

	and DPCs	12% EDTA + fresh medium for 24 h.	analyses		
	(n = 5)				
Chae et al.	Root of	G1: 5 min saline, G2: 17% EDTA,	Preparation of root segments,	TGF- β 1, ELISA (pg/mL ⁻¹). NC: 43 = G1: 53 # G2:	EDTA increased
2018	permanent	G3: 10% CA, G4: 10% PHA, G5:	irrigation with 1.5% NaOCl,	231 # G3: 516 # G4: 240 # G5: 53	TGF-β1 compared
	human teeth	37% PHA, NC: internal surface coated	randomization, irrigation protocols,		to saline solution
	(n = 3)	with nail varnish	dried with paper points, samples		
	$\overline{()}$		placed into 1 mL a-MEM for 24 h,		
			analysis		
Ranc et al.	Immature	NC: no irrigation, PC: 0.9% saline,	Samples preparation, randomization,	TGF-β1, Raman intensity. NC: decrease of 70%, G1	EDTA increased
2018	single-rooted	G1: 5 min 17% EDTA, G2: 20 min	irrigating protocols, rinse with 0.9%	increase of 10% compared to the G2, G2 increased	TGF-β1 expression,
	human	17% EDTA	saline (PC, G1, and G2), tagging of	80% compared PC	and 20 min EDTA
	premolars (n		antibodies and preparation of samples,	bFGF and BMP-2, Raman intensity. NC: decrease of	increased bFGF and
	= 5)		wash in water, analyses	50% for bFGF and 82% for BMP-2, G1: NM, G2	BMP-2
				increased > 300% compared to PC	
Duncan et	Human	G1: 10% EDTA, G2: TSA, G3: VPA,	HDACis preparation, isolation of	Proteomic assay (pg/mL ⁻¹), TGF- β 1. G1: > 100000	EDTA effectively
al. 2017	dentine	G4: SAHA, G5: PBS	DMCs, DMCs extraction from 5 g of	# G2: < 20000 = G3: > 10000 = G4: < 30000 = G5:	released TGF- β 1,
			powdered dentine using 25 mL of	\cong 30000; GDF-15. G1: > 25 = G2: < 50 = G3: > 50	BMP-7, BDNF,
	(n = 3)		d daily refraching of autoestant	# G4: > 200 # G5: 150; BMP-7. G1: > 1000 # G2: 0	PDGF-AA, VEGF-
			a, dany refreshing of extractant,	= G3: 0 = G4: 0 = G5: 0; FGF-2. G1: > 55 = G2: >	A, IGFBP-1 and -3,
			anaryses	45 # G3: > 15 = G4: > 40 = G5: 50;	IGF-1, HGF and
				FGF-4. G1: 0 # G2: 160 # G3: 30 # G4: ≅120 = G5:	PIGF.
				80; FGF-7. G1: \cong 70 = G2: \cong 30 = G3: < 20 = G4: >	EDTA not
				$60 = G5: < 90; BDNF. G1: \cong 21 \# G2: \cong 32 = G3:$	influenced FGF-2
				30 = G4: > 30 # G5: 0; GDNF. G1: 35 # G2: ≅20 =	and -7, GDNF, SCF-
				G3: \cong 18 = G4: \cong 24 # G5: \cong 36; PDGF-AA. G1: >	R, IGFBP-2, insulin.

				3000 # G2: 0 = G3: 0 = G4: 0 = G5: 0; VEGF-A.	EDTA decreased
				G1: 250 #, G2: > 200 =, G3: \cong 150 #, G4: > 200 =,	GDF-15, FGF-4,
				G5: \cong 175 #; SCF-R. G1: > 500 # G2: > 1000 = G3:	EGFR-1, NGFR.
				> 1000 # G4: \cong 2.000 # G5: > 500; IGFBP-1. G1: >	
	\bigcirc			15000 # G2: \cong 2500 # G3: < 2500 = G4: < 2500 #	
				G5: > 5000; IGFBP-2. G1: > 1000 # G2: < 250 #	
				G3: > 1000 # G4: > 2500 # G5: > 250; IGFBP-3.	
	U			$G1{:}>60000 \ \text{\# G2}{:}>0 = G3{:}>0 = G4{:}>5000 =$	
	S			G5: 0; IGF-1. G1: 3500 = G2: > 3500 = G3: 4000 =	
				G4: \cong 3250 # G5: 0; Insulin. G1: > 1300 = G2: >	
				1400 = G3: 1400 = G4: > 1400 = G5: > 1600;	
				EGFR-1. G1: > 500 # G2: \cong 1000 # G3: > 1500 #	
				G4: > 2000 # G5: > 1500; NGFR. G1. 0 # G2: > 200	
				# G3: > 125 = G4: > 125 $#$ G5: > 300; HGF. G1: 65	
				# G2: \cong 20 # G3: 5 # G4: \cong 30 = G5: \cong 35; PIGF.	
				G1: 50 # G2: 15 = G3: 10 = G4: > 15 = G5: > 15	
Widbiller et	Human	Dentine discs. One step, G1: 10 min	Dentine discs preparation, irrigation	TGF- β 1, ELISA (pg/mL). Dentine discs. One step.	EDTA increased
al. 2017	dentine discs,	PBS, G2: 10 min PBS+US, G3: 1 min	protocols, analysis. Root canal model	$G1: < 50 = G2: < 50 \ \text{\# G3: } 197 \ \text{\# G4: } 313 = G5: 535$	TGF-β1 release,
	and straight	10% EDTA, G4: 1 min EDTA + US,	preparation, irrigation protocols,	$= G6: \cong 700 = G7: 908;$ Two step. G1: < 50 # G2:	mainly after US
	roots from	G5: 3 min EDTA, G6: 3 min EDTA +	ultrasonic activation, frozen	286 = G3: > 300 # G4: 735 # G5: > 300 # G6: 1334.	activation
	first/second	US, G7: 10 min EDTA; Two step, G1:	immediately, analysis	Root canal model. G1: \cong 500 # G2: 1023 # G3:	
	molars	10 min PBS + 1 min PBS + US, G2: 1		3445	
	(n = 9 -	min EDTA + 1 min PBS + US, G3: 10			
	dentine discs,	min EDTA + 3 min PBS, G4: 10 min			
	n = 12 - root	EDTA + 3 min PBS + US, G5: 10 min			
	canal)	EDTA + 5 min PBS, G6: 10 min			

		EDTA + 5 min PBS+US Root canal			
		model G1: 10 min PPS + US G2: 10			
		$\begin{array}{c} \text{model. G1. 10 mm FBS} + \text{OS, G2. 10} \\ \text{model. G1. 10 mm FBS} + \text{OS, G2. 2} \\ \end{array}$			
		$\min EDTA + 5 \min PBS + US, G3: 3$			
		min $EDTA + US$			
Gonçalves	Human	G1: PBS with PD, G2: PBS without	Tooth slice preparation with or	TGF- β 1, ELISA (pg/mL). G1: MC =, G2: MC =,	EDTA significantly
et al. 2016	dentine	PD, G3: 1 min 10% EDTA with PD,	without PD, slices conditioned with	G3: 1.262.175 #, G4: 1.197.095 #; G5: MC =, G6:	released TGF-β1
	samples (n =	G4: 1 min 10% EDTA without PD,	irrigating protocols, transferred to 24-	MC =	from dentine matrix
	10)	G5: 5 d 2.5% NaOCl with PD, G6: 5 d	well plates incubation at for		
	S	2.5% NaOCl without PD	3 d, analysis		
Sadaghiani	Dentine	G1: 10% EDTA, G2: 37 % PHA, G3:	Extraction of DME or dentine	SEM, Immunogold-labeled particles (number of	EDTA did not
et al. 2016	powder,	10% CA, G4: 25% PA, NC: PBS, PC:	immersion in the conditioning	particles). (TGF- β 1, 5 min. NC: \cong 10 =, PC: \cong 55 #,	influence TGF-b1,
	human	CH, *control: no DME or denatured	solutions for 5 or 10 min, frozen,	G1: > 10 =, G2: > 15 #, G3: > 10 =; 10 min. NC: >	and increased BMP-
	dentine slices	EDTA-extracted DMEs for DME	growth factor quantification, washed	$10 =, PC: > 40 \#, G1: \cong 15 =, G2: 20 \#, G3: 20 \#;$	2 and VEGF in SEM
	and DPSCs	stimulation	with DW, immunogold localization,	VEGF, 5 min. NC: MC =, PC: 70 #, G1: ≅ 70 #, G2:	analysis, compared
	(n = 6 or 15)		DPSC seeded onto conditioned	> 30 #, G3: > 60 #; 10 min. NC: 0 =, PC: > 80, G1:	to control; but
			dentine, cell morphology examined	≅ 25 #, G2: ≅ 20 =, G3: > 10 =; BMP2, 5 min. NC:	increased TGF-b1,
			after 1 and 8 d, and analysis	0 =, PC: > 60 #, G1: > 75 #, G2: 20 =, G3: 65 #; 10	and did not influence
	0			min. NC: MC =, PC: \cong 70 #, G1: \cong 30 #, G2: > 10	BMP-2 and VEGF
				=, G3: \cong 20 =); ELISA, Concentrations in the	in ELISA analysis.
				conditioned dentine (pg/mL). (TGF- β 1, 5 min. NC:	
				0 =, PC: 0 =, G1: > 650 #, G2: 0 =, G3: 0 =; 10 min.	
				NC: 0 =, PC: 0 =, G1: > 600 #, G2: 0 =, G3: 0 =;	
				VEGF. G3 significantly released VEGF after 5 min	
				among the groups; BMP2, 5 min. NC: 0 =, PC: $<$	
				$200 =, G1: 0 =, G2: < 200 =, G3: \cong 600 \text{ #; } 10 \text{ min.}$	
				NC: 0 =, PC: 0 =, G1: 0 =, G2: < 200 =, G3: 800 #)	

