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Key Points: 

● Enhanced integrated water vapor transport in MERRA-2 leads to increased detection of 

atmospheric rivers in algorithms with fixed thresholds relative to JRA-55 and ERA5 

● Algorithms that use relative thresholds have better agreement between reanalyses than 

those with absolute thresholds 

● Algorithms result in conflicting seasonal cycles of the average hemispheric area covered 

by atmospheric rivers  



A
ut

ho
r 

M
an

us
cr

ip
t 

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

Abstract 

Atmospheric rivers, or long but narrow regions of enhanced water vapor transport, are an important 

component of the hydrologic cycle as they are responsible for much of the poleward transport of 

water vapor and result in precipitation, sometimes extreme in intensity. Despite their importance, 

much uncertainty remains in the detection of atmospheric rivers in large datasets such as reanalyses 

and century scale climate simulations. To understand this uncertainty, the Atmospheric River 

Tracking Method Intercomparison Project (ARTMIP) developed tiered experiments, including the 

Tier 2 Reanalysis Intercomparison that is presented here. Eleven detection algorithms submitted 

hourly tags--binary fields indicating the presence or absence of atmospheric rivers--of detected 

atmospheric rivers in the Modern Era Retrospective Analysis for Research and Applications, 

version 2 (MERRA-2) and European Centre for Medium-Range Weather Forecasts’ Reanalysis 

Version 5 (ERA5) as well as six-hourly tags in the Japanese 55-year Reanalysis (JRA-55). Due to 

a higher climatological mean for integrated water vapor transport in MERRA-2, atmospheric rivers 

were detected more frequently relative to the other two reanalyses, particularly in algorithms that 

use a fixed threshold for water vapor transport. The finer horizontal resolution of ERA5 resulted 

in narrower atmospheric rivers and an ability to detect atmospheric rivers along resolved 

coastlines. The fraction of hemispheric area covered by ARs varies throughout the year in all three 

reanalyses, with different atmospheric river detection tools having different seasonal cycles. 

1 Introduction 

Atmospheric Rivers (ARs), defined by the AMS Glossary of Meteorology as “a long, 

narrow, and transient corridor of strong horizontal water vapor transport that is typically associated 

with a low-level jet stream ahead of the cold front of an extratropical cyclone” (Ralph et al., 2018), 

play a large role in the Earth’s hydrologic cycle by accounting for nearly all of the poleward 
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transport of water vapor (Zhu and Newell, 1998). ARs can range from being beneficial, relieving 

droughts and providing essential freshwater resources (Dettinger et al., 2011; Dettinger, 2013), to 

having catastrophic societal impacts through extreme precipitation events, flooding, and landslides 

(Ralph et al., 2006; Guan et al., 2010; Neiman et al., 2011; Collow et al., 2020). Numerous studies 

have contributed to a growing understanding of ARs, including their underlying processes and 

lifecycle (Guan and Waliser, 2019; Zhou and Kim, 2019; Kim and Chiang, 2021; Shearer et al., 

2020), interaction with other meteorological features such as blocking (Benedict et al., 2019; Wille 

et al 2021), Rossby wave breaking (Ryoo et al., 2013; Zavadoff and Kirtman, 2020), and 

monsoonal systems (Park et al., 2021), relationship to winds (Waliser and Guan, 2017), jets 

(Shields and Kiehl 2016a), precipitation (Gorodetskaya et al 2014; Ramos et al., 2015; Collow et 

al., 2020; Arabzadeh et al., 2020; Wille et al 2021),  flooding (Ralph et al., 2006; Neiman et al., 

2011; Lavers et al., 2011; Ionita et al., 2020), and snowpack (Hu and Nolan, 2019; Chen et al., 

2019; Wille et al., 2019; Wille et al., 2021), contribution to the global energy budget (Shields et 

al., 2019), and predictability at numerical weather prediction (Chen et al., 2018), seasonal (Huang 

et al., 2021), and climate (Massoud et al., 2019; Payne et al., 2020; Rhoades et al., 2020; McClenny 

et al., 2020) timescales. Due to the Clausius-Clapeyron relationship, ARs are projected to contain 

more moisture in the future. However, knowledge gaps and uncertainties exist, such as how 

changes in the large-scale circulation may impact the size, duration, and frequency of ARs in a 

changing climate (Payne et al., 2020 and references within). 

Uncertainties arise in our understanding of ARs and how they may change in the future 

due to the vast array of techniques used to detect ARs in large datasets (Lora et al., 2020; O’Brien 

et al., 2020; Zhou et al., 2021). In an effort to reduce ambiguities and inform best practices for 

future studies in AR science, the Atmospheric River Tracking Method Intercomparison Project 
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(ARTMIP) devised a set of goals and tiered intercomparisons to quantify the characteristics and 

impacts of ARs and how they vary due to the methodology used for AR detection (Shields et al., 

2018; Rutz et al., 2019, Ralph et al. 2019). ARTMIP began with a Tier 1 intercomparison of AR 

detection in a common dataset constrained through the assimilation of observations, NASA’s 

Modern Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2; Rutz et 

al., 2019). The Tier 2 intercomparisons build upon the work completed in Tier 1 by aiming to 

answer more specific science questions. Other Tier 2 intercomparisons are focused on the high-

resolution climate catalogs of C20C (Payne et al., 2020) and ARs in a changing climate using 

CMIP-5 and -6 multimodel ensembles (O’Brien et al., 2021). Here, we present an overview of the 

Tier 2 reanalysis intercomparison. 

A reanalysis blends a constant version of a general circulation model and data assimilation 

system with conventional and satellite-based observations of the atmosphere to give a spatially 

and temporally consistent view of the atmosphere over the course of decades. Reanalysis products 

should be considered as a proxy for actual observations. They are produced by a highly constrained 

numerical model subject to the biases in the model's formulations.  Not all components of the Earth 

system are adequately sampled by the observing system throughout the forty plus years included 

in many modern reanalyses and it is up to the underlying model to fill in these gaps. Each reanalysis 

has its own model biases and contains unique features that lend a given reanalysis for use in 

specific research studies. For example, MERRA-2 includes the assimilation of aerosol optical 

depth as well as a dry mass constraint to balance the hydrologic cycle (Gelaro et al., 2017), the 

European Centre for Medium-Range Weather Forecasts’ (ECMWF’s) ERA5 uses an ensemble 

approach for data assimilation which allows for a measure of uncertainty (Hersbach et al., 2020), 

and the Japan Meteorological Agency’s JRA-55 incorporates a consistent analysis for sea ice 
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concentration and sea surface temperature, reducing jumps associated with changes in boundary 

forcing (Kobayashi et al., 2015).  

