## **1** Supplementary results

#### 2 Identification of novel bacteriohopanepolyols

Six novel BHPs with the m/z 762.5, 656.5, 771.6, 748.5, 638.5, and 743.6 Da were tentatively 3 identified using MS<sup>2</sup> spectra and molecular formulas derived from accurate masses (Table S2). All 4 5 novel BHPs contained amino or nitro groups and yielded the characteristic fragment at m/z 191.2 6 fragment, indicating ring cleavage of hopanoids not methylated at C-2 or C-3. BHP-762.5  $(C_{43}H_{72}NO_{10}^+, [M+H]^+)$  was tentatively identified as tetra-functionalized, containing three 7 8 hydroxyl groups indicated by consecutive neutral loss of 42/60 (acetylated hydroxyl groups, COCH<sub>2</sub>/CH<sub>3</sub>COOH) and one nitro group (neutral loss of 47). The molecular formula indicates a 9 lack of acetylation at one functional group, which is also observed in other BHPs such as 10 adenosylhopane, and which could be related to steric effects. BHP-656.6 ( $C_{40}H_{66}NO_6^+$ ,  $[M+H]^+$ ) 11 was tentatively identified as a tetra-functionalized BHP bearing an amino group within a lactone 12 13 ring, indicated by neutral losses of 17 (NH<sub>3</sub>) and 44 (CO<sub>2</sub>; Crotti et al., 2005), respectively. The fragmentation pattern of BHP-771.6 ( $C_{46}H_{79}N_2O_7^+$ ,  $[M+H]^+$ ) suggests a tetra-functionalized BHP 14 containing two hydroxyl groups (neutral loss of 42/60), an amino group (neutral loss of 59; Talbot 15 16 et al., 2001), and an ether-bound aminopropanol group indicated by sequential neutral loss of 59 (acetamido;  $C_2H_5NO$ ) plus 58 ( $C_3H_6O$ ). BHP-748.5 ( $C_{42}H_{70}NO_{10}^+$ ) produced a dominant in-source 17 fragment in MS<sup>1</sup> mode at m/z 688.5 (neutral loss of 60). Fragmentation of 688.5 yielded two neutral 18 losses of 60 as well as neutral losses of 75 (CHNO<sub>3</sub>) and 93 (CH<sub>3</sub>NO<sub>4</sub>). Fragmentation spectra thus 19 indicate that BHP-748.5 is tetra-functionalized and contains three hydroxyl groups and a fourth 20 hydroxyl group that is bound to a nitrogen-containing functional group. Based on the neutral loss 21 of 93, we speculate that the nitrogen-containing functional group could be nitroformic acid or 22 nitroperoxymethane. BHP-638.5 could not be identified with confidence due to its low abundance 23

24 and consequent noisy spectra. However, accurate mass analysis suggests a molecular formula of  $C_{40}H_{64}NO_5^+$  ([M+H]<sup>+</sup>) and thus the presence of a nitrogen-containing functional group. BHP-743.6 25 produced a dominant MS<sup>1</sup> in-source fragment at m/z 684.5 (neutral loss of 59). Accurate mass 26 analysis suggests a molecular formula of  $C_{44}H_{75}N_2O_7^+$  ([M+H]<sup>+</sup>), suggesting the presence of two 27 nitrogen-containing functional groups. Fragmentation of m/z 684.5 yielded three neutral losses of 28 60 and a neutral loss of 31 (methylamine, CH<sub>5</sub>N), suggesting that BHP-743.6 is penta-29 functionalized. Presence of one neutral loss of 59 but lack of a second neutral loss of 59 indicates 30 that the second nitrogen-containing group is not acetylated. This suggests that the second nitrogen-31 32 containing group consists of an amino nitrogen bound to the hopanoid backbone and bound to a methyl group that prevents acetylation. BHP-743.6 thus represents a penta-functionalized 33 hopanoid containing three hydroxyl groups, an amino group, and a methylamine group. 34

# **36 Supplementary Datafile captions**

Supplementary Datafile S1 (Supplied as supplementary .xlsx file). Occurrence (+) and absence (-)
of hopanoid biosynthesis genes in AOB and NOB genomes from cultures and environmental
samples (metagenome-assembled genomes and single cell genomes) as well as from closely
related non-nitrifying taxa. Accession numbers, ecological metadata (taxonomy, habitat, Cfixation pathway, metabolism), and references to original work describing genomic data are given.

