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Abstract 

 

Biological phenomena can be examined at multiple levels of organization. For example, the role 

of individual amino acids in protein function representing a low level, the interactions between 

genes underlying complex traits as an intermediate level, and evolutionary processes across taxa 

at the highest level.  Phenomena at each level must emerge from processes at lower levels. Thus, 

understanding this emergence is crucial for a full understanding of any biological phenomenon, 

including the genetic basis of disease and the course of evolution.  My thesis focuses on how 

mutational effects propagate across these levels of organization.  

 

My second chapter develops a null theory for how mutational effects scale to complex 

phenotypes, from which universal evolutionary patterns emerge. Although mutational effects 

have predictable, deterministic effects on lower level phenotypes, the complexity of interactions 

that determine phenotypes like fitness results in a seeming randomness of mutational effects, or 

idiosyncrasy, at this higher level.  Universal evolutionary patterns in adaptation, mutation 

accumulation, and the effects of mutations across fitness levels then emerge as statistical laws 

from this randomness. This null theory of “idiosyncratic interactions” resolves a paradox in the 

common, but mistaken, interpretation of these universal evolutionary patterns.  My third and 

fourth chapters capture a deviation from this null theory, showing that a feature at the lowest 

level, the radical- or conservative-ness of amino acid substitutions, leads to predictable fitness 

differences and may bias phylogenetic patterns. Across most phyla, there is a substitution bias 

towards transitions versus transversions; there has been a long-standing debate over whether this 
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bias is due to a mutational bias or selection. In my third chapter I show that transversions are 

more detrimental to fitness in two RNA viruses, influenza virus and HIV. This can be partly 

explained by their greater likelihood to cause radical amino acid changes, which are more 

detrimental.  Thus, selection is likely a major contributor to the transition-transversion substation 

bias. My fourth chapter examines further consequences of radical versus conservative amino acid 

changes.  Uncovering the molecular constraints on proteins and the changes responsible for 

adaptations are major goals in molecular evolution. I find that while proteins are constrained in 

accepting radical amino acid changes in influenza virus, HIV, and additionally in Zika virus, 

such radical changes are also the most beneficial, conditional on being beneficial. Multi-

nucleotide mutations, which are more likely to cause radical changes due to the genetic code, 

show the same pattern as radical changes. These findings have implications for viral evolution, 

phylogenetic inference of selection, and the evolution of the genetic code. Our null theory of 

idiosyncratic epistasis may help guide future work on how deviations from our predictions at the 

level of evolutionary patterns reflect the organization of interactions at the level of complex 

phenotypes and the biological properties of individual genes or mutations at the lowest level. 
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Chapter 1 Introduction 

 

Note: This chapter is a modified version of the published article: 

Lyons DM, Lauring AS. 2018. Mutation and Epistasis in Influenza Virus Evolution. Viruses. 

10(8):407. doi:10.3390/v10080407.  

Overview 

The diversity of life is amazing, from the wings of a ruby-throated hummingbird flapping at 

hundreds of times per second to the intricate geometric shapes of viral capsids. Perhaps even just 

as beautiful is the fact that all of life’s diversity is generated by the same evolutionary processes. 

To understand how life’s diversity is produced through evolution, understanding the effects of 

mutations is crucial. Because all life originated from a common ancestor, this diversity must be 

generated by the accumulation of mutations through billions of years. However, it is not only the 

accumulation of single mutations that contribute to diversity, but the interactions between 

mutations. The same mutation can have varying effects depending on the other mutations 

present. 

 

Epistasis refers to the genetic interactions between two or more mutations in a genome. It is 

useful to think about epistasis using the image of a mountainous landscape (Phillips 2008).  

Here, each point on the landscape is a genotype, and the height represents the fitness of the 

genotype (Figure 1-1).  If there were no epistasis, then this fitness landscape would have a single 

peak, and populations might adapt, or climb up that peak, linearly with each mutation (Figure 1-

1A). However, because of epistasis, these landscapes are more rugged, with different peaks and 

valleys representing unexpected fitness effects of mutational combinations (Figure 1-1B).  The 
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shape of this landscape determines how a population will evolve (Phillips 2008). For example, 

how quickly it can climb a peak or which peaks are accessible without crossing a low fitness 

valley. The combinatorics of mutations vastly increases the potential diversity of life. The space 

of possible genotypes is enormous. Even the collection of all genomes of all organisms that have 

ever lived, represents a tiny point in a vast space of possible genotypes. For a genome the size of 

the influenza virus, the number of possible genotypes is larger than the number of particles in the 

observable universe.  

 

Figure 1-1. Schematic of fitness landscapes  

A smooth fitness landscape without epistasis (A) and a rugged one with epistasis (B). In both, 

height represents fitness and the orthogonal axes represent genetic distance. 

 

How can we understand this vast space in which evolution occurs? The projects in this 

dissertation advance our understanding from two perspectives. The first nearly dispenses with 

biological details, showing how universal patterns in evolutionary trajectories and mutational 

effects uncovered over the last decade can emerge from underlying randomness in mutational 

effects. The second turns to the biological details of mutational effects in RNA viruses, showing 

that the structure of the genetic code and properties of amino acids likely contribute to 
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widespread patterns in molecular evolution. Below, I review the literature on mutational effects 

and epistasis in general and as it pertains to the influenza virus, an RNA virus. 

Mutational Effects and Epistasis 

Enormous successes in molecular biology and biomedical science have been made by probing 

the effects of individual genes or mutations in model systems, from our basic understanding of 

bacterial gene regulation to the hormonal control of metabolism (Stent 1964; Pelleymounter et al. 

1995). Life-saving cures have been developed by probing the structure and function of individual 

molecules with single mutations. A classic example is cystic fibrosis, which is commonly caused 

by a single amino acid deletion (Boyle and De Boeck 2013). Understanding how this mutation 

causes a misfolded protein led to the development of effective drug treatments. 

 

Despite its historical success, the limits of research into the impact of single mutations and the 

function of individual molecules have become clear.  No single gene or mutation can account for 

the development of complex traits or diseases like diabetes (Manolio et al. 2009). Often, a 

polymorphism linked to a trait in one population is unimportant in other populations, likely due 

to interactions with other polymorphisms (Moore 2003; Carlborg and Haley 2004). Findings in 

model systems like mice often do not translate to humans (Perel et al. 2007), partly due to 

epistasis with human-specific substitutions. Disease-causing polymorphisms in humans are 

frequently the wild-type in other species (Xu and Zhang 2014). While we can often understand 

the effect of individual mutations or interactions (Figure 1-2, bottom), it is extremely difficult to 

predict how such effects scale to higher levels of biological organization that involve many 

interactions – like the metabolism of an organism, complex phenotypes, or fitness (Figure 1-2, 

middle).   If we cannot understand how the effects of individual mutations scale to intermediate 
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phenotypes or fitness, their effects on evolutionary processes are even more opaque (Figure 1-2, 

top). 

Defining and measuring epistasis 

Epistasis (ϵ) refers to the genetic interactions between two or more mutations in a genome. 

Epistasis is most commonly defined as the difference between the observed fitness of the 

genome with both mutations i and j (wij) and the expected fitness given independent 

multiplicative effects of each single mutation (Figure 1-3A) (Mani et al. 2008). Thus, ϵ = wij - 

wi×wj, where ϵ = 0 indicates no genetic interaction. Negative epistasis (ϵ < 0) occurs when the 

fitness of a double mutant is less than expected. Positive epistasis (ϵ > 0) occurs when the fitness 

of the double mutant is greater than expected. As we mainly discuss epistasis as either positive or 

Figure 1-2. How mutational effects 

scale across levels of biological 

organization.  

At the bottom level, the function of 

individual genes or effects of individual 

mutations are largely predictable given 

sufficient biophysical knowledge. Here, 

the red mutation towards a larger amino 

acid diminishes the function of the blue 

enzyme. Despite their deterministic 

actions, mutational effects at the level of 

fitness or complex phenotypes are 

highly unpredictable (middle). 

Somehow, unpredictability in the effect 

of mutations at the intermediate level 

leads to universal patterns during 

evolution. (top). 
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negative below, we refer the reader to (Mani et al. 2008) for a more detailed review of epistasis 

terminology. 

 

Figure 1-3. Identifying epistasis.  

(A) Epistasis is defined based on deviation from the expected fitness assuming independent 

multiplicative effects. Black, red, and blue mutations are each deleterious (filled individual 

circles) and the expected fitness of pairwise combinations (empty circles) is shown. Black and 

red mutations exhibit positive epistasis because combining them is not as deleterious as expected 

and may even increase fitness. Black and blue mutations exhibit negative epistasis because 

combining them is more deleterious than expected. (B) Positive epistasis can be inferred 

phylogenetically. Red and blue mutations interact positively as they are always present together 

and occur closely in time. In contrast, yellow and purple mutations do not occur closely in time 

and are not necessarily present together. 

 

Mutational fitness effects can be measured in a variety of ways. Site-directed mutagenesis allows 

for precise control of the identity and number of mutations created. This is usually combined 

with a competitive fitness assay that provides a precise measure of the fitness of a given mutant 

relative to the wild-type (Sanjuán 2010; Visher et al. 2016), an approach that is reliable, but 

labor-intensive. Deep mutational scanning (DMS) combines large-scale mutagenesis with bulk 

fitness measurements of a mutagenized library through next generation sequencing (Fowler and 

Fields 2014). This method allows for a nearly complete sampling of single mutations across a 

gene. To detect epistasis, DMS results can be compared across different genetic backgrounds 

(Doud et al. 2015; Haddox et al. 2018). Alternatively, a short region that can be covered by a 
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single sequencing read can be used to detect linkage between multiple mutations. However, 

DMS is less sensitive for lethal and low fitness mutations. A third strategy that can uncover 

mutational effects in natural environments is to examine patterns of polymorphism in a 

population, such as during viral infections by deep sequencing, or to examine substitution 

patterns phylogenetically (Zhang 2000; Gojobori et al. 2007; Keightley and Halligan 2011; Chen 

et al. 2019). These approaches interrogate the effect of mutations in a realistic environment 

(Nielsen and Yang 2003; Tamuri et al. 2012; Poon et al. 2016; McCrone et al. 2018). However, 

they often cannot assign fitness effects to individual mutations or determine the strength of 

interactions. Thus, these three approaches therefore provide complementary insights into the 

mutational fitness effects and epistasis.   

Theories of epistasis and fitness landscapes 

Theoretical work on the structure of fitness landscapes falls on a continuum from general 

mathematical models of interactions between elements of complex systems to theories informed 

by biological observations. 

Mathematical models 

The most general models include the NK-landscape, the House-of-Cards model, and the Rough 

Mount Fuji model, among others. In the NK-landscape, each of N loci (which could be genomic 

sites, genes, or even molecules in a magnet) interacts with K other randomly chosen loci 

(Kauffman and Weinberger 1989). A fitness contribution of each of the N loci is chosen 

randomly for each combination of the allelic states of each site’s K interacting loci.  The fitness 

of a genotype is the average of the fitness contributions of all N loci. When K is less than N, a 

single mutation does not change all the fitness contributions and thus fitness is correlated among 

related genotypes. The House-of-Cards model is a special case of the NK landscape, where K = 
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N-1 and the fitness of each genotype is chosen randomly, with no correlation among related 

genotypes (Fragata et al. 2019). Fitness correlation among genotypes is also tunable in the Rough 

Mount Fuji Model, but without an explicit model of interactions (Neidhart et al. 2014). This 

model begins with non-epistatic landscape and an optimal genotype and linearly decreasing 

fitness of each genotype with genetic distance from the optimum (like in Figure 1-1A). To 

introduce epistasis, a random variable akin to “noise” is added to the fitness of each genotype, 

creating a landscape more like Figure 1-1B.  This noise variable can be tuned to introduce 

varying levels of epistasis. 

 

The utility of these models has been to guide our intuition of how epistatic interactions influence 

the structure of the fitness landscape (Kryazhimskiy et al. 2009; Fragata et al. 2019).  For 

example, how does fitness of peaks and the number of different peaks and their accessibility, or 

the ruggedness of the landscape, scale with epistasis (K or noise) (Kauffman and Levin 1987; 

Kauffman 1993; Neidhart et al. 2014)?  The fitness of the best genotype in the landscape 

increases with epistasis and the number of loci. However, the mean fitness of peaks is the highest 

when there is epistasis, but only a small amount (e.g. 0 < K ≪ N ).  Moreover, the number of 

peaks increases exponentially with more epistasis, leading to lower accessibility of each 

individual peak as adaptive walks get stuck at a peak more quickly. Thus, although increasing N 

and K leads to higher fitness of the optimum genotype, adaptation will terminate at lower and 

lower fitness peaks. Interestingly, this can be thought of as a cost to complexity, as increasing the 

number of interacting parts (N and K) makes adaptation more difficult. The NK model has also 

been modified to investigate how genetic architecture influences landscape structure by choosing 

the interacting K sites non-randomly, say from neighboring sites. Some studies have shown that 
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a modular architecture can circumvent this cost to complexity (Earl and Deem 2004; Nowak and 

Krug 2015; Hwang et al. 2018). These models are also ideal for studying evolutionary processes 

that depend on epistasis and which require more knowledge of the fitness landscape than can be 

obtained from empirical data, such as the benefits of sexual recombination or the ability of drift 

to promote the crossing of fitness valleys (Kryazhimskiy et al. 2009; Nahum et al. 2015; 

Zagorski et al. 2016; Agarwala and Fisher 2019; Fragata et al. 2019; Reia and Campos). Another 

hope for these models has been to extrapolate global properties from small empirical landscapes 

(Kauffman and Weinberger 1989). Some studies have gauged the ruggedness of real landscapes 

by fitting these models to real data, but without much success beyond the unsurprising result that 

real landscapes lie somewhere between additive and the House-of-Cards model in terms of 

ruggedness (Fragata et al. 2019). A complementary use of these models is to gauge the reliability 

and properties of various measures of ruggedness and adaptability that can then be used to 

analyze empirical data (Siliang Song, personal correspondence). While the theoretical 

implications of these models have been important, their use in uncovering the parameters of 

empirical landscapes remains a challenge. Additionally, none of these models make predictions 

about the general sign of epistasis. 

Biologically-grounded theories 

More biologically informed theories make predictions about the general sign of epistasis and are 

more easy to connect to specific biological cases. However, some suffer from a lack of generality 

and they cannot be used as readily as mathematical models to investigate how epistasis 

influences global properties of the fitness landscape such as ruggedness. 
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The multiple hit hypothesis holds that epistasis depends on genome complexity and the extent of 

functional redundancy (Figure 1-4A) (Sanjuán and Elena 2006; Sanjuán and Nebot 2008). At one 

extreme are simple viral genomes encoding a small number of mostly essential, multifunctional 

proteins. Here, the first mutation may have a large effect, but the impact of additional mutations 

is smaller, since they cannot further break functions already broken by the first mutation. This is 

positive epistasis. In contrast, eukaryotes or organisms with larger genomes may have redundant 

pathways and regulatory mechanisms such as feedback inhibition, which tend to buffer the 

impact of single mutations but less so for multiple mutations, leading to negative epistasis.  

 

Figure 1-4. Patterns of epistasis.  

(A) Distinct epistatic patterns are predicted based on how phenotypic effects (red dashed lines) 

correspond to fitness effects (black solid lines). Small genomes may encode a single mechanism 

for a particular function, such as receptor binding in HA (left). Without a backup mechanism, 

initial mutations have a large impact on receptor binding and fitness. Additional mutations have 

little further impact, as the function has already been destroyed, resulting in positive epistasis. 

Other phenotypes, like protein stability, can be reduced without affecting fitness until a threshold 

is reached (right). Thus, each additional mutation impacts protein stability similarly but 

increasingly impacts fitness, resulting in negative epistasis. (B) A viral population consisting of an 

unmutated genotype and two variants each with a slightly deleterious mutation (red and blue 
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circles) on different segments (black lines). Reassortment between the two variants can combine 

the two deleterious mutations. If epistasis is positive (left), the reassortant will have higher fitness 

than expected and the deleterious mutations may persist in the population, lowering the average 

fitness of the population. If epistasis is negative (right), the reassortant will be quickly purged from 

the population, leaving the unmutated genotype and raising the average fitness of the population. 

In contrast, theories of selection for robustness predict that that high mutation rates can select for 

distinct mechanisms that buffer the impact of single mutations and lead to negative epistasis, even 

in simple genomes (Figure 1-4A) (Wilke and Christoph 2001; Wilke et al. 2003; Bershtein et al. 

2006; Gros et al. 2009). For example, if fitness is reduced only when an underlying phenotype 

reaches a threshold, then the full deleterious impact of mutations affecting that phenotype will only 

be revealed when enough mutations accumulate to cross the threshold, resulting in negative 

epistasis (Bershtein et al. 2006). 

 

The modular life model focuses on a different feature of complex organisms, modularity (Wei and 

Zhang 2019). This theory posits that an organism is composed of functionally and genetically 

distinct modules, for example, how well it metabolizes sugar or its resistance to environmental 

toxins. These modules each contribute to fitness separately but their contribution has an upper 

limit. Negative epistasis among beneficial mutations arises: A beneficial mutation improving 

functionality of a particular module will increase fitness greatly if the module is far from maximum 

functionality, but the same beneficial mutation will be less advantageous if the module’s 

functionality is already near the maximum.  This model has not been extended to detrimental 

mutations.  

 

Fisher’s geometric model (FGM) focuses on yet another property of organismal complexity – that 

mutations are highly pleiotropic.  FGM posits that phenotypes are under stabilizing selection for 

an optimum. The predicted distribution of epistasis for an organism at optimal fitness is 
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approximated by a symmetric, normal distribution with mean 0 (Martin et al. 2007). FGM 

originated as a model for adaptation by small steps, which has found much support (Burch and 

Chao 1999).  

 

Other biologically-based theories of epistasis only apply to particular functions of an organism, 

such as its metabolism, or only to epistasis within genes. For example, metabolic control theory 

applies to pathways in which the function depends on the functionality at each sequential step. 

Here, positive epistasis is predicted for mutations in serial steps of a pathway, negative epistasis 

for mutations in related but different (somewhat redundant) pathways, and no epistasis for 

unrelated pathways (Kacser and Burns 1981; Segrè et al. 2005; Maclean 2010). The reasoning is 

similar to that of the multiple hit hypothesis, with mutations in single pathway corresponding to 

those in a simple organism with no redundancy and mutations in related, redundant pathways 

corresponding to those in a complex organism. The final major theory of epistasis focuses on 

intragenic epistasis and is based on the thermodynamic threshold known to be important for protein 

folding stability (Bloom et al. 2005; Sarkisyan et al. 2016) (Figure 1-4A). Here, single mutations 

may not lower stability below the required threshold and will only have small effect on protein 

function and fitness.  However, multiple mutations will push stability below the threshold, leading 

to a malformed protein and thus exhibiting high fitness effects and negative epistasis. 

Emerging patterns of epistasis across phyla 

The measurement of a complete fitness landscape for any organism and most genes is impossible 

due to their size. Furthermore, limited discriminatory power of most fitness assays and the 

feasibility of generating and testing large numbers of mutation pairs makes any quantitative 

studies of epistasis difficult. Thus, most studies have probed the fitness landscape either by 
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inference from evolutionary patterns or by focusing on a small number of variants or a gene of 

manageable size. 

Epistasis across the genome 

Over the last decade, some general patterns concerning adaptive mutations have been observed 

across nearly all phyla, from viruses to fungi (Couce and Tenaillon 2015). In the famous long-

term evolution experiment with E. coli, fitness increase generally slows with time or with the 

number of fixed mutations (Barrick et al. 2009) (Figure 1-2, top-left plot). In addition, high 

fitness backgrounds increase in fitness to a lesser degree than do lower fitness backgrounds, 

given the same amount of time or number of mutations (Sanjuán et al. 2005; Barrick et al. 2009; 

MacLean et al. 2010; Wiser et al. 2013; Perfeito et al. 2014; Wünsche et al. 2017) (Figure 1-2, 

top-right plot). Other experiments have put beneficial mutations on backgrounds of varying 

fitness and found that beneficial fitness effect negatively correlates with background fitness; this 

is termed diminishing returns epistasis (Bull et al. 2000; MacLean et al. 2010; Chou et al. 2011; 

Khan et al. 2011; Kvitek and Sherlock 2011; Rokyta et al. 2011; Pearson et al. 2012; Flynn et al. 

2013; Schenk et al. 2013; Wang, Yinhua et al. 2013; Caudle et al. 2014; Chou et al. 2014: 20; 

Kryazhimskiy et al. 2014; Schoustra et al. 2016; Wang et al. 2016; Wünsche et al. 2017). These 

observations are widely interpreted as a bias towards negative epistasis (concaved fitness 

landscape), as combining multiple beneficial mutations is less beneficial than expected. 

 

Nearly universal patterns concerning detrimental mutations have also emerged, but they are 

thought to indicate a bias towards positive, not negative, epistasis in the fitness landscape. 

During mutation accumulation, which fixes successive detrimental mutations by subjecting an 

organism to extreme drift, fitness decrease generally slows with time or number of mutations 
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(deVisser et al. 1997; Burch and Chao 1999; Lenski et al. 1999; Poon and Otto 2000; Crotty et 

al. 2001; Wilke and Christoph 2001; You and Yin 2002; Wilke et al. 2003; Bonhoeffer et al. 

2004; Burch and Chao 2004; Maisnier-Patin et al. 2005; Iglesia and Elena 2007; Perfeito et al. 

2014) (Figure 1-2, top-middle plot). The corollary to diminishing returns has also been found, 

increasing costs, in which detrimental mutations are more detrimental in higher fitness 

backgrounds (Johnson et al. 2019) (Figure 1-2, top-right plot). These patterns are thought to 

indicate a bias towards positive epistasis in the fitness landscape and a convex shape. 

 

Thus, these nearly universal patterns seem contradictory. Theories of epistasis can find both 

support and refutation for their predictions as to the sign of epistasis.  No theory has been able to 

reconcile the opposite signs of epistasis inferred from beneficial and detrimental mutations. In 

fact, despite a decade or more of these observations, this apparent paradox was only recognized 

in the literature this past year (Miller 2019).  

Epistasis within genes 

In contrast to methods which track evolutionary change, DMS is more useful for identifying the 

interacting mutations and the strength of interaction and can infer the sign of epistasis directly. 

However, it is largely limited to intragenic epistasis. General findings are that epistasis is 

ubiquitous and is usually the strongest for pairwise interactions, although strong higher-order 

interactions are common as well.   

 

Most studies attempt to explain the interactions they find from biological principles. Some 

mutational interactions can be explained by steric or charge interactions after close examination 

of protein structure (Melamed et al. 2013; Wu et al. 2017). A slight bias towards negative 
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epistasis seems common and can be predicted by the folding energy of the gene product (RNA or 

protein), supporting the thermodynamic threshold hypothesis (Bershtein et al. 2006; Araya et al. 

2012; Olson et al. 2014; Li et al. 2016; Puchta et al. 2016; Sarkisyan et al. 2016; Bendixsen et al. 

