
In-Memory Acceleration for General Data Parallel Applications

by

Daichi Fujiki

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in the University of Michigan
2022

Doctoral Committee:

Associate Professor Reetuparna Das, Chair
Professor Scott A. Mahlke
Professor Trevor N. Mudge
Professor Dennis Sylvester

Daichi Fujiki

dfujiki@umich.edu

ORCID iD: 0000-0001-7949-0417

© Daichi Fujiki 2022

ACKNOWLEDGMENTS

The completion of this study could not have been possible without the expertise and guidance

of my advisor, Dr. Reetuparna Das. Reetu was always willing and enthusiastic to assist and

encourage me throughout the research project, and her deep insights in this field have made the

inspiring experience for me. I would also like to give my warmest thanks to my co-advisor, Dr.

Scott A. Mahlke, for his engagement and input throughout this in-memory computing project.

Aside from my dissertation project on in-memory computing architecture, I enjoyed working

on genome sequencing acceleration projects. I owe a deep sense of gratitude to Dr. David Blaauw

and Dr. Satish Narayanasamy for their support on the genomics projects.

I greatly acknowledge the funding received towards my PhD from the Nakajima Foundation.

Thanks to Dr. Kohei Itoh and Dr. Masahiro Ono, who enlightened me on the career path with PhD

in my freshman year.

I am extremely thankful to my labmate and my friend, Arun Subramaniyan, for his pioneering

spirit, encouragement, and kindness. Discussions with the lab members in Mbits research group

were always exciting and led to new ideas and directions. Thanks to Harini, Vidushi, Xiaowei,

Charlie, Kush, Nate, Shunhao, Jack, Tim, Hari, Yufeng, and Ali!

Finally, I must express my very profound gratitude to my family. I would like to give special

thanks to my wife Haruka Fujiki and my parents as a whole for their continuous support and

understanding. This dissertation stands as a testament to your patience, unconditional love, and

encouragement.

ii

TABLE OF CONTENTS

Acknowledgments . ii

List of Figures . v

List of Tables . vii

Abstract . viii

Chapter

1 Introduction . 1

2 Background . 8

2.1 In-SRAM Computing . 9
2.2 In-ReRAM Computing . 11
2.3 In-DRAM Computing . 15
2.4 Near-Memory Computing . 17

3 In-Memory Computing with Resistive RAM . 21

3.1 General Purpose In-ReRAM Computing . 21
3.1.1 Design Goals . 22

3.2 Processor Architecture . 24
3.2.1 Micro-architecture . 25
3.2.2 Instruction Set Architecture . 26
3.2.3 Precision and Signed Arithmetic . 29

3.3 Programming Model . 30
3.4 Execution Model . 32
3.5 Compiler . 34

3.5.1 Supporting Complex Operations . 35
3.5.2 Compiler Optimizations . 36

3.6 Methodology . 38
3.7 Results . 40

3.7.1 Configurations Studied . 40
3.7.2 Operation Study . 41
3.7.3 Application Study . 42
3.7.4 Effect of Compiler Optimizations . 45
3.7.5 Memory Lifetime . 46

iii

3.8 Summary . 46

4 In-Memory Computing with SRAM . 47

4.1 In-SRAM Computing . 47
4.1.1 Challenges and Opportunities . 48
4.1.2 Benefits . 49

4.2 System Stack . 50
4.2.1 ISA . 51
4.2.2 Programming Model . 56
4.2.3 Execution Model and Architecture . 57
4.2.4 Compiler . 60
4.2.5 Cache Partitioning . 63

4.3 Methodology . 63
4.4 Results . 65

4.4.1 Configurations Studied . 65
4.4.2 Performance . 66
4.4.3 Performance without Host-Device Transfer 69
4.4.4 Deep Dive of Applications . 70
4.4.5 Impact of Optimizations . 71
4.4.6 Energy . 73

4.5 Summary . 73

5 Multi-Layer In-Memory Computing . 74

5.1 Challenges and Opportunities . 74
5.1.1 GNNs and Dynamism in Workload . 75
5.1.2 Motivation . 78

5.2 Multi-Layer In-Memory Processing . 80
5.2.1 Architecture Overview . 80
5.2.2 Kernel Mapping . 82
5.2.3 Scheduler . 88
5.2.4 Performance Prediction . 95

5.3 Methodology . 98
5.4 Results . 99

5.4.1 Configurations Studied . 99
5.4.2 GNN Performance . 100
5.4.3 Multiprogramming . 105

5.5 Summary . 107

6 Conclusion . 108

Bibliography . 111

iv

LIST OF FIGURES

Figures

2.1 Neural Cache architecture [1]. 9
2.2 ReRAM cell and array architecture (adopted from [2]). (a) Conceptual view of a

ReRAM cell; (b) I-V curve of bipolar switching; (c) schematic view of a crossbar
architecture. 12

2.3 In-memory computing in ReRAM (adopted from [3]). 12
2.4 Triple Row Activation (TRA) [4] . 15

3.1 In-Memory Processor Architecture. (a) Hierarchical Tiled Structure (b) ReRAM array
Structure . 24

3.2 In-situ ReRAM array operations. 24
3.3 Execution Model. 33
3.4 Compilation Flow. 34
3.5 Node Merging. 34
3.6 IB Expansion. 34
3.7 Operation throughput (log scale). 41
3.8 Addition Latency. 41
3.9 Multiplication Latency. 41
3.10 Operation energy. 41
3.11 Kernel speedup. 41
3.12 CPU Application performance. 41
3.13 Energy consumption. 43
3.14 Average power. 43
3.15 Compiler optimizations. 43

4.1 Neural Cache architecture [1]. 49
4.2 In-SRAM floating point addition overview. The mantissa (mnt) is normalized with

the difference in exponents (exp) using a search operation. 53
4.3 In-Cache SIMT execution model and architecture overview. 57
4.4 Frontend architecture. 57
4.5 Compilation tool flow. CUDA source code is first compiled by NVIDIA CUDA com-

piler (nvcc). Duality Cache compiler extracts PTX assembly from CUDA executable
and generates DC-PTX code. OpenACC program is compiled by an OpenACC com-
piler which generates GPU code that is then compiled by nvcc. 60

4.6 System performance. GPU:GDDR5+memcpy, DC:DDR4. 66
4.7 Kernel performance. GPU:GDDR5, DC:GDDR5. 67

v

4.8 Energy efficiency (system). 68
4.9 Control Block Utilization. 69
4.10 Average speedup. 69
4.11 Kernel launch patterns (time vs. #CTAs) of bfs(top) and lud(bottom) and CPU

Hybrid execution. 69
4.12 Average operation latency. 69
4.13 Effect of compiler optimizations. 71
4.14 Effect of different cache allocation size. 71

5.1 Operations in GCN . 76
5.2 Node distribution of 3-hop subgraphs (ogbl-citation2). 78
5.3 Energy, latency, and parallelism characteristics of various memory technologies. . . . 79
5.4 GNN workflow in bit-serial architecture. 83
5.5 Data reuse patterns of SpMM. 86
5.6 Resource Constrained Project Scheduling Problem (RCPSP). Multi-layer in-memory

computing has another dimension for resource (memory) type. 90
5.7 Analytical model for allocation suggestions. 93
5.8 tSRAM/tReRAM vs. nnz(x)/H128(x). 97
5.9 Kernel performance (ogbl-citation2). 101
5.10 SpMM performance (ogbl-citation2). 101
5.11 Kernel speedups (ogbl-citation2). 101
5.12 Application performance. 102
5.13 Application energy. 102
5.14 Allocation breakdown (execution time weighted). 102
5.15 Scheduler performance (ogbl-citation2). 103
5.16 Performance compared to theoretical best (perfect job balancing). 104
5.17 Resource scaling. 105
5.18 Performance of single IMP app execution. 106
5.19 Performance of multiple IMP app execution. 106
5.20 Scheduling comparison for IMP apps. 106

vi

LIST OF TABLES

Tables

2.1 Comparison of various memory technologies. 8

3.1 In-Memory Compute ISA. The instructions use operand addresses specified by either
<src>, <dst> or <gaddr>. The <src> and <dst> is a 8-bit local address (1-bit indicates
memory/register + 7-bit row number/register number). The <gaddr> is a 4 byte global
address (12-bit tile # + 6-bit array # + 7-bit row # + reserved bits). The <imm> field
is a 16 byte immediate value. 26

3.2 Supported TensorFlow Nodes. (⋆ has restrictions on function/data dimension.) 30
3.3 Evaluated workloads. Numbers in bracket indicates size of respective x,y,z dimen-

sions . 38
3.4 In-Memory Processor Parameters . 39
3.5 Comparison of CPU, GPU, and IMP Parameters . 40
3.6 (1) IB latency (cycles) and # of IBs for different optimization targets. (2) Lifetime . . 44

4.1 Supported in-cache arithmetic operations. (∗ = This work. n = #of bits of datatype. k =
iteration count.) . 52

4.2 Benchmark server configuration. 64
4.3 Evaluated workloads. (acc = OpenACC Benchmark) 64
4.4 Duality Cache parameters. 65

5.1 Dataset details. 98
5.2 MLIMP configurations . 99

vii

ABSTRACT

General purpose processors and accelerators including system-on-a-chip and graphics process-

ing units are composed of three principal components: processor, memory, and interconnection of

these two. This simple but powerful architecture model has been the basis of computer architec-

ture for decades. However, the recent data-intensive trend in computation workloads has observed

bottlenecks in this fundamental paradigm of computers. Studies show that data communication

takes 1,000× time and 40× power compared to arithmetic performed in the processors.

Processing-in-Memory (PIM) has long been an attractive idea that has the potential to break

the well known memory wall problem. PIM moves compute logic near the memory, and thereby

reduces data movement. In contrast, certain memories have been shown that they can morph them-

selves into compute units by exploiting the physical properties of the memory cells, making them

intrinsically more efficient than PIM. Modern computing systems devote a large portion (more than

90%) of aggregate die area for passive memories; thus, re-purposing them for active computing

units brings substantial benefits. However, prior work has only provided low-level interfaces for

computation or relied on a manual mapping of machine learning kernels to the compute-capable

memories. The main goal of this dissertation is to extend the compute capability of memory arrays

and make them applicable to a wide range of data-parallel applications.

First, a processor architecture is proposed that re-purposes resistive memory to support data-

parallel in-memory computation. The proposed execution model seeks to expose the available

parallelism in a memory array by supporting a programming model that merges the concepts of

data-flow and vector processing. This is empowered by a compiler that transforms Data Flow

viii

Graphs of tensor programs to a set of data-parallel code modules with memory ISA. Second, this

dissertation presents Duality Cache architecture that flexibly transforms caches on demand into an

in-memory accelerator that can execute arbitrary data-parallel programs. The proposed architec-

ture adopts the SIMT execution model and uses CUDA/OpenACC framework as the programming

frontend. We develop a backend compiler that compiles PTX, the intermediate representation for

CUDA, for the proposed architecture. Finally, this dissertation presents a multi-layer in-memory

computing framework. In-memory computing can be implemented across multiple layers of the

memory hierarchy, and in such a system figuring out the right place to compute is an important

question to be answered. We propose a framework that determines the appropriate level of memory

hierarchy for in-memory computing and maximizes resource utilization.

We compare the performance and energy efficiency of our in-memory accelerators with server

class CPU and GPU using variety of data-parallel applications. Our experimental results show that

in-ReRAM computing achieves 7.5× average speedup for PARSEC applications and in-SRAM

computing achieves 3.6× average speedup for Rodinia applications. Multi-layer in-memory com-

puting can provide an overall speedup of 4.8× for Graph Neural Networks applications with a

significant workload dynamism. Our multi-faceted approaches, mainly composed of enhanced

arithmetic operations, parallel programming models with compilers, and parallel execution mod-

els, unlock massive compute capabilities and energy efficiency of in-memory computing for gen-

eral data-parallel applications.

ix

CHAPTER 1

Introduction

Evolution in computer hardware has been boosted by technology scaling and architectural innova-

tions. While the phenomenal growth in computer hardware has been sustained by microfabrication

advancement in the circuit followed by Moore’s law combined with Dennard scaling, the golden

age of technology scaling has been ceased, leading to poor voltage scaling and rising chip power

density. Microarchitecture in general purpose processors has been matured, and architectural in-

novations have started to taper off. To attain further efficiency, specialization is the key.

There has been a rich body of work that exercises the idea of hardware specialization. Graphics

Processing Unit (GPU) and System-on-Chip (SoC) are representative examples of remarkable suc-

cess. GPUs first appeared as a key enabler of richer graphics interfaces and applications, providing

APIs that drive fixed function units and programmable shader processors. Later, their abundant

parallel computation resources have been exploited for general purpose parallel computing and

enabled today’s compute intensive workloads such as machine learning.

As digital devices become ubiquitous and more data is gathered and processed, data-centric

applications dominate today’s computing, and specialization for this important domain has been

demanded. These workloads exhibit high data level parallelism and deal with a large amount

of data. Thus, the performance of data-centric applications depends critically on efficient access

and processing of data. The target of this works is to seek and design a specialized data-centric

computing system.

General purpose processors and accelerators including GPUs follow Von-Neumann architec-

1

ture. It is composed of three main components: processor, memory, and interconnection of these

two. While this simple but powerful model has been the basis of computer architecture since the

very first computer was invented, the recent data-centric trend in computation has witnessed bot-

tlenecks in this fundamental paradigm of computers. Some study shows that processors expend

1,000× time and 40× power on data communication compared to arithmetic. The well known

“memory wall” problem originally referred to the problem of growing disparity in speed between

fast processors and slow memories. While architects have tried a variety of strategies to overcome

the memory wall by exploiting locality and building deeper memory hierarchies, it has not solved

the fundamental problem behind the data communication. To achieve efficiency in data-centric

applications, a paradigm shift from the one that decouples memory from computation is essential.

In a modern general purpose computing system, a large portion (more than 90%) of the ag-

gregate die area is devoted to memory systems in the memory hierarchy (on-chip caches, main

memory, and storage class memory). For instance, SRAMs are utilized as low-latency temporary

storage and occupy a large fraction (over 70%) of the CPU’s die area. The latest Intel’s server

class Xeon processors devote more than 30MB SRAM just for the last level cache (LLC). This

work targets to transform these large passive memory modules into active computation units for

general data-centric applications by repurposing the elements used in the memory cells and the

peripheral circuits.

Moving Computation Closer to Memory For decades, Processing-in-Memory (PIM) has been

an attractive idea that has the potential to break the memory wall. PIM moves compute logic near

the memory by leveraging technologies such as 3D stacking, and thereby reduces data movement.

In contrast, certain memories have been shown that they can morph themselves into compute units

by exploiting the physical properties of the memory cells, making them intrinsically more efficient

than PIM.

Enabling in-place computing in memory without transferring data outside unlocks massive par-

allelism and computation horsepower thanks to dense memory arrays, in addition to significantly

2

reduced the data communication cost. Bitline computing is one of the representative methods to

enable in-memory computing. By simultaneously activating multiple wordlines, the voltage or

current on a bitline changes based on the contents of the activated memory cells sharing the same

bitline. By reading them out with a special peripheral circuit, several important operations are

accomplished. Recent works have leveraged compute capability of SRAM, DRAM, and NVMs

to perform bitline computing and to accelerate compute and data intensive applications such as

machine learning.

While compute-capable memories offer significant benefits, previous work has only provided

a low-level interface for in-memory operation or relied on a manual mapping of machine learning

kernels to the memory arrays. This work extends the compute capability of the memory arrays,

and makes them applicable to a wide range of data-parallel applications. As GPGPU general-

izes GPU’s shader architecture, this work seeks to design general in-memory computation system

stacks, primarily for SRAM and emerging NVMs, to make in-memory computing accessible to a

wide range of data-parallel programs.

Towards General Data-Parallel Computing in Memory We envision that large SRAM persists

in modern processors as a crucial enabler of high performance computing, and NVMs will achieve

popularity as the next generation main or storage-class memory. Given a wide spectrum of mem-

ories that feature small latency or large memory density, re-purposing them into a general vector

processing unit will provide ample opportunities for a variety of applications to reap the benefits

of in-situ computing. To that end, the holistic approach of in-memory computation stack is es-

sential.We design simple but powerful memory ISA, execution model that can expose ILP, DLP,

and TLP, and compilers that take advantage of the in-memory parallelism and transform high level

arithmetic operations in TensorFlow or CUDA/OpenACC programs into low-level memory ISA.

This software stack approach is mostly agnostic to the underlying memory technologies and thus

can broadly help develop a software stack for in-memory computing on a spectrum of emerging

memory technologies.

3

This work demonstrates that the holistic approach to general in-memory computing provides

a huge efficiency gain for general data-parallel programs. It is unlocked by exposing the large

thread/SIMD resources of in-memory computing to the kernels. For example, our Resistive RAM

(ReRAM) based in-memory SIMD accelerator can expose 2 million SIMD slots, and cache based

in-memory bit-serial processor can support 1,146,880 parallel floating-point operations at 3.5%

processor die area overhead for a Xeon E5-2697 with 35MB cache. This is orders of magnitude

higher than server class CPUs (e.g., Xeon E5-2597 has 448 slots) and GPUs (e.g., Titan-Xp has

3840 slots).

Barebone compute memories can provide limited functionalities. For example, compute SRAM

supports vector logical operations (and, or, nor, xor, comparison, and not), search, data migration

(copy and swap), and compute ReRAM supports analog dot-product computing of the input volt-

ages and cell conductance following Ohm’s and Kirchhoff’s laws. To enable general purpose

computing, this work extends the memory arrays to support in-situ operations beyond the basic

computation primitives and design a simple but powerful ISA.

The execution model and programming model need to be carefully designed, considering hard-

ware complexity, network resource requirements, and programming flexibility. To exploit the den-

sity of ReRAM, our ReRAM based accelerator employs a VLIW SIMD execution model using

TensorFlow as the programming frontend. The execution model exposes DLP by unrolling and

vectorizing tensors, and ILP by a compiler-assisted instruction scheduler. We parameterize the

number of processing elements assigned to each vector element to balance resource usage for ILP

and DLP. Moreover, TensorFlow serves as a powerful programming model for general purpose

programs, not limiting itself to machine learning. With its powerful programmability and wide

compatibility of the user frontend and hardware backend, Tensor Flow has grown in popularity

as a programmer-oriented Domain Specific Language (DSL). It achieves programmer friendliness

(e.g., programmers do not have to learn DSL for each backend architecture), while exposing paral-

lelism explicitly and providing opportunities for fine-grained optimizations for each backend and

compiler, including ours.

4

On the other hand, for SRAM based acceleration, the SIMT model was chosen as the pro-

gramming and execution model. We observe and demonstrate that SIMT serves as a powerful

and flexible programming model for data parallel programs with irregular memory access patterns

or divergent execution flow. In addition, since CUDA/OpenACC are popular and widely used

frameworks across different fields from scientific computing to machine learning, leveraging it for

in-cache computing architecture with direct translation or trivial source code changes will archive

great portability and opportunity to use the existing software. Moreover, having independent Coop-

erative Thread Arrays (CTAs) entails minimum network resources for inter-thread communications

that happen locally within a CTA, which avoids over provisioning of hardware resources to handle

all communication patterns and execution order enforcement. This work shows that a variety of

parallel programs written in CUDA/OpenACC can be ported for in-memory acceleration.

In-memory computing can be implemented across multiple layers of the memory hierarchy.

In such a multi-layer in-memory system, it is necessary to determine the appropriate memory

layer to perform computation, as different memory substrates have different characteristics and

trade-offs. We observe that efficient job processing in multi-layer in-memory computing cannot

be accomplished without careful job scheduling and performance prediction to maximize resource

utilization. To this end, we design a framework to take full advantage of multi-layer in-memory

computing, using architecture models, static and dynamic workload analysis, and a job scheduler.

In summary, this work offers the following contributions:

In-Memory Computing with ReRAM

• IMP, a processor architecture that re-purposes resistive memory to support data-parallel in-

memory computation, is designed. In the proposed architecture, memory arrays store data

and act as vector processing units. ReRAM memory array is extended to support in-situ

operations beyond the dot product and design a simple ISA with limited compute capability.

• A compiler that transforms DFGs in Google’s TensorFlow to a set of data-parallel modules

and generates module code in the native memory ISA is developed for IMP. The compiler

5

implements several optimizations to exploit underlying hardware parallelism and unique

features/constraints of ReRAM-based computation.

• Although the in-memory compute ISA is simple and limited in functionality, it is demon-

strated that with a good programming model and compiler, it is possible to off-load a large

fraction of general-purpose computation to memory. For instance, it can execute in memory

an average of 87% of the PARSEC applications studied.

In-Memory Computing with SRAM

• Duality Cache architecture that re-purposes caches on demand to data-parallel accelerators

capable of executing arbitrary programs is designed. The proposed architecture adopts the

SIMT execution model. Cache data arrays act both as vector processing units and register

files. Each thread supports in-order VLIW instructions.

• Duality Cache features a Turing complete ISA similar to NVIDIA’s PTX [5]. SRAM arrays

are extended to support floating point operations and leverage the dynamic range of operands

to reduce bit-serial operation latency. In-SRAM transcendental functions (sin, cos, etc.) are

supported using CORDIC algorithms [6, 7].

• A compiler backend that translates CUDA/OpenACC programs to native Duality Cache ISA

is developed. The compiler implements several optimizations to enhance parallelism and

efficiency within the constraints of in-cache computation, exploiting the unique architectural

features.

Multi-Layer In-Memory Computing

• We design multi-layer in-memory computing that re-purpose multiple memories in the mem-

ory hierarchy on demand for applications with workload dynamism and diverse compute

intensity. The proposed architecture offers a common programming interface and the ability

to co-exist in-memory computing with a general cache or memory system.

6

• We conduct a detailed workload analysis for Graph Neural Networks (GNNs) in in-memory

processors and show an interesting case study where GNNs can significantly benefit from

multi-layer in-memory computing. We design a kernel mapping of GNN’s critical kernels

such as GEMM and SpMM for in-memory computing. We also show general data-parallel

applications can benefit from multi-layer in-memory computing.

• Efficient job processing in multi-layer in-memory computing cannot be accomplished with-

out careful job scheduling and performance prediction to maximize the resource utilization.

We develop heuristics for the job scheduler using an analytical scaling model and a neural

network based performance predictor.

The remainder of this dissertation is as follows. We discuss the background and related research

work in Chapter 2. Following that, we describe our proposed research in ReRAM based in-memory

computing in Chapter 3 and SRAM cache based in-memory computing in Chapter 4. Then, we

propose our multi-layer in-memory computing scheme in Chapter 5. Finally, we conclude the

dissertation in Chapter 6.

7

CHAPTER 2

Background

Modern computing systems have a deep and complex memory hierarchy that comprises different

memory technologies. Such composition is targeted to exploit spatial and temporal locality of

memory access that commonly exists in many workloads. Each memory has different features

and tradeoffs, which are adopted to enable area hungry but fast cache system (SRAM), cheap and

dense main memory (DRAM), and slow but dense, non-volatile storage class memory (NVMs).

Table 2.1 summarises the features of different memory technologies. In-memory computing has

been explored in multiple memory substrates, and in this chapter, we will present important base-

line in-memory computing techniques for SRAM, DRAM, and ReRAM, showing representative

innovations that enabled in-memory computing. The in-memory computing paradigm is also com-

pared with near-memory computing.

Table 2.1: Comparison of various memory technologies.

SRAM DRAM NAND Flash NOR Flash PCM STT-MRAM ReRAM

Cell area (F 2) >100 6-10 <4 (3D) 10 4-20 6-50 ≤2

Voltage (V) <1 <1 <10 <10 <3 <2 <3

Read time ∼1 ns ∼10 ns ∼10 µs ∼50 ns <10 ns <10 ns <10 ns

Write time ∼1 ns ∼10 ns 100 µs - 1 ms 10 µs - 1 ms ∼50 ns <10 ns <10 ns

Write energy (J/bit) ∼1 fJ ∼10 fJ ∼10 fJ 100 pJ ∼10 pJ ∼0.1 pJ ∼0.1 fJ

Retention N/A ∼64 ms >10 y >10 y >10 y >10 y >10 y

Endurance > 1016 > 1016 > 104 > 105 108 ∼ 1015 > 1015 108 ∼ 1012

Multibit 1 1 >4 >4 >2 1 2-7

Non-volatility No No Yes Yes Yes Yes Yes

F: Feature size of lithography

8

(a) 18-core Xeon processor
45 MB LLC

(b) 2.5MB LLC slice (c) 8kB SRAM array (d) Bitline ALU

18 LLC slices 5760 arrays 1,474,560 ALUs

WLBit-Slice 3
Bit-Slice 2
Bit-Slice 1
Bit-Slice 0
Bit-Slice 3
Bit-Slice 2
Bit-Slice 1
Bit-Slice 0

R
o

w

d
e

co
d

e
r

s

0

255

255

= A + B

BL/BLB

Logic

A
rr

ay
 A

A
rr

ay
 B

0
1
1
0

0
0
1
1

1
0
0
1A

 +
 B

360 ways

Way 1

Way 20
Way 19

C
B

O
X

TMU
Way 2

� ��

�
�

���

���

���	

���

���

����

�������

����

�	 �	

�
�
�

���

���

�� ��� �
����

 ��!�"�
���
�

��

�	

�
� ���	

�����������������

Figure 2.1: Neural Cache architecture [1].

2.1 In-SRAM Computing

Static RAM (SRAM) is one of the important types of memory used widely in today’s computer

systems. Data stored is static, and periodic refreshing is not needed. Data in SRAM is also volatile.

SRAMs are used for the on-chip cache and register files of most of the modern processors. SRAM

has larger and more complex bit cells compared to other types of memories. Therefore, SRAM

has lower data density and higher manufacturing cost, and is usually used for memory structures

with smaller capacity. However, the access speed of SRAM is faster than other memories. Thus,

SRAM is suitable for the high-speed cache and registers that are in the top part of the memory

hierarchy. In-SRAM computing has its unique advantages over other memory-centric acceleration

approaches, such as cost, technology friendliness, and flexibility.

In-SRAM computing activates multiple wordlines of SRAM arrays and performs logic or arith-

metic operations on vertically aligned bit cells within a column. Compute Caches [8] introduces an

in-cache computation framework that supports copy, zeroing, xor, compare, and search.

Jeloka et al. [9] shows data corruption due to multi-row access is prevented by lowering the word-

line voltage to bias against write of SRAM array. Their measurement across 20 test chips fabricated

using 28 nm technology demonstrates no data corruption even with activating 64 word-lines simul-

taneously for in-place computation. They also demonstrate the stability of six sigma robustness,

equivalent to industry standard robustness against process variation, by Monte Carlo simulation.

Logic operations can be sequenced to perform arithmetic operations. Neural Cache [1] ex-

pands on compute cache’s logical operation capabilities to support arithmetic operations inside the

9

SRAM arrays for machine learning workloads. Neural Cache vertically aligns operands in each

bitline and perform computation in a bit-serial manner. As opposed to bit-parallel computing,

which processes multiple bits in a single data word, bit-serial computing processes bit-by-bit, tak-

ing multiple cycles to produce results. However, bit-serial computing can store carries in a latch

along the bitline, saving the complexity of communication for carry propagation across bitlines

and allowing to support configurable precision. Data is transposed by a transpose memory unit

(TMU) placed in the cache control box [1]. TMU design is based on an 8T SRAM array.

Data is vertically mapped to each bitline. Each n-bit element is stored across n wordlines, and

thus each wordline holds one bit-slice of 256 vector elements as shown in Figure 2.1 (c). The bits

in each bit-slice are of the same bit position of the data type.

By activating two word-lines in the SRAM, we are able to sense logical and at bit-

line (BL) and logical nor at bit-line complement (BLB). Note, a re-configurable differential

senseamp [8] is used to sense BL and BLB independently. A 1-bit full adder can be implemented

using a few extra gates at the peripheral as shown in Figure 2.1 (d). When activating two wordlines,

the values in each wordline are added together with the carry in the latch, and a new sum and carry

are generated. The sum can be written to a different wordline in the same cycle. By adding each

bit iteratively, we can perform the addition of two n bit numbers in n cycles. Multiplication takes

n2 + 3n− 2 cycles and is implemented as a series of additions of partial products.

Bit-serial computing in cache provides massive throughput. In the above SRAM architecture,

256 bit-lines in one 8 KB SRAM array are turned into 256 bit-line ALUs in a vector unit, and 5760

such 8 KB arrays in a 45MB LLC transform to 1,474,560 bit-serial ALUs (Figure 2.1) operating

at a frequency of 2.5 GHz when computing. Note, while a 45 MB LLC cache access from the

cores takes 20-30 ns, the smaller 8 KB SRAM arrays can themselves operate at a frequency up to

4 GHz [10].

10

2.2 In-ReRAM Computing

Emerging non-volatile memories (NVMs) have been an attractive memory substrate due to their

high density and the potential to replace DRAM main memory. Some advanced technologies of

non-volatile memories use programmable resistive elements referred to as memristors.

Memristors are characterized by linear current-voltage (IV) characteristics called memristance.

Memristance is defined in terms of the relationship between magnetic flux linkage Φm and the

amount of charge that has flowed q, characterized by the following memristance function, which

describes the charge-dependent rate of change of flux with charge:

M(q) =
dΦm

dq
. (2.1)

Using the time integral of voltage V (t) = dΦm/dt and the time integral of current I(t) = dq/dt,

we obtain,

M(q(t)) =
dΦm/dt

dq/dt
=

V (t)

I(t)
, (2.2)

V (t) = M(q(t))I(t). (2.3)

By regarding memristance as charge-dependent resistance, we obtain a similar relationship as

Ohm’s law

V (t) = R(t)I(t), (2.4)

and by solving for current as a function of time,

I(t) = V (t)/R(t) = V (t)G(t). (2.5)

Various memristors use material systems that exhibit thermal or ionic resistive switching effects,

such as phase-change chalcogenides and solid-state electrolytes. By applying a sufficiently high

voltage, the memristor cell forms conductive filaments, which enables it to transition between high

11

resistance (reset) state and low resistance (set) state. This internal state change is retained without

power, providing non-volatility. The data is read by injecting the reference voltage and sensing

the current from the memristor cell through the bitline, following the relationship of Equation 2.5.