Supplementary Datafile S2 (Supplied as supplementary xlsx file). Sheet 1: Average relative 42 abundance (%, +/- standard deviation, values below 0.01 rounded to 0.01) of 43 bacteriohopanepolyols in triplicate cultures of nitrite-oxidizing bacteria grown under different 44 conditions. b.d., below detection. Standard deviations omitted for experiments performed without 45 replicates (Nitrobacter vulgaris and Nitrococcus mobilis with pseudovitamin B<sub>12</sub>). Sheet 2: 46 Average relative abundance (%, +/- standard deviation, values below 0.01 rounded to 0.01) of 47 bacteriohopanepolyols (BHPs) and diploptene/methylated diploptene in tripliate cultures of nitrite-48 49 oxidizing bacteria grown under different conditions. b.d., not detected. Standard deviations omitted for experiments performed without replicates (Nitrobacter vulgaris and Nitrococcus 50 *mobilis* with pseudovitamin  $B_{12}$ ). Sheet 3: Average abundance of total hopanoids (BHPs + 2-Me 51 Diploptene + 2-Me BHPs) in triplicate cultures normalized to mmol  $NO_2^-$  oxidized. Standard 52 deviations omitted for experiments performed without three replicates (Nitrobacter vulgaris and 53 54 Nitrococcus mobilis with pseudovitamin  $B_{12}$  as well as NO<sub>2</sub>-limited and O<sub>2</sub>-limited experiments

55 with *Nitrococcus mobilis* and *Nitrospina gracilis*).

# 56 Supplementary tables and figures

57 Table S1. Growth characteristics of nitrite-oxidizing bacteria in batch cultures (n.a., not available).

| Studio                       | Crowth condition                                            | NO <sub>2</sub> -oxidation |
|------------------------------|-------------------------------------------------------------|----------------------------|
| Strain                       | Growth condition                                            | rate (mM d <sup>-1</sup> ) |
| Nitrospira marina 295        | Autotrophic, early stationary                               | $0.22 \pm 0.05$            |
| Nitrospira marina 295        | Autotrophic, late stationary                                | n.a.                       |
| Nitrospira marina 295        | Autotrophic, methionine, early stationary                   | $0.11 \pm 0.07$            |
| Nitrospira marina 295        | Autotrophic, vitamin B12, early stationary                  | $0.3 \pm 0.14$             |
| Nitrospira marina 295        | Mixotrophic, early stationary                               | $0.58\pm0.11$              |
| Nitrospira lenta BS10        | Autotrophic, early stationary                               | n.a.                       |
| Nitrospira defluvii A17      | Autotrophic, early stationary                               | n.a.                       |
| Nitrospira moscoviensis M-1  | Autotrophic, early stationary                               | n.a.                       |
| Nitrospina gracilis Nb-3/211 | Autotrophic, early stationary                               | $0.74 \pm 0.01$            |
| Nitrospina gracilis Nb-3/211 | Autotrophic, methionine, early stationary                   | $0.74\pm0.01$              |
| Nitrospina gracilis Nb-3/211 | Autotrophic, vitamin B12, early stationary                  | $0.74\pm0.02$              |
| Nitrococcus mobilis 231      | Autotrophic, early stationary                               | $1.16\pm0.26$              |
| Nitrococcus mobilis 231      | Autotrophic, late stationary                                | n.a.                       |
| Nitrococcus mobilis 231      | Autotrophic, methionine, early stationary                   | $1.2 \pm 0.01$             |
| Nitrococcus mobilis 231      | Autotrophic, vitamin B12, early stationary                  | $1.25 \pm 0.1$             |
| Nitrobacter vulgaris AB1     | Autotrophic, mid-growth phase                               | $1.89\pm0.07$              |
| Nitrobacter vulgaris AB1     | Autotrophic, early stationary                               | $2.14 \pm 0.1$             |
| Nitrobacter vulgaris AB1     | Autotrophic, methionine, early stationary                   | $2.34\pm0.08$              |
| Nitrobacter vulgaris AB1     | Autotrophic, vitamin B12, early stationary                  | $2.62\pm0.05$              |
| Nitrobacter vulgaris AB1     | Autotrophic, vitamin B12/methionine/light, early stationary | $2.66\pm0.22$              |
| Nitrobacter vulgaris AB1     | Mixotrophic, early stationary                               | n.a.                       |
| Nitrobacter vulgaris AB1     | Heterotrophic aerobic, early stationary                     | n.a.                       |
| Nitrobacter vulgaris AB1     | Heterotrophic anaerobic, early stationary                   | n.a.                       |

58

60 Table S2. Growth characteristics of *Nitrobacter vulgaris* AB1 in chemostat experiments under NO<sub>2</sub><sup>-</sup>-limited

| 61 | and O <sub>2</sub> -limited conditi | ons (average of tripl | icates $\pm 1\sigma$ standa | ard deviation | ; b.d., be | low detec   | ction $\sim < 0.1$ | ppm). |
|----|-------------------------------------|-----------------------|-----------------------------|---------------|------------|-------------|--------------------|-------|
|    | -                                   |                       |                             | ~             | ~          | <del></del> |                    |       |