2017; Bendixsen et al. 2017).  However, prediction is not straightforward - a novel biophysical 

model seems to be constructed for each new protein landscape – and how well each model 

explains the data is highly variable.  Certainly the most common finding is that mutational 

effects and their interactions are very difficult to predict, or idiosyncratic (Domingo et al. 2018). 

 

Is this unpredictability due to limited knowledge of the biophysical and chemical processes 

governing protein function? Or are biological interactions so numerous and complex that 

predicting their outcome is like predicting the outcome of die roll by tracking the collisions of all 

the air molecules in a room?  Indeed, just as the sure knowledge that a die will come up a six 

one-sixth of the time, a statistical approach to epistasis can sometimes be more fruitful.  One 

study used the statistical co-occurrence of amino acid variants in functional sequences to predict 

phenotypes with the same accuracy as using all experimentally-determined second-order 

epistasis terms (Poelwijk et al. 2019). 

Mutational Effects and Epistasis in Influenza virus 

Influenza viruses infect a large number of hosts, have high mutation rates, and frequently 

reassort. As a result, they have a tremendous capacity to explore a large number of potential 

sequences. Indeed, the ability of influenza populations to adapt to new hosts and to escape the 

immune system seems unlimited. However, mutations are often deleterious, which presents a 

barrier to viral adaptation. Furthermore, epistasis determines the mutational paths available and 

can make some adaptations inaccessible. Understanding how mutation and epistasis present both 
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barriers and opportunities for influenza virus evolution is essential in predicting viral evolution 

and designing better vaccines and antivirals.  

 

Influenza A has a negative-sense, single stranded RNA genome of 14kb consisting of 8 sexually 

reassorting segments encoding a total of 11-12 proteins (Medina and García-Sastre 2011; Fields 

et al. 2013). The influenza envelope contains two interacting glycoproteins encoded by the 

haemagglutinin (HA) and neuraminidase (NA) segments. HA binds to sialic acids of cellular 

receptors, while NA facilitates the release of nascent virions by cleaving HA from bound sialic 

acids. Three proteins encoded by the PB2, PB1, and PA segments form the RNA-dependent 

RNA polymerase protein complex (RdRp). Nucleoprotein, encoded by the (NP) segment, 

packages the RNA and interacts with the RdRp complex. The matrix (M) segment encodes the 

M2 ion channel important for fusion of the virus with the cell and uncoating of RNA-NP 

complexes. The M1 protein, encoded by the M segment, is involved in assembly of virus 

particles. The non-structural segment NS encodes NS1, an antagonist of anti-viral responses, and 

the nuclear export protein NEP. 

Effects of Single Mutations 

The distribution of mutational fitness effects (DMFE) reveals the extent of genetic constraint on 

the influenza virus genome, how constraints vary between and within influenza proteins, and the 

structural and functional impacts of mutations. 

The genome-wide DMFE in influenza virus 

Site-directed mutagenesis has been used to characterize the genome-wide DMFE of single-

mutations in a variety of viruses (Sanjuán 2010). Our laboratory applied this technique to an 

H1N1 influenza strain (Visher et al. 2016). We generated a library of 95 randomly selected point 
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mutations distributed across the influenza genome. We also generated 33 additional mutations in 

the segments encoding the hemagglutinin (HA) and neuraminidase (NA) proteins to compare the 

DMFE of these surface-exposed antigenic proteins (n=57) to the internal proteins encoded by the 

remaining 6 segments (n=71). 

 

We measured fitness relative to the wild-type in a pairwise competition assay and used repeated 

transfection to distinguish true lethal mutations (fitness = 0) from failed viral rescue. In our 

dataset, 31.6% of all mutations were lethal. Approximately 40% of all viable mutations were 

highly detrimental (< 0.85), 50% mildly detrimental or neutral (0.85-1.05), and only seven were 

beneficial (> 1.05). The fitness among all viable mutations ranged from 0.26-1.13 with a mean of 

0.82. Non-synonymous mutations were more deleterious than synonymous mutations, consistent 

with reduced genetic constraint at the level of RNA relative to protein. Two of the three non-

coding mutations were lethal, consistent with the conserved roles of these regions in RNA 

packaging and genome replication (Watanabe et al. 2003; Dawson et al.). 

 

In general, the DMFE for influenza virus is similar to those documented for other viruses with a 

variety of genomic structures, from single-stranded RNA viruses to DNA phages (Sanjuán et al. 

2004; Carrasco et al. 2007; Domingo-Calap et al. 2009; Peris et al. 2010; Sanjuán 2010; Visher 

et al. 2016). The lethal fraction for influenza virus falls within the 20-40% range observed for 

other viruses. When scaled to exponential growth rate – the fitness surrogate in many studies – 

the average fitness effect in influenza virus is 12%, squarely within the 10-13% range found in 

other viruses (Sanjuán 2010; Visher et al. 2016). These large effects stand in marked contrast to 

those seen in cellular organisms (Eyre-Walker and Keightley 2007) and may reflect shared 
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genetic constraints across viruses, possibly related to the small size of their genomes (Sanjuán 

and Elena 2006).  

 

While genome-wide patterns in the DMFE are similar across viruses, the DMFE varies between 

and within individual influenza genes. The antigenic proteins, HA and NA, evolve much more 

rapidly than other influenza proteins. This rapid evolution could be due to a history of stronger 

positive selection and/or an inherently greater mutational tolerance (Plotkin and Dushoff 2003). 

In our comparative study, we found that the antigenic proteins were generally more tolerant of 

mutation. The mean fitness of mutations in the surface proteins (0.88) was higher than for the 

internal proteins (0.78). Furthermore, the head region of HA, which is immunodominant and 

exhibits the greatest sequence diversity, had a higher mean fitness (0.77) than the stalk region 

(0.56), which exhibits lower sequence diversity. Other groups have also documented the relative 

mutational tolerance of HA. For example, Heaton et. al. mutagenized the entire influenza 

genome with 15-nucleotide insertions (Heaton et al. 2013). A disproportionate number of 

recovered variants had insertions in the head region of HA (7/20 recovered variants). DMS 

studies have further confirmed the mutational tolerance of rapidly-evolving HA regions, 

revealing high tolerance in antigenic domains and very low tolerance in the slower-evolving HA 

receptor binding pocket and stalk domain (Thyagarajan and Bloom 2014; Lee et al. 2018 Apr 

10). These data suggest that mutational tolerance in HA and NA, particularly in the HA head, 

contributes to their greater evolutionary potential. It will be interesting to compare these patterns 

to those in the major antigenic proteins of other viruses (Fulton et al. 2015).  
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In influenza virus, other protein regions with immunodominant epitopes do not always 

recapitulate the trends in HA. For example, the solvent-exposed region of the nonstructural 

protein 1 (NS1), which likely interacts with host proteins to modulate immune responses, also 

has greater tolerance to insertions (Heaton et al. 2013). However, immune-targeted sites in the 

nucleoprotein (NP) do not show unusually high mutational tolerance (Bloom 2014; Thyagarajan 

and Bloom 2014). Perhaps these NP regions are less tolerant because they experience lower 

diversifying selection from the immune system. Alternatively, these sites could be inherently 

more constrained. Understanding the causes and consequences of varied mutational tolerance is 

highly relevant to vaccine design, as the lower mutational tolerance of the HA receptor-binding 

pocket and stalk make them attractive targets for a universal vaccine (Erbelding et al.). 

 

Overall, the vast majority of mutations in influenza virus are lethal or deleterious. Given the 

virus’s high mutation rate of 2-3 per genome replicated, a large proportion of newly replicated 

genomes will contain a lethal mutation, and many more will harbor one or more deleterious 

mutations (Visher et al. 2016; Pauly, Procario, et al. 2017). Within hosts, the constraints of 

deleterious mutations are manifest as high levels of purifying selection and limited genetic 

variation (Iqbal et al. 2009; Murcia et al. 2010; Dinis et al. 2016; Debbink et al. 2017; Leonard et 

al. 2017; Xue et al. 2017; McCrone et al. 2018; Xue and Bloom 2018 Jul 8). Deleterious 

mutations also impact influenza evolution at the global scale, because purifying selection does 

not always efficiently purge them from the population. Deleterious mutations may reach fixation 

by drift (e.g. during transmission bottlenecks) or by hitchhiking with adaptive mutations. 

Influenza virus phylogenies show a high deleterious mutation load (Pybus et al. 2007), and 
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models suggest that this load can slow antigenic evolution (Koelle and Rasmussen 2015; 

Raghwani et al. 2017). 

Deep mutational scanning of influenza proteins 

While site-directed mutagenesis has provided an overview of the genome-wide DMFE, DMS can 

interrogate nearly all amino acid substitutions in a single protein. In DMS studies, fitness is 

usually calculated as the change in frequency of a mutation in a pool of variants before and after 

passage or selection, relative to wild-type. This method is analogous to pairwise competition 

assays, and fitness measurements across studies are well correlated (Visher et al. 2016; Lyons 

and Lauring 2017). DMS studies by Bloom and colleagues include saturation mutagenesis of the 

HA and NP proteins from H1N1 and H3N2 strains (Bloom 2014; Thyagarajan and Bloom 2014; 

Doud et al. 2015; Doud and Bloom 2016; Lee et al. 2018 Apr 10). Studies by Sun and colleagues 

investigated many substitutions in nearly all sites in the six other influenza proteins (Wu et al. 

2013; Wu, Young, Al-Mawsawi, Olson, Feng, Qi, Luan, et al. 2014; Wu, Young, Al-Mawsawi, 

Olson, Feng, Qi, Chen, et al. 2014; Wu et al. 2015; Du et al. 2016; Wu et al. 2016; Du et al. 

2018). We are now close to a complete map of the fitness effects of all possible amino acid 

substitutions for an entire influenza virus genome. 

 

Both sets of DMS studies clearly show that mutational tolerance varies widely across sites within 

a protein; some sites strongly prefer a single amino acid and others accept many different amino 

acids. The effect of any particular amino acid substitution is also highly site-specific. Wu et. al. 

investigated the link between protein stability and mutational effects in PA to shed light on why 

constraints may vary across sites (Wu et al. 2015). They found two categories of amino acid 

residues; those in which substitutions affected overall protein stability and those in which 
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substitutions were detrimental but did not affect stability. The latter were termed “functional” 

residues as they likely affected enzymatic functions of a protein (e.g. polymerase activity) or 

important protein-protein interactions (e.g. solvent-exposed sites). 

 

More recent studies have used DMS in innovative ways. DMS-informed site-specific and 

parameter-free evolutionary models dramatically improve the fit of phylogenies (Bloom 2014; 

Doud et al. 2015; Hilton and Bloom 2018 Apr 17) and the inference of sites under positive 

selection (Bloom 2017; Hilton et al. 2017). Another promising avenue is the application of DMS 

to phenotypes other than fitness (Wu et al. 2013; Wu, Young, Al-Mawsawi, Olson, Feng, Qi, 

Luan, et al. 2014). Du et al. used DMS to identify mutations that increase IFN sensitivity while 

preserving replicative fitness and immunogenicity, leading to a potentially safe and effective 

vaccine strain (Du et al. 2018). Bloom and colleagues have used DMS to study the potential 

mutational pathways of antibody escape in HA and avian to human host-adaptation in PB2 

(Doud et al. 2017; Doud et al. 2018; Soh et al. 2019).  

 

There is now extensive data on the effects of single mutations in influenza virus. The vast 

majority of mutations are deleterious, with similar effects as in other viruses. Greater mutational 

tolerance in some antigenic sites may enable their rapid evolution whereas lower mutational 

tolerance makes other sites promising vaccine targets. The challenge now is to better understand 

the biological basis of mutational effects. Mutational fitness effects in the laboratory correlate 

with mutational frequency in nature (Visher et al. 2016; Lee et al. 2018); thus, these data could 

be used to improve predictive models of influenza evolution (Łuksza and Lässig 2014; Morris et 

al. 2017; Lee et al. 2018).  
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Epistasis in influenza viruses 

Studies have employed site-directed mutagenesis to study interactions among small numbers of 

mutations, usually those implicated in adaptation to immune pressure or antiviral drugs (Bloom 

et al. 2010; Gong et al. 2013; Pauly, Lyons, et al. 2017). DMS been used for studying a small 

region in HA. DMS has also been used to compare mutational effects across different NP and 

HA genetic backgrounds (Bloom 2014; Lee et al. 2018 Apr 10). Shifts in mutational effects at a 

given site across different genetic backgrounds reflect epistatic interactions involving that site. 

However, comparative DMS studies can only detect epistatic interactions involving at least one 

divergent site and cannot precisely identify the interacting mutations.  

 

Phylogenetic inference can be used to identify epistatic interactions in the virus’s natural 

replication environment. One approach is to identify co-evolving sites (Shapiro et al. 2006; 

Akand and Downard 2018). If substitutions at one site are followed by second site substitutions 

more quickly than expected by chance, these substitutions likely enhance each other’s beneficial 

effects (Figure 1-3B) (Kryazhimskiy et al. 2011). This approach can only detect positive 

epistasis and has limited power for rarer polymorphisms and weaker epistatic interactions. 

Furthermore, it has typically been applied to studies of within-gene epistasis, given the added 

complexity of reassortment and the computational costs of genome-wide scans (but see (Neverov 

et al. 2015)). Phylogenetic inference of between-gene epistasis in influenza relies on observed 

patterns of reassortment. Here, non-random patterns of reassortment among genome segments 

suggest incompatible interactions (Rambaut et al. 2008). These incompatibilities can also be 

detected as accelerated rates of evolution in reassortant lineages, as the newly combined 
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segments adapt to their new genetic environment (Neverov et al. 2014). While these studies 

identify gene-level epistasis, they typically do not identify the interacting sites. 

General epistatic patterns in influenza viruses 

Recent studies have elucidated patterns of within-gene epistasis. Comparative DMS of NP and 

HA in H3N2 and H1N1 backgrounds have found that both short-range physical interactions and 

long-range functional interactions within these proteins are common (Doud et al. 2015; Lee et al. 

2018 Apr 10). Phylogenetic studies also find many long-range epistatic interactions (Shapiro et 

al. 2006; Nshogozabahizi et al. 2017). Additionally, sites exhibiting epistasis cluster with each 

other, which can be explained by structural changes affecting a particular region of the protein 

(Doud et al. 2015; Lee et al. 2018 Apr 10). Less is known about the type and magnitude of 

epistasis. A DMS study of 11 sites in the receptor binding region of HA found positive epistasis 

to be ubiquitous (Wu et al. 2017). This is in contrast to studies in other taxa showing that a 

folding stability threshold generally leads to negative epistasis across entire proteins (Figure 1-

4A) (Bershtein et al. 2006; Lehner 2011; Li et al. 2016; Puchta et al. 2016; Sarkisyan et al. 

2016).  

 

The theoretical costs and benefits of reassortment largely depend on the type and magnitude of 

epistasis between mutations on different segments. Reassortment is advantageous in the setting 

of negative epistasis because combining deleterious mutations through reassortment will 

accelerate the rate at which they are purged from a population (Figure 1-3B) (Chao 1988; 

Kondrashov 1988; Kouyos et al. 2007). Conversely, positive epistasis slows the rate at which 

deleterious mutations are purged, making reassortment disadvantageous. Reassortment also 

underlies the process of antigenic shift and the associated spread of avian and swine viruses to 
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humans (Morens et al. 2009; Campbell et al. 2014; Danzy et al. 2014). However, segments do 

not reassort freely (Rambaut et al. 2008; Zeldovich et al. 2015), and differential pairwise 

epistasis among segments reflects their genetic incompatibilities. Here, epistasis imposes a 

fitness cost to reassortment, even between strains of the same subtype, and could limit host-range 

expansion (Ward et al. 2013; Neverov et al. 2014; Villa and Lässig 2017).  

Epistasis in the adaptive evolution of influenza virus 

Most studies of epistasis in influenza virus have focused on its role in antigenic evolution. HA 

evolution is characterized by a series of mutations with little apparent change in antigenicity, 

forming an antigenic cluster, followed by a mutation that leads to significant antigenic drift, 

called a cluster transition. Models show that epistatic interactions among individually neutral 

mutations can explain this pattern of evolution (Koelle et al. 2006; Taggi et al. 2013; Tria et al. 

2013). The epistatic interactions in these antigenic clusters can lead to historical contingency. 

Mutations involved in a cluster transition also interact with mutations involved in the subsequent 

cluster transition, forming chains of interacting mutations (Nshogozabahizi et al. 2017). These 

chains suggest that the fixation of each substitution is contingent on the fixation of prior 

substitutions.  

 

Studies employing site-directed mutagenesis and experimental evolution demonstrate how 

epistasis in HA leads to this historical contingency. First, the impact of a given mutation on 

antigenicity or receptor binding varies with genetic background (Nakajima et al. 2005; Das et al. 

2013). This context dependence makes it harder to predict HA evolution and generalize 

molecular findings between strains. Second, mutations that mediate antigenic escape often have 

pleiotropic effects, and their success is contingent upon mutations that restore fitness. Antigenic 
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escape variants in HA can decrease protein folding 

stability or alter sialic acid binding (Underwood et 

al. 1987; Mitnaul et al. 2000; Das et al. 2011; 

Myers et al. 2013; Wu et al. 2017; Kosik et al. 

2018), and fitness can be restored by mutations in 

HA or NA with opposing effects (Mitnaul et al. 

2000; Hensley et al. 2011; Kryazhimskiy et al. 

2011; Myers et al. 2013; Wu et al. 2017; Kosik et al. 2018). In many cases, the deleterious side 

effects of an antigenic mutation are larger than its beneficial effects. This constrains adaptation, 

as the novel, but deleterious, antigenic mutation can only be selected if a compensatory mutation 

arises first (Figure 1-5) (Weinreich et al. 2005). Since many compensatory mutations are neutral, 

this often requires that the initial compensatory mutation arise by random drift, hitchhiking, or 

simultaneously with the novel antigenic mutation.  

 

The adaptive evolution of HA is also constrained by entrenchment, whereby a substitution can 

no longer revert to its ancestral state without compromising fitness (Figure 1-5). For example, 

Wu et al. found that a substitution in the receptor binding site of H3, E190D, was reversible to 

the ancestral state within 10 years after the substitution arose, but not in more recent strains (Wu 

et al. 2018). Apparently, more recent mutations in the receptor binding site have altered its 

Figure 1-5. Epistasis can constrain 

adaptation.  

The ancestral identity of loci (1) and (2) are 

shown as unfilled red and blue shapes. A 

mutation at locus 2 mediates immune 

escape (filled circle) but is detrimental if it 

occurs on the ancestral background. Thus, a 

compensatory mutation at locus 1 (filled 

square) is required before the escape 

mutation, limiting the accessibility of the 

higher fitness genotype (filled square and 

filled circle). The compensatory mutation 

also becomes entrenched. Once the 

antigenic mutation arises, reversion of the 

compensatory mutation to its ancestral state 

(unfilled square) would cause a fitness 

decrease, even though it was initially 

neutral. Such interactions can occur within 

or between genes and involve more than 

two loci. 
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structure such that E190 is no longer tolerated. Interestingly, all of the epistatically interacting 

mutations were located in antigenic sites and could explain why mutations that lead to antigenic 

changes in HA rarely revert.  

 

Epistasis also influences the adaptive evolution of NA. Neuraminidase phylogenies reveal chains 

of interacting substitutions similar to those in HA cluster transitions, and resistance to 

oseltamivir and other neuraminidase inhibitors is constrained by epistasis. Resistance mutations 

reduce fitness by altering NA stability or enzymatic activity and are contingent on compensatory 

mutations in HA or NA (Bloom et al. 2010; Abed et al. 2011; Hensley et al. 2011; Ginting et al. 

2012; Duan et al. 2014; Neverov et al. 2015). While oseltamivir was first introduced in 1999, the 

H274Y resistance mutation only arose 8 years later in a much different genetic background 

(Bloom et al. 2010; Abed et al. 2011; Duan et al. 2014). It then swept the population in a single 

year. This single epistatic interaction demonstrates how the starting genotype of a strain can have 

profound effects on whether it can adapt to a new selective pressure. 

 

There are fewer examples of epistasis in other influenza proteins. Contingency has been 

identified in M2 and NP phylogenies and immune escape mutations in NP (Gong et al. 2013; 

Nshogozabahizi et al. 2017). We have found that mutations in PA and PB1 interact epistatically 

to mediate high-level resistance to mutagenic drugs in vitro (Pauly, Lyons, et al. 2017). Epistatic 

interactions in M2 may also mediate increased resistance to amantadine and/or increase virulence 

in amantadine-resistant strains (Abed et al. 2005; Dong et al. 2015; Durrant et al. 2015). For 

example, two mutations associated with amantadine resistance co-occur more frequently than 

predicted by chance (Durrant et al. 2015); the double mutant has become more prevalent in 
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recent years (Durrant et al. 2015) and has higher virulence in mice than either single mutant 

(Abed et al. 2005). Finally, recent work suggests that selection on non-antigenic phenotypes 

encoded by the remaining six segments can have profound effects on antigenic evolution of 

influenza virus (Koelle and Rasmussen 2015; Raghwani et al. 2017). Thus, defining epistasis 

across the genome is an important area for future study. 

 

In contrast to single mutational effects, models and theoretical work on epistasis have outpaced 

empirical data in influenza virus. A handful of examples in several influenza genes demonstrate 

that epistasis is common and can lead to evolutionary flexibility via compensation, while at the 

same time constraining evolution through entrenchment and contingency. However, the general 

distribution of epistatic effects, including the sign and magnitude of epistasis, across the 

influenza genome is unknown. The general patterns of epistasis determine the likelihood of 

compensatory mutation and accessibility of adaptations, the consequences of reassortment, and 

thus the evolutionary fate of influenza populations. Novel methods are needed to investigate 

epistasis more extensively across the entire influenza virus genome. 

From idiosyncrasy to general patterns in fitness landscapes 

There are several puzzles in our picture of how mutational effects scale across levels of biology 

(Figure 1-2).  How does the deterministic action of individual mutations lead to their highly 

variable effects in different genetic backgrounds at the level of complex phenotypes like fitness? 

The transition to the level of evolution presents a further problem. How can unpredictable and 

idiosyncratic individual effects give rise to the predictable and universal patterns in the collective 

effects of mutations and evolutionary trajectories? The universal patterns are themselves 

puzzling. According to common intuition, patterns involving beneficial versus detrimental 
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mutations suggest contradictory biases in epistasis. Current theories of epistasis do not resolve 

this contradiction and ignore the idiosyncrasy of mutational effects.   

 

My next chapter resolves these puzzles, showing how the universal patterns can arise out of the 

idiosyncrasy, or near randomness, of mutational effects, without epistatic bias. Furthermore, it 

presents a null theory of epistasis that explains why deterministic mutational effects are 

idiosyncratic at higher phenotypic levels. The subsequent two chapters cut through the thicket of 

idiosyncrasy to find generalizations about mutational effects in RNA viruses. These 

generalizations help answer long-standing questions in molecular evolution and have 

implications for phylogenetic inferences and the evolution of the genetic code.  
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Chapter 2 Idiosyncratic Epistasis Creates Universals in Mutational Effects and 

Evolutionary Trajectories 

 

Note: This chapter is a modified version of the article under review: 

Daniel M. Lyons*, Zhengting Zou*, Haiqing Xu, and Jianzhi Zhang. Idiosyncratic epistasis 

creates universals in mutational effects and evolutionary trajectories. Under review at Nature 

Ecology and Evolution. 