Due to the linear IV characteristics of memristor (Figure 2.2 (b)), one cell can be programmed to

2n different states (typically n is 1 ∼ 5), and decode n bit data by sensing the current magnitude.

In other words, a memristor cell can function as a multi-level cell (MLC) device.

Voltage

SET

RESET

(b)(a) (c)

HRS (‘0’)
Wordline

Cell

B
itl

in
e

Top electrode

Metal oxide

Bottom electrode

Voltage
C

ur
re

n
t

LRS (‘1’)

Figure 5.1: ReRAM cell and array architecture (adopted from [77]). (a) Conceptual view of a
ReRAM cell; (b) I-V curve of bipolar switching; and (c) schematic view of a crossbar architec-
ture.

(a) Multiply-accumulate operation (b) Vector-matrix multiplier

Shift & Add

ADC

S&H

DAC

DAC

DAC

DAC

S&H S&H S&H

V1

G1

G2

V2

I2 = V2.G2

I1 = V1.G1

I = I1 + I2 =

V1.G1 + V2.G2

Figure 5.2: In-memory computing in ReRAM (adopted from [78]).

Equation (5.5). Due to the linear IV characteristics of memristor (Figure 5.1b), one cell can
be programmed to 2n different states (typically n is 1–5), and decode n-bit data by sensing the
current magnitude. In other words, a memristor cell can function as a multi-level cell (MLC)
device.

The linear IV characteristics of memristors are further exploited for in-memory computa-
tion in the analog domain (Figure 5.2). Changing the reference voltage within the region below
the threshold voltages for set and reset still holds the memristance in Equation (5.3). As Equa-
tion (5.5) explains, the bitline current can be interpreted as the result of the multiplication of cell
conductance and the input voltage. Furthermore, by activating multiple rows, currents that flow
from different memristor cells sharing a bitline accumulate in the bitline, following Kirchhoff ’s
law. This analog computing capability of memristors is first proposed for accelerating neural

Figure 2.2: ReRAM cell and array architecture (adopted from [2]). (a) Conceptual view of a
ReRAM cell; (b) I-V curve of bipolar switching; (c) schematic view of a crossbar architecture.

Voltage

SET

RESET

(b)(a) (c)

HRS (‘0’)
Wordline

Cell

B
itl

in
e

Top electrode

Metal oxide

Bottom electrode

Voltage
C

ur
re

n
t

LRS (‘1’)

Figure 5.1: ReRAM cell and array architecture (adopted from [77]). (a) Conceptual view of a
ReRAM cell; (b) I-V curve of bipolar switching; and (c) schematic view of a crossbar architec-
ture.

(a) Multiply-accumulate operation (b) Vector-matrix multiplier

Shift & Add

ADC

S&H

DAC

DAC

DAC

DAC

S&H S&H S&H

V1

G1

G2

V2

I2 = V2.G2

I1 = V1.G1

I = I1 + I2 =

V1.G1 + V2.G2

Figure 5.2: In-memory computing in ReRAM (adopted from [78]).

Equation (5.5). Due to the linear IV characteristics of memristor (Figure 5.1b), one cell can
be programmed to 2n different states (typically n is 1–5), and decode n-bit data by sensing the
current magnitude. In other words, a memristor cell can function as a multi-level cell (MLC)
device.

The linear IV characteristics of memristors are further exploited for in-memory computa-
tion in the analog domain (Figure 5.2). Changing the reference voltage within the region below
the threshold voltages for set and reset still holds the memristance in Equation (5.3). As Equa-
tion (5.5) explains, the bitline current can be interpreted as the result of the multiplication of cell
conductance and the input voltage. Furthermore, by activating multiple rows, currents that flow
from different memristor cells sharing a bitline accumulate in the bitline, following Kirchhoff ’s
law. This analog computing capability of memristors is first proposed for accelerating neural

Figure 2.3: In-memory computing in ReRAM (adopted from [3]).

The linear IV characteristics of memristors are further exploited for in-memory computation

in the analog domain (Figure 2.3). Changing the reference voltage within the region below the

threshold voltages for set and reset still holds the memristance in Equation 2.3. As Equation 2.5

12

explains, the bitline current can be interpreted as the result of the multiplication of cell conductance

and the input voltage. Furthermore, by activating multiple rows, currents that flow from different

memristor cells sharing a bitline accumulate in the bitline, following Kirchhoff’s law. This analog

computing capability of memristors is first proposed for accelerating neural network workloads of

which computation is dominated by multiply-accumulate (MAC) operations that compose dense

matrix multiplications. For example, in such a system, weights are stored as the conductance of

memristor cells, and a voltage proportional to the input activation is applied across the cells. The

accumulation is performed in each bitline, as described above.

ReRAM is one of the representative memory technologies using memristors. Since ReRAMs

have been introduced [11], several works have leveraged its dot-product computation functionality

for neuromorphic computing [12, 13]. ISAAC [3] and PRIME [2] utilize ReRAMs to accelerate

several Convolutional Neural Networks (CNNs). ISAAC proposes a full-fledged CNN accelerator

with a carefully designed pipelining and precision handling scheme. PRIME studies a morphable

ReRAM based main memory architecture for CNN acceleration. PipeLayer [14] further supports

training and testing of CNN by introducing an efficient pipelining scheme. Aside from CNN accel-

eration, ReRAM arrays have been used for accelerating Boltzmann machine [15] and perception

network [16]. While it has been shown analog computation in ReRAM can substantially accelerate

the machine learning workloads, none have targeted general purpose computing exploiting the ana-

log computation functionality of ReRAM. Pinatubo [17] modifies the peripheral sense-amplifier

circuitry to accomplish logical operations like AND and OR in NVMs. While this approach ap-

pears promising to build complex arithmetic operations using binary primitives, doing arithmetic

on multi-bit ReRAM cells using bitwise operations comes with several challenges.

ReRAM has also been explored to map the functionality of binary logic gates on memristor

cells and their connectivity. This approach is referred to as gate mapping techniques in this dis-

sertation. A single memristor can implement stateful material implication logic [18, 19], using its

polarity. Assuming a memristor with binary states, its state transition will be determined based on

the voltage (positive or negative) applied to the top electrode p and the bottom electrode q, and

13

the ReRAM’s internal state z. PLiM computer [20] regards this behavior as a 3-input majority

gate function with an inverted input. Transformation of a memristor cell state z into a disjunctive

normal form leads to the following equation using majority function M3:

zn = (p · q) · z + (p+ q) · z (2.6)

= p · z + q · z + p · q (2.7)

= M3(p, q, z). (2.8)

Using Resistive Majority function (RM3(p, q, z) := M3(p, q, z)), PLiM implements functionally

complete operators and performs computation sequentially accessing a single bit in an array at

a time. A compiler for PLiM computer [21] and a PLiM-based parallelized architecture using

VLIW-like instruction set [22] are also proposed.

One of the limitations of the approaches above is that input data to the memristor-mapped gate

has to be read out if it is stored in the memory. IMPLY [23] and MAGIC [24] propose gate mapping

techniques without the need to read out the operands.

Gate-mapping techniques enable bulk logic operations with very low overhead. For some de-

signs, the peripheral circuit need not add computation logic. However, given the fixed connectivity

in the crossbar array, it is difficult to support a variety of logic operations in a small number of

cycles. Thus, a single arithmetic operation composed of several logic operations can take hun-

dreds to thousands of cycles to complete. For example, a multiply is implemented using ≈56000

majority-gate operations (majority-gate operation requires one memory cycle) and 419 ReRAM

cells [21], while our analog approach based on [3] performs a multiplication in 18 memory cy-

cles. While NVMs do not need to copy data thanks to non-destructive reads, they have limited

endurance, slower operation frequency, and high write latency and energy. Thus, the gate-mapping

techniques would be favorable to workloads that operate on massive read-only data with simple

logic operations.

14

22 3. COMPUTINGWITHDRAMS

Sense
amplifier

DRAM cell Wordline

B
it

li
n

e

Bitline

Capacitor

Access
transistor

Enable

0

0

1–
2V

DD

1–
2V

DD

1–
2V

DD

1–
2V

DD

1–
2V

DD

1–
2V

DD
 + δ 1–

2V
DD

 + δ

1–
2V

DD

1–
2V

DD

1

1

0

2

1

0

3

1

1

4

1

1

0 5

Precharged
state

Activated
state

Wordline
enable

Charge sharing
phase

Sense amplifier
enable

PRECHARGE

ACTIVATE

Figure 3.4: DRAMcell architecture and state transitions involved inDRAMcell activation [49].

1–
2V

DD

V
DD

1–
2V

DD

1–
2V

DD

C

B

A

C

B

A

C

B

A

0

0

0

0

Initial state After charge sharing After sense amplification

1

1

1

1

0

2

1

1

1

1

0 3

1–
2V

DD
 + δ

Figure 3.5: Triple-row activation and charge sharing [49].

multiple rows are activated is calculated as

ı D
kCcVDD C Cb1=2VDD

3Cc C Cb

�
1

2
VDD (3.1)

D
.2k � 3/Cc

6Cc C 2Cb

VDD; (3.2)

where Cc is the cell capacitance, Cb is the bitline capacitance, and k is the number of cells in
the fully charged state. We assume an ideal capacitor (no capacitance variation, fully refreshed),
transistor, and bitline behaviour (no resistance). According to Equation (3.2), the bitline devia-
tion is positive (sensed as 1) if k D 2; 3 and negative (sensed as 0) if k D 0; 1. Therefore, if there
are at least two fully charged cells before the charge sharing, VDD is sensed, and since the sense
amplifier drives the bitline to VDD, all three cells will be fully charged. Otherwise, they will be
discharged to 0.

The behavior of TRA is the same as a 3-input majority gate. Given A, B , and C represent
the logical value of the three cells, it calculates AB C BC C CA, which can be transformed into
C.A C B/ C C .AB/. Hence, by controlling C , TRA can perform AND (C D 0) and OR (C D

1). Ambit also supports NOT operation in a cell with an additional transistor, which enables the
capacitor to be connected to bitline as in Figure 3.6. A combination of AND and NOT forms

Figure 2.4: Triple Row Activation (TRA) [4]

2.3 In-DRAM Computing

While there is a large body of work that explores near-memory computing using DRAM, including

3D stacked memory and bit-serial ALUs attached to each bitline or sense amplifier ([25, 26]),

there are several known obstacles for DRAM-based in-memory computing, such as logic cost and

memory density issue. Charge sharing techniques are proposed as a key enabler of DRAM-based

in-memory computing. Charge sharing techniques activate more than one wordline and perform

bitwise operations by exploiting altered charges in capacitors connected to the same bitline. Hence,

it can provide some important logic operations with a small area cost.

Ambit [4] proposes charge sharing based bitwise AND and OR operation. Ambit simulta-

neously activates three wordlines (referred to as triple-row activation or TRA), as illustrated in

Figure 2.4. Based on the charge sharing principles [27], the bitline deviation δ when multiple-rows

are activated is calculated as

δ =
kCcVDD + Cb1/2VDD

3Cc + Cb

− 1

2
VDD (2.9)

=
(2k − 3)Cc

6Cc + 2Cb

VDD, (2.10)

where Cc is the cell capacitance, Cb is the bitline capacitance, and k is the number of cells in

15

the fully charged state. We assume an ideal capacitor (no capacitance variation, fully refreshed),

transistor, and bitline behaviour (no resistance). According to Equation 2.10, the bitline deviation

is positive (sensed as 1) if k = 2, 3 and negative (sensed as 0) if k = 0, 1. Therefore, if there are at

least two fully charged cells before the charge sharing, VDD is sensed, and since the sense amplifier

drives the bitline to VDD, all three cells will be fully charged. Otherwise, they will be discharged

to 0.

The behavior of TRA is the same as a 3-input majority gate. Given A, B, and C represent

the logical value of the three cells, it calculates AB + BC + CA, which can be transformed into

C(A+B) +C(AB). Hence, by controlling C, TRA can perform AND (C = 0) and OR (C = 1).

Ambit also supports NOT operation using a dual-contact cell that has an additional transistor. A

combination of AND and NOT forms NAND, a functionally complete operator. Therefore, Ambit

can support any logical operations.

ComputeDRAM [28] demonstrates that off-the-shelf unmodified commercial DRAMs can per-

form charge-sharing-based computation. They manage to activate more than one wordline of a

DRAM sub-array by manipulating command sequences violating the nominal timing specification

and by activating multiple rows in rapid succession. They find multiple ACTIVATE commands in-

terposed by PRECHARGE command can activate multiple rows within a timeframe that the charge

sharing is possible. Not all DRAM chips support charge-sharing by their manipulated command

sequences, and not all columns always result in the desired computation result. However, their

findings cast a new light that charge-sharing-based in-DRAM computation can be supported stably

with minimal or no hardware changes to the DRAM DIMM.

ROC [29] takes a different approach of charge sharing to further reduce latency for logic op-

erations, leveraging the characteristics of a diode connected with capacitors. ROC has a smaller

latency than Ambit since it takes only two copy operations to compute the result. It also requires

a smaller area because ROC needs only two cells during computation. To make a functionally

complete operator, ROC attaches one access transistor at the bottom of a column, similar to Am-

bit. They also propose an enhanced ROC design with propagation and shift support by adding

16

additional transistors and horizontal connectivity to the compute capacitors. By performing copy

and computation simultaneously, ROC can reduce the computation cycles (e.g., four cycles for

XOR, two cycles for AND), avoiding data corruption and result instability due to initial charges

remaining in cells.

2.4 Near-Memory Computing

The early explorations of near-DRAM processing (the 1970s-1990s) were inspired by the idea of

making data movement between DRAM and a processor faster by integrating the processor and

DRAM into the same chip. It enables replacing the inter-chip communication with on-chip data

movement. A near-DRAM processing system mainly consists of three components [30]: the scalar

processing system, the memory system, and vector processing units. The scalar processing system

has a similar structure as a CPU with the processor core and the cache system. The memory

interface unit has a wider I/O width and interacts with the DRAM modules and caches, serving

as a bridge enabling near-DRAM processing. The vector processing units are placed to perform

data-parallel operations to fully take advantage of the high bandwidth of the integrated DRAM.

Prior work has explored near-DRAM processing elements near DRAM arrays [30, 31, 32, 33, 34]

and processing elements coupled with DRAM cells [35, 36, 37, 38]

There are multiple advantages that arise from near-memory computing. First, the memory

bandwidth has significantly increased, because the bottleneck in the external memory data bus no

longer exists. Second, the latency for memory access becomes shorter, since it can eliminate the

long wire delay in the external data bus. Finally, the system energy efficiency is improved, as the

on-chip data movement consumes less energy than the off-chip data bus.

However, such an integrated processor has a weaker performance than the normal processor

in a standalone chip. This is because the processor is implemented with the DRAM process to

integrate it in the same chip. The logic circuit and the SRAM arrays of the processor are slower

when implemented in the DRAM process, because it is optimized for memory cost and energy, but

17

not logic speed. Furthermore, the in-DRAM logic only has access to the two to three metal layers

used in the DRAM process; thus, even a simple logic circuit results in a larger footprint than usual.

Near-Memory Computing with 3D Stacked Memory 3D stacked memory has evolved as a

novel high bandwidth memory technology with the growth of data-intensive applications such as

big data analytics and bandwidth greedy architectures such as GPUs. A 3D stacked memory is a 3D

integrated circuit with multiple heterogeneous 2D dies stacked on each other. While the majority of

the layers are memory layers that contain DRAM modules, the bottom layer of the stack consists of

controlling logic, known as the logic layer. The dies communicate vertically with each other using

through-silicon vias (TSV) and micro-bumps. Such vertical communication reduces the travel

distance of data and improves latency and energy efficiency. Hybrid Memory Cube (HMC) [39]

and High-Bandwidth Memory (HBM) [40] are two major examples of 3D stacked memories. They

were developed and standardized by different entities, but they share a similar design as described

above.

Since DRAM and logic are built on separate dies, they can use different transistor technology.

Thus, logic layers can continue to achieve high performance, while memory layers optimize for

cost and power efficiency. This is the key advantage of 3D stacked DRAM for near-memory

computing: there no longer exists the disadvantage of prior work where the computing logic and

memory need to be integrated on the same die, which reduces the performance of the logic built

with DRAM technology nodes.

Many near-DRAM processing designs have been proposed [41, 42, 43, 44, 45, 46, 47, 48],

targeting data-intensive application domains such as data analytics, graph processing, and deep

learning. The logic layer is implemented with a high-speed logic process, so any near-memory

computing logic can be instantiated here. At the same time, the logic layer may communicate

with the DRAM modules with a high data transmission rate in TSV, thanks to the 3D-stacked

structure [49].

18

Comparison of Near-Memory and In-Memory Computing Compared to near-memory com-

puting, in-memory computing leverages an emerging style of in-memory computing referred to

as bit-line computing or directly utilizes the physical characteristics of the dense memory arrays

for computation. Since bit-line computing re-purposes memory structures to perform computation

in-situ, it is intrinsically more efficient than near-memory computing which augments logic near

memory. More importantly, it unlocks massive parallelism at minimal silicon cost. Compared

to near-memory computing, it is not entirely true that near-memory computing can significantly

minimize the data movement cost.

First, a large amount of energy is consumed by interconnects, which transfer data internally

from a memory subarray to I/O. For example, DRAM’s row activation takes 0.11 pJ/bit (909

pJ/row) for HBM2, while data movement and I/O take 3.48 pJ/bit at 50% toggle rate [50]. The data

movement cost consists of pre-GSA (Global Sense Amplifier) data movement cost (43%), post-

GSA data movement cost (34%), and I/O cost (23%). Neither in- nor near-memory computing can

avoid the row activation cost and pre-GSA data movement cost. While in-memory computing can

save the majority of post-GSA data movement cost and I/O cost, near-memory computing can only

reduce the I/O cost unless it is placed very close to the memory array.

Second, For SRAM caches, the energy consumption of data movement is 1985 pJ while cache

access consumes 467 pJ (L3 slice) [8]. Thus, H-Tree, which is the interconnect used for data

transfer within a cache slice, consumes nearly 80% of cache energy spent in reading from a 2MB

L3 cache slice. In-memory computing can reduce the majority of the data transfer cost, while

near-memory computing near an SRAM slice cannot.

Third, the savings of near-memory computing vary based on the proximity of the near-memory

computing logic to the memory arrays. While a tight coupling of the logic and memory array can

provide maximum cost savings for data movement to near-memory computing as well, it may not

be optimal and cost-effective from other aspects such as memory density and process technology.

Lastly, near-memory computing can reduce the latency to fetch data from memory. However,

reduced communication overhead is often traded off by reduced computation throughput due to

19

less performant cores or limited area for custom logic with enough parallelism and throughput.

20

CHAPTER 3

In-Memory Computing with Resistive RAM

Recent developments in Non-Volatile Memories (NVMs) have opened up a new horizon for in-

memory computing. While prior work reports in-ReRAM computing can make considerable per-

formance improvement of some specific workloads such as machine learning, its benefits origi-

nating from massive parallelism and reduction in data movement have not yet been exposed to

applications in other important domains. In this chapter, we present IMP, an in-memory data par-

allel processor for general data parallel acceleration in ReRAM.

3.1 General Purpose In-ReRAM Computing

Non-Volatile Memories (NVMs) create opportunities for advanced in-memory computing. By re-

purposing memory structures, certain NVMs have been shown to have in-situ analog computation

capabilities. For example, resistive memories (ReRAMs) store the data in the form of resistance

of titanium oxides, and by injecting voltage into the word line and sensing the current on the

bit-line, the dot-product of the input voltages and cell conductances is obtained using Ohm’s and

Kirchhoff’s laws.

Recent works have explored the design space of ReRAM-based accelerators for machine learn-

ing algorithms by leveraging this dot-product functionality [3, 2]. These ReRAM-based accel-

erators exploit the massive parallelism and relaxed precision requirements, to provide orders of

magnitude improvement when compared to current CPU/GPU architectures and custom ASICs,

21

in-spite of their high read/write latency. In this chapter, we seek to answer the question, to what

extent is resistive memory useful for more general-purpose computation?

Despite the significant performance gain offered by computational NVMs, previous works

have relied on manual mapping of convolution kernels to the memory arrays, making it difficult

to configure it for diverse applications. We combat this problem by proposing a programmable

in-memory processor architecture and programming framework. A general purpose in-memory

processor has the potential to improve performance of data-parallel application kernels by an order

of magnitude or more.

3.1.1 Design Goals

The efficiency of an in-memory processor comes from two sources. The first is massive data paral-

lelism. NVMs are composed of several thousands of arrays. Each of these arrays are transformed

into a single instruction multiple data (SIMD) processing unit that can compute concurrently. The

second source is a reduction in data movement, by avoiding shuffling of data between memory and

processor cores. Our goal is to design an architecture, establish the programming semantics and

execution models, and develop a compiler, to expose the above benefits of ReRAM computing to

general purpose data parallel programs.

Architecture The in-memory processor architecture consists of memory arrays and several dig-

ital components grouped in tiles, and a custom interconnect to facilitate communication between

the arrays and instruction supply. Each array acts as a unit of storage as well as a vector processing

unit. The proposed architecture extends the ReRAM array to support in-situ operations beyond

dot product (i.e., addition, element-wise multiplication, and subtraction). We adopt a SIMD ex-

ecution model, where every cycle an instruction is multi-casted to a set of arrays in a tile and

executed in lock-step. The Instruction Set Architecture (ISA) for in-memory computation consists

of 13 instructions. The key challenge is developing a simple yet powerful ISA and programming

framework that can allow diverse data-parallel programs to leverage the underlying massive com-

22

putational efficiency.

Programming Model The proposed programming model seeks to utilize the underling paral-

lelism in the hardware by merging the concepts of data-flow and vector processing (or SIMD).

Data-flow explicitly exposes the Instruction Level Parallelism (ILP) in the program, while vec-

tor processing exposes the Data Level Parallelism (DLP). Google’s TensorFlow [51] is a popular

programming model for machine learning. We observe that TensorFlow’s programming seman-

tics is a perfect marriage of data-flow and vector-processing that can be applied to more general

applications. Thus, our proposed programming framework uses TensorFlow as the input.

Compiler We develop a TensorFlow compiler that generates binary code for our in-memory

data-parallel processor. The TensorFlow (TF) programs are essentially Data-Flow Graphs (DFG)

where each operator node can have multi-dimensional vectors, or tensors, as operands. A DFG

that operates on one element of a vector is referred to as a module by the compiler. The com-

piler transforms the input DFG into a collection of data-parallel modules with identical machine

code. Our execution model is coarse-grain SIMD. At runtime, a code module is instantiated many

times and processes independent data elements. The programming model and compiler support

restricted communication between modules: reduce, scatter and gather. Our compiler explores

several interesting optimizations such as unrolling of high-dimensional tensors, merging of DFG

nodes to utilize n-ary ReRAM operations, pipelining compute and write-backs, maximizing ILP

within a module using VLIW style scheduling, and minimizing communication between arrays.

For general purpose computation, we need to support a variety of compute operations (e.g.,

division, exponent, square root). These operations can be directly expressed as nodes in Ten-

sorFlow’s DFG. Unfortunately, ReRAM arrays cannot support them natively due to their limited

analog computation capability. Our compiler performs an instruction lowering step in the code-

generation phase to translate higher-level TensorFlow operations to the in-memory compute ISA.

We discuss how the compiler can efficiently support complex operations (e.g., division) using tech-

niques such as the Newton-Raphson method which iteratively applies a set of simple instructions

23

...

...

Ex
te

rn
al

 I
O

XB

Router

S+A

Inst. Buf

LUT

..

...

...

...

...

...

... ...

...

RRAM XB

S+H

D
A

C

DAC ADC
ADC

S+A

Reg

ReRAM
PU

ReRAM
PU...

ReRAM
PU ... ReRAM

PU

...

...

Reg.
File

H-tree

TileTiled architecture

Cluster

Memory Array /
Processing Unit(a)

DAC

DAC

Sample and Hold
ADC

DAC

DAC

D
A

C

D
A

C

D
A

C

D
A

C

(b)

BITLINES

W
O
RD

LI
N
ES

Figure 3.1: In-Memory Processor Architecture. (a) Hierarchical Tiled Structure (b) ReRAM array
Structure

C11

C21

11

11
I11 = (Vdd/2) C11

I21 = (Vdd/2) C21

I1 = (Vdd/2) (C11+ C21)

Vdd/2

C11

C21

11

00
I11 = (Vdd/2) C11

I1 = (Vdd/2) (C11 - C21)

Vdd/2

C11 C12

DAC

DAC

DAC

DAC

V1

I11=(Vdd – V1)C11

V2

I12=(Vdd – V2) C12

DAC

DAC DAC

C11 C12

V1

I12= V1C12

DAC
I11= V1C11

C21 C22

I22= V2C22

DAC

V2

I21= V2C21

I1=I11+I21 I2=I21+I22

(a) Addition (b) Dot-product (c) Element-wise multiplication (d) Subtraction

I21 = (Vdd/2) C21

11

Figure 3.2: In-situ ReRAM array operations.

(add/multiply) to an initial seed from the look-up table and refines the result. The compiler also

transforms other non-arithmetic primitives (e.g., square and convolution) to the native memory

SIMD ISA.

3.2 Processor Architecture

We propose an in-memory data-parallel processor on ReRAM substrate. This section discusses the

proposed microarchitecture, ISA, and implementation of the ISA.

24

3.2.1 Micro-architecture

The proposed in-memory processor adopts a tiled architecture as shown in Figure 3.1. A tile is

composed of clusters of memory nodes, few instruction buffers and a router. Each cluster consists

of a few memory arrays, a small register file, and look-up table (LUT). Each memory array is

shown in Figure 3.1 (b). Internally, a memory array in the proposed architecture consists of multi-

ple rows of resistive bit-cells, a set of digital-analog converters (DACs) feeding both the word-lines

and bit-lines, sample and hold circuit (S+H), shift and adder (S+A) and analog-digital converters

(ADCs). The process of reading and writing to ReRAM memory arrays remains unchanged. We

refer the reader to ReRAM literature for details [11, 3]. The memory arrays are capable of both

data storage and computation. We explain the compute capabilities of the memory arrays and the

role of digital components (e.g. register file, S+A, LUT) in Section 3.2.2.

The tiles are connected by an H-Tree router network. The H-Tree network is chosen to suit

communication patterns typical in our programming model (Section 3.3) and it also provides high-

bandwidth communication for external I/O. The clusters inside a tile are connected by a router or a

crossbar topology. A shared bus facilitates communication inside a cluster. A hierarchical topology

inside the tile limits the network power consumption, while providing sufficient bandwidth for

infrequent communication typical in data-parallel applications.

Each memory array can be thought of as a vector processing unit with few SIMD lanes. The

processor adopts a SIMD execution model. Each array is mapped to a specific instruction buffer.

All arrays mapped to the same instruction buffer execute the same instruction. Every cycle, one

instruction is read out of the each instruction buffer and multi-casted to the memory arrays in the

tile. The execution model is discussed in detail in Section 3.4.

The processor evaluated in this work consists of 4,096 tiles, 8 clusters per tile, and 8 memory

arrays per cluster. Each array can store 4KB of data and has 8 SIMD lanes of 32 bits each. Conse-

quently, the processor has aggregate SIMD width of two million lanes, aggregate memory capacity

of 1GB and 494 mm2 area. The resolution of ADC and DAC is set to 5 and 2 bits.

25

Opcode Format Cycles
add <mask><dst> 3
dot <mask><reg_mask><dst> 18
mul <src><src><dst> 18
sub <mask><mask><dst> 3
shift{l|r} <src><dst><imm> 3
mask <src><dst><imm> 3
mov <src><dst> 3
movs <src><dst><mask> 3
movi <dst><imm> 1
movg <gaddr><gaddr> Variable
lut <src><dst> 4
reduce_sum <src><gaddr> Variable

Table 3.1: In-Memory Compute ISA. The instructions use operand addresses specified by either
<src>, <dst> or <gaddr>. The <src> and <dst> is a 8-bit local address (1-bit indicates mem-
ory/register + 7-bit row number/register number). The <gaddr> is a 4 byte global address (12-bit
tile # + 6-bit array # + 7-bit row # + reserved bits). The <imm> field is a 16 byte immediate value.

3.2.2 Instruction Set Architecture

The proposed Instruction Set Architecture (ISA) is simple and compact. Compared to a standard

SIMD ISA, In-memory ISA does not support complex (e.g. division) and specialized (e.g. shuffle)

instructions because these are hard to do in-situ in-memory. Instead, compiler transforms complex

instructions to a set of lut, add and mul instructions as discussed later. The ISA consists of 13

instructions as shown in Table 3.1. Each ReRAM arrays executes the instruction locally, hence the

operand addressing modes reference rows inside the array or local registers. The instructions can

have a size of up to 34 bytes. Now we discuss the functionality and implementation of individual

instructions.

1) add The add instruction is an n-ary operation that adds the data in rows specified by <mask>.

The <mask> is a 128-bit mask which is set for each row in the array that participates in addition.

Figure 3.2 (a) shows an add operation. The mask is fed to word-line DACs, which is used to apply

a Vdd (’11’) or Vdd/2 (’10’) to the word-lines. A ’1’ in the mask activates a row. Each bit-cell in

a ReRAM array can be abstractly thought of as variable resistor. Addition is performed inside the

array by summing up currents generated by conductance (=resistance−1) of each bit-cell. A sample

26

and hold (S + H) circuit receives the bit-line current and feeds it the ADC unit which outputs the

digital value for the current. The result from each bit-line represents the partial sum for bits stored

in that bit-line. A word or data element is stored across multiple bit-lines. An external digital

shifter and adder (S + A) combines the partial sums from bit-lines. The final result is written back

to <dst> memory row or register. Each of ReRAM crossbar (XB), ADC and S+A takes 1 cycle,

resulting in 3 cycles in total.

2) dot The dot instruction is also an n-ary operation which emulates a dot product over the data

in rows specified by <mask>. A dot product is a sum of products. The sum is done using current

summation over the bit-line as explained earlier. Each row computes a product by streaming

in the multiplicand via the word-line DAC in a serial manner as shown in Figure 3.2 (b). The

multiplicands are stored in register file and the individual registers are specified using <reg_mask>

field.