Zeng et al.	Human	G1: 1.5% NaOCl + 17% EDTA for 5	Preparation of root segments, growth	ELISA (ng/mL). TGF- β 1. 4 h. G1: \cong 16 =, G2: \cong 30	EDTA alone did not
2016	permanent	min, G2: 2.5% NaOCl + 17% EDTA	factor array, irrigating protocols,	=, G3: 4 =, G4: 0.78 =; 1 d. G1: 69.04 #, G2: 59.26	influence released of
	teeth	for 5 min, G3: 5 min 17% EDTA, G4:	segments placed into 1 mL a-MEM	#, G3: 6.92 =, G4: 0.78 =; 3 d. G1: 15.16 =, G2:	TGF-β1 or bFGF
	(n = 12)	5 min DW	for 4 h, 1 or 3 d, analyses	13.04 =, G3: 16.25 =, G4: 0.78 =;	
	\bigcirc			bFGF 4 h. G1: 0 =, G2: 0.43 =, G3: 0, G4: 0; 1 d.	
				G1: 0 = G2: MC=, G3: 0=, G4: 0 =; 3 d. G1: 0=, G2:	
				MC =, G3: 0=, G4: 0=	
Galler et al.	Human	TGF-β-1 release, G1: 10% EDTA	Dentine discs preparation, treated with	TGF- β 1, ELISA (pg/mL). 5 min. G1: > 200 = G2: >	EDTA increased the
2015	dentine discs (n = 3)	(0.268 mol/L, pH 6), G2: 10% EDTA (0.268 mol/L, pH 7), G3: 17% EDTA (0.456 mol/L, pH 7), G4: 10% CA (0.476 mol/L, pH 2), G5: CB (CA 0.476 mol/L + TCD 1.55 mol/L) pH 5, G6: CAPB (CA 0.476 mol/L + TCD	solutions at different concentrations or pH for 5, 10 and 20 min, sample collection, analysis	300 # G3: < 200 # G4: MC = G5: MC = G6: MC; 10 min. G1: > 300 = G2: > 400 = G3: 400 # G4: 57 # G5: MC = G6: MC; 20 min. G1: 449 # G2: 923 = G3: 827 # G4: 57 # G5: MC = G6: MC	released of TGF-b1
		0.68 mol/L + TP 1.09 mol/L)			

The symbol * indicates additional group per analysis; indicates no significant differences between/among groups; # indicates significant differences between/among groups; # indicates significant differences between/among groups; \cong indicates "approximately"; > indicates "greater than"; < indicates "less than".

n.a.: not applicable, G: group, n: number of specimens, d: days, w: week, min: minutes, h: hour, mm: millimeter, mL: milliliter, nm: nanometre, mg: milligram, pg: picogram, ng: nanogram, µL: microliter, °C: degree Celsius, MC: minimal concentration or zero, NM: not mentioned, DMC: dentine matrix component, semi-qRT-PCR: semi-quantitative reverse transcriptase-PCR, DMPs: dentine matrix protein extracts, BC: blood clot, DPCs: dental pulp cells, DPSCs: dental pulp stem cells, EDTA: ethylenediaminetetraacetic acid, NB: nanobubble water, NaOCI: sodium hypochlorite, PBS: sterile phosphate-buffered saline, FBS: fetal bovine sérum, PC: positive control, NC: negative control, adMSCs: adipose-derived mesenchymal stem cells, DW: distilled water, CA: citric acid, IP6: phytic acid; PHA: phosphoric acid, BMP-2: bone morphogenetic protein-2, FGF-: fibroblast growth factor, TAP: triple antibiotic paste (ciprofloxacin, metronidazole and minocycline), CHX: chlorhexidine, CH: calcium hydroxide, BAC: benzalkonium chloride, USA: ultrasonic activation, PDT: photodynamic therapy, SCAPs: stem cells of the apical papilla, a-MEM:alpha-minimum essential

medium, RT-PCR: real- time polymerase chain reaction, PDGF: platelet-derived growth factor, IGF: Insulin-like growth factor, NGF: nerve growth factor, IL-: interleukin,

HBSS: Hank's balanced salt solution, MSCs: mesenchymal stem cells, HEDP: etidronic acid, ELISA: enzyme linked immunosorbent assay, HDACis: histone deacetylase inhibitors, TSA: trichostatin A, VPA: valproic acid, SAHA: suberoylanilide, PBS: sterile phosphate-buffered saline, g: grass, BMP-7: bone morphogenetic protein-7, FGF-: fibroblast growth factor-, BDNF: brian-derived neurotrophic factor, GDF-15: growth/differentiation factor 15, GDNF: glial cell-line-derived neurotrophic factor, TGF-: transforming growth factor, nAb TGF-β1: TGF-β1 neutralizing antibody, VEGF-: vascular endothelial growth factor, SCF-R: mast/stem cell growth factor receptor kit, IGFBP: Insulin-like growth factor-binding protein, EGFR: epidermal growth factor receptor, NGFR: tumour necrosis factor receptor, HGF: hepatocyte growth factor, PIGF: placenta growth factor, US: ultrassonic ativation, PD: predentine layer, GdnHCl: guanidine hydrochloride, HCl: hydrochloric acid, MDPSCs: mobilized dental pulp stem cells, , CM: conditioned medium, PA: polyacrylic acid, DME: dentine matrix extracts, TCD: trisodium citrat, CB: citrate buffer, CAPB: citric acid phosphate buffer, TP: trisodium phosphate, M: molar, WMTA: white mineral trioxide aggregate, GMTA: grey mineral trioxide aggregate, NCPs: non-collagenous proteins, GAGs: glycosaminoglycans, ADM: adrenomedullin, BCA: benzalkonium chloride, NCP: non-collagenous protein, MDPC-23: mouse odontoblast-like cells, OD-21: undifferentiated pulp cells, 3T3: mouse fibroblast cells.

Author Mar

Author	Experi-	Groups	Experimental	Cell Viability	Cell Migration/	Cell morphology	Cell	Outcomes
	mental		protocol		attachment		differentiation/	
	model						mineralization	
	(n)							
Kucukk	Human	Control: no treatment,	Dentine discs	WST-1 assay (%).	Attachment, LDH	SEM. 72 h: control: mostly	n.a.	EDTA groups increased
aya Eren	dentine	G1: 1 min EDTA, G2:	preparation,	72 h: G1: \cong 31% =	assay (%). 24 h:	spherical and smaller cells;		cell proliferation and
et al.	discs	5 min EDTA, G3: 10	conditioning	G2: \cong 29% = G3: \cong	G1: \cong 43% = G2:	EDTA groups: mostly spindle-		attachment, influencing cell
2021	and	min EDTA, G4: 1 min	protocols with	29% = G4: ≅ 31% =	\cong 38% = G3: \cong	shaped cells with elongated		morphology
	DPSCs	EDTA + BAC, G5: 5	or without 17%	G5: ≅ 30% = G6: ≅	$34\% = G4: \cong 45\%$	cytoplasmic processes		
	(n = 9)	min EDTA + BAC,	EDTA or	31% # control: $≅$	=G5: ≅ 35% =			
		G6: 10 min EDTA +	0.008% BAC,	7%	G6: ≅ 38% #			
	Ç	BAC	DPSCs seeded		control: $\cong 24\%$			
			on dentine					
		2	discs, analyses					
			at 24 and 72 h					
Aksel et	Human	First protocol, G1: 5	Discs	WST-1 analysis.	Transwell	CLSM. First protocol: G3 and	n.a.	Final rinse with EDTA
al. 2020	dentine	min NaOCl + 3 min	preparation,	First protocol (3 d:	migration assay. 7	G5 had elongated, fibroblastic-		decreased cell viability
	discs	PBS, G2: G1 + 5 min	first	G1: \cong 0.04 # G2: \cong	d: G6: ≅ 0.14 #	like with flattened cell		compared to others. The
	and	EDTA, G3: G2 + 3	conditioning	$0.01 \# G3: \cong 0.11 \#$	G7: \cong 0.17 # G8:	morphology on the dentine		activation EDTA protocols
	DPSC	min PBS, G4: NaOCl	protocols,	G4: $> 0.00 \#$ G5: \cong	$\cong 0.18 = G9$: \cong	surface; Second protocol: PBS		increased cell viability/
	(n = 3)	5 min EDTA, G5:	DPSCs seeded	0.07 # control: ≅	$0.18 \# G10 \cong 0.13$	group showed round cell		migration, and influenced
		G4 + 3 min PBS.	on dentine	0.15 #; 7 d: G1: ≅	# NC: ≅ 0.11 #	morphology compared to EDTA		cell morphology
		Second protocol using	discs,	$0.14 \# G2 \cong 0.03 \#$	PC: $\cong 0.17$	groups		
		G3, G6: optimized	incubation for 3	$G3^{\cdot} \simeq 0.24 \# G4^{\cdot} \simeq$				
		EDTA protocol, G7:	and 7 d, cell	05. – 0.24 ii 0 4 . –				

Table 2. Effects of EDTA on stem cells behaviour (in vitro analyses)

		EDTA with NBs, G8:	viability/morph	$0.03 \# G5: \cong 0.015 \#$				
		EDTA + 5 min USA,	ology assays,	control: \cong 0.33);				
	-	G9: EDTA with NBs	second	Second protocol (7				
	C	+ USA, G10: PBS,	conditioning	d: G6: \cong 0.23 = G7:				
		control: DPSC, PC:	protocols,	$\cong 0.21 \# G8 \cong 0.27$				
	<u> </u>	DPSC in 10% FBS,	incubation for 7	$\#$ G9: \cong 0.24 $\#$ G10:				
	C	NC: DPSCs	d, final	0.18 # control: 0.27)				
		6	analyses					
Atesci et	Human	Control: DW, G1:	Root fragments	n.a.	Attachment,	CLSM. 3 d: control: round-	n.a.	EDTA group had
al. 2020	dentine	17% EDTA, G2: 10%	disinfection,		CLSM. 3 d:	shaped cells; G1: oblong,		abundance of cells, mostly
	discs	CA, G3: 1% IP6, G4:	irrigation		control: reduced	flattened, and round-shaped		round-shaped compared to
	and	37% PHA	protocols for 5		cell attachment,	cells; G2: flattened cells with		the other groups
	adMSCs	2	min (G1, G2,		G1: abundance of	extending cytoplasmic processes,		
	(n = 4)		G3) or 30 s		cells, G4: well	G3: flattened cells and round		
		>	(G4), final		attached	shape; G4: round and oblong-like		
			irrigation with			cells and flattened and well-		
	<u> </u>	_	PBS, cell			attached cells with extending		
	C		seeding,			cytoplasmic processes		
			cultured in GM					
		_	for 3 d, analysis					
Li et al.	Human	G1: 10 min 1.5%	Preparation of	Luminescence	n.a.	SEM. 7 d: G1/G2: cells with	n.a.	EDTA did not influenced in
2020	mandibu	NaOCl (20 mL), G2:	root segment,	analysis (n° of cells).		small cytoplasmic processes,		the viability or morphology
	lar	NaOCl + 5 min 17%	irrigating	7 d: G1: \cong 37 = G2:		G3/G4: spindle shaped cells with		of the cells
	single-	EDTA (10 mL), G3:	protocols (PDT	$\cong 50 \# G3: \cong 62 =$		elongated cytoplasmic processes		
	root	NaOCl + PDT, G4:	groups:	G4: ≅ 70				
	premola	NaOCl + EDTA +	irradiation for					

	rs and	PDT	120 s), final					
	SCAPs		rinse with					
	(n = 6)		sterile saline,					
			SCAP with					
			hydroxyapatite-					
			based scaffolds					
	()		seeded into root					
			canals,					
			incubation at					
			37°C for 7 d,					
			analyses					
Ivica et	Human G1	: 10% CA, G2:	Preparation of	Automatic Cell	Transwell	n.a	n.a.	EDTA had higher cell
al. 2019	dentine 17%	EDTA; G3: PBS	dentine discs,	Counter (cells	migration assay (nº			viability and migration than
	discs/		$300 \ \mu L \ of$	/dentine area). 48 h:	cells). 24 h: G1: \cong			PBS, and higher cell
	MSCs		conditioning	G1: \cong 6000 # G2: \cong	$5000 \# G2: \cong 2000$			attachment at 24 h
	(n = 4:		agents for 10	$2000 = G3: \cong 2000$	# G3: ≅ 100.			
	viability		min, cells		Attachment,			
			seeded on		automatic cell			
	migratio		conditioned		counter (cells/			
	n, n = 3:		dentine discs,		dentine area). 24 h:			
	attach-		analyses after		G1: $\cong 1 \times 10^5 \#$ G2:			
	ment)		24 and 48 h		$\cong 5x10^4 \# G3:>$			
					$5x10^4$. 48 h: G1: \cong			
					$6x10^5 \# G2: \cong$			
					$2x10^5 = G3:>$			