All three of these reanalyses have been used to study ARs; however, ARTMIP’s Tier 1 

experiment only included 3-hourly MERRA-2. Tier 1 results are being used to evaluate climate 

models without proper investigation of the suitability for this purpose (O’Brien et al., 2021).  As 

part of the Tier 2 reanalysis intercomparison, ARTMIP developed the following set of AR science 

questions: 

1.  What are the appropriate metrics for investigating ARs and how have/will they 

change(d) in time? 

1.a. What is the best way to handle regional differences in ARs in a global algorithm? 

1.b. How are diagnostic reanalysis variables, such as precipitation, impacted by AR 

detection? 

2. How does the uncertainty in AR frequency among reanalyses compare to the uncertainty 

among tracking algorithms? 

3. How suitable are century scale reanalyses for studying ARs? 

4. Does a specific reanalysis lend itself to determining whether a climate model is suitable for 

studying ARs? 

Reanalysis intercomparisons have been performed in the past for individual AR detection 

algorithms and regions (Lavers et al. 2012; Guan and Waliser 2017; Guan et al., 2018; Huning et 

al., 2019; Wille et al., 2019; Wille et al., 2021). The Tier 2 reanalysis intercomparison expands 

upon the previous work by taking a global approach to compare and contrast AR detection in 

multiple algorithms. Here we present an overview of the Tier 2 reanalysis intercomparison and 
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share preliminary results as the AR community works together in answering the specific science 

questions. This paper addresses science questions 1b and 2, and it is anticipated that future work 

will not only expand on answering these science questions but will also address the science 

questions not covered here, particularly the usefulness of century scale reanalyses and the 

suitability of reanalyses to evaluate climate models. Section 2 details the methodology for the 

intercomparison and participating AR detection methods. An intercomparison of hydrological 

fields in the reanalyses is presented in Section 3 while results comparing the detection of ARs and 

their impact on precipitation can be found in Section 4.  

 

2 Data and Methods 

2.1 Reanalysis Products 

Three global reanalyses, 1-hourly MERRA-2 from the US National Aeronautics and Space 

Administration (NASA; Gelaro et al., 2017), 1-hourly ERA5 from the European Centre for 

Medium-range Weather Forecasts (ECMWF; Hersbach et al., 2020), and 6-hourly JRA-55 from 

the Japan Meteorological Agency (JMA; Kobayashi et al., 2015) were selected for an 

intercomparison following an assessment of the spatial and temporal resolutions, data availability, 

and use in published studies on ARs among the array of currently available global reanalysis 

products. JRA-55C, a counterpart to JRA-55 that only assimilates conventional surface and upper 

air observations, was also selected to evaluate the usefulness of reanalyses prior to the satellite era 

and to assess the suitability of century scale reanalyses for studying trends in ARs. While JRA-

55C is introduced here as part of the overall methodology for the Tier 2 Reanalysis 
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Intercomparison, it is not included in the results in Section 4. Additional details on each reanalysis 

can be found in Table 1. 

 

Table 1. Reanalysis products used in this study. Temporal resolution and coverage indicate the 

product versions used here and may not reflect the original reanalysis output. 

Reanalysis Spatial 

Resolution 

Temporal 

Resolution 

Temporal 

Coverage Used 

Data Assimilation  

MERRA-2 0.625° x 0.5° 1 Hour 1980-2019 6-hour 3D-Var 

ERA5 0.25° x 0.25° 1 Hour 1980-2019 

or 2000-2019 

12-hour 4D‐ Var 

ensemble 

JRA-55 1.25° x 1.25° 6 Hours 1980-2019 6-hour 4D-Var 

JRA-55C 1.25° x 1.25° 6 Hours 1980-2012 Conventional-only 

6-hour 4D-Var 

 

2.2 AR Detection Algorithms 

A total of eleven algorithms submitted AR detection tags for participation in the reanalysis 

intercomparison. The algorithms used a wide variety of methods to detect an AR including relative 

and absolute thresholds (Rutz et al., 2019) for atmospheric moisture, winds, and integrated water 

vapor transport (IVT), geometry thresholds, deep learning (Prabhat et al., 2021), and object 

identification (Guan and Waliser, 2019; Shearer et al., 2020). While most algorithms are global, 

four are designed for AR detection in specific regions (Table 2). Additional information for the 

algorithms, including a reference describing the technique used for AR detection, can be found in 

Table 2.  
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 Table 2. AR Detection Algorithms Included in the Reanalysis Intercomparison. Algorithms that 

were tuned separately for each reanalysis are italicized. *Included full ERA5 period, †Included 

JRA-55 and JRA-55C 

Algorithm Participant Region Reference 

ARCONNECT_v2† Eric Shearer Global Shearer et al., 2020 

ClimateNet_DL Sol Kim Global Prabhat et al., 2021 

GuanWaliser_v2*† Bin Guan Global Guan and Waliser, 2015; Guan 

et al., 2018 

IDL_v2b*† Ricardo Tomé Western Europe, 

South Africa 

Ramos et al., 2016; Blamey et 

al., 2018 

Lora_v2 Juan Lora Global Lora et al., 2017; Skinner et al., 

2020 

Mundhenk_v3*† Kyle Nardi Global Mundhenk et al., 2016 

Payne*† Ashley Payne Western US Payne and Magnusdottir, 2014; 

Payne and Magnusdottir, 2015 

Reid500*† Kimberley Reid Global Reid et al., 2020 

Shields_v1* Christine 

Shields 

Western US, 

Western Europe 

Shields and Kiehl, 2016a; 

Shields and Kiehl, 2016b 

TempestLR*† Beth McClenny Global, except 15 

S to 15 N 

McClenny et al., 2020 

Wille_v2.4* Jonathan Wille Arctic, Antarctica Wille et al., 2021 
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2.3 Methodology 