Abstract  

Patterns of epistasis and shapes of fitness landscapes are of wide interest because of their 

bearings on a number of evolutionary theories.  The common phenomena of slowing fitness 

increases during adaptations and diminishing returns from beneficial mutations are believed to 

reflect a concave fitness landscape and a preponderance of negative epistasis.  Paradoxically, 

fitness drops tend to decelerate and harm from deleterious mutations shrinks during 

accumulation of random mutations, patterns thought to indicate a convex fitness landscape and a 

predominance of positive epistasis.  Current theories cannot resolve this apparent contradiction.  

Here we show that the phenotypic effect of a mutation varies substantially depending on the 

specific genetic background and that this idiosyncrasy in epistasis creates all of the above trends 

without requiring a biased distribution of epistasis.  The idiosyncratic epistasis theory explains 

the universalities in mutational effects and evolutionary trajectories as emerging from 

randomness due to biological complexity.  

Introduction 

Epistasis, or genetic interaction among a set of mutations, impacts the phenotypic effects of 

mutations and shapes fundamental evolutionary processes1.  Epistasis is said to be positive (or 
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negative) for a particular trait such as fitness if the trait value of the individual with multiple 

mutations is greater (or smaller) than the expectation from the corresponding single mutants 

under no epistasis1.  A number of evolutionary theories such as the mutational deterministic 

hypothesis of the evolution of sexual reproduction2 and the hypothesis of reduction in mutational 

load by truncation selection against deleterious mutations depend on assumptions of general 

trends of epistasis3.  Universal patterns involving epistasis are emerging from decades of intense 

investigations4,5.  For instance, many experimental evolution studies have shown that fitness 

increase slows during the organismal adaptation to a constant environment6.  While the speed of 

fitness increase is typically measured per unit time6, the same trend is observed when the speed 

is measured per mutation accrued7.  This phenomenon of slowing adaptation is at least in part 

due to diminishing returns epistasis, a common observation that advantageous mutations are less 

beneficial on fitter genetic backgrounds8-11.  Because diminishing returns epistasis is a form of 

negative epistasis, the above observations are thought to indicate a preponderance of negative 

epistasis between beneficial mutations and a concave fitness landscape12.  If the process of 

adaptation is reversed by reverting the accepted beneficial mutations, one should see accelerating 

fitness drops and negative epistasis between deleterious mutations.  Contrary to this expectation, 

mutation accumulation experiments in the near absence of selection have revealed decelerating 

fitness declines13-15 and manipulative experiments have demonstrated that deleterious mutations 

tend to be less harmful in less fit genetic backgrounds (a.k.a. increasing costs epistasis because of 

the higher costs of deleterious mutations in fitter genotypes)16.  These observations concerning 

deleterious mutations are thought to indicate a convex fitness landscape and a predominance of 

positive epistasis12,13.   
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Apparently, the inferred shape of the fitness landscape and distribution of epistasis from 

climbing fitness peaks contrast the shape and distribution inferred from going down fitness 

peaks12.  We term this contradiction the uphill-downhill paradox.  Although several theoretical 

models have been proposed to explain the inferred prevalence of either negative or positive 

epistasis9,10,13,16-20, these models cannot simultaneously explain both in the same species, leaving 

the uphill-downhill paradox unresolved.  For instance, some authors have suggested that the 

negative epistasis among beneficial mutations accumulated during adaptations are not 

representative of the entire fitness landscape, due to the biased sampling of mutations21,22.  But 

this explanation does not apply to mutations randomly accrued in mutation accumulation 

experiments so cannot fully resolve the uphill-downhill paradox.  Below we propose and 

demonstrate that epistasis is generally idiosyncratic and that this idiosyncrasy is responsible for 

the general trends in both climbing and descending from fitness peaks. 

Results  

Why epistasis could be highly idiosyncratic 

Let g be the population growth rate (a.k.a. Malthusian fitness, logarithm of Wrightian fitness, or 

fitness for short) of a genotype in an environment and let n be the number of nucleotide sites in 

the genome that impact g.  In general, g can be expressed as the sum of 2n-1 terms of fitness 

effects, including the additive effect of every site, the interactive effect of every pair of sites, the 

interactive effect of every triplet of sites, and so on (see Methods).  We refer to this model of 

fitness landscape as the n-order model, because it includes all terms up to the n-order interaction.  

It can be shown that a mutation at a single site changes up to 2n-1/(2n-1) ≈ 50% of all terms of 

effects making up g.  Under the assumption that the interactive terms are idiosyncratic (i.e., 

varying with the interacting nucleotides involved), a single mutation can differentially alter as 
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many as 2n-2 (or ~25% of) terms of effects in two genotypes that differ by only one nucleotide; 

this number can rise up to 2n-1 (or ~50% of) terms if the two genotypes are more different (see 

Methods).  Given the potential of such a large fraction of differentially affected terms of g, it is 

not surprising that the same mutation could have vastly different effects in different genotypes.  

As long as the idiosyncrasy assumption holds, the same argument can be made for any 

phenotypic trait whose value is expressed as the sum of all additive and interactive terms of 

effects.  Of course, not all 2n-1 terms of effects are of the same magnitude, which would increase 

or decrease the effective fraction of terms differentially altered by a mutation.  Regardless, the 

above consideration elucidates why mutational effects could be highly sensitive to the genetic 

background when biological interactions are complex.   
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Epistasis is highly idiosyncratic   

To quantify the above sensitivity that originates from idiosyncratic epistasis, we define an 

idiosyncratic index (Iid) for a mutation as the variation in the fitness difference between 

genotypes that differ by the mutation, relative to the variation in the fitness difference between 

random genotypes for the same number of genotype pairs.  Here, the variation may be measured 

by standard deviation (SD), range, or other statistics.  We can further compute the Iid for a fitness 

landscape by averaging Iid of individual mutations considered.  The Iid for a landscape varies 

from 0 to 1, corresponding to the minimal and maximal levels of idiosyncrasy, respectively.  We 

first estimated Iid for the fitness landscape of a yeast tRNA gene that includes experimentally 

measured fitness of over 65,000 genotypes23.  For example, the G-to-A mutation at site 10 has a 

fitness effect varying from -0.53 to 0.29 (SD = 0.13) on 88 different backgrounds.  For 

comparison, the fitness difference between a randomly picked genotype and another randomly 

picked genotype varies from -0.59 to 0.74 (SD = 0.26) for 88 genotype pairs sampled (Fig. 2-

1A).  So, the ratio of the two SDs is 0.49.  This analysis was repeated for 828 single mutations 

(considering reverse mutations) (Fig. 2-1B), and the average ratio of SD is Iid = 0.612 ± 0.005 

(SE).  Iid can be similarly defined for non-fitness traits, and we estimated Iid for a variety of 

empirical phenotype landscapes that are experimentally determined23-31 and one that is 

computationally predicted (RNA-folding) (Table 2-S1).  Overall, Iid varies from 0.18 to 0.80 

Figure 2-1 Idiosyncratic index of a wide variety of phenotype landscapes.   

(A) Frequency distribution of the fitness effects of the mutation from G to A at position 10 across all available genetic 

backgrounds (purple) and the corresponding distribution of the fitness difference between two random genotypes for the same 

number of genotype pairs (grey) in the yeast tRNA fitness landscape.  (B) Frequency distribution of the standard deviation (SD)-

based idiosyncrasy index (Iid), which is the ratio of the SD of fitness effects of a particular mutation on different backgrounds to 

the SD of fitness differences between random genotype pairs, for all individual mutations in the yeast tRNA landscape.  (C) SD-

based Iid of various phenotype landscapes.  Error bars show standard errors.  Detailed information of each landscape is provided 

in Table S1.  (D) Schematic of a highly idiosyncratic fitness landscape.  Genotypes are represented by circles, and the fitness of a 

genotype is represented by the circle size.  The three black circles labeled with H, I, L respectively indicate three focal genotypes 

with relatively high, intermediate, and low fitness values, whereas the grey circles represent one-mutation neighbors of the focal 

genotypes.  Each light-green outlined area encompasses a focal genotype and some one-mutation neighbors.  Solid arrows 

indicate single mutations, whereas dotted arrows indicate multiple mutations.  Solid arrows of the same color indicate the same 

mutation.   
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among the 12 landscapes examined, with a mean of 0.43 (Fig. 2-1C).  Hence, in an average 

phenotype landscape, a particular mutation’s effects across different backgrounds are 43% as 

variable as if they are randomly drawn from the effects of any number of mutations on any 

genetic background.  To exclude the possibility that the observed idiosyncrasy is largely due to 

imprecise phenotyping, we computed Iid for the same 828 mutations in the tRNA landscape, but 

used fitness estimates from different numbers of experimental replicates, because the 

measurement error should decrease with the number of replicates.  We found that Iid is 

insensitive to the number of replicates (Fig. 2-S1A), suggesting that the high idiosyncrasy is not 

explained by potentially imprecise phenotyping.  Additionally, phenotypic values in the RNA-

folding landscape were computed deterministically without measurement error, but mutational-

effects are still a quarter as idiosyncratic as the maximum (Iid = 0.25).  We similarly observed 

high idiosyncrasy when range instead of SD of effects was used in estimating Iid (Fig. 2-S1B).  

Expected consequences of idiosyncratic epistasis 

The substantial idiosyncrasy observed suggests that phenotype landscapes are quite rugged (Fig. 

2-1D).  Below we demonstrate its consequences with regard to fitness, but the same applies to 

other traits.  In a maximally idiosyncratic fitness landscape such as the one described by the 

house-of-cards model32, fitness values (circle sizes in Fig. 2-1D) of neighboring genotypes 

connected through single mutations are uncorrelated.  The fitness of a neighboring genotype of a 

high- or a low-fitness focal genotype is expected to be the same.  Hence, the fitness difference 

between a neighboring genotype (grey circle) and the focal genotype (black circle) is expected to 

be less positive or more negative as the fitness of the focal genotype rises.  In other words, 

beneficial mutations are less beneficial and deleterious mutations are more deleterious on fitter 

genotypes, causing diminishing returns and increasing costs, respectively.  These arguments 
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apply not only to the effects of the same mutation on different genetic backgrounds but also to 

the effects of different mutations on different backgrounds.  That is, an arbitrary mutation on a 

relatively fit background is expected to be less beneficial or more detrimental than another 

arbitrary mutation on a relatively unfit background.  Under the foregoing model of g, one can 

mathematically prove that, in the presence of idiosyncrasy of at least one interactive term, the 

correlation between the fitness effect of a mutation and the background fitness is negative, for 

both the same and different mutation(s) (see Methods).  In the case of different mutations, 

among-site/state variation in the additive effect further contributes to the negative correlation 

(see Methods).  Importantly, all of the above occurs even with no bias toward positive or 

negative epistasis in the fitness landscape and no fitness estimation error.  

Idiosyncratic epistasis causes the trends of diminishing returns and increasing costs  

To examine whether the extent of idiosyncratic epistasis in an actual fitness landscape is 

sufficient to explain the observed diminishing returns and increasing costs, we simulated a series 

of 16 fitness landscapes with n = 16 binary sites, under the n-order model of g.  In the kth 

landscape in the series (1 ≤ k ≤ 16), we considered up to the kth order of interaction.  That is, 

each term of effect from the first to the kth order interaction is a random variable independently 

drawn from the standard normal distribution whereas all other terms are set to 0.  When k rises 

from 1 to 16, Iid increases from 0 to 0.69 (Fig. 2-2A), which is close to the theoretically predicted 

value (see Methods).  In all simulated landscapes except the one with Iid = 0, most if not all 

mutations exhibit a negative Pearson’s correlation between fitness effect and background fitness 

(boxes in Fig. 2-2A).  In addition, the larger the k and Iid, the more negative the correlations 

(boxes in Fig. 2-2A), supporting the role of idiosyncratic epistasis in creating the negative 

correlations.  For comparison, 87.8% of mutations from the yeast tRNA fitness landscape show a 
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negative correlation between fitness effect and background fitness (Fig. 2-2B).  A similar trend is 

seen in other empirical phenotype landscapes (Fig. 2-S2A, B).  Separating mutations that are 

beneficial or detrimental on the wild-type background or an arbitrary background reveals the 

familiar patterns of diminishing returns and increasing costs in both the simulated and empirical 

landscapes (Fig. 2-S3). 

 

Figure 2-2 Negative correlation between mutational effect and background fitness as a result of idiosyncratic epistasis.   

(A) Boxplot showing the distribution of Pearson’s correlation coefficient (r) between mutational effect and background fitness for 

individual mutations in a series of n-order landscapes.  The lower and upper edges of a box represent the first (qu1) and third 
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(qu3) quartiles, respectively, the horizontal line inside the box indicates the median (md), the whiskers extend to the most 

extreme values inside inner fences, md ± 1.5(qu3 − qu1), and the grey dots represent values outside the inner fences (outliers).  

Green diamonds represent r values for all mutations pooled in each landscape, while red circles indicate SD-based Iid of the 

landscapes.  (B) Distribution of r for 828 individual mutations in the tRNA fitness landscape.  (C) Relationship between 

background fitness and mutational effect for 414 mutations (reversions not considered) in the tRNA fitness landscape.  The red 

line depicts the running mean in non-overlapping X-axis bins of width = 0.02, in all bins with more than 10 data points.  To avoid 

a spurious correlation due to shared measurement error on the X- and Y-axis, we used three replicates of background fitness 

measures for the X-axis and three other replicates for the Y-axis in (B) and (C).  For each mutation and its reversion, a randomly 

picked one is considered in (C). 

 

Furthermore, the effects of different mutations also negatively correlate with background fitness 

in the simulated landscapes (green diamonds in Fig. 2-2A; see Methods), as well as in the tRNA 

fitness landscape (Fig. 2-2C) and other empirical phenotype landscapes (Fig. 2-S2C, D).  As 

mentioned, the negative correlation in the simulated landscape with Iid = 0 (green diamond in 

Fig. 2-2A) is due to the contribution from the among-site/state variation in additive effect; in the 

absence of this variation, all genotypes are equally fit, so the correlation disappears.  

Idiosyncratic epistasis causes slowing fitness drops in mutation accumulation   

When random mutations accrue in a relatively fit population in the near absence of selection, 

population fitness is expected to decline.  Because idiosyncratic epistasis renders random 

mutations on average less deleterious on relatively unfit genotypes than on relatively fit 

genotypes, the fitness drop of the population is expected to decelerate during mutation 

accumulation until it reaches the mean fitness of all genotypes in the landscape, around which 

the fitness should subsequently fluctuate.  We confirmed this prediction in the simulated n-order 

landscapes: As k and Iid increase, the slowing curvature becomes more prominent (Fig. 2-3A).  A 

change in mutational supply explains why the fitness decline is decelerating even when Iid = 0 

(see Methods), and as expected, this trend diminishes as n rises (Fig. 2-S4).  For comparison, 

decelerating fitness declines are apparent during simulated mutation accumulations in the tRNA 

fitness landscape (Fig. 2-3B) and other empirical phenotype landscapes (Fig. 2-S5).  
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Figure 2-3 Fitness declines decelerate during mutation accumulation as a result of idiosyncratic epistasis.   

(A) Average fitness trajectories simulated in a series of n-order landscapes.  (B) Ten thousand fitness trajectories of mutation 

accumulation simulated in the tRNA fitness landscape, with the average fitness of all trajectories at each step shown in black.  

Dotted lines indicate the mean fitness of all genotypes in the corresponding landscape. 

The drop in fitness to the mean of all genotypes during mutation accumulation is observed in the 

n-order landscapes (Fig. 2-3A) and RNA-folding landscape (Fig. 2- S5B), while the average 

mutation accumulation trajectory in tRNA (Fig. 2-3B) and GFP (Fig. 2-S5A) landscapes 

fluctuates above the mean of all genotypes.  This latter phenomenon is due to preferential 

sampling of genotypes close to the wild-type in the experimental data, “trapping” many 

simulated mutation accumulation trajectories around the wild-type.  The former two theoretically 

simulated/calculated landscapes do not have such biases. 

Idiosyncratic epistasis causes slowing fitness gains in adaptation  

Idiosyncratic epistasis, in combination with certain distributions of genotype fitness or 

interactive effects, creates the phenomenon of decelerating fitness gains during adaptation.  In a 

solely additive landscape with Iid = 0, each adaptive trajectory is basically a random ordering of 

the beneficial mutations.  Thus, the mean fitness increase of every step is the mean of the effect 
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of all beneficial mutations, leading to a linear average trajectory regardless of the fitness 

distribution (Fig. 2-4A).  In an idiosyncratic landscape with Iid > 0, the mutation fixed at each 

step during adaptation is a random draw from beneficial mutations instead of all mutations.  

Because of this bias, the shape of the adaptive trajectory, unlike that of mutation accumulation, is 

dependent on the distribution of genotype fitness or interactive effects.  For example, in a house-

of-cards model (a special case of n-order landscapes with only the highest-order interaction 

term), when fitness of all genotypes is gamma distributed with shape parameter >1, =1, or <1 

(Fig. 2-S6A), fitness rises sublinearly, linearly, and superlinearly with the number of mutations 

accumulated, respectively (Fig. 2-S6B) (see also 33).  Although not sufficient for creating a 

decelerating adaptive trajectory, idiosyncrasy causes a decelerating trajectory in a wide range of 

full n-order landscapes, including, for example, those with normal- (Fig. 2-4A), gamma-, and 

beta-distributed interaction effects (Fig. 2-S6C, D).  As expected, adaptation slows more 

dramatically with greater Iid (Fig. 2-4A; Fig. 2-S6C, D).  Simulated adaptation also decelerates in 

the tRNA fitness landscape (Fig. 2-4B) as well as in other empirical phenotype landscapes (Fig. 

2-S7), suggesting that the empirical cases fulfill both the idiosyncrasy and fitness distribution 

requirements.  
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Discussion 

In summary, we proposed a simple theory that uses the idiosyncrasy of epistasis to explain some 

of the most commonly observed patterns of mutational effects and evolutionary trajectories.  

Phenotype landscapes of a variety of genes and taxa confirm our assumption of idiosyncratic 

epistasis.  Contrary to the common intuition, our work shows that diminishing returns and 

decelerating adaptations do not suggest a bias toward negative epistasis in the underlying fitness 

landscape or a concave landscape.  Similarly, increasing costs and slowing fitness declines 

during mutation accumulation do not indicate a bias toward positive epistasis or a convex 

landscape.  Thus, our theory resolves the uphill-downhill paradox. 

 

Although the idiosyncrasy of epistasis is a major characteristic of empirical phenotype 

landscapes (Fig. 2-1C), biological interactions are not completely idiosyncratic.  Rather, 

idiosyncratic epistasis should serve as a null model for the role of epistasis in mutational effects 

and evolution.  For example, the relationship between the mutational robustness of a genotype 

(i.e., fitness insensitivity to mutation) and its adaptability/evolvability to environmental 

challenges is debated34-36.  Our theory reveals an intrinsic positive correlation between 

robustness and adaptability due to idiosyncratic epistasis, because, as the fitness of a genotype 

rises, deleterious mutations are more detrimental (i.e., lower robustness) and advantageous 

mutations are less beneficial (i.e., lower adaptability).  Deviations from this null expectation may 

reveal interesting forms of epistasis beyond idiosyncrasy.  Similarly, because slowing fitness 

drops during mutation accumulation naturally emerge from idiosyncratic epistasis, such 

Figure 2-4 Adaptation slows as a result of idiosyncratic epistasis.   

(A) Average adaptive trajectories simulated in a series of n-order landscapes.  (B) A total of 15,878 adaptive trajectories 

simulated in the tRNA fitness landscape, with the average fitness of all trajectories shown in black, at each step when the 

trajectory number exceeds 10. 
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observations need not be explained by selection for “genomic buffering against the fitness 

reduction caused by accumulated mutations”13.  Rather, when this trend is absent or when the 

opposite trend is observed, selection for mutational robustness of the wild-type may be 

invoked37.  Additionally, other processes such as clonal interference38 and changes in mutational 

supply39 may enhance some of the universals caused by idiosyncratic epistasis. 

 

How does the idiosyncrasy of epistasis arise from the underlying deterministic biological 

interactions?  The n-order model reveals that the number of interactive terms determining the 

phenotype of a genotype is potentially astronomical and that the same mutation differentially 

alters a substantial fraction of these terms in even slightly different genotypes.  Consequently, it 

is difficult to predict the mutational effect in any particular genotype despite the underlying 

deterministic biological interactions, much like the apparently random outcome of a die roll that 

is deterministically shaped by myriad factors such as the movement of air molecules.  That the 

universal trends of mutational effects and evolutionary trajectories emerge from this randomness 

due to idiosyncratic epistasis is no more surprising than the tendency of observing a smaller 

number in a second roll of a die when the first roll yields a five. 

Methods 

Number of terms of phenotypic effects altered by a mutation 

Let g be the Malthusian fitness (fitness for short) of a genotype in an environment and let n be 

the number of nucleotide sites in a genome that are relevant to g.  Here g equals the sum of the 

additive fitness effect of every site (i.e., first order interaction), the interactive effect of every 

pair of sites (i.e., second order interaction), the interactive effect of every triplet of sites (i.e., 

third order interaction), and so on.  That is, g contains (𝑛
𝑘

) terms of effects of the kth order of 
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interaction (1 ≤ k ≤ n), for a total of 2n-1 terms.  Among these terms, 2n-1 terms involve any 

particular site.  Thus, a mutation at a single site potentially changes 2n-1/(2n-1) ≈ 50% of all terms 

making up g.   

Differentially altered terms of effects in two genotypes caused by the same mutation 

When the same mutation of allele P changing to Q at site i occurs on two different genotypes that 

differ at m sites (i is not one of the m sites), the differentially altered terms of effects in these 

genotypes must involve site i and at least one of the m sites, and may also involve site(s) 

identical between the two genotypes.  The total number of differentially altered terms equals the 

number of terms involving i and at least one other site minus the number of terms involving i and 

at least one other site that is identical between the two genotypes.  The resulting number is (2n−1 

− 1) − (2n−m−1 − 1) = (2m − 1)2n−m−1.  When m = 1, the above number is 2n-2.  That is, up to 2n-

2/(2n-1) ≈ 25% of terms are differentially altered by the same mutation in two genotypes that 

differ at only one site.  When m = n-1, the above number is 2n-1 – 1.  That is, up to (2n-1-1)/(2n-1) 

≈ 50% of terms are differentially altered by the same mutation in two maximally different 

genotypes.   