					$2x10^{5}$			
Liu et	Pulp	Cell viability.	Cell culture,	CCK-8 assay (%).	Transwell	n.a.	n.a.	17% EDTA for 5 min
al. 2019	tissue	According to exposure	cells treated	According to time of	migration assay			decreased DPCs viability
	from	time: G1: 1 min, G2: 3	with EDTA in	exposure. 24 h:	(cells per field):			compared to other EDTA
	human	min, or G3: 5 min	different time	Control: 100 = G1:	NC: \cong 80 # G1: \cong			concentration groups and
	premola	17% EDTA, control:	points and	$\cong 100 = \text{G2:} > 100 \ \text{\#}$	$125 \ \# \text{G2:} \cong 160 \ \#$			control; no difference in the
	rs or	α -tubulin; and	concentrations,	G3: \cong 90; 48 h:	G3: ≅ 90			other exposure times and
	third	concentration: G1:	cells	Control: 100 = G1: <				the control. EDTA
	molars	3%, G2: 6%, G3:	maintained in	100 = G2: < 100 #				significantly enhanced cell
	and	12%, or G4: 17%	fresh medium	G3: < 90; 72 h:				migration.
	DPCs	EDTA, control: α-	for 24, 48 and	Control: 100 = G1:				
	(n = 5)	tubulin. Cell	72 h, analyses	$\cong 100 = G2: < 100 #$				
	Ç	migration. G1: SDF-		G3: \cong 90);				
	_	1α, G2: EDTA+SDF-		According to				
		1α, G3: EDTA+SDF-		concentration. 24 h:				
		1α+siCXCR4, NC:		Control: 100 = G1: >				
	<u> </u>	medium without SDF-		100 = G2: > 100 =				
	(1α		G3: > 100 # G4: ≅				
				90; 48 h: Control:				
		_		$100 = G1: \cong 100 =$				
	-			G2: > 100 = G3: <				
		J		100 # G4: < 90; 72				
				h: Control: 100 =				
		L		G1: < 100 =G2:				
				>100= G3: ≅100				

			#G4: ≅ 90)				
Deniz	Dentine G1: 17% EDTA, G2:	Dentine discs	MTT assay. 1 d: G1:	Transwell	SEM. 1 d: G1: contracted cells	n.a.	EDTA decreased cell
Sungur	discs 1% IP6, G3: 9%	preparation,	$\cong 0.4 =, G2: < 0.4 =,$	migration assay. 1	with a spherical morphology,		viability than DW at 3 d,
et al.	from HEDP, G4: DW, PC:	proliferation/	G3: ≅ 0.3 #, G4: <	d: G1: ≅ 0.7 =, G2	G2/G3: polygonal morphology		while not influenced at 1
2019	human 20% FBS, NC: 1%	morphology:	0.4 =; 3 d: G1: < 0.6	> 0.6 #, G3: > 0.8	and more stretched out onto the		and 5 d. EDTA did not
	third FBS	disinfection,	$\#$ G2: \cong 0.4 $\#$ G3: <	##, G4: < 0.6 =,	dentine, G4: flattened cells		influence cell migration, but
	molars	conditioning (5	0.4 # G4: > 0.6; 5 d:	NC: $\cong 0.6 =, PC: >$	compared to G1; 5 d: major cell		influenced morphology cell
	and	min), DPSCs	G1: ≅ 0.8 =, G2 <	0.6 =; 3 d: G1: <	number in the groups.		(contracted cells).
	DPSCs	seeded on	0.6 #, G3: 0.4 #, G4:	0.6 =, G2: < 0.6 #,			
	(n = 9)	discs,	≅ 0.8 =	G3: \cong 0.6 #, G4: <			
		incubation in		0.6 =, NC: 0.4 =,			
		GM for 1, 3, 5		PC: < 0.6 =.			
		d, analysis;					
		migration:					
		chambers with					
		culture media,					
	5	discs in lower					
	0	chamber, cells					
		incubated for 1					
		and 3 d,					
		analysis					
Tunç et	SHEDs G1: 5% EDTA, G2:	SHEDs seeded,	MTT assay (%). 5	n.a.	n.a.	n.a.	EDTA decreased cell
al. 2019	(n = 8.5% EDTA, G3: 17%	irrigants and	min: (G1 \cong 60, G2:				viability compared with
	n.a.) EDTA, G4: 1%	laser	\cong 60, G3: \cong 55, G4:				control
	NaOCl, G5: 2.5%	application,	>60, G5: >60, G6:				

NaOCl, G6: 5%	incubation for	55.3) # (G7: \cong 100,	
NaOCl, G7: 5 µg/mL	5, 10 and	G8: ≅ 100, G9:	
OW, G8: 10 µg/mL	15 min,	>100, G10: ≅ 100,	
OW, G9: 20 μg/mL	analyses	G11: ≅ 100, G12:	
OW, G10: 0.5 j/cm ²		>100, cont.: 100); 10	
GaAlAs, G11: 1 j/cm ²		min: (G1: >60, G2:	
GaAlAs, G12:		>60, G3: 57.2, G4:	
1.5 j/cm ² GaAlAs,		>60, G5: ≅ 60, G6:	
Control: no exposure		≅ 60) # (G7: >100,	
		G8: >100, G9:	
		103.7, G10: >100,	
		G11: >100, G12:	
(0		>100, cont.: 100); 15	
		min: (G1: \cong 25, G2:	
		≅ 25, G3: 21.7, G4:	
		\cong 30, G5: \cong 30, G6:	
		≅ 30) # (G7: >100,	
0		G8: 100.7, G9: 100,	
		G10: >100, G11:	
		>100, G12: 99.9,	
		cont.: 100)	

Widbille	Human Control:	Dentine discs	Luminescence (%).	n.a.	n.a.	n.a.	There was no difference
r et al.	dentine saline,	preparation,	No mixed solutions:				between EDTA and control
2019	discs G1: 2% CH	X, rehydration,	Control: $> 10^4 \# G1$:				in cytotoxicity
	and G2: 17% ED	TA, conditioning 5	$< 10^2 \ \text{# G2:} > 10^4 =$				
	SCAPs G3: L-α-lecit	hin, min (mixed or	$G3 > 10^4$; Mixed				
	(n = G4: CHX + I)	L-α- not mixed	solutions: control: \cong				
	n.a.) lecithin,	solutions),	$10^4\#G1{:}<10^2\#$				
	G5: CHX + El	DTA, SCAPs	G4: $\cong 10^4 \# \text{G5:} >$				
	G6: CHX + I	$-\alpha$ - cultured for 5	$10^3 \# \text{G6:} < 10^4 =$				
	lecithin + ED	TA d, analysis					
Chae et	Root G1: saline, G2	17% Discs irrigated	MTS assay (nm).	n.a.	n.a.	n.a.	There was no difference
al. 2018	human EDTA, G3: 109	% CA, 1.5% NaOCl,	PC: \cong 2.4 =, G1: \cong				among saline, PC and
	teeth G4: 10% PHA	, G5: irrigating,	2.3 =, G2: ≅ 2.7 = #,				EDTA in viability
	and 37% PHA, PC	non- surfaces dried,	G3: \cong 2.5 = #, G4:				
	SCAPs treated dent	ine transwell	≅ 2.4 =, G5: ≅ 2.0 #				
	(n = 3)	system, SCAPs					
		loaded for 2 in					
	0	the lower					
		chamber, discs					
		in the upper					
	—	chamber, cells					
		cultured for 24					
		h, analysis					
	\triangleleft						