 Each participating AR detection tool (ARDT) was required to submit binary tags of AR 

detection for the entire 40-year period of MERRA-2 and the last 20 years, encompassing 2000 

through 2020, for ERA5. The decision regarding the temporal requirement for ERA5 was made to 

ease the burden for those with limited computational resources as the 0.25°, 1-hourly resolution of 

ERA5 translated to a yearly file size of 144 GB. Participants also had the option to submit AR tags 

for 1980 through 1999 in ERA5, 1980 through 2020 in JRA-55, and 1980 through 2012 in JRA-

55C. The contributions of each algorithm are denoted by the asterisks and crosses in Table 2. ARs 

were detected at the native spatial and temporal resolution for each reanalysis specified in Table 

1. It is important to note that AR tags in MERRA-2 can differ from the tags associated with 

ARTMIP’s Tier 1 effort (Shields et al., 2018; Rutz et al., 2019).  Model derived vertically 

integrated water vapor fluxes were used to derive IVT for the reanalysis intercomparison (GMAO, 

2015a), while the previous Tier 1 studies computed IVT based on the vertical profile of specific 

humidity and horizontal winds (GMAO, 2015b; Shields et al., 2018). This change in methodology 

allowed for the use of hourly AR tags as opposed to three-hourly and eliminated any concern of 

differing IVT in the reanalyses associated with vertical resolution. As demonstrated by Reid et al. 

(2020), AR detection can be sensitive to interpolation and regridding of the input dataset. A brief 

assessment of the MERRA-2 model derived IVT compared to the IVT used for the Tier 1 effort 

can be found in the supplemental document. 

3 Reanalysis Intercomparison of AR Related Fields 

 Prior to evaluating the detection of ARs in the reanalyses, it is essential to compare fields 

commonly used for the detection and analysis of ARs in the reanalysis products. Each reanalysis 
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uses a unique underlying general circulation model, data assimilation scheme, and observing 

system. While the model parameterizations and data assimilation scheme are held fixed in a 

reanalysis, the observing system and boundary forcing changes with time. Reanalyses can be prone 

to model biases during earlier time periods such as prior to the launch of NASA’s EOS satellites 

or in data sparse regions like the Arctic. As a result, reanalyses can differ from one another in 

space and time despite their observational constraints.  

Figure 1 shows a time series of monthly, global mean fields smoothed with a 12-month 

running mean in MERRA-2, ERA5, and JRA-55. All three reanalyses are well correlated with one 

another, with peaks in total precipitable water (TPW) during El Niño years and valleys in strong 

La Niña years (Figure 1a). However, the magnitudes and trends throughout the forty-year time 

series differ. The largest separation between the reanalysis products occurs prior to 1998 when the 

first advanced microwave sounders were assimilated (McCarty et al., 2016). Interestingly ERA5 

and JRA55 are in excellent agreement for TPW between 1998 and 2000, but diverge for the 

remainder of the time series, likely due to an observation source used by one reanalysis but not the 

other in the second half of the time series. On average, the TPW in MERRA-2 is ~0.75 kg m-2 

higher than ERA5 and ~1 kg m-2 higher than JRA55. Bosilovich et al. (2017) evaluated ocean-

only TPW between 60°N and 60°S in MERRA-2 and demonstrated that MERRA-2 agrees well 

with SSM/I retrievals in the late 1990s and early 2000s. However, MERRA-2 suffers from a bias 

with respect to the expected increasing trend in TPW associated with the Clausius–Clapeyron rate 

such that TPW in MERRA-2 is biased high in the late 1980s and early 1990s and biased low in 

the 2010s. JRA-55 and ERA5 are also unable to capture the magnitude of the trend, and thus have 
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a better agreement to the SSM/I retrievals than MERRA-2 in the late 1980s but a stronger negative 

bias in the 2010s (Xue et al., 2019).  

Due to the larger water vapor content in MERRA-2, global mean IVT is higher in MERRA-

2 relative to ERA5 and JRA-55. Like with the time series for TPW, there is a jump in the magnitude 

for IVT in the late 1990s within all three reanalyses (Figure 1b). An increase in the analysis 

increment for specific humidity begins to occur in the lower troposphere in MERRA-2 (Gelaro et 

al., 2017) and ERA5 (Hersbah et al., 2020) at this point in time. This is coupled with a doubling 

in the count of assimilated atmospheric motion vectors, at least in MERRA-2, due to the influx of 

information from the NOAA-15 and NOAA-16 satellites (McCarty et al., 2016). IVT is also a 
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function of wind speed however wind speeds, especially in the extratropics, are well constrained 

with minimal differences between the three reanalyses (Figure S2). 

 

Figure 1. Monthly, global mean (a) total precipitable water vapor, (b) integrated water vapor 

transport, and (c) precipitation in MERRA-2, ERA5, and JRA-55 as well GPCPv2.3 (Adler et al., 

2003). All fields are smoothed with a 12-month running mean. 

 Precipitation is a fully model-generated field in the reanalyses, meaning that data 

assimilation only constrains variables that could influence precipitation and not the precipitation 

itself. All reanalyses are biased high with respect to gridded satellite products such as the Global 

Precipitation Climatology Project (GPCP; Gelaro et al., 2017; Hersbach et al., 2020); however, on 
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average there is, at a global, monthly mean, 0.3 mm more precipitation in JRA-55 than the other 

two reanalyses (Figure 1c). Though not show here due to inconsistencies in the time series and a 

lack of data prior to 2000, the global mean precipitation from Integrated Multi-satellitE Retrievals 

for the Global Precipitation Measurement Mission (GPM IMERG) lies in between JRA-55 and the 

other two reanalyses, skewing towards MERRA-2 and ERA5 after the launch of the GPM Core 

Observatory satellite. JRA-55 and ERA5 have an increasing trend in global mean precipitation that 

exceeds any trend in GPCP, and this trend matches the timing of the trend in global mean TPW. 

While MERRA-2 has a positive trend in precipitation over the middle of the timeseries, there is a 

decreasing trend in global mean precipitation over the past decade. As a result, MERRA-2 has had 

more precipitation than ERA5 for the bulk of the 40-year record, but the opposite is true in the 

mid-1980s and there is excellent agreement between the two beginning in 2015.    

