
Distribution of biomass dynamics in relation to tree size in forests
across the world

Camille Piponiot1,2,3 , Kristina J. Anderson-Teixeira1,2 , Stuart J. Davies1,4,5 , David Allen6 ,

Norman A. Bourg2 , David F. R. P. Burslem7 , Dairon Cárdenas8, Chia-Hao Chang-Yang9 ,

George Chuyong10, Susan Cordell11 , Handanakere Shivaramaiah Dattaraja12, Álvaro Duque13,
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Summary

� Tree size shapes forest carbon dynamics and determines how trees interact with their envi-

ronment, including a changing climate. Here, we conduct the first global analysis of among-

site differences in how aboveground biomass stocks and fluxes are distributed with tree size.
� We analyzed repeat tree censuses from 25 large-scale (4–52 ha) forest plots spanning a

broad climatic range over five continents to characterize how aboveground biomass, woody

productivity, and woody mortality vary with tree diameter. We examined how the median,

dispersion, and skewness of these size-related distributions vary with mean annual tempera-

ture and precipitation.
� In warmer forests, aboveground biomass, woody productivity, and woody mortality were

more broadly distributed with respect to tree size. In warmer and wetter forests, aboveground

biomass and woody productivity were more right skewed, with a long tail towards large trees.

Small trees (1–10 cm diameter) contributed more to productivity and mortality than to

biomass, highlighting the importance of including these trees in analyses of forest dynamics.
� Our findings provide an improved characterization of climate-driven forest differences in

the size structure of aboveground biomass and dynamics of that biomass, as well as refined

benchmarks for capturing climate influences in vegetation demographic models.

Introduction

Forests are highly size-structured: tree size influences access to
resources and impact of disturbances, and thereby growth and
mortality rates (Muller-Landau et al., 2006a; Anderson-Teixeira
et al., 2015b; Stark et al., 2015). Larger diameter trees generally
have access to higher light environments, which in turn enables
greater tree growth rates (Stark et al., 2012). However, larger
trees also tend to be more vulnerable to drought (Bennett et al.,
2015; McGregor et al., 2021) and to wood-boring insects
(Pfeifer et al., 2011), and their crowns are more exposed to light-
ning strikes (Gora et al., 2020; Yanoviak et al., 2020) and to
winds that can cause windthrow (Gardiner et al., 2005; Gora &
Esquivel-Muelbert, 2021). By contrast, smaller trees are more
likely to die from competition-induced carbon (C) starvation
(McDowell et al., 2018), from neighboring trees and falling
branches (Meer & Bongers, 1996), and may be more vulnerable
to fire (Brando et al., 2012; Hood et al., 2018).

Among-site differences in climate, disturbance intensity, and
other drivers lead to variation in the size dependence of tree
growth and mortality rates, and thus in tree size distributions and
the distribution of aboveground biomass (AGB), woody produc-
tivity, and woody mortality fluxes with tree size (Muller-Landau
et al., 2006b; Meakem et al., 2018; Gora et al., 2020). Critically,
as climate change and anthropogenic disturbances alter resource
availability (e.g. water and light) and disturbance regimes (Lewis
et al., 2015; Seidl et al., 2017), the size structure of forests will
modulate forest C cycle responses. For example, climate change
that increases stresses, and thus mortality rates, of large trees will
have greater impact on forests with larger concentrations of
biomass and productivity in large trees. Understanding the distri-
bution of C stocks and fluxes with tree size is thus a foundation
for accurately quantifying current and future forest C stocks and
cycling, and for projecting climate change feedbacks to these
measures (Zuidema et al., 2013). Consistent, comparative data
on size-related C stocks and fluxes for multiple forests are also

particularly valuable today as benchmarks for the size-dependent
demographics of vegetation models, which are increasingly used
to represent vegetation dynamics in Earth system models (Fisher
et al., 2018).

Tree size distributions vary strongly with climate among sites,
as do size-specific growth and mortality rates, and thus the distri-
butions of C stocks and fluxes with tree size vary as well. Large
trees are typically more abundant and contribute a greater pro-
portion of AGB in warmer, lower latitude forests (Lutz et al.,
2018). The proportion of large trees also increases with precipita-
tion (Segura et al., 2002), likely due to the greater sensitivity of
large trees to water stress (Bennett et al., 2015). Abundances of
small trees also vary among sites; they are higher in wet or moist
tropical forests than in temperate forests (King et al., 2006). This
may be because these aseasonal environments enable longer (mul-
tiyear) leaf lifespans of broadleaved understory trees (Coley,
1988), which effectively reduce the cost of deploying leaves, and
thereby enable survival even in low-light environments. More-
over, shade tolerance (i.e. the ability to survive and grow in low-
light environments) increases in strength with the length of the
growing season and is inversely related to tolerance to other envi-
ronmental stresses, such as drought (Valladares & Niinemets,
2008). Given these patterns, we expect distributions of forest
AGB with tree size to be more dispersed and right skewed – that
is, a greater proportion of small trees and a longer tail to large
trees – in warmer, wetter forests. We expect similar size distribu-
tions in annual AGB fluxes (i.e. aboveground woody productivity
(AWP), the flux in AGB associated with tree growth and recruit-
ment) and aboveground woody mortality (AWM, the flux from
AGB to necromass due to mortality) when conditions are rela-
tively stable.