Hashim	Dentine	G1: PBS, G2: PBS	Preparation of	CCK-8 assay (cells/	Attachment, cell	Fluorescence photomicrograph.	RT-PCR. ALP.	10 min EDTA after 1.5%
oto et al.	discs	+10 min 3% EDTA,	dentine discs,	field).	density (cell/	G1/G2/G3: spindle and	Control: $\cong 1 \times 10^{-3}$	NaOCl increased cell
2018	from	G3: PBS +10 min	irrigating	G4: $\cong 0.003 = G5$:	field). G1: 158 =,	fibroblastic appearances, G4:	$= G1: \cong 2x10^{-3} #$	viability, attachment, and
	bovine	17% EDTA, G4: 1.5%	protocols,	$\cong 0.002 = G6: 0.003$	G2: \cong 260 #, G3:	round cells, G5 and G6: absence	G2: $\cong 4x10^{-3} \#$ G3:	differentiation with cells \cong
	teeth	NaOCl, G5: 1.5%	washes with	#	≅ 350 ##, G4: 24.5	of viable cells, G7: most	> 4x10 ⁻³ ; Control:	odontoblast-like
	and	NaOCl +1 min 3%	PBS, MDP	G7: $\cong 0.010 = G8$:	*, G7: ≅ 60 **,	fibroblastic appearance, G12:	$\cong 6x10^{-4} = G4:\cong$	
	MDP	EDTA, G6: 1.5%	cells seeded on	$\cong 0.007 = G9$: \cong	G12: \cong 62 **,	most round cells, G15/G16/G17:	6x10 ⁻⁴ # G6: >	
	cells	NaOCl +5 min 3%	dentine discs	0.010 # G10: ≅	G15: 1.5 ^{\$} , G16:	reduced cells with fibroblastic	6x10 ⁻⁴ # G12: ≅	
	(n = 9)	EDTA, G7: 1.5%	for 24 and 48 h,	0.002 = G11: ≅	1.5 ^{\$,} = G17: 1.5 ^{\$} .	appearances	7x10 ⁻⁴ ; DMP.	
	_	NaOCl +10 min 3%	analyses	0.004 # G12: ≅	SEM. G1:		Control: 0 = G1: <	
	C	EDTA, G8: 1.5%		$0.008 = G13: \cong$	cytoplasmic		$2x10^{-3} \# G2$: \cong	
		NaOCl +20 min 3%		$0.007 - G14 \simeq$	process to the		2x10 ⁻³ # G3: ≅	
	C C	EDTA, G9: 1.5%		0.008	smear layer, G3		$4x10^{-3}$: Control: \cong	
		NaOCl +60 min 3%		0.000	and G12:		$2.5 \times 10^{-6} = G4: <$	
		EDTA, G10: 1.5%			cytoplasmic		$5 \times 10^{-6} \# \text{G6:} >$	
	-	NaOCl +1 min 17%			process to the		$1 \times 10^{-5} \# G12:\cong$	
	<u> </u>	EDTA, G11: 1.5%			dentine matrix, G4:		1.5×10^{-5} · DSPP	
	C	NaOCl +5 min 17%			few cells; TEM		control: $0 = G1$:	
		EDTA, G12: 1.5%			analysis. G7 and		$2x10^{-3} \# G2^{-3} >$	
	_	NaOCI +10 min 17%			G12: cytoplasmic		$2x10^{-3} # G3: \simeq$	
	-	EDTA, G13: 1.5%			process to the		4×10^{-3} : control: <	
	_	NaOCI +20 min 17%			dentine matrix,		$1 \times 10^{-7} - G4$:	
		EDTA, G14: 1.5%			presence of		$5x10^{-7} - C6x < 5x10^{-7}$	
		NaOCI +60 min 17%			collagen fibre		$5 \times 10^{-7} - C12$	
		EDTA, G15: 6%					$J_{X10}^{-1} = G12: >$	
		NaOCl, G16: 6%					1X10 °	

	NaOCl +10 min 3%						
	EDTA, G17: 6%						
	NaOCl +10 min 17%						
	EDTA						
Prompre	Plastic NI (G1: 16 min NSS,	Preparation of	n.a.	Attachment,	n.a.	n.a.	EDTA groups had less cell
echa et	tooth G2: 15 min EDTA +1	immature root		immuno-			attachment compared to
al. 2018	models, min NSS, G3: 5 min	canal models		fluorescent assay			NSS in the dynamic
	human CHX +10 min EDTA	(plastic tooth +		(positive			irrigation; however, no
	dentin +1 min NSS), NI+EA	dentine discs),		cells/field) G1: \cong			difference was observed
	discs, (G4: 16 min NSS, G5:	smear layer		230 # G2: ≅ 180 =			between EDTA and NSS in
	and 15 min EDTA +1 min	removal,		G3: ≅ 160. G4: ≅			non-dinamic irrigation
	APCs NSS, G6: 5 min CHX	samples with		240 # G5: ≅ 170 =			
	(n = 9) +10 min EDTA +1	CH paste for		G6: ≅ 150. G7: ≅			
	min NSS), NI+PUI	1w, samples		$230 = G8^{\circ} \approx 160 =$			
	(G7: 16 min NSS, G8:	inserted into		$G_{0} \simeq 175 G_{10} \simeq$			
	15 min EDTA +1 min	the models,		$G_{2} = 173. G_{10} =$			
	NSS, G9: 5 min CHX	irrigating		60 - 011 = 65 #			
	+10 min EDTA +1	protocols for 16		G12: ≅ 25			
	min NSS), control	min, analyses					
	(non-dinamic						
	irrigation, G10: 16						
	min NSS, G11: 15 min						
	EDTA+1 min NSS,						
	G12: 5min CHX +10						
	min EDTA+1 min						
	NSS)						

Scott et	SCAPs,	G1: DW, G2: 10%	Cell lines	Autofluorescence (%	n.a.	n.a.	n.a.	EDTA and the other
al. 2018	PDL	Endocyn, G3: 6%	isolated and	cell). PDL survival				irrigants showed more
	fibroblas	NaOCl, G4: 17%	cultured for 24	$(10 \text{ min. G1}: \cong 105)$				cytotoxicity to PDL, UMR-
	ts and	EDTA, G5: 2% CHX	h to 48-well	=, G2: ≅ 110 =, G3:				106, and SCAP cells than
	UMR-	-	plates,	≅18 #, G4: ≅ 10 #,				DW and Endocyn
	106		exposure to the	G5: ≅7 #; 1 h. G1:				
	cells)	irrigants,	≅ 100 =, G2: ≅ 90				
	(n = 8)	Ô	treatment with	#, G3: ≅ 7#, G4: ≅				
			calcein AM for	16#, G5: 20#; 24 h.				
	_		1 h, rinse with	G1: 100 =, G2: 80#.				
	C	_	PBS, analyses	G3: \cong 5*, G4: \cong 5*,				
		R		G5: \cong 5*); UMR				
		9		survival (10 min.				
		>		G1: ≅ 85 =, G2: ≅				
				100 =, G3: 0#, G4:				
				\cong 0#, G5: \cong 0#; 1 h.				
	7			G1: 100=, G2: ≅				
				90=, G3: ≅ 5 #, G4:				
				\cong 5#, G5: \cong 5 #;				
				24h. G1: \cong 90 =,				
		5		G2: ≅ 100=, G3: 0#,				
				$G4 < 0#, G5: \cong 3#);$				
				SCAP survival				
		-		(10min. G1: > 100=,				

			$C_{2} \sim 80 - C_{2} \sim 20$				
			$02. \equiv 80 -, 03. 20$				
			#, G4: ≅ 10 #, G5: ≅				
			10 #; 1h. G1: > 100				
	Q		=, G2: 20 #, G3: ≅ 5				
	-		$\#, G4: \cong 18 \#, G5:$				
			20 #; 24h. G1: 100				
	0		=, G2: 0 #, G3: > 0				
	()		$\#,\operatorname{G4:}\cong 5\ \#,\operatorname{G5:}\cong$				
			5 #)				
Alghilan	Human G1: TAP, G2: DTAP,	Dentine	WST-1 assay (%).	Attachment, LDH	n.a.	n.a.	EDTA and DTAP had more
et al.	dentine G3: DAP, G4: CH,	samples	NC: \cong 116 =, PC: \cong	assay (%). PC: \cong			DPSC proliferation
2017	samples PC: 10 min 17%	preparation,	95 =, G1: ≅ 10 #,	22 =, G1: 40 =,			compared to the others,
	and EDTA, NC: untreated	intracanal	G2: ≅ 90 =, G3: ≅	G4: ≅ 28, G3: 15			without difference with
	DPSCs	dressing,	20 #, G4: ≅ 36 *	#, G4: 10 *, NC:			untreated control.
	(n = 10)	control groups		10 *			Moreover, EDTA showed
		treated with					higher cell attachment than
		$200 \ \mu L \ of$					CH and untreated control
	0	water, 7d					
	č	incubation,					
		EDTA and PBS					
		irrigation,					
		DPSC on					
		dentine,					
		incubation for					
		24h and 3 d,					

Galler et	Human Cell viability. G1:	Cell migration:	MTT assay (%). 24	Crystal violet	n.a.	RT-PCR. G1: 1 for	EDTA did not influence
al. 2016	dentine Polystyrene, G2: DW,	cell seeding	h. G1: \cong 140 # G2:	assay (%). 24 h.		mineralization	viability, but increased
	discs G3: EDTA, G4:	onto dentine	$100 = G3 :\cong 95 \ \#$	PC: 100 # G1: 70 #		markers, G2: >	migration and
	and 5.25% NaOCl; Cell	discs, chambers	G4: \cong 10. 48 h. G1:	G2: \cong 30 = G3: \cong		expression	differentiation of DPSCs
	DPSCs migration. PC: αMEM	with aMEM,	≅ 120 = G2: 100 =	$25 = NC: \cong 25; 48$		compared to G1,	
	(n = 9, + 20% FBS, NC:	discs in lower	$G3: \cong 95 \# G4: \cong 15$	h. PC: 10 # G1: ≅		G3: < expression	
	cell α MEM + 1% FBS,	chambers,		75 # G2: ≅ 20 #		compared to G1,	
	viability G1: 10 min 10%	solutions, cells		G3: \cong 30 = NC:		except for	
	/ EDTA, G2: 10 min	removed from		≅30		COL1A1 and	
	migratio 5.25% NaOCl, G3:	the membrane		_200		RUNX2	
	n; n = 3, DW; Cell	after 24 and 48					
	cell differentiation. G1:	h, analysis. Cell					
	different DW, G2: EDTA +	viability: discs					
	iation) saline, G3:	conditioned,					
	polystyrene	cells seeded,					
	0	assays at 24					
		and 48 h. Cell					
		differentiation:					
		cells seeded					
		onto discs,					
		immersion in					
		the solutions					
	7	for 7 d, analysis					

analyses

Gonçalv	Human	G1: PBS with PD, G2:	Tooth slice	n.a.	Fluorescent	n.a.	n.a.	Dentine slices with PD
es et al.	tooth	PBS without PD, G3:	with or not PD,		analysis (Arbitrary			increased cell migration
2016	slices	1 min 10% EDTA	slices		units). G1: \cong 4000			compared to conditioned
	and	with PD, G4: 1 min	conditioned		# G2: 3000 # G3:			slices without PD; however,
	SHEDs	10% EDTA without	with irrigating,		≅ 4000 # G4: 3000			EDTA does not impact
	(n = 10)	PD, G5: 5 d 2.5%	transferred to		# G5: 4000 # G6:			SHED migration
	C	NaOCl with PD, G6: 5	24-well plates,		> 3000 # Control			
		d 2.5% NaOCl	incubation at		1: > 4000 #			
	<u> </u>	without PD, Control 1:	for		Control 2: \cong 3000			
		alpha-MEM with 20%	3 d, cells					
		FBS, Control 2: alpha-	seeded onto					
		MEM with 10% FBS	tooth slice CM,					
	C	σ	migration assay					
Kawam	C2C12	For in vitro analyses,	For	Proliferation, CCK-8	Chemotaxis assay	n.a.	C2C12	EDTA extracts with CM
ura et al.	and	G5: nonextracted, G6:	proliferation:	(absorbance). 2h. G5	(n° cell). 3 h. G5: >		odontoblastic	promoted cell proliferation,
2016	HUVEC	EDTA extracts, G7:	cells cultured in	< 0.1 = G6: < 0.1 =	10 = G6: > 12.5 #		differentiation,	migration, and
	(n = 4,	CM, G8: CM + EDTA	the extracts for	G7: < 0.1 = G8: <	G7: \cong 22.5 # G8:		DSPP, enamelysin	odontoblastic
	cell	extracts, *PC: 1	2, 12, 24, 36,	0.1; 12 h. G5: > 0.1	> 25; 6 h. G5: >		and β -Actin, RT-	differentiation; however,
	attachm	μg/mL VEGF, FGF-β,	and 48 h; for	= G6: > 0.1 # G7: \cong	$12.5 \# G6: \cong 17.5$		PCR. G5 and G7:	EDTA extracts showed no
	ent; n =	and IGF for	adhesion: cells	0.4 = G8: > 0.4; 24	# G7: > 27.5 # G8:		no effect, G6 and	increase cell adhesion and
	3, cell	endothelial	cultured on	h. G5: $\cong 0.2 = G6: >$	≅ 32.5; 9 h. G5: ≅		G8: induced	in endothelial
	different	differentiation	dentine and	$0.2 \# \text{G7:} \cong 0.6 \#$	15 = G6: > 17.5 #		differentiation;	differentiation
	iation)		CM for 48 h;	G8: > 0.6; 36 h. G5:	G7: ≅ 30 # G8: ≅		HUVEC	
		L	for	> 0.3 = G6: > 0.3 #	34; 12 h. G5: ≅ 15		endothelial	
			differentiation:	G7: \cong 0.7 # G8: 0,8;	= G6: > 17.5 # G7:		differentiation,	
			cells cultured in				Immunocytochemi	