|                                                      | NO <sub>2</sub> <sup>-</sup> -limited | O <sub>2</sub> -limited |
|------------------------------------------------------|---------------------------------------|-------------------------|
| O <sub>2</sub> dissolved, inflow (ppm)               | $8.6\pm0.2$                           | $8.6 \pm 0.2$           |
| O <sub>2</sub> dissolved, reactor (ppm)              | $6 \pm 0.2$                           | b.d.                    |
| NO <sub>2</sub> <sup>-</sup> dissolved, inflow (mM)  | 10                                    | 10                      |
| NO <sub>2</sub> <sup>-</sup> dissolved, reactor (mM) | $0.009\pm0.002$                       | $5.82\pm0.14$           |
| Medium volume, reactor (L)                           | 2.0                                   | 2.0                     |
| Medium inflow rate (ml min <sup>-1</sup> )           | 0.443                                 | 0.443                   |
| Growth rate (h <sup>-1</sup> )                       | 0.013                                 | 0.013                   |
| Doubling time (h)                                    | 52.2                                  | 52.2                    |

- 64 Table S3. Growth characteristics of Nitrospina gracilis Nb-211 and Nitrococcus mobilis Nb-231 in
- 65 chemostat experiments under NO<sub>2</sub><sup>-</sup>-limited and O<sub>2</sub>-limited conditions (average of quadruplicates  $\pm 1\sigma$
- 66 standard deviation; b.d., below detection).

|                                                                                           | N. gr                          | acilis                         | N. ma                          | obilis                         |
|-------------------------------------------------------------------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|
|                                                                                           | NO2 <sup>-</sup> -limited      | O <sub>2</sub> -limited        | NO2 <sup>-</sup> -limited      | O <sub>2</sub> -limited        |
| NO <sub>2</sub> <sup>-</sup> dissolved, inflow (mM)                                       | 2.0                            | 2.0                            | 2.0                            | 2.0                            |
| NO <sub>2</sub> <sup>-</sup> dissolved, outflow (mM)                                      | b.d.                           | 1.1                            | b.d.                           | 1.1                            |
| Medium volume, reactor (L)                                                                | 2.0                            | 2.0                            | 2.0                            | 2.0                            |
| Medium in-/outflow rate (ml min <sup>-1</sup> )                                           | 0.37                           | 0.37                           | 0.37                           | 0.37                           |
| Growth rate (h <sup>-1</sup> )                                                            | 0.011                          | 0.011                          | 0.011                          | 0.011                          |
| Doubling time (h)                                                                         | 62.5                           | 62.5                           | 62.5                           | 62.5                           |
| Cell concentration (cells ml <sup>-1</sup> )                                              | $1.04\pm0.21\times10^{8}$      | $0.86\pm0.14	imes10^8$         | $1.83\pm0.46\times10^{8}$      | $2.76\pm0.62\times10^8$        |
| Specific NO <sub>2</sub> <sup>-</sup> ox. rate (fmol cell <sup>-1</sup> d <sup>-1</sup> ) | $20.0\pm4.8$                   | $10.1 \pm 1.7$                 | $11.5 \pm 2.9$                 | $3.2 \pm 0.7$                  |
| Growth yield (cells mol NO <sub>2</sub> <sup>-</sup> ox. <sup>-1</sup> )                  | $5.19 \pm 1.05 \times 10^{13}$ | $1.01 \pm 1.59 \times 10^{14}$ | $9.13 \pm 2.28 \times 10^{13}$ | $3.20 \pm 0.71 \times 10^{14}$ |

69 Table S4. Observed mass, predicted mass, predicted sum formula, measurement error inferred from

70 predicted and observed masses, and double-bond equivalents (Dbl. eq.) of base peak (underlined) and major

71 fragment ions in MS<sup>2</sup> spectra of novel BHPs from *Nitrobacter vulgaris* AB1 and *Nitrococcus mobilis* 231.