Yet, we expect size distributions of AWP and AWM to be
shifted towards smaller size classes relative to AGB. Studies across
many different forest types and tree species have observed
decreasing productivity per unit biomass with tree size (e.g. Men-
cuccini et al., 2005; Kohyama et al., 2020). This occurs even
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though absolute productivity generally continues to increase with
tree size (e.g. Stephenson et al., 2014), because productivity
increases more slowly than biomass. Our focus here is on AWP/
AGB, henceforth termed relative AWP (RAWP). Multiple mech-
anisms can contribute to reductions in RAWP with tree size,
including lower ratios of leaf area to stem mass (H. Poorter et al.,
2015), higher maintenance costs (Magnani et al., 2000), increas-
ing hydraulic limitation (Drake et al., 2010), and allocation shifts
towards reproduction and other nonwoody tissues (Ryan et al.,
2004; Thomas, 2011). The contributions and strengths of these
mechanisms, and thus the strength of the decline in RAWP with
tree size, is likely to vary among sites and species. However, few
studies have specifically quantified stand-level patterns of RAWP
with tree size, much less compared them among sites – but see
Meakem et al. (2018). In old-growth forests at steady state, in
which size distributions are not changing directionally, produc-
tivity and mortality at a given size class are on average equal, and
thus we expect patterns for relative aboveground woody mortality
(RAWM = AWM/AGB) with tree size to follow those of
RAWP.

To our knowledge, no study has investigated how stand-level
stocks and fluxes of AGB (the largest and most easily estimated
tree C pool) are distributed by tree size across a large variety of
forest types and biomes. Previous studies have analyzed among-
site variation in total stand-level AGB stocks and fluxes
(Anderson-Teixeira et al., 2021; Banbury Morgan et al., 2021;
Muller-Landau et al., 2021) and in tree size distributions (i.e. the
densities of trees of different sizes; e.g. Muller-Landau et al.,
2006b). Studies have also quantified total AGB stocks and fluxes
in one particular size class – large trees – and have shown that
they contain a large proportion of the AGB (Slik et al., 2013;
Lutz et al., 2018; Mildrexler et al., 2020) and are good predictors
of forest structure (Bastin et al., 2018). However, very few studies
have examined the relative contribution of all tree sizes to both
AGB stocks and fluxes, even though smaller trees can also have a
role in shaping AGB dynamics (Newbery et al., 2013; Hubau et
al., 2019; Mensah et al., 2020). Rare exceptions include a study
quantifying size-related distributions of AGB, AWP, and AWM
in three forest plots along a precipitation gradient in Panama
(Meakem et al., 2018).

In this study, we quantified how AGB, AWP, and AWM are
distributed with respect to tree diameter at breast height (DBH;
diameter at 1.3 m height or above any stem irregularities) in
large-scale (4–52 ha) forest plots across the world belonging to
the ForestGEO network of large forest plots (https://forestgeo.si.
edu; Anderson-Teixeira et al., 2015a; Davies et al., 2021) and
tested associated hypotheses. We quantified the median, disper-
sion, and skewness of distributions of each variable with DBH
and investigated how they vary among sites with climate. We
examined how RAWP = AWP/AGB and relative AWM
(RAWM = AWM/AGB) vary with DBH and among sites. We
also specifically quantified the relative importance of the smallest
(1 ≤ DBH < 10 cm) and largest (DBH ≥ 60 cm) trees for
AGB stocks and fluxes. We expected size-related distributions of
AGB, AWP, and AWM to be more dispersed and right skewed;
that is, a greater proportion of small trees and a longer tail to

large trees in warmer, wetter forests (Hypothesis 1). Thus, we
specifically expected the skewness and dispersion of the size-
related distributions to increase with mean annual temperature
(MAT) and mean annual precipitation (MAP) (Hypothesis 1a),
and to be higher in tropical forests than in temperate forests
(Hypothesis 1b). We also expected RAWP and RAWM to
decrease with tree diameter in all sites, such that, although large
trees dominate biomass stocks and fluxes, small trees are propor-
tionally more important to AWP and AWM than they are to
AGB (Hypothesis 2a). Consistent with this, we expected the
probability distributions of AWP and AWM to be shifted
towards smaller size classes than those of AGB (lower medians;
Hypothesis 2b), the contributions of the smallest trees (1 ≤
DBH < 10 cm) to AWP to be larger than their contributions to
AGB (Hypothesis 2c), and the contributions of the largest trees
(DBH ≥ 60 cm) to AWP to be smaller than their contributions
to AGB (Hypothesis 2d).