Robust current summation over ReRAM bit-lines has been demonstrated in prior works [52,

53]. We adapt the dot product architecture from ISAAC [3] for our add and dot instructions. We

refer the reader to these works for further implementation details.

3) mul The mul instruction is 2-ary operation that performs element-wise multiplication over

elements stored in the two <src> memory rows and stores the result in <dst>. To implement this

instruction we utilize the row of DACs at the top of the array feeding the bit-lines (Figure 3.1 (c)).

The multiplicand is streamed in through the DACs serially 2-bits at time and the product is accu-

mulated over bit-lines as shown in Figure 3.2 (c). The word-line DACs are set to Vdd (’11’).

Note that element-wise multiplication was not supported in prior works on memristor-based

accelerators, and is a new feature we designed for supporting general purpose data-parallel com-

putation. Since dot product uses the same multiplicand for all elements stored in a row, it can not

be utilized for element-by-element multiplication. We solve this problem by using an additional

set of DACs for feeding bit-lines. As in ISAAC, the operation is pipelined into 3 stages: XB, ADC

and S+A, processing 2 bits per cycle, resulting in 18 cycles in total for 32 bit data.

27

4) sub The sub instruction performs element-wise subtraction over elements stored in the two

set of memory rows (minuends and subtrahends) specified by <mask>s and stores the result in

<dst>. Subtraction in ReRAM arrays has not been explored before. We support this operation

by draining the current via word-line as shown in Figure 3.2 (d). The output voltage for word-line

DAC of the subtrahend row is set to ground allowing for current drain. Hence the remaining current

over the bit-line represents the difference between minuend and subtrahend. For this operation we

reverse the voltage across memristor bit-cell. Fortunately, several reports on fabricated ReRAM

demonstrate the symmetric V/I properties of memristor with reverse voltage across terminals [54,

55].

5) lut The lut instruction sends the value stored in <src> as an address to the lookup table

(LUT), and write back the data read from the LUT to <dst>. The multi-purpose LUT is imple-

mented for supporting high-level instructions. LUT is utilized for nonlinear functions such as

sigmoid, and initial seeding of division and transcendental functions (Section 3.5.1). The LUT

has 512 entries of 8-bit numbers to suffice the precision requirement of the arithmetic algorithms

implemented [56]. LUT is a small SRAM structure which operates at much higher frequency than

ReRAM arrays and hence shared by multiple arrays. Its contents are initialized by the host at

runtime. lut takes 4 cycles, adding 1 cycle on top of the basic XB, ADC, S+A pipeline.

6) mov, movi, movg, movs The mov family of instructions facilitates movement of data between

memory rows of an array, registers, and even across arrays via global addressing (<gaddr>). The

global addresses are handled by the network, hence the latency of gobal moves (movg) is vari-

able. Immediate values can be stored to <dst> as well via movi instruction. These instructions

are implemented using traditional memristor read/write operations. The selective mov (movs) in-

struction selectively moves data to elements in <dst> based on an 8-bit mask. Recall that any <dst>

row can store 8 32-bit elements in the prototype architecture.

28

7) reduce_sum The reduce_sum instruction sums up the values in the <src> row of different

arrays. The reduction is executed outside the arrays. This instruction utilizes the H-tree network

and the adders in the routers to reduce values across the tiles.

8) shift / mask The shift instruction shifts each of the vector element in <src> by <imm> bits.

The mask instruction logically ANDs each of the vector element in <src> with <imm>. These

instructions utilize the digital shift and adder (S+A) outside the arrays.

Discussion Our goal is two-fold. First, keep the instruction set as simple as possible to reduce

design complexity and retain area efficiency (hence memory density). Second, expose all compute

primitives which can be done in-situ inside the memory array without reading the data out. The

proposed ISA does not include any instructions for looping, branch or jump instructions. We rely

on the compiler to unroll loops wherever necessary. Our SIMD programming model ensures small

code size, in spite of unrolling. Control flow is facilitated via condition computation and selective

moves (Section 3.3). The compute instructions in the ISA are restricted to add, sub, dot, mul.

Our programming model based on TensorFlow, supports a rich set of compute operations. Our

compiler transforms them to a combination of ISA instructions (Section 3.5.1) and hence enables

general purpose computation.

3.2.3 Precision and Signed Arithmetic

Floating point operations need normalization based on exponent, hence in-memory computation

for the floating point operands encumbers huge complexity. We adopt a fixed point representation.

We give the flexibility for deciding the position of the decimal point to trade-off between precision

and range. But the responsibility to prevent bit overflow and underflow is left to the programmers.

We developed a testing tool that can calculate the dynamic range of the input that assures the

required precision. Note that under the condition that overflow/underflow does not happen, fixed

point representation gives better accuracy compared to floating point. Section 3.6 discusses the

29

impact on application output.

For general purpose computation, it is important to support negative values. Prior work [3]

uses a biased representation for numbers, and then normalizes the bias via subtraction outside the

memory arrays. This approach is perhaps reasonable for CNN dot products, because the overhead

of subtraction outside the array for normalizing the bias, is compensated by multi-row addition

within the array. In general, data-parallel programs’ additions need not span multiple rows (often

2 rows are sufficient). In such a scenario, subtraction outside the array needs additional array read

which offsets the benefit of biased addition inside the array.

We observe that for b-bit bit-cells (i.e. 2b resistance levels), current summation followed by

shift+adder across bit-lines outputs the correct results as long as negative numbers are stored in

2b’s complement notation. In our prototype design, arrays have 2-bit bit-cell, hence addition over

negative numbers stored as 4’complement will yield correct results. Furthermore it can be mathe-

matically proved that 4’s complement is exactly equal to 2’s complement in base-4 representation.

Thus there is no need for conversion between number formats. The same principle holds true for

multiplication as long as the DAC used for streaming in the multiplicand has same resolution as

resistance level of ReRAM bit-cells. In our design, 2-bit DACs are required.

Input nodes Const Placeholder Variable

Arithmetic Operations
Abs Add ArgMin Div Exp FloorDiv Less Mul RealDiv

Sigmoid Sqrt Square Sub Sum Conv2D⋆ ExpandDims⋆ MatMul⋆ Reshape⋆

Tensordot⋆

Control Flow etc. Assign AssignAdd Gather Identity Pack Select Stack NoOp

Table 3.2: Supported TensorFlow Nodes. (⋆ has restrictions on function/data dimension.)

3.3 Programming Model

We choose Google’s TensorFlow [51] as the programming front-end for proposed in-memory pro-

cessor. By using TensorFlow, programmers write the kernels which will be offloaded to the mem-

ory. TensorFlow expresses the kernel as a Data Flow Graph (DFG). Since TensorFlow is available

for variety of programming languages (e.g. Python, C++, Java, Go), programmers can easily plug

30

in the TensorFlow kernels in their code. Also, since TensorFlow supports variety of target hardware

systems (e.g. CPU, GPU, distributed system), programmers can easily validate the functionality

of the kernel and scale the system depending on the input size.

TensorFlow (TF) offers a suitable programming paradigm for data parallel in-memory comput-

ing. First, nodes in TF’s DFGs can operate on multi-dimensional matrices. This feature embeds

the SIMD programming model and facilitates easy exposure of Data Level Parallelism (DLP) to

the compiler. Second, irregular memory accesses are restricted by not allowing subscript nota-

tion. This feature benefits both programmers and compilers. Programmers do not have to convert

high-level data processing operations (e.g., vector addition) into low-level procedural representa-

tions (e.g., for-loop with memory access). The compiler can fully understand the memory access

pattern. Third, the DFG naturally exposes Instruction Level Parallelism (ILP). This can be di-

rectly used by a compiler for Very Long Instruction Word (VLIW) style scheduling to further

utilize underlying parallelism in the hardware without implementing complex out-of-order execu-

tion support. Finally, TensorFlow supports a persistent memory context in nodes of the DFG. This

is useful in our merged memory and compute architecture for storing persistent data across kernel

invocations.

Our programming model and compilation framework support the following TensorFlow prim-

itives (See Table 3.2 for the list of supported TF nodes.):

Input nodes The proposed system supports three kinds of input: Placeholder, Const, and Vari-

able. Placeholder is a non-persistent input and will not be used for future module invocations.

Const is used to pass constants whose values are known at compile time. Scalar constants are

included in ISA, and vector constants are stored in either the register file or an array based on the

type of their consumer node in the DFG. Variable is the input with persistent memory context, of

which data can be used and updated in the future kernel invocations. Variables are initialized at

kernel launch time.

31

Operations The framework supports a variety of complex operation nodes including transcen-

dental functions. We discuss the process of lowering these operation nodes into native memory

ISA in Section 3.5.1.

Control Flow Control flow is supported by a select instruction. A select instruction takes three

operands and generates output as follows:

O[i] = Cond[i] ? A[i] : B[i]. (3.1)

A select instruction is converted into multiple selective move (movs) instructions. The Condition

variable is precomputed and used to generate the mask for the selective moves.

Reduction, Scatter, Gather A reduction node is supported by the compiler and natively in the

micro-architecture. Scatter and gather operations are used to implement an indirect reference to

the memory address given in the operand. These operations generate irregular memory accesses

and require synchronizations to guarantee consistency. Because of the non-negligible overhead,

these operations should be used rarely. We observe in many cases that these operations can be

eliminated before offloading the kernel by sending gathered data from CPU.

3.4 Execution Model

The proposed architecture processes data in a SIMD execution model at the granularity of module.

At runtime, different instances of a module execute the same instructions on different elements

of input vectors in a lock-step manner. Our compiler generates a module by unrolling a single

dimension of multi-dimensional input vectors as shown in Figure 3.3. Intuitively, a DFG generated

by TensorFlow can represent one module. At kernel launch time, the number of module instances

are dynamically created in accordance with the input vector length.

The proposed execution model allows restricted communication between instances of modules.

32

Input matrix A

IB1 IB2 IB1 IB2 IB1 IB2

Mi Mn

M1

IB1

M2

IB1

M1

IB2

M2

IB2

Mi

IB1

Mi+1

IB1

Mi

IB2

Mi+1

IB2

Mn-1

IB1

Mn

IB1

Input matrix B

Data Flow
Graphs

Modules

ReRAM
arrays

M1

Mn-1

IB2

Mn

IB2

1 i n

Figure 3.3: Execution Model.

Such communication is only allowed using scatter/gather nodes or reduction nodes in the DFG. We

find these communication primitives are sufficient to express most TensorFlow kernels.

Each module is composed of one or more Instruction Blocks (IB) as shown in Figure 3.3. An

IB consists of a list of instructions which will be executed sequentially. Conceptually, an IB is

responsible for executing a group of nodes in the DFG. Multiple IBs in a module may execute

in parallel to expose ILP. The compiler explores several optimizations to increase the number of

concurrent IBs in a module and thereby exposes the ILP inside a module.

We view rows in the ReRAM array as a SIMD vector unit with multiple lanes or SIMD slots.

Each IB is mapped to a single lane or one slot. To ensure full utilization of all SIMD lanes in the

array, the runtime maps identical IBs from different instances of the same module to an individual

array as shown in the last row of Figure 3.3. This mapping results in correct execution because

all instances of a module have the same set of IBs. Furthermore, IBs of a module are greedily

assigned to nearby arrays so that the communication latency between IBs is minimized.

33

Semantic
Analysis

Optimization
NodeMerging
IB Expansion

Pipelining

Instruction
Lowering

IB
Scheduling CodeGen

Python
C++
Java

Data Flow Graph
TensorFlow

Frontend

Target Machine Modeling

Figure 3.4: Compilation Flow.

[2,3] [4,5]

+

Reduce

[2+4,3+5]=[6,8]

Input Nodes

[6+8]=[14]

Node Merging
[2,3] [4,5]

+,Reduce

[2+3+4+5]=[14]

Input Nodes

Figure 3.5: Node Merging.

[2,3] [4,5]

+

Reduce

[2+4,3+5]=[6,8]

Input Nodes

[6+8]=[14]

[2,3] [4,5]

Reduce

Input Nodes

[6+8]=[14]

+ +

[2]
[3] [4]

[5] }Unpack

[2+4]=[6] [3+5]=[8]}

Pack
[6,8]

IB Expansion

Figure 3.6: IB Expansion.

3.5 Compiler

The overall compilation flow is shown in Figure 3.4. Our compiler takes Google’s TensorFlow

DFG in the protocol buffer format as an input, optimizes it to leverage parallelism that the in-

memory architecture offers, and generates executable code for the in-memory processor ISA. The

compiler first analyzes the semantics of input DFG which has vector/matrix operands and creates

a module with a single IB with required control flow. Several optimizations detailed later expand

a module to expose intra-module parallelism by decomposing and replicating the instructions in

the single IB into multiple IBs and merging redundant nodes. This is followed by instruction

lowering, scheduling of IBs in a module, and code generation. Instruction lowering transforms

complex DFG nodes into simpler instructions supported by in-memory processor ISA. Instruction

lowering is also done by promoting the specific instructions (e.g. ABS) to general ones (e.g.,

MASK) and expanding the instruction into a set of native memory ISA instructions.

The compiler tool-chain is developed using Python 3.6 and C++. The compiler front-end uses

34

TensorFlow’s core framework to parse the TensorFlow Graph. TensorFlow nodes supported at this

time are listed in Table 3.2.

3.5.1 Supporting Complex Operations

The target memory ISA is quite simple and supports limited number of compute instructions as

described in Section 3.2.2. Natively, the arrays can execute dot product, addition, multiplication

and subtraction. However, general purpose computation requires supporting a diverse set of oper-

ations ranging from division, exponents, transcendental functions, etc. We support these complex

operations by converting them into a set of LUT, addition and multiplication instructions based on

algorithms used in Intel IA-64 processors [57, 58].

The compiler uses either Newton-Raphson or Maclaurin-Goldschmidt methods that iteratively

apply a set of instructions to an initial seed from the look-up table and refine the result. Our

implementation chooses the best algorithms based on the precision requirement. We could have

used simpler algorithms (e.g., SRT division), but we employ iterative algorithms because (1) bit

shift cannot be supported in the array, so for each bit shift operation the values need to be read

out and written back, (2) supporting bit-wise logical operations (and, or) are challenging because

of multi-level resistive bit-cells, and (3) simple algorithms often require more space, which is

challenging for the data carefully aligned in the array.

Finally, the compiler also lowers convolution nodes in the DFG to the native memory ISA.

Prior works [3] have mapped convolution filter weights to the array and performed dot product

computation by streaming in the input features. Because filters used for general-purpose programs

are typically small (e.g. 3x3 for HotSpot and Sobel filter), we map the input data to the array

and stream in the filter. This approach reduces buffering for the input data and improves array

utilization. Furthermore, the compiler decomposes the convolution into a series of matrix-vector

dot-products done simultaneously on different input matrix slices, thereby reducing the convolu-

tion time significantly.

35

3.5.2 Compiler Optimizations

Node Merging A node merging pass is introduced to fill the gap between the capabilities of the

target in-memory architecture and the expressibility of the programming language. The proposed

in-memory ISA can support compute operations over n-operands. A node merging pass promotes

a series of 2-operand compute nodes in the DFG of a module, to a single compute node with many

operands as shown in Figure 3.5. The maximum number of operands n is limited by the number of

array rows and the resolution of ADCs. ADCs consume a significant fraction of chip power, and

their power consumption is proportional to their resolution. Our compiler can generate code for an

arbitrary resolution n and the chip architects can choose a suitable n based on the power budget.

The node merging pass also combines certain combinations of nodes to reduce intermediate

writes to memory arrays. For example, a node which feeds its results to a multiplication node need

not write back the results to memory. This is because multiplicand is directly streamed into the

array from registers.

Instruction Block Scheduler Independent Instruction Blo-cks (IBs) inside a module can be co-

scheduled to maximize ILP as shown in the third row of Figure 3.3. Our compiler adapts the

Bottom-Up-Greedy (BUG) algorithm [59] for scheduling IBs. BUG was first used in the Bulldog

VLIW compiler [59] and has been adapted in various schedulers for VLIW/data-flow architecture,

e.g. Multiflow compiler [60] and compiler for the tiled data-flow architecture, WaveScalar [61].

Our implementation of the BUG algorithm first traverses the DFG through a bottom-up path, col-

lecting candidate assignments of the instructions. Once the traversal path reaches the input (define)

node, it traverses a top-down path to make a final assignment, minimizing the data transfer latency

by taking both the operand location and successor location into consideration. We modify the

original BUG algorithm to introduce the notion of in-memory computing, where a functional unit

is identical to the data location. We also modified the algorithm to take into account read/write

latency, network resource collision latency, and operation latency.

36

Instruction Block (IB) Expansion Instruction Blocks that use multi-dimensional vectors as

operands can be expanded into several instruction blocks with lower-dimension vectors to further

exploit ILP and DLP. For example, consider a program that processes 2D matrices of dimension

sizes [2, 1024]. The compiler will first convert the program to a module which will be instantiated

1,024 times and executed in parallel. Each module will have an IB that processes 2D vectors. The

expansion pass will further decompose the module into 2 IBs that process 1D scalar value.

The expansion pass traverses the nodes in a module’s DFG in a bottom-up/breath-first order and

detects the subtrees that process multi-dimensional vectors of the same size. The subtree regions

detected are expanded. To ensure the dimensions are consistent between the sub-tree regions, pack

and unpack pseudo operations are inserted between these regions. Pack and unpack operations are

later converted to mov instructions. A simplified example is shown in Figure 3.6.

Pipelining A significant fraction of the compute instructions goes through two phases: compute

and write-back. Unfortunately, these two phases are serialized, since an array cannot compute

and write simultaneously. Our compiler breaks this bottleneck by pipelining these phases and

ensuring the destination address for the write-backs are in a separate array. By using two arrays,

one array computes while writing back the previous result to the other array. In the worst case, this

optimization lowers the utilization of arrays by half. Thus, this optimization is beneficial when the

number of modules needed for the input data is lower than the aggregate SIMD capacity of the

memory chip.

Balancing Inter-Module and Intra-Module Parallelism Some of the optimizations discussed

above attempt to improve performance by exposing parallelism inside a module. Because of Am-

dahl’s law, increasing the number of IBs in a module will not result in linear speedup. Depending

on the data characteristics, the SIMD slots assigned to a module may not be fully utilized in every

cycle. In fact, expanding a module could slow down the total execution time when the number

of IBs across all module instances exceeds the aggregate SIMD slots in the memory chip. In

such a scenario, multiple iterations may be needed to process all module instances, resulting in a

37

Benchmark Input data shape # IB insts.

PA
R

SE
C Blackscholes [4, 10000000] 163

Canneal [2, 600, 4096] 6
Fluidanimate [3, 17, 229900] 294
Streamcluster [2, 128, 1000000] 6

R
od

in
ia

Backprop [16, 65536] 117
Hotspot [1024, 1024] 26
Kmeans [34, 494020] 91
StreamclusterGPU [2, 256, 65536] 6

Table 3.3: Evaluated workloads. Numbers in bracket indicates size of respective x,y,z dimensions

performance loss.

Our compiler can generate code for arbitrary upper bounds on the number of IBs per module,

and can flexibly tune the intra-module parallelism with respect to inter-module parallelism. We

develop a simple analytical model to compute the approximate execution time given the number of

IBs per module and number of module instances. The number of module instances is dependent on

input data size, and is only known at runtime. Thus, the optimal code is chosen at runtime based

on the analytical model and streamed in to the memory chip from host.

3.6 Methodology

Benchmarks We use a subset of benchmarks from PARSEC multi-threaded CPU benchmark

suite [62] and Rodinia GPU benchmark suite [63] as listed in Table 3.3. We re-write the kernels of

the benchmarks in TensorFlow code and then generate in-memory ISA code using our compiler.

We choose to port the applications which could be easily transformed to Structure of Array (SoA)

code for the ease of porting to TensorFlow and a data-parallel architecture. We leave the remaining

benchmarks to future work. For the benchmarks which use floating point numbers in the kernel, we

assess the effect of converting it into fixed point numbers. By tuning the decimal point placement,

we ensure that the input data is in the dynamic range of fixed point numbers. We ensure that the

quality of result requirement defined by the benchmark is met. We use the native dataset for each

benchmark and compare it with the native execution on the CPU and GPU baseline systems. The

38

Component Params Spec Power Area(mm2)
ADC resolution 5 bits 64 mW 0.0753

frequency 1.2 GSps
number 64 × 2

DAC resolution 2 bits 0.82 mW 0.0026
number 64 × 256

S+H number 64 × 128 0.16 mW 0.00025
ReRAM number 64 19.2 mW 0.0016

Array
S+A number 64 1.4 mW 0.0015
IR size 2KB 1.09 mW 0.0016
OR size 2KB 1.09 mW 0.0016

Register size 3KB 1.63 mW 0.0024
XB bus width 16B 1.51 mW 0.0105

size 10 × 10
LUT number 8 6.8 mW 0.0056

Inst. Buf size 8 × 2KB 5.83 mW 0.0129
Router flit size 16 0.82 mW 0.00434

num_port 9
S+A number 1 0.05 mW 0.000004

1 Tile Total 101 mW 0.12
Inter-Tile number 584 0.81 W 2.50
Routers

Chip total 416 W 494 mm2

Table 3.4: In-Memory Processor Parameters

size of the input for each kernel invocation ranges from 8MB to 2GB.

Area and Power Model All power/area parameters are summarized in Table 3.4. We use CACTI

to model energy and area for registers and LUTs. The energy and area model for ReRAM pro-

cessing unit, including ReRAM crossbar array, sample-and-hold circuits, shift-and-add circuits are

adapted from the ISAAC [3]. We employ energy and power model in [64] for the on-chip intercon-

nects and assume an activity factor of 5% for TDP (given that the network operates at 2 GHz and

memory at 20 MHz). The benchmarks show an order of magnitude lower utilization of network.

ADC/DAC energy and power are scaled for 5-bit and 2-bit precision [65]. While the state-of-the

art ReRAM device supports 4 to 6 resistance levels [66], strong non-uniform analog resistance due

to process variation makes it challenging to program ReRAM for analog convolution, resulting in

39

Parameter CPU (2-sockets) GPU (1-card) IMP
SIMD slots 448 3840 2097152
Frequency 3.6 GHz 1.58 GHz 20 MHz

Area 912.24 mm2 471 mm2 494 mm2

TDP 290 W 250 W 416 W

Memory
7MB L2; 70MB L3 3MB L2 1GB

64GB DRAM 12GB DRAM RRAM

Table 3.5: Comparison of CPU, GPU, and IMP Parameters

convolution errors [67]. We conservatively limit the number of cell levels to two and use multiple

cells in a row to represent one data.

Performance Model For determining the IMP performance, we develop a cycle accurate simu-

lator which uses an integrated network simulator [68]. Note ReRAM array executes instructions in

order, instruction latency is deterministic, network communication is rare, and compiler schedules

instruction statically after accounting for network delay. Thus estimated performance for IMP is

highly accurate.

3.7 Results

3.7.1 Configurations Studied

In this section we evaluate the proposed In-Memory Processor (IMP), and compare it to state-

of-art CPU and GPU baselines. We use an Intel Xeon E5-2697 v3 multi-socket server as CPU

baseline and Nvidia Titan XP as the GPU baseline. The IMP configuration (shown in Table 3.4)

evaluated has 4,096 tiles and 64 128×128 ReRAM arrays in each tile.

Table 3.5 compares important system parameters of the three configurations analyzed. IMP

has significantly higher degree of parallelism. IMP enjoys 546× (4681×) more SIMD slots than

GPU (CPU). The massive parallelism comes at lower frequency, IMP is 80× (180×) slower than

GPU (CPU) in terms of clock cycle period. IMP is approximately area neutral compared to GPU,

and about 2× lower area than the 2-socket CPU system. The TDP of IMP is significantly higher,

40

�

��

���

�����

������

�������

��� ��� 	
� �
�� ���

�
�
�
��

��� ��� ���

Figure 3.7: Operation through-
put (log scale).

������

������

������

������

������

�����	

�����

������

������

�����

� �� ����� ������ �������

��
��
�
��
�	
�

�

����������	
��

�� ������ ��� ���

Figure 3.8: Addition Latency.

������

������

������

������

������

�����	

�����

������

������

�����

� �� ����� ������ �������

��
��
�
��
�	
�

�

����������	
��

�� ������ ��� ���

Figure 3.9: Multiplication La-
tency.

����

���

�

��

���

����

��� ��� 	
� �
�� ���

�
��
��
�
�

��� ��� ���

Figure 3.10: Operation energy.

�

��

���

�����

������
�
��
�
�
��
�
�
�	
�

��
�

�
�
��

�
�	

�
�
�
�
	
�
�

�
��
	
�
�
��
�
��
	
�

�
�
�
�
�
�
�

�
�
��
�
��
�

�
�
��
�
�
�

�
�
	
�
�
�

�
��
	
�
�
��
�
��
	
�

�
�
�
�
�
�
�

�����	
��
���� �����	
��
����

�
�
��
�
��
�
�
�
�
	

�

Figure 3.11: Kernel speedup.

����

����

����

����

����

����

��� ���

���

��� ��� ���

���

��� ��� ���

���

��� ��� ���

���

���

�	
��
���	�
 �	���
���
�� �
���
	 ����
��	�
���

�
�
�
�
�
��
�
	

��

	
�
�
��
�
�
��
��

	

������ ����	�
����
 �
� ������������������

Figure 3.12: CPU Application
performance.

however we will show that IMP has lower average power consumption and energy consumption

(Section 3.7.3).

3.7.2 Operation Study

Figure 3.7 presents the operation throughput of CPU, GPU, and IMP, measured by profiling mi-

crobenchmarks of add, multiply, divide, sqrt and exponential operations. We compile the mi-

crobenchmarks with -O3 option and parallelize it using OpenMP for the CPU. We find IMP

achieves orders of magnitude improvement over the conventional architectures. The reason is

two fold: massive parallelism and reduction in data movement. The proposed architecture IMP

has 546× (4681×) more SIMD slots compared to GPU (CPU) as shown in Table 3.5. Although

IMP has lower frequency, it more than compensates this disadvantage by avoiding data movement.

CPU and GPU have to pay a significant penalty for reading the data out of off-chip memory and

41

passing it along the on-chip memory hierarchy to compute units.

IMP speedup is especially higher for the simple operations. The largest operation throughput is

achieved by addition (2,460× over CPU and 374× over GPU), which has smallest latency in IMP.

On the other hand, division and transcendental functions take many cycles to produce the results.

For example, it takes 62 cycles for division and 115 cycles for exponential, while addition takes

only 3 cycles. Therefore, the throughput gain becomes smaller for complex operations. While

CPU and IMP per-operation throughput reduces for higher latency operations, GPU throughput

increases. This is because the GPU performance is bounded by the memory access time, and

unary operators (exponential and square root) have less amount of data transfer from the GPU

memory.

Figure 3.8 and 3.9 show the operation latency of addition and multiplication for different input

size. We compare the execution time of single-threaded CPU, multi-threaded CPU (OpenMP), and

GPU. IMP offers the highest operations performance among the three architectures, even for the

smallest input size (4KB).

Figure 3.10 shows the energy consumption for each operation. Because of the high operation

latency and the large energy consumption of ADC, we observe higher energy consumption for

the complex operations relative to GPU. Ultimately, the instruction mix of the application will

determine the energy efficiency of the IMP architecture.

3.7.3 Application Study

In this section we study the application performance. First, we analyze kernel performance shown

in Figure 3.11. For CPU benchmarks, the figure shows performance for hot kernels in PARSEC

benchmarks. We assume that non-kernel code of PARSEC benchmarks are executed in the CPU.

Note that this data transfer overhead is taken into account in the results of IMP. The GPU bench-

marks from Rodinia are relatively small, hence we regard them as application kernels. We observe

a 41× speedup for CPU benchmarks and 763× speedups for GPU benchmarks.

GPU benchmarks obtain higher performance improvement in IMP because of the opportunity

42

������

����

�

���

�����

�
��
�
�
��
�
�
�	
�

��
�

�
�
��

�
�	

�
�
�
�
	
�
�

�
��
	
�
�
��
�
��
	
�

�
�
�
�
�
��
�

�
�
��
�
�
�

�
�
	
�
�
�

�
��
	
�
�
��
�
��
	
�

��������	
��
� ��������	
��
�

�
�
��
�
��
�
�
�
��
	
�

�� �����	
� ��

Figure 3.13: Energy consump-
tion.

�

��

���

���

���

�
��
�
�
��
�
�
�	
�

��
�

�
�
��

�
�	

�
�
�
�
	
�
�

�
��
	
�
�
��
�
��
	
�

�
�
�
�
�
��
�

�
�
��
�
�
�

�
�
	
�
�
�

�
��
	
�
�
��
�
��
	
�

��������	
��
� ��������	
��
�

�
�
�
��
�
�
��
	

�
��
��

����	
�� �
�

Figure 3.14: Average power.

���

���

���

���

���

�
�
�
�
�
��
�
	

��

	
�
�
��
�
�
��
��

	 ������

������

����		�
��
�

���� ����

���

Figure 3.15: Compiler optimiza-
tions.

to use dot product operations and higher data level parallelism. On the other hand, the speedup

for kmeans is limited to 23×. kmeans deals with Euclidean distance calculation of 34 dimensional

vectors, and this incurs many element-wise multiplications. Although kmeans shows significant

DLP available in the distance calculations, we could not fully utilize the DLP of the application

because of the capacity limitation of the IMP’s SIMD slots. This series of multiplications of dis-

tance calculation increases its critical latency and limits the speedup. As suggested in the operation

throughput evaluation on Figure 3.7, IMP achieves higher performance especially when the ker-

nel has significant DLP and many simple operations. We observe in general mul, add, and movl

instructions are most common, while movg, reduce_sum and lut are less frequent. For example, a

blackscholes kernel has 14% add, 21% mul, and 58% local move instructions. The rest are mask

and lut.

The performance results for the overall PARSEC application are presented in Figure 3.12.

For this result, we assume two scenarios: (1) IMP (memory) assumes IMP is integrated into the

memory hierarchy and the memory region for the kernel is allocated in IMP. (2) IMP (accelerator)

is a configuration when IMP is used as an accelerator and requires data copy as GPUs do. While

we believe IMP (memory) is the correct configuration, IMP (accelerator) is a near-term easier

configuration which can be a first step towards integrating IMP in host servers.