| Compound  | I Ion                                                                                                                                                 | Observed<br>mass (Da) | Predicted<br>mass (Da) | Predicted<br>formula                    | Error<br>(ppm) | Error<br>(mDa) | Dbl. eq. |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------------------|-----------------------------------------|----------------|----------------|----------|
| BHP-762.5 | $[M+H]^+$                                                                                                                                             | 762.5101              | 762.5151               | $C_{43}H_{72}NO_{10}{}^{+}$             | 6.5            | 5.0            | 8.5      |
|           | $[M-CH_3COOH]^+$                                                                                                                                      | 702.4886              | 702.4939               | $C_{41}H_{68}NO_8^+$                    | 7.6            | 5.3            | 8.5      |
|           | [M-CH <sub>3</sub> COOH-CH <sub>2</sub> CO] <sup>+</sup>                                                                                              | 660.4766              | 660.4834               | $C_{39}H_{66}NO_7^+$                    | 10.3           | 6.8            | 7.5      |
|           | [M-2xCH <sub>3</sub> COOH-CH <sub>2</sub> CO] <sup>+</sup>                                                                                            | 600.4557              | 600.4622               | $C_{37}H_{62}NO_5^+$                    | 10.9           | 6.6            | 7.5      |
|           | [M-2xCH <sub>3</sub> COOH-CH <sub>2</sub> CO-NO <sub>2</sub> H] <sup>+</sup>                                                                          | 553.4653              | 553.4615               | $C_{37}H_{61}O_{3}^{+}$                 | -6.8           | -3.8           | 7.5      |
|           | [M-3xCH <sub>3</sub> COOH-CH <sub>2</sub> CO-NO <sub>2</sub> H] <sup>+</sup>                                                                          | 493.4438              | 493.4404               | $C_{35}H_{57}O^+$                       | -6.9           | -3.4           | 7.5      |
|           | $[M-3xCH_3COOH-CH_2CO-NO_2H-H_2O]^+$                                                                                                                  | 475.4339              | 475.4298               | $C_{35}H_{55}^{+}$                      | -8.6           | -4.1           | 8.5      |
| BHP-656.5 | 5 [M+H] <sup>+</sup>                                                                                                                                  | <u>656.4950</u>       | 656.4885               | $C_{40}H_{66}NO_{6}^{+}$                | -10            | -6.5           | 8.5      |
|           | [M-CO <sub>2</sub> ] <sup>+</sup>                                                                                                                     | 612.5040              | 612.4986               | $C_{39}H_{66}NO_4^+$                    | -8.8           | -5.4           | 7.5      |
|           | [M-CO <sub>2</sub> -CH <sub>3</sub> COOH] <sup>+</sup>                                                                                                | 552.4824              | 552.4775               | $C_{37}H_{62}NO_2^+$                    | -8.9           | -4.9           | 7.5      |
|           | [M-CO <sub>2</sub> -2xCH <sub>3</sub> COOH] <sup>+</sup>                                                                                              | 492.4600              | 492.4564               | $C_{35}H_{58}N^{\scriptscriptstyle +}$  | -7.4           | -3.6           | 7.5      |
|           | $[M-CO_2-2xCH_3COOH-NH_3]^+$                                                                                                                          | 475.4363              | 475.4298               | $C_{35}H_{55}^+$                        | -13.6          | -6.5           | 8.5      |
| BHP-771.6 | 5 [M+H] <sup>+</sup>                                                                                                                                  | 771.5944              | 771.5882               | $C_{46}H_{79}N_2O_7^+$                  | -8.1           | -6.2           | 8.5      |
|           | [M-CH <sub>3</sub> CONH <sub>2</sub> ] <sup>+</sup>                                                                                                   | 712.5506              | 712.5511               | $C_{44}H_{74}NO_{6}^{+}$                | 0.7            | 0.5            | 8.5      |
|           | [M-CH <sub>3</sub> CONH <sub>2</sub> -CH <sub>3</sub> CHCH <sub>2</sub> O] <sup>+</sup>                                                               | 654.5143              | 654.5092               | $C_{41}H_{68}NO_5^+$                    | -7.8           | -5.1           | 8.5      |
|           | [M-CH <sub>3</sub> CONH <sub>2</sub> -CH <sub>3</sub> CHCH <sub>2</sub> O-CH <sub>3</sub> COOH] <sup>+</sup>                                          | 594.4902              | 594.4881               | $C_{39}H_{64}NO_{3}^{+}$                | -3.6           | -2.1           | 8.5      |
|           | $[M-CH_3CONH_2-CH_3CHCH_2O-2xCH_3COOH]^+$                                                                                                             | 534.4707              | 534.4669               | $C_{37}H_{60}NO^{\scriptscriptstyle +}$ | -7             | -3.8           | 8.5      |
|           | [M-CH <sub>3</sub> CONH <sub>2</sub> -CH <sub>3</sub> CHCH <sub>2</sub> O-2xCH <sub>3</sub> COOH-<br>CH <sub>3</sub> CONH <sub>2</sub> ] <sup>+</sup> | 475.4352              | 475.4298               | $C_{35}H_{55}^{+}$                      | -11.3          | -5.4           | 8.5      |
| BHP-748.5 | 5 [M+H] <sup>+</sup>                                                                                                                                  | 748.4982              | 748.4994               | $C_{42}H_{70}NO_{10}^{+}$               | 1.6            | 1.2            | 8.5      |
|           | $[M-CH_3COOH]^+$                                                                                                                                      | 688.4800              | 688.4783               | $C_{40}H_{66}NO_8^+$                    | -2.5           | -1.7           | 8.5      |
|           | [M-2xCH <sub>3</sub> COOH] <sup>+</sup>                                                                                                               | 628.4577              | 628.4572               | $C_{38}H_{62}NO_{6}^{+}$                | -0.9           | -0.5           | 8.5      |
|           | [M-3xCH <sub>3</sub> COOH] <sup>+</sup>                                                                                                               | 568.4321              | 568.4360               | $C_{36}H_{58}NO_4^+$                    | 6.9            | 3.9            | 8.5      |
|           | [M-3xCH <sub>3</sub> COOH-CHNO <sub>3</sub> ] <sup>+</sup>                                                                                            | 493.446               | 493.4404               | $C_{35}H_{57}O^+$                       | -11.4          | -5.6           | 7.5      |
|           | [M-3xCH <sub>3</sub> COOH-CH <sub>3</sub> NO <sub>4</sub> ] <sup>+</sup>                                                                              | 475.4311              | 475.4298               | $C_{35}H_{55}^{+}$                      | -2.7           | -1.3           | 8.5      |
| BHP-638.5 | 5 [M+H] <sup>+</sup>                                                                                                                                  | <u>638.4823</u>       | 638.4779               | $C_{40}H_{64}NO_5^+$                    | -6.9           | -4.4           | 9.5      |
| BHP-743.6 | 5 [M+H] <sup>+</sup>                                                                                                                                  | 743.5651              | 743.5569               | $C_{44}H_{75}N_2O_7^+$                  | -11.1          | -8.2           | 8.5      |
|           | [M-CH <sub>3</sub> CONH <sub>2</sub> ] <sup>+</sup>                                                                                                   | <u>684.5213</u>       | 684.5198               | $C_{42}H_{70}NO_{6}^{+}$                | -2.2           | -1.5           | 8.5      |
|           | [M-CH <sub>3</sub> CONH <sub>2</sub> -CH <sub>3</sub> COOH] <sup>+</sup>                                                                              | 624.5041              | 624.4986               | $C_{40}H_{66}NO_4^+$                    | -8.7           | -5.5           | 8.5      |
|           | [M-CH <sub>3</sub> CONH <sub>2</sub> -2xCH <sub>3</sub> COOH] <sup>+</sup>                                                                            | 564.4848              | 564.4775               | $C_{38}H_{62}NO_2^+$                    | -12.9          | -7.3           | 8.5      |
|           | $[M-CH_3CONH_2-3xCH_3COOH]^+$                                                                                                                         | 504.4550              | 504.4564               | $C_{36}H_{58}N^+$                       | 2.7            | 1.4            | 8.5      |
|           | [M-CH <sub>3</sub> CONH <sub>2</sub> -3xCH <sub>3</sub> COOH-CH <sub>3</sub> N] <sup>+</sup>                                                          | 473.4252              | 473.4142               | $C_{35}H_{53}^{+}$                      | -23.3          | -11            | 9.5      |