Materials and Methods

Study sites and data

Repeated tree censuses were conducted in 25 forest plots (Table
1; Supporting Information Fig. S1; Table S1) distributed across
five continents following a standardized protocol (Condit, 1998;
Davies et al., 2021). Plots are located in old-growth or mature
secondary forests, and several have been subjected to some level
of natural and/or historical human disturbances (Anderson-
Teixeira et al., 2015a; Table S2), although we lack consistent,
quantitative data on the intensity, size-selectivity, and timing of
those disturbances at each site. All stems with DBH ≥ 1 cm were
mapped, tagged, identified to genus or species, and measured in
DBH. For stems measured at a height > 1.3 m in tropical sites,
we applied a taper correction to estimate the equivalent DBH at
1.3 m height following Cushman et al. (2021). We excluded
lianas, tree ferns, and strangler figs from the analysis. We ana-
lyzed data for the most recent census interval at each site, or the
next-to-last interval if the most recent census interval had been
affected by a major disturbance (e.g. El Niño drought in Cocoli;
Meakem et al., 2018). Climate variables were provided by each
site (Table 1; Anderson-Teixeira et al., 2015a; Davies et al.,
2021).

We estimated total AGB for each tree at each census from the
measured DBH using the pantropical allometric equation from
Chave et al. (2014) and Réjou-Méchain et al. (2017) for tropical
sites, and the generalized allometric equations from Chojnacky et
al. (2014) for other sites. For all tropical sites (except Fushan) we
used eqn 7 from Chave et al. (2014), which does not include
height as an input variable. For the Fushan site, where frequent
typhoons result in lower tree height than the global prediction,
we used a local height allometry (McEwan et al., 2011) in combi-
nation with eqn 4 from Chave et al. (2014). For temperate sites,
we used the equations in table 5 of Chojnacky et al. (2014),
which rely on information on wood density and taxonomic iden-
tity. Each tree was assigned a wood density, based on its taxo-
nomic identity, from the Global Wood Density Database (Zanne
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et al., 2009) using the R package BIOMASS (Réjou-Méchain et al.,
2017). Unidentified trees and trees that lacked a species or genus-
level wood density value in the database were assigned a stand-
level mean wood density over all individuals.

Size-related stand dynamics

We calculated total AGB stocks and fluxes by 20 m × 20 m
quadrats and 1 cm diameter classes. Specifically, we examined
the following variables: (1) AGB (Mg ha−1 cm−1), (2) AWP (i.e.
annual megagrams increment from stem growth of surviving trees
and recruitment; Mg ha−1 yr−1 cm−1); and (3) AWM (Mg ha−1

yr−1 cm−1). We corrected for bias induced by different lengths of
census interval using a method described in Kohyama et al.
(2019), and we gap-filled unrealistically large changes in mea-
sured DBH with the expected DBH change for the correspond-
ing size class and site (Figs S2, S3; Methods S1, S2). For
graphical visualization (but not for analysis), we aggregated data
into wider size classes, with size class boundaries defined sepa-
rately for each site, based on the total number of stems and their
distribution with size (Fig. S4; Table S3; Methods S3). Values
were standardized per centimeter of diameter class width (i.e.
dividing size class totals by the width of the diameter size class in
centimeters).

To summarize size distribution patterns for each variable and
site, we calculated the median, dispersion, and skewness of each
distribution. The median is the DBH at which 50% of the total
stock or flux is below and 50% above. We calculated the disper-
sion as the quartile coefficient of dispersion (dimensionless); that
is, the difference between the third and first quartiles divided by
the sum of the first and third quartiles. We calculated the skew-
ness as Pearson’s first skewness coefficient (dimensionless); that
is, the difference between the mean and median of the distribu-
tion divided by its SD. These summary statistics (median, disper-
sion, and skewness) were calculated based on 1 cm wide diameter
classes. We analyzed the relationship of these summary statistics
(median, dispersion, and skewness) with climate by performing
multiple linear regressions with the MAT and MAP recorded at
each site (Tables 1, S4). MAT and MAP were chosen as climate
variables because they are commonly used, and each was available
on a site-by-site basis. However, these two variables are moder-
ately correlated in our data (Pearson correlation coefficient 0.53).
To evaluate the robustness of our results to the chosen climate
variables, we also performed multiple linear regressions with the
MAT and the Selyaninov hydrothermal coefficient (SHC), an
alternative moisture variable that takes into account the effect of
temperature on evapotranspiration (Table S5). SHC values were
extracted at a 1 km resolution from the CHELSA database

Table 1 Characteristics and mean woody aboveground biomass carbon stocks and fluxes of the focal ForestGEO plots and census intervals.