4 Results 

4.1 Global AR Detection 

For a broad, initial comparison, global maps of annual AR frequency of occurrence in each 

ARDT are assessed. We begin by looking at the bulk frequency of ARs detected by ARDTs in 

MERRA-2 in Figure 2, and then the difference of the two other reanalyses relative to MERRA-2 

in Figures 4 and 5. Spatial maps of annual AR frequency for ERA5 and JRA-55 can be found in 

the supplemental material. The ensemble mean AR frequency and standard deviation were 

computed using all ARDTs. Similar spatial patterns of enhanced frequency of ARs emerge in all 

the ARDTs, with an enhanced frequency of ARs over the northern and southern hemisphere 

extratropics. While it is tempting to relate these regions of enhanced AR frequency to the 

extratropical storm tracks, these “AR tracks” should really be considered their own entity as they 
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are distinct features due to the dependence on moisture. Most evident is the heightened frequency 

of ARs over the ocean, which is to be expected, as well as the poleward tracks in the northern 

Atlantic and Pacific Oceans and equatorward tracks in the southern Atlantic and Pacific Oceans. 

Therefore, despite the inclusion of different ARDTs, the ensemble mean is very similar to what is 

presented in Figure 1a of Lora et al. (2020) using the Tier 1 catalog of ARDTs. The one exception 

to this is the reduced frequency of ARs along the equatorial Pacific Ocean in the Tier 2 ensemble 

mean, which is only picked up by ARCONNECT_v2 and Reid500.  This disagreement is likely 

related to the sample of ARDTs included in the analysis. Figure 1a of Lora et al. (2020) discarded 

the four ARDTs with the highest threshold for IVT, but their supplemental document demonstrated 
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that the frequency of AR occurrence differs in the Pacific ITCZ region depending on whether the 

complete set of ARDTs is included in the ensemble mean.   

 

Figure 2. The annual AR frequency of occurrence in MERRA-2 as demonstrated by all 

contributing algorithms as well as the ensemble mean and standard deviation. White shading 

indicates no data areas for regional ARDTs (IDL_v2b, Payne, TempestLR, and Wille_v2.4). 

The expected spatial pattern is present in every global ARDT, at varying magnitudes and 

gradients. The most ARs are detected by ClimateNet_DL_model, an ARDT that uses deep 

learning, while the least are detected by Reid 500, which uses a stricter absolute threshold of 500 

kg m-1 s-1, relative to other ARDTs. GuanWaliser_v2 has the weakest equator to pole gradient in 

the frequency of ARs, with noticeably more ARs at the poles and over land, and fewer ARs in the 

“AR tracks”. Unlike other algorithms that use a single threshold for IVT to detect ARs, 

GuanWaliser_v2 incorporates a globally fixed minimum threshold of 100 kg m-1 s-1 in addition to 
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a regionally-dependent threshold of the 85th percentile. Though not to the extent of 

GuanWalier_v2, Mundhenk_v3 also detects slightly more ARs over land compared to other 

ARDTs because of the mutual use of the 85th percentile as a relative threshold for IVT.   

Regional ARDTs, specifically IDL_v2b, Payne, and Wille_v2.4 detect noticeably fewer 

ARs than the global ARDTs. The reason for this is different for each algorithm. IDL_v2b seeks to 

detect only the most extreme ARs, Payne only detects landfalling ARs, and Wille_v2.4 was 

designed for polar ARs. This results in artifacts in the ensemble means and standard deviations 

that are unrealistic and is a caveat of combining global and regional algorithms in data sets with 

varying resolutions. Both can be seen in the ensemble mean and standard deviation for MERRA-

2 (Figure 2) but are also noticeable in the difference plots (Figures 3 and 4). A noticeable 

discontinuity is present at 180° longitude in the northern hemisphere, which is the westernmost 

extent of Payne. However, Reid500 follows a grid from -180° to 180°, not allowing for ARs to 

extend through the barrier of 180° longitude, a feature that will be fixed in the next version of the 

algorithm. As a result, the frequency of ARs to the east of 180° longitude is suppressed for that 

ARDT. Also evident is the artifact corresponding to IDL_v2b in the east Atlantic and south Indian 

Oceans. The discontinuities with respect to latitude correspond to Wille_v2.4, with ARs not 

detected between 42° N and 37° S in MERRA-2 and between 42.25° N and 37.25° S in ERA5. 

This is because Wille_2.4 was designed for high latitudes such that the threshold and geometry 
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requirements are defined for cold, dry environments while focusing on detecting ARs with 

relatively high meridional moisture transport. 

 

Figure 3. The annual AR frequency of occurrence in ERA5 relative to MERRA-2 as 

demonstrated by all contributing algorithms as well as the ensemble mean and standard deviation. 

When comparing ARs detected in MERRA-2 and ERA5, it is immediately evident that 

more ARs are detected in MERRA-2 globally and in most of the algorithms. This is because IVT 

and integrated water vapor (IWV) are larger in magnitude in MERRA-2 nearly everywhere (Figure 

1b). The difference between MERRA-2 and ERA5 with respect to AR detection is most notable 

in ClimateNet_DL_model, which uses IWV for training, though ARs are in general more 

prominent in MERRA-2 for the algorithms that use an absolute threshold for IVT or use IVT for 

training: ARCONNECT_v2, Reid500, and TempestLR. This suggests that retuning algorithms 
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with an absolute threshold for a given data product may be necessary, including those that represent 

gradients in IVT such as in TempestLR. 

Although Lora_v2 uses a relative threshold for IVT of 225 kg m-1 s-1 above a time varying 

background determined by a 30-day running mean of IWV, perhaps differences in IVT between 

MERRA-2 and ERA5 are more related to winds and therefore are not captured by this approach. 

This can be noted by the fact that the difference in AR frequency is larger in Lora_v2 than 

GuanWaliser_v2 and Mundhenk_v3, which both use a relative threshold of the 85th percentile of 

IVT in MERRA-2 and ERA5 respectively.   