On average, IMP (accelerator) yields a 5.55× speedup and IMP (memory) provides 7.54× for

the Region of Interest (ROI). We observe that 41× kernel speedup does not translate to similar

application speedup due to Amdahl’s law. Figure 3.12 also shows the breakdown of the execution

43

Config Blackscholes Fluidanimate Canneal Streamcluster Backprop Hotspot Kmeans Streamcluster
MaxDLP 665 / 1 1015 / 1 7220 / 1 2698 / 1 1028 / 1 1081893 / 1 3623 / 1 5386 / 1
MaxILP 377 / 5 437 / 9 1216 / 1212 159 / 129 184 / 32 3125 / 1024 134 / 38 287 / 257

MaxArrayUtil 665 / 1 437 / 4 1228 / 444 2698 / 1 171 / 27 1024 / 3125 1584 / 3 1169 / 6
Lifetime (years) 8.89 20.1 32.2 22.1 15.7 250 5.88 12.8

Table 3.6: (1) IB latency (cycles) and # of IBs for different optimization targets. (2) Lifetime

time, which is divided into kernel, data loading, communication on NoC, and the non-kernel part

of the ROI. The non-kernel part is mainly composed of time for barrier and unparalleled parts of

the program. It can be seen that 88% of execution time can be off-loaded to IMP. We also observe

that large fraction of the execution time on ReRAM is used for data loading (4× of the kernel at

maximum). Thus, as suggested before, in-memory accelerator is better coupled with the existing

memory hierarchy to avoid data loading overhead. We also find the NoC time is not the bottleneck,

because of the efficient reduction scheme supported by the reduction tree network integrated in the

NoC.

Figure 3.13 shows the total energy consumption of the entire application (thus includes both

kernel and non-kernel energy for PARSEC). We find 7.5× and 440× energy efficiency for CPU

benchmarks and GPU benchmarks, respectively. This energy reduction is partly due to energy

efficiency of IMP for kernel’s instruction mix and partly due to reduced execution time.

Figure 3.14 shows the average power consumption of the benchmarks. The TDP of IMP is high

when compared to GPU and CPU (Table 3.5). ADCs are the largest contributer to peak power. The

required resolution for ADCs is a function of maximum number of operands supported for n-ary

instructions in our ISA. To contain the TDP, we limit the ADC resolution to 5-bits and thereby

limiting the number of operands for n-ary instructions (add, dot). While this may affect the

performance of a customized dot-product based machine learning accelerator significantly, it is

not a serious limitation for general purpose computation. Although IMP’s TDP is high due to

the ADC power consumption, the average power consumption is dependent on the instruction’s

requirement for ADC resolution. For example, the ADCs consume less power for instructions

with fewer operands. We find that the average resolution for ADC is 2.07 bit (maximum resolution

is 5-bit). Overall, the average power consumption for IMP is estimated to be 70.1 W. The average

44

power consumption measured for the benchmarks in the baseline is 81.3 W.

3.7.4 Effect of Compiler Optimizations

We introduce three optimization targets to the compiler and evaluate how each optimization affects

the results. The first optimization target is MaxDLP, which creates one IB per module to maximize

DLP. This policy is useful when the data size is larger than the SIMD slots IMP offers. However,

the module does not have an opportunity to exploit ILP in the program. Also, IB expansion is not

applied for this policy.

The second optimization target is MaxILP, which fully utilizes the ILP and lets IB expansion

expand all multi-dimensio-nal data in the module. This will create largest number of IBs per

module and shortest execution time for single module. However, because of the sequential part of

the IB, array utilization becomes lower. This policy can increase the overall execution time when

the kernel is invoked multiple times due to insufficient SIMD slots in IMP.

The third optimization target, MaxArrayUtil, maximizes the array utilization considering the

number of SIMD slots needed by input data. For example, if the incoming data consumes 30%

of the total SIMD slots in IMP, each module can use 3 IBs to fully utilize all the arrays while

avoiding multiple kernel invocations. The compiler optimizes under the constraint of maximum

IBs available per module

Table 3.6 shows the maximum IB latency and the number of IBs per module. Figure 3.15

presents the execution time of different optimization policies normalized to MaxDLP (baseline).

MaxArrayUtil represents the best possible performance provided by the compiler optimizations

under resource constraints imposed by IMP. Overall it provides an average speedup of 2.3×.

Two other optimizations not captured by above graph are node merging and pipelining. On

average, the module latency is reduced by 13.8% with node merging and 20.8% with pipelining.

45

3.7.5 Memory Lifetime

We evaluate the memory lifetime by calculating the write intensity of the benchmarks (last row in

Table 3.6). Based on the assumption in [69], we consider the ReRAM cells to wear out beyond

1011 writes. The compiler balances the writes to the arrays by assigning and using ReRAM rows

in a round-robin manner. Assuming the arrays are continuously used for kernel computation (but

not while the host is processing), the median of expected lifetime is 17.9 years.

3.8 Summary

This chapter proposed novel general-purpose ReRAM-based In-Memory Processor architecture

(IMP), and its programming framework. IMP substantially improves the performance and energy

efficiency for general-purpose data parallel programs. IMP implements simple but powerful ISA

that can leverage the underlying computational efficiency. We propose the programming model and

the compilation framework, in which users use TensorFlow to develop a program and maximize

the parallelism using the compiler’s toolchain. Our experimental results show IMP can achieve

7.5× over PARSEC CPU benchmarks and 763× speedup over Rodinia GPU benchmarks.

46

CHAPTER 4

In-Memory Computing with SRAM

This chapter presents Duality Cache, an in-cache computation architecture that enables general

purpose data parallel applications to run on caches. We propose a holistic approach of build-

ing Duality Cache system stack with techniques of performing in-cache floating point arithmetic

and transcendental functions, enabling a data-parallel execution model, designing a compiler that

accepts existing CUDA programs, and providing flexibility in adopting for various workload char-

acteristics.

4.1 In-SRAM Computing

Modern general purpose processors and accelerators are integrated with large on-chip caches to

fully exploit locality. They are utilized as a low-latency temporary storage and occupy a large

fraction (over 70%) of the die area. For example, the latest Intel’s server class Xeon processors

devote more than 30MB SRAM just for the last level cache (LLC). Furthermore, data-movement

over the cache hierarchy is costly, both in terms of time and energy.

To tackle these inefficiencies, recent works re-purpose the elements in cache structures and

transform them into large data-parallel compute units. Compute Caches [8] introduces an in-

SRAM computing technique referred to as bit-line computing, which activates multiple word lines

and performs logical operations. Neural Cache [1] further augments compute capability to effi-

ciently support fixed point arithmetic operations. Neural Cache transforms a 35 MB Xeon Cache

into 1,146,880 bit-line ALUs with a die area overhead of 2%. The proposed bit-line ALU operates

47

on transposed or vertically aligned data in a bit-serial manner. These additional compute resources

improve the efficiency of Convolutional Neural Networks (CNNs) by 679× (speedup 18.3×, en-

ergy savings 37.1×) over a CPU (Xeon E5) and 128× over a GPU (Titan Xp). The source of the

efficiency is the combined effect of reduced data movement and massive parallelism.

4.1.1 Challenges and Opportunities

While compute-capable caches offer significant benefits, previous works have just provided low-

level interface for in-cache operation [8] or relied on a manual mapping of convolution kernels to

the cache arrays [1]. This chapter proposes the Duality Cache system stack that makes in-cache

computing accessible to general purpose data-parallel programs.

Our proposed system solves several challenges to make caches capable of general purpose data

processing. First, to address a wide set of data-intensive applications, having a rich set of compu-

tation primitives is essential. Prior work is limited to logical and fixed-point arithmetic operations.

Most data-parallel workloads require floating point operations. Manipulation of mantissa based on

exponents in an in-cache vector architecture is a non-trivial challenge. We devise techniques that

support bit-serial floating point operations for applications with high precision or large dynamic

range demands. We present techniques that reduce the latency of bit-serial operations based on the

dynamic range of operands. The proposed techniques can support 1,146,880 parallel floating-point

operations at 3.5% processor die area overhead for a Xeon E5-2697 with 35MB cache. CORDIC

algorithms [6, 7] are leveraged to support in-cache transcendental functions.

Second, a critical challenge for in-cache computing is the design of the interface between the

CPU cores and compute caches, execution model, and cache addressing structure. Operands of

in-cache operations need to be aligned on a bit-line ALU (constraining them to specific loca-

tions in cache). We address these problems by developing a single instruction multiple thread

(SIMT) architecture, where each thread is mapped to bit-line ALUs. The data bit-cells on a bit-

line ALU become thread-local bit-serial registers which are directly addressable in the instruction

set architecture (ISA). Compute operations are allowed only on the thread-local registers. Duality

48

(a) 18-core Xeon processor
45 MB LLC

(b) 2.5MB LLC slice (c) 8kB SRAM array (d) Bitline ALU

18 LLC slices 5760 arrays 1,474,560 ALUs

WLBit-Slice 3
Bit-Slice 2
Bit-Slice 1
Bit-Slice 0
Bit-Slice 3
Bit-Slice 2
Bit-Slice 1
Bit-Slice 0

R
o

w

d
e

co
d

e
r

s

0

255

255

= A + B

BL/BLB

Logic

A
rr

ay
 A

A
rr

ay
 B

0
1
1
0

0
0
1
1

1
0
0
1A

 +
 B

360 ways

Way 1

Way 20
Way 19

C
B

O
X

TMU
Way 2

� ��

�
�

���

���

���	

���

���

����

�������

����

�	 �	

�
�
�

���

���

�� ��� �
����

 ��!�"�
���
�

��

�	

�
� ���	

�����������������

Figure 4.1: Neural Cache architecture [1].

Cache threads are organized into control blocks and mapped to cache ways. We design a micro-

architecture that orchestrates control block SIMT instructions. The processor can switch between

cache mode and accelerator mode. The SIMT Duality Cache architecture is activated only in ac-

celerator mode. Duality Cache extensions incur a modest area overhead (3.5%) but do not affect

the functionality or performance of conventional cache mode operation.

Finally, compute capable caches require a programming model and compiler that are capable

of exposing parallelism in applications to the underlying hardware and harnessing its full potential.

We adopt CUDA/OpenACC as a programming model and develop a compiler which can translate

arbitrary CUDA/OpenACC programs to the Duality Cache ISA. The compiler allocates resources,

schedules VLIW instructions, and conducts several optimizations exploiting unique opportunities

in our in-cache architecture. We also develop compiler assisted techniques to flexibly allocate a

fraction of cache to be used as SIMT compute units and regular cache storage.

4.1.2 Benefits

Duality Cache can morph general purpose processors into data-parallel accelerators. In this con-

text, its compute resources are comparable to GPGPU, a representative throughput-oriented paral-

lel accelerator. Although performance bottlenecks of GPGPU are workload dependent, commonly

claimed causes include CPU-GPU communication through PCIe bus, load imbalance, on-chip stor-

age size, bandwidth utilization, and compute flops [70, 71, 72]. Duality Cache can alleviate these

bottlenecks.

49

Data movement between CPU host and accelerator device. Since disjoint address space of GPU

and CPU necessitates explicit data transfer through PCIe, workloads with fine-grained interleaving

of serial and parallel phases are difficult to achieve speedups due to communication overheads.

Likewise, initial data transfer between the host and device memory is costly especially when data

reuse is not high. Duality Cache has an advantage of tight integration with the host memory

hierarchy and can minimize these overheads.

Cost. While tighter integration of GPU and CPU can alleviate the above problems, the area of

modern GPUs (e.g. Titan Xp die area is 471 mm2 in 16 nm) makes on-die integration with CPU

impractical. In contrast, Duality Cache extensions require an area of 15.8 mm2 in 22 nm, while

providing nearly 9.3× more compute resources, making it a cost effective solution. Besides area

savings, cost manifests itself in terms of power usage and maintenance. The TDP of a server with

Xeon E5 dual socket processor and Titan XP GPU is 640 W, whereas TDP of a server with Xeon

E5 processor extended with Duality Cache is 296 W (Table 4.2).

Increased on-chip memory capacity. On-chip SRAM can alleviate external memory bandwidth

pressure and help reduce memory access latency. GPU’s cache size is limited compared to CPU

as its die area is dominated by compute units. Duality Cache can provide flexible partitioning

of compute and cache allocation, which enables memory bounded applications to benefit from a

large cache allocation. GPU’s memory bandwidth resources can potentially be underutilized by not

having enough kernels that request memory accesses. In such case, Duality Cache can increase

bandwidth utilization by having enough active kernels exploiting its higher compute resources.

4.2 System Stack

In this section, we present a system stack for Duality Cache for accelerating data-parallel ap-

plications. This section discusses the proposed bit serial arithmetic primitives, execution model,

microarchitecture, compiler, and programming model.

50

4.2.1 ISA

Prior works support a limited set of logical and integer operations. Compute caches [8] intro-

duces basic bit-parallel operations which perform logical operations to horizontally aligned data

in caches. Neural cache [1] proposes bit-serial computation that enables several integer operations

of vertically aligned data. Our work proposes general ISA for in-cache architecture, leveraging

the bit-serial computation scheme. Proposed ISA adopts an early version of PTX (SM2.x), an ISA

for low-level parallel thread execution virtual machine employed in NVIDIA’s compiler for Fermi

GPU family [5]. Our ISA is thus Turing complete. This design choice is made to maximize porta-

bility of existing source code while minimizing hardware complexity; any other operations that are

not natively supported by the ISA are dealt with by compiler lowering and/or a software library.

Table 4.1 lists major arithmetic operations supported by our ISA, their algorithm, and baseline

latency. Machine learning workloads, which Neural Cache targets, can provide reasonable results

using reduced precision datatypes (e.g. 8-bit fixed point). However, a class of scientific applica-

tions requires more precision in computation, which necessitates full 32-bit integer or floating point

support. In this work, we develop in-cache floating point arithmetic. Since some operations listed

take latency that scales quadratic with the size of data, native implementation of the algorithms

presented in the past work may critically impact performance. Below we discuss our techniques to

minimize the bit-serial latency for these operations based on their dynamic range.

4.2.1.1 Floating Point Arithmetic

Prior in-cache architectures do not support floating point (FP) arithmetic. Unlike integer and fixed-

point arithmetic, floating point needs normalization of exponents, which requires shift operations

of mantissa by an arbitrary value for addition and subtraction.

The proposed algorithm for floating point addition is shown in Algorithm 1. The algorithm

leverages bit-serial fixed point addition and subtraction operations discussed in Neural Cache [1].

A floating point addition first requires normalization or shifting of mantissa by the difference of

exponents. Note a compute SRAM array is a SIMD unit which does exactly same operation on

51

Operation Type Algorithm Latency
add uint, int [1] n
sub uint, int Bit-serial∗ 2n
mul uint [1] n2 + 3n− 2
mul int Bit-serial∗ n2 + 5n
div, rem uint [1] 1.5n2 + 5.5n
div, rem int Bit-serial∗ 1.5n2 + 9.5n
and, or, xor uint [8] n
shl, shr uint, int Bit-serial∗ n2

add, sub float Bit-serial∗ O(n2) - variable
mul float Bit-serial∗ O(n2) - variable
div float Bit-serial∗ O(n2) - variable
sin, cos fixed point CORDIC∗ (7k + 1)n+ 7k + 1
exp fixed point CORDIC∗ 4kn+ 4k + 2
log fixed point CORDIC∗ 4kn+ 4k
sqrt fixed point CORDIC∗ 4kn+ 4k

rsqrt float
Fast inverse
square root∗ O(n2) - variable

Table 4.1: Supported in-cache arithmetic operations. (∗ = This work. n = #of bits of datatype. k =
iteration count.)

256 operands (vectors A and B) at the same time (Figure 4.2). The proposed design first computes

the difference in exponents for all vector elements (vector ediff).

The next step needs to shift second operands’ mantissa (B[i].mnt) by the difference of ex-

ponents (ediff[i]) for all i such that ediff[i] > 0 and then add it to the first operand’s

mantissa (A[i].mnt). We introduce arshadd (arithmetic right shift and add) primitive to ac-

complish this in few cycles. arshadd is equivalent to a + (b≫ d). For given d, shift operation is

free for bit-serial architecture. For example, a + (b ≫ 1) can be performed by activating correct

bits (ai and bi+1) and adding them.

Since the vector architecture of compute SRAM arrays forces all threads in an array to perform

exactly the same operation, arithmetic shift by the values in ediff vector may take in the worst

case O(n2) cycles for n-bit data, since there are 256 values in ediff vector and each element of

vector is shifted serially. We observe that the dynamic range of exponents is small in real-world

workloads and leverage this to reduce the operation latency. The algorithm takes O(dn) cycles by

52

A + B

Row
decoders

0

255

255BL/BLB

Sum

Carry

A
rr

ay
 B

A
 +

 B

W
o

rd
 3

W
o

rd
 2

W
o

rd
 1

W
o

rd
 0

}

}

S S S S

Transposed data

0 0 0 0

A
rr

ay
 A

}

A
rr

ay
 A

A
rr

ay
 B

C
 =

 A
 +

 B

ediff
= exp_a
-exp_b

2. Swap operands
Calculate ediff
If ediff[i] < 0 Then
swap(A[i], B[i])

3. Enumerate
unique ediff
Using search

1

uniq_ediff
= {1}

4. ARSHADD
Foreach uniq_ediff
A[i]+(B[i]>>ediff)

+

sgn

exp

mnt

1. Convert into
2’s complement

msb

exp

mnt

swap
A[1], B[1]

0
0
1

5. Normalize exp
If bit_overflow
Then exp_c=exp_a+1

mnt_c>>=1

B
[
i
]
>
>
1

Figure 4.2: In-SRAM floating point addition overview. The mantissa (mnt) is normalized with the
difference in exponents (exp) using a search operation.

searching for all unique d ediff values instead of the worst-case. Note that the worst case variation

of d is equal to the number of mantissa bits (23 for IEEE 754 FP32). We do a leading zero search

to find the upper-bound value of ediff to be searched.

The search operation for each unique value is executed in two cycles as follows. In the first

cycle, all word-lines that correspond to bit 1s in the search value are activated and logical AND of

the bit-positions is sensed on each bit-line. In the second cycle, all word-lines that correspond to

bit 0s in the search value are activated and NOR result is sensed on each bit-line-bar. A logical AND

of the results from these two cycles produces the final search hit vector.

Additionally, we swap operands with negative ediff as shown in Figure 4.2, to avoid diver-

gent execution. Without this swap, we have to repeat the for-block (Line 10 in Algorithm 1) twice,

which dominates the processing time of the naive algorithm. Therefore, it is worth doing a swap.

Floating point addition and subtraction require conversion of sign bit format to 2’s complement

format, also unhiding the implicit leading digit. The mantissa of input values to Algorithm 1 is in

2’s complement format, and this conversion is handled by an instruction that precedes. We also

introduce an instruction that does re-conversion to sign bit format and mantissa normalization.

We minimize the number of conversions by skipping re-conversions between operations. This is

helped by a compiler analysis, which scans through the input code and inserts these conversion

53

Algorithm 1 Floating Point Add (C=A+B)
1: procedure VECTOR_FPADD
2: ARSHADD(X, Y, k) = X + (Y≫ k)
3: type float {.exp, .mnt}
4: vector <float> A,B,C
5: vector ediff← A.exp−B.exp
6: if ediff[i] < 0 then
7: SWAP(A[i], B[i])
8: ediff[i]← A[i].exp−B[i].exp
9: end if

10: for each unique k in ediff do
11: if ediff[i] == k then
12: C[i].mnt =
13: ARSHADD(A[i].mnt, B[i].mnt, k)
14: end if
15: end for
16: if overflowi then
17: C[i].exp = A[i].exp+ 1; C[i].mnt≫ 1
18: else
19: C[i].exp = A[i].exp
20: end if
21: end procedure

operators.

We also support efficient floating point multiplication and division. Floating point multiplica-

tion (division) is a combination of addition (subtraction) of exponent bits and multiplication (divi-

sion) of mantissa bits, where we can apply the same technique as integer multiplication (division)

which we will discuss in the following section.

We do not support denormal floating point numbers (non-zero numbers with magnitude smaller

than the smallest normal number). Note that since denormal number handling significantly reduces

process speed in general, some systems omit this hardware support. Intel’s SIMD instruction set

handles it by calling a software exception, also providing a knob to disable the exception call [73].

4.2.1.2 Integer Arithmetic Optimization’s

We apply several optimizations to the baseline integer algorithm to skip redundant cycles depend-

ing on the data. For example, when performing multiplication, we can avoid calculating partial

54

sums if i-th bit are all zero across all the data entry. Below lists other optimizations we introduce

for multiplication and division.

• We perform a leading zero search on multiplicands and dividends to identify the effective

data size. Leading k zeros will reduce more than n× k cycles.

• We perform a leading zero search on divisors. Since we know the number of digits of

quotient Q of A/B is at most x = ⌊logA− logB⌋+ 1, we can skip the first n− x iterations,

which saves more than
∑x−1

i=0 (n+ i) cycles. Leading zeros of divisors can also contribute to

reducing cycles by interpreting it as data with a smaller datatype. Note that the leading zero

searches can be done in parallel for both operands using search.

• We perform search on the partial residues to judge whether they are zero. For example,

1001/10 will see zero partial residue after calculating Q=01xx. We set 0 to the third MSB of

Q without performing subtraction in the iteration.

4.2.1.3 Transcendental Functions

In addition to floating point operations, we support transcendental functions. Previous work on

in-memory memristive computing [74] utilizes look-up tables (LUTs) for those functions to get

initial guess and refines it by an iterative process such as the Newton-Raphson method. However,

this approach not only requires a large area for LUTs for each cache bank but also makes LUTs a

serialization point which ends up in limiting computation throughput.

For our in-cache architecture, we utilize a different algorithm called COordinate Rotation DIg-

ital Computer or CORDIC [6, 7, 75, 76]. CORDIC does not require accessing LUTs for each

operand value but calculates and refines the result digit-by-digit using pre-calculated constant

numbers that can be shared by any operand value. CORDIC does not make any serialization point,

which makes it highly efficient for the Duality Cache ’s massively parallel vector architecture. Fur-

thermore, with using pre-calculated constants, CORDIC only involves addition, subtraction, and

fixed-amount-bitshift, but not multiplication, thus being suitable for bit-serial computing, as their

latency is O(n) (mul is O(n2)). Further, our compiler exposes the ILP in CORDIC algorithms

55

with its VLIW instruction scheduling.

CORDIC approach can be applied to various operations including exp, log, trigonometric /

hyperbolic functions, and square root. We set the iteration count to 17 to retain the accuracy of

FP32 format. While our CORDIC implementation accept fixed point numbers with fixed region

(e.g. [0°, 90°]), it is trivial to normalize data to fit within the region (e.g. sin(120°) = sin(120° −

90°), log 1234 = 3 × log 1.234). This normalization and type conversion to the fixed point are

handled by a software library.

4.2.2 Programming Model

Programming model creates a direct and significant impact on programmability and architecture

design. While simple models (e.g. wide SIMD [1]) simplify the hardware, it limits flexibility.

On the other hand, guaranteeing too much freedom may result in over provisioning of hardware

resources in order to handle all communication patterns. To expose the massive parallelism of

Duality Cache to applications with irregular (or data-dependent) memory access, we adopt a SIMT

programming model of CUDA (NVIDIA’s GPGPU programming framework) and OpenACC.

CUDA describes kernels as multi-threaded programs and groups threads into warps. In a warp,

threads are executed in a synchronized manner. Inter-thread synchronization and sharing are al-

lowed within a group of threads called thread block or Cooperative Thread Array (CTA). In other

words, different CTAs are independent and can be scheduled and executed in any order.

Proposed architecture benefits from this programming model from two aspects. First, CUDA

is a popular and widely used framework across different fields spanning from scientific computing

to machine learning. Leveraging it for Duality Cache architecture with direct translation or trivial

source code changes will archive portability and opportunity to use the existing software. Second,

having independent CTAs entails minimum network resources for inter-thread communications

that happen locally within a CTA.

On top of CUDA, we support OpenACC. OpenACC provides OpenMP-like pragma to pro-

grammers, making it easier to convert existing serial programs to parallel programs. Currently,

56

Tag Array

64

Bank 3

32
32

 S/AArray Array

 S/AArray Array

64

Bank 2

32
32

 S/AArray Array

 S/AArray Array

64

Bank 1

32
32

 S/AArray Array

 S/AArray Array

Way 20
(Reserved)

64

Bank 4

32
32

 S/AArray Array

 S/AArray Array

64

Bank 3

32
32

 S/AArray Array

 S/AArray Array

64

Bank 2

32
32

 S/AArray Array

 S/AArray Array

64

Bank 1

32
32

 S/AArray Array

 S/AArray Array

64

Bank 4

32
32

 S/AArray Array

 S/AArray Array

256 Threads / TB

256 Bitlines

32
 b

it
bi

t-s
er

ia
l r

eg

256

Way n - 20
(Used as Cache)

More CBs

.
(Way 3 - Way n)

Control Block 1

Way 1

Bank 1

6432
32

 S/ATB1 TB1Array Array

 S/ATB1 TB1Array Array

Bank 2

6432
32

 S/ATB2 TB2Array Array

 S/ATB2 TB2Array Array

Bank 3

6432
32

 S/ATB3 TB1Array Array

 S/ATB3 TB3Array Array

Bank 4

6432
32

 S/ATB4 TB4Array Array

 S/ATB4 TB4Array Array

Control Block 2

Way 2

Bank 1

6432
32

 S/ATB5 TB5Array Array

 S/ATB5 TB5Array Array

Bank 2

6432
32

 S/ATB6 TB6Array Array

 S/ATB6 TB6Array Array

Bank 3

6432
32

 S/ATB7 TB7Array Array

 S/ATB7 TB7Array Array

Bank 4

6432
32

 S/ATB8 TB8Array Array

 S/ATB8 TB8Array Array ...

256 W
ordlines

(8 32-bit regs)

.

.

.

4 Arrays

.

.

.

.

.

.

Thread

1 thread has
32 32-bit registers

CBox TMUXB

Tag Array Tag Array

Dec / Ctrl XB Dec / Ctrl

Tag Array

(a) (b)

Figure 4.3: In-Cache SIMT execution model and architec-
ture overview.

Tag compare

0

2047

W
in

do
w

 0

PC

Loop FSM

Command
Selector

W
in

do
w

 1

Loop FSM

Command
Selector

W
in

do
w

 2

Loop FSM

Command
Selector

W
in

do
w

 3

Loop FSM

Command
Selector

+1

Decoder

Tag Array

jmp_en

Bank

TMU

BB1

BB2

MSHR

LLC / Mem

add //!1
sub //!2
…

@p jmp

47 bits

Figure 4.4: Frontend architecture.

commodity OpenACC compilers support multi-thread, multi-core CPUs and NVIDIA GPUs. Ope-

nACC is characterized by its ability to describe fine-grained interleaving of serial computation on

the host and parallel kernels to be executed on an accelerator (e.g. GPU) using pragma. While

GPUs tends to face communication bottleneck for those OpenACC programs with frequent host-

device communication, Duality Cache enables seamless execution between host code and kernel

code, as caches share the same memory hierarchy as the host.

4.2.3 Execution Model and Architecture

Our execution model reflects the programming model, but when compared to GPUs it is simpler

and coarser-grained. The cache acts in two modes: accelerator mode and cache mode. In ac-

celerator mode a bit-line in a cache array becomes one thread lane of a SIMT processor. In our

architecture, registers and compute units are identical. We assign registers in a thread to the bit-line

and perform computation in-place. Operands are vertically aligned within the registers mapped on

the bit-line. In cache mode, the cache arrays are part of the processor’s traditional multi-level mem-

ory hierarchy. Note that the accelerator mode does not change the functionality or performance of

the cache mode.

SIMT Architecture. Instruction issue is performed at the Control Block (CB) granularity. Fig-

ure 4.3 shows the Duality Cache architecture. A CB consists of a group of 1,024 threads and is

57

allocated to a single way of a cache slice. Each way consists of 4 banks, each bank is capable of

executing 256 threads referred to as Thread Block (TB). Hereafter, we use TB to refer to this 256

thread group, and CTA to software thread block of CUDA or a gang of OpenACC.

We choose to dedicate an entire bank with four SRAM arrays to a TB to provide a sufficient

number of registers per thread and prevent frequent register spilling. One SRAM array has 256

bit-cells along a bit-line, thus can afford only 8 32-bit bit-serial registers as shown in Figure 4.3

(b). By allocating 256 threads to a bank of four SRAM arrays we can afford 32 32-bit bit-serial

registers per thread. Thus each thread in a TB is virtually mapped to multiple arrays in a bank,

and each member array has a slice of registers. The proposed architecture restricts the maximum

number of threads in a CTA to 1,024.

We only allow inter-thread communication within CB. This design choice is made to balance

programmability and hardware complexity. We utilize a 256×256 local crossbar in the C-Box to

shuffle / broadcast CTA local data as shown in Figure 4.3 (a). Although the throughput of the

crossbar is limited by the interconnect bandwidth, it can service arbitrary inter-thread communi-

cation within a CB in a fixed time-frame. Kernels that do not require inter-thread communication

can span across multiple CBs.

A CB and GPU’s Streaming Multiprocessor (SM) are similar in the thread and register capacity.

While latest GPUs have large register files (64K 32-bit reg / SM) so that cores can time multiplex

different warps in blocks assigned to the SM, we directly execute instructions in-situ in numerous

Duality Cache threads mapped within the registers.

In-Order VLIW Architecture. Mapping a TB to a bank of four arrays opens up an interesting

opportunity: each array can execute a different operation in the same cycle. Thus we can perform

VLIW-like instruction scheduling, allowing Duality Cache to exploit ILP in the program. All the

banks in a way (i.e. CB) process the same (VLIW) instructions. Instructions are buffered in the

tag array in each way which is continuously fed entries by a host processor core. The buffered

instructions are then decoded and issued through four issue windows where each instruction is

broadcasted to corresponding member arrays of all threads in the CB. Duality Cache performs

58

computation in a bit-serial manner. Each bit-line acts as a computation unit, and all bit-lines in an

array perform the same operation as in a SIMD processor.