- 72
- 73

Table S5. Absence (-) of marker genes for the aerobic (*cobF*, *cobG*) and anaerobic (*cbiD*, *cbiG*)
cobalamin biosynthesis pathways as well as genes for cobalamin-dependent (*metH*) and
cobalamin-independent (*metE*) methionine synthase in seven species of nitrite-oxidizing bacteria,
indicating lack of cobalamin biosynthesis in four of these organisms. Presence of marker genes
was determined through blast (Altschul et al., 1990) analysis using protein query sequences from *Salmonella typhimurium* LT2, *Escherichia coli* K12, *Pseudomonas denitrificans*, and

*Halobacterium salinarum.* 

|                             | cobF | cobG | cbiD | cbiG | metE | metH |
|-----------------------------|------|------|------|------|------|------|
| Nitrospira marina 295       | -    | -    | -    | -    | -    | +    |
| Nitrospina gracilis 3/211   | -    | -    | -    | -    | -    | +    |
| Nitrobacter vulgaris AB1    | -    | -    | -    | -    | +    | +    |
| Nitrococcus mobilis 231     | -    | -    | -    | -    | +    | +    |
| Nitrospira defluvii A17     | -    | -    | +    | +    | -    | +    |
| Nitrospira lenta BS10       | -    | -    | +    | +    | -    | +    |
| Nitrospira moscoviensis M-1 | -    | -    | +    | +    | -    | +    |





Phase 2: Oxygen-limited (nitrite-replete)



- **Fig. S1.** The chemostat setup used to grow *N. gracilis, N. mobilis and N. vulgaris* in continuous
- culture under nitrite-limited and oxygen-limited conditions.



86

Fig. S2. Phylogenetic tree of hopanoid C-2 (*hpnP*) and C-3 (*hpnR*) methylase homologues in
bacteria. Colors indicate nitrite-oxidizing bacteria (NOB; red), ammonia-oxidizing bacteria (AOB;
cyan), and complete ammonia-oxidizing bacteria (comammox; purple). Strains where presence of
C-2 or C-3 methyl hopanoids was tested and detected are highlighted in bold (based on this study
and Rohmer et al., 1984; Welander et al., 2010; Welander and Summons, 2012; Kool et al., 2014;
Sinninghe Damsté et al., 2017) and strains that were not tested are set in normal font. Circles
indicate branches with >85% support based on 500 bootstrap analyses. The scale bar represents 1