Site Code Lat. Long.
MAP
(mm)

MAT
(°C)

Area
(ha)

Census
period AGB (Mg ha−1) AWP (Mg ha−1 yr−1) AWM (Mg ha−1 yr−1)

Lenda LE 1.315 28.65 1682 24.3 20.0 2001–2007 482 (460–504) 5.19 (4.94–5.49) 6.72 (5.21–8.33)
Edoro ED 1.560 28.52 1682 24.3 20.0 2001–2007 353 (335–372) 5.23 (4.99–5.55) 3.94 (3.05–4.93)
Pasoh PS 2.980 102.31 1788 27.9 50.0 2005–2010 321 (309–334) 8.27 (8.04–8.53) 9.58 (8.46–10.9)
Amacayacu AM −3.810 −70.27 3215 25.8 25.0 2007–2016 288 (277–299) 4.14 (3.92–4.36) 5.62 (5.07–6.19)
Lambir LM 4.190 114.02 2664 26.6 52.0 2003–2008 518 (501–534) 8.58 (8.37–8.82) 6.57 (5.79–7.45)
Korup KO 5.070 8.85 5272 26.6 50.0 1997–2009 362 (342–382) 4.29 (4.03–4.54) 5.87 (5–6.79)
Danum Valley DA 5.100 117.69 2822 26.7 50.0 2011–2019 342 (325–360) 10.8 (10.3–11.2) 6.99 (5.73–8.5)
Wanang WG −5.250 145.27 3500 26.0 50.0 2010–2017 317 (302–334) 7.76 (7.44–8.12) 10.2 (8.88–11.6)
Sinharaja SI 6.400 80.40 5016 22.5 25.0 2001–2008 530 (502–559) 9.03 (8.57–9.51) 10.8 (8.98–12.6)
Cocoli CO 8.990 −79.62 1950 26.6 4.0 1994–1997 281 (242–321) 6.95 (5.76–8.06) 2.61 (1.34–4.37)
BCI BC 9.150 −79.85 2551 27.1 50.0 2010–2015 288 (276–303) 6.45 (6.23–6.69) 6.64 (6.01–7.38)
San Lorenzo SL 9.280 −79.97 3030 26.2 6.0 1999–2009 303 (271–334) 5.64 (4.99–6.3) 6.77 (5.21–8.73)
Mudumalai MU 11.600 76.53 1255 22.7 50.0 1996–2000 225 (219–231) 4.03 (3.9–4.17) 1.44 (1.18–1.77)
Luquillo LU 18.330 −65.82 3548 22.8 16.0 2011–2016 312 (298–328) 4.2 (4.02–4.39) 4.21 (3.68–4.75)
Palamanui PL 19.740 −155.99 835 20.0 4.0 2008–2014 42.1 (37.4–46.8) 0.454 (0.407–0.498) 0.729 (0.441–1.14)
Laupahoehoe LP 19.930 −155.29 3440 16.0 4.0 2008–2013 414 (366–464) 12.3 (11–13.6) 3.81 (1.98–6.2)
Fushan FU 24.760 121.56 4271 18.2 25.0 2008–2013 202 (195–209) 4.84 (4.67–5.02) 2.4 (2.15–2.69)
Gutianshan GU 29.250 118.12 1964 15.3 24.0 2010–2015 225 (218–233) 5.14 (4.95–5.35) 5.73 (5.38–6.1)
SCBI SC 38.890 −78.15 1001 12.9 25.6 2013–2018 279 (268–290) 4.93 (4.74–5.14) 3.12 (2.61–3.66)
SERC SE 38.890 −76.56 1068 13.2 16.0 2008–2014 273 (253–293) 3.58 (3.28–3.87) 2.65 (1.8–3.74)
Changbaishan CB 42.380 128.08 700 2.9 25.0 2004–2009 302 (294–311) 3.55 (3.37–3.72) 1.79 (1.39–2.27)
MBW MB 42.470 −84.00 857 8.6 23.0 2007–2014 211 (201–221) 4.7 (4.5–4.88) 1.82 (1.46–2.22)
Wabikon WK 45.550 −88.79 805 4.2 25.2 2013–2018 173 (169–178) 3.59 (3.48–3.71) 1.66 (1.43–1.9)
Wind River WR 45.820 −121.96 2495 9.2 27.2 2011–2016 503 (480–530) 3.1 (2.95–3.24) 5.04 (3.98–6.15)
Zofin ZO 48.660 14.71 866 6.2 25.0 2012–2017 300 (285–315) 6.54 (6.19–6.9) 3.07 (2.2–4.02)

MAP, mean annual precipitation; MAT, mean annual temperature; AGB, aboveground biomass (from the initial census of the focal interval); AWP,
aboveground woody productivity; AWM, aboveground woody mortality. MAP and MAT were provided by each site (Anderson-Teixeira et al., 2015b;
Davies et al., 2021). The census period is the total span of the census years included in this study. AGB, AWP, and AWM are from this study (see ‘the
Materials and Methods section’). Values in parentheses correspond to 95% confidence intervals from bootstrapping over 20 m × 20 m quadrats with
1000 replicates. Sites are listed in order of absolute latitude. BCI, Barro Colorado Island; MBW, Michigan Big Woods; SCBI, Smithsonian Conservation
Biology Institute; SERC, Smithsonian Environmental Research Center. A map of study sites is provided in Supporting Information Fig. S1.
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(Karger et al., 2017). We tested for differences between tropical
and temperate forests in the summary statistics (median, disper-
sion, and skewness) for AGB, AWP, and AWM by performing
Wilcoxon signed-rank tests (Table S6). We tested whether the
medians of AGB were larger than the medians of AWP and
AWM by performing Wilcoxon signed-rank tests. To quantify
the importance of small (1 ≤ DBH < 10 cm) and large
(DBH ≥ 60 cm) trees, we calculated their contributions as pro-
portions of total AGB, AWP, and AWM. We also explored two
other definitions of large trees: the top 5% of trees with DBH ≥
10 cm and the largest trees that account for 50% of the stand
AGB (following Lutz et al., 2018; Figs S5, S6; Table S7).