Instruction Sequencing. All threads in a Control Block (CB) perform blocking execution, includ-

ing memory accesses, with implicit synchronization between threads. On the other hand, different

CBs can execute different instructions at a time. This implements compute and memory access

overlap at a coarse level: while GPUs schedule for warps to overlap compute and memory access

within the block, we fire a lot more CBs at one time using rich compute/register resources (9.3×

more than Titan Xp) and overlap memory accesses with other CB’s computations.

This means each CB maintains its own programming counter (PC). PC is incremented before

fetching next instruction and points to an entry in the tag array, which works as a ring buffer. The

frontier PCs are monitored by the host processor to prevent overwriting instructions that have not

been executed. While fixed length loops are unrolled by host run-time or by the compiler, data-

dependent loops in applications which iterate under a condition (e.g. convergence) are handled

inside CB. For these loops, we maintain entire loop body block in the tag array, and a conditional

jump (predicated jump) instruction resets the PC to the loop entry. The loop exits upon negative

jump_en, which receives wired-OR of predicate bits stored in the cache peripheral. A CPU core can

continue to fill successor instructions of the loop, but it cannot overwrite the loop block until after

PC exits the loop.One CPU core is sufficient to launch and feed all CBs. Control flow is handled

by predication, and indirect jumps (branches) are not supported, following the PTX language.

The control box in a cache slice is implemented with finite state machines (FSMs) in hardware

that can dispatch low-level control signals to the cache banks for performing cycle-by-cycle bit-

serial operations based on issued instructions.

Load and Store Instructions. Duality Cache interfaces with memory hierarchy through Trans-

pose Memory Unit (TMU) [1]. TMUs have 8T transpose bit-cells which can read and write data in

both horizontal and vertical directions to enable the conversion between regular bit-parallel layout

and transposed bit-serial format. TMUs are placed in cache control box (CBox in Figure 4.3).

When performing load instruction, target addresses are first read out from an array that belongs to

59

one of the issue windows. Unlike other compute operations, only one memory instruction can be

included in one VLIW instruction because of the interconnect bandwidth. The bit-serial addresses

are transposed in TMU, registered in Miss Status Handling Register (MSHR), and sent to the mem-

ory. MSHR enables simple memory coalescing; duplicated accesses to a cache line are treated as

an MSHR hit and suppressed. MSHR keeps track of source thread numbers. When the target cache

line arrives from the memory, it is first sent to TMU. The destinations are set by configuring the

local crossbars so that it can rearrange or multicast data into the data banks. The data is then read

out from TMU in bit-serial format and sent to awaiting threads through the crossbar.

Data that can be accessed by Duality Cache has to be stored in specially allocated pages (DC-

pages) in the main memory address space. A simple MMU placed at the memory controller per-

forms address translation. The address translation is mainly aimed to balance the DRAM load by

shuffling the physical address allocation.

4.2.4 Compiler

We develop a backend compiler that transforms PTX, NVIDIA’s low-level parallel thread execution

virtual machine ISA, into VLIW-style code for Duality Cache which we refer to as DC-PTX.

Opcodes of DC-PTX are a subset of PTX opcodes; some instructions designed specifically to

GPUs are eliminated. On the other hand, DC-PTX adds several fields to PTX to include operand

locations.

NVCC

NVIDIA CUDA
Compiler

ompcc

OpenACC Compiler
Frontend

CUDA BIN

E
LF

S
A

S
S

P
TX

Duality Cache Compiler
DC BIN

E
LF

D
C

PTX

DC RuntimeCuda Runtime

Kernel
Analysis

PTX
Optimizer

Inst.
Scheduler

Reg.
Allocator

Figure 4.5: Compilation tool flow. CUDA source code is first compiled by NVIDIA CUDA com-
piler (nvcc). Duality Cache compiler extracts PTX assembly from CUDA executable and generates
DC-PTX code. OpenACC program is compiled by an OpenACC compiler which generates GPU
code that is then compiled by nvcc.

60

Figure 4.5 shows the overall compilation flow. CUDA source code is first compiled by NVIDIA’s

CUDA compiler (nvcc). The output CUDA executable includes three kinds of object files (i.e. elf,

PTX, and SASS). Our backend compiler extracts and parses the PTX files, applies several opti-

mization passes to PTX IR, schedules instructions, allocates resources, and generates DC-PTX

code. DC-PTX kernel is loaded and executed by API calls to DC-Runtime library in a similar way

as CUDA runtime.

The compiler is currently built on top of GPU Ocelot dynamic compilation framework [77].

We choose PTX as IR since most of the CUDA compilation tool flow is closed-source (including

ptxas which performs resource allocation and scheduling). Currently, GPU Ocelot is the only

compilation framework academically available to work on GPU object files. We also utilize Rose

compilation framework [78] to perform source-to-source compilation to apply optimization passes

to the source code before nvcc compilation.

OpenACC programs can also be compiled using the same infrastructure, except that the source

code is first compiled by an OpenACC compiler which extracts the accelerator code and generates

GPU code that is then internally compiled by nvcc.

Duality Cache compiler framework translates a CUDA code to VLIW SIMD ISA. Although

VLIW is not as efficient as out-of-order execution for exploiting ILP, it enables ILP to be exploited

with lower hardware complexity since complicated ILP aware scheduling is handled by the com-

piler. Unlike traditional VLIW architecture, the proposed Duality Cache architecture has to take

operand locality into account; all operands need to reside in the member array where the operation

is executed, otherwise, we have to explicitly copy the operands to the member array.

Following are the implemented features of our compiler:

Register Pressure Aware Instruction Scheduling

Register pressure and efficient VLIW instruction scheduling are an inseparable problem. In our

design, instruction scheduling is tightly coupled with resource allocation. While many compilers

for VLIW architecture schedule instructions first before register allocation to maximize parallelism

utilizing abundant register resources shared by many execution units, our execution model has

61

limited number of private registers, which may result in frequent register spilling. On the other

hand, resource-allocation-first approaches often introduce many false dependencies in return for

minimized register usage, which can reduce available parallelism. We tackle this problem by

performing resource allocation and instruction scheduling at the same time. We use Bottom-Up

Greedy (BUG) [59] as the baseline scheduling algorithm, and linear scan register allocation as the

baseline resource allocation algorithm. By taking register pressure into account while performing

instruction scheduling, the compiler can pick better strategy to balance parallelism and register

spilling. In our design, we allocate computation units considering register pressure as well as

operand movement overhead. This approach balances the register pressure of each member array

and maximizes parallelism as long as there are available registers. When register pressure is too

high for all the member arrays, we start spilling a register according to the spill policy of the linear

scan algorithm. Parallelism can be sacrificed due to high data movement cost.

PTX Optimizations

AST balancing: To maximize ILP, it is better to distribute operands of a chain of associa-

tive binary operations evenly to available VLIW slots. Generally compiler frontend left-folds an

expression of binary operation chain if it does not have parentheses when constructing Abstract

Syntax Tree (AST) (e.g. a + b + c + d⇒ (+ (+ (+ a b) c) d)), making a true dependency between

the temporary value (partial sum) and the next operand. One of the optimizations we apply recon-

structs the AST to form a balanced tree (e.g. a + b + c + d⇒ (+ (+ a b) (+ c d))) so that unnecessary

dependencies will not hinder exploring ILP when scheduling instructions for our in-order VLIW

architecture.

Thread independent variable isolation: We further include an optimization to reduce register

pressure by not storing thread independent variables. For example, a fixed length loop is unrolled

by Duality Cache runtime and the induction variable is provided as a constant if necessary. DC

compiler identifies thread independent variables by conducting dependency analysis and affixes

metadata as a marker for the instruction that only processes thread independent variables.

62

4.2.5 Cache Partitioning

Duality Cache architecture can utilize memory arrays in LLC for both computing and caching.

Generally, CUDA programs are optimized for GPUs, which typically have 88-144KB SRAM stor-

age in SM for L1+texture cache and shared memory (Pascal GPUs). Therefore, reserving one

way (128KB) per CB provides a similar configuration as GPUs. However, cache utilization is

highly dependent on applications, and our architecture is able to flexibly adjust the cache resource

allocation based on reuse patterns. Prior works [79, 80] have shown that some classes of GPU ap-

plications are known to receive small benefits from caches because of less locality. Also, compute

intensive kernels can underutilize memory bandwidth. In those cases, we can increase the compute

allocation in the cache. On the other hand, we observe many applications with irregular memory

access patterns benefit from caches if the working set fits in the caches. Here we can increase the

cache allocation to reduce memory bandwidth pressure.

Our compiler can analyze kernel dimension and shared memory usage to determine the cache

allocation so that we can leverage the locality of the applications which is explicitly specified by

programmer in the form of shared, constant, or texture memory (Note that these local memories

are remapped to global memory by the compiler.) We also analyze memory access patterns, and

estimate memory traffic and data reuse through static kernel code instrumentation.

4.3 Methodology

Benchmarks: We use applications from Rodinia GPU benchmark suite [71] and PathScale Ope-

nACC benchmark [81] as listed in Table 4.3. We compile the CUDA applications using nvcc 4.2

using default compile options of the benchmark suite (except for the target architecture which we

set to sm_20 to make CUDA binary compatible with GPU Ocelot [77]). The OpenACC appli-

cations are compiled using Omni Compiler [82], an open-source academic OpenACC compiler,

which is internally linked with CUDA Toolkit. We modify the source code of Omni Compiler to

disable the automatic insertion of cache configuration API calls which are not supported by CUDA

63

Model Die Benchmark Servers
mm2 nm GHz TDP LLC Dies DRAM Size mm2 TDP

Xeon E5-2697 v3 456 22 2.6 145 W 35 MB 2 64 GB DDR4 912 290 W

NVIDIA Titan Xp 471 16 1.6 250 W 3 MB
1

+ 2 (host)
12 GB GDDR5
+ 64 GB DDR4 1,383 640 W

Duality Cache 471 22 2.6 148 W 35 MB 2 64 GB DDR4 942 296 W

Table 4.2: Benchmark server configuration.

Applications Dataset Custom
Optimization

R
od

in
ia

backprop, bfs, b+tree, dwt2d, hotspot,
hotspot3D, hybridsort, nw, streamcluster

default None

gaussian omp_default Increased CTA size
heartwall, leukocyte default Loop unrolling
lud, nn large (1k, 2k) CPU hybrid (lud)

ac
c

divergence, gradient, lapgsrb, laplacian,
tricubic, tricubic2, uxx1, vecadd, wave13pt

256 128 1024 Increased CTA size

gameoflife, gaussblur, matvec, whispering 256 1024 Increased CTA size

Table 4.3: Evaluated workloads. (acc = OpenACC Benchmark)

Toolkit 4.2. While we use the old CUDA version to work with GPU Ocelot dynamic compilation

tool [77], we use latest CUDA Toolkit 9.2 [83] and community standard PGI OpenACC compiler

18.10 [84] for the native run on GPU.

We mostly use the dataset preset by the benchmark suite. For some benchmarks, such as

gaussian, lud, nn from Rodinia, we use the OpenMP dataset or a data-generator generated large

dataset to augment the utilization of computation unit. Moreover, we modify the source code of

some benchmarks to further expose the parallelism of Duality Cache . These custom optimizations

are discussed in detail in Section 4.4.4.

Area and Power Model: Area and power parameters are summarized in Table 4.4. The

energy and power model of Duality Cache peripherals and Transpose Memory Unit is from Neural

Cache [1]. We synthesize the controller and state machine using Synopsis Design Compiler in

a 45nm process. We assume average ILP 1.25 and 10% activity factor for TDP. We employ the

energy and power model in [85] for the local crossbar and assume an activity factor of 5% for TDP.

We use CACTI [86] to model energy and area for scratch SRAM used in MSHR.

Power and energy for CPU and DRAM activity are measured by profiling microbenchmarks

64

Area (mm2) Power (W)
Area

Overhead
CPU 456 145 -

Duality Cache
Peripheral

3.15 2.96 0.69 %

TMU 5.32 0.06 1.17 %
Controller / FSM 6.16 0.33 1.35 %

MSHR 0.86 0.05 0.19 %
Local Crossbar 0.28 0.01 0.06 %

Total 471.77 148.40 3.5 %

Table 4.4: Duality Cache parameters.

using Intel Rapl interface. We use NVIDIA nvprof to measure GPU power.

Performance Model: We develop a Duality Cache timing model and functional model on

GPU Ocelot’s tracer framework and PTX emulator. Since some of the in-cache operations are data

dependent, the timing model interacts with the functional model in the emulator. Target applica-

tions are executed on the DC-PTX emulator in GPU Ocelot and we obtain front-end and back-end

traces using our tracer for each CTA. We then rerun the traces using our simulator and feed the

trace files to Ramulator [87]. We perform CPU-trace driven DRAM simulation on Ramulator with

a modified processor model.

4.4 Results

4.4.1 Configurations Studied

In this section, we evaluate the proposed Duality Cache and compare it to two baselines. The first

baseline (CPU) uses Intel Xeon E5-2697 v3 multi-socket server. The second baseline (GPU) is

a server with host Xeon E5 and NVIDIA Titan Xp GPU. The details of both configurations are

shown in Table 4.2. We assume Duality Cache to be implemented in the 2-socket Xeon server

system. When entire LLC geometry is allocated for computation, Duality Cache has 150× more

threads than GPU. The massive parallelism comes at the cost of larger operation latency of the

bit-serial algorithms (Section 4.4.5).

65

b
ac

kp
ro

p
b

fs
b

+
tr

ee
d

w
t2

d
ga

us
si

an
h

ea
rt

w
al

l
h

ot
sp

ot
h

ot
sp

ot
3

D
h

yb
ri

d
so

rt
la

va
M

D
le

uk
oc

yt
e

lu
d nn nw

p
at

h
fin

d
er

st
re

am
cl

u.
.

d
iv

er
ge

nc
e

ga
m

eo
fli

fe
ga

us
sb

lu
r

gr
ad

ie
nt

la
p

gs
rb

la
p

la
ci

an
m

at
ve

c
tr

ic
ub

ic
tr

ic
ub

ic
2

ux
x1

ve
ca

d
d

w
av

e1
3

p
t

G
eo

m
ea

n

0.0

0.5

1.0

1.5
N

or
m

al
iz

ed
 E

xe
cu

ti
on

 T
im

e

Rodinia OpenACC

GPU:Memcpy GPU:Kernel DC:Memory DC:Compute

Figure 4.6: System performance. GPU:GDDR5+memcpy, DC:DDR4.

4.4.2 Performance

In this section, we study the application performance. The execution time for the GPU server and

Duality Cache server is shown in Figure 4.6 (normalized to GPU, lower is better). It shows the

breakdown of memcpy time and kernel execution time for GPU. We consider the memory transfer

(cudaMemCopy) time, but time spent on GPU initialization, CUDA API calls (including CUDA

malloc), and OpenACC API calls is not included. GPU’s kernel time includes memory access

time. For Duality Cache , we show compute and memory access time. The compute time of

Duality Cache is the aggregate latency of issued instructions on the critical path, and the memory

access time is total time − compute time.

Duality Cache provides a 3.6× average speedup for the Rodinia benchmarks and 4.0× speedup

for the OpenACC benchmarks, compared to GPU. Figure 4.10 shows the average system speedup

of Duality Cache compared with CPU. Duality Cache provides a 72.6× speedup compared to CPU

for the Rodinia benchmarks, and 9.6× for the OpenACC benchmarks. The OpenACC benchmarks

can have fine-grain serial and parallel interleaving making their GPU acceleration less effective

compared to Rodinia benchmarks.

We discuss the key factors that contribute to the Duality Cache performance below:

A. Reduced Memcpy Time: Memcpy time takes a substantial portion of the GPU execution time

66

ba
ck

pr
op bf

s
b+

tre
e

dw
t2

d
ga

us
sia

n
he

ar
tw

al
l

ho
ts

po
t

ho
ts

po
t3

D
hy

br
id

so
rt

la
va

M
D

le
uk

oc
yt

e
lu

d nn nw
pa

th
fin

de
r

st
re

am
clu

..
di

ve
rg

en
ce

ga
m

eo
fli

fe
ga

us
sb

lu
r

gr
ad

ie
nt

la
pg

sr
b

la
pl

ac
ia

n
m

at
ve

c
tri

cu
bi

c
tri

cu
bi

c2
ux

x1
ve

ca
dd

wa
ve

13
pt

Ge
om

ea
n

0.0

0.5

1.0

1.5

2.0
No

rm
al

ize
d

Ex
ec

ut
io

n
Ti

m
e

Rodinia OpenACC

GPU:Kernel DC:Memory DC:Compute

Figure 4.7: Kernel performance. GPU:GDDR5, DC:GDDR5.

for some applications. This can be explained by the fact that some applications have very small

reuse factor of data, which can make inter-DRAM data movement cost prominent as shown in

Figure 4.6. Duality Cache is integrated into the same memory hierarchy as the host, and thus this

data movement cost does not exist, resulting in higher performance.

Some CPU models [88] using integrated on-chip GPU could possibly reduce the data move-

ment cost. However, they have typically 10× smaller compute resources than our baseline server

GPU (Titan Xp), while taking more than the half of CPU die area. Duality Cache is clearly distin-

guishable from them by the ability to provide the orders of magnitude higher compute resources

with only 3.5% of area cost.

B. Massively Parallel Execution: Compute-intensive kernels enjoy Duality Cache ’s massive

parallelism. Figure 4.9 shows the average number of active Control Blocks (CBs) in the kernels.

A CB has 1024 threads and can map several CTAs. Since CBs are independent of each other, this

chart indicates the available parallelism of the applications. Each Xeon socket can execute 280

CBs (yellow dash line), thus we have 560 CBs (dark orange line) in total in the baseline dual-

socket system. Our GPU has 30 SMs, each can have up to 2 CTAs (Note that this is a register size

based calculation; threads in CTAs use GPU cores in a time-multiplexed way).

We can see kernels with a high level of parallelism (e.g. backprop, b+tree, nn, gaussian, gaus-

67

ba
ck

pr
op bf

s
b+

tre
e

dw
t2

d
ga

us
sia

n
he

ar
tw

al
l

ho
ts

po
t

ho
ts

po
t3

D
hy

br
id

so
rt

la
va

M
D

le
uk

oc
yt

e
lu

d nn nw
pa

th
fin

de
r

st
re

am
clu

..
di

ve
rg

en
ce

ga
m

eo
fli

fe
ga

us
sb

lu
r

gr
ad

ie
nt

la
pg

sr
b

la
pl

ac
ia

n
m

at
ve

c
tri

cu
bi

c
tri

cu
bi

c2
ux

x1
ve

ca
dd

wa
ve

13
pt

Ge
om

ea
n

0.00
0.20
0.40
0.60
0.80
1.00
1.20

No
rm

al
ize

d
En

er
gy

Rodinia OpenACC

DC:CPU+DRAM DC:LoadStore DC:Compute

Figure 4.8: Energy efficiency (system).

blur, etc.) significantly reduces execution time in Figure 4.6 as they can harness Duality Cache

resources. On the other hand, other benchmarks such as lud, nw and streamcluster have

limited parallelism available, resulting in large critical compute time in the kernel performance. In

Section 4.4.4 we discuss several optimizations we applied to enhance the parallelism beyond the

original CUDA programs.

C. Compute / Memory Access Overlap: Some applications show a large compute time por-

tion in the kernel performance, despite enough parallelism (e.g. lavaMD). These kernels can

successfully hide memory latency with computation. Note few benchmarks show a slowdown

(hotspot3D and streamcluster) with Duality Cache because they are memory bandwidth

bound. For those, newer memory technology (GDDR5) could help improving performance, as

explained shortly (Figure 4.7),

D. Flexible Cache Allocation: While GPU may underutilize / overutilize its memory bandwidth,

Duality Cache can adjust parallelism and cache allocation size to balance memory bandwidth

(Section 4.2.5). Many of the evaluated applications benefit from the cache partitioning. By default,

we assign the unused Control Block units as cache, but we changed the allocation size based on

the applications’ behavior. We will discuss it in Section 4.4.5.

68

�

���

���

���

���

����

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

�

�

�

	

	

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

	

	

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�
�
�
��
�
�
��
	
�

��

�
��
��
�
�

����������	
��
���

����������	����
���

����

Figure 4.9: Control Block Utilization.

���

���

���

���

���

���

�	
���
 �������

�

�

�

�

�

�

�

���

���

����	
����
��

���

����

����

����

Figure 4.10: Average
speedup.

 512 1024
CTAs

←←
 T

im
e

←←

 4 32 256
CTAs

←←
 T

im
e

←←

�

���

���

���

���

�

���

�	
��
���
��� �	
��
���
���

�����

�	�

�

�

�

�

�

�

�

�

	

�

�

	

�

�

�

�

�

�

�

�

�

�

	

��������	
�

����������

���

Figure 4.11: Kernel launch pat-
terns (time vs. #CTAs) of
bfs(top) and lud(bottom) and
CPU Hybrid execution.

�

���

����

����

����

�
�
��

�
�
�

�
�
��

�
�
�

�
�
��

�
�
�

�
�
��

�
�
�

�
�
��

�
�
�

��� �	
 ��
�� ����� ���	

��
��
	

�
�

�

��
�
�

Figure 4.12: Average opera-
tion latency.

4.4.3 Performance without Host-Device Transfer

Figure 4.7 presents kernel execution time for Duality Cache and GPU. This experimental setup

eliminates memcpy time from GPU and provides a GDDR5 memory to both Duality Cache and

GPU. The goal is to compare the raw compute power of both architectures in a bandwidth neutral

fashion. The execution time is normalized to that of GPU. We observe a 1.92× average speedup

for Rodinia kernels and 2.39× speedup for OpenACC kernels. This speedup comes at a fraction

of area cost of the CPU (3.5%), while the GPU server adds a new die of size 471 mm2.

69

4.4.4 Deep Dive of Applications

Harnessing Full Potential of Duality Cache : Applications can fully exploit Duality Cache by

exposing large parallelism and reusing data. We notice that many CUDA applications are opti-

mized to GPU architectures, being aware of warp size and CTA size. Generally, programmers

write a tiled program where each tile owns its sub-problem assigned to a CTA. Internally they use

for-loops to iterate over the data for the sub-problem, often incrementing induction variable of a

thread by warp size (32) to make warps sweep on the data. This creates a dependency between

iterations, despite the absence of actual dependency. This is also driven by the fact that CTA size

is limited to 1,024 threads due to the maximum register size of an SM. Although our CB can own

1,024 threads, we can expand CTA size beyond this limit provided there is no local communica-

tion between threads, as we discussed in section 4.2. Eliminating local communication is trivial by

using atomic operations etc., so we modify some of the source code to unroll the outer for-loops

and/or increase the CTA size, as shown in Table 4.3. OpenACC programs can also easily change

the CTA size by setting the vector and worker size option in pragma. This optimization provides

significant improvement in performance (e.g. 8.5× for leukocyte and 10.2× for heartwall).

Another important factor is data reuse. Given enough threads to fill CBs and existence of shared

data, it is recommended to load the data and reuse it using fixed-length for-loops after launching

CTAs to fill CBs. By this, we can avoid multiple fetches of shared data by different CTAs, and also

take advantage of thread independent variable isolation.

Fine Interleaving of Serial and Parallel Code Using CPU: Since host-device communication

cost is non-trivial for GPUs, CUDA programs tend to incorporate serial or nearly serial code with

parallel code. Figure 4.11(left) illustrates kernel launch patterns of bfs and lud by showing

number of launched CTAs (x-axis) vs. time (y-axis, advances from top to bottom). Ideal truly

parallel kernels have a pattern similar to bfs, however, as can be seen, lud iteratively launches

three kinds of kernels, one of which only contains 32 threads. Taking advantage of Duality Cache

’s tight integration with CPU, we optimize lud to execute these small kernels on the host CPU

using OpenMP. Figure 4.11(right) shows the execution time breakdown (normalized to the original

70

����

����

����

����

����

����

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

�

�

�

	

	

�

�

�

�

�

�

	

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

	

	

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

���	
��
�	���
	 �������
�	���
	 ������
������
���
�����

Figure 4.13: Effect of compiler optimizations.

���

���

���

���

���

���

�

�

�

�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

������� ��� ���	

 ��
����
	

�

�

�

�

�

�

�

�

	

�

�

�

�

	

�

�

�

�

�

�

���	
��
�

������
�����
� ��
���������
�

Figure 4.14: Effect of different cache allocation size.

version). We observe the optimized version of lud achieves a 2.26× speedup. Since the single

operation latency of Duality Cache is much higher than CPU, we study CPU is more efficient to

execute those small kernels. The same idea applies to OpenACC benchmarks as well.

4.4.5 Impact of Optimizations

Arithmetic Operation Latency: Figure 4.12 shows average arithmetic operation latency before

(base) and after (opt) optimizations we present in Section 4.2.1. The operation latency is measured

using Rodinia benchmarks. Integer multiplication observes the highest reduction in latency (13×

better than the baseline). This is because, in many practical cases, integer multiplication is used to

calculate address or some variables based on induction variables, and thus contains many leading

zeros which we can skip by our optimization.

71

Floating point addition in many applications has a small dynamic range. The number of unique

ediff found usually has its peak at 1 in the distribution (Section 4.2.1). Overall, optimized fpadd

is 6.1× faster than the baseline. The proposed optimizations are not as effective for floating point

multiplication and division compared to the correspondent integer operations. This is because the

floating point is normalized and has implicit leading 1, which disables the leading zero optimiza-

tion. However, Duality Cache still benefits from skipping iterations of bit 0s.

Cache Allocation: By default, we use unassigned CBs as cache. However, depending on the

workload, allocating more cache can improve performance despite sacrificing parallelism. We an-

alyze the source code through static analysis and identify some kernels that can possibly benefit

from larger cache size, and adjust the cache allocation. Figure 4.14 illustrates the system perfor-

mance of different cache allocation size for some representative applications. As in Figure 4.9,

these applications have a high level of parallelism and can fill more than half of total CBs. The

blue bars show compute cycles, and the orange lines present overall performance including mem-

ory access. The largest cache size we allocate is 32MB, which is equivalent to the half of the

total CBs in our 2-socket baseline. We normalize the cycle count to that of 0-cache configuration.

Although augmented cache allocation roughly doubles the computation due to reduced compute

units, overall execution cycles decrease substantially because of improved memory performance

contributed by the large caches. This optimization provides 3.54× performance improvement on

average for applications with a high level of parallelism (CB utilization ≥ 512).

Compiler Optimization: To assess the effect of our compiler optimization, we compare the

execution time of applications using two compilers: our compiler and a simple ISA translator. The

simple ISA translator replaces PTX with DC-PTX without any scheduling and PTX optimizations.

Since kernels cannot use multiple arrays without appropriate handling of operands between arrays,

simple ISA translator uses one array per TB. This, on the other hand, provides 4× more available

threads, thus each CB maintains 4K threads, each with 8 32-bit registers. For both compilers, we

apply our arithmetic operation latency optimizations.

Figure 4.13 presents the application speedup of our compiler. Compute speedup shows the

72

speedup of the critical computation path, and overall speedup includes memory access latency. The

green dots show the reduction in the number of memory access saved by the parallel instruction

scheduling. PTX optimizations and our instruction scheduler’s efforts to maximize parallelism and

to reduce register spilling achieve 1.52× faster computation and 14.3% less memory access. This

translates into 1.14× better overall performance.

4.4.6 Energy

Figure 4.8 shows the energy breakdown of the benchmarks. This is a system-to-system compari-

son; GPU includes energy for both memcpy and kernel. Duality Cache energy is normalized to the

GPU energy and has a breakdown of CPU+DRAM (including memory controller), load/store in-

structions, and computation in Duality Cache . Because of the reduced execution time, we achieve

5.85× energy efficiency compared to GPU system. One core is active during execution to serve

instructions. This makes CPU and DRAM access dominant in energy consumption. The only ex-

ception is tricubic, one of compute-intensive kernels, where compute energy accounts for 30.7%

of total energy consumption.

4.5 Summary

We present the Duality Cache system stack that runs general purpose GPU programs on caches.

Enabling in-situ floating point and transcendental functions brings computation capability that can

execute SIMT programs. Our compiler introduces optimizations to enhance parallelism and effi-

ciency within the constraints of in-cache computation, and compiles CUDA and OpenACC pro-

grams for Duality Cache . Our experimental results show the Duality Cache architecture improves

performance of GPU benchmarks by 3.6× and OpenACC benchmarks by 4.0× over a server class

GPU. Re-purposing existing caches provides 72.6× better performance for CPU with only 3.5%

of area cost.

73

CHAPTER 5

Multi-Layer In-Memory Computing

As the memory hierarchy today has combined different memories exploiting the difference in

their characteristics(e.g., speed and density), in-memory computing has different advantages and

disadvantages depending on the memory substrates. For example, while SRAM can benefit from

its fast clock speed, NVMs can store a large amount of data utilizing dense memory cells.

The wide spectrum of memory technologies and their differentiated compute capabilities open

up an opportunity to perform in-memory computing in variable memory layers in the hierarchy.

The preference of in-memory computing is determined by multiple and intertwined factors, such as

reuse patterns, data size, and instruction mix [74, 89]. Considering the multiple options of memo-

ries, customizing the location of in-memory computing for specific application domains will yield

a significant benefit. This is prominent for applications with runtime workload dynamism, i.e.,

the performance determinants (e.g. working dataset size) have a broad distribution and are know-

able only at runtime. To maximize the potential of multi-layer in-memory computing, determining

when and where to execute in the memory hierarchy is a challenge. In this chapter, we introduce a

framework that enables MLIMP, multi-layer in-memory processing.

5.1 Challenges and Opportunities

This work addresses several challenges to enable multi-layer in-memory computing. First, con-

sidering the state-of-the-art, we propose a system design that supports a common programming

74

frontend for multi-layer in-memory computing and a memory allocation scheme that allows in-

memory computing to co-exist with traditional memory systems. Second, we find Graph Neural

Networks (GNNs) [90, 91, 92] entail significant workload dynamism for processing subgraphs.

We devise kernel mappings of the critical kernels in GNNs for in-memory computing, paying

attention to maximizing its reuse and resource utilization, and use them as a representative case

study to show the advantages of multi-layer in-memory computing. We also conduct other case

studies for multiprogramming scenarios using data parallel applications studied in the prior work.