The fitness effect of a given mutation is negatively correlated with background fitness 

Let us consider the n-order landscape model and focus on the mutation from the P allele to the Q 

allele at site k of the genome.  We examine the fitness effect of this mutation on different genetic 

backgrounds.  Let X represent any genotype with the P allele at site k.  Among them, xi is the ith 

genotype whose Malthusian fitness is 𝑅𝑥𝑖
.  𝑅𝑥𝑖

 can be written as 𝑅𝑥𝑖
= 𝐴𝑥𝑖

+ 𝐼𝑥𝑖
+ 𝐼𝑥𝑖

′ , where 

𝐴𝑥𝑖
 is the sum of additive (i.e., 1st order interactive) effects, 𝐼𝑥𝑖

 is the sum of the 2nd to nth order 

interactive effects involving the focal site k, and 𝐼′𝑥𝑖
 is the sum of the 2nd to nth order interactive 

effects that do not involve site k.   
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Similarly, let Y represent any genotype with the Q allele at site k.  For each genotype xi, we have 

a corresponding genotype yi that is identical to xi except that site k now has the Q allele.  𝑅𝑦𝑖
, the 

fitness of yi, can be written as 𝑅𝑦𝑖
= 𝐴𝑦𝑖

+ 𝐼𝑦𝑖
+ 𝐼𝑦𝑖

′ , where 𝐴𝑦𝑖
  is the sum of additive (i.e., 1st 

order interactive) effects, 𝐼𝑦𝑖
 is the sum of the 2nd to nth order interactive effects involving site k, 

and 𝐼′𝑦𝑖
 is the sum of the 2nd to nth order interactive effects that do not involve site k.  

Note that the difference in the additive effect between alleles P and Q is a constant that is not 

influenced by sites other than k.  That is, 𝐴𝑦𝑖
− 𝐴𝑥𝑖

= 𝐶.  Therefore, we have  

𝐶𝑜𝑣(𝐴𝑌, 𝐴𝑋) =
1

𝑁
∑ (𝐴𝑦𝑖

− 𝐸(𝐴𝑌)) (𝐴𝑥𝑖
− 𝐸(𝐴𝑋))

𝑁

𝑖=1

=
1

𝑁
∑ (𝐴𝑥𝑖

+ 𝐶 − 𝐸(𝐴𝑋 + 𝐶)) (𝐴𝑥𝑖
− 𝐸(𝐴𝑋))

𝑁

𝑖=1

 

=
1

𝑁
∑ (𝐴𝑥𝑖

− 𝐸(𝐴𝑋)) (𝐴𝑥𝑖
− 𝐸(𝐴𝑋)) = 𝑉𝑎𝑟(𝐴𝑋)𝑁

𝑖=1 . 

Here, N is the total number of pairs of (xi, yi) and equals 4n−1 for a genome with n sites each with 

four states, Cov stands for covariance, and Var stands for variance. 

  

Also note that, because xi and yi are the same except at site k, 𝐼𝑥𝑖

′ = 𝐼𝑦𝑖

′ .  Let 𝐶𝑜𝑟(𝐼𝑋 , 𝐼𝑌) be the 

Pearson correlation between IX and IY.  We have 𝐶𝑜𝑟(𝐼𝑋 , 𝐼𝑌) = 𝐶𝑜𝑣(𝐼𝑋 , 𝐼𝑌)/√𝑉𝑎𝑟(𝐼𝑋)𝑉𝑎𝑟(𝐼𝑌) ≤

1.  Hence, 𝐶𝑜𝑣(𝐼𝑋 , 𝐼𝑌) ≤ √𝑉𝑎𝑟(𝐼𝑋)𝑉𝑎𝑟(𝐼𝑌).  Under the reasonable assumption that the 

corresponding interactive terms of xi and yi are sampled from the same distribution, 𝑉𝑎𝑟(𝐼𝑋) and 

𝑉𝑎𝑟(𝐼𝑌) are expected to be equal.  Hence, 𝐶𝑜𝑣(𝐼𝑋 , 𝐼𝑌) ≤ √𝑉𝑎𝑟(𝐼𝑋)𝑉𝑎𝑟(𝐼𝑋) = 𝑉𝑎𝑟(𝐼𝑋).  Thus, 

𝐶𝑜𝑣(𝐼𝑋 , 𝐼𝑌) = 𝑉𝑎𝑟(𝐼𝑋) when IX and IY have a correlation of 1; otherwise 𝐶𝑜𝑣(𝐼𝑋 , 𝐼𝑌) < 𝑉𝑎𝑟(𝐼𝑋).  
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When epistasis is to some extent idiosyncratic, IY does not correlate perfectly with IX, resulting in 

𝐶𝑜𝑣(𝐼𝑋 , 𝐼𝑌) < 𝑉𝑎𝑟(𝐼𝑋).  

 

Under the assumption of independence among the interactive terms of a genotype, we have 

Cov(mutational effect, fitness of the background genotype) = Cov(RY − RX, RX) =

𝐶𝑜𝑣((𝐴𝑌 − 𝐴𝑋) + (𝐼𝑌 − 𝐼𝑋) + (𝐼𝑌
′ − 𝐼𝑋

′ ),   𝐴𝑋 + 𝐼𝑋 + 𝐼𝑋
′ ) = 𝐶𝑜𝑣(𝐶, 𝐴𝑋) + 𝐶𝑜𝑣(𝐼𝑋 , 𝐼𝑌) −

V𝑎𝑟(𝐼𝑋) + 𝐶𝑜𝑣(0, 𝐼𝑋
′ ) = 𝐶𝑜𝑣(𝐼𝑋 , 𝐼𝑌) − V𝑎𝑟(𝐼𝑋) < 0.  This mathematical result means that, when 

epistasis is to some extent idiosyncratic, for any given mutation, we expect a negative correlation 

between the background fitness and mutational effect, which is exactly what diminishing returns 

of beneficial mutations and increasing costs of deleterious mutations are.  The above result holds 

when fitness is replaced with any phenotypic trait as long as the trait value of each genotype can 

be expressed as the sum of the 2n-1 terms of effects.    

Mutational effect is generally negatively correlated with background fitness 

Below we show that the preceding result about a given mutation also applies to different 

mutations.  That is, we expect a negative correlation between the mutational effect and 

background fitness even when different mutations are considered.  Rt, the Malthusian fitness of 

genotype t, can be expressed by 𝑅𝑡 = 𝐼𝑡
1 + 𝐼𝑡

2 + ⋯ + 𝐼𝑡
𝑛 + 𝐼𝑡

1,2 + 𝐼𝑡
1,3 + ⋯ + 𝐼𝑡

𝑛,𝑛−1 + ⋯ +

𝐼𝑡
1,2,⋯,𝑛.  Here, the superscript indicates the site(s) involved in an additive or interactive term.  For 

instance, It
2 stands for the additive effect of site 2 and 𝐼𝑡

1,2
 stands for the interactive effect 

between sites 1 and 2.   

 

Let X represent an arbitrary genotype and Y represent another genotype that differs from X by a 

particular mutation named W that occurs at site k.  We have 
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𝑅𝑋 = 𝐼𝑋
1 + 𝐼𝑋

2 + ⋯ + 𝐼𝑋
𝑛 + 𝐼𝑋

1,2 + 𝐼𝑋
1,3 + ⋯ + 𝐼𝑋

𝑛−1,𝑛 + ⋯ + 𝐼𝑋
1,2,⋯,𝑛

 

𝑅𝑌 = 𝐼𝑌
1 + 𝐼𝑌

2 + ⋯ + 𝐼𝑌
𝑛 + 𝐼𝑌

1,2 + 𝐼𝑌
1,3 + ⋯ + 𝐼𝑌

𝑛−1,𝑛 + ⋯ + 𝐼𝑌
1,2,⋯,𝑛

. 

In the above, all corresponding terms between IX and IY are equal except for the terms involving 

k.  So, 𝑅𝑌 − 𝑅𝑋 = (𝐼𝑌
𝑘 − 𝐼𝑋

𝑘) + (𝐼𝑌
1,𝑘 − 𝐼𝑋

1,𝑘) + ⋯ + (𝐼𝑌
𝑛,𝑘 − 𝐼𝑋

𝑛,𝑘) + ⋯ + (𝐼𝑌
(1,2,⋯,𝑛),𝑘 −

𝐼𝑋
(1,2,⋯,𝑛),𝑘).   

 

Under the assumption that all I terms in an R are independent from one another, Cov(mutational 

effect, background fitness)=𝐶𝑜𝑣(𝑅𝑌 − 𝑅𝑋 , 𝑅𝑋) = 𝐶𝑜𝑣(𝐼𝑌
𝑘 − 𝐼𝑋

𝑘, 𝐼𝑋
𝑘) + 𝐶𝑜𝑣(𝐼𝑌

1,𝑘 − 𝐼𝑋
1,𝑘, 𝐼𝑋

1,𝑘) +

⋯ + 𝐶𝑜𝑣(𝐼𝑌
𝑛,𝑘 − 𝐼𝑋

𝑛,𝑘, 𝐼𝑋
𝑛,𝑘) + ⋯ + 𝐶𝑜𝑣(𝐼𝑌

(1,2,⋯,𝑛),𝑘 − 𝐼𝑋
(1,2,⋯,𝑛),𝑘, 𝐼𝑋

(1,2,⋯,𝑛),𝑘).   

 

According to the law of total variance and the law of total covariance, we can expand each term 

in the above equation.  Let us use the second order interaction between site s and site k as an 

example.  𝐶𝑜𝑣(𝐼𝑌
𝑠,𝑘 − 𝐼𝑋

𝑠,𝑘, 𝐼𝑋
𝑠,𝑘) = 𝐶𝑜𝑣(𝐼𝑌

𝑠,𝑘, 𝐼𝑋
𝑠,𝑘) − 𝑉𝑎𝑟(𝐼𝑋

𝑠,𝑘) = 𝐸 (𝐶𝑜𝑣(𝐼𝑌
𝑠,𝑘, 𝐼𝑋

𝑠,𝑘|𝑊)) +

𝐶𝑜𝑣 (𝐸(𝐼𝑌
𝑠,𝑘|𝑊), 𝐸(𝐼𝑋

𝑠,𝑘|𝑊)) − 𝐸 (𝑉𝑎𝑟(𝐼𝑋
𝑠,𝑘|𝑊)) − 𝑉𝑎𝑟 (𝐸(𝐼𝑋

𝑠,𝑘|𝑊)) =

𝐸 (𝐶𝑜𝑣(𝐼𝑌
𝑠,𝑘, 𝐼𝑋

𝑠,𝑘|𝑊) − 𝑉𝑎𝑟(𝐼𝑋
𝑠,𝑘|𝑊)) + 𝐶𝑜𝑣 (𝐸(𝐼𝑌

𝑠,𝑘 − 𝐼𝑋
𝑠,𝑘|𝑊), 𝐸(𝐼𝑋

𝑠,𝑘|𝑊)).   

As shown in the section about a given mutation, as long as there is some degree of idiosyncrasy, 

𝐶𝑜𝑣(𝐼𝑌
𝑠,𝑘, 𝐼𝑋

𝑠,𝑘|𝑊) < 𝑉𝑎𝑟(𝐼𝑋
𝑠,𝑘|𝑊).  So, 𝐸 (𝐶𝑜𝑣(𝐼𝑌

𝑠,𝑘, 𝐼𝑋
𝑠,𝑘|𝑊) − 𝑉𝑎𝑟(𝐼𝑋

𝑠,𝑘|𝑊)) < 0.  Further, 

𝐶𝑜𝑣 (𝐸(𝐼𝑌
𝑠,𝑘 − 𝐼𝑋

𝑠,𝑘|𝑊), 𝐸(𝐼𝑋
𝑠,𝑘|𝑊)) = 0, because 𝐸(𝐼𝑌

𝑠,𝑘 − 𝐼𝑋
𝑠,𝑘|𝑊) = 0 under the reasonable 

assumption that, given W, 𝐼𝑋
𝑠,𝑘

 and 𝐼𝑌
𝑠,𝑘

 follow the same distribution.  Hence, 𝐶𝑜𝑣(𝐼𝑌
𝑠,𝑘 −

𝐼𝑋
𝑠,𝑘, 𝐼𝑋

𝑠,𝑘) < 0.  The same conclusion applies to all terms except the first-order interactive 
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(additive) term, which is 𝐶𝑜𝑣(𝐼𝑌
𝑘 − 𝐼𝑋

𝑘, 𝐼𝑋
𝑘) = 𝐸 (𝐶𝑜𝑣(𝐼𝑌

𝑘 , 𝐼𝑋
𝑘|𝑊) − 𝑉𝑎𝑟(𝐼𝑋

𝑘|𝑊)) +

𝐶𝑜𝑣 (𝐸(𝐼𝑌
𝑘 − 𝐼𝑋

𝑘|𝑊), 𝐸(𝐼𝑋
𝑘|𝑊)).  Because additive effects are independent of the genetic 

background, given W, 𝐼𝑌
𝑘 and 𝐼𝑋

𝑘 are both fixed and are two randomly sampled values from the 

same distribution.  Hence, 𝐶𝑜𝑣(𝐼𝑌
𝑘, 𝐼𝑋

𝑘|𝑊) = 0 and 𝑉𝑎𝑟(𝐼𝑋
𝑘|𝑊) = 0.  So 𝐸 (𝐶𝑜𝑣(𝐼𝑌

𝑘, 𝐼𝑋
𝑘|𝑊) −

𝑉𝑎𝑟(𝐼𝑋
𝑘|𝑊)) = 0.  𝐸(𝐼𝑌

𝑘|𝑊) = 𝐼𝑌
𝑘|𝑊 and 𝐸(𝐼𝑋

𝑘|𝑊) = 𝐼𝑋
𝑘|𝑊.  As W varies, 𝐼𝑌

𝑘|𝑊 and 𝐼𝑋
𝑘|𝑊 are 

two random variables from the same distribution.  They have the same variance and are not 

usually completely correlated.  So, 𝐶𝑜𝑣 (𝐸(𝐼𝑌
𝑘 − 𝐼𝑋

𝑘|𝑊), 𝐸(𝐼𝑋
𝑘|𝑊)) = 𝐶𝑜𝑣(𝐼𝑌

𝑘 − 𝐼𝑋
𝑘|𝑊, 𝐼𝑋

𝑘|𝑊) =

𝐶𝑜𝑣(𝐼𝑌
𝑘, 𝐼𝑋

𝑘|𝑊) − 𝑉𝑎𝑟(𝐼𝑋
𝑘|𝑊) < 0.  Under the special case when all additive terms are equal, 

𝐶𝑜𝑣 (𝐸(𝐼𝑌
𝑘 − 𝐼𝑋

𝑘|𝑊), 𝐸(𝐼𝑋
𝑘|𝑊)) = 0. 

 

Thus, Cov(mutational effect, background fitness) = 𝐸 (𝐶𝑜𝑣(𝐼𝑌
𝑘, 𝐼𝑋

𝑘|𝑊) − 𝑉𝑎𝑟(𝐼𝑋
𝑘|𝑊)) +

𝐶𝑜𝑣 (𝐸(𝐼𝑌
𝑘 − 𝐼𝑋

𝑘|𝑊), 𝐸(𝐼𝑋
𝑘|𝑊)) + 𝐸 (𝐶𝑜𝑣(𝐼𝑌

1,𝑘 , 𝐼𝑋
1,𝑘|𝑊) − 𝑉𝑎𝑟(𝐼𝑋

1,𝑘|𝑊)) +

𝐶𝑜𝑣 (𝐸(𝐼𝑌
1,𝑘 − 𝐼𝑋

1,𝑘|𝑊), 𝐸(𝐼𝑋
1,𝑘|𝑊)) + ⋯ + 𝐸 (𝐶𝑜𝑣(𝐼𝑌

𝑛,𝑘, 𝐼𝑋
𝑛,𝑘|𝑊) − 𝑉𝑎𝑟(𝐼𝑋

𝑛,𝑘|𝑊)) +

𝐶𝑜𝑣 (𝐸(𝐼𝑌
𝑛,𝑘 − 𝐼𝑋

𝑛,𝑘|𝑊), 𝐸(𝐼𝑋
𝑛,𝑘|𝑊)) + ⋯ + 𝐸 (𝐶𝑜𝑣(𝐼𝑌

(1,2,⋯,𝑛),𝑘, 𝐼𝑋
(1,2,⋯,𝑛),𝑘|𝑊) −

𝑉𝑎𝑟(𝐼𝑋
(1,2,⋯,𝑛),𝑘|𝑊)) + 𝐶𝑜𝑣 (𝐸(𝐼𝑌

(1,2,⋯,𝑛),𝑘 − 𝐼𝑋
(1,2,⋯,𝑛),𝑘|𝑊), 𝐸(𝐼𝑋

(1,2,⋯,𝑛),𝑘|𝑊)) =

𝐶𝑜𝑣(𝐼𝑌
𝑘 − 𝐼𝑋

𝑘|𝑊, 𝐼𝑋
𝑘|𝑊) + 𝐸 (𝐶𝑜𝑣(𝐼𝑌

1,𝑘, 𝐼𝑋
1,𝑘|𝑊) − 𝑉𝑎𝑟(𝐼𝑋

1,𝑘|𝑊)) + ⋯ + 𝐸 (𝐶𝑜𝑣(𝐼𝑌
𝑛,𝑘, 𝐼𝑋

𝑛,𝑘|𝑊) −

𝑉𝑎𝑟(𝐼𝑋
𝑛,𝑘|𝑊)) + ⋯ + 𝐸 (𝐶𝑜𝑣(𝐼𝑌

(1,2,⋯,𝑛),𝑘, 𝐼𝑋
(1,2,⋯,𝑛),𝑘|𝑊) − 𝑉𝑎𝑟(𝐼𝑋

(1,2,⋯,𝑛),𝑘|𝑊)) < 0.  

Therefore, in the n-order model, mutational effect is negatively correlated with background 

fitness even for different mutations.  As shown in the above mathematical derivation, this 
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negative correlation has two sources: unequal additive effects and idiosyncratic epistasis.  Given 

the same additive effects, increasing the idiosyncrasy in epistasis strengthens the negative 

correlation.  As in the preceding section, the result here applies to any phenotypic trait as long as 

the trait value of a genotype can be expressed as the sum of the 2n-1 terms of effects. 

 

Expected idiosyncrasy index under the n-order landscape model 

The variance of the effect of a particular mutation across all genetic backgrounds can be 

calculated as follows.  Let X represent an arbitrary genotype and Y represent another genotype 

that differs from X at site k only.  We have shown earlier that 

𝑅𝑋 = 𝐼𝑋
1 + 𝐼𝑋

2 + ⋯ + 𝐼𝑋
𝑛 + 𝐼𝑋

1,2 + 𝐼𝑋
1,3 + ⋯ + 𝐼𝑋

𝑛−1,𝑛 + ⋯ + 𝐼𝑋
1,2,⋯,𝑛

 

𝑅𝑌 = 𝐼𝑌
1 + 𝐼𝑌

2 + ⋯ + 𝐼𝑌
𝑛 + 𝐼𝑌

1,2 + 𝐼𝑌
1,3 + ⋯ + 𝐼𝑌

𝑛−1,𝑛 + ⋯ + 𝐼𝑌
1,2,⋯,𝑛

. 

In the above, all corresponding terms between IX and IY are equal except for the terms involving 

k.  So, 𝑅𝑌 − 𝑅𝑋 = (𝐼𝑌
𝑘 − 𝐼𝑋

𝑘) + (𝐼𝑌
1,𝑘 − 𝐼𝑋

1,𝑘) + ⋯ + (𝐼𝑌
𝑛,𝑘 − 𝐼𝑋

𝑛,𝑘) + ⋯ + (𝐼𝑌
(1,2,⋯,𝑛),𝑘 −

𝐼𝑋
(1,2,⋯,𝑛),𝑘) and V𝑎𝑟(𝑅𝑦 − 𝑅𝑥) = 𝑉𝑎𝑟(𝐼𝑌

𝑘 − 𝐼𝑋
𝑘) + 𝑉𝑎𝑟(𝐼𝑌

1,𝑘 − 𝐼𝑋
1,𝑘) + ⋯ + 𝑉𝑎𝑟(𝐼𝑌

𝑛,𝑘 − 𝐼𝑋
𝑛,𝑘) +

⋯ + 𝑉𝑎𝑟(𝐼𝑌
(1,2,⋯,𝑛),𝑘 − 𝐼𝑋

(1,2,⋯,𝑛),𝑘).  If we assume that all interactive terms for X and Y are 

independent with the same variance σ2, Var(𝑅𝑌 − 𝑅𝑋) = 2𝑛𝜎2. 

 

If there are M states at each site, among the kth order interactive terms, (𝑛
𝑘

)(1/𝑀)𝑘 terms are 

expected to be the same between two random genotypes.  One can show that ∑ (𝑛
𝑘

)𝑛
𝑘=1 (1/𝑀)𝑘 =

∑
𝑛!

𝑘!(𝑛−𝑘)!

𝑛
𝑘=1 ⋅ (1/𝑀)k ≈ ∑

𝑛𝑘

𝑘!

𝑛
𝑘=1 ⋅ (1/𝑀)𝑘 ≈ 𝑒

𝑛

𝑀.  Thus, two random genotypes are expected to 

differ by approximately 2n − 1 – en/M terms.  Hence, the variance of the fitness difference 

between two random genotypes is Var(𝑅𝑌 − 𝑅𝑋) = 2(2𝑛 − 1 − 𝑒
𝑛

𝑀)𝜎2.  Because M ≥ 2, 𝑒
𝑛

𝑀 < 
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2n.  So, when n is large, Var(𝑅𝑌 − 𝑅𝑋) is approximately 2n+1𝜎2.  Therefore, the idiosyncrasy 

index becomes 
√2𝑛σ

√2𝑛+1σ
=

1

√2
 = ~0.71.  Our numerical finding (the most right red dot in Fig. 2A) 

confirms this result.  

Mutational supply and evolutionary trajectories 

During adaptation, if the supply of beneficial mutations diminishes as the fitness of a population 

rises, the speed of population fitness increase per unit time will decline.  However, if the speed of 

fitness increase is measured per beneficial mutation accrued as in the present study, the reducing 

supply of beneficial mutations will not reduce the speed of fitness increase.   

 

During mutation accumulation in the near absence of selection, as the population fitness 

declines, the supply of beneficial mutations should increase and the supply of deleterious 

mutations should decrease.  Thus, even under a purely additive model, the speed of population 

fitness drop slows.  When only the first few mutations accrued are examined, however, this 

phenomenon of slowing fitness drops should be minimal under the purely additive model unless 

the number of possible mutations is very limited 

Empirical phenotype landscapes 

An unbiased search for phenotype landscape data published between 2000 and 2019 was 

preformed using Google Scholar with words such as “epistasis”, “fitness landscape”, or “genetic 

interaction”.  A total of 18 datasets were found for which quantitative phenotype values were 

published or could be calculated without extensive analysis (e.g., studies reporting only 

sequencing reads were excluded) and which included genotypes with at least two mutations in 

comparison with the reference genotype.  Measured phenotypes included protein function such 
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as log(fluorescence), log(Wrightian fitness) or growth rate, and colony size.  For landscapes 

reporting genotypes with nucleotide mutations, all 12 classes of single mutations were 

considered.  For landscapes reporting genotypes with amino acid mutations, all 380 mutations 

between any two amino acids were considered as single mutations.  Genotypes with fitness at the 

minimum detection limit (e.g., non-fluorescent GFP genotypes) or that were lethal or non-

growing (e.g., tRNA genotypes with Wrightian fitness relative to the wild-type = 0.5) were 

excluded.  A final set of 12 studies with at least 10 single mutations and at least an average of 10 

fitness effects measured per mutation were used for further analysis.  Table S1 lists the basic 

information of these phenotype landscapes.  The original study of the tRNA fitness landscape 

reported Wrightian fitness relative to the wild-type; we computed Malthusian fitness = 

log(Wrightian fitness) in the present study.  