			the extracts for	48 h. G5: ≅ 0.4 =	\cong 30 # G8: \cong 35;		stry of VE-	
			28 d and 14 d,	G6: $\cong 0.4 \#$ G7: \cong	15 h. G5: > 15 =		cadherin	
			analyses	$0.8 \# \text{G8}$: $\cong 1.0$	G6: > 17.5 $\#$ G7: >		(fluorescence) G5	
	C				30 # G8: ≅ 35; 18		and PC: not	
					h. G5: > 15 = G6:		mentioned, G6: in	
		_			> 17.5 # G7: > 30		increase, G7 and	
	C)			# G8: >35; 21 h.		G8: induced	
					G5: > 15 = G6: >		differentiation	
	<u> </u>				17.5 # G7: > 30 #			
	_	5			G8: > 35; 24 h.			
	C	-			G5: \cong 15 = G6: \cong			
					17 # G7: ≅ 30 #			
	Ω	0			G8: ≅ 35.			
					Adhesion, Giemsa			
		2			stain (mm ²). G5: \cong			
					35 = G6: ≅ 35 #			
		-			G7: ≅ 56 # G8: ≅			
	C)			$60 \# PC \approx 80$			
Mollash	Stem	G1: 2% CHX, G2:	SCAPs	MTT assay (%). 1	n.a.	n.a.	n.a.	EDTA and the other groups
ahi et al.	cells	17% EDTA, G3:	cultured for 1	min. G1: 60 # G2: ≅				had higher cytotoxicity than
2016	from	Qmix, G4: 5.25%	w, exposure to	$50 = G3: \cong 57 = G4:$				sterile saline and untreated
	immatur	NaOCl, G5: BioPure	the solutions	\cong 57 # G5: \cong 48 #				control
	e third	MTAD Cleanser, G6:	for 1.5 and 15	G6: ≅ 100 =				
	molars	sterile saline, Control:	min, MTT	Control: 100; 5 min.				
	(n =	untreated	assay	G1: 60 = G2: 50 =				

	n.a.)		$G3:\cong 53=G4:\cong$				
			53 # G5: 40 # G6: \cong				
	—		100 = Control: 100;				
	0		15 min. G1: 60 #				
			G2: \cong 41 = G3: \cong				
			$43 = G4: \cong 43 \# G5:$				
	\mathbf{O}		≅ 30 # G6: ≅ 100 =				
	()		Control: 100				
Sadaghi	Dentine G1: 10% EDTA, G2:	Extraction of	n.a.	n.a.	SEM. 2 d. Many cells on	RT-PCR (%).	EDTA-treated dentine
ani et al.	powder, 37 % PHA, G3: 10%	dentine matrix,			conditioned slices. Cell coverage	(RUNX2, 3 d.	showed a thick coverage by
2016	human CA, G4: 25% PA, NC:	conditioned for			against the open dentinal tubules	control: > 1.4 =,	cells with odontoblast-like
	dentine PBS, PC: CH	5 or 10 min,			with G1, G2, G3 and G4	G1: > 1.2 =, G2: >	appearances.
	slices	frozen, rinse			compared with PC; 8 d. G1, G3	1.2 =, G3: 1.2; 21	In DMEs,
	and	with DW,			and PC: uniform/thick	d. control: 1.2 =,	EDTA increased ALP and
	DPSCs	immunogold			coverage by cells \cong odontoblast-	G1: > 1.2 =, G2: >	OPN at 21d. In dentine
	(n = 3)	localization,			like, G2: reduced cells; NC: few	1.2 =, G3: > 0.8 =;	slice, EDTA increased ALP
		DPSC seeded			cells visible	ALP, 3 d. control:	and OPN at 14d.
	0	onto				MC =, G1: MC =,	
	č	conditioned				G2: MC =, G3:	
		dentine,				MC =; 21 d.	
		analysis at 1				control: $\cong 0.25 =$,	
		and 8 d				G1: \cong 0.4 #, G2: >	
						0.4 #, G3: > 0.3 =;	
						OPN, 3 d. control:	
						MC =, G1: MC =,	

						G2: MC =, G3:	
						MC =; 21 d.	
						control: MC =, G1:	
	0					> 0.045 #, G2: >	
						0.025 #, G3: 0.04	
						#). Conditioned	
	()					dentine slices.	
						(ALP, 5 d. NC:	
						MC =, PC: MC =,	
						G1: MC =, G2:	
	Ē					MC =, G3: MC =;	
						14 d. NC: < 0.2 =,	
	Ω					PC: < 0.2 =, G1:	
						0.6 #, G2: > 0.1 =,	
						G3: 0.55 #; OPN, 5	
						d. NC: < 0.01 =,	
						PC: > 0.01 #, G1:	
	0					0.01 =, G2: < 0.01	
	9					=, G3: < 0.01 =; 14	
						d. NC: ≅ 0.03 =,	
						PC: > 0.02 =, G1:	
						$0.05 \ #, G2: \cong 0.04$	
						=, G3: ≅ 0.035 =)	
Shrestha	Human G1: control (no	Dentine discs	n.a.	Attachment,	Fluorescence microscope. G1:	n.a.	EDTA alone promoted
et al.	dentine treatment), G2: 10 min	preparation,		fluorescence. G1:	fibroblast-like morphology, G2		similar cell adherence and