Because of their relevance to understanding the distribution of
AGB, AWP, and AWM with size, we also calculated the follow-
ing variables by aggregated size classes (as defined in Methods
S3): RAWP (% yr−1), defined as the ratio of AWP to AGB;
RAWM (% yr−1), defined as the ratio of AWM to AGB; mean
individual stem AGB (Mg); and mean stem diameter growth
(cm yr−1; Figs S7–S9; Notes S1).

We calculated 95% confidence intervals on all variables by
bootstrapping over 20 m × 20 m quadrats with 1000 replicates.
Static variables, such as AGB, were calculated based on the initial
census of the focal census interval.

Results

Climate and size-related distributions of biomass stocks and
fluxes

The distributions of AGB stocks and fluxes across size classes
peaked at intermediate size classes in all sites, were very uneven,
and varied strongly among sites (Fig. 1). In comparison with the
temperate sites, tropical forests had a greater share of their total
AGB and AWP in the small stems (1 ≤ DBH < 10 cm) and
had more very large stems that store large amounts of AGB but
made relatively smaller contributions to AWP (Fig. 4c). Most
temperate sites (with the exception of Wind River) accumulated
AGB between censuses, and their net change in AGB (calculated
as AWP − AWM) was positive (Fig. S10).

As expected (Hypothesis 1a), dispersion and skewness of AGB
and AWP distributions generally increased with MAT and MAP
(Fig. 2). Multiple regression analyses found significant positive
effects of both MAT and MAP on the dispersion of AGB distri-
butions (Fig. 2a,b) and on the skewness of AWP distributions
(Fig. 2g,h); that is, AGB was more broadly distributed between
size classes, and AWP distributions were more right skewed at
higher MAT and higher MAP. There was also a significant posi-
tive effect of MAT on the dispersion of AWP and AWM distri-
butions (Fig. 2c; Table S4) and a significant positive effect of
MAP on the skewness of AGB distributions (Fig. 2f). MAT and
MAP had no significant effect on the skewness of AWM or the
medians of AGB, AWP, or AWM (Fig. 2; Table S4). Consistent
with these results and with Hypothesis 1b, the dispersion and
skewness of AGB, AWP, and AWM were significantly higher in
tropical vs temperate forests, but the medians were not signifi-
cantly different (Table S6).

Relative aboveground biomass fluxes as a function of tree
size

Across all sites, RAWP decreased with increasing tree size: small
trees had, on average, higher AWP relative to their AGB than
large trees did (Fig. 3a,b), consistent with Hypothesis 2a.
RAWM also decreased with tree size in most sites (Fig. 3c,d),
paralleling the patterns for the stem mortality rate (Fig. S9a;
Notes S1). However, in some tropical sites (Pasoh, Korup,
Wanang, Sinharaja) the curve was U-shaped, with RAWM being
the highest for small and large trees and the lowest for intermedi-
ate tree sizes. In the Zofin temperate site (Czech Republic),
RAWM was particularly low for small trees and increased with
tree size (under 0.3% yr−1 for all diameter classes with DBH <
25 cm; Fig. 3d).

The median of the AGB distribution was greater than (23/25)
or equal to (2/25) the median of the AWP distribution in all 25
sites, and across sites the difference between the medians was sig-
nificantly greater than zero (W-statistic 276; P = 2.85 × 10−5),
consistent with Hypothesis 2b. The AGB median was larger than
the AWM median in 14 of 25 sites, but overall the difference
between the medians of AGB and AWM was not significantly
greater than zero (W-statistic 195.5; P = 0.381).

The roles of large and small trees in biomass stocks and
fluxes

As expected, large trees (DBH ≥ 60 cm) contributed a large frac-
tion to all biomass stocks and fluxes, whereas small trees (DBH <
10 cm) typically contributed < 15% (Fig. 4). Across all sites,
small trees contributed more to AWP than to AGB (Fig. 4a),
with contributions to AWP being typically twice the AGB contri-
butions, consistent with Hypothesis 2c. Conversely, large trees
contributed less to AWP than to AGB (Fig. 4c), consistent with
Hypothesis 2d. Small trees also contributed relatively more to
AWM than to AGB in most sites (Fig. 4b), whereas large trees
contributed similarly to AWM and AGB (Fig. 4d). Results were
qualitatively similar for the two other definitions of large trees:
the largest trees that comprise 50% of the total AGB, and the top
5% of stems ≥ 10 cm (Figs S5, S6; Table S7).

To provide a resource for model benchmarking and simple
comparisons among sites, we calculate size class values of all vari-
ables (AGB, AWP, AWM, and mean stem diameter growth) and
their 95% confidence intervals for standardized diameter classes
of ½1, 5Þ, ½5, 10Þ, ½10, 20Þ, ½20, 30Þ, ½30, 40Þ, ½40, 50Þ, ½50, 100Þ,
½100, 200Þ, and ½200, þ∞Þ cm DBH (Dataset S2) in addition
to the site-specific diameter classes presented in the main text
(Dataset S1).