94 substitution per amino acid.

|       | Rhodopseudomonas palustris TIE-1 | DV  | A F M P P Q G L              | LV I AA                | YLPI   | D E <mark>W</mark> S | VRF  | DEN  | I RA <mark>A</mark> | TAD            | F AW.  | AD <mark>A</mark> I | VFV         | S GMH I Q | RQQ                  | MNDIC | CR <mark>RA</mark> F | DFDL | . PVA          | LGGPSV                 | ACPD  | YYPI    | FDYL                   | H∀GI   | ELGDAT | DQ  | I AK L    | THD  | -VT   | R P K F | R <mark>QV</mark> V  | FTTE    | DRL           |
|-------|----------------------------------|-----|------------------------------|------------------------|--------|----------------------|------|------|---------------------|----------------|--------|---------------------|-------------|-----------|----------------------|-------|----------------------|------|----------------|------------------------|-------|---------|------------------------|--------|--------|-----|-----------|------|-------|---------|----------------------|---------|---------------|
|       | Methylorubrum extorquens PA1     | GV  | (AFMPPQG <mark>L</mark>      | L L <mark>I A</mark> A | YM P   | etwe                 | CRF  | DEN  | I R P A             | SAKD           | F AW   | AD <mark>A</mark> ۱ | VFV         | S GMH I Q | <b>R</b> EG <b>Q</b> |       | SR <mark>RAH</mark>  | AAGI | (VAA           | L GGP S V S            | GAPEI | K Y P I | F D Y L                | h∨gi   | EIGDAT | DR  | LIEIL     | DRD  | – L S | R P A/  | a <mark>qv</mark> v  | L D T K | ERL           |
| co.   | Methylobacterium organophilum    | GV  | < AFMP PQG L                 | L L I AA               | YM P I | e A <b>w</b> e       | CRF  | DEN  | I RR <mark>A</mark> | G P A <b>D</b> | F AW   | AD <mark>A</mark> ۱ | VFV         | S GMH I Q | Q E P Q              | THDI  | RD <mark>R</mark> AF | AAGI | (VTV           | L GGP SV:              | GAPE  | KYG     | FD <mark>YL</mark>     | HIGI   | GDAT   | DQ  | VAR L     | DGD  | -VT   | P P P C | o <mark>qv</mark> v  | LETK    | DRL           |
| cteri | Rhodovolum sp. PH10              | RVI | RALMP PQG <mark>L</mark>     |                        | S L P  | < S <mark>W</mark> E | VRL  | DEN  | I R P A             | TRD            | F L W  | AD <mark>A</mark> ۱ | V L V       | TGMHAQ    |                      | TEET  | er <mark>ra</mark> f | ALGF | RTTV           | L GGS SV               | ACRE  | FYP     | S F <mark>D Y L</mark> | h∨gi   | ELGDAT | DA  |           | AKD  | – P S | R P D F | R <b>QV</b> V        | LETR    | ERR           |
| oba   | Bradyrhizobium sp. BTAi1         | GI  | a f m p p q g <mark>l</mark> | L L <mark>I A</mark> A | Y L P  | s s <b>w</b> q       | VRF  | DEN  | RAA                 | QAED           | E AW.  | AE <mark>A</mark> ۱ | VFV         | S GMH I Q |                      | MNDIC | oq <mark>raf</mark>  | AFDI | . PVA          | LGGPSV                 | ACPD  | YYP     | S FDYL                 | h∨gi   | ELGDAT | DE  |           | ARD  | – P S | R P E C | 2 <mark>97</mark> 7  | L R T K | ERV           |
| rote  | Beijerinckia indica              | GVI | KAFMP PQG <mark>L</mark>     | lv <mark>ias</mark>    | VMP    | ANWD                 | VRF  | DEN  | /QA <mark>A</mark>  | STED           | F L W  | AD <mark>۷</mark> ۱ | V F V       | S GMH I Q |                      | IEDIF | RR <mark>RA</mark> F | AQGI | cvvv           | LGGPSV                 | ACPH  | YYP)    | AFD <mark>YL</mark>    | h∨gi   | ELGDAT | ΕK  |           | AKD  | - I S | R P E G | 2 <mark>97</mark> 7  | LKTE    | TRR           |
| hap   | Oligotropha carboxidovorans      | G۷  | < A F M P P Q G L            | L L <mark>I A</mark> A | ALP    | P S W S              | VRF  | DEN  | I R S A             | TDAD           | E AW   | AE <mark>A</mark> ۱ | VFV         | SGMHIQ    | R K Q                |       | CR <mark>RAH</mark>  | EAEF | RVVA           | L GGP SV               | ACPD  | YYPI    | E F D <mark>Y L</mark> | нı gi  | ELGDAT | EE  | E F V R L | AD D | -VA   | R P P F | R <b>QV</b> A        | L TTH   | IE <b>R</b> L |
| Alp   | Methylocella silvestris          | GV  | (AFMPPQG <mark>L</mark>      | l∨ <mark>iaa</mark>    | ALP    | 2 H <b>W</b> G       | VRF  | DEN  | /KR <b>A</b>        | SAAD           | F AW.  | AD <mark>A</mark> ۱ | VFV         | S GMH I Q |                      | MEDIO | CA <mark>RAH</mark>  | EQGI | ( P V A        | L GGP S V S            | AAPE  | QYP/    | A F D Y L              | h∨gi   | ELGDAT | EA  | LIELI     | AR D | -vs   | R P P F | R <mark>Q I</mark> I | L K T K | DRR           |
|       | Afipia felis                     | GV  | < AFMP PQG L                 | L L <mark>I</mark> AA  | ALPI   | e g <b>w</b> s       | VRF  | DEN  | I RA <mark>A</mark> | TDED           | F E W. | AE <mark>A</mark> ۱ | V F V       | SGMHIQ    | RKQ                  |       | CR <mark>R</mark> AH | EHDI | РТА            | L GGP SV               | ACPD  | YYPI    | E F D <mark>Y L</mark> | HIGI   | EMGDAT | DD  | FARL      | SAD  | -РТ   | R P K F | R <b>QV</b> M        | LETH    | IE <b>R</b> L |