  

To map the RNA-folding landscape, we studied a sequence of 72 nucleotides, the length of the 

tRNA gene used in the tRNA fitness landscape.  The phenotype studied was the absolute value 

of the minimum free energy (MFE) of a sequence, calculated using ViennaRNA 

(https://www.tbi.univie.ac.at/RNA/).  Two single mutants and the corresponding double mutant 

were randomly created for each of 2 million random background genotypes, and this set of 

genotypes was used for subsequent analyses. 

Simulating idiosyncratic fitness landscapes 

We simulated a series of 16-site fitness landscapes under n-order models with two states (A/T) 

per site, including all 65,536 genotypes.  The fitness of a genotype is determined by additive 

effects (referred to as first order interactions) and interactive effects.  For the kth order interaction 

(1 ≤ k ≤ 16), there are 
16!

(16−𝑘)!𝑘!
 interactive terms.  For each of these terms, there are 2k possible 



 63 

state combinations.  The fitness effect of each state combination of each interaction term for each 

order of interaction is drawn independently from the standard normal distribution, and the fitness 

of the genotype concerned is the sum of all these terms.  Sixteen landscapes were made by 

including successively increasing orders of interactions.  For instance, the first landscape 

contains only 1st order interactions (purely additive), the second landscape contains only 1st and 

2nd order interactions, and the sixteenth landscape contains all orders of interactions.  As 

expected, Iid increased with the number of orders of interactions included (orange circles in Fig. 

2A).  In each landscape, fitness values are linearly scaled to the interval of [0, 1].  In each of 

these landscapes, epistasis between mutations is symmetrically distributed with the mean equal 

to 0.  We also simulated additive landscapes with larger n values to examine the linearity of 

fitness drops during mutation accumulation. 

Estimating idiosyncrasy index 

For each single mutation in a fitness landscape, we calculated its fitness effects on all genetic 

backgrounds available.  For each mutation, we also derived a control set of fitness effects by 

randomly sampling (with replacement) the same number of pairs of genotypes from the 

landscape as used for the mutation and computing the fitness difference for each pair.  We then 

calculated the range of fitness effects and standard deviation (SD) of fitness effects for each 

mutation and its control dataset.  For each mutation, we calculated the ratio in the SD (or range) 

between the actual data and the control data.  The average ratio across all single mutations is the 

Iid of the landscape, and the error bars in Fig. 1C are the standard error of the mean (SE).  The 

same method is used to estimate Iid of other phenotype landscapes.  Although empirical 

phenotype landscape data typically include only a small fraction of nonrandomly sampled 

genotypes and their phenotypes, this nonrandom sampling is not expected to substantially affect 
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Iid estimation, because both the variation of the effect of a mutation and the variation in the 

control data are estimated using the available landscape data.  

Examining correlation between background fitness and mutational effect 

For the simulated n-order landscapes and empirical landscapes (tRNA fitness, GFP activity, and 

RNA-folding), Pearson’s correlation coefficient was calculated between mutational effect on a 

particular trait and background trait value for each single mutation.  Mutations appearing on less 

than four backgrounds were excluded.  Pearson’s correlation coefficient was also calculated 

between all mutational effects and background trait values for each landscape.  

 

In the tRNA fitness landscape, the fitness of each genotype was measured in six replicates.  To 

exclude artificial correlation due to measurement error, the background fitness of each case of a 

single mutation is calculated using the mean fitness value from replicates 1-3, while the 

mutational effect is computed using mean fitness from replicates 4-6. Additionally, two 

mutations which are the reverse of each other on the same backgrounds can automatically create 

a negative correlation between all mutational effects and background fitness.  Hence, in each 

landscape where this could occur we randomly chose a mutation or its reversion when pooling 

all mutations together (green diamonds in Fig. 2A; Fig. 2C; Fig. S2C-D). 

 

For analysis of diminishing returns and increasing costs, mutations were deemed beneficial or 

detrimental depending on their effect on the wild-type genotype in GFP and tRNA, or a random 

arbitrary genotype in RNA-folding, or on a genotype with fitness value closest to the average 

fitness in the n-order landscapes. 
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Simulating evolutionary trajectories in mutation accumulation (MA) 

For each empirical landscape, MA from an initial genotype was simulated by randomly choosing 

single mutations until the resulting genotype was non-functional (GFP) or for a maximum of 10 

mutational steps (tRNA) or 50 mutational steps (RNA-folding).  For all plots concerning MA, 

the mean phenotype value of the landscape was calculated from all genotypes.   

 

For the GFP landscape, genotypes were not allowed to be revisited within a trajectory.  If an MA 

trajectory was part of another simulated trajectory, the shorter trajectory was discarded.  A total 

of 3,069 MA trajectories were simulated from each of 3,069 initial genotypes with activity equal 

to or greater than that of the wild-type.  In the tRNA fitness landscape, 10,000 MA trajectories 

were simulated starting from the wild-type genotype.  In the n-order fitness landscapes, 10,000 

MA trajectories were simulated starting from the genotype with fitness closest to the 90th 

percentile.  For the RNA-folding landscape, a total of 350 MA trajectories were simulated 

starting with the final genotypes from the simulated adaptations.   

Simulating adaptive trajectories 

For each empirical landscape, adaptation from an initial genotype was simulated by randomly 

choosing a single beneficial mutation, which increased the value of the trait concerned, until no 

more single beneficial mutations were available.  A total of 5,000 adaptive trajectories starting 

from 3,441 initial genotypes chosen from the bottom 15% of genotypes (activity ≤ -0.4) were 

simulated for the GFP landscape.  A total of 350 adaptive trajectories starting from 350 initial 

genotypes chosen from the bottom 0.0175% of genotypes in the RNA-folding landscape were 

simulated.  In the tRNA fitness landscape, we simulated five adaptive trajectories starting from 

each genotype with fitness = 0.5; trajectories longer than two steps were retained, totaling 15,878 
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trajectories.  In the n-order fitness landscapes, adaptations start from all genotypes in the bottom 

20% of fitness distribution; among 10 adaptation simulations starting from each genotype, 

trajectories equal to or longer than two steps were retained. 

Data and code availability 

Data analysis and simulations for all landscapes except the tRNA and model landscapes were 

performed using R version 3.5.2.  Analysis and simulations for the tRNA and model landscapes 

were performed using Python version 3.6.9.  All figures were made with matplotlib package in 

Python and Keynote.  Code and new data are available at 

https://github.com/lyonsdm/idiosyncrasy.  
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Supplementary Materials 

 

 

Supplemental Figure 2-1 The high idiosyncrasy indices (Iid) observed are not due to phenotype measurement errors or 

the use of standard deviation (SD) instead of range of mutational effects.   

(A) SD-based Iid of the yeast tRNA fitness landscape is insensitive to the number of experimental replicates used in the fitness 

estimation.  Boxplots show the distribution of Iid values of 828 single mutations in the tRNA landscape, calculated based on 

different numbers of replicates.  The lower and upper edges of a box represent the first (qu1) and third (qu3) quartiles, 

respectively, the horizontal line inside the box indicates the median (md), the whiskers extend to the most extreme values inside 

inner fences, md ± 1.5(qu3 − qu1), and the grey dots represent values outside the inner fences (outliers).  Violet dots show mean 

Iid of all mutations calculated based on respective numbers of replicates.  (B) Range-based Iid for various phenotype landscapes.  

Error bars show standard errors.  Detailed information of each landscape is provided in Table S1.  
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Supplemental Figure 2-2 Negative correlation between mutational effect and background phenotype in GFP and RNA-

folding landscapes.   

(A) Distribution of Pearson’s correlation coefficient (r) between mutational effect and background phenotype for individual 

mutations in the GFP landscape.  (B) Distribution of r for individual mutations in the RNA-folding landscape.  (C) Relationship 

between background phenotype and mutational effect for all mutations in the GFP landscape.  (D) Relationship between 

background phenotype and mutational effect for all mutations in the RNA-folding landscape.  MFE, minimum free energy.  The 

red line depicts the running mean in non-overlapping X-axis bins of width = 0.02 and 2 in (C) and (D), respectively, in all bins 

with more than 10 data points.  There is no measurement error in the RNA-folding landscape.  Shared measurement error 

between mutational effect and background fitness cannot be controlled for in GFP as replicate fitness measurements are not 

available.  For each mutation and its reverse, we considered a random one of them in (C) and (D). 
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Supplemental Figure 2-3 Fig. S3.  Patterns of correlation between mutational effect and background fitness/phenotype for 

individual beneficial or deleterious mutations in various landscapes.   

(A) Boxplots showing distributions of correlations in a series of n-order landscapes of 16 sites (where the highest order of 

nonzero interaction is indicated on the X-axis) for beneficial (blue) and deleterious (red) mutations, respectively.  The lower and 

upper edges of a box represent the first (qu1) and third (qu3) quartiles, respectively, the horizontal line inside the box indicates 

the median (md), the whiskers extend to the most extreme values inside inner fences, md ± 1.5(qu3 − qu1), and the dots represent 

values outside the inner fences (outliers).  (B-D) Frequency distributions of correlations for individual beneficial mutations (blue) 

and deleterious mutations (red) in the tRNA (B), GFP (C), and RNA-folding (D) landscapes.  Whether a mutation is beneficial or 

deleterious is determined in reference to the wild-type (tRNA and GFP) or an arbitrary reference genotype (n-order and RNA-

folding).  The wider distribution for deleterious than beneficial mutations is at least in part due to the larger number of deleterious 

than beneficial mutations. 
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Supplemental Figure 2-4 Average fitness trajectories of mutation accumulation simulated in various n-order additive 

landscapes (k = 1) with different numbers of sites (n).   

The mean trajectories are scaled so that the minimum fitness appearing in the trajectory is 0 and the maximum is 1 to allow direct 

comparison. 
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Supplemental Figure 2-5 Fitness declines decelerate during mutation accumulation as a result of idiosyncratic epistasis.   

(A) A total of 5000 fitness trajectories of mutation accumulation simulated in the GFP landscape, with the average trajectory 

shown in black, at each step when the trajectory number exceeds 10.  (B) A total of 350 fitness trajectories of mutation 

accumulation simulated in the RNA-folding landscape, with the average trajectory shown in black.  The dotted lines indicate the 

mean phenotypic value of all genotypes in the landscape, excluding non-active genotypes in the GFP landscape.  For comparison, 

the dashed line in (A) or (B) represents the predicted linear decline given the slope in the first mutational step. 
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Supplemental Figure 2-6 Idiosyncratic epistasis is necessary but not sufficient to cause decelerating adaptations.  

 (A) Gamma distributions of genotype fitness for house-of-cards landscapes, with different values of the gamma shape parameter 

\alpha.  (B) Theoretically computed mean fitness trajectories of adaptation on landscapes in (A) with corresponding colors.  (C) 

Average adaptive trajectories starting from the genotype with the lowest fitness (0), simulated in a series of n-order landscapes of 

16 sites where each nonzero interaction term of each genotype is drawn from a gamma distribution of \alpha = 1.  (D) Average 

adaptive trajectories starting from the genotype with the lowest fitness (0), simulated in a series of n-order landscapes of 16 sites 

where each nonzero interaction term of each genotype is drawn from a beta distribution with a=b=0.25.  For each landscape in 

(C) and (D), the distribution of epistasis between mutations is symmetrical with mean equal to 0. 
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Supplemental Figure 2-7 Adaptation slows in empirical phenotype landscapes.   

(A) A total of 5000 adaptive trajectories simulated in the GFP landscape, with the average trajectory shown in black, at each step 

when the trajectory number exceeds 10.  (B) A total of 350 adaptive trajectories simulated in the RNA-folding landscape, with 

the average trajectory shown in black, at each step when the trajectory number exceeds 10.  For comparison, the dashed line in 

(A) or (B) represents the predicted linear increase given the slope in the first mutational step. 
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Supplemental Table 2-1 Description of empirical landscapes, ordered by idiosyncrasy indices shown in Figure 2-1C 
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Chapter 3 Evidence for the Selective Basis of Transition-to-Transversion Substitution Bias 

in Two RNA Viruses 

 

Note: This chapter is a modified version of the published article: 

Lyons DM, Lauring AS. 2017. Evidence for the Selective Basis of Transition-to-Transversion 

Substitution Bias in Two RNA Viruses. Mol Biol Evol. 34(12):3205–3215. 

doi:10.1093/molbev/msx251. 

Abstract  

The substitution rates of transitions are higher than expected by chance relative to those 

of transversions. Many have argued that selection disfavors transversions, as nonsynonymous 

transversions are less likely to conserve biochemical properties of the original amino acid. Only 

recently has it become feasible to directly test this selective hypothesis by comparing the fitness 

effects of a large number of transition and transversion mutations. For example, a recent study of 

six viruses and one beta-lactamase gene did not find evidence supporting the selective 

hypothesis. Here we analyze the relative fitness effects of transition and transversion mutations 

from our recently published genome-wide study of mutational fitness effects in influenza virus. 

In contrast to prior work, we find that transversions are significantly more detrimental than 

transitions. Using what we believe to be an improved statistical framework, we also identify a 

similar trend in two HIV datasets. We further demonstrate a fitness difference in transition and 

transversion mutations using four deep mutational scanning datasets of influenza virus and HIV, 

which provided adequate statistical power. We find that three of the most commonly cited 

radical/conservative amino acid categories are predictive of fitness, supporting their utility in 

studies of positive selection and codon usage bias. We conclude that selection is a major 

contributor to the transition:transversion substitution bias in viruses and that this effect is only 
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partially explained by the greater likelihood of transversion mutations to cause radical as 

opposed to conservative amino acid changes.  

Introduction 

Fifty years ago, Walter Fitch noted that the nucleotide substitution pattern in cytochrome 

c is non-random (Fitch 1967). If random, transversions (purine-pyrimidine changes) should be 

observed twice as often as transitions (purine to purine or pyrimidine to pyrimidine changes) 

solely due to the accessible mutations. However, Fitch observed that transitions are more 

common than transversions. In fact, this transition-transversion (Ts:Tv) substitution bias has 

been noted across many proteins and phyla, and phylogenetic inferences account for this bias by 

weighting transversions more than transitions (Gojobori et al. 1982; Kumar 1996; Wakeley 

1996; Petrov and Hartl 1999; Rosenberg et al. 2003; Lynch 2010; Duchêne et al. 2015). 

 

The underlying reasons for this widespread Ts:Tv substitution bias are largely unknown. 

Two main hypotheses, which are not mutually exclusive, have emerged to explain this 

phenomenon: the mutational hypothesis and the selective hypothesis. The mutational hypothesis 

holds that the transition mutation rates of polymerases are higher than the transversion rates. This 

hypothesis is supported by the observation of a transitional bias in both coding and non-coding 

regions (Zhang and Gerstein 2003; Jiang and Zhao 2006) as well as mutation rate analyses 

showing higher transition mutation rates (Denver et al. 2004; Pauly, Procario, et al. 2017). The 

selective hypothesis posits that natural selection disfavors transversions. This hypothesis is based 

on the observation that, depending on codon usage, non-synonymous transitions are more likely 

to conserve important biochemical properties of the original amino acid (Vogel and Kopun 1977; 

Miyata et al. 1979; Zhang 2000). For example, a mutation that changes the charge of an amino 
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acid is a “radical” change, while one that does not is a “conservative” change. However, this 

provides only indirect evidence for the selective hypothesis and the extent to which 

radical/conservative distinctions are predictive of fitness is unclear. Radical changes do occur 

less often than conservative ones during protein evolution. Arguments based on this observation 

can be circular (Dagan et al. 2002; Yampolsky and Stoltzfus 2005). If the transition mutation rate 

is higher and transitions are more likely to be conservative, then conservative changes will occur 

more often simply due to the transitional mutation bias. Furthermore, the radical/conservative 

amino acid distinctions may be overly broad and arbitrary. For example, the hydrophobicity of 

amino acids may be more constrained for some proteins while their size may be more 

constrained for other proteins. One could arbitrarily choose a biochemical distinction that would 

suggest transversions are more likely to be conservative.  

 

Only recently has it become experimentally tractable to test directly the selective 

hypothesis by comparing the fitness effects of a large number of transition and transversion 

mutations. A recent study (Stoltzfus and Norris 2016) compared the fitness effects of missense 

transitions and transversions reported in eight studies of mutational fitness effects. This meta-

analysis included: a beta-lactamase gene (TEM1), two HIV genes (integrase and capsid), and 

five genome-wide studies of viruses (Sanjuán et al. 2004; Purificación Carrasco et al. 2007; P. 

Carrasco et al. 2007; Domingo-Calap et al. 2009; Peris et al. 2010; Jacquier et al. 2013; Rihn et 

al. 2013; Rihn et al. 2015). Stoltzfus and Norris did not identify a statistically significant 

difference in the fitness effects of transitions and transversions (Ts-Tv) in any of the viral 

datasets (2016). They did find a statistically significant difference after combining the data, 

which was deemed to be of questionable biological significance. 
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Here, we revisit this question using our recently published library of randomly distributed 

point mutations in influenza A virus (Visher et al. 2016). In contrast to other viral datasets, we 

find that transitions are significantly less detrimental than transversions. We apply what we 

believe is an improved statistical framework and identify a similar trend in the HIV integrase and 

capsid datasets (Rihn et al. 2013; Rihn et al. 2015). We expand our analysis to include deep 

mutational scanning studies of one HIV gene and two genes from two different strains of 

influenza (Bloom 2014; Doud et al. 2015; Doud and Bloom 2016; Haddox et al. 2016). The 

distribution of fitness effects of transversions is shifted toward more detrimental effects 

compared to transitions at some points along the fitness distribution in each gene, and transitions 

are never more detrimental. Three of the most commonly cited radical/conservative distinctions 

are predictive of mutational fitness effects. However, transversions are more detrimental than 

transitions even when controlling for their greater likelihood to be radical. 

 

Results 

Transitions are less detrimental in influenza A virus 

We recently published a library of 128 point mutants in influenza A virus (Visher et al. 

2016). As in other studies of viral mutational fitness effects, the substitution types were chosen at 

random and the fitness values were assessed individually. Our library contains 95 mutants 

distributed across the eight genomic RNA in proportion to the size of each segment and an 

additional 33 random mutations in the segments encoding the surface proteins hemagglutinin 

(HA) and neuraminidase (NA). Thus, a total of 57 mutations occur in HA and NA and 71 in the 

other six segments. For the present study, we excluded 27 synonymous mutations and 6 
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beneficial missense mutations and considered the remaining 95 missense transitions and 

transversions that had fitness values equal to or less than one. We performed our analyses on the 

total library (N = 95), the genes encoding the internal proteins only (N = 53), and the genes 

encoding the surface proteins only (N = 42) (Supplemental Table 3-1; Total, Internal, and 

Surface datasets, respectively). Each of these data subsets is larger than the analogous genome-

wide datasets of other viruses. 

 

As described by Stoltzfus and Norris (Stoltzfus and Norris 2016), we identified 

differences in the fitness effects of Ts and Tv by calculating the area under the curve (AUC) of a 

receiver operating characteristic (ROC) curve. An ROC curve plots the true positive rate against 

the false positive rate of a binary classifier system as the discrimination threshold varies. 

Consider a hypothetical example using a binary classifier system to predict whether a mutation is 

a transition or a transversion without prior knowledge of its identity. If the fitness of the mutation 

is above a fitness level threshold, it is categorized as a transition, and if it is below the threshold, 

it is categorized as a transversion. The AUC is equivalent to the probability that a randomly 

chosen transition is more fit than a randomly chosen transversion. The AUC can be calculated 

from the Mann-Whitney U test statistic (see Materials and Methods) (Hanley and McNeil 1982; 

Mason and Graham 2002). An AUC of 1 would indicate that all transitions are more fit than all 

transversions, and an AUC of 0 would indicate that all transversions are more fit than all 

transitions. The null expectation is an AUC of 0.50. To identify the points along the fitness 

distribution at which there is a Ts-Tv difference, we calculated the AUC among mutations at or 

above 10 successively higher fitness thresholds, starting at 0 and increasing each threshold by 

0.10. 
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Figure 3-1 Differences in Ts and Tv Fitness Effects as measured by AUC 

Transition-transversion (Ts-Tv) fitness differences as measured by area under the curve of an ROC curve (AUC) for the total, 

internal, and surface influenza datasets. To identify the points along the fitness distribution at which there is a Ts-Tv difference, 

the AUC was calculated among mutations at or above 10 successively higher fitness thresholds, starting at 0 and increasing by 

0.10. Filled circles denote p <0.05 for a one-sided Mann-Whitney U test where the alternative is transitions are more fit at that 

threshold. Lines shown to clarify trends only. Plotted data and raw p-values can be found at 

https://github.com/lauringlab/tstv_paper. 

Using the AUC criterion, we did not find a statistically significant difference between the 

fitness effects of transition and transversion mutations across the total dataset, the internal 

dataset, or the surface (HA/NA) dataset (Figure 3-1, relative fitness threshold of 0). However, 

we detected a significant difference when we examined only non-lethal mutations (Figure 3-1, 

relative fitness threshold of 0.1; there were no mutations with a fitness value between 0 and 0.1). 

Among the viable fraction, transitions are significantly more fit than transversions (AUC = 0.65, 
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p = 0.03). This fitness difference is more pronounced in the internal dataset (AUC = 0.74, p = 

0.02) but is not present among the surface dataset. As the thresholds approach 1, the Ts-Tv 

difference approaches 0.5 and loses significance (perhaps due to decreasing sample size) in both 

the genome-wide and internal datasets. In contrast, we never found transversions to be 

significantly more fit than transitions. Thus, viable transitions are more fit than viable 

transversions, and this fitness difference varies between the internal and surface datasets. 

 

Our findings in influenza differ from those in other viruses (HIV integrase, HIV capsid, 

TEV, F1, VSV, Qβ, ϕX174) (Stoltzfus and Norris 2016). While selective constraints could 

potentially differ among these viruses, another factor could be the greater statistical power of our 

influenza dataset due to our larger sample size as compared to the other genome-wide viral 

datasets. Our influenza virus datasets were smaller, however, than those in the HIV integrase and 

capsid studies. 

An alternative statistical approach better captures Ts-Tv fitness differences 

The fact that we could only identify a significant difference in influenza by excluding 

lethal mutations suggests an inherent bias in the AUC threshold analysis and led us to reexamine 

our statistical framework. If transitions are more likely to be lethal in influenza, this would offset 

their advantage among viable mutations. More generally, as the fitness threshold increases, the 

AUC reflects only the Ts-Tv differences at the higher end of the fitness distribution. In fact, 

when we applied decreasing, as opposed to increasing, thresholds, many of our conclusions were 

opposite from those obtained with increasing thresholds (Supplemental Figure 3-1). In this case, 

the influenza total dataset is weighted by strongly detrimental transitions and no fitness 

differences between Ts and Tv were detected at any threshold. In the larger HIV capsid and 
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combined integrase and capsid datasets, we observed a previously unrecognized, and statistically 

significant, Ts-Tv difference at decreasing thresholds driven by the inclusion of strongly 

detrimental transversions (Stoltzfus and Norris 2016). 