Discussion

Understanding among-site variation

Our results show that the size-related distributions of AGB stocks
and fluxes associated with growth (AWP) and mortality (AWM)
vary substantially among sites. Climate explained considerable
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among-site variation in the size-related distribution of AWP. In
warmer, wetter climates, the size-related distributions of AGB
and AWP had higher dispersion and were more right skewed
(supporting Hypothesis 1), reflecting the presence of a dense
understory and some very large trees. These results were consis-
tent with results from previous studies (Segura et al., 2002; King
et al., 2006; Lutz et al., 2018) and with expected patterns of
increased growth and survival of small understory trees (Val-
ladares & Niinemets, 2008) as well as very large trees (Koch et

al., 2004; Bennett et al., 2015) in forests with higher water avail-
ability and longer growing seasons. In addition, many temperate
forests have high population densities of deer and other meso-
herbivores (due to missing or reduced abundances of their preda-
tors; Côté et al., 2004; Estes et al., 2011), and browsing by these
herbivores may also contribute to low understory tree densities in
these sites (McGarvey et al., 2013). Another factor that may con-
tribute to the observed patterns is that many of our temperate
sites (which are colder and in many cases have lower precipitation
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Fig. 1 Size-related distributions (% cm−1) of (a, b) aboveground biomass (AGB), (d, e) aboveground woody productivity (AWP), and (g, h) aboveground
woody mortality (AWM) in (a, d, g) tropical and (b, e, h) temperate sites, together with (c, f, i) among-site variation in the dispersion and skewness of
these distributions. Diameter classes for plotting (in a, b, d, e, g, h) vary among sites depending on the number and size distribution of stems (Supporting
Information Methods S3); however, analyses are based simply on 1 cm diameter classes (identical across sites). Dispersion is the quartile coefficient of
dispersion, defined as the difference between the third and first quartiles divided by the sum of the first and third quartiles of the distribution; skewness is
the nonparametric skew, defined as the mean minus the median, divided by the standard deviation. The legend (d, e) lists sites by absolute latitude
(Table 1). The upper limit of the y-axis on graphs of the probability densities (a, b, d, e, g, h) was set to 4.5% cm−1 for easier readability, even though it
truncates the curve for the Palamanui site (a dry forest with a large proportion of small stems); the untruncated graphs are shown in Fig. S11. Graphs for
individual sites, with 95% confidence intervals, are presented in Fig. S10. BCI, Barro Colorado Island; MBW, Michigan Big Woods; SCBI, Smithsonian
Conservation Biology Institute; SERC, Smithsonian Environmental Research Center.
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Fig. 2 Relationships of the dispersion and skewness of aboveground biomass (AGB) and of aboveground woody productivity (AWP) with mean annual
temperature (MAT) and mean annual precipitation (MAP). Colors represent the value of the other climate variable: (a, c, e, g) MAP and (b, d, f, h) MAT.
Lines display estimated effects from the multiple linear regressions dispersion ≈ MAT + MAP and skewness ≈ MAT + MAP, and the associated P-values
for these effects are shown; the regression lines are represented by solid lines when the P-value is < 5% (i.e. the slope is significantly different from zero)
and by dashed lines when the P-value is > 5%. The full results (including results for the dispersion and skewness of AWM and the medians of all the
variables, which have a P-value > 5%) are presented in Supporting Information Table S4.
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than tropical sites; Table 1) are late-succession secondary forests
that might lack very large trees, and thus have less dispersed dis-
tributions of AGB with tree size (Table S2).

Soil substrate, disturbance regime, species composition, and
other factors also influence AGB dynamics and their distribution
as a function of tree size, within and among sites. A more stable
soil substrate (e.g. deeper soils and flatter topography) could
decrease the probability of windthrows, thus allowing trees to
grow larger and dominate biomass fluxes; this effect has been pro-
posed as an explanation of basin-wide variations in Amazonian
forests’ structure (Quesada et al., 2012), and may explain why
small trees dominate biomass dynamics in the Wanang plot that
experiences frequent and severe disturbances (Figs 1, S10; Table
S2; Vincent et al., 2018). Forest composition and diversity are
also expected to have an important role in shaping size-related

distributions of biomass stocks and fluxes (L. Poorter et al.,
2015). For example, Southeast Asian forests dominated by
Dipterocarpaceae had some of the largest trees and highest AWP
among our sites (Danum Valley, Lambir, Pasoh, Sinharaja; Fig.
1; Table 1), even though their environmental conditions were
not distinctive, suggesting potential synergies with ectomycor-
rhizal dominance (Brearley, 2012). Compositional shifts can also
act to reduce differences in size-related distributions of biomass
stocks and fluxes; for example, shifts towards more drought-
tolerant species in drier sites may limit increases in mortality
among large trees (Meakem et al., 2018). These environmental
factors should be evaluated in future studies encompassing more
sites, ideally chosen along independent environmental and distur-
bance gradients to reduce confounding effects of multiple vari-
ables covarying across sites.
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Importance of small trees in aboveground biomass fluxes