ARDTs that demonstrate good agreement between MERRA-2 and ERA5 do so for JRA-

55 as well. There is little difference between MERRA-2 and JRA-55 in GuanWaliser_v2, 

IDL_v2b, Mundhenk_v3, and Payne. An interesting comparison is how the differences between 

MERRA-2 and the other two reanalyses contrast between ARCONNECT_v2 and Reid500. While 

more ARs are detected in MERRA-2 for both algorithms, the difference with JRA-55 is muted 

compared to ERA5 in Reid500 but amplified in ARCONNECT_v2. Given the absolute threshold, 

the response in Reid500 makes sense given that global IVT is slightly higher in JRA-55. A similar 

driver is also likely responsible for lower AR detection rate from TempestLR, in JRA-55 compared 

to ERA5, as the relatively low resolution of JRA-55 produces weaker gradients in the IVT field. 

TempestLR relies on the Laplacian of IVT, which makes the gradient of IVT an important factor 

for AR detection. The larger difference between MERRA-2 and JRA55 in ARCONNECT_v2 is 

more nuanced. Due the coarser spatial resolution, JRA-55 does not capture the more extreme 

values of IVT that are on the tails of the distribution in MERRA-2 and ERA5. ARCONNECT_v2 

uses a threshold of 700 kg m-1 s-1 for seeding the object identification. It is likely that this threshold 

is too strict to detect weak and moderate ARs in JRA-55, though adequate for the other reanalyses. 
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An additional factor might be the 6-hour time increment, allowing ARs to move too far between 

timesteps for the object identification to capture the continuity of the AR feature. 

 

Figure 4. The annual AR frequency of occurrence in JRA-55 relative to MERRA-2 as 

demonstrated by contributing algorithms as well as the ensemble mean and standard deviation. 

ARDTs indicated by “X” did not provide data for JRA-55. 

One exception to the greater frequency of ARs in MERRA-2 is interior South America, 

and this has to do with the South American Low Level Jet (SALLJ), which transports moisture 

from the Amazon to the La Plata basin in subtropical South America (Vera et al, 2006; Montini et 

al., 2019, Ramos et al., 2019).  ARDTs pick up the signature of the SALLJ due to its intense 

moisture transport with greater frequency in ERA5 with respect to MERRA-2.  The opposite is 

true with respect to JRA-55, as MERRA-2 still has more ARs detected in the subtropics of South 

America. Whether the SALLJ feature is considered an AR is up for debate (Gimeno et al., 2021). 
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A reanalysis comparison of the SALLJ was performed by Montini et al. (2019). Although ERA-

Interim was used instead of ERA5, the study concluded that overall, ERA-Interim had a slightly 

better representation of the SALLJ compared to MERRA-2 and JRA-55, though MERRA-2 is still 

suitable for studies on the SALLJ (Montini et al, 2019). JRA-55 was unable to capture the peak 

intensity of the jet likely due to its coarser resolution.  

Even if algorithms agree on the frequency of ARs, it is important to know if the same ARs 

are being detected by the ARDTs in the three reanalysis products. This is accomplished through 

investigating an AR consensus within the ensemble (Lora et al., 2020). ARs that are detected by 

at least half of the ARDTs are considered a consensus AR for the given reanalysis. In order to 

maximize the number of ARDTs included in the consensus without spatial and temporal 

inhomogeneities, the consensus AR frequency was determined using global ARDTs only for the 

period of 2000 through 2019. Since MERRA-2 has more ARs detected in general, the consensus 

frequency of occurrence is also analyzed as a percentage of the ensemble AR frequency for each 

reanalysis. The ensemble mean used here was recomputed from what is displayed in Figures 2, 3, 

and 4 to match the ARDTs and time period included in the consensus calculation. Note that the 

tropics have been masked out in the percentage consensus frequency to allow for the inclusion of 

TempestLR.  

 The spatial pattern for the consensus AR frequency is similar to the ensemble mean for 

the reanalyses, with a higher frequency of occurrence in the center of the AR tracks extending 

poleward in the northern and southern Atlantic and Pacific Oceans and zonally in the southern 

Indian Ocean (Fig. 5, left). As demonstrated by the case studies presented by Lora et al. (2020), 

ARDTs tend to agree on the core of an AR object though a discrepancy arises on the boundary of 

the AR periphery particularly for relatively weak ARs. Unsurprisingly, due to the overall higher 
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occurrence of ARs in MERRA-2, the frequency of occurrence for consensus ARs is highest in 

MERRA-2 in all five AR track regions, followed by ERA5. When the occurrence frequency of the 

consensus AR is considered as a percentage of the ensemble mean frequency, the largest consensus 

occurs on the periphery of the AR tracks (Fig. 5, right). From this perspective, there is a strong 

agreement in the ARDTs in ERA5 in the northern hemisphere but relatively weaker agreement in 

the southern hemisphere. Also noteworthy is the greater percentage of occurrence of the consensus 
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AR in MERRA-2 over land, particularly over Europe, central Australia, and northwestern North 

America.  

 

Figure 5. The frequency of occurrence of consensus ARs, with at least half of the global 

ARDTs detecting an AR, in (a) MERRA-2, (b) ERA5, and (c) JRA55 and the frequency of 
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occurrence of consensus ARs as a percentage of the ensemble mean AR frequency in (d) MERRA-

2, (e) ERA5, and (f) JRA55.  

 Next, we assess whether a given AR is detected in each reanalysis. A consensus AR is 

defined for the individual reanalyses with the approach above in which at least half of the ARDTs 

must detect an AR. This “consensus AR” is then compared between MERRA-2, ERA5, and 

JRA55. Due to the differing temporal and spatial resolutions, consensus ARs in ERA5 and 

MERRA-2 were regridded to match the 1.25° spatial resolution of JRA-55 at the matching 

timesteps corresponding to available data in JRA-55. For a comparison between ERA5 and 

MERRA-2, the hourly temporal resolution was maintained. Due to the higher frequency of ARs 

in MERRA-2, the consensus AR frequency between MERRA-2 and either ERA5 or JRA-55 is 

higher than the consensus between ERA5 and JRA-55. 