 

To capture differences in the distribution of fitness effects between transitions and 

transversions more completely, we compared the empirical cumulative distribution functions 

(CDF) of each mutation type. The CDF reveal only subtle differences between transitions and 

transversions in the total influenza dataset, with more transitions at low fitness levels and more 

transversions at intermediate fitness levels (Figure 3-2A, top). The difference between 

transitions and transversions is greater for the internal dataset, where 75% of transversions have 

a lower fitness compared to only 50% of transitions at a fitness threshold of 0.8. However, 

transitions are proportionally over-represented below a fitness of 0.3. In contrast, the AUC 

threshold analysis for the internal influenza dataset seems to suggest a Ts-Tv fitness difference 

Figure 3-2 Comparisons of the Distribution of Ts and Tv Fitness Effects 

Empirical cumulative distribution functions of transitions (solid line) and transversions (dotted line) in our influenza datasets (A, 

top) and the HIV combined, integrase (IN), and capsid (CA) datasets (B, top). Odds ratios indicate the odds of a transversion 

versus a transition to be at or below each of 10 relative fitness thresholds as estimated by a Fisher test for our influenza datasets 

(A, bottom) and HIV datasets (B, bottom). Filled circles denote p < 0.05 for a two-sided test with Holm-Bonferroni correction. 

Lines shown to clarify trends only. 
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starting at 0.1 and decreasing to no difference at 0.8 (Figure 3-1), precisely the opposite of the 

differences in the distributions (Figure 3-2A).  

 

Recognizing these issues, we implemented a different statistical approach that is an 

explicit comparison of the Ts and Tv CDF and is therefore better able to resolve differences in 

the distributions of fitness effects. We used 10 fitness thresholds from 0 to 0.9 with a step of 0.1. 

At each fitness level, we performed a Fisher test to compare the proportion of transversions and 

transitions at or below the threshold. The estimated effect size is the odds ratio for transversions 

to be at or below the threshold compared to transitions. As this approach never excludes data, it 

is less biased by the fitness values at the tails of the distributions. Unlike the AUC (see Figure 3-

1), the odds ratios closely follow the divergence in the corresponding CDF (compare top and 

bottom panels in Figure 3-2).  

 

We used this approach to reanalyze data from our influenza datasets as well as those for 

HIV integrase (IN) and capsid (CA). Using a conservative Holm-Bonferroni correction for 

multiple comparisons, we did not find a statistically significant difference between transition and 

transversion mutations in influenza at any fitness level (Figure 3-2A, bottom). The CDF suggests 

that the impact of transitions relative to transversions at low fitness levels (0-0.3) is indeed offset 

by their impact at higher ones (0.6-1). There are no significant Ts-Tv differences in either of the 

two HIV datasets or in the combined dataset. However, there is a trend across the HIV datasets 

suggesting that transversions are more likely to be lethal as compared to transitions (Figure 3-2B, 

bottom, first threshold), an effect missed by the AUC analysis. We note that while the original 

HIV studies considered a fitness below 0.02 to be lethal (Rihn et al. 2013; Rihn et al. 2015); we 
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applied a strict and consistent criterion for lethality across the datasets and considered a fitness of 

0 to be lethal. 

Transversions are more detrimental in larger influenza and HIV datasets 

While the influenza and HIV datasets are relatively large for studies of viral mutational 

fitness effects, they sample only a small fraction of the total number of possible point mutations. 

The influenza library contains a median of 11 missense mutations per gene and the HIV IN and 

CA datasets have 156 and 135 missense mutations, respectively. To increase our power, we 

analyzed available data from deep mutational scanning (DMS) studies of four viral proteins: the 

nucleoprotein (NP) of influenza A/Puerto Rico/8/1934 H1N1 and influenza A/Aichi/2/1968 

H3N2, the HA protein from the same strain as our mutants (influenza A/WSN/1933 H1N1), and 

the HIV envelope (ENV) protein (Bloom 2014; Doud et al. 2015; Doud and Bloom 2016; 

Haddox et al. 2016). Importantly, these four studies all used the same approach and were 

performed in the same laboratory. 

 

DMS uses high-throughput mutagenesis to introduce every single amino acid substitution 

in a given gene followed by deep sequencing to measure the change in frequency of each 

mutation after passage or selection. The effect of each mutation is often reported as a site 

preference, which represents the expected proportion of an amino acid at a site if all amino acids 

at that site were present at equal proportions prior to passaging. We derived a relative site 

preference from these data by dividing the site preference for each mutant by the site preference 

for the “wild type” amino acid. We found that relative site preference is a reasonable surrogate 

for relative fitness, as they are well correlated for mutations in the WSN33 HA gene (Spearman 

correlation 0.71, p = 2.5 x 10-5, Table 1). Our fitness values for WSN33 NP also exhibit a 
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statistically significant correlation with the DMS data from the closely related PR8 H1N1 strain, 

but not with the more distant H3N2 strain. 

 

The DMS studies report changes at the amino acid level. Therefore, for each codon in the 

nucleotide sequence, we asked which amino acid substitutions could only be made by a single 

transition (Ts-only) and which could only be made by a single transversion (Tv-only). We 

excluded the amino acid substitutions that were accessible by both transitions and transversions 

as well as those that required more than one mutation per codon. We then compared the relative 

site preferences of Ts-only amino acid changes to those of Tv-only using the Fisher threshold 

strategy. We used an initial threshold of 0.05 rather than 0, since there are no site preferences of 

0 in these datasets, and DMS studies are known to under-sample the lethal fraction. The large 

sample sizes of the DMS studies (Supplemental Table 3-1) allowed us to use more thresholds 

(increasing each by 0.05 instead of 0.01), thereby identifying Ts-Tv differences in the CDF with 

greater precision.  

 

We found transversions to be significantly more detrimental than transitions at a subset of 

relative site preference levels in three of the four DMS datasets (Figure 3-3). In NP (H3N2), 

transversions tend to be more detrimental than transitions across most of the fitness distribution, 

but no threshold achieved statistical significance using a Holm-Bonferroni correction (Figure 3-

3A). In NP (H1N1), transversions are significantly more likely to be highly detrimental than 

transitions (first threshold), and there is a trend for transversions to be more detrimental at higher 

relative site preferences as well (Figure 3-3A). Contrary to the trend in our smaller influenza 

study, the Ts-Tv fitness differences are larger and more broadly distributed in genes coding for 
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the two surface proteins, HA and HIV ENV (Figure 3-3B), as compared to the genes coding for 

the internal influenza NP proteins. In HA (H1N1), transversions are significantly more 

detrimental than transitions across most of the fitness distribution. The Ts-Tv difference is 

especially pronounced in HIV ENV, for which the odds of a transversion being highly 

detrimental (thresholds from 0.05-0.20) is 2-5 times greater than those of a transition. Across the 

four datasets, we never found transitions to be significantly more detrimental than transversions, 

and the odds ratio is rarely below 1 for any of the datasets. Thus, with an improved statistical 

approach and greater power, we found transitions to be less damaging than transversions in 

proteins from two viruses. 

Differences in Ts and Tv fitness effects within radical and conservative substitution classes 

We next asked why transversions are more detrimental than transitions. The genetic code 

constrains the type of amino acid substitutions accessible by mutation, and it has been proposed 

Figure 3-3 Distribution of Ts and Tv Fitness Effects in Deep Mutational Scanning Datasets 

Empirical cumulative distribution functions of transitions (solid line) and transversions (dotted line) in two nucleoprotein (NP) 

proteins (A, top) and two antigenic surface proteins influenza hemagglutinin (HA) and HIV envelope (ENV) (B, top). Odds ratio 

estimated by a Fisher test comparing the odds of a transversion versus a transition to be at or below each of 19 fitness thresholds, 

beginning at a fitness of 0.05 and increasing by 0.05, for the same datasets (A and B, bottom). Filled circles denote p < 0.05 for a 

two-sided test with Holm-Bonferroni correction. Lines shown to clarify trends only. Plotted data and raw p-values can be found 

at https://github.com/lauringlab/tstv_paper. 
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that transversions are more detrimental because they are more likely to cause substitutions that 

radically alter biochemical properties of the original amino acid. We therefore examined whether 

the observed fitness differences could be explained by the differences in the accessibility of 

radical versus conservative amino acid changes by transitions and transversions. 

 

We used the Fisher threshold strategy to test whether radical amino acid changes are 

more detrimental than conservative changes for three of the most commonly cited biochemical 

distinctions, which categorize amino acids based on charge, polarity, and polarity and size, 

(Miyata et al. 1979; Zhang 2000) (see Supplemental Table 3-2). Similar categories have been 

used in other studies of protein evolution (Epstein 1967; Grantham 1974). Radical amino acid 

substitutions of all three types are more detrimental than conservative changes in the two NP 

proteins across much of the fitness distribution (Figure 3-4). Radical changes of polarity (red) 

and polarity and size (blue) are also more detrimental than conservative changes in the two 

surface proteins HA (H1N1) and HIV ENV. Radical charge changes (black) have similar effects 

on fitness as compared to conservative changes in both HA (H1N1) and HIV ENV. Despite this 

variation in the impact of changes in charge, these simple categories are remarkably predictive of 

fitness effects across these four proteins. 

 

Transversions may be more detrimental than transitions in these four proteins if they are 

more likely than transitions to cause a radical amino acid change. As above, we considered 

amino acid substitutions that could only be made by a single transition (Ts-only) or by a single 

transversion (Tv-only). Using a Fisher test, we compared the odds that a Tv-only amino acid is 

radical to the odds that a Ts-only amino acid change is radical as defined by each of the three 
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categories above. We considered all possible Tv-only and Ts-only amino acid changes in these 

four proteins. For all four proteins, the odds of a transversion causing a radical change of any of 

these three types is significantly greater than the odds of a transition causing a radical change 

(Table 2). This difference is greatest for amino acid substitutions that affect polarity for all 

genes.  

 

We next examined whether the fact that transversions are more likely to be radical 

explains all of the observed differences in Ts-Tv fitness effects in the DMS studies. If the fitness 

differences can be accounted for by this bias, the differences should be eliminated when 

comparing both radical Ts to radical Tv and conservative Ts to conservative Tv. Alternatively, if 

this bias does not account for the difference, one would see a difference in fitness between 

transitions and transversions among radical or among conservative changes of a given category. 

Figure 3-4 Distribution of Radical and Conservative Amino Acid Changes  

Empirical cumulative distribution functions (CDF) of conservative (solid lines) and radical (dotted lines) amino acid changes in 

deep mutational scanning datasets of two NP proteins (A, top) and two antigenic surface proteins (B, top). Shown for amino acid 

changes classified by charge (black), polarity (red), and polarity and size (blue). Odds ratio estimated by a Fisher test comparing 

the odds of a radical versus a conservative amino acid change to be at or below each of 19 fitness thresholds, beginning at a 

fitness of 0.05 and increasing in steps of 0.05, for the same datasets (A and B, bottom). Color scheme is the same as in the CDFs. 

Filled circles denote p < 0.05 for a two-sided test with Holm-Bonferroni correction. Lines shown to clarify trends only. Plotted 

data and raw p-values can be found at https://github.com/lauringlab/tstv_paper. 
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We first compared radical transitions to radical transversions. In NP (H3N2), there are no 

significant Ts-Tv differences among radical charge (black) or radical polarity and size (blue) 

changes. However, among radical polarity (red) changes, transversions are more detrimental than 

transitions—an effect not seen in the overall dataset (Figure 3-3A). In NP (H1N1), radical 

transversions are more detrimental than radical transitions for all three amino acid classifications 

at the first threshold (Figure 3-5A). In both NP proteins, the Ts-Tv fitness difference is greater in 

magnitude among radical polarity changes as compared to the differences among all mutations 

(the odds ratio is > 3 in Figure 3-5A but is ≤ 2 in Figure 3-3A), indicating that controlling for 

radical transversions can increase rather than eliminate Ts-Tv differences. In HA (H1N1), there 

are no significant Ts-Tv differences among radical charge changes. However, among radical 

polarity and polarity and size changes, transversions are more detrimental than transitions. 

Figure 3-5 Distribution of Radical Ts and Radical Tv 

Empirical cumulative distribution functions of radical transitions (solid lines) and radical transversions (dotted lines) in deep 

mutational scanning datasets of two NP proteins (A, top) and two antigenic surface proteins (B, top). Computed for radical amino 

acid changes classified by charge (black), polarity (red), and polarity and size (blue). Odds ratio estimated by a Fisher test 

comparing the odds of a radical transversion versus a radical transition to be at or below each of 19 fitness thresholds, beginning 

a t a fitness of 0.05 and increasing by 0.05, for the same datasets (A and B, bottom). Color scheme is the same as in the CDFs. 

Filled circles denote p < 0.05 for a two-sided test with Holm-Bonferroni correction. Lines shown to clarify trends only. Plotted 

data and raw p-values can be found at https://github.com/lauringlab/tstv_paper. 
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Similarly, in HIV ENV, there are no Ts-Tv differences among radical charge changes (Figure 3-

5B). Transversions are more detrimental than transitions among radical polarity and polarity and 

size changes, although to a lesser degree as compared to overall in Figure 3-3. Thus, even among 

radical substitutions of three different amino acid categories, transitions tend to be less 

detrimental than transversions.  

 

We then compared conservative transitions to conservative transversions (Figure 3-6). In 

both NP proteins, there are no significant Ts-Tv differences among conservative changes of all 

three amino acid classes (Figure 3-6A). In HA (H1N1), there are no significant Ts-Tv differences 

among conservative polarity or polarity and size changes. However, transversions are more 

detrimental than transitions among conservative charge changes. In HIV ENV, transversions are 

more detrimental than transitions among conservative changes of all three types (Figure 3-6B). 

Among conservative polarity and size changes, the odds ratio at the second threshold (>6) is 

Figure 3-6 Distribution of Conservative Ts and Conservative Tv 

Empirical cumulative distribution functions of conservative transitions (solid lines) and conservative transversions (dotted lines) 

in deep mutational scanning datasets of two NP proteins (A, top) and two antigenic surface proteins (B, top). Computed for 

conservative amino acid changes classified by charge (black), polarity (red), and polarity and size (blue). Odds ratio estimated by 

a Fisher test comparing the odds of a conservative transversion versus a conservative transition to be at or below each of 19 

fitness thresholds, beginning at a fitness of 0.05 and increasing by 0.05, for the same datasets (A and B, bottom). Color scheme is 

the same as in the CDFs. Filled circles denote p < .05 for a two-sided test with Holm-Bonferroni correction. Lines shown to 

clarify trends only. Plotted data and raw p-values can be found at https://github.com/lauringlab/tstv_paper. 



 93 

higher than the odds ratios when comparing all Ts and Tv mutations (Figure 3-3B, <4), 

indicating that controlling for the conservation of transitions can increase rather than eliminate 

Ts-Tv differences. However, the Ts-Tv differences are reduced among conservative polarity 

changes as compared to overall (compare the first thresholds—the odds ratio is ~ 2 in Figure 3-

6B but ~ 5 in Figure 3-3B). Thus, conservative transversions are more detrimental than 

conservative transitions for these three categories in some of the datasets. 

 

In sum, transversions are more detrimental than transitions either among radical or 

among conservative changes of all three amino acid classes in all four proteins (Table 3). In 

some cases, Ts-Tv fitness differences were increased when we constrained the analysis to just 

radical or conservative changes. For NP (H3N2), the constrained analysis revealed a Ts-Tv 

fitness difference among radical polarity changes that was not observed overall. In other cases, 

Ts-Tv fitness differences were eliminated or reduced, mostly when constraining the analysis to 

conservative changes. Thus, these three amino acid categories at best only partially explain the 

Ts-Tv fitness differences in these proteins, with conservative transitions and transversions 

generally being more similar in fitness than overall. 

 

Discussion 

We addressed a longstanding question in molecular evolution, whether the observed 

Ts:Tv substitution bias is due to a mutational bias or to selection disfavoring transversions. We 

found that missense transversions are more detrimental to fitness than transitions in two RNA 

viruses, influenza and HIV. Our study therefore provides direct support for the selective 

hypothesis. Furthermore, transversions are more detrimental even when controlling for their 
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greater likelihood of causing a radical amino acid change. These data demonstrate that 

commonly used classifications of amino acid changes may not adequately capture the varying 

selective constraints on different proteins. 

 

The fitness differences between transitions and transversions can be measured in multiple 

ways and are not well described by a single summary statistic. In four analyzed DMS datasets, 

the distribution of fitness effects of transversions is shifted toward more deleterious effects. 

However, they differ at the fitness level at which the shift occurs. We suggest that one 

explanation for finding a null result is the use of AUC as a summary statistic, which can over-

weight effects at the ends of the fitness distribution and obscure differences in other regions. In 

contrast, our use of a Fisher test and large DMS datasets allowed for explicit comparisons of Ts 

and Tv fitness effects along the distributions without sacrificing power. 

 

Several observations support the idea that the small but significant Ts-Tv fitness 

differences we identify are biologically relevant and can plausibly explain the Ts:Tv substitution 

bias. First, despite variation in the Ts-Tv fitness differences, transitions are never more 

detrimental than transversions, and transversions are either similar to transitions or more 

detrimental (Table 3). This consistent trend suggests that we are identifying a biologically 

important generality in the effects of transitions and transversions and not simply subtle 

variations in effects in the highly powered DMS datasets. Second, the Ts-Tv fitness differences 

in many cases are similar to or even greater than those between radical and conservative amino 

acid changes. For example, at the low-fitness end of the HIV ENV distribution, the Ts-Tv fitness 

difference (Figure 3-3) is greater than that between radical and conservative changes of any type 
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at any fitness level for any gene studied (Figure 3-4). The radical/conservative distinction has 

widely accepted evolutionary consequences—conservative substitutions occur more often than 

radical ones in proteins under purifying selection (Epstein 1967; Clarke 1970; Miyata et al. 1979; 

Eyre-Walker et al. 2000; Zhang 2000; Miller and Kumar 2001; Duda et al. 2002; Popadin et al. 

2007). If the fitness differences between radical and conservative changes have consequences for 

protein evolution, then the similar or greater fitness differences between transversions and 

transitions are likely to be consequential as well. Finally, the biological relevance of these effects 

is also supported by our own and other measurements of Ts and Tv mutation rates in several 

influenza strains (Bloom 2014; Pauly, Procario, et al. 2017). The Ts:Tv mutational bias is 2-3.6, 

significantly less than the average observed Ts:Tv substitution ratio of 5.24 in influenza 

(Duchêne et al. 2015). These measured mutational biases demonstrate that the selective and 

mutational hypotheses for the Ts:Tv substitution bias are not mutually exclusive. An important 

area for future work will be to determine the relative impact of the transitional mutational and 

selective biases on the overall Ts:Tv substitution bias, particularly in varying genomic contexts 

(e.g. coding vs. noncoding regions). 

 

While transversions are more likely to be radical than transitions, this bias only partially 

accounts for the observed differences in fitness effects. This is perhaps not surprising, as the 

radical/conservative distinction may not capture the varying constraints on proteins of diverse 

structure and function. For example, the radical/conservative distinction did not always predict 

fitness in viral genes. We suggest that the Ts-Tv distinction might be able to better capture these 

differing functional constraints because transversions are more likely to be radical for a number 

of different amino acid categories, not just the three analyzed here (Stoltzfus and Norris 2016). 
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Dozens of amino acid categories and many other metrics, such those provided by Polyphen and 

SIFT, exist for predicting the fitness effects of amino acid substitutions (Kawashima et al. 2008; 

Kumar et al. 2009; Stoltzfus and Norris 2016). Any one of our simple categories cannot 

themselves explain the Ts-Tv fitness difference, but their combination, represented in the Ts-Tv 

distinction, can be quite generally predictive of fitness. Therefore, just as the radical/conservative 

substitution ratio has been used to detect relaxed selection or positive selection (Hughes et al. 

1990; Eyre-Walker et al. 2000; Zhang et al. 2002; Pupko et al. 2003; Zhang and Webb 2004; 

Tennessen 2005; Shen et al. 2009; Wernegreen 2011), our data support the use of the Ts:Tv ratio 

as an independent, and perhaps more general, test of selection. 

 

We focused on non-synonymous point mutations because the available evidence suggests 

that these have greater fitness impacts than synonymous or non-coding mutations (Cuevas et al. 

2012). Significant fitness effects from synonymous substitutions are more often observed with 

large scale changes rather than individual mutations; for example, a complete change in the 

codon usage of a gene (Lauring et al. 2012). Other selective pressures on synonymous or non-

coding sequences include regulation of replication and translation (Groeneveld et al. 1995; 

Klovins et al. 1998), targeting by host RNAses (Klovins et al. 1997), and G+C content and 

thermostability of RNA structures with various functions (Schultes et al. 1997; Smit et al. 2009; 

Watts et al. 2009). While it is possible that these selective pressures also contribute to the 

observed fitness disadvantage of transversions, the main factor is likely the amino acid change. 

 

Our data suggest that the predictive value of the radical/conservative amino acid 

distinctions may vary due to differing functions of the structural and nonstructural proteins of 
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viruses. Genes encoding for the surface proteins often have a history of intense frequency-

dependent selection and may exhibit tolerance to mutations that allow for immune escape while 

preserving their essential functions of binding and fusion (Stephens and Waelbroeck 1999; 

Plotkin and Dushoff 2003; Thyagarajan and Bloom 2014; Doud and Bloom 2016; Visher et al. 

2016). We therefore expected radical amino acid changes, which may allow for immune escape, 

to exhibit a less pronounced fitness disadvantage in the surface proteins (HA and ENV) as 

compared to the internal NP proteins. This is true for charge changes, but not for polarity and 

polarity and size changes. This observation is also in agreement with two studies of codon usage 

bias in HA and HIV ENV (Stephens and Waelbroeck 1999; Plotkin and Dushoff 2003). These 

studies found that, as compared to non-antigenic regions or genes, the antigenic regions exhibit a 

bias toward codons that tend to mutate non-synonymously, but not toward codons that tend to 

mutate to radical polarity and size changes. Charge changes were not evaluated. Thus, these 

genes may be more tolerant of charge changes that allow for immune escape. If correct, one 

might expect a bias toward codons that preferentially mutate to radical charge changes and that 

charge changes, rather than polarity and/or size changes, more often lead to escape from host 

immune pressure. 

 

The observed Ts-Tv fitness differences suggest an evolutionarily-informed approach to 

improving antiviral strategies. Mutagenic drugs have been used to cause extinction of a variety 

of viruses in cell culture, a strategy called lethal mutagenesis (Anderson et al. 2004; Bull et al. 