discs	5.25% NaOCl, G3: 2	irrigating		unidirectional	and G5: rounded cells without		morphology to control
and	min 17% EDTA, G4:	protocols, rinse		cells, G2 and G5:	cytoplasmic extensions and less		
SCAPs	10 min NaOCl + 2	with DW,		less cells, G3:	ctytoplasmic F-actin compared		
(n = 6)	min EDTA, G5: 10	nanoparticle		similar cell nº of	with the other groups, G3:		
	min NaOCl + 1 min	conditioning,		G1, G4: increase in	similar morphology of G1 but		
5	EDTA + 1 min NaOCl	SCAPs		n° of SCAP	more flattened, G4: few cells		
C)	cultured on		adherence when	with cytoplasmic extensions		
		discs for 24 h,		nanoparticle			
<u> </u>		staining with		conditioning with			
	D	calcein-AM,		CSnp or Dex-CSnp			
		analyses					
Human	G1: 500 mg DAP	Dentine discs	WST-1 assay (%).	Attachment, LDH	n.a.	n.a.	10 min EDTA may have
dentine	metronidazole and	preparation,	G1: 0 = G2: 20 #	assay (%). G1: \cong 7			positive effects cell
discs	ciprofloxacin), G2:	DAP	G3: \cong 65 = G4: \cong	$\#$ G2: \cong 32 $\#$ G3:			attachment, but not
and	500 mg DAP + 10 min	medicated, 1w	$77 = G5$: $\cong 100 =$	≅ 10 # G4: 35 =			influenced the proliferation
DPSCs	17% EDTA, G3: 1 mg	incubation,	control: 85	G5: ≅ 25 =			
(n = 4)	DAP, G4: 1 mg DAP	DAP-samples		control: \cong 35			
(+10 min 17% EDTA,	rinsed with					
	G5: 10 min 17%	DW, EDTA,					
	EDTA, Control: no	DPSCs seeded					
-	treatment	on discs, LDH					
_		assay at 24 h,					
		assay at 3 d					
Human	G1: 30 min 5.25%	Flow	MTT assay (%).	Attachment, RT-	SEM analysis. 7 d. G1: DPSCs	RT-PCR. DMP-1.	EDTA did not influence
dentine	NaOCl, G2: 30 min	cytometric	Control: 100 # G1:	PCR. FN-1. G2: 1	not attached to the dentine,	Control: 1 # G2: \cong	cell viability, but additional
discs	5.25% NaOCl +7 d 1	analysis,	$\cong 2 = G2$: $\cong 17 =$	#, G3: ≅ 1.7 =,	G2/G3/G4/G5: elongated cells		treatment with EDTA after
	discs and SCAPs (n = 6) Human dentine discs and DPSCs (n = 4) Human dentine	discs 5.25% NaOCl, G3: 2andmin 17% EDTA, G4:SCAPs10 min NaOCl + 2 $(n = 6)$ min EDTA, G5: 10min NaOCl + 1 minEDTA + 1 min NaOCl OOOHuman G1: 500 mg DAPdentinedentine(metronidazole anddiscsciprofloxacin), G2:and 500 mg DAP + 10 minDPSCs17% EDTA, G3: 1 mg $(n = 4)$ DAP, G4: 1 mg DAP+10 min 17% EDTA,G5: 10 min 17%EDTA, Control: notreatmentHumanG1: 30 min 5.25%dentineNaOCl, G2: 30 mindiscs5.25% NaOCl +7 d 1	discs5.25% NaOCl, G3: 2irrigatingandmin 17% EDTA, G4:protocols, rinseSCAPs10 min NaOCl + 2with DW,(n = 6)min EDTA, G5: 10nanoparticlemin NaOCl + 1 minconditioning,EDTA + 1 min NaOClSCAPscultured ondiscs for 24 h,staining withcalcein-AM,analysesDentine discsHumanG1: 500 mg DAPdentineciprofloxacin), G2:and500 mg DAP + 10 minDPSCs17% EDTA, G3: 1 mgincubation,DAP,G5: 10 min 17%DAP-samplesrinsed withDAP-samplesfuretronilar for min 17% EDTA, Control: noDPSCs seededon discs, LDHassay at 24 h,assay at 24 h,assay at 3 dHumanG1: 30 min 5.25%HumanG1: 30 min 5.25%KentineNaOCl, G2: 30 mincytometricanalysis,	discs 5.25% NaOCl, G3: 2 irrigating and min 17% EDTA, G4: protocols, rinse SCAPs 10 min NaOCl + 2 with DW, (n = 6) min EDTA, G5: 10 nanoparticle min NaOCl + 1 min conditioning, EDTA + 1 min NaOCl SCAPs cultured on discs for 24 h, staining with calcein-AM, analyses Human G1: 500 mg DAP Dentine discs preparation, discs ciprofloxacin), G2: DAP G3: \approx 65 = G4: \approx and 500 mg DAP + 10 min medicated, 1w DPSCs 17% EDTA, G3: 1 mg incubation, control: 85 (n = 4) DAP, G4: 1 mg DAP DAP-samples 10 min 17% EDTA, control: no DPSCs seeded treatment on discs, LDH assay at 24 h, assay at 24 h, assay at 3 d Human G1: 30 min 5.25% Flow MTT assay (%).	discs5.25% NaOCI, G3: 2irrigatingunidirectionalandmin 17% EDTA, G4:protocols, rinsecells, G2 and G5:SCAPs10 min NaOCI + 2with DW,less cells, G3:(n = 6)nin EDTA, G5: 10nanoparticlesimilar cell n° ofmin NaOCI + 1 minconditioning,G1, G4: increase inEDTA + 1 min NaOCISCAPsn° of SCAPcultured ondiscs for 24 h,staining withcalcein-AM,andysesCSnp or Dex-CSnpHumanG1: 500 mg DAPDentine discsWST-1 assay (%).dentinemetronidazole andpreparation,G1: 0 = G2: 20 #discsreiprofloxacin), G2:DAPG3: $\cong 65 = G4: \cong$ # G2: $\cong 32 \# G3:$ and500 mg DAP + 10 minmedicated, 1w $77 = G5: \cong 100 =$ $\cong 10 \# G4: 35 =$ control: 85G5: $\cong 25 =$ control: 85G5: $\cong 25 =$ control: 85(n = 4)DAP, G4: 1 mg DAPDAP-samplescontrol: 85G5: $\cong 25 =$ (n = 4)DAP, G4: 1 mg DAPDAP-samplescontrol: 85G5: $\cong 25 =$ (n = 4)DAP, G4: 1 mg DAPDAP-samplescontrol: 85G5: $\cong 25 =$ (n = 4)DAP, G4: 1 mg DAPDPSCs seededtreatmenton discs, LDHassay at 3 dassay at 3 dassay at 3 dAttachment, RT-dentineNaOCI, G2: 30 mincytometricControl: 100 # G1:PCR. FN-1. G2: 1discs5.25% NaOCI +7 d 1analysis, $\cong 2 = G2: \cong 17 =$ #, G3: $\cong 1.7 =$,	discs5.25% NaOCl, G3: 2irrigatingunidirectionaland G5: rounded cells withoutandmin 17% EDTA, G4:protocols, rinsecells, G2 and G5:cytoplasmic extensions and lessSCAPs10 min NaOCl + 2with DW,less cells, G3:ctytoplasmic extensions and less(n = 6)min EDTA, G5: 10nanoparticlesimilar cell n° ofwith the other groups, G3:min NaOCl + 1 minconditioning,G1, G4: increase insimilar morphology of G1 butEDTA + 1 min NaOClSCAPsadherence whenmore flattened, G4: few cellsdiscs for 24 h,staining withconditioning withconditioning withconditioning withclarentcalcured onadherence whenmanoparticlewith cytoplasmic extensionsdiscs for 24 h,analysesanalysesadherence whenmore flattened, G4: few cellsHumanG1: 500 mg DAPDentine discsWST-1 assay (%).Attachment, LDHn.a.discsciprofloxacin), G2:DAPG3: $\cong 65 = G4: \cong$ # G2: $\cong 32 \# G3:$ n.a.discsciprofloxacin), G2:DAPG3: $\cong 65 = G4: \cong$ # G2: $\cong 23 \# G3:$ control: $\boxtimes 35$ discsciprofloxacin), G2:DAPDAP-samplescontrol: 85G5: $\cong 25 =$ control: $\boxtimes 35$ (n = 4)DAP, G4: 1 mg DAPDAP-samplescontrol: 85G5: $\cong 25 =$ control: $\boxtimes 35$ (10 min 17% EDTA,preseededassay at 3 dHumanG1: 30 min 5.25%FlowMTT assay (%).Attachment, RT- PCR. FN-1. G2: 1SEM analy	discs5.25% NaOCI, G3: 2irrigatingunidirectionaland G5: rounded cells withoutandmin 17% EDTA, G4:protocols, rinsecells, G2 and G5:cytoplasmic extensions and lessSCAPs10 min NaOCI + 2with DW,less cells, G3:ctytoplasmic extensions and less(n = 6min EDTA, G5: 10nanoparticlesimilar cell nº ofwith the other groups, G3:EDTA + 1 min NaOCISCAPsnanoparticlesimilar cell nº ofwith cytoplasmic extensionsEDTA + 1 min NaOCISCAPsnore flattened, G4: few cellsadherence whenwith cytoplasmic extensionsG1: 500 mg DAPcultured ondiscs for 24 h,nanoparticleconditioning withcalcein-AM,calcein-AM,CSnp or Dex-CSnpn.a.n.a.discecipfoftoxacin), G2:DAPG3: $\approx 65 = G4: \cong$ # $4G2: \cong 32 # G3:$ more flattened, 04: tpcpreparation,G3: $\approx 65 = G4: \cong$ # $4G2: \cong 32 # G3:$ (n = 4)DAP, G4: 1 mg DAPDentine discs $G5: \cong 100 =$ $\approx 10 # G4: 35 =$ of 00 mg DAP + 10 minmedicated, lw $77 = G5: \cong 100 =$ $\approx 10 # G4: 35 =$ control: $\cong 35$ of 10 min 17% EDTA,rinsed withcontrol: 85G5: $\cong 25 =$ control: $\cong 35$ (n = 4)DAP, G4: 1 mg DAPDAP-samplescontrol: $10 # G4: 35 =$ control: $\cong 35$ (n = 4)DAP, G4: 1 mg DAPDAP-samplescontrol: $12 = 35$ control: $12 = 35$ (n = 4)DAP, G4: 1 mg DAPDAP-samplescontrol: $12 = 35$ control: $12 = 35$ (

	and	mg/mL CH + PBS,	dentine slices	G3: \cong 22 = G4: 20 =	G4: \cong 2 =, G5: \cong	with	$1.2 \# \text{G3:} \cong 1.5 \#$	NaOCl and CH enhanced
	DPSCs	G3: 30 min 5.25%	preparation,	G5: ≅ 22	2 =; SPP-1. G2: 1	longer cytoplasmic processes,	G4: \cong 2.3 = G5: \cong	cell attachment and
	(n =	NaOCl +7 d 1 mg/mL	cells seeded		#, G3: ≅ 1.4 =,	G5: dentine overlapped by	1.8; DSPP-1.	differentiation
	250)	CH +3 min 17%	onto dentine,		G4: approx. 1.3 =,	proliferated cell layers	Control: $1 = G2$: \cong	
		EDTA, G4: 30 min	samples		G5: ≅ 1.8		1.2 # G3: ≅ 1.4 #	
	5	5.25% NaOCl +7 d 1	cultured for 7				G4: ≅1.7 =G5: ≅2	
	C	mg/mL CH +3 min	d, viability and					
	i	17% EDTA +24 h	morphology					
	4	culture media, G5: 30	assays, cells					
	_	min 5.25% NaOCl +7	cultured for 4					
	C	d 1 mg/mL CH	w for cell					
		+instrumentation +3	differentiation					
	C	min 17% EDTA,	assay					
		control: cell culture						
Martin	Human	G1: 10 min 0,5%	Preparation of	Luminescence	n.a.	n.a.	RT-PCR (DSPP	EDTA increased SCAPs
et al.	root	NaOCl + 5 min saline,	root segments,	$(x10^3)$. NC: 38 =,			expression). NC:	survival and DSPP
2014	canals	G2: 10 min 0,5%	scaffold	PC: \cong 52 #, G1: \cong			$1.0 =, PC: \cong 2.2 \#,$	expression
	and	NaOCl + 5 min	preparation,	23 =, G2: ≅ 38 #,			G3: \cong 1.2 =, G4:	
	SCAPs	EDTA, G3: 10 min	irrigation	G3: ≅ 22 =, G4: ≅			$\cong 1.8 \#, G5 \cong 0.5$	
	(n = 9 -	1.5% NaOCl + 5 min	protocols,	42 #, G5: ≅ 23 =,			=, G6: > 1.2 #, G7:	
	12)	saline, G4: 10 min	SCAPs with	G6: ≅ 39 #, G7: ≅			0 =, G8: ≅ 0.4 #	
	1.5% NaOCl + 5 min		hyaluronic	$5.5 = .68 \approx 30 \#$				
		EDTA, G5: 10 min	acid-based	,				
		3% NaOCl + 5 min	scaffold seeded					
		saline, G6: 10 min 3%	into the canals,					
		NaOCl + 5 min	samples					

		EDTA, G7: 10 min	cultured for 7					
		6% NaOCl + 10 mL	d, analyses					
		5% ST+ 5 min saline,						
	C	G8: 10 min 6%						
		NaOCl + 5 min						
	<u> </u>	EDTA, PC: EDTA,						
	C	NC: saline						
Pang et	Human	Cell attachment, G1:	Attachment:	n.a.	Attachment, cell	n.a.	RT-PCR. DMP-1.	EDTA-treated dentine
al. 2014	dentine	17% EDTA, control:	dentine discs		density. G1: \cong 2.4		NC: $1 = ND$: $\cong 1.2$	promoted cell attachment
	discs	no treatment; Cell	preparation,		# control: \cong 1;		= UED: $\cong 1 \# ED$:	and odontoblastic/osteo-
	and	differentiation/	cells seeded on		RT-PCR (FN-1		\cong 3.1 # PC: \cong 5.2;	blastic differentiation
	DPSCs	mineralization, NC:	dentine slices,		expression). G1: \cong		DSPP. PC: 1 =	
	(n = 20)	proliferation medium,	cultured for 3		3.1 # control: \cong 1;		ND: $1 = UED: \cong 1$	
		ND: untreated dentine	d, analyses;		SEM analysis. G1:		# ED: 3 # PC: ≅	
		+proliferation	Differentiation		longer cytoplasmic		4.3: ALP. NC: 1 =	
		medium, ED:	/mineralization:		processes with		ND: $1 = \text{UED}$: \cong	
	<u> </u>	proliferation medium	cells placed on		many granules		$13 \# \text{FD} \simeq 18 \#$	
	C	+EDTA-treated	dentine for 21		compared to		$PC \simeq 3.2 \cdot OCN$	
		dentine, UED:	d, dentine		control		$1C_{1} = 5.2, 0C_{1}$	
		proliferation medium	slices				NC: $I = ND$: $I =$	
	-	+ upper chamber	replenished				$UED: \cong I = ED: \cong$	
	I	EDTA-treated dentine,	every 3d,				$1.1 \# PC: \cong 2.7$	
		PC: differentiation	analyses					
		medium						
Huang	Human	Control: 1 min 5 mL	Root slices	n.a.	Attachment,	Fluorescence microscope.	n.a.	EDTA and MTAD
et al.	single- I	DW, G1: 1 min 5.25%	preparation,		fluorescence	Control and G1: round shape		significantly increased