|       | Nitrobacter vulgaris             | GV  | QAFMPPQG <mark>L</mark>      | L L <mark>I AA</mark>  | Y L P  | A D <b>W</b> N       | VRF  | DEN  | RFA                 | TNED           | F E W. | AE <mark>A</mark> ۱ | VFV         | SGMHIQ    |                      | MNDIC | er <mark>ra</mark> f | AFNI | . P V A        | L GGP S V S            | ACPD  | YYP     | T F D <mark>Y L</mark> | h∨gi   | ELGDAT | DD  |           | ARD  | – P S | R P R S | s <b>qv</b> v        | LKTA    | .DR L         |
|       | Leptolyngbya boryanaCCAP 1462/2  | v   | AFMPPQGL                     | L I VAA                | YLP    | S E WD               | VRF  | DEN  | I R P A             | SRAD           | YRW.   | ADVI                | VIV         | SGMHIQ    | RPQ                  |       | ALA                  | QAG  | (TV            | GGPSV                  | GCPE  | YYP     | FDIL                   | HLGI   | ELGDAS | DR  | 41 E Y L  | DRH  | - H E | RPTO    | R <b>Q</b> I R       | FETV    | DRL           |
|       | Cyanothece sp. PCC 7425          | DV  | RAFMPPQGI                    |                        | YMP/   | A SWE                | VRLV | DEN  | /TP <b>A</b>        | TEAD           | YRW    | ADVI                | <b>V</b> IT | S GMH I Q | RPQ                  |       |                      | IRLG | (LTV           | VGGPSV                 | GCPE  | YYP     | FDIL                   | HLGI   | ELGDAT | DR  | ALEY P    | DLH  | GST   | RP P/   | <b>Q</b> LR          | FETU    | ERL           |
|       | Nostoc punctiforme               | NV  | RAFMPPQGI                    |                        | YLP    | 2 K W E              | VRF  | DEN  | /KSA                | TRAD           | Y QW   | ADA                 | viv         | S GMH I Q | 2K P Q               |       | NEL AF               | RAG  | <b>(   T</b> ) | v <mark>ggpsv</mark> : | GCPE  | YYPI    | E F D I L              | HLGI   | ELGDAS | DR  |           | DQN  | – L E | R P Q F | R <mark>Q</mark> I R | FETK    | ERL           |
| eria  | Cyanothece sp. PCC 7822          | NV  | R G F M P P Q G I            | LVVAA                  | YLP    | 5 Q <b>WE</b>        | VRF  | DEN  | I T L A             | кккр           | Y QW.  | ADVI                | viv         | S GMH I Q | RPQ                  |       |                      | AEG  | (TV            | GGPSV                  | GCPE  | YYP     | FDLL                   | H I GI | ELGDAT | DE  | аткут     | DRH  | -HQ   | RPA/    | <b>Q</b> I R         | FETR    | ERL           |
| acte  | Prochlorothrix hollandica        | RV  | AFMPPQG I                    | L V V A S              | YLPI   | EEWE                 | VRF  | DEN  | (QP <mark>A</mark>  | ктар           | Y RW.  | ADV                 | нт          | SGMHIQ    | R P Q                |       | NEKAH                | RQG  | ( I T L        | VGGP SV                | GCPE  | YYP     | FDLI                   | h∨gi   | ELGDAT | DA  | итенц     | DHS  | - I D | R P P S | 5 <b>q</b> I R       | FETK    | DRL           |
| anot  | Cyanothece sp. PCC 7424          | GV  | AFMPPQG I                    | LV <mark>V</mark> AA   | YLP    | 2QWE                 | VRF  | DEN  | A E A               |                | YRW.   | ADVI                | viv         | S GMH I Q | QRPQ                 |       | NDLA                 | REN  | (LTV           | v GGP S V :            | ACPE  | YYP     | FDI                    | QIGI   | ELGDGT | DQ  | ALEY I    | DRY  | -CQ   | R P E F | ( <b>Q</b>   C       | FETK    | DRL           |
| Š     | Scytonema hofmannii              | RV  | RAFMPPQGI                    | L V V A A              | YLP    | < <b>QWE</b>         | VRF  |      | /RS <mark>A</mark>  | ĸĸsd           | YRW    | ADA                 | I V         | S GMH I Q | REQ                  |       |                      | TEG  | (TV            | VGGP SV:               | GCPE  | YYPI    | FDIL                   | HLGI   | EMGDAT | DQ  |           | ртн  | -TT   | RP E P  | QIR                  | FETK    | ERL           |
|       | Gloeobacter violaceus            | sv  | RAFMPPQGI                    |                        | YLP    | 4QWE                 | VRF  | DEN  | /IR P A             | R S E D        | Y RW.  | ADAY                | v i v       | S GMH I Q | RPQ                  |       | NEL AH               | RWG  | <b>(   T</b> A | LGGPSV                 | GCPE  | YYP     | FDLI                   | нı GI  | ELGDAT | DR  | ALEY I    | DMH  | - T E | R P A S | 5 <b>Q</b> MR        | FETA    | ERL           |
|       | Gloeobacter kilauensis           | v   | RAFMPPQGI                    |                        | YVP    | A SWE                | VRF  | IDEN | I R P A             | RMS D          | Y QW.  | ADAY                | <b>V</b> IA | S GMH I Q | RRQ                  |       | 5DL AH               | RWG  | <b>(   T</b> A | VGGPSV                 | GCPE  | YYP     | FDLI                   | HIGI   | ELGDAT | DQI | LIEY      | DLH  | - S E | R P A / | <b>Q</b> I R         | LETK    | ERL           |
|       |                                  |     |                              |                        |        |                      |      |      |                     |                |        |                     |             |           |                      |       |                      |      |                |                        |       |         |                        |        |        |     |           |      |       |         |                      |         |               |