2007). There has been little consideration regarding the choice of mutagenic drug, and most 

commonly employed mutagens cause transitions (Crotty et al. 2001; Ruiz-Jarabo et al. 2003; 

Graci and Cameron 2008; Dapp et al. 2009). We suggest that the most effective way to achieve 
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lethal mutagenesis may be by using drugs that increase the rate of the more deleterious 

transversion mutations. In fact, a previous report from our lab showed that the influenza RNA 

polymerase makes fewer transversions than transitions (Pauly and Lauring 2015). Additionally, 

5-azacytidine, a mutagenic drug that causes transversions, is more effective at reducing viral 

infectivity than two drugs that cause transitions (Pauly and Lauring 2015). Given our results, we 

speculate that the same may be true for HIV.  

 

Here we find that despite being broad mutational categories, transitions and transversions 

can capture functional constraints in very different proteins in two viruses. Although the 

underlying reason for the relative fitness advantage of transitions likely depends on the structure 

of the genetic code and the accessibility of different types of amino acids, we have shown that 

the reason is not as simple as the lower likelihood of a transition causing radical changes of 

certain broad categories. One possibility is that the codon usage in RNA viruses may have 

evolved in part to buffer a transitional mutation load (Sanjuán 2010; Lauring et al. 2012) due to 

their high mutation rates and underlying transitional mutation bias (Drake and Holland 1999; 

Pauly, Procario, et al. 2017). Identifying the combination of biochemical factors that lead to the 

fitness advantage of transitions, the relative effects of selection and mutational biases on the 

overall Ts:Tv substitution bias, and the degree to which these results extend beyond RNA viruses 

will be important areas of further research. 
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Materials and Methods 

Data 

All fitness and site preference data were obtained from supplementary material in the 

published articles or provided by the authors directly. Please see the original papers for details on 

measurements fitness and site preference (Rihn et al. 2013; Thyagarajan and Bloom 2014; Doud 

et al. 2015; Rihn et al. 2015; Doud and Bloom 2016; Haddox et al. 2016). To identify transition-

only and transversion-only accessible amino acid substitutions for the mutational scanning data, 

we obtained the backbone nucleotide sequence of the genes in which the amino acid substitutions 

were made. These were provided in supplemental files in the published articles for HA (H1N1), 

NP (H3N2) and HIV ENV. The sequence for NP (H1N1) was obtained from Genbank 

(Accession number EF467822.1). All sequences can be found online at 

https://github.com/lauringlab/tstv_paper. For all our analyses, we excluded beneficial mutations, 

synonymous mutations, and amino acid substitutions accessible by both transitions and 

transversions or requiring more than one nucleotide mutation. 

AUC Analysis 

Our AUC analysis was performed exactly as in Stoltzfus and Norris 2016. An ROC curve 

plots the true positive rate against the false positive rate of a binary classifier system as the 

discrimination threshold varies. The AUC is the area under this curve. Consider a hypothetical 

example in which a fitness value between 0 and 1 serves as a discrimination threshold used to 

predict whether a mutation is a transition or a transversion. A mutation with a fitness value above 

the threshold level will be classified as a transition and below the threshold level as a 

transversion. Thus, the true positive rate is the proportion of transitions above the threshold and 

the false positive rate is the proportion of transversions above the threshold. If transitions and 

https://github.com/lauringlab/tstv_paper
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transversions do not differ in their fitness effects, the true positive rate will be equal to the false 

positive rate at all threshold levels and an ROC curve would show a 1:1 line. The AUC in this 

null case is half of the total ROC plot area, or 0.5. If transitions generally have a higher fitness 

than transversions, the true positive rate will be higher than the false positive rate at most 

threshold levels. The corresponding ROC curve would have a steeper slope than a 1:1 line and 

have an AUC greater than 0.5. The greater the difference in fitness between transitions and 

transversions, the greater the difference between the true positive rates and the false positive 

rates, leading to a steeper ROC curve and a greater AUC. The AUC is mathematically equivalent 

to the chance that a randomly chosen positive instance of the classifier system is ranked higher 

than a randomly chosen negative instance (Hanley and McNeil 1982; Mason and Graham 2002). 

Thus, for our analysis, the AUC is the probability that a randomly chosen transition has a higher 

fitness value than a randomly chosen transversion. The AUC is calculated from the Mann-

Whitney U test (Hanley and McNeil 1982; Mason and Graham 2002): AUC = (pairs – 

statistic)/pairs, where pairs = number of transitions × number of transversions and statistic is 

the Mann-Whitney U test statistic comparing the fitness values of transitions and transversions. 

Statistics were calculated using the wilcox.test() function in R. All p values are for a one-sided 

Mann-Whitney U test where the alternative hypothesis is that transitions are ranked higher than 

transversions. 

Empirical CDF and Odds Ratios 

Empirical CDF were computed using the ggplot2 stat_ecdf function in R. Odds ratios 

were estimated by Fisher’s exact test using the fisher.test() function in R. When the odds ratio 

was calculated as infinite (e.g. when transversions fall below a relative fitness threshold but no 

transitions fall below the threshold), the estimated lower 95% confidence interval of the odds 
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ratio was plotted. All p values are for a two-sided test. Holm-Bonferroni correction was 

implemented when comparisons were performed at multiple fitness level thresholds for a given 

dataset. 

Availability of Computer Code and Data 

R version 3.3.2 was used for all data analysis and to create all figures. Scripts and data 

are available online at https://github.com/lauringlab/tstv_paper as are all plotted data along with 

unadjusted p values for all figures. 
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Supplemental Figures and Tables 

 

 

Supplemental Figure 3-1 Differences in Ts and Tv Fitness Effects as measured by AUC using Decreasing Thresholds 

Ts-Tv fitness differences as measured by AUC among mutations at or below successively lower fitness thresholds in our 

influenza datasets (top) and the HIV datasets (bottom). Thresholds decrease by a fitness of 0.1, starting at 1 and ending at 0.1. 

Filled circles denote p < 0.05 for a one-sided Mann-Whitney U test where the alternative is transitions are more fit. Lines shown 

to clarify trends only. Plotted data and raw p-values can be found at https://github.com/lauringlab/tstv_paper.
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Supplemental Table 3-1 Sample size of datasets 
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Supplemental Table 3-2 Amino Acid classifications 
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Chapter 4 The Best Substitutions are also the Worst and Hardest to Make  

 

Abstract  

Understanding the evolutionary constraints on proteins and the properties of mutations and genes 

responsible for adaptive changes are major goals in molecular evolution.  Many such studies 

have assumed that amino acid classifications based on simple biochemical properties can capture 

differences in fitness effects between substitutions that radically versus conservatively change 

these biochemical properties. For example, like the non-synonymous to synonymous substitution 

ratio, the ratio of radical to conservative substitutions has been used to detect positive selection. 

Similarly, studies examining whether adaptation proceeds by large or small steps have assumed 

that these radical/conservative distinctions reflect mutational effect size. However, there is some 

doubt as to the extent to which radical/conservative distinctions are predictive of fitness effects. 

Phylogenetic evidence that radical substitutions are more deleterious may instead reflect 

mutational biases or the structure of the genetic code. Here, using deep mutational scanning 

studies of several RNA viruses, we show that common radical/conservative classifications are in 

fact predictive of fitness differences. Interestingly, radical substitutions are both more 

detrimental and more beneficial, when beneficial. These same patterns hold for multi-nucleotide 

codon mutations, which are more likely to cause a radical substitutions, as compared to single-

nucleotide mutations. Thus, our results validate the use of radical/conservative classifications in 

the study of protein evolution and support the hypothesis that the structure of the genetic code 

evolved to minimize errors. 
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Introduction 

Decades of work in molecular evolution have assumed that radical versus conservative changes 

in the biochemical properties of amino acids correspond to their fitness effects. In the 1960’s 

Woese and Crick proposed that the genetic code evolved to minimize the detrimental effect of 

single nucleotide mutations because more similar amino acids (in terms of polarity or other 

properties) have more similar codons (Woese 1965; Woese et al. 1966; Crick 1968). Studies on 

how protein evolution is shaped by purifying selection make the same assumption that 

substitutions between amino acids that are more similar in biochemical properties have less 

detrimental fitness effects (Epstein 1967; Clarke 1970; Miyata et al. 1979; Eyre-Walker et al. 

2000; Zhang 2000; Miller and Kumar 2001; Duda et al. 2002; Popadin et al. 2007; Chen, Lan, et 

al. 2019).   

 

Radical/conservative amino acid classifications have also been important in the study of adaptive 

evolution. For example, does adaptive evolution proceed through small or large steps? A number 

of conflicting conclusions on this question at the molecular level have arisen (Hughes et al. 2000; 

Rand et al. 2000; Bergman and Eyre-Walker 2019; Chen, He, et al. 2019; Chen, Lan, et al. 

2019). Such studies have assumed that simple radical/conservative classifications capture true 

differences in the size of phenotypic and fitness effects. Like the ratio of non-synonymous to 

synonymous substitutions (ns/s), the ratio of radical to conservative substitutions has been used 

to detect positive selection (Hughes et al. 1990; Eyre-Walker et al. 2000; Hughes et al. 2000; 

Zhang et al. 2002; Pupko et al. 2003; Zhang and Webb 2004; Tennessen 2005; Gojobori et al. 

2007; Shen et al. 2009; Wernegreen 2011).  Possibly the first example is Nei and colleagues’ 

detection of positive selection at MHC antigen-binding loci, helping explain the maintenance of 
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polymorphisms due to host-pathogen coevolution (Hughes et al. 1990). Additionally, the ns/s 

ratio is unreliable when synonymous substitutions are saturated, making the radical/conservative 

substitution ratio particularly useful for investigating selection in highly diverged sequences 

(Hanada et al. 2007). 

 

Despite their widespread use, there is some doubt about the extent to which radical/conservative 

distinctions are predictive of fitness effects. Radical substitutions occur less often during protein 

evolution than radical ones, supporting the idea that they are more detrimental (Epstein 1967; 

Clarke 1970; Grantham 1974; Miyata et al. 1979; Zhang 2000). However, this bias may simply 

reflect the structure of the genetic code or mutational biases, rather than selection (Dagan et al. 

2002; Yampolsky and Stoltzfus 2005). There is widespread evidence of a mutational bias 

towards transitions (Zhang and Gerstein 2003; Jiang and Zhao 2006; Baer et al. 2007; Denver et 

al. 2009; Pauly et al. 2017), and transitions are more likely to cause conservative substitutions 

(Vogel and Kopun 1977; Miyata et al. 1979; Zhang 2000). The assumption that radical 

substitutions are more highly beneficial also requires validation – evidence of positive selection 

for radical substitutions can be affected by mutational or codon usage biases (Dagan et al. 2002).  

 

With the advent of high-throughput mutation screens, it now possible to directly test the 

assumptions underlying the use of radical/conservative distinctions.  Recently, we showed that 

radical substitutions are more detrimental than conservative ones in several proteins of two RNA 

viruses. Here, using three of the most commonly used radical/conservative classifications, we 

extend this analysis to additional proteins, and viral strains and species, and we test the 

additional assumptions about the beneficial effects of radical substitutions. We find that radical 
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substitutions are more likely to be detrimental and more highly detrimental, yet are also more 

highly beneficial. Furthermore, we provide direct evidence that the structure of the genetic code 

minimizes detrimental effects, albeit with a tradeoff with the size of beneficial effects. 

Substitutions requiring two or more nucleotide mutations are both more detrimental and more 

highly beneficial. 

Results 

Mutational fitness effects in RNA viruses 

To directly test whether radical/conservative amino acid distinctions are predictive of fitness 

differences, a large dataset of mutational fitness effects with no biases towards the type of 

mutations included is crucial. Recent deep mutational scanning (DMS) studies of RNA viruses 

from the Bloom lab meet this requirement. These studies introduce every single amino acid 

substitution in a given gene followed by deep sequencing to measure the change in frequency of 

each substitution after selection. We curated ten DMS datasets of various strains of three RNA 

viruses, Influenza A, Zika, and HIV-1 (Doud et al. 2015; Doud and Bloom 2016; Haddox et al. 

2016; Haddox et al. 2018; Lee et al. 2018; Soh et al. 2019; Sourisseau et al. 2019: 19). Fitness 

was usually reported as amino acid preference which we transformed to a proxy for relative 

fitness, relative preference, by dividing by the wild-type amino acid preference (Bloom 2015; 

Lyons and Lauring 2017). Relative preference correlates well with relative fitness measured in 

lower-throughput experiments (Visher et al. 2016; Lyons and Lauring 2017). We then 

transformed relative preference to fitness effect by taking the log of the relative preference 

values as in (Soh et al. 2019). Basic information about the ten datasets are in Table 4-1 with 

more details in Supplemental Tables 4-1 thru 4-6.  
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Table 4-1 Viral DMS Datasets 

 

Radical amino acid substitutions are more frequently and more highly detrimental than 

conservative ones 

We classified amino acids according to their charge, polarity, or polarity and size (polarity-size) 

as in (Miyata et al. 1979; Zhang 2000; Lyons and Lauring 2017). Radical amino acid 

substitutions are substitutions between amino acids with different classes (e.g. from a negative to 

a positively charged amino acid) while conservative substitutions are those between amino acids 

in the same category. We hypothesized that radical substitutions are more detrimental than 

conservative ones, in terms of the likelihood they are detrimental and their effect size.  

Species Strain Gene 
Total 

Mutations 

Avg. 
Deleterious 

Effect 

Avg. 
Beneficial 

Effect 

HIV-1  

BF520 ENV 12578 -1.546 0.304 

BG505 ENV 12711 -2.01 0.408 

LAI ENV 13540 -1.828 0.904 

Influenza A 
virus  

A/PR8/1934 
(H1N1) 

NP 9462 -4.065 0.726 

A/Aichi/2/196
8 (H3N2) 

NP 9462 -3.278 0.732 

A/WSN/1933 
(H1N1) 

HA 10716 -3.191 0.55 

A/Perth/16/20
09 (H3N2) 

HA 10755 -2.474 0.525 

A/Green-
winged 

Teal/Ohio/175
/1986 (Avian) 

PB2 14421 -2.705 0.467 

A/Green-
winged 

Teal/Ohio/175
/1986 (Avian) 

PB2 14421 -2.432 0.47 

Zika virus MR766 ENV 9576 -4.31 0.829 
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For each of the ten DMS datasets, we  first calculated the percent of radical or conservative 

substitutions that are detrimental and plotted the difference in this percentage (radical minus 

conservative) (Figure 4-1).  Radical substitutions 

were more likely to be detrimental than 

conservative ones in 27 of 30 comparisons (ten 

datasets across the three classifications) (Figure 4-

1). Considering the average across datasets, the 

percentage that are detrimental for radical  

substitutions is significantly greater than that for 

conservative ones based on polarity and polarity-

size (p < .05, t-test) and trends greater for charge.  

 

We determined whether radical substitutions are 

more highly detrimental than conservative 

substitutions by comparing the detrimental 

mutational effects for each type of substitution in each dataset. Figure 4-2A shows the difference 

in average detrimental effect (Table 4-S3) between radical and conservative substitutions for all 

datasets for the three amino acid classifications. Radical substitutions were more detrimental for 

28 out of 30 comparisons and significantly so for each of the ten datasets for polarity and 

polarity-size, and for six of the ten datasets for charge (p < .05, t-test). Additionally, radical 

substitutions were significantly less detrimental than conservative ones for only one dataset and 

only for charge.  

 

Figure 4-1. Difference in percent detrimental between radical 

and conservative substitutions.  

Difference is calculated as the percentage of radical charge, 

polarity, or polarity and size changes  that were detrimental minus 

that for conservative changes. Colors correspond to different 

datasets as in Figure S-1 
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To see whether the difference in detrimental effect sizes between radical and conservative 

substitutions are substantial biologically, we calculated this difference as a percentage of the 

overall average detrimental effect size. This was done for the 28 comparisons in which radical 

substitutions were more detrimental. The differences were quite large, representing on average 

from 10-25% of the overall average detrimental effect (Figure 4-2B). In other words, the 

difference in effect size between radical and conservative substitutions is 10-25% of the entire 

effect size of an average detrimental mutation.  

 

Notably, the polarity-size classification was the most predictive of both the likelihood a radical 

substitution would be detrimental and its detrimental effect size, whereas charge was the least 

predictive.  
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Figure 4-2 Differences in mutational effects between radical and conservative substitutions.  

Differences in average mutational effects were calculated as the average effect of radical substitutions minus that for conservative 

substitutions for each dataset in each amino acid classification, conditional on being detrimental (A) or beneficial (C).  The difference in 

effects between radical and conservative amino acids as a percentage of the overall average effect size for detrimental (B) or beneficial (B) 

substitutions.  
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Radical amino acid substitutions are more highly beneficial than conservative ones 

To test the common assumption that radical substitutions are more beneficial, conditional on 

being beneficial, we compared the mutational effects of radical versus conservative beneficial 

mutations in each dataset. Figure 4-2C shows the difference in average beneficial effect (Table 

4-S5) between radical and conservative substitutions for all datasets for the three amino acid 

classifications. Radical substitutions were more beneficial than conservative ones in 25 out 30 

comparisons and significantly more beneficial for six and three out of ten datasets for charge and 

polarity-size, respectively (p < .05, t-test). The differences in beneficial effect sizes were quite 

large, representing on average from 5-20% of the effect size of an average beneficial mutation 

(Figure 4-2D). Finally, conservative substitutions were never significantly more beneficial than 

radical ones.  

Non-synonymous multi-nucleotide mutations recapitulate findings for radical amino acid 

substitutions  

Due to the structure of the genetic code, single nucleotide mutations are more likely to cause a 

conservative amino acid substitutions than a radical one. Given our results on 

radical/conservative mutational effects, we hypothesized that amino acid substitutions requiring 

two or three nucleotide mutations are more likely to be detrimental and more highly detrimental, 

but more beneficial when beneficial.  

 

We classified amino acid substitutions as requiring only one, two, or three nucleotide mutations 

based on the standard genetic code. We then performed the same analyses as for 

radical/conservative substitutions, but comparing multi-nucleotide (MTN) to single nucleotide 

(SN) codon changes.   
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Both two- and three-MTN changes were more 

likely to be detrimental than SN changes for all but 

one dataset in the two-MTN class (Figure 4-3). 

Considering the average across datasets, the 

percentage that was detrimental was significantly 

greater for all classes of MTN changes than for SN 

changes (p < .05, t-test).  MTN changes were also 

significantly more detrimental than SN changes for 

all datasets and all MTN classes  (p < .05, t-test) 

(Figure 4-4A). The differences in detrimental 

effect sizes represented on average from 10-15% 

of the effect size of an average detrimental 

mutation (Figure 4-4B, Table 4-S4).  

 

MTN changes were also more beneficial than SN changes, conditional on being beneficial, for 

15 of 20 comparisons (10 datasets across two or three MTN changes) (Figure 4-4C, Table 4-S6). 

This was significant for only one dataset for two- and three-MTN changes, but SN changes were 

never significantly more beneficial than MTN changes (p < .05, t-test). The differences in 

Figure 4-3 Difference in percent detrimental between MTN 

and SN substitutions. 

Difference is calculated as the percentage of substitutions that 

were detrimental among those requiring at minimum 2 or 3 MTN 

mutations minus that for substitutions requiring only one 

nucleotide mutation. 
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beneficial effect sizes (when MTN was more beneficial than SN) represented on average from 5-

10% of the effect size of an average beneficial mutation (Figure 4-4D).  

Figure 4-4 Differences in mutational effects between MTN and SN substitutions.  

Differences in average mutational effects were calculated as the average effect of substitutions requiring at minimum 2 or 3 

MTN mutations minus that for substitutions requiring only one nucleotide mutation, conditional on being detrimental (A) or 

beneficial (C).  The difference in effects between MTN and SN substitutions as a percentage of the overall average effect 

size for detrimental (B) or beneficial (B) substitutions.  



 121 

Discussion 

Here, we used experimental data to verify the long assumed fitness differences between radical 

and conservative substitutions for three commonly used classifications across a variety of genes 

in three viral species. Radical substitutions are more likely to be detrimental and more 

detrimental, but also more beneficial, than conservative substitutions. Multi-nucleotide codon 

changes, which are more likely to be radical, show the same pattern as compared to single-

nucleotide codon changes. 

 

It is difficult to know whether the fitness differences we detect are large enough to impact 

substitutions rates, but one line of reasoning suggests so. The effective population size is 

estimated at 500 for influenza virus in the human population and 1000 for the intra-host HIV-1 

population (Rouzine and Coffin 1999; Kouyos et al. 2006; Bedford et al. 2011).  Thus, the 

threshold fitness effect for a mutation that is more governed by selection than drift (1/Ne) is 

approximately .002 (1/500), using the lower Ne estimate.  Given an average mutational effect 

size of .2 for viable mutations across the influenza genome (Visher et. al., 2016), a 1% effect size 

difference would make the difference between a neutrally evolving conservative mutation and a 

negatively (or positively) selected radical mutation. On average, the differences we observe are 

5-25 times greater than this difference. Of course, this reasoning considers only the situation 

when the conservative mutation is nearly neutral, but not the situation when they are both 

detrimental or beneficial.  Simulations using the determined mutational biases in these viruses 

could be used to further predict the consequences of these fitness differences and compare to 

phylogenetic data. 
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These viral DMS datasets are ideal for studying radical versus conservative and MTN vs SN 

changes because they measure fitness effects for all 19 amino acid substitutions at each position. 

Expanding this analysis to genes from other taxa would be helpful; however, many datasets do 

not contain all possible amino acid substitutions. For example, a recent GFP dataset only 

contains about 6 amino acid substitutions per position and no substitutions that require three 

nucleotide changes (data not shown) (Sarkisyan et al. 2016). Whether the included substitutions 

are random or not is unclear and bias against some substitutions due to low fitness would make 

interpretation challenging. Thus, more empirical work is needed in other taxa.  

 

Our results support the use of radical/conservative distinctions in positive selection (Hughes et 

al. 1990; Eyre-Walker et al. 2000; Hughes et al. 2000; Zhang et al. 2002; Pupko et al. 2003; 

Zhang and Webb 2004; Tennessen 2005; Gojobori et al. 2007; Shen et al. 2009; Wernegreen 

2011). Future work could analyze more radical/conservative classifications to identify the best 

ones for detecting positive selection. The results of one of the most widely used tests for positive 

selection, the branch-site test (Zhang et al. 2005), have recently come under scrutiny because it 

assumes that MTN codon changes are due to successive single substitutions.  Instead, MTN 

codon changes may be due to a bias in polymerases to cause simultaneous multiple mutations in 

nearby sites. This mutational bias has been observed in taxa from yeast to humans (Schrider et al. 

2011).  One study has found that the positive signals from this test can be almost completely 

explained by this mutational bias (Venkat et al. 2018).  On the other hand, a recent phylogenetic 

analysis suggest that multiple substitutions within a codon are enriched compared to multiple 

substitutions straddling two adjacent codons (Zhengting Zou, personal correspondence). This 

suggests positive selection for MTN codon changes even in the setting of simultaneous multiple 
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nucleotide mutations. Our data that MTN codon changes are more beneficial than SN changes 

further support this hypothesis. 