 It is also instructive to determine when a consensus AR is detected in ERA5 and JRA-55, 

but not in MERRA-2, which is termed a “disagreement”. Across the entire region, this occurs on 

average about 1% of the time, however the spatial patterns are different for ERA5 and JRA-55 

(Figure 6e & f). ERA5 has a larger “disagreement” frequency along the northern periphery of the 

AR track, in addition to hints of further inland penetration (Figure 6e). On the other hand, JRA-55 

tends to have an AR consensus within the AR track when there is not an AR detected in MERRA-

2. Maximum frequency of “disagreement” in JRA-55 aligns with the gradient of the consensus AR 

frequency. This could be related to the 6- hour temporal resolution of the AR tags in JRA-55 

relative to the one-hour resolution of MERRA-2. Although the time stamps were matched properly 

to compute the “disagreement” frequency, there is a possibility that one reanalysis propagates the 

AR at a faster rate. Resolution could also be playing a role in the ERA5 “disagreement” frequency, 

but in this case spatial rather than temporal resolution. With a finer spatial resolution and additional 



A
ut

ho
r 

M
an

us
cr

ip
t 

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

vertical levels, there are likely occasions when ERA5 is able to transport additional water vapor 

around the complex terrain along the U.S. west coast. 

 



A
ut

ho
r 

M
an

us
cr

ip
t 

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

Figure 6. Annual mean frequency of ARs detected in a) MERRA-2 and ERA5, (b) 

MERRA-2 and JRA-55, (c) ERA5 and JRA-55, and (d) MERRA-2, ERA5, and JRA-55, as well 

as the frequency that an AR is detected in (e) ERA5 and (f) JRA-55 but not MERRA-2 

While not the most intense or influential AR in the forty-year record, a case study was 

selected for 18z on 6 November 2014. This case was selected because it is in the required period 

for ERA5, it contains features that are representative of AR detection in the reanalyses and is a 

rare situation where the consensus for ERA5 detected an AR in the Pacific Northwest of the United 

States that was not agreed upon by the MERRA-2 consensus (Figure 7). The fraction of ARDTs 

registering a detection is used, as opposed to the count, since there are seven global ARDTs 

available for MERRA-2 and ERA5 but five global ARDTs for JRA-55. There are two features for 

the event on 6 November 2014, each with its own area of low pressure: one over the Pacific Ocean 

and the other over the Pacific Northwest of the U.S. The finer resolution of ERA5 results in the 

detection of narrower ARs for both AR features. This is typical behavior and is likely a 

contributing factor to the fact that the AR frequency is higher in MERRA-2 (Figure 3). Also 

evident is the finer scale features in ERA5 such as the bulge around 38 N and 145 W that is not as 

well resolved in JRA-55. With respect to JRA-55, a smaller fraction of trackers detect the core of 

the AR over the Pacific Ocean, and even less extending northward to the contour for an IVT of 

500 kg m-1 s-1. While MERRA-2 and ERA5 have an IVT contour exceeding 750 kg m-1 s-1, JRA-

55 does not.  

Conversely, ARDTs tend not to detect the AR feature over the Pacific Northwest in 

MERRA-2. It is evident that the enhanced IVT has a greater latitudinal extent in MERRA-2 

relative to ERA5. The one algorithm that detected an AR in ERA5 but not MERRA-2 in this region 

was Lora_v2. In the Pacific Northwest region, JRA-55 has the highest values for IVT of the three 
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reanalyses, above 150 kg m-1 s-1 greater than MERRA-2 just off the Washington coast and over 

central Washington.  As a result, at least half of the ARDTs detect an AR in this region in JRA-

55. 

 

Figure 7. Case study for 18z on 6 November 2014 showing the fraction of global ARDTs 

that detected an AR. Gray contours indicate lines of constant IVT at the values of 250, 500, and 

750 kg m-1 s-1. 
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For a different perspective of global AR detection, a time series of the mean hemispheric 

percent area that had an AR for the 20-year period beginning in 2000 is shown in Figure 8.  This 

temporal subset is presented because the statistics for ERA5 are more robust when all available 

ARDTs are included. Shading represents the time series of standard deviation as a measure of 

variance among the ARDTs. Analogous figures depicting the individual ARDTs can be found in 

the supplemental document. Like the time series in global mean TPW, there is a subtle increase in 

the percent area with an AR with time in the three reanalyses for both the northern and southern 

hemispheres (Figure 8a and b). It is unsurprising that the reanalyses are well correlated, although 

MERRA-2 has a larger area covered by ARs. The average percent area with an AR is lower in 

JRA-55 relative to MERRA-2 and ERA5. Only one ARDT, Reid500, indicates a percent area with 

an AR in MERRA-2 that is on par with the ensemble mean for JRA-55 in both hemispheres. The 

standard deviation for MERRA-2, ERA5, and JRA-55 remains relatively consistent throughout the 

time series indicating that variability among the ARDTs does not change in time. Overall, the 
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consistency in the annual mean time series and the standard deviation among the reanalyses is 

important to note considering the relative changes in IVT and TPW as demonstrated by Figure 1. 

 

Figure 8. (a,b) Annual and (c,d) monthly mean time series of the percent area covered by 

ARs in the (a,c) northern hemisphere and (b,d) southern hemisphere. Shading represents plus and 

minus one standard deviation among the ARDTs. 

The seasonal cycle of percent area with an AR is more interesting. The northern hemisphere 

has a bimodal mean seasonal cycle with peaks in the boreal winter and summer months (Figure 

8c). As demonstrated by Mundhenk et al. (2016), ARs peak during the boreal summer months in 

southwest Alaska, yet the boreal winter months on the U.S. west coast. Gradual transitions in the 

dynamics associated with atmospheric rivers, for example within the northeast Pacific (Mundhenk 
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et al, 2016), as well as disagreements among the ARDTs result in the bimodal seasonal cycle. 

Conversely, the southern hemisphere has a seasonal cycle that only peaks during their summer 

season (Figure 8d). 