2011	rooted	NaOCl, G2: 1 min	irrigating		microscope	cells, G2 and G3: spindle-shaped		HDPC attachment with
	premola	17% EDTA, G3: 1	protocols (5		(cell/field).	cells		spindle-shaped cells
	rs and	min MTAD	mL), DW rinse,		Control: $\cong 1.6 =$			
	HDPSC		cells onto the		$\mathrm{G1:}\cong 1.6\#\mathrm{G2:}\cong$			
	s (n = 5)		root canal,		6 # G3: 11.4			
	5		incubation for					
	C)	72 h, samples					
		0	dyed, analysis					
Ring et	Human	G1: 6% NaOCl, G2:	Teeth	LDH assay (560	Attachment, SEM	SEM analysis. G1/G2/G3 and	n.a.	EDTA did not influence
al. 2008	root	6% NaOCl +15 s	preparation,	nm). G1: ≅ 0.19 =	analysis (cell	G4: round to oblong-shaped		cytotoxicity and cell
	canals,	EDTA +6% NaOCl,	Protaper and	G2: 0.15 = G3: ≅	count). G1: \cong 2.7 #	cells, G5/G6/G7/G8 and G9:		adherence
	SHEDs	G3: 6% NaOCl +5	ProFile	$0.08 = G4: \cong 0.08 \ \text{\#}$	G2: \cong 3.2 # G3:	oblong to flattened cells		
	and	min MTAD +15 s	instrumentation	G5: ≅ 0.025 = G6: >	$1.5 \#, G4: \cong 2.6 \#$			
	L929	MTAD, G4: 2% CHX	, irrigation,	0.025 = G7: 0.025 =	G5: ≅ 5.7 # G6: ≅			
	(n = 30,	+15 s EDTA +2%	cells seed into	G8: < 0.025 = G9: <	4.2 # G7: ≅ 5.4 =			
	experim	CHX, G5:	root canals,	0.025	$G8: \cong 5 = G9: \cong$			
	ental	AquatineEC +15 s	samples		5.5			
	groups;	EDTA +AquatineEC,	cultured for 7					
	n = 8,	G6: MCJ +15 s EDTA	d, analyses at 2,					
	control)	+MCJ, G7: saline	4 and 7 d					
		+DPSCs, G9: saline						
		+15 s EDTA +saline						
		+DPSCs, G10: saline						
		+15 s EDTA +saline						
		+L929 cells, control:						
		saline without DPSCs						

The simbol * indicates additional group per analysis; = indicates no significant differences between/among groups; # indicates sign

n.a.: not applicable, n: number of specimens, G: group, s: seconds, min: minutes, h: hour, d: days, mm^{2:} square millimeter, °C: degree Celsius, w: week, mg: milligram, nm: nanometre, mL: milliliter, µL: microliter, µg: micrograms, j/cm2: joules per square centimetre, NaOCI: sodium hypochlorite, EDTA: ethylenediaminetetraacetic acid, DPSCs: dental pulp stem cells, NBs: nanobubble water, PBS: sterile phosphate-buffered saline, WST-1: water soluble tetrazolium salts, CLSM: confocal laser scanning microscope, NC: negative control, PC: positive control, adMSCs: adipose-derived mesenchymal stem cells, DW: distilled water, CA: citric acid, IP6: phytic acid, PHA: phosphoric acid, SEM: scanning electron microscope, TEM: transmission electron microscopy, BAC: benzalkonium chloride, LDH: lactate dehydrogenase activity, PDT: photodynamic therapy, SCAPs: stem cells of the apical papilla, a-MEM: alpha-minimum essential medium, MSCs: mesenchymal stem cells, DPCs: dental pulp cells, α-tubulin: alpha tubulin, SDF-1α; stromal cell-derived factor 1 α, siCXCR4; silencing CXCR4, CCK-8; Cell Counting Kit-8, HEDP: etidronic acid, FBS: fetal bovine serum, GaAlAs: Gallium-Aluminum-Arsenid, OW: ozonated water, SHEDs: stem cells from human exfoliated deciduous teeth, HDPSCs: human dental pulp stem cells, HUVEC: human umbilical vein endothelial cells, CHX: chlorhexidine, MDP: mouse dental papilla, RT-PCR: real-time polymerase chain reaction, APCs: apical papilla cells, NI: needle irrigation, NSS: normal saline solution, EA: EndoActivator, PUI: passive ultrassonic irrigation, USA: ultrasonic activation, CH: calcium hidroxide paste, PDL: human periodontal ligament, GM: growth culture medium, UMR-106: rat osteosarcoma cells, TAP: triple antibiotic paste (ciprofloxacin, metronidazole and minocycline), DTAP: diluted triple antibiotic paste, DAP: double antibiotic paste (ciprofloxacin and metronidazole), PD: predentine layer, C2C12: mouse embryonic muscle myoblast cells, CM: conditioned medium, ST: sodium thiosulfate, MTAD: mixture tetracycline citric acid and detergent, PA: polyacrylic acid, COL1A1: collagen type I, DSPP: dentine sialophosphoprotein, RUNX2: runt-related transcription factor 2, DMP: dentine matrix protein extracts, DMP-1: dentine matrix acidic phosphoprotein-1, ALP: alkaline phosphatase, OCN: osteocalcin, FN-1: fibronectin-1, HDPC: human dental pulp cell, MCJ: morinda citrifolia juice, AquatineEC: aquatine endodontic cleanser, SPP-1: secreted phosphoprotein 1, VEGF: vascular endothelial growth factor, FGF-b: fibroblast growth factors beta, MC: minimal concentration or zero, OPN: Osteopontin, DME: dentine matrix extract, IGF: insulin-like growth factor.

Auth

Author	Experi mental model (n)	Groups	Experi- mental protocol	Tissue inflammation	Tissues in- growth	Increase in the root length / root thickness	Decrease in apical diameter	Minerali- zation/ differen- tiation	Bone or root resorp- tion	Blood clot characterization	Outcomes
Taweewatt	Human C	G1: 5 min	Roots	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	SEM. G1 and G2: dense	1 and 5 min
anapaisan	mandi- S	SS, G2: 1	prepara-							meshwork of fibrins with	EDTA alone
et al. 2019	bular	min 17%	tion,							abundant biconcave	decreased BC
	premo-	EDTA +	irrigations,							erythrocytes, G3:	formation;
	lars S	SS (E1N),	specimens							meshwork of fibrins with	EDTA with
	(n = 7), C	G3: 5 min	split							biconcave and shrinkage	SS final
	in vitro	17%	vertically							erythrocytes, G4 and G5: <	flushing had
	U	EDTA +	in half, BC							and shorter fibrins than G1	results similar
	S	SS (E5N),	sample							with inactivated platelets.	to the group
		G4: 1 min	collection							Fibrin density. SEM (nº/10	that used only
		17%	spread on							µm). Coronal. G1: 11.60	SS.
		EDTA	specimens,							=, G2: 8.99 =, G3: 8.34 =,	
	(1	E1), G5: 5	analyses							G4: 0.22 #, G5: 0.17 #;	
		min 17%								Middle. G1: 12.38 =, G2:	
		EDTA								9.51 =, G3: 9.13 =, G4:	
		(E5)								0.22 #, G5: 0.23 #; Apical.	
										G1: 13.33 =, G2: 7.69 =,	
										G3: 11.14 =, G4: 0.23 #,	
										G5: 0.30 #	

Table 3. The effects of EDTA on blood clot, tissue healing and regeneration of immature teeth models

El Ashry et	Premo-	G1: BC,	PA lesion	HE (scores). 2	HE	RGe (mm).	RGe (mm).	HE (scores). 2	HE (%). 2	n.a.	The use of
al. 2016	lars of	G2: BC +	induction,	w. G1: 2.1=,	(scores). 2	Increase in	2 w. G1:	w. G1: 0.4 =,	w. G1: 75		EDTA no
	mongre	collagen,	disinfect-	G2: 2.4=, G3:	w. G1: 0.6	root length (2	2.9 =, G2:	G2: 0.6 =, G3:	=, G2: 83.3		influenced the
	l dogs	G3: BC +	tion with	2.3=, G4:	=, G2: 0.7	w. G1: 4.9 =,	3.6 =, G3:	0.6 =, G4: 0.7	#, G3: 75		inflammation,
	(n =	2 min 17%	2.6%	2.6=, G5:	=, G3: 0.9	G2: 5.4 =, G3:	3.1 =, G4:	=, G5: 0.3 =,	=, G4: 83.3		the root length
	48), In	EDTA,	NaOCl,	1.4#, G6: 1.6#,	=, G4: 1 =,	5.1 =, G4: 5.7	3.8 =, G5:	G6: 0.4 =, PC:	#, G5: 75		or thickness,
	vivo	G4: BC +	intracanal	PC: 2.7=, NC:	G5: 0.4 =,	=, G5: 4.8 =,	2.7 =, G6:	0 =, NC: NM;	=, G6: 83.3		apical
	()	collagen +	dressing	0#; 6 w. G1:	G6: 0.6 =,	G6: 5.3 =, PC:	3.5 =, PC:	6 w. G1: 0.7	#, PC: 83.3		diameter,
		17%	with TAP,	1.3=, G2:	PC: 0.3 =,	0 #, NC: 6.2	0 #, NC:	=, G2: 0.9 =,	#, NC: 0 #;		mineralization
		EDTA,	coronal	1.6=, G3:	NC: NM; 6	=; 6 w. G1:	6.2 #; 6 w.	G3: 0.9 =, G4:	6 w. G1:		and bone
		G5: BC +	seal for 3	1.4=, G4:	w. G1: 1.3	13.9 =, G2:	G1: 16.4 =,	1 =, G5: 0.6 =,	41.6 =, G2:		resorption;
		MTAD,	w, TAP	1.7=, G5:	=, G2: 1.4	14.6 =, G3: 14	G2: 17.3 =,	G6: 0.7 =, PC:	58.3 #, G3:		EDTA
	CU	G6: BC +	removed	0.9=, G6: 1=,	=, G3: 1.9	=, G4: 14.8 =,	G3: 16.5 =,	0 =, NC: NM;	41.6 =, G4:		allowed
		collagen +	by NaOCl,	PC: 2.9#, NC:	#, G4: 2 #,	G5: 13.7 =,	G4: 17.6 =,	12 w. G1: 1.3	58.3 #, G5:		significant
	\leq	MTAD,	treatment	0#; 12 w. G1:	G5: 1 =,	G6: 14.5 =,	G5: 16.2 =,	=, G2: 1.4 =,	41.6 =, G6:		tissue in-
	~	PC:	protocols,	0.4=, G2:	G6: 1.1 =,	PC: 0 #, NC:	G6: 16.9 =,	G3: 1.4 =, G4:	58.3 #, PC:		growth in the
		exposed	evaluations	0.7=, G3:	PC: 0.9 =,	15.5 =; 12 w.	PC: 0 #,	1.6 =, G5: 1.1	100 #, NC:		pulp space at 6
		teeth, NC:	at 2, 6 and	0.6=, G4:	NC: NM;	G1: 16.3 =,	NC: 20.5	=, G6: 1.3 =,	0 #; 12 w.		and 12 w.
		untouched	12 w	0.9=, G5:	12 w. G1:	G2: 17.1 =,	#; 12 w.	PC: 0 =, NC:	G1: 16.6 =,		
	<u> </u>	teeth		0.5=, G6:	1.9 =, G2:	G3: 16.5 =,	G1: 30.2 =,	NM	G2: 25 #,		
				0.6=, PC: 3#,	2 =, G3:	G4: 17.7 =,	G2: 31.9 =,		G3: 16.6 =,		
				NC: 0#; (cell	2.6 #, G4:	G5: 16.1 =,	G3: 30.8 =,		G4: 25 #,		
				count) 2 w.	2.7 #, G5:	G6: 16.9 =,	G4: 32.2 =,		G5: 16.6 =,		
				G1: 25=, G2:	1.6 =, G6:	PC: $0 \pm 0 $ #,	G5: 29.8 =,		G6: 25 #,		