Third, we design a scheduler and a performance predictor that are essential to perform efficient

job scheduling and fully utilize the resources in multi-layer in-memory computing. Job schedul-

ing in multi-layer in-memory computing is classified into an NP-hard resource constrained project

scheduling problem. Also, memory allocation size has to be adjusted to balance parallelism and

per job latency. Based on an analytical scaling model, we develop efficient heuristics to schedule

jobs in heterogeneous in-memory systems. Further, to provide an estimation of performance for a

specific configuration, we propose a performance predictor based on neural network based regres-

sors. We observe that taking full advantage of multi-layer in-memory computing is not possible

without introducing sophisticated job scheduling.

5.1.1 GNNs and Dynamism in Workload

We conduct a detailed workload analysis for Graph Neural Networks or GNNs for in-memory

computing and show an interesting case study of GNNs that can significantly benefit from multi-

layer in-memory computing. This section covers the basic concept of GNNs and our preliminary

analysis showing their inherent dynamism in the workload.

5.1.1.1 GNN

GNN [90, 91] is an algorithm applied to a graph G = (V,E), where V is a set of vertices, and E is

a set of edges. Each node v has its input feature vector xv, which is generated in the preprocessing

step. Generally, GNN has one to five layers, but the number of layers is arbitrary. Each node

75

Node feats X

Dense weights Θ Node embedding X’

Normalized
Adj mat

Aggregate
neighbor embs

GEMM
(combination)

SpMM
(aggregation)

𝑿′ = ෡𝑫−1/2෡𝑨෡𝑫−1/2𝑿𝚯

Figure 5.1: Operations in GCN

propagates its node features to its neighbors and updates the features at each layer, using input

vector xv for the first layer. Thus, output node features (also referred to as node embeddings) of

the k-th layer include information from k-hop away neighbors.

The GNN training (forward pass) and inference usually contain three main steps: pre-processing,

iterative updates, and readout. This initial step, pre-processing, is done offline. It generates the

initial input feature vectors and graph representations. It is followed by the iterative update step,

where the feature vectors of each node and edge are iteratively updated at each layer in GNN via

an aggregation-combination function, as shown in Figure 5.1.

During aggregation, the feature vectors from neighboring nodes and the feature of the node/edge

itself are aggregated by functions such as mean, max, weighted mean to a single feature vector.

This process can be expressed using a matrix representation, B = AX , where A is the normal-

ized adjacency matrix and X is the feature matrix of which row is composed of the feature vector

of a node in the graph. Graph Convolutional Network (GCN) uses normalized adjacency matrix

A = D̂−1/2AD̂−1/2, where D is the diagonal matrix such that D̂v,v = |N(v)| and N(v) is the

neighbor node set of v. Since A is a sparse matrix and X is a dense matrix, aggregation performs

SpMM (sparse matrix matrix multiplication), which is known to have an irregular memory access

76

pattern.

Then the aggregated feature vector will be combined to yield a new feature vector. The new

feature vector is used as an input for the next step. The combination function is typically composed

of a feed-forward network. Thus, the combination step can be described as X ′ = σ(BΘ+b), where

B is the possibly-dense matrix after the aggregation step, Θ is the dense weight matrix, b is the

bias, σ is a non-linear activation function (e.g., ReLU). Hence, the main kernel of the combination

step is GEMM (general matrix multiplication), which involves intense computation.

Following the iterative update step, the readout step outputs node/edge embeddings which are

low-dimensional vectors or a graph embedding that summarizes the graph information. These

outputs are passed to the downstream prediction tasks. For example, link prediction typically uses

an additional MLP based predictor to predict the linkage of a pair of nodes.

When training GNNs, the backward pass follows the explained forward pass. The backward

pass preforms backpropagation and optimizes model parameters using gradient descent.

5.1.1.2 Workload Dynamism

State-of-the-art GNN based link prediction framework employs an approach called subgraph learn-

ing [93, 94]. It extracts the k-hop neighborhood of nodes and applies GNNs. This approach can

also be regarded as mini-batching because only a small subset of nodes are fed to the GNN layers.

Traditional GNN such as Graph Convolutional Network (GCN) [92] and GraphSAGE [95]

employ full batching, where a GNN layer accepts the entire graph and learns from them using

message-passing like feature communication. In fact, training GNNs on a large-scale graph is

challenging due to node dependency and requires lots of memory and time [96]. In this context,

mini-batching attracts growing attention for its memory efficiency, fast learning time, scalability

to large graphs, and comparable accuracy. OGB [97] reports mini-batching can even outperform

traditional GNNs because it can induce regularization effects. It is also worth mentioning that it is

possible to perform mini-batching for full-batch GNNs, while the benefit of mini-batching is not

as much as GNNs designed for mini-batching. That being said, subgraph learning approaches are

77

0 10000 20000 30000 40000
of nodes

0

5000

10000

15000

20000

Oc
cu

rre
nc

e

Figure 5.2: Node distribution of 3-hop subgraphs (ogbl-citation2).

widely applicable to many existing GNN frameworks beyond the link prediction tasks.

Mini-batching induces substantial variation in the working dataset size and compute load. The

graph size distribution of a real-world graph is shown in Figure 5.2, and we see the variation is also

propageted in the processing time. Thus, a monolithic approach using a single type of hardware or

memory-centric acceleration (e.g., GPU or In-SRAM only) might be suboptimal, and sophisticated

job scheduling is crucial to take the full adgantage of multi-layer in-memory computing.

5.1.2 Motivation

While there is a significant body of research on in-memory computing with individual layers of

memory, a framework that integrates multiple computable memories into the memory hierarchy has

been lacking. Figure 5.3 shows the relative energy per access, delay, and metrics for calculating

available compute parallelism of different memory technologies. The parallelism can be estimated

based on available sense amplifiers at the bitline peripherals per unit area. Available parallelism

is also dependent on the bit-cell structure and design target (e.g., cache, main memory, or storage

DIMMs). For example, while NAND-Flash and DRAM have a small cell size, their available

78

�

�

�

�

��

��

��

���

���

���

�	
��

�	
��

�	
��

�	���

��	���

��	���

��	���

� � �� ��� �	
�� ��	��� ���	���

�
�
�
��
�
�	

�
�

��
�

�������	
���

����

����

���

���	��� �
���

�����
����

��� ��������	
 ����

�

�������
�

Figure 5.3: Energy, latency, and parallelism characteristics of various memory technologies.

parallelism can be low because a large number of cells in an array share the same set of sensing

amplifiers (low SA density).

Computing with Non-Volatile Memories (NVMs) has different trade-offs compared to comput-

ing with SRAM or DRAM. Since NVMs are more stable against data corruption, they can support

operations involving multiple wordlines. Due to their high density, NVMs can accommodate large

datasets which dwarf SRAMs. Higher density also increases data level parallelism of in-place

computation. On the other hand, in-memory computing in NVMs (STT-RAM and ReRAM) can

be one to two orders of magnitude slower and requires significantly higher energy per bit when

compared to SRAMs. Further, NVMs have limited endurance (and high write energy/delay) which

curtails the number of writes the memories can reliably sustain. Similarly, DRAMs pose their own

unique challenges. Given the wide spectrum of memory technologies and their differentiated com-

pute capabilities, customizing the memory hierarchy for specific application domains may yield

significant benefits.

In this work, we will closely look at mini-batching GNN as a systematic case study that can

79

benefit from multi-layer in-memory computing. Mini-batching leads to a considerable variation

of working data set size, operation intensity, and memory access locality depending on the input

query and sampled subgraphs. From the rich set of workloads from the GNN framework, we aim to

figure out efficient job execution strategies to make full use of multi-layer in-memory computing.

5.2 Multi-Layer In-Memory Processing

In this section, we present a system stack and job dispatching strategies for multi-layer in-memory

computing. The architecture of multi-layer in-memory computing is presented, then the kernel

mapping for important GNN operations is discussed for each memory substrate. Following that,

we introduce two important components to enable efficient job planning, i.e., job scheduler and

performance predictor.

5.2.1 Architecture Overview

5.2.1.1 Common Programming Interface

Prior work has covered most of the innovation needed to enable in-memory computing in the exist-

ing memory hierarchy as described in the previous chapters. To interface with the heterogeneous

in-memory computing resource efficiently, we need to design a common programming frontend.

While the instruction set architecture (ISA) and the preferred data mapping within an array vary

for each memory (e.g., in-SRAM computing performs bit-serial computing on vertically aligned

data, while in-ReRAM computing uses bit-parallel computing with multi-level cells), most of the

in-memory computing work supports arithmetic operation level abstraction either in their API or

ISA. They usually support integer arithmetic operations, and some also support floating points. For

wide compatibility with past proposals, we focus on integer operations in this work.

For our baseline system, we use in-SRAM computing based on [89, 1], in-ReRAM computing

based on [3, 74], and charge-sharing based in-DRAM computing [4, 98]. Binary bit-serial com-

puting with bit transposed data is employed for in-SRAM and in-DRAM computing. To make

80

peripheral complexity comparable, memory arrays compute a universal operator such as NAND

and NOR with the smallest possible cycle counts, and the result and any byproducts (e.g., AND)

are fed to extra logic gates at the peripheral to perform the rest of the operations. In-ReRAM com-

puting performs bit-parallel computing with the peripheral shifter and adder, and extra logic such

as LUTs is introduced to enable other non-native operations.

Taking the intersection of supported arithmetic operations among the three types of in-memory

computing devices, the programming interface supports integer addition, subtraction, multiplica-

tion, division, comparison, moves, and simple transcendental functions (e.g. exp2). The arithmetic

level abstraction is further expanded into a sequence of micro-operations within controllers or

FSMs in each memory [4, 89, 1].

These arithmetic primitives are wrapped by a high-level API. This high-level API provides

operation level abstractions such as GEMM and SpMM to work with existing machine learning

frameworks. Each kernel is compiled for each memory device, and at the execution time, a suitable

in-memory function is chosen from the library by a job scheduler and offloaded to the memories.

In this way, architecture-specific optimizations (e.g., VLIW execution of [89]) and algorithm-level

optimizations (e.g., kernel execution order) can co-exist.

5.2.1.2 Memory allocation

Memory workspace for in-memory computing is allocated within a scratchpad memory region in

each memory to ease the collocation with the existing memory virtualization frameworks. There

is a body of work trying to enable private scratchpad memory within the cache and main mem-

ory [99, 100]. This is a middle ground approach of two extremes: using all memory space as

a scratchpad for in-memory computing (most of the prior work) and completely integrating in-

memory computing with the existing memory management system.

Complete integration would enable seamless processing of in-memory operations with mini-

mized data copy and transformation. While there are non-trivial benefits for the complete inte-

gration of in-memory computing under the existing memory management system, its cost is also

81

non-trivial. Supporting compute cache lines and other cache lines in a finer-grained manner under

the general set-associative cache scheme would lead to a prohibitive cost for guaranteeing data

layout and bookkeeping the cache lines for avoiding unexpected cache line replacement, etc. In

contrast, the hybrid approach using VLS [99] enables scratchpad memory on a coarse partition of

cache (e.g., a single way) with a tiny modification to the cache architecture.

It is possible in the main memory to align data to an exact position of a physical memory ar-

ray by reverse-engineering the XOR-based address mapping of microarchitectures [101] and by

modifying operating systems’ memory management system to support finer-grained page color-

ing [102]. It is, however, comes at the cost of expensive page management (i.e., page numbers for

each color have to be extensively searched [102, 103]) and involves a risk of external fragmenta-

tion. We thus consider the complete integration of in-memory computing with the current memory

virtualization scheme does not provide convincing benefits compared to its cost, but future work

can address this issue. The hybrid approach still allows compute regions to co-exist with existing

managed memory space in a coarse grained manner, while guaranteeing data layout flexibility that

is essential to in-memory computing.

5.2.1.3 Control Granularity

Control granularity defines the number of controllers that process independent instruction streams.

If there is only one controller, all arrays (or a group of arrays) process the same instruction as

a massive SIMD unit. Multiple controllers can accept different instruction streams in a MIMD

manner, similar to a multicore vector processor or a GPU. The control granularity is traded off by

the area cost of the controller and wires.

5.2.2 Kernel Mapping

We show an example workflow of GNN in Figure 5.4. In this section, we present the kernel

mapping of the representative kernels in GNN, i.e., GEMM and SpMM.

82

Figure 5.4: GNN workflow in bit-serial architecture.

5.2.2.1 GEMM

General matrix multiplication is a core kernel of many machine learning frameworks. Prior work

has proposed efficient GEMM operations in memory [3, 2, 14, 1]. For example, in-ReRAM com-

puting can perform vector-matrix multiplication using analog multi-operand MAC computation.

The weights are stored in memory and reused across different inputs. The compute-efficient data

mapping of weights varies according to the memory. For example, in-ReRAM computing gener-

ally employs a natural 2D mapping of the weight matrix. Each value can use multiple memory

cells to improve precision [3].

Bit-serial computing does not generally support multi-operand operations. Thus, it is crucial to

exploit parallelism in architecture efficiently. For example, Neural Cache [1] unrolls input activa-

tion of CNN for each sliding window and duplicates it for each output channel. We take a similar

approach for GEMM. The weight matrix is serialized to a vector representation and stored in the

topmost register of each SIMD slot. The input feature vector is duplicated for each column of the

weight matrix and stored in a SIMD slot with a corresponding weight multiplicand. In this way,

all multiplication operations can be done in parallel for each input feature vector. Then, reduction

operations are performed to make sums to complete dot-product operations. A memory array can

83

Algorithm 2 Sparse Matrix Multi-Vector Multiplication (SpMM).
Input: CSR A[M][N], float B[N][K]
Output: float C[M][K]

1: for i = 0 to A.rows− 1 do
2: for j = A.rowptr[i] to A.rowptr[i+ 1]− 1 do
3: for k = 0 to K − 1 do
4: C[i][k]+ = A.values[j]×B[A.colidx[j]][k]
5: end for
6: end for
7: end for

have multiple input feature vectors. The weights can also be replicated to fully utilize the available

memory space.

5.2.2.2 SpMM

Sparse Matrix Matrix Multiplication (SpMM) computes the multiplication of sparse matrix A and

dense matrix B. Its algorithm is shown in Algorithm 2. For GNN, SpMM is used to perform

message passing between nodes, using the (sparse) adjacency matrix as A and dense node features

or embeddings as B. Generic SpMM performs dot-product as the combination operation of GNNs,

but the reduction operator (sum in this case) can be replaced with other operators, such as max or

mean.

In-memory computing in general is less efficient for sparse computation. The main reason for

this is the random scattered access patterns of the workload. While in-memory computing gener-

ally requires operands to be arranged in a designated location to perform computation and exploit

parallelism, this scheme cannot be directly applied to a compressed storage format of a sparse

matrix. To expose the computation models of in-memory computing, sparse matrices need to be

decompressed to the dense matrix format, reinserting null elements eliminated by the compression.

Existing work on in-memory graph processing accelerator [104] also performs decompression of

the CSR format to perform sparse matrix-vector multiplication (SpMV), which many graph algo-

rithms can be transformed into.

Decompression leads to the following inefficiencies. First, it triggers data movement in the

84

memory, paying the cost for bandwidth, energy, and cell write count for additional write cycles.

Second, because of the sparsity, computation density per array becomes low, undermining the

dense compute capability of a highly parallel in-memory architecture. Third, while there is a lo-

cality in edge access (e.g., identifying adjacent vertices in the CSR format), access patterns of

vertices are generally irregular, causing only a subset of decompressed data to be utilized, given

a general vertex-centric scheme is used. This not only reduces computation density in a decom-

pressed matrix, but also results in repetitive decompression to access vertices in the dense format

across different timeframes. GraphR [104] converts a submatrix of compressed adjacency matrix

to a dense format and load it to a ReRAM crossbar. While submatrix with all zeros can be skipped,

sparsity in the input graph can still cause the above-mentioned computation density issues.

For these reasons, we store the dense matrix B in the memory array to bypass the computation

density issues related to the sparse format. B is partitioned into horizontal slices and stored into

arrays. Then, a corresponding vertical slice of the sparse matrix A is loaded from the main memory

and processed row-by-row. If A is a binary adjacency matrix, arrays will perform a series of vector

additions of some rows of B, using non-zero column indices of A as indices to look up the B

rows. If A has non-binary values (e.g. edge weights), arrays will instead perform a dot-product

computation using the A value as the multiplicand. Buffer arrays are utilized to temporarily store

and accumulate the partial sum vector from multiple arrays, playing a similar role as a reduction

tree.

As illustrated in Figure 5.5, there are several reuse patterns for SpMM [105], and our approach

is classified into B-stationary. B-stationary maximizes the reuse of the dense B matrix, which is

ideal for mini-batching GNNs because it is known that all the node features (stored as B) are reused

several times while processing the batch. Exploiting the predetermined knowledge of feature reuse,

in-memory computing can fully utilize the locality of node feature access. As in [105], we adopt

Densified CSR (DCSR) format [106] for providing a vertical slice of A for memory and compute

performance. DCSR can be precomputed or dynamically generated using efficient near-memory

hardware [105]. On the other hand, B-stationary requires an atomic update of the results given

85

Figure 5.5: Data reuse patterns of SpMM.

multiple processor entities are working on different matrix slices that add partial sums to the same

output elements. This atomic update can be done with a memory side atomic module with paying

approximately half of the bandwidth cost to perform both load and store.

Alternatively, one can minimize this atomic update cost by employing a C-stationary approach.

C-stationary computes the complete output in C, reusing the local memory for storing the partial

sums. C-stationary loads complete columns (a vertical slice) of B to the memory arrays, and for

each slice, the full A is accessed to compute a vertical slice of C. While B-stationary fetches A

and B only once and updates C multiple times, C-stationary accesses B and C once and fetches

the full A multiple times.

C-stationary is a common straightforward approach for GPU and CPU [106, 105], while it is

less efficient for in-memory processors. From the viewpoint of memory access, the size of A is

usually smaller than the size of B and C. Therefore, loading A multiple times (C-stationary) seems

more efficient. However, given the skewed non-zero distribution of real word graphs, it is observed

that not many slice pairs of A and B contribute to one output position [105], thus the cost of atomic

add is not significant [105]. This is in contrast to C-stationary where multi-loading A is most likely

86

unavoidable. B-stationary also provides an opportunity for efficient vector processing. In contrast,

C-stationary needs to perform lengthy reduction operations with a lot of null entries to make a

complete output. We observe B-stationary achieves 4.3x better memory latency performance and

42x better compute performance (obgl-collab dataset [97]). It is certain that the gap between B-

and C-stationary becomes small as A becomes denser, but with the solid advantages of B-stationary

in in-memory computing, we adopt B-stationary as our baseline SpMM kernel mapping approach.

We also replicate the B slices within the memory allocation, reducing the slice size accord-

ingly. This is to leverage the input row (i.e., rows of A) parallelism. Input row parallelism can

be exploited by performing multiple reductions or dot-product operations for different rows of A.

While a single large B slice can reduce memory roundtrips and replication cost, it is difficult to

leverage input row parallelism without replicas because each array has to sequence and handle

multiple rows in flight. More than one A rows can concurrently access the same rows of B on the

same memory array, and each must keep track of the destination buffer arrays etc. to perform the

final reduction. B replication can exploit the input row parallelism by processing different A rows

on each replica, each with its own buffer. Since the input row parallelism is easy to find, we find

that having a few replicas can help achieve a good performance scaling.

5.2.2.3 GNN kernels

As illustrated in Figure 5.4, GNN layers are mainly composed of GEMM and SpMM, which

form the building block of the aggregation and combination kernels. While it also contains other

operations such as activation functions (e.g., ReLU), they take insignificant time and are thus

executed in the host processor.

The initial step of mini-batching GNN is the mini-batch generation. Mini-batches can be pre-

computed or dynamically generated using a data generator process or a remote graph server. We

assume the mini-batch data is precomputed [94], but since the workload is similar to breadth first

search (BFS), it can be efficiently integrated with any near-memory computing enabled memory

systems [107, 48, 108].

87

By default, a mini-batch contains a subgraph for each query input. However, one can choose

to generate a concatenated subgraph that has a union of all nodes in the adjacency matrix. This

approach relinquishes the opportunity of mapping each small subgraph to different memories (cov-

ered in the following subsections); however, it is useful if the graph has a high degree of connec-

tivity and the intersection of nodes in each k-hop subgraph is large. In such a case, we have a good

chance of reusing node features across different query inputs, thus putting all node features in

one memory can maximize this reuse while minimizing the redundant memory access to the same

node. We observe the large connectivity in some of the graphs in the nature domain in OGB [97]

and take this approach. For all the other graphs, we generate subgraphs for each input, as they

result in better performance due to the opportunity of subgraph level load distribution.

The SpMM and GEMM kernels are modularized, which means the kernels do not depend on

each other and can be executed in any order. Since different GNN approach has different preference

or restriction of the execution order, we can flexibly change the order based on the performance

and the GNN algorithm itself. In this work, we adopt GCN [92], which prefers GEMM followed

by SpMM.

5.2.2.4 Data Parallel Applications

Data parallel application explored in IMP [74] has large SIMD vectorizability exploiting the data-

parallel nature of the workload. We extract its compute kernels and compile them for in-SRAM

and in-ReRAM processors. Each program is compiled for each memory, and at the execution time,

we choose the best in-memory processor based on the scheduler output.

5.2.3 Scheduler

The scheduler receives a batch of jobs, allocates memory resources in an appropriate in-memory

device for each job, and schedules jobs in the batch in a right order. The job scheduler targets

to maximize the utilization of the available memory resources and minimize the batch processing

time. This job scheduler is the key enabler of efficient heterogeneous execution on a multi-layer

88

in-memory computing system. In this section, we will discuss the challenges of resource constraint

job scheduling and our approach to solving them using heuristics.

5.2.3.1 Scheduling Strategies and Resource Constrained Project Scheduling Problem (RCPSP)

Conventional computers perform job scheduling in their operating system (OSs). Among many job

scheduling approaches for OSs, one of the simplest and best approaches to minimize waiting time

is the shorted job first (SJF) approach [109]. SJF takes a table of processes, their arrival time, and

their expected execution time (burst time), and tries to minimize the average amount of time that

each process has to wait by scheduling the process with the smallest burst time first. Multilevel

feedback queue, widely employed scheduler algorithm by UNIX OSs, tries to approximate SJF

without the prior knowledge of oracle execution time, also adding sophistication for various job

types (e.g., interactive or IO heavy jobs, etc.) [109].

We notice that the existing job scheduling approaches are not directly applicable to in-memory

computing. First, while OS job scheduling targets a homogeneous CPU architecture, we need to

choose from a variety of in-memory processors. While there exist OS job schedulers for heteroge-

neous cores (e.g., big.LITTLE architecture [110]), in-memory computing is additionally required

to determine the allocation size of the memory. Execution time is also largely dependent on mem-

ory properties and jobs; thus, simple scaling techniques (e.g., big cores are about x times faster

than small cores) cannot be applied. These three factors, i.e. memory type, allocation size, and

difficulty of estimating execution time, make it difficult to apply OS’s job scheduler for in-memory

computing.

In fact, the job scheduling problem of this set-up is categorized into NP-hard Resource Con-

strained Project Scheduling Problem (RCPSP) [111]. As illustrated in Figure 5.6, scheduler has

to choose the right resource amount (and resource type) for a job, as well as its execution order.

Multiple jobs can be executed at a time if the busy resource amount does not exceed the limit at

any time. While there is a rich body of work from the operations study community [111, 112, 113],

there is no known golden solution to RCPSP, so the problem needs to be approached on a case-by-

89

Time

1
2

3

4

5

6

7 8 9

10

R
es

ou
rc

e
U

se

Figure 5.6: Resource Constrained Project Scheduling Problem (RCPSP). Multi-layer in-memory
computing has another dimension for resource (memory) type.

case basis [114].

Common approaches to solving project scheduling problems can be classified into three: John-

son’s rule [115], dispatching rule, and meta-heuristics. Johnson’s rule [115] can provide an optimal

schedule only for specific problem set-ups (e.g., up to two processors with fixed resources); its re-

striction makes its scope very narrow and difficult to apply for other problems. Dispatching rule

includes FIFO, SJF, and others that define the dispatching order, and meta-heuristics include taboo

search, annealing, etc. Dispatching rules are simple and good at locally optimized job schedul-

ing (e.g., scheduling within a queue), but it finds difficulty in finding globally optimized sched-

ules. This is particularly important when there are multiple processing entities(i.e., memories)

with different job queues. Meta-heuristics takes a long time to converge. Considering the limited

scheduling time, our approach is based on the efficient dispatching approach, which is assisted by

a custom-made heuristic to make globally optimized scheduling.

5.2.3.2 Baseline Schedulers

For our baseline, we use the longest job first (LJF) scheduling. LJF scheduling tends to increase

work in progress while making short jobs late. This is ideal for minimizing the batch process time.

Short jobs being late does not matter because all jobs in the batch need to wait for the completion

of batch processing before moving to the next step. Rather, increasing in-flight jobs is important

because it improves resource utilization. Moreover, if jobs in one processor end earlier, LJF makes

90

it easier to load balance by filling the gap with smaller jobs left in the queue.

Each job in an incoming batch is first processed by a performance predictor (covered in the

next section) to calculate the estimated execution time for each in-memory processor. The baseline

scheduling does not adjust the memory allocation size. The predictor predicts the execution time

assuming a fixed allocation size Mmem/P where Mmem is the available memory allocation size of

memory mem and P is the number of parallel jobs. Then, the jobs are pushed in a queue in de-

scending order according to the shortest execution time among all available memories. Whenever

a spot is available, a job item is dequeued and scheduled to the available memory, giving priority

to spots in the best performing memory.

We also design a multi-queue LJF where each memory has its own queue and jobs are enqueued

to the queue of the best performing memory. This approach reduces the chance of inter-memory

job balancing but also the chance of allocating jobs to suboptimal memories.

5.2.3.3 Resource Scaling and Allocation Size Criteria

The baseline LJF relinquishes the opportunity of adjustable memory allocation. A larger allocation

can be useful for a problem that prefers a large memory allocation to deal with large working set

data for efficiency. To seize this opportunity, it is important to know the best memory allocation

size for a job. This requires an understanding of the relationship of the allocation size with the exe-

cution time. Since this relationship is program and problem-specific, we will make a performance

model trainable and adjustable for each problem.

Our performance model is composed of two parts, load model and compute model, and the

expected process time t for job x with allocation size z is calculated as the sum of the latency from

the two models:

t(x, z) = tld(x, z) + tcmpt(x, z). (5.1)

The load latency tld is calculated based on the load cost and the replication cost. For each

load iteration, a working dataset (e.g., horizontal slices of the dense B matrix for SpMM) is

loaded from the main memory tmemld(x) and optionally replicated across different control re-

91

gions (Section 5.2.1.3) to exploit the data level parallelism. The number of replications is cal-

culated by z/arepunit, where arepunit is a unit allocation for one replica (user-defined parame-

ter). If the whole working set does not fit in the allocated memory, the number of load iterations

nlditer(x) = x[datasize]/arepunit becomes larger than 1. Thus, we have

tld(x, z) = nlditer(x)× (tmemld(x) + treplica(x)(z/arepunit)). (5.2)

The compute model assumes the scale free property [116] of resource size and performance.

With a scale parameter α and a shape parameter β, the scale-free model is described as f(x) =

(α/x)β [116]. Given perfect scaling (β = 1), the model dictates that n× larger x always results

in n× smaller f(x), regardless of x. Since parallel part of applications can achieve close-to-

linear performance scaling w.r.t the number of processors regardless of the baseline processor

configuration, assuming no memory bottlenecks, this model fits well for in-memory computing.

The parallelization cost can be modeled by setting the shape parameter β to less than 1 (empirically

obtained).

The baseline performance is provided by the performance predictor covered in the following

subsection. This provides the unit performance tunit(x) under the unit allocation aunit = Mmem/P .

Therefore, we have

tcmpt(x, z) = tunit(x)
(aunit

z

)β

. (5.3)

We observe the scale-free compute model fits well to a variety of problems. For example,

SpMM in OGB sees a median R2 of 0.998. Although there is a small deviation in the performance

model for the combination of small-sized jobs and large memory allocation due to imperfect job

balancing issues (e.g., there is not enough parallelism to exploit all allocated resources), it less

affects the overall performance because such jobs typically take a very small time and because it

is unlikely for small jobs to get large resource from a scheduler.

Now, we need to make a suggestion on the allocation size. The minimum of the perfor-

mance curve can be analytically calculated by taking the partial derivative of t(x, z) w.r.t z. It

92

size

c
y
c
le

s
= 0

Figure 5.7: Analytical model for allocation suggestions.

is straightforward to calculate the derivative considering the fact that t(x, z) can be written as

tx(z) = ax/z
β + bxz + cx. The coefficients ax, bx, cx are fixed given a problem x. We find that us-

ing zmax that gives minimal tx (i.e., the blue dot in Figure 5.7) does not provide good performance

because zmax tends to overprovision the resource up to the point that the immediate asymptotic

increase of z does not significantly contribute to the performance t.

We thus use the angle θ of the tangent line of tx. The angle of the tangent line of tx(z) is given

by θ = arctan ∂tx(z)/∂z. The performance improvement per small increase of z is projected

to the angle speed of θ. Unlike tx, θ fits within the half-open interval [−π/2, k), where k is the

asymptote of θ. By taking the largest infinitesimal change of θ, the resource-efficient allocation

size z′ is obtained (the orange dot in Figure 5.7). This can be calculated by taking the maximum

of the derivative of θ:

z′ = argmax
∂

∂z

(
arctan

(
∂

∂z
tx(z)

))
. (5.4)

The derivative of the function after argmax in Equation 5.4, needed for analytically calculating z′,

is in fact an equation as simple as quadratic formula plus a single exponentiation to a real number.

Therefore, calculating z′ will never be a bottleneck.

Based on the suggested allocation size, we will make a final decision on allocation size and

93

Algorithm 3 Inter-Queue Adjustment.

Input: queues: Map[mem, queue], tmem: x −→ tmem_unit(x)
1: for up to N times do
2: t̄ = {mem : get_mean(queues[mem]) foreach mem}
3: Get max_mem,max_mean
4: Get min_mem,min_mean
5: if difference(max_mean, min_mean) > ϵ then
6: migr_cand = argminx∈queues[max_mem] tmin_mem(x)
7: Migrate migr_cand from queues[max_mem] to queues[min_mem] if t̄ improves

else break
8: else
9: break

10: end if
11: end for
12: return queues

dispatching order using the following scheduling approaches.