Unlike the annual mean time series, there is seasonal variability in the standard deviation 

for both hemispheres in MERRA-2 and ERA5. A seasonal cycle is not present in the standard 

deviation for JRA-55 due to the ARDTs that submitted the optional AR tags for JRA-55 (see the 

supplemental document for results in MERRA-2 and ERA5 using the available ARDTs for JRA-

55). There are seven global ARDTs included in the calculation for MERRA-2 and ERA5 but five 

for JRA-55, with the two missing as Lora_v2 and ClimateNet_DL. This is particularly important 

for the seasonal cycle of standard deviation. Most ARDTs have a pronounced seasonal maximum 

in the northern hemisphere during the summer months in all three reanalyses. Although a summer 

peak is still present, Mundenk_v3 has a muted seasonal cycle with respect to the other ARDTs. 

On the other hand, Lora_v2 and ClimateNet_DL have a pronounced minima during the months of 

July and August, driving the increase in standard deviation during the boreal summer. Intuitively, 

it would make sense for differences in the seasonal cycle to be a function of fixed, relative, and 

absolute thresholds; however, this is not necessarily the case. Each pairing of ARDTs associated 

with the different seasonal cycles have different types of criteria for IVT. Two of the ARDTs with 

a maximum in the boreal summer, GuanWaliser_v2 and Reid500, use the same geometry threshold 

requiring a length of at least 2000 km and a length to width ratio greater than 2.  It is difficult to 

determine why Lora_v2 has an opposing seasonal cycle considering it employs the same length 
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criteria as GuanWaliser_v2 and Reid500, but perhaps this indicates the importance of a length to 

width ratio in the detection of ARs for regional AR detection.  

4.2 Regional Results 

4.2.1 Coastal AR Frequency 

A more nuanced approach for AR detection is evaluated through AR frequency along the 

coast of three regions. The west coast of the United States and Europe is examined in the same 

manner as Figure 6 of Rutz et al. (2019), though New Zealand is also considered. Like along the 

west coast of the United States, the most intense precipitation and flooding events in New Zealand 

can be attributed to ARs (Reid et al., 2021). Grid points with a fractional coverage of land and 

ocean between 23 and 55 N and 130 to 115 W for the United States (left panel of Figure 4 in Rutz 

et al., 2019), 35 to 65 N and 15 W to 10 E for Europe (right panel of Figure 4 in Rutz et al., 2019), 

and the western coast of New Zealand between 35 and 46 S were considered. Zonal means of AR 

frequency are presented along the meridional coastal transects. Unlike Rutz, et al. (2019), interior 

transects are not investigated.  

Coastlines are used as opposed to transects to highlight differences between the reanalysis 

products related to resolution. The ability of each of the reanalyses to resolve the coast lines is 

immediately evident (Figure 9). Individual features of the coast lines are apparent in ERA5 and 

not resolved in JRA-55. A good example of this is at 42° N along the west coast of the United 

States. An indented curve in the coastline of northern California is resolved in ERA5, but not the 

coarser MERRA-2 or JRA-55, which places the grid box signaling the coast slightly to the east in 

ERA5. As a result, over half of the ARDTs indicate a dip in the frequency of AR occurrence at 

that latitude. In the column for New Zealand in Figure 9, it is evident that JRA-55 responds in an 
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opposite manner to the Cook Strait, with less instead of more ARs around 40° S. This furthers the 

conclusion that JRA-55 may not be suitable for regional AR studies.  

There are a lot of common features when comparing the results across regions and 

reanalyses due to the routinely applied criteria. Regardless of region or reanalysis, more lenient 

ARDTs such as ClimateNet_DL_model and GuanWaliser_v2 tend to detect more ARs than stricter 

ARDTs like Reid500 and TempestLR. In addition, ARDTs tend to be more clustered with fewer 

ARs detected in ERA5 than MERRA-2. While there are other regions that could be investigated 

such as South America and the poles, it is unlikely that the overall conclusions would change.  
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Figure 9. The frequency of occurrence of consensus ARs along the western coast lines of 

the U.S. (left column), Europe (middle column), and New Zealand for participating ARDTs in 

MERRA-2 (top row), ERA5 (middle row), and JRA-55 (bottom row). Blue shading indicates 

latitudes where the coastline is not resolved in JRA-55. 

 

4.3 Impact of AR Detection on Precipitation 

The consensus AR for each reanalysis was used to determine the mean AR related 

precipitation over the extratropical oceans using the daily, half degree observational data from 

GPCP version 3.1 (Huffman et al., 2021). Since this is a daily precipitation product, the daily 

consensus AR was considered as an AR if the grid box had at least one time step over the course 

of the day with a consensus AR. Results are presented in Figure 10 with ERA5 and JRA-55 

shown as a difference from MERRA-2. Most AR related precipitation falls in the northern 

hemisphere, along the northeastern periphery of the AR tracks in the Atlantic and Pacific Oceans 

(Figure 10a). In the southern hemisphere, there is enhanced precipitation along the AR tracks in 

the Pacific and Atlantic Oceans, but not the southern Indian Ocean (Figure 10d). Overall, more 

precipitation is associated with ARs in MERRA-2, particularly with respect to JRA-55 (Figure 

10c). Where there are differences between the reanalyses, it is in the core of the AR tracks and 

not along the periphery where the maximum precipitation occurs. Despite an enhanced frequency 
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in MERRA-2 relative to ERA5 in the southern hemisphere, the amount of AR related 

precipitation is comparable between the two reanalyses.  

 

 Figure 10. Mean AR precipitation for the (a, b, and c) northern and (d, e, and f) southern 

hemisphere extratropics in MERRA-2 and the difference between (b,g) MERRA-2 and ERA5 

and (c,f) MERRA-2 and JRA-55. 

A well-documented region for ARs is the northeast Pacific, with ARs making landfall on 

the west coast of the United States and British Columbia. The literature contains numerous studies 

that have computed the percentage or amount of precipitation that is associated with ARs along 

the coast of the United States, though there is little agreement due to varying techniques for AR 

detection, datasets, and seasons (Guan et al. 2010; Dettinger et al., 2011; Rutz et al., 2014; Guan 

and Waliser, 2015; Rutz et al., 2019; Collow et al. 2020; Arabzadeh et al., 2020). Precipitation 
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associated with consensus ARs as well as the ensemble of ARDTs are investigated in the MERRA-

2, ERA5, and JRA-55 using an independent observational dataset for precipitation, the Climate 

Prediction Center Unified (CPCU) gauge-based analysis of daily precipitation (Chen and Xie, 

2008). Prior to computing any statistics, the precipitation observations were regridded to match 

the resolution of the individual reanalyses.  