	25.8=, G3:	1.7 #, PC:	NC: 19.7 =);	G6: 31.5 =,	PC: 100 #,	
	25.5=, G4:	0.9 #, NC:	Increase in	PC: 0 #,	NC: 0 #	
+	26=, G5: 20#,	NM	root thickness	NC: 47 #;		
	G6: 20.9#, PC:		(2 w. G1: 4 =,	HE (%). 2		
=	28.4=, NC:		G2: 4.8 =,	w. G1: 0 =,		
	2.5#; 6 w. G1:		G3: 4.7 =, G4:	G2: 0 =,		
0	16.4=, G2:		5.3 =, G5: 3.9	G3: 0 =,		
(0)	16.9=, G3:		=, G6: 4.5 =,	G4: 0 =,		
	16.6=, G4:		PC: 0 #, NC:	G5: 0 =,		
	17.1=, G5:		6.1 =; 6 w.	G6: 0 =,		
	14.9=, G6:		G1: 11.4 =,	PC: 0 =,		
a	15.6=, PC:		G2: 12.1 =,	NC: 0 =; 6		
\mathbf{O}	36.7#, NC:		G3: 11.6 =,	w. G1:		
	2.3#; 12 w.		G4: 12.3 =,	33.3 =, G2:		
\leq	G1: 10.2=,		G5: 11.2 =,	41.7 =, G3:		
	G2: 10.7=,		G6: 11.7 =,	33.3 =, G4:		
	G3: 10.4=,		PC: 0 #, NC:	41.7 =, G5:		
0	G4: 10.9=,		12.4 =; 12 w.	33.3 =, G6:		
	G5: 9.2=, G6:		G1: 13.4 =,	41.7 =, PC:		
	9.7=, PC:		G2: 14.2 =,	0 =, NC:		
<u> </u>	38.9#, NC:		G3: 13.6 =,	50 =; 12 w.		
	2.1#		G4: 14.4 =,	G1: 50 =,		
			G5: 12.7 =,	G2: 58.3 =,		
			G6: 13.8 =,	G3: 50 =,		

				PC: 0 # NC:	G4: 58 3 =	
				15.8 -)	G5: 50 -	
				15.0 -)	G5: 50 -, C6: 58 3 -	
	· O				00. 38.3 –,	
		-			PC: 0 =,	
					NC: 58.3 =	
Kawamura	Porcine	P1.	P1 and P2.	P1.	P1. Hoechst	P1 (Cell with
et al. 2016	roots,	Regenera-	Cell	Regenerati	33342+ cells	collagen).
	immu-	tive /	culture,	ve area,	(FLC/mm^2) .	EDTA had
	nodefi-	angiogenes	preparation	(%). G1:	G1: \cong 3.000 #,	less
	ciency	is area, cell	of CM	≅80 # G2:	G2: ≅ 2.500	regenerative/
	mice	differentia-	(P2), roots	70 = G3: ≅	=, G3: ≅	angiogenesis
	and	tion. G1:	preparation	63 # G4: ≅	2.000 #, G4: >	area and cells;
	MDPS	nonextrac-	, teeth	7; RECA1	1.750 #; ODD	fewer ODD
	С	ted tooth,	deminerali	IMS (%)	(ENM+ cells).	and
	(n = 4),	G2: HCl-	zed with	G1: ≅ 16 #	G1: > 120 =,	endothelial
	In vivo	extracted	the	G2: 10 =	G2: \cong 120 =,	differentiation.
		tooth, G3:	solutions	G3: 10 #	G3: ≅ 120 =.	However, it
		GdnHCl-	for 7 d,	G4: \cong 3;	$G4 \simeq 20 \#$	had more
		extracted	washing	PI ΔΡ-1	$\mathbf{P}_{2} \mathbf{P}_{2} \mathbf{P}_{2} \mathbf{P}_{3} \mathbf{P}_{3} $	periodontal
		tooth, G4:	with PBS,	(%) C1: 10	$(\mathbf{T}) \mathbf{V} (\mathbf{r} \in \mathbf{H})$	ligament cells.
		EDTA-	MDPSCs		(EINM+ cells).	P2 (cells with
		extracted	were	= 62: 15 #	$G5: \cong 140 =$	CM or not).
		tooth.	injected	G3: ≅ 17 #	G8: < 140 #	EDTA did not
		$P2 FNM_{\perp}$	$G4: \cong 5$	G4: \cong 58;	G7: > 100 #	influence
		1 2. 21 111	into the	P2. PLAP-	G6: MC =	minuciee

		cells	teeth with		1(%) G5 [·]			autocl · MC			periodontal
		DIAD 1	collagen		~ 12 #						ligament cells
		1 LAI -1,			$= 12 \pi$						
		and	(P1) and		autocl.:						EDIA
		angiogenic	with CM		MC = G6:						allowed higher
		potential.	or not (P2),		MC # G7:						ODD and
		G5:	teeth		> 5 = G8:						endothelial
	\mathbf{O}	nonextrac-	sealed,		>6 # G9:						differentiation
	$\mathbf{\Omega}$	ted, G6:	subcuta-]	MC # G10:						when
		EDTA	neous		> 5 =;						associated
		extracts,	implanta-		IHC,						with CM.
		G7: CM,	tion,		PLAP-1						
		G8: CM +	analyses at		(%) G5: ≅						
	CU	EDTA	28 d		15#autocl.:						
		extracts,			$\cong 1 = G6:$						
	\leq	G9:			≅ 1 # G7:						
	~	GdnHCl,			≅ 25 # G8:						
		G10: CM			$\sim 1c$						
		+ GdnHCl,			= 10						
		NC:									
		autoclaved									
	+	teeth									
Yamauchi	Double	G1: BC,	PA lesion	n.a.	n.a.	RGe (%). G1:	HE. G2	HMM (%).	Periapi-cal	n.a.	EDTA did not
et al. 2011	-rooted	G2: BC +	induction,			64.2 =, G2:	and G4:	DAMT. G1: ≅	radiolu-		influence the
	canine	CCS, G3:	2.5%			87.5 #, G3:	most	5=, G2: > 10=,	cencies		root

premo-	BC + 2	NaOCl	54.2 =, G4:	specimens	G3: > 2.5 =,	impro-	thickening and
lars	min 17%	irrigation,	83.3 #	had apical	G4: > 12.5 =;	vement.	periapical
(n =	EDTA,	TAP, IRM		closure,	bony islands.	RGe (%).	radiolucencies
12),	G4: BC +	for 2 w;		some	G1: > 5 =, G2:	G1: 56.52	; EDTA
In vivo	CCS +	2.5%		showed no	≅ 14=, G3: 5	=, G2: 79.2	allowed higher
	EDTA,	NaOCl and		complete	=, G4: > 17=;	#, G3: 58.3	apical closure
\mathbf{O}	PC:	saline		apical	total. G1: > 10	=, G4:	and
()	infected	irrigations,		closure and	=, G2: ≅ 25#,	87.5#	mineralization
	only, NC:	protocols,		forming	G3:>7.5=,		
	untreated	BC		bony	G4: ≅ 32 #		
		inducted,		islands			
		sealing,					
		3,5					
\sim		months,					
		analysis					

The symbol # indicates significant differences between/among groups; \cong indicates "approximately"; > indicates "greater than"; < indicates "less than".

n.a.: not applicable, G: group, PC: positive control, NC: negative control, n: number of specimens, P1: part one, P2: part two, w: week, d: days, min: minutes, mm: millimeter, um: micrometer, °C: degree Celsius, EDTA: ethylenediaminetetraacetic acid, NaOCl: sodium hypochlorite, NSS: normal saline solution, RGe: radiographic evaluation, FLC: fluorescence, ODD: odontoblastic differentiation, PA: periapical, BC: blood clot, SEM: scanning electron microscope, HMM: histomorphometry, IHC: immunohistochemistry, HE: hematoxylin and eosin, TAP: triple antibiotic paste (ciprofloxacin, metronidazole and minocycline), MTAD: mixture tetracycline citric acid and detergent, CCS: cross-linked type I collagen scaffold, IRM: intermediate restorative material, DAMT: dentine-associated mineralized tissue, IMS: immunostaining, MC: minimal concentration or zero, NM: not mentioned, MDPSCs: mobilized dental pulp stem cells, ENM: enamelysin, PLAP-1: periodontal ligament-associated protein 1, GdnHCl: guaridine hydrochloride, HCl: hydrochloric acid, PBS: sterile phosphate-buffered saline, CM: conditioned medium.