5.2.3.4 Adaptive Scheduling

To balance the execution time of the multi-queue LJF scheduling, we introduce inter-queue ad-

justment (Algorithm 3). The goal of the inter-queue adjustment is to balance the mean execution

time between queues. For each iteration, it calculates the mean processing time of the job items

in each queue. If the maximum difference of the mean times is larger than the acceptable gap ϵ,

it migrates migr_cand, the job with the smallest execution time (when executed in min_mem),

from the max_mem queue to min_mem queue. This is repeated until the mean time difference

is below ϵ or migration no longer contributes to improvement in job balancing. After successful

inter-queue adjustment, proper resource distribution leads to an execution time close to the mean.

Adaptive scheduling dispatches jobs in the queue in a greedy fashion. Whenever there are

available resources that can run a job with its requested allocation, it runs the job, giving priority to

larger jobs. If there are any remainder resources not allocated by the prior procedure, the scheduler

calculates the expected completion time for each awaiting job in the queue and dispatches jobs if

they can finish earlier than the completion of jobs in flight using the remainder resources.

94

5.2.3.5 Global Scheduling

Adaptive scheduling can flexibly adjust the dispatching order even if there is a gap between the es-

timated execution time and the actual time. However, it is challenging to fully utilize the resources

due to scheduling bubbles. Bubbles are introduced when a small remainder allocation cannot be

utilized by any waiting jobs.

The global scheduler adjusts the allocation size in each queue to fully utilize the resources

and generates a complete job dispatching schedule beforehand. Instead of directly using the rec-

ommended resource allocation, the global scheduler further adjusts the allocation size using the

intra-queue adjustment algorithm in Algorithm 4. The objective of the intra-queue adjustment is

to balance the time of long jobs, which can take longer than the mean execution time, by trading

the resources from the smaller jobs in the queue.

For each queue, the intra-queue adjustment finds the largest and smallest job, and if the largest

job takes more time than the mean, it calculates the allocation size necessary to achieve the mean

execution time. The difference is migrated from the smallest job’s allocation, as long as minimum

resources are left. It repeats this process until all jobs can finish within the mean execution time.

In a rare case with a large discrepancy in the job size distribution, the longest job cannot achieve

the mean even setting the minimum allocation to the other jobs.

We observe that global scheduling can achieve better performance under the circumstances

where the predicted execution time is precise because of better resource utilization and fewer bub-

bles. Thus, the choice of adaptive or global scheduler will be determined by the accuracy of the

performance predictor.

5.2.4 Performance Prediction

The performance predictor predicts the expected execution time of a job. Compute time (excluding

the data loading time) of most of the in-memory workload studied before can be deterministically

calculated at the compile time. This applies to GEMM and many data-flow applications. On the

other hand, the execution time of SpMM is dependent on the adjacency matrix of the subgraph.

95

Algorithm 4 Intra-queue Adjustment.
1: for each queues do
2: z = z0
3: for up to N times do
4: Sort queue based on t(x, z(x))
5: Get max_x,max_t
6: Get min_x,min_t
7: if difference(max_t, mean_t) > ϵ then
8: swap_cnt = t−1

max_x(mean_t)− z(max_x)
9: swap_cnt = max(swap_cnt, 1)

10: break if swap_cnt == 0
11: Migrate swap_cnt of resources from min_x to max_x
12: else
13: break
14: end if
15: end for
16: end for
17: return queues

This is because the in-memory device also serves as a memory for storing features, and its access

patterns are dependent on the input adjacency matrix. Here, each access is followed by a vector

MAC operation. While the cycles for MAC operation can be deterministic, we do not know how

many MACs are triggered. This requires a complete scan of the input, which is impossible at the

compile time, and even at the execution time, performing a full scan of the adjacency matrix for

cycle estimation becomes costly.

Job size per allocation unit can be used as a proxy to estimate the execution time for such

workloads. For SpMM, the job size within a given allocation and control range can be calculated

from the number of non-zero partial rows (prows) of width w in the adjacency matrix. Prows are

rows in vertical strips and non-zero prows are such rows with at least one non-zero element. Let

Hw(x) be a function that return the number of non-zero prows of a subgraph x of width w, then the

average amount of jobs per allocation (translated into w) can be calculated from nnz(x)/Hw(x).

Figure 5.8 shows the memory preference tSRAM/tReRAM for different jobs using nnz(x)/Hw(x)

as the metric. We can see that ReRAM outperforms when the job size per allocation is large, i.e.,

the access is likely to be localized and there are lots of opportunities to perform the multi-operand

96

101

nnz/nnz-prows

100

101

tim
e

SR
AM

/R
eR

AM

ReRAM is better
SRAM is better

Figure 5.8: tSRAM/tReRAM vs. nnz(x)/H128(x).

reduction in an array. This trend is reasonable because ReRAM has a larger register capacity per

array and can perform a multi-operand dot product operation. While nnz(x)/Hw(x) can roughly

classify the memory preference, there are a lot of borderline jobs that are classified incorrectly.

We thereby use MLP based regressor to give a better classification for this non-linear classifi-

cation task. We use a regressor to generate an estimated time for each memory. A similar approach

is adopted in a prior work which used MLP regressor and classifier to make the best selection of

matrix permutation for SpMM [117]. Job size and performance can be correlated with a set of

subgraph metadata, given the subgraphs are generated from the same mother graph, based on the

scale-free property of the real-world graphs. We use an MLP regressor to learn cycle counts and

Hw from the graph metadata. It is trained for each mother graph, taking w, the dimension of a

submatrix, and nnz as the input from the training subgraphs. It has two hidden layers with 16 and

8 nodes. While MLP regressors are simple (even compared to [117]), the cycle count predictor

can achieve good accuracy (e.g., R2 score of 0.995 and RMSE of 22% of the mean cycles for

ogbl-citation2 in SRAM).

We notice that using more hidden nodes/layers in MLP does not significantly contribute to the

performance. Random forest based solutions such as XGBoost [118] regressor can achieve up to

97

Table 5.1: Dataset details.

Dataset #Vertex Input/hidden #Edges Raw Min. req.
feature datasize memory

ogbl-collab 235,868 128/256 1,285,465 293M 5GB
ogbl-citation 2,927,963 128/256 30,561,187 3.8G 40GB

ogbl-ppa 576,289 58/256 30,326,273 340M 2GB
ogbl-ddi 4,267 - /256 1,334,889 9.5M 2GB

ogbn-products 2,449,029 100/256 61,859,140 3.4G 33GB

2x better accuracy (RMSE), while requiring significantly more computation and parameter storage

cost compared to MLP.

5.3 Methodology

Benchmarks: We use graphs from Open Graph Benchmarks (OGB) [97] for our GNN study

and use three Graph Convolutional Kernel (GCN) [92] layers. GNN input features and weights

are trained for 16bit fixed-point precision with an additional feed-forward network, which only

results in a slight accuracy degradation < 1%. All GNN workloads are built on top of PyTorch

framework and PyTorch Geometric (PyG) libraries that are compiled for both CPU and GPU.

Subgraphs are generated by PyG’s neighbor sampler. We use the autograd profiler of PyTorch and

NVIDIA’s NVVP and PyProf profilers to generate the execution trace and profiling results on the

native machines. We use a batch size of 64. Due to the limitation on the simulation time, we

sampled a random 10 batches (640 queries in total) for the simulation.

In addition to the GNN applications, we also use the data-parallel applications in IMP [74].

We compare the kernel execution time of each application. The kernels are compiled for target

machine configurations of SRAM and ReRAM. The machine configuration of ReRAM is taken

from IMP [74] and that of SRAM is taken from Duality Cache [89]. For both targets, the latency

of the compute kernels can be calculated deterministically.

98

Table 5.2: MLIMP configurations

Array SIMD ALUs MAC throughput / ALU

Dimension # arrays MB/mm2 MHz #ALUs/array #ALUs ops/cycle (2ops) Mops/s (2ops) Mops/s (4ops)

SRAM 256 x 256 5,120 2.5 2,500 256 1.31 M 0.00331 8.278 2.070

DRAM 8 KB x 8,192 1,024 0.6 300 65,536 67.1 M 0.00066 0.199 0.050

ReRAM
128 x 128

x 2 (bit/cell)
86,016 58.48 20 16 1.37 M 0.12500 2.500 2.500

Performance and Power Models: We develop an event-driven simulator with timing models

from IMP [74] for in-ReRAM computing and Duality Cache [89] for in-SRAM computing. We

use parameters from Ambit [4] for bit-serial in-DRAM computing. The execution trace from the

autograd profiler is replayed in the simulator, and the actual input data is regenerated to perform

the timing simulation in each module. Load and store bandwidth for the main memory communi-

cation is simulated using Ramulator [87] integrated in our simulator. The data transfer bandwidth

between CPU and GPU for baseline GPU execution is recalculated using the actual bandwidth of

the PCIe channels measured by CUDA Toolkit to bypass PyTorch’s bottlenecks. Predictor latency

is measured by a C implementation of the regressor models.

The power parameters for in-memory computing are taken from the prior work [74, 89, 4].

Power and energy for CPU and DRAM activity are measured by profiling microbenchmarks using

Intel Rapl interface. We use NVIDIA nvprof to measure GPU power.

5.4 Results

5.4.1 Configurations Studied

In this section, we evaluate the proposed multi-layer in-memory computing (MLIMP) comparing it

to the GPU baseline. Our baseline is composed of a dual-socket Xeon E5-2697 v3 (64GB DDR4)

server and NVIDIA Titan XP (12GB GDDR5) GPU. The system configuration for MLIMP in

99

Table 5.2. We assume 336 MB ReRAM accelerator chip (scaled down from [74]). It has a similar

area as the on-chip cache of a dual-socket CPU server. We use half of total SRAMs for in-cache

computing allocation because reserving an SRAM portion for general caches is beneficial for both

CPU processes and in-cache computing as suggested in [89]. In this configuration, SRAM and

ReRAM have a similar number of SIMD ALUs. For in-DRAM computing, we assume DDR4-

2400 memory with 4 channels, 1 rank, 16 chips, and 16 banks, supporting bank-level in-memory

operations. Each baseline in-memory processor can handle up to 8 outstanding jobs at a time.

5.4.2 GNN Performance

5.4.2.1 Kernel Performance

In this section, we discuss the performance of GNN applications. The execution time breakdown

for the three major kernels, i.e. GEMM, SpMM, and vector add (Vadd), is shown in Figure 5.9,

assuming different in-memory devices are activated for acceleration. We use the ogbl-citation2

dataset, but a similar trend is observed in most of the real-world graphs that we tested. Compared

with CPU, the compute kernels are significantly accelerated by GPU, while GPU execution incurs

additional data transfer costs for transferring submatrices and input features to GPU. This data

transfer is unavoidable when dealing with large graph data. In-memory computing can bypass the

memcpy bottleneck by tight integration with the host memory hierarchy, although memory access

time in each kernel sees a slight increase due to narrower DDR4 memory technology. From the

different mixture of in-memory computing devices, we can see the SpMM kernel is dominating for

all scenarios, while we see the smallest execution time in “SRAM and ReRAM” and “All”. The

execution time for SpMM is extracted and compared in Figure 5.10. SRAM and ReRAM result

in a similar kernel performance because they have a similar SIMD width and an average MAC

throughput per SIMD slot considering the multi-operand operations. In-DRAM SpMM observes

worse performance for SpMM due to the smaller SA density (Figure 5.3) and available array-level

parallelism. While DRAMs have a large array width, their SIMD slots cannot be fully utilized by

GNNs of a small feature vector size.

100

ba
sel

ine

(w
/o

GPU
)
ba

sel
ine

SR
AM on

ly

ReR
AM on

ly

DRAM on
ly

SR
AM an

d R
eR

AM All
0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
tim

e
53.2 spmm

gemm
gpu_memcpy
vadd
others

Figure 5.9: Kernel performance (ogbl-citation2).

ba
sel

ine

(w
/o

GPU
)
ba

sel
ine

SR
AM on

ly

ReR
AM on

ly

DRAM on
ly

SR
AM an

d R
eR

AM All
0.0

0.2

0.4

0.6

0.8

No
rm

al
ize

d
tim

e

50.0 spmm

Figure 5.10: SpMM performance (ogbl-
citation2).

gemm spmm vadd

5

10

15

Sp
ee

du
p

Figure 5.11: Kernel speedups (ogbl-citation2).

As discussed in detail in Section 5.4.2.3, this is 78% of the theoretical best, which is an oracle

case with a perfect job balancing across the memories.

The box chart of the distribution of the kernel speedup is shown in Figure 5.11. It assumes

the hybrid execution of in-SRAM and in-ReRAM computing. We observe the average speedup of

4.07× for GEMM, 3.40× for SpMM, and 1.82× for Vadd. The massive parallelism of in-memory

computing contributes to the speedup of compute-intensive kernels such as GEMM and Vadd.

SpMM additionally benefits from internal reuse of input features and input parallel execution.

5.4.2.2 Application Performance

Figure 5.12 shows the application time breakdown for different input graphs, normalized to the

baseline GPU execution. While most of the graphs have the power-law distribution, ogbl-ppa and

101

og
bl

-c
ita

tio
n2

 b
as

e

og
bl

-c
ita

tio
n2

 a
ll

og
bl

-c
ol

la
b

ba
se

og
bl

-c
ol

la
b

al
l

og
bl

-d
di

 b
as

e

og
bl

-d
di

 a
ll

og
bl

-p
pa

 b
as

e

og
bl

-p
pa

 a
ll

og
bn

-p
ro

du
ct

s b
as

e

og
bn

-p
ro

du
ct

s a
ll

ge
om

ea
n

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
tim

e
spmm
gpu_memcpy

gemm
vadd

others

Figure 5.12: Application performance.

og
bl

-c
ita

tio
n2

 b
as

e

og
bl

-c
ita

tio
n2

 a
ll

og
bl

-c
ol

la
b

ba
se

og
bl

-c
ol

la
b

al
l

og
bl

-d
di

 b
as

e

og
bl

-d
di

 a
ll

og
bl

-p
pa

 b
as

e

og
bl

-p
pa

 a
ll

og
bn

-p
ro

du
ct

s b
as

e

og
bn

-p
ro

du
ct

s a
ll

ge
om

ea
n

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
en

er
gy

Figure 5.13: Application energy.

og
bl

-c
ita

tio
n2

 a
ll

og
bl

-c
ol

la
b

al
l

og
bl

-d
di

 a
ll

og
bl

-p
pa

 a
ll

og
bn

-p
ro

du
ct

s a
ll

m
ea

n

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

ReRAM
SRAM
DRAM

Figure 5.14: Allocation breakdown (execution time weighted).

ogbl-ddi, which represent graphs in nature domains such as biological networks and molecular

graphs, tend to have a large average node degree. Thus, the subgraphs are densely connected

and there are a lot of overlaps between different subgraphs. In such a case, we do not use the

subgraph approach for each input but reuse the same input graph for all input queries in the batch

(Section 5.2.2.3).

We observe drastic speedup in the memcpy time and SpMM kernel for most of the input graphs.

The speedup of GEMM is moderate compared to other kernels. This is because the majority of

GEMM time is spent for data communication to fetch the input features, and we do not benefit

102

ba
sel

ine LJF

LJF
 or

acl
e

Loc
al

Ada
pti

ve

Loc
al

Ada
pti

ve

ora
cle

Glob
al

Glob
al

ora
cle

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
tim

e

spmm

Figure 5.15: Scheduler performance (ogbl-citation2).

from overlapped execution because the compute time is smaller than the data communication time

due to the massively parallel execution. Overall we achieve 4.80× geomean speedup for the graphs

we evaluated.

Figure 5.13 shows the energy consumption of the GNN applications. Because of the reduced

data transfer, which generally takes more energy than computation in the conventional CPU and

GPU architecture, we achieve a greater energy benefit from in-memory computing. On average,

we achieve 5.02× better energy efficiency for multi-layer in-memory computing.

Figure 5.14 shows the breakdown of the memory allocation in multi-layer in-memory comput-

ing using all three memories. It is weighted by the execution time in each allocation. It is observed

that our job scheduler can dispatch the jobs to different in-memory devices to maximize efficiency.

5.4.2.3 Scheduler and Predictor Performance

The performance of our job scheduler and performance predictor is illustrated in Figure 5.15.

The results are based on the ogbl-citation2 dataset and use different job schedulers presented in

Section 5.2.4. We use an oracle predictor, which returns the accurate cycle counts of a job in each

memory, and our MLP regressor based predictor. We compare the execution time for SpMM.

We notice that the local adaptive scheduler slightly decreases the execution time compared

to the global scheduler. This is mainly because of the bubbles caused by small fragmented re-

sources that were not scheduled to any of the awaiting jobs in the queue. On the other hand, global

103

0%

20%

40%

60%

80%

100%

%
 T

h
e
o
re

ti
c
a
l b

e
s
t Baseline (LJF) MLIMP

Figure 5.16: Performance compared to theoretical best (perfect job balancing).

scheduling results in the best performance, providing a highly balanced job schedule across differ-

ent in-memory devices. We also notice our MLP regressor based performance predictor provides

reasonably good performance estimates, and the scheduler performance gap between the oracle

predictor and ours is trivial (less than 1%). The accuracy of the performance predictor also con-

tributes to the global scheduler outperforming the others.

We conduct a stress test of the schedulers to measure the tolerance to impreciseness of the

predictor with an artificial dataset that follows Pareto (scale-free) distribution. We observe the

adaptive scheduler results in better performance with added Gaussian noise of σ > 0.39 on average.

In such a case, the global scheduler sees relatively large tail latency for the delayed job items,

whereas the adaptive scheduler can automatically adjust by itself which more than amortizes the

bubble overhead. The error tolerance of the global scheduler becomes low if batch size is small

(threshold σ = 0.25 for a batch size of 16).

Figure 5.16 compares the performance of our approach with the theoretical best performance,

which assumes the perfect job balancing among the memories. The best case performance is

calculated by making a sum of the throughput of each in-memory processor. The baseline assumes

the same server configuration as MLIMP, but uses naive LJF scheduling to schedule jobs. We

observe that the scheduling approach of MLIMP achieves 77% of the best on average, while the

naive baseline barely achieves 34%. It is notable that naive scheduling approach is likely to result

104

4x

4x

2x

ReRAM

Mix

2 4

SRAM

ReRAM

MLIMP

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0.125 0.25 0.5 1 2 4

N
o

rm
a

liz
e

d
 e

x
e

c
u

ti
o

n
 t

im
e

Resource scale

SRAM

ReRAM

MLIMP

Figure 5.17: Resource scaling.

in the single processor performance of the best in-memory processor, and further performance

improvement can only be made by introducing an intelligent job scheduling approach.

5.4.2.4 Resource Scaling

To study the sensitivity of computing resources in multi-layer in-memory computing, we vary the

total allocation size for in-memory computing and plot the execution time for the SpMM kernel in

Figure 5.17. We notice that the execution time scales well with the allocation size, although the

gain diminishes as the total resource becomes large because the bottleneck shifts to data communi-

cation with the main memory. We plot the resource scaling for multi-layer in-memory computing

as MLILP, using in-SRAM and in-ReRAM computing. This configuration can be compared with

the SRAM or ReRAM bars on the right (e.g., ReRAM + SRAM vs. 2xReRAM). It is observed

that in many cases multi-layer in-memory computing provides comparable performance to the 2×

resource configuration of the better memory (ReRAM in this case).

5.4.3 Multiprogramming

In this section, we evaluate the data parallel applications in multi-layer in-memory computing

using several multiprogramming scenarios. We first present the kernel execution time of in-SRAM

and in-ReRAM computing in Figure 5.18. Half of the tested applications prefer ReRAM and the

105

0

0.5

1

1.5

2

2.5

N
o

rm
a

liz
e

d
 e

x
e

c
u
ti
o

n
 t

im
e

SRAM

ReRAM

3.84

Figure 5.18: Performance of single IMP app execution.

0

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

N
o

rm
a

liz
e

d
 e

x
e

c
u

ti
o

n
 t

im
e

App combination #

SRAM

ReRAM

MLIMP

Figure 5.19: Performance of multiple IMP app
execution.

0.6

0.8

1

1.2

1.4

1.6

1.8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
N

o
rm

a
liz

e
d

 e
x
e

c
u

ti
o

n
 t

im
e

App combination #

Global Adaptive LJF

Figure 5.20: Scheduling comparison for IMP
apps.

rest SRAM. The preference of in-memory devices depends on many factors as we discussed, while

working data set size and instruction mix are some of the dominating factors.

We then assume scenarios of launching multiple programs from the program set. In this ex-

periment, we launch three programs, thus we have 6C3 = 20 different scenarios. We compare

the execution time in Figure 5.19. The execution time is normalized to the multi-layer in-memory

computing configuration. While the preferred memory depends on the type of programs launched,

multi-layer in-memory computing can schedule jobs to minimize the latency while balancing the

load, resulting in the best performance. Assuming the baseline can pick the best in-memory device

for each combinations, we achieve 1.79× better performance. We also compare the performance

of different scheduling approaches in Figure 5.20. Because the execution time of the compute

kernels here can be calculated deterministically, the global scheduler which can perform both local

and global adjustment achieve the best performance for almost all scenarios.

We conclude that a system with multi-layer in-memory computing can benefit from the rich

parallel in-memory processing resources and reduced data transfer. Moreover, a good job schedul-

106

ing and performance estimation allow such a system to exploit the heterogeneous characteristics

of different in-memory devices for jobs with dynamisms and substantial variation.

5.5 Summary

We propose multi-layer in-memory computing that runs various computing kernels with workload

dynamism in variable layers in the in-memory computing enabled memory hierarchy. By intro-

ducing a job scheduler and a performance predictor, GNN inference jobs, which show significant

variation in the working dataset and reuse patterns, are well mapped to appropriate memories.

Our multi-layer in-memory computing approaches provide performance advantages to multipro-

gramming scenarios for general data-parallel applications compiled for multiple in-memory device

targets. Our experimental results show that multi-layer in-memory computing improves the per-

formance of various GNN inference tasks in OGB by 4.80× over server class GPU. Re-purposing

the existing memory hierarchy for multi-layer in-memory computing provides 5.02× better energy

efficiency.

107

CHAPTER 6

Conclusion

The amount of data produced by individuals and corporations is growing explosively. The perfor-

mance and efficiency of applications dealing with a large amount of data are dependent critically

on efficient access and processing of data. In addition, the communication cost of data between

storage and processors is enormously high compared to the cost of actual computation that happens

in the processors.

In-memory computing directly addresses the inevitable cost of the traditional computation

paradigm. However, these architectures are often limited in their application scope or programma-

bility. Our multi-faceted approach enables general data-parallel acceleration in the layers of com-

pute capable memory hierarchy, providing programmable interfaces to utilize the new architec-

ture. We first propose a ReRAM based in-memory accelerator that exploits analog computation

of ReRAM arrays. Dense ReRAM array can be used as next generation main memory, and to

minimize the hardware cost for data communication, we employ wide-SIMD and VLIW execu-

tion using TensorFlow as the programming frontend. Second, we propose an SRAM cache based

in-memory accelerator to generalize its bit-line computing for data-parallel programs. We extend

SIMT execution model and programming model with VLIW instruction scheduling to balance

programmability and hardware complexity. Lastly, we propose a multi-layer in-memory computa-

tion stack and a framework that determines the appropriate level of memory hierarchy and method

of in-memory computing. Together, these components unlock massive compute capabilities and

energy efficiency of in-memory computing for general data-parallel applications.

108

Today, we have several products and prototypes that demonstrate the advantages of memory-

centric computing. UPMEM [119] realizes the idea of near-DRAM computation on a production

chip, and HBM-PIM [120] integrates programmable computing units into the DRAM dies near

the memory banks. Samsung’s SmartSSD computational storage drive [121] combines SSD and

Xilinx’s FPGA with a fast private data path between them, enabling efficient parallel computa-

tion at the SSD. These near-memory computing approaches bring considerable benefits with great

adaptability to currently available memory technologies. However, the hidden gems of comput-

ing with memory are only discoverable if compute logic and memory are deeply fused as is done

in in-memory computing. The savings of near-memory computing increases with an increase in

the proximity of the PIM logic to the memory arrays, while there are implementation challenges

to make them closer. Likewise, reduced communication overhead of near-memory computing is

often traded off by reduced computation throughput due to less performant cores or limited area

for custom logic, providing insufficient parallelism and throughput. For these reasons, there will

be a higher potential in in-memory computing. While there are a few prototypes and products for

in-memory computing, such as Mythic’s Flash based analog matrix processor [122], challenges in

programming for in-memory computing devices have limited their application targets.

This dissertation studies three key enablers of general data-parallel computing in the hetero-

geneous system with in-memory computing: enhanced arithmetic operations, parallel program-

ming models with compilers, and parallel execution models. The limited compute capability of

in-memory computing can be extended for various arithmetic operations and operation precision

by introducing throughput optimized parallel algorithms. The programming model and execution

model are designed to fully expose the parallelism in the architecture. In particular, VLIW model

combined with SIMD is useful for various in-memory processing because it can effectively ex-

ploit TLP and ILP with simplified hardware. The tightly coupled register processor entities of

in-memory computing can also flexibly transform themselves for ideal VLIW cores for different

optimization targets. Abundant register resources in dense memory arrays can be leveraged for

maximizing parallelism and compute bandwidth, while register usage can also be minimized for

109

small SRAM arrays optimizing for latency. A compiler is an important component of the sys-

tem stack that can expose the compute resource of in-memory computing for a broad range of

applications.

Multi-layer in-memory computing is studied for applications with workload dynamism. It is an

interesting case study that data-parallel applications and dynamic datasets have different processor

preferences and can be intelligently scheduled for in-memory computing combined with general

memory hierarchy for better overall performance. Likewise, prior work shows that applications

with random memory access chained by small address calculations in between can benefit from

multi-layer near-memory computing. We envision future computing systems will increase proces-

sor heterogeneity with in- and near-memory computing. It will not just be an additive component

to today’s computing system, but can also influence and change the traditional microarchitecture

design and the system stack. Future work can explore how this transformation of the existing

system stack will take place and how we will be able to fully exploit all kinds of heterogeneous

resources in a system for various applications without much complexity.

110

BIBLIOGRAPHY

[1] C. Eckert, X. Wang, J. Wang, A. Subramaniyan, R. Iyer, D. Sylvester, D. Blaaauw,
and R. Das, “Neural cache: Bit-serial in-cache acceleration of deep neural networks,” in
2018 ACM/IEEE 45th Annual International Symposium on Computer Architecture (ISCA),
pp. 383–396, June 2018.

[2] P. Chi, S. Li, and C. Xu, “PRIME : A Novel Processing-in-memory Architecture for Neural
Network Computation in ReRAM-based Main Memory,” in IEEE International Symposium
on Computer Architecture, pp. 27–39, IEEE, 6 2016.

[3] A. Shafiee, A. Nag, N. Muralimanohar, and R. Balasubramonian, “ISAAC : A Convolutional
Neural Network Accelerator with In-Situ Analog Arithmetic in Crossbars,” 2016 ACM/IEEE
43rd Annual International Symposium on Computer Architecture (ISCA), pp. 14–26, 6 2016.

[4] V. Seshadri, D. Lee, T. Mullins, H. Hassan, A. Boroumand, J. Kim, M. A. Kozuch, O. Mutlu,
P. B. Gibbons, and T. C. Mowry, “Ambit: In-memory accelerator for bulk bitwise operations
using commodity dram technology,” in 2017 50th Annual IEEE/ACM International Sympo-
sium on Microarchitecture (MICRO), pp. 273–287, IEEE, 2017.

[5] NVIDIA, “Parallel thread execution isa.” https://docs.nvidia.com/cuda/
parallel-thread-execution/index.html, 2018.

[6] J. E. Volder, “The cordic trigonometric computing technique,” IRE Transactions on Elec-
tronic Computers, vol. EC-8, pp. 330–334, Sept 1959.

[7] J. S. Walther, “A unified algorithm for elementary functions,” in Proceedings of the May
18-20, 1971, spring joint computer conference, pp. 379–385, ACM, 1971.

[8] S. Aga, S. Jeloka, A. Subramaniyan, S. Narayanasamy, D. Blaauw, and R. Das, “Compute
caches,” in 2017 IEEE International Symposium on High Performance Computer Architec-
ture (HPCA), pp. 481–492, Feb 2017.

[9] S. Jeloka, N. B. Akesh, D. Sylvester, and D. Blaauw, “A 28 nm configurable memory
(tcam/bcam/sram) using push-rule 6t bit cell enabling logic-in-memory,” IEEE Journal of
Solid-State Circuits, vol. 51, pp. 1009–1021, April 2016.

[10] M. Huang, M. Mehalel, R. Arvapalli, and S. He, “An energy efficient 32-nm 20-mb shared
on-die L3 cache for intel® xeon® processor E5 family,” J. Solid-State Circuits, 2013.

111

https://docs.nvidia.com/cuda/parallel-thread-execution/index.html
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html

[11] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, “The missing memristor
found,” Nature, vol. 453, no. 7191, p. 80, 2008.

[12] K.-H. Kim, S. Gaba, D. Wheeler, J. M. Cruz-Albrecht, T. Hussain, N. Srinivasa, and W. Lu,
“A Functional Hybrid Memristor Crossbar-Array/CMOS System for Data Storage and Neu-
romorphic Applications,” Nano Letters, vol. 12, no. 1, pp. 389–395, 2011.

[13] M. Prezioso, F. Merrikh-Bayat, B. Hoskins, G. Adam, K. K. Likharev, and D. B. Strukov,
“Training and operation of an integrated neuromorphic network based on metal-oxide mem-
ristors,” Nature, vol. 521, no. 7550, pp. 61–64, 2015.

[14] L. Song, X. Qian, H. Li, and Y. Chen, “Pipelayer: A pipelined reram-based accelerator
for deep learning,” in 2017 IEEE International Symposium on High Performance Computer
Architecture (HPCA), pp. 541–552, Feb 2017.

[15] M. N. Bojnordi and E. Ipek, “Memristive Boltzmann machine: A hardware accelerator
for combinatorial optimization and deep learning,” 2016 IEEE International Symposium on
High Performance Computer Architecture (HPCA), pp. 1–13, 2016.