The overall spatial patterns and magnitudes for the annual mean precipitation associated 

with consensus ARs in MERRA-2, ERA-5, and JRA-55 are similar due to the influence of 

topography on precipitation (Figure 11a-c). Differences in the spatial resolution are evident as the 

field is smoothed in JRA-55 especially relative to ERA-5. Along the Sierra Nevada Mountains, 

there is more precipitation associated with ARs in MERRA-2 than ERA5 and JRA-55. ARDTs 

with strict thresholds tend to result in high values for the mean precipitation associated with an AR 

as more intense events are included in the average. Given that more ARs are generally detected in 

MERRA-2, this is somewhat counter-intuitive. This region is, however, located at a gradient where 

ARDTs begin to no longer detect the inland penetration of ARs. Though difficult to say for sure, 

it can be hypothesized that the intensity distribution of consensus ARs detected in MERRA-2 in 

the Sierra Nevada Mountains includes fewer weaker ARs and more intense ARs than ERA5 and 

JRA55.  

Another possibility for the higher mean precipitation in MERRA-2 is that a few ARDTs 

only submitted AR tags in ERA5 for the 20-year period beginning in 2000. Embedded within the 

results for precipitation is the temporal trend in precipitation for the region, particularly in southern 

California and the desert southwest.  This is manifested through a lower mean precipitation from 

ARs (Figure 11b), higher percentage of precipitation resulting from ARs Figure 11e), and more 

precipitation associated with consensus ARs than the ensemble means (Figure 12b). As a reminder, 
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the ensemble mean incorporates all ARs detected by all ARDTs in the calculation while 

precipitation associated with the consensus AR requires at least half of the ARDTs to detect an 

AR, but does not consider which or how many ARDTs detect the AR. 

 

 

 

Figure 11. Annual mean intensity of precipitation associated with consensus ARs in (a) 

MERRA-2, (b) ERA5, and JRA-55 and (d-f) AR cumulative precipitation as a percentage of the 

total annual precipitation. 

 

Overall, consensus ARs result in more intense precipitation than the ensemble means along 

the west coast of the U.S. extending from Washington to central California, and less intense 
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precipitation further inland. ARDTs tend to agree with whether an AR makes landfall, but there is 

less agreement regarding the inland penetration of ARs. The results for ERA5 presented in Figure 

12b are, however, dependent on methodology and the temporal period as mentioned earlier. With 

respect to the standard deviation of precipitation from the ensemble of ARDTs, the spatial pattern 

is similar among the three reanalyses and dictated by topography. The magnitude of the standard 

deviation is noticeably smaller for ERA5.   

 

 

Figure 12. Ensemble mean percent of annual observed precipitation coinciding with 

detected ARs minus the precipitation from the consensus AR in (a) MERRA-2, (b) ERA5, and 

JRA-55 and (d-f) the standard deviation of the ensemble. 
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5 Summary and Conclusions 

There were eleven participating ARDTs in the reanalysis intercomparison that employed a 

variety of techniques including absolute and relative thresholding, geometry requirements, and 

machine learning to detect ARs in MERRA-2, ERA5, and JRA55. This dataset of hourly AR 

binary tags in the three reanalysis is now available for the public to use for future studies of AR 

science. More ARs tended to be detected in MERRA-2 due to elevated values of TPW and IVT 

relative to ERA5 and JRA55. This indicates that if MERRA-2 were used instead of ERA5 or JRA-

55 as a baseline for evaluating a climate model, it would be expected that the climate model would 

also have an enhanced frequency of ARs, or it would be considered deficient in the frequency of 

ARs. An additional difference between the reanalyses is that due to the finer resolution, ERA5 has 

finer ARs with stronger gradients.  

ARDTs that used seasonally and spatially varying thresholds, such as GuanWaliser_v2 and 

Mundhenk_v3, had better agreement between the reanalysis products compared to ARDTs that 

use a fixed threshold, such as Reid500. Large differences in AR detection between the reanalysis 

products were also present in ClimateNet_DL_model, which does not use any explicit thresholds, 

but rather deep learning based on expertly labeled tags. ARTMIP recommendations regarding 

absolute and relative threshold based ARDTs have been discussed as part of the Tier 1 effort (Rutz 

et al., 2019), but the variance in the seasonal cycle of global percent area with an AR indicated the 

importance of geometry thresholds. Differences due to ARDTs are larger than differences due to 

reanalysis. Despite discrepancies in the frequency of ARs detected in MERRA-2, ERA5, and JRA-

55, there is more uncertainty in the spatial pattern of AR frequency due to individual requirements 
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of ARDTs than the reanalysis that is used. This is also the case for global percent area with an AR 

if comparing the results for MERRA-2 and ERA5. However, differences in the IVT field among 

the reanalyses along coastlines result in considerable uncertainty in the detection of coastal ARs. 

Noticeably fewer ARs were detected along the European coastlines by multiple ARDTs in ERA5. 

The volume of data from forty years of global, hourly data at one-quarter degree spatial 

resolution for ERA5 proved challenging. On a global scale, this resulted in time consuming 

downloads, storage concerns, and memory errors when processing. There were nevertheless 

rewards of the finer resolution data at a regional scale and for case study purposes. Finer scale 

features of the anatomy of an AR became apparent as well as a more nuanced view of the impact 

of coast lines on landfalling ARs. JRA-55 was much easier to work with and provided reasonable 

results for the global spatial pattern of AR frequency. However, the mean hemispheric percent area 

with a detected AR was smaller than the other two reanalyses and the coarse resolution was unable 

to resolve details along coastlines.  

The results presented here are not intended to determine which ARDT or reanalysis is best 

for scientific studies on ARs, but rather to assist with the interpretation of results for future studies. 

Future work as part of the Tier 2 Reanalysis Intercomparison will focus on topics not addressed 

here. Specifically, the suitability of century scale reanalyses for determining observed changes in 

the characteristics of ARs, global impacts of ARs on precipitation and extreme precipitation 

events, furthering our understanding of how to handle regional differences in AR detection, and 

determining whether a specific reanalysis is best used for the evaluation of climate models.  
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