Overall, RAWP decreases across tree size classes, consistent with
our expectations (Hypothesis 2a), with previous findings in tropi-
cal and temperate forests (Mencuccini et al., 2005; Kohyama et
al., 2020), and with the expected decrease in photosynthetic activ-
ity (per unit mass; Drake et al., 2010; H. Poorter et al., 2015) and
increase in nonwoody tissue investment (Ryan et al., 2004;
Thomas, 2011) as trees get larger. This pattern was surprisingly
similar across all our sites. This decrease in RAWP with size means
that, consistent with our Hypothesis 2d, larger trees contribute less
to AWP than to AGB, although they still dominate AWP and
show higher absolute growth rates per individual tree (Muller-
Landau et al., 2006a; Stephenson et al., 2014). By contrast, stems

between 1 and 10 cm DBH – which are often omitted from forest
inventories (e.g. Malhi et al., 2002; Ploton et al., 2020) – con-
tribute more to AWP than to AGB (consistent with our Hypothe-
sis 2c), with wide variation in proportional contributions among
sites. Though focusing on large trees has been suggested as an
effective way of reducing sampling effort in forest inventories
(Bastin et al., 2018) and is the default for many remote-sensing
methods that can only measure canopy trees, it could result in
biased estimation of forest biomass (and thus C) fluxes.

Synergies with vegetation demographic models

Dynamic global vegetation models integrated within Earth system
models increasingly include explicit modeling of tree size
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Fig. 4 Proportion of biomass stocks and fluxes in (a, b) small (1 ≤ DBH < 10 cm) and (c, d) large trees (DBH ≥ 60 cm). AGB, aboveground biomass;
AWP, aboveground woody productivity; AWM, aboveground woody mortality; DBH, diameter at breast height. Sites are listed in order of absolute
latitude in the legend and are colored in warm colors (red to green) for tropical sites and in cold colors (green to blue) for temperate sites. Tropical sites are
represented by triangles and temperate sites by circles. Error bars represent 95% confidence intervals after bootstrapping 20 m × 20 m quadrats with
1000 replicates. Dashed lines correspond to (starting from the top): y = 2x, y = x, and y = x/2. The upper limit of the x and y-axes on panels (a) and (b)
has been set to 0.20 for readability reasons; the full graph (including the Palamanui site) is shown in Supporting Information Fig. S12. BCI, Barro Colorado
Island; MBW, Michigan Big Woods; SCBI, Smithsonian Conservation Biology Institute; SERC, Smithsonian Environmental Research Center.
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distributions and demographic processes (Fisher et al., 2018), pre-
senting opportunities for synergies with empirical analyses of size-
structured biomass dynamics. The results presented here provide
valuable benchmarks to evaluate the performance of these models,
especially with respect to size-structured biomass dynamics (Fisher
et al., 2018; Martı́nez Cano et al., 2020). Vegetation demographic
models can also be used to test mechanistic hypotheses for how
potential drivers (climate, soil, stand age, disturbance regime) con-
tribute to differences in observed tree-size-related distributions of
biomass stocks and fluxes. Comparative performance of different
vegetation demographic model formulations against observed tree
size distribution can provide insights into the relative importance
of different processes in shaping size-related biomass dynamics
(Longo et al., 2019; Koven et al., 2020; Martı́nez Cano et al.,
2020). For example, a study applying the vegetation demographic
model FATES to Barro Colorado Island (Panama) found that FATES
overpredicted the abundance of large trees and thus overestimated
forest C stocks (Koven et al., 2020). By contrast, a study applying
the vegetation demographic model LM3PPA-TV, which incorporates
branch turnover and hydraulic constraints on photosynthesis (un-
like FATES) predicted a more realistic tree size distribution at Barro
Colorado Island, as well as in eight other tropical forests (including
6 sites included in this study; Martı́nez Cano et al., 2020).

In particular, among-site variation in size-related distributions
of AWP and AWM may be explained in part by variation in how
crown canopy position (e.g. emergent vs canopy vs understory)
varies with diameter. After all, light availability and microclimate
(e.g. wind speed, temperature, vapor pressure deficit) depend
more on a tree’s relative size, and thus canopy position, than on
its absolute size (Stark et al., 2012; Bachofen et al., 2020; Zell-
weger et al., 2020). Crown illumination or canopy position
explains considerable variation in growth and survival among
trees within sites, including on the Barro Colorado Island plot
(Clark & Clark, 1992; Bohlman & Pacala, 2012). Among-site
variation in how crown canopy position varies with tree size can
itself be explained in large part by variation in tree size distribu-
tions, because the likelihood that a tree of a given size will be in
the canopy depends on the abundance of larger trees. Vegetation
demographic models seek to capture these patterns through algo-
rithms that estimate light availability for trees as a function of
local stand structure (Fisher et al., 2018). These models have
taken a variety of approaches to capturing size-specific AWP and
AWM, from no redistribution of light between trees of different
sizes to perfect plasticity approximation approaches that fill suc-
cessive tree crown layers from the top down and thus lead to
much higher light availability for larger trees (Adams et al.,
2007). Our results on tree abundance and productivity by size
class could be used to refine algorithms used to translate imposed
vertical light distribution into modeled vegetation dynamics, with
the goal of comparing the potential of different algorithms to
capture observed AGB, AWP, and AWM patterns.