[16] C. Yakopcic and T. M. Taha, “Energy efficient perceptron pattern recognition using seg-
mented memristor crossbar arrays,” in Neural Networks (IJCNN), The 2013 International
Joint Conference on, pp. 1–8, IEEE, 2013.

[17] S. Li, C. Xu, Q. Zou, J. Zhao, Y. Lu, and Y. Xie, “Pinatubo: A processing-in-memory
architecture for bulk bitwise operations in emerging non-volatile memories,” in Design Au-
tomation Conference (DAC), 2016 53nd ACM/EDAC/IEEE, pp. 1–6, IEEE, 2016.

[18] J. Borghetti, G. S. Snider, P. J. Kuekes, J. J. Yang, D. R. Stewart, and R. S. Williams,
“‘memristive’switches enable ‘stateful’logic operations via material implication,” Nature,
vol. 464, no. 7290, pp. 873–876, 2010.

[19] E. Linn, R. Rosezin, S. Tappertzhofen, U. Böttger, and R. Waser, “Beyond von neu-
mann—logic operations in passive crossbar arrays alongside memory operations,” Nan-
otechnology, vol. 23, no. 30, p. 305205, 2012.

[20] P.-E. Gaillardon, L. Amarú, A. Siemon, E. Linn, R. Waser, A. Chattopadhyay, and
G. De Micheli, “The programmable logic-in-memory (plim) computer,” in 2016 Design,
Automation & Test in Europe Conference & Exhibition (DATE), pp. 427–432, Ieee, 2016.

[21] M. Soeken, S. Shirinzadeh, L. Gaetano, A. Rolf, and G. D. Micheli, “An MIG-based Com-
piler for Programmable Logic-in-Memory Architectures,” Proceedings of the 2016 53rd
ACM/EDAC/IEEE Design Automation Conference (DAC), vol. 1, 2016.

[22] D. Bhattacharjee, R. Devadoss, and A. Chattopadhyay, “ReVAMP : ReRAM based VLIW
Architecture for in-Memory comPuting,” Design, Automation & Test in Europe Conference
& Exhibition (DATE), 2017, pp. 782–787, mar 2017.

112

[23] S. Kvatinsky, G. Satat, N. Wald, E. G. Friedman, A. Kolodny, and U. C. Weiser, “Memristor-
based material implication (imply) logic: Design principles and methodologies,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 22, no. 10, pp. 2054–
2066, 2013.

[24] S. Kvatinsky, D. Belousov, S. Liman, G. Satat, N. Wald, E. G. Friedman, A. Kolodny, and
U. C. Weiser, “Magic—memristor-aided logic,” IEEE Transactions on Circuits and Systems
II: Express Briefs, vol. 61, no. 11, pp. 895–899, 2014.

[25] T. Finkbeiner, G. Hush, T. Larsen, P. Lea, J. Leidel, and T. Manning, “In-memory intelli-
gence,” IEEE Micro, vol. 37, no. 4, pp. 30–38, 2017.

[26] S. Li, A. O. Glova, X. Hu, P. Gu, D. Niu, K. T. Malladi, H. Zheng, B. Brennan, and Y. Xie,
“Scope: A stochastic computing engine for dram-based in-situ accelerator.,” in MICRO,
pp. 696–709, 2018.

[27] B. Keeth, R. J. Baker, B. Johnson, and F. Lin, DRAM circuit design: fundamental and high-
speed topics, vol. 13. John Wiley & Sons, 2007.

[28] F. Gao, G. Tziantzioulis, and D. Wentzlaff, “Computedram: In-memory compute using off-
the-shelf drams,” in Proceedings of the 52nd Annual IEEE/ACM International Symposium
on Microarchitecture, pp. 100–113, 2019.

[29] X. Xin, Y. Zhang, and J. Yang, “Roc: Dram-based processing with reduced operation cy-
cles,” in Proceedings of the 56th Annual Design Automation Conference 2019, pp. 1–6,
2019.

[30] D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keeton, C. Kozyrakis, R. Thomas,
and K. Yelick, “A case for intelligent ram,” Micro, IEEE, 1997.

[31] D. G. Elliott, W. M. Snelgrove, and M. Stumm, “Computational ram: A memory-simd
hybrid and its application to dsp,” in Custom Integrated Circuits Conference, vol. 30, pp. 1–
30, 1992.

[32] M. Oskin, F. T. Chong, T. Sherwood, M. Oskin, F. T. Chong, and T. Sherwood, “Active
Pages: A Computation Model for Intelligent Memory,” ACM SIGARCH Computer Archi-
tecture News, vol. 26, no. 3, pp. 192–203, 1998.

[33] B. B. Fraguela, J. Renau, P. Feautrier, D. Padua, and J. Torrellas, “Programming the flexram
parallel intelligent memory system,” SIGPLAN Not., vol. 38, pp. 49–60, June 2003.

[34] J. B. Brockman, S. Thoziyoor, S. K. Kuntz, and P. M. Kogge, “A low cost, multithreaded
processing-in-memory system,” in Proceedings of the 3rd Workshop on Memory Perfor-
mance Issues: In Conjunction with the 31st International Symposium on Computer Archi-
tecture, WMPI ’04, (New York, NY, USA), pp. 16–22, ACM, 2004.

[35] H. S. Stone, “A logic-in-memory computer,” IEEE Transactions on Computers, vol. 100,
no. 1, pp. 73–78, 1970.

113

[36] W. H. Kautz, “arrays,” IEEE Transactions on Computers, vol. 100, no. 8, pp. 719–727,
1969.

[37] C.-C. Yang and S.-S. Yau, “A cutpoint cellular associative memory,” IEEE Transactions on
Electronic Computers, no. 4, pp. 522–528, 1966.

[38] W. H. Kautz, “A cellular threshold array,” IEEE Transactions on Electronic Computers,
no. 5, pp. 680–682, 1967.

[39] H. Consortium et al., “Hybrid memory cube specification 2.1,” Retrieved from hybridmem-
orycube. org, 2013.

[40] J. Standard, “High bandwidth memory (hbm) dram,” JESD235, 2013.

[41] D. Zhang, N. Jayasena, A. Lyashevsky, J. L. Greathouse, L. Xu, and M. Ignatowski, “Top-
pim: Throughput-oriented programmable processing in memory,” in Proceedings of the
23rd International Symposium on High-performance Parallel and Distributed Computing,
HPDC ’14, 2014.

[42] A. Farmahini-Farahani, J. H. Ahn, K. Morrow, and N. S. Kim, “Nda: Near-dram acceler-
ation architecture leveraging commodity dram devices and standard memory modules,” in
High Performance Computer Architecture (HPCA), 2015 IEEE 21st International Sympo-
sium on, 2015.

[43] Q. Zhu, B. Akin, H. Sumbul, F. Sadi, J. Hoe, L. Pileggi, and F. Franchetti, “A 3d-stacked
logic-in-memory accelerator for application-specific data intensive computing,” in 3D Sys-
tems Integration Conference (3DIC), 2013 IEEE International, 2013.

[44] V. Seshadri, Y. Kim, C. Fallin, D. Lee, R. Ausavarungnirun, G. Pekhimenko, Y. Luo,
O. Mutlu, P. B. Gibbons, M. A. Kozuch, and T. C. Mowry, “Rowclone: Fast and energy-
efficient in-dram bulk data copy and initialization,” in Proceedings of the 46th Annual
IEEE/ACM International Symposium on Microarchitecture, MICRO-46.

[45] S. Pugsley, J. Jestes, H. Zhang, R. Balasubramonian, V. Srinivasan, A. Buyuktosunoglu,
A. Davis, and F. Li, “Ndc: Analyzing the impact of 3d-stacked memory+logic devices on
mapreduce workloads,” in Performance Analysis of Systems and Software (ISPASS), 2014
IEEE International Symposium on, 2014.

[46] J. Ahn, S. Yoo, O. Mutlu, and K. Choi, “Pim-enabled instructions: A low-overhead, locality-
aware processing-in-memory architecture,” in Proceedings of the 42Nd Annual Interna-
tional Symposium on Computer Architecture, ISCA ’15, 2015.

[47] D. Kim, J. Kung, S. Chai, S. Yalamanchili, and S. Mukhopadhyay, “Neurocube: A pro-
grammable digital neuromorphic architecture with high-density 3d memory,” in Proceed-
ings of ISCA, vol. 43, 2016.

[48] J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi, “A scalable processing-in-memory accel-
erator for parallel graph processing,” in 2015 ACM/IEEE 42nd Annual International Sym-
posium on Computer Architecture (ISCA), pp. 105–117, June 2015.

114

[49] J. Jeddeloh and B. Keeth, “Hybrid memory cube new dram architecture increases density
and performance,” in 2012 symposium on VLSI technology (VLSIT), pp. 87–88, IEEE, 2012.

[50] M. O’Connor, N. Chatterjee, D. Lee, J. Wilson, A. Agrawal, S. W. Keckler, and W. J. Dally,
“Fine-grained dram: Energy-efficient dram for extreme bandwidth systems,” in 2017 50th
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), pp. 41–54,
IEEE, 2017.

[51] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. Corrado, A. Davis,
J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia,
L. Kaiser, M. Kudlur, J. Levenberg, D. Man, R. Monga, S. Moore, D. Murray, J. Shlens,
B. Steiner, I. Sutskever, P. Tucker, V. Vanhoucke, V. Vasudevan, O. Vinyals, P. Warden,
M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-Scale Machine Learning on Hetero-
geneous Distributed Systems,” 2015.

[52] P. O. Vontobel, W. Robinett, P. J. Kuekes, D. R. Stewart, J. Straznicky, and R. S. Williams,
“Writing to and reading from a nano-scale crossbar memory based on memristors,” Nan-
otechnology, vol. 20, no. 42, p. 425204, 2009.

[53] M. Hu, R. S. Williams, J. P. Strachan, Z. Li, E. M. Grafals, N. Davila, C. Graves, S. Lam,
N. Ge, and J. J. Yang, “Dot-product engine for neuromorphic computing,” in Proceedings
of the 53rd Annual Design Automation Conference on - DAC ’16, (New York, New York,
USA), pp. 1–6, ACM Press, 2016.

[54] J. Sandrini, M. Barlas, M. Thammasack, T. Demirci, M. De Marchi, D. Sacchetto, P.-E.
Gaillardon, G. De Micheli, and Y. Leblebici, “Co-Design of ReRAM Passive Crossbar Ar-
rays Integrated in 180 nm CMOS Technology,” IEEE Journal on Emerging and Selected
Topics in Circuits and Systems, vol. 6, pp. 339–351, 9 2016.

[55] Z. Wei, Y. Kanzawa, K. Arita, Y. Katoh, K. Kawai, S. Muraoka, S. Mitani, S. Fujii,
K. Katayama, M. Iijima, T. Mikawa, T. Ninomiya, R. Miyanaga, Y. Kawashima, K. Tsuji,
A. Himeno, T. Okada, R. Azuma, K. Shimakawa, H. Sugaya, T. Takagi, R. Yasuhara,
K. Horiba, H. Kumigashira, and M. Oshima, “Highly reliable TaOx ReRAM and direct evi-
dence of redox reaction mechanism,” in 2008 IEEE International Electron Devices Meeting,
pp. 1–4, IEEE, 12 2008.

[56] M. Ercegovac, J.-M. Muller, and A. Tisserand, “Simple Seed Architectures for Reciprocal
and Square Root Reciprocal,”

[57] M. Cornea, J. Harrison, C. Iordache, B. Norin, and S. Story, “Divide, square root, and
remainder algorithms for the ia-64 architecture,” Open Source for Numerics, Intel Corpora-
tion, 2000.

[58] J. Harrison, T. Kubaska, S. Story, et al., “The computation of transcendental functions on
the ia-64 architecture,” in Intel Technology Journal, Citeseer, 1999.

[59] J. R. Ellis, Bulldog: A Compiler for VLSI Architectures. Cambridge, MA, USA: MIT Press,
1986.

115

[60] P. G. Lowney, S. M. Freudenberger, T. J. Karzes, W. D. Lichtenstein, R. P. Nix, J. S.
O’Donnell, and J. C. Ruttenberg, “The multiflow trace scheduling compiler,” The Journal
of Supercomputing, vol. 7, pp. 51–142, May 1993.

[61] M. Mercaldi, S. Swanson, A. Petersen, A. Putnam, A. Schwerin, M. Oskin, and S. J. Eg-
gers, “Instruction scheduling for a tiled dataflow architecture,” in ACM SIGOPS Operating
Systems Review, vol. 40, pp. 141–150, ACM, 2006.

[62] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC benchmark suite: Characteriza-
tion and architectural implications,” Proceedings of the International Conference on Parallel
Architectures and Compilation Techniques, no. January, pp. 72–81, 2008.

[63] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and K. Skadron, “Rodinia:
A benchmark suite for heterogeneous computing,” in Workload Characterization, 2009.
IISWC 2009. IEEE International Symposium on, pp. 44–54, Ieee, 2009.

[64] N. Abeyratne, R. Das, Q. Li, K. Sewell, B. Giridhar, R. G. Dreslinski, D. Blaauw, and
T. Mudge, “Scaling towards kilo-core processors with asymmetric high-radix topologies,”
in High Performance Computer Architecture (HPCA2013), 2013 IEEE 19th International
Symposium on, pp. 496–507, IEEE, 2013.

[65] L. Kull, T. Toifl, M. Schmatz, P. A. Francese, C. Menolfi, M. Braendli, M. Kossel, T. Morf,
T. M. Andersen, and Y. Leblebici, “A 3.1mW 8b 1.2GS/s single-channel asynchronous SAR
ADC with alternate comparators for enhanced speed in 32nm digital SOI CMOS,” in 2013
IEEE International Solid-State Circuits Conference Digest of Technical Papers, pp. 468–
469, IEEE, 2 2013.

[66] F. Alibart, L. Gao, B. D. Hoskins, and D. B. Strukov, “High precision tuning of state for
memristive devices by adaptable variation-tolerant algorithm,” Nanotechnology, vol. 23,
no. 7, p. 075201, 2012.

[67] P.-Y. Chen, D. Kadetotad, Z. Xu, A. Mohanty, B. Lin, J. Ye, S. Vrudhula, J.-s. Seo, Y. Cao,
and S. Yu, “Technology-design co-optimization of resistive cross-point array for accelerat-
ing learning algorithms on chip,” in Design, Automation & Test in Europe Conference &
Exhibition (DATE), 2015, pp. 854–859, IEEE, 2015.

[68] N. Jiang, J. Balfour, D. U. Becker, B. Towles, W. J. Dally, G. Michelogiannakis, and J. Kim,
“A detailed and flexible cycle-accurate network-on-chip simulator,” in Performance Analysis
of Systems and Software (ISPASS), 2013 IEEE International Symposium on, pp. 86–96,
IEEE, 2013.

[69] J. B. Kotra, M. Arjomand, D. Guttman, M. T. Kandemir, and C. R. Das, “Re-nuca: A
practical nuca architecture for reram based last-level caches,” in 2016 IEEE International
Parallel and Distributed Processing Symposium (IPDPS), pp. 576–585, May 2016.

[70] V. W. Lee, C. Kim, J. Chhugani, M. Deisher, D. Kim, A. D. Nguyen, N. Satish, M. Smelyan-
skiy, S. Chennupaty, P. Hammarlund, R. Singhal, and P. Dubey, “Debunking the 100x gpu
vs. cpu myth: An evaluation of throughput computing on cpu and gpu,” SIGARCH Comput.
Archit. News, vol. 38, pp. 451–460, June 2010.

116

[71] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S. Lee, and K. Skadron, “Rodinia: A
benchmark suite for heterogeneous computing,” in 2009 IEEE International Symposium on
Workload Characterization (IISWC), pp. 44–54, Oct 2009.

[72] C. Xu, “Part III : Emerging Nonvolatile Memories Emerging Non-volatile Memory,” 2014.

[73] Intel, “x87 and sse floating point assists in ia-32: Flush-to-zero (ftz) and denormals-
are-zero (daz).” https://software.intel.com/en-us/articles/
x87-and-sse-floating-point-assists-in-ia-32-flush-to-zero-ftz-and-denormals-are-zero-daz/,
2008.

[74] D. Fujiki, S. Mahlke, and R. Das, “In-memory data parallel processor,” in Proceedings
of the Twenty-Third International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’18, (New York, NY, USA), pp. 1–14, ACM,
2018.

[75] R. Andraka, “A survey of cordic algorithms for fpga based computers,” in Proceedings of
the 1998 ACM/SIGDA sixth international symposium on Field programmable gate arrays,
pp. 191–200, ACM, 1998.

[76] MathWorks, “Compute square root using cordic.” https://www.mathworks.com/
help/fixedpoint/examples/compute-square-root-using-cordic.
html, 2018.

[77] G. F. Diamos, A. R. Kerr, S. Yalamanchili, and N. Clark, “Ocelot: A dynamic optimization
framework for bulk-synchronous applications in heterogeneous systems,” in Proceedings of
the 19th International Conference on Parallel Architectures and Compilation Techniques,
PACT ’10, (New York, NY, USA), pp. 353–364, ACM, 2010.

[78] R. compiler infrastructure, “Rose compiler.” http://rosecompiler.org/, 2018.

[79] X. Xie, Y. Liang, G. Sun, and D. Chen, “An efficient compiler framework for cache bypass-
ing on GPUs,” in 2013 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), pp. 516–523, IEEE, nov 2013.

[80] W. Jia, K. A. Shaw, and M. Martonosi, “Characterizing and improving the use of demand-
fetched caches in gpus,” in Proceedings of the 26th ACM international conference on Su-
percomputing, pp. 15–24, ACM, 2012.

[81] PathScale, “Performance test suite for openacc compiler, intel mic, patus and single-core
cpu.” https://github.com/pathscale/OpenACC-benchmarks, 2013.

[82] A. Tabuchi, M. Nakao, and M. Sato, “A Source-to-Source OpenACC Compiler for CUDA,”
in Euro-Par 2013: Parallel Processing Workshops (D. an Mey, M. Alexander, P. Bientinesi,
M. Cannataro, C. Clauss, A. Costan, G. Kecskemeti, C. Morin, L. Ricci, J. Sahuquillo,
M. Schulz, V. Scarano, S. L. Scott, and J. Weidendorfer, eds.), (Berlin, Heidelberg), pp. 178–
187, Springer Berlin Heidelberg, 2014.

117

https://software.intel.com/en-us/articles/x87-and-sse-floating-point-assists-in-ia-32-flush-to-zero-ftz-and-denormals-are-zero-daz/
https://software.intel.com/en-us/articles/x87-and-sse-floating-point-assists-in-ia-32-flush-to-zero-ftz-and-denormals-are-zero-daz/
https://www.mathworks.com/help/fixedpoint/examples/compute-square-root-using-cordic.html
https://www.mathworks.com/help/fixedpoint/examples/compute-square-root-using-cordic.html
https://www.mathworks.com/help/fixedpoint/examples/compute-square-root-using-cordic.html
http://rosecompiler.org/
https://github.com/pathscale/OpenACC-benchmarks

[83] NVIDIA, “Cuda toolkit.” https://developer.nvidia.com/cuda-toolkit,
2018.

[84] NVIDIA, “Pgi compilers & tools.” https://www.pgroup.com/, 2018.

[85] N. Abeyratne, R. Das, Q. Li, K. Sewell, B. Giridhar, R. G. Dreslinski, D. Blaauw, and
T. Mudge, “Scaling towards kilo-core processors with asymmetric high-radix topologies,”
in 2013 IEEE 19th International Symposium on High Performance Computer Architecture
(HPCA), pp. 496–507, Feb 2013.

[86] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi, “Cacti 6.0: A tool to model large
caches,” HP laboratories, pp. 22–31, 2009.

[87] Y. Kim, W. Yang, and O. Mutlu, “Ramulator: A fast and extensible dram simulator.,” Com-
puter Architecture Letters, vol. 15, no. 1, pp. 45–49, 2016.

[88] Intel, “Intel processor graphics.” https://software.intel.com/en-us/
articles/intel-graphics-developers-guides, 2018.

[89] D. Fujiki, S. Mahlke, and R. Das, “Duality cache for data parallel acceleration,” in Proceed-
ings of the 46th International Symposium on Computer Architecture, ISCA ’19, (New York,
NY, USA), pp. 397–410, ACM, 2019.

[90] W. L. Hamilton, R. Ying, and J. Leskovec, “Representation learning on graphs: Methods
and applications,” arXiv preprint arXiv:1709.05584, 2017.

[91] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst, “Geometric deep
learning: going beyond euclidean data,” IEEE Signal Processing Magazine, vol. 34, no. 4,
pp. 18–42, 2017.

[92] T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional net-
works,” arXiv preprint arXiv:1609.02907, 2016.

[93] M. Zhang and Y. Chen, “Link prediction based on graph neural networks,” Advances in
Neural Information Processing Systems, vol. 31, pp. 5165–5175, 2018.

[94] M. Zhang, P. Li, Y. Xia, K. Wang, and L. Jin, “Revisiting graph neural networks for link
prediction,” arXiv preprint arXiv:2010.16103, 2020.

[95] W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive representation learning on large
graphs,” in Proceedings of the 31st International Conference on Neural Information Pro-
cessing Systems, pp. 1025–1035, 2017.

[96] W.-L. Chiang, X. Liu, S. Si, Y. Li, S. Bengio, and C.-J. Hsieh, “Cluster-gcn: An efficient
algorithm for training deep and large graph convolutional networks,” in Proceedings of the
25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
pp. 257–266, 2019.

118

https://developer.nvidia.com/cuda-toolkit
https://www.pgroup.com/
https://software.intel.com/en-us/articles/intel-graphics-developers-guides
https://software.intel.com/en-us/articles/intel-graphics-developers-guides

[97] W. Hu, M. Fey, M. Zitnik, Y. Dong, H. Ren, B. Liu, M. Catasta, and J. Leskovec,
“Open graph benchmark: Datasets for machine learning on graphs,” arXiv preprint
arXiv:2005.00687, 2020.

[98] F. Gao, G. Tziantzioulis, and D. Wentzlaff, “Computedram: In-memory compute using off-
the-shelf drams,” in Proceedings of the 52nd Annual IEEE/ACM International Symposium
on Microarchitecture, pp. 100–113, 2019.

[99] H. Cook, K. Asanovic, and D. A. Patterson, “Virtual local stores: Enabling software-
managed memory hierarchies in mainstream computing environments,” tech. rep., Technical
Report No. UCB/EECS-2009-131, 2009.

[100] R. Komuravelli, M. D. Sinclair, J. Alsop, M. Huzaifa, M. Kotsifakou, P. Srivastava, S. V.
Adve, and V. S. Adve, “Stash: Have Your Scratchpad and Cache It Too,” in ISCA’15,
pp. 707–719, 2015.

[101] P. Pessl, D. Gruss, C. Maurice, M. Schwarz, and S. Mangard, “DRAMA: Exploiting DRAM
addressing for Cross-CPU attacks,” in 25th USENIX Security Symposium (USENIX Security
16), (Austin, TX), pp. 565–581, USENIX Association, Aug. 2016.

[102] B. Y. Cho, J. Jung, and M. Erez, “Accelerating bandwidth-bound deep learning inference
with main-memory accelerators,” CoRR, vol. abs/2012.00158, 2020.

[103] B. Y. Cho, Y. Kwon, S. Lym, and M. Erez, “Near data acceleration with concurrent host ac-
cess,” in 2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture
(ISCA), pp. 818–831, 2020.

[104] L. Song, Y. Zhuo, X. Qian, H. Li, and Y. Chen, “Graphr: Accelerating graph processing
using reram,” in 2018 IEEE International Symposium on High Performance Computer Ar-
chitecture (HPCA), pp. 531–543, IEEE, 2018.

[105] D. Fujiki, N. Chatterjee, D. Lee, and M. O’Connor, “Near-memory data transformation
for efficient sparse matrix multi-vector multiplication,” in Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis, pp. 1–17,
2019.

[106] C. Hong, A. Sukumaran-Rajam, B. Bandyopadhyay, J. Kim, S. E. Kurt, I. Nisa, S. Sabhlok,
U. V. Çatalyürek, S. Parthasarathy, and P. Sadayappan, “Efficient sparse-matrix multi-vector
product on gpus,” in Proceedings of the 27th International Symposium on High-Performance
Parallel and Distributed Computing, HPDC ’18, (New York, NY, USA), p. 66–79, Associ-
ation for Computing Machinery, 2018.

[107] L. Nai, R. Hadidi, J. Sim, H. Kim, P. Kumar, and H. Kim, “Graphpim: Enabling instruction-
level pim offloading in graph computing frameworks,” in 2017 IEEE International sympo-
sium on high performance computer architecture (HPCA), pp. 457–468, IEEE, 2017.

[108] M. Zhang, Y. Zhuo, C. Wang, M. Gao, Y. Wu, K. Chen, C. Kozyrakis, and X. Qian, “Graphp:
Reducing communication for pim-based graph processing with efficient data partition,” in

119

2018 IEEE International Symposium on High Performance Computer Architecture (HPCA),
pp. 544–557, IEEE, 2018.

[109] R. H. Arpaci-Dusseau and A. C. Arpaci-Dusseau, “Operating systems: Three easy pieces,
chapter 5,” Arpaci-Dusseau Books, vol. 1.

[110] Arm Ltd., “Arm big.LITTLE.”

[111] R. Kolisch and S. Hartmann, Heuristic Algorithms for the Resource-Constrained Project
Scheduling Problem: Classification and Computational Analysis, pp. 147–178. Boston,
MA: Springer US, 1999.

[112] L. Özdamar and G. Ulusoy, “A survey on the resource-constrained project scheduling prob-
lem,” IIE transactions, vol. 27, no. 5, pp. 574–586, 1995.

[113] R. Kolisch, “Efficient priority rules for the resource-constrained project scheduling prob-
lem,” Journal of Operations Management, vol. 14, no. 3, pp. 179–192, 1996.

[114] K. S. Naphade, S. D. Wu, and R. H. Storer, “Problem space search algorithms for resource-
constrained project scheduling,” Annals of operations research, vol. 70, pp. 307–326, 1997.

[115] S. M. Johnson, “Optimal two- and three-stage production schedules with setup times in-
cluded,” Naval Research Logistics Quarterly, vol. 1, no. 1, pp. 61–68, 1954.

[116] B. C. Arnold, “Pareto distribution,” Wiley StatsRef: Statistics Reference Online, pp. 1–10,
2014.

[117] A. Mehrabi, D. Lee, N. Chatterjee, D. J. Sorin, B. C. Lee, and M. O’Connor, “Learning
sparse matrix row permutations for efficient spmm on gpu architectures,” in 2021 IEEE In-
ternational Symposium on Performance Analysis of Systems and Software (ISPASS), pp. 48–
58, IEEE, 2021.

[118] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,” in Proceedings of
the 22nd acm sigkdd international conference on knowledge discovery and data mining,
pp. 785–794, 2016.

[119] F. Devaux, “The true processing in memory accelerator,” in 2019 IEEE Hot Chips 31 Sym-
posium (HCS), pp. 1–24, IEEE Computer Society, 2019.

[120] Y.-C. Kwon, S. H. Lee, J. Lee, S.-H. Kwon, J. M. Ryu, J.-P. Son, O. Seongil, H.-S. Yu,
H. Lee, S. Y. Kim, et al., “25.4 a 20nm 6gb function-in-memory dram, based on hbm2
with a 1.2 tflops programmable computing unit using bank-level parallelism, for machine
learning applications,” in 2021 IEEE International Solid-State Circuits Conference (ISSCC),
vol. 64, pp. 350–352, IEEE, 2021.

[121] “Samsung smartssd computational storage drive.” https://web.archive.org/
web/20210118224545/https://samsungsemiconductor-us.com/
smartssd/index.html. Accessed: 2021-03-01.

120

https://web.archive.org/web/20210118224545/https://samsungsemiconductor-us.com/smartssd/index.html
https://web.archive.org/web/20210118224545/https://samsungsemiconductor-us.com/smartssd/index.html
https://web.archive.org/web/20210118224545/https://samsungsemiconductor-us.com/smartssd/index.html

[122] M. Demler, “Mythic multiplies in a flash,” Analog In-Memory Computing Eliminates DRAM
Read/Write Cylcles, The Linley Group Microprocessor report, 2018.

121

	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	Abstract
	Introduction
	Background
	In-SRAM Computing
	In-ReRAM Computing
	In-DRAM Computing
	Near-Memory Computing

	In-Memory Computing with Resistive RAM
	General Purpose In-ReRAM Computing
	Design Goals

	Processor Architecture
	Micro-architecture
	Instruction Set Architecture
	Precision and Signed Arithmetic

	Programming Model
	Execution Model
	Compiler
	Supporting Complex Operations
	Compiler Optimizations

	Methodology
	Results
	Configurations Studied
	Operation Study
	Application Study
	Effect of Compiler Optimizations
	Memory Lifetime

	Summary

	In-Memory Computing with SRAM
	In-SRAM Computing
	Challenges and Opportunities
	Benefits

	System Stack
	ISA
	Floating Point Arithmetic
	Integer Arithmetic Optimization's
	Transcendental Functions

	Programming Model
	Execution Model and Architecture
	Compiler
	Cache Partitioning

	Methodology
	Results
	Configurations Studied
	Performance
	Performance without Host-Device Transfer
	Deep Dive of Applications
	Impact of Optimizations
	Energy

	Summary

	Multi-Layer In-Memory Computing
	Challenges and Opportunities
	GNNs and Dynamism in Workload
	GNN
	Workload Dynamism

	Motivation

	Multi-Layer In-Memory Processing
	Architecture Overview
	Common Programming Interface
	Memory allocation
	Control Granularity

	Kernel Mapping
	GEMM
	SpMM
	GNN kernels
	Data Parallel Applications

	Scheduler
	Scheduling Strategies and Resource Constrained Project Scheduling Problem (RCPSP)
	Baseline Schedulers
	Resource Scaling and Allocation Size Criteria
	Adaptive Scheduling
	Global Scheduling

	Performance Prediction

	Methodology
	Results
	Configurations Studied
	GNN Performance
	Kernel Performance
	Application Performance
	Scheduler and Predictor Performance
	Resource Scaling

	Multiprogramming

	Summary

	Conclusion
	Bibliography