**Fig. S3.** Alignment of the cobalamin-binding domain of HpnP amino acid sequences from selected

alphaproteobacteria and cyanobacteria. Highlighted are residues conserved in  $\geq$ 90% of either

99 cyanobacteria (green) or alphaproteobacteria (yellow). Also highlighted are residues universally

- 100 conserved in both clades (blue).
- 101

96

## 102 **References**

- Altschul S. F., Gish W., Miller W., Myers E. W. and Lipman D. J. (1990) Basic local alignment search
   tool. *Journal of Molecular Biology* 215, 403–410.
- Crotti A. E. M., Lopes J. L. C. and Lopes N. P. (2005) Triple quadrupole tandem mass spectrometry of
   sesquiterpene lactones: a study of goyazensolide and its congeners. *Journal of Mass Spectrometry* 40, 1030–1034.
- Kool D. M., Talbot H. M., Rush D., Ettwig K. and Sinninghe Damsté J. S. (2014) Rare
   bacteriohopanepolyols as markers for an autotrophic, intra-aerobic methanotroph. *Geochimica et Cosmochimica Acta* 136, 114–125.
- Rohmer M., Bouvier-Nave P. and Ourisson G. (1984) Distribution of Hopanoid Triterpenes in
   Prokaryotes. *Microbiology* 130, 1137–1150.
- Sinninghe Damsté J. S., Rijpstra W. I. C., Dedysh S. N., Foesel B. U. and Villanueva L. (2017) Phenoand Genotyping of Hopanoid Production in Acidobacteria. *Frontiers in Microbiology* 8.
  Available at: http://journal.frontiersin.org/article/10.3389/fmicb.2017.00968/full [Accessed October 9, 2018].
- Talbot H. M., Watson D. F., Murrell J. C., Carter J. F. and Farrimond P. (2001) Analysis of intact
   bacteriohopanepolyols from methanotrophic bacteria by reversed-phase high-performance liquid
   chromatography–atmospheric pressure chemical ionisation mass spectrometry. *Journal of Chromatography A* 921, 175–185.
- Welander P. V., Coleman M. L., Sessions A. L., Summons R. E. and Newman D. K. (2010) Identification
   of a methylase required for 2-methylhopanoid production and implications for the interpretation
   of sedimentary hopanes. *Proceedings of the National Academy of Sciences* 107, 8537–8542.

- 124 Welander P. V. and Summons R. E. (2012) Discovery, taxonomic distribution, and phenotypic
- characterization of a gene required for 3-methylhopanoid production. *Proceedings of the National Academy of Sciences* 109, 12905–12910.