Sources of uncertainty

Size-specific patterns of AWP and AWM are variable over time
within sites. This is especially true for AWM, which has a much

larger sampling error and temporal variation than for AWP and
AGB (Muller-Landau et al., 2021), which may explain why there
were fewer significant effects of climate on AWM in our analyses.
Climate variation and periodic disturbances, such as El Niño
events, can alter size-structured mortality and productivity pat-
terns (Meakem et al., 2018). For example, the low mortality of
small stems observed in Zofin can be largely attributed to the
recovery from two winter windstorms in 2007 and 2008 that cre-
ated large gaps in the canopy and, thus, increased productivity
and decreased mortality of small stems (Janı́k et al., 2018). Anal-
yses such as ours that rely on a single 5–10 yr time period may
not adequately represent long-term averages, nor the shorter term
responses to weather events such as wind storms or droughts. In
addition to increasing the frequency and number of censuses,
pairing census data with analyses of the differential climate sensi-
tivities of large and small trees derived from tree-ring analyses
(e.g. McGregor et al., 2021) or long-term dendrometer band
records could reveal how forest productivity and its size structure
vary in response to climatic differences. Furthermore, combining
such analyses with mechanistic modeling could enable us to test
the effects of multiple environmental drivers on the distribution
of biomass stocks and fluxes with tree size.

One major source of uncertainty in the patterns shown here
derives from biomass allometries. AGB, AWP, and AWM were
all calculated from generalized AGB allometric equations that fail
to fully capture among-site (and within-site) variation (Ngo-
manda et al., 2014). Moreover, large trees are usually undersam-
pled in biomass allometric equations, increasing errors in
estimates of their contributions (Burt et al., 2020; Disney et al.,
2020). A crucial step for future research is to improve the accuracy
of allometric equations across tree size classes and forests, or to get
beyond the use of allometric equations altogether by developing
other direct forest biomass estimation methods. One promising
approach involves recently developed methods to nondestruc-
tively estimate tree woody volume, a good proxy for biomass,
from terrestrial LiDAR (Stovall et al., 2018; Disney, 2019).

Future directions

Future work should expand on the results presented here by
assessing how other C stocks and fluxes are distributed with tree
size. Our analysis focuses on estimated AGB, the largest and
longest-lived tree C pool, but not the only one of interest. Leaves,
reproductive organs, and roots are responsible for a large propor-
tion of net primary productivity (Malhi et al., 2011; Anderson-
Teixeira et al., 2021), and allocation of C to these organs varies
with ontogeny and tree size. For example, large trees allocate a
larger proportion of their resources to reproduction than small
trees do (Thomas, 2011). By contrast, small trees allocate a
greater proportion of their C to roots than large trees do (Ledo et
al., 2018). Further, our analysis of woody productivity encom-
passes only net increases in biomass of trees as estimated from
their diameter, missing the woody productivity associated with
branch turnover. Branchfall contributes to a large proportion of
woody turnover (Marvin & Asner, 2016; Ouimette et al., 2018),
and branch loss is expected to be higher for large senescent trees
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(Jans et al., 1993), which may moderate the lower contribution
of large trees to AWP than AGB. Correctly accounting for alloca-
tion to branch turnover is critical to obtaining accurate stand-
level forest dynamics in vegetation models (Martı́nez Cano et al.,
2020), but this is difficult, and no data are available for our forest
plots.

Looking forward, a key question is how climate change will
alter forest biomass stocks and fluxes and their distribution across
tree size. The frequency and intensity of extreme climatic events,
such as droughts, floods, lightning strikes, and cyclones, are
expected to increase in the future (Diffenbaugh et al., 2017; Mar-
sooli et al., 2019). These disturbances will likely increase the
mortality of large-canopy trees (and of understory trees that large
trees damage when they fall) because large trees are more vulnera-
ble to water stress (Bennett et al., 2015), are more exposed to
lightning (Gora et al., 2020), and have lower mechanical stability
(James et al., 2006). Lower abundance of large trees after distur-
bance in turn increases understory light availability, and the
number and woody productivity of smaller trees (Hogan et al.,
2016). However, the effect of increased light availability on the
productivity of small trees adapted to dense forest microclimates
may be limited by more variable precipitation regimes, and by
higher temperatures that increase evaporative demand (Elliott et
al., 2015; Germain & Lutz, 2020; Konapala et al., 2020; Smith
et al., 2020; Muller-Landau et al., 2021). More research is
needed to understand how forest tree size structure and biomass
dynamics are related to climate and, in turn, how forest dynamics
will respond to global climate change. In providing the first
global-scale analysis of tree size structuring of biomass dynamics
in forests, our analyses set a foundation for building better cli-
mate models and understanding the interactions between forests
and future climate change.
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