  

The long-standing debate between saltationism versus gradualism has a corollary at the 

molecular level in terms of whether adaptive evolution proceeds through small, i.e. conservative, 

or large, radical, steps (Bell 2009). Fisher’s geometric theory (FGM) supposes that most 

beneficial mutations must be of small effect in order to minimize pleiotropic detrimental effects 

(Tenaillon 2014). Under FGM, more radical changes have pleiotropic tradeoffs which diminish 

both their chance of being beneficial and their beneficial effect size. We find that radical 

substitutions are indeed less likely to be beneficial, but contrary to FGM, they are also the most 

beneficial compared to conservative substitutions. Thus, the largest improvements in fitness 

might require large phenotypic changes, such as those from radical substitutions.  Furthermore, 

adaptive evolution may be biased towards higher effect mutations because they have a higher 

probability of fixation (Kimura 1983). Conflicting conclusions have been made as to how these 

factors play out during adaptive evolution (Hughes et al. 2000; Rand et al. 2000; Bergman and 

Eyre-Walker 2019; Chen, He, et al. 2019; Chen, Lan, et al. 2019). A possible resolution to the 

debate is our finding that while radical substitutions are more beneficial, they are less frequently 

beneficial and more detrimental. This pattern may lead to different conclusions depending on 

how negative selection is controlled for and whether the question is about the relative frequency 

or importance of large versus small steps (Chen, He, et al. 2019). 

 

In new or more stressful environments where wildtype fitness is lower, the supply and effect size 

of beneficial mutations are often higher (Bell 2009).  It is hypothesized that radical phenotypic 
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changes may be more necessary for fitness improvement, as the fitness peak may lie in very 

different phenotypic region. Thus, adaptive evolution may proceed by larger steps in this 

circumstance. Indeed, radical amino acid substitutions are enriched in cases of environmental 

stress (Luo et al. 2017; Xu et al. 2017). DMS studies of viral strains under the stress of drugs, 

antibodies, or new cell types could be used to experimentally test the prediction that radical 

substitutions are less detrimental and even more beneficial under such environmental stresses. 

Moreover, such analyses could help identify the types of mutations important in the evolution of 

drug or immune resistance and host-switching, with implications for public health.  

 

Interestingly, comparison between experimental data and previous phylogenetic results on 

radical/conservative differences may reveal biological differences in protein constraints or 

selection pressures across taxa and genes. For example, in mammals, radical versus conservative 

charge changes showed the largest differences in substitutions rates among the three types of 

radical changes (Zhang 2000). However, in the viral datasets, radical versus conservative 

changes in charge show the least differences in detrimental fitness differences. Insensitivity to 

radical charge changes seems to be most pronounced among the antigenic surface proteins HA 

and ENV compared to the internal NP protein. These proteins have a long history of immune 

selection and have evolved robustness to changes that allow for immune escape (Stephens and 

Waelbroeck 1999; Plotkin and Dushoff 2003; Thyagarajan and Bloom 2014; Doud and Bloom 

2016; Visher et al. 2016). Thus, differences from mammalian genes may reflect the antigenic 

role of these viral genes. It is possible such differences are also reflected in phylogenetic 

patterns, and monitoring viral populations for charge substitutions may improve predictions of 

vaccine escape. 
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Selection for error minimization is a major hypothesis for the evolution of the genetic code, but 

has relied on the assumption that radical substitutions are more detrimental (Woese 1965; Woese 

et al. 1966; Crick 1968; Haig and Hurst 1991; Freeland and Hurst 1998; Geyer and Mamlouk 

2018; Tripathi and Deem 2018). Our results provide direct evidence that the genetic code 

minimizes the detrimental effects of single-nucleotide changes. Interestingly, this comes with a 

greater likelihood of mutations being beneficial, but a tradeoff in terms of the size of beneficial 

effects. How might these factors enhance or impede adaptive evolution? Has the genetic code 

traded evolvability for robustness? Whatever the origin of the genetic code, its structure and the 

properties of amino acids lead to the pattern that the best substitutions are also the worst and 

hardest to make. 

Methods 

Data 

All amino acid preference data were obtained from supplementary material in the published 

articles.  Please see the original papers for details on measurements of amino acid preference. 

For all of our analyses, we excluded synonymous mutations. 

Statistical Analyses 

All P values are for a two-sided t-test using the t.test() function in R. All statistical tests 

compared radical/MTN or SN/conservative substitutions within each individual dataset, with the 

exception of the percent detrimental. The percent of radical/MTN or SN/conservative 

substitutions that were detrimental was calculated for each dataset and the results were then 

pooled for the statistical test. 
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Supplemental Figures & Tables 

 

Supplemental Figure 4-1 Colors corresponding to strains in main figures 
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Supplemental Table 4-1 Numbers of radical/conservative detrimental and beneficial substitutions  

 

  

Species Strain Gene Overall 
Con. 

Charge 
Radical 
Charge 

Con. 
Polarity 

Radical 
Polarity 

Con. 
Polarity 
& Size 

Radical 
Polarity 
& Size 

HIV-1  

BF520 ENV 12578 
6811, 
843 

4319, 
605 

5438, 
780 

5692, 
668 

1700, 
286 

9430, 
1162 

BG505 ENV 12711 
6599, 
1115 

4180, 
817 

5198, 
1101 

5581, 
831 

1591, 
422 

9188, 
1510 

LAI ENV 13540 
5757, 
2105 

4193, 
1485 

4415, 
1948 

5535, 
1642 

1332, 
715 

8618, 
2875 

Influenza 
A virus  

A/PR8/
1934 

(H1N1) 
NP 9462 

5170, 
136 

4088, 68 
4616, 
114 

4642, 90 1472, 53 
7786, 
151 

A/Aichi
/2/196

8 
(H3N2) 

NP 9462 
5039, 
241 

4022, 
160 

4492, 
230 

4569, 
171 

1421, 
104 

7640, 
297 

A/WSN
/1933 

(H1N1) 
HA 10716 

5948, 
353 

4174, 
241 

5042, 
334 

5080, 
260 

1536, 
156 

8586, 
438 

A/Perth
/16/20

09 
(H3N2) 

HA 10755 
5850, 
432 

4151, 
321 

4987, 
391 

5014, 
362 

1523, 
160 

8478, 
593 

A/Gree
n-

winged 
Teal/Oh
io/175/

1986 
(Avian) 

PB2 14421 
7536, 
579 

5879, 
427 

6531, 
554 

6884, 
452 

2103, 
221 

11312, 
785 

A/Gree
n-

winged 
Teal/Oh
io/175/

1986 
(Avian) 

PB2 14421 
7601, 
514 

5952, 
354 

6601, 
484 

6952, 
384 

2128, 
196 

11425, 
672 

Zika 
virus 

MR766 ENV 9576 
5393, 
244 

3832, 
107 

4520, 
208 

4705, 
143 

1449, 
106 

7776, 
245 
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Supplemental Table 4-2 Numbers of SN and MTN detrimental and beneficial substitutions 

 

  

Species Strain Gene Overall SN 2 MTN 3 MTN 

HIV-1 

BF520 ENV 
4619, 
577 

5912, 
797 

599, 74 
4619, 
577 

BG505 ENV 
4404, 
881 

5775, 
973 

600, 78 
4404, 
881 

LAI ENV 
3935, 
1742 

5469, 
1693 

546, 
155 

3935, 
1742 

Influenza A 
virus 

A/PR8/1934 (H1N1) NP 
3936, 
101 

4844, 
98 

478, 5 
3936, 
101 

A/Aichi/2/1968 (H3N2) NP 
3836, 
189 

4757, 
190 

468, 22 
3836, 
189 

A/WSN/1933 (H1N1) HA 
4183, 
295 

5400, 
283 

539, 16 
4183, 
295 

A/Perth/16/2009 (H3N2) HA 
4129, 
364 

5317, 
355 

556, 34 
4129, 
364 

A/Green-winged 
Teal/Ohio/175/1986 (Avian) 

PB2 
5664, 
480 

7085, 
475 

666, 51 
5664, 
480 

A/Green-winged 
Teal/Ohio/175/1986 (Avian) 

PB2 
5758, 
386 

7120, 
440 

675, 42 
5758, 
386 

Zika virus MR766 ENV 
3764, 
221 

4985, 
121 

476, 9 
3764, 
221 
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Supplemental Table 4-3 Average detrimental effects of radical/conservative substitutions 

 
  

Species Strain Gene Overall 
Con. 

Charge 
Radical 
Charge 

Con. 
Polarity 

Radical 
Polarity 

Con. 
Polarity 
& Size 

Radical 
Polarity 
& Size 

HIV-1  

BF520 ENV -1.546 -2.008 -1.846 -2.087 -2.162 -2.012 -1.56 

BG505 ENV -2.01 -1.569 -1.435 -1.591 -1.651 -1.509 -1.292 

LAI ENV -1.828 -1.751 -1.627 -1.895 -1.989 -1.934 -1.392 

Influenza 
A virus  

A/PR8/
1934 

(H1N1) 
NP -4.065 -3.832 -3.926 -4.215 -4.204 -4.36 -3.274 

A/Aichi
/2/196

8 
(H3N2) 

NP -3.278 -3.073 -3.21 -3.375 -3.345 -3.535 -2.754 

A/WSN
/1933 

(H1N1) 
HA -3.191 -3.215 -2.989 -3.3 -3.391 -3.157 -2.577 

A/Perth
/16/20

09 
(H3N2) 

HA -2.474 -2.467 -2.346 -2.552 -2.601 -2.484 -2.038 

A/Gree
n-

winged 
Teal/Oh
io/175/

1986 
(Avian) 

PB2 -2.705 -2.606 -2.555 -2.799 -2.848 -2.832 -2.201 

A/Gree
n-

winged 
Teal/Oh
io/175/

1986 
(Avian) 

PB2 -2.432 -2.308 -2.301 -2.526 -2.557 -2.592 -1.927 

Zika 
virus 

MR766 ENV -4.31 -4.199 -4.117 -4.438 -4.494 -4.466 -3.621 
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Supplemental Table 4-4 Average Detrimental Effects of SN and MTN Substitutions 

 
  

Species Strain Gene Overall SN 2 MTN 3 MTN 

HIV-1 

BF520 ENV -1.546 -1.863 -2.096 -2.255 

BG505 ENV -2.01 -1.481 -1.591 -1.596 

LAI ENV -1.828 -1.681 -1.921 -1.955 

Influenza A 
virus 

A/PR8/1934 (H1N1) NP -4.065 -3.575 -4.428 -4.422 

A/Aichi/2/1968 (H3N2) NP -3.278 -3.095 -3.414 -3.397 

A/WSN/1933 (H1N1) HA -3.191 -2.91 -3.378 -3.493 

A/Perth/16/2009 (H3N2) HA -2.474 -2.295 -2.585 -2.744 

A/Green-winged 
Teal/Ohio/175/1986 (Avian) 

PB2 -2.705 -2.506 -2.869 -2.68 

A/Green-winged 
Teal/Ohio/175/1986 (Avian) 

PB2 -2.432 -2.25 -2.582 -2.386 

Zika virus MR766 ENV -4.31 -4.028 -4.527 -4.268 
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Supplemental Table 4-5 Average Beneficial Effects of Radical/Conservative Substitutions 

 

  

Species Strain Gene Overall 
Con. 

Charge 
Radical 
Charge 

Con. 
Polarity 

Radical 
Polarity 

Con. 
Polarity 
& Size 

Radical 
Polarity 
& Size 

HIV-1  

BF520 ENV 0.304 0.385 0.409 0.333 0.407 0.429 0.439 

BG505 ENV 0.408 0.302 0.303 0.279 0.305 0.31 0.306 

LAI ENV 0.904 0.82 0.918 0.832 0.888 0.922 1.024 

Influenza 
A virus  

A/PR8/
1934 

(H1N1) 
NP 0.726 0.739 0.713 0.715 0.742 0.73 0.699 

A/Aichi
/2/196

8 
(H3N2) 

NP 0.732 0.652 0.742 0.674 0.718 0.752 0.852 

A/WSN
/1933 

(H1N1) 
HA 0.55 0.567 0.549 0.497 0.55 0.568 0.524 

A/Perth
/16/20

09 
(H3N2) 

HA 0.525 0.479 0.523 0.514 0.527 0.527 0.586 

A/Gree
n-

winged 
Teal/Oh
io/175/

1986 
(Avian) 

PB2 0.467 0.432 0.45 0.434 0.487 0.476 0.518 

A/Gree
n-

winged 
Teal/Oh
io/175/

1986 
(Avian) 

PB2 0.47 0.433 0.457 0.434 0.485 0.48 0.519 

Zika 
virus 

MR766 ENV 0.829 0.811 0.804 0.742 0.866 0.867 0.87 
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Supplemental Table 4-6 Average Beneficial Effects of SN and MTN Substitutions 

Species Strain Gene Overall SN 2 MTN 3 MTN 

HIV-1 

BF520 ENV 0.304 0.425 0.383 0.471 

BG505 ENV 0.408 0.31 0.292 0.33 

LAI ENV 0.904 0.921 0.883 0.967 

Influenza A 
virus 

A/PR8/1934 (H1N1) NP 0.726 0.752 0.696 0.817 

A/Aichi/2/1968 (H3N2) NP 0.732 0.716 0.753 0.696 

A/WSN/1933 (H1N1) HA 0.55 0.565 0.536 0.543 

A/Perth/16/2009 (H3N2) HA 0.525 0.506 0.543 0.52 

A/Green-winged 
Teal/Ohio/175/1986 (Avian) 

PB2 
0.467 0.47 0.454 0.549 

A/Green-winged 
Teal/Ohio/175/1986 (Avian) 

PB2 
0.47 0.475 0.461 0.503 

Zika virus MR766 ENV 0.829 0.801 0.841 0.912 
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Chapter 5 Discussion 

 

Overview 

The projects in my thesis have resolved major puzzles on how mutational effects scale across 

levels of biological organization (Figure 5-1). At the lowest level, the impact of individual 

mutations can be understood deterministically from biological principles, just as the trajectory of 

an individual air molecule can be predicted from its collisions with several other molecules.  

However, at a higher phenotypic level, this determinism breaks down into seeming randomness, 

or idiosyncrasy.  My first chapter quantifies this idiosyncrasy and explains why it occurs. A 

single site contributes to a phenotype via a potentially astronomical number of interactions. 

Consequently, a single mutation has unpredictable effects in the context of other mutations, just 

as the deterministic movement of a single air molecule scales to the random outcome of a die roll 

in a room full of molecules. At the highest level, due to the same statistical laws that govern a 

game of dice, we find that randomness in mutational effects leads to universal patterns in their 

collective effects across fitness levels and in evolutionary trajectories during adaptation and drift. 

 

While idiosyncrasy is a major influence on fitness landscapes, it is not the only one.  My second 

and third chapters revisit the deterministic biological effects of mutations and their impact on 

fitness and evolutionary patterns (Figure 5-1, right). I find that radical versus conservative 
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changes in amino acid properties have consistent differences in fitness effects, helping to explain 

widespread phylogenetic patterns and supporting the error-minimization hypothesis for the 

evolution of the genetic code. 

 

How can we use the theory of idiosyncratic epistasis to further understand fitness landscapes? 

What are the further implications of the differences between radical and conservative amino acid 

substitutions? 

Figure 5-1 The role of the idiosyncratic epistasis theory and conservative versus radical mutations in the scaling of mutational affects 

across levels of biology.  

Left and middle: the idiosyncratic  epistasis theory posits that individual mutational effects are like the interactions between individual 

air molecules. At the lowest level, mutations have predictable consequences, but seeming randomness arises at a higher level due to 

complex interactions.  However, predictability re-emerges as statistical laws at the level of evolution. Right: Conservative versus radical 

amino acid substitutions represent a deviation from idiosyncrasy, as this distinction at the lowest level leads to predictable fitness 

differences and biased phylogenetic patterns and evolution. 
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Idiosyncratic epistasis as a null theory 

Idiosyncratic epistasis could be used as a null model to uncover biased forms of epistasis and 

their impact on evolution.   

 

First, evidence for various biologically-based theories of epistasis may need re-examination 

(Kacser and Burns 1981; Martin et al. 2007; Sanjuán and Nebot 2008; Gros et al. 2009; Wei and 

Zhang 2019). Most theories posit a bias towards either negative or positive epistasis and find 

support from observations involving beneficial or detrimental mutations, respectively. Our 

theory shows that that the patterns involving beneficial and detrimental mutations must be 

understood together. They also arise naturally from idiosyncrasy without the need for specific 

biological mechanisms or selection for robustness as posited by various theories. 

 

However, many of the assumptions of these biologically-based theories still hold – biological 

systems do show modularity as in the modular life theory (Wei and Zhang 2019), viruses do 

encode less functional redundancy than eukaryotes as in the multiple hit theory (Sanjuán and 

Elena 2006), and so on. Thus, they are likely useful for understanding cases in which our null 

expectations are violated or why idiosyncrasy levels vary between fitness landscapes (Figure 2-

1C). For example, idiosyncrasy predicts a negative correlation between mutational effects and 

background fitness, but we find that the strength of this correlation varies across mutations, and 

is even positive for some mutations (Figures 2-2B, S2A). This variation is likely not all due to 

limited empirical information. What are the properties of organisms, genes, sites or individual 

mutations that determine their level of idiosyncrasy and cause them to deviate from our null 

expectations? The biological mechanisms other theories posit may hold answers.  However, 
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more work will be needed to understand how such mechanisms combine with idiosyncrasy. 

Mathematical models of fitness landscapes like the NK-model may be helpful to test hypotheses; 

for example, how modular genetic architectures may affect idiosyncrasy.   

 

In comparison to an additive null model, the finding of negative epistasis/diminishing returns 

among beneficial mutations is commonly thought to slow adaptation (Couce and Tenaillon 

2015).  However, an idiosyncratic landscape may be a more appropriate null model to investigate 

the role of epistasis during adaptation. Consider a hypothetical organism that has evolved 

biological mechanisms which in isolation would lead to positive epistasis between beneficial 

mutations.  However, these mechanisms must work against the inherent diminishing returns due 

to idiosyncrasy, perhaps resulting in overall negative epistasis between beneficial mutations, but 

less so than our null expectation.  Comparing adaptation in this organism to an additive null 

model would reveal diminished adaptability, when in reality, the organism had evolved to lessen 

the inherent constraints of idiosyncrasy.  

 

A recent paper on adaptation in a fungus made this same, potentially misguided conclusion 

(Schoustra et al. 2016). Fisher’s geometric model was able to predict the negative epistasis 

among adaptive mutations while a House-of-Cards landscape (a completely idiosyncratic 

landscape) predicted stronger negative epistasis than was found.  The authors concluded that the 

pattern of epistasis in the fungus constrained its adaptation, when in fact the bias towards less 

negative epistasis could have sped up its adaptation relative to our null prediction. 
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Our theory also makes a null prediction for the relationship between adaptability and robustness 

(the insensitivity to detrimental mutations).  Lower fit organisms will have both higher 

adaptability and higher robustness due to the negative correlation between mutational fitness 

effects and background fitness. Some theories that posit the opposite relationship, based on the 

idea that insensitivity of fitness to detrimental mutations cuts both ways, coinciding with 

insensitivity to beneficial mutations (Ancel and Fontana 2000; Lenski et al. 2006; Sumedha et al. 

2007). Other theories resolve the tension between robustness and evolvability by noting that 

robustness enhances evolvability by enabling exploration of neutral sequence space and 

providing a bank of diversity upon environmental change (Wagner 2008). This could combine 

synergistically with the higher evolvability of more robust, lower fit organisms due to 

idiosyncrasy. Deviations from our null expectation may reveal interesting forms of epistasis or 

other biological mechanisms. For example, our finding that radical amino acid substitutions are 

both more detrimental and more beneficial in the same genotype fits better with the theory that 

(in)sensitivity to mutation cuts both ways.  

 

It will be essential to create a model of idiosyncratic epistasis that can be fit to empirical data. 

This would enhance our ability to uncover deviations from null expectations and compare the 

importance of idiosyncrasy relative to other biological mechanisms.  However, the n-order model 

is not easily adapted for this purpose. Because of the vast number of potential terms, the model 

cannot be simulated beyond 20 or so interacting sites.  In some ways there is also too much 

flexibility in the model; for example, the same level of idiosyncrasy could be achieved by many 

different schemes for weighting the interaction terms.  Our idiosyncrasy index may provide a 

starting point, but it is unclear how the size of a landscape, missing data, or variation in 
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idiosyncrasy among sites affects its calculation. Thus, much work is needed to develop the 

theory of idiosyncrasy into a model capable of direct comparison with empirical data. 

Implications of Radical/Conservative Fitness Differences 

We have shown that substitutions which radically change amino acid properties are both more 

detrimental and more highly beneficial than conservative changes, at least in RNA viruses.  The 

difference in detrimental effects likely contributes to the widespread transition-transversion 

(Ts/Tv) substitution bias. It is interesting to speculate on the impact of radical/conservative 

differences on other evolutionary processes. 

 

There is widespread evidence of a transitional mutation bias across taxa (Zhang and Gerstein 

2003; Jiang and Zhao 2006; Baer et al. 2007; Denver et al. 2009; Pauly et al. 2017). For 

example, the  experimentally determined Ts/Tv mutational bias in influenza is 2-3.6 (Bloom 

2014; Pauly et al. 2017). Is it possible that the more radical nature of transversions has led to 

selection for a reduced transversion mutation rate? The causation could work in reverse, or in 

both ways – an underlying higher transition rate could have selected for robustness to transitional 

substitutions via codon usage bias or other mechanisms. Simulations could determine whether 

the transversion/transition fitness differences are high enough to select for reduced transversion 

rates (Lynch 2010). This could indicate ongoing selection on the mutation rate which could be 

verified. Mutational effects in rare organisms in which the transversion rate is higher could also 

illuminate this question (Keller et al. 2007).  

 

Similarly, the evolution of the genetic code is hypothesized to have involved selection for error-

minimization (Woese 1965; Woese et al. 1966; Crick 1968; Haig and Hurst 1991; Freeland and 
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Hurst 1998; Geyer and Mamlouk 2018; Tripathi and Deem 2018). Our results support this 

hypothesis, showing that single nucleotide codon mutations indeed cause less damage than the 

more radical, multi-nucleotide mutations. However, radical mutations are also more beneficial. 

Did selection for robustness in the genetic code consign all subsequent life forms to lower 

adaptability? Alternatively, this particular genetic code could have been under selection for 

evolvability as well as robustness. For example, recent studies have questioned the error-

minimization hypothesis because only slightly different genetic codes can minimize radical 

changes even more than the universal code (Di Giulio and Medugno 2001). However, this study 

ignored adaptability – perhaps the current genetic code is a more optimal solution to this tradeoff 

than these alternatives. 

 

The fitness differences between radical/conservative and Ts/Tv substitutions have implications 

for viral evolution. Radical charge changes showed the least differences from conservative ones 

in terms of their detrimental effects (Figures 2-4, 4-1, 4-2A-B). This was particularly true for the 

viral surface proteins HA and ENV as compared to the internal NP proteins (Figures 2-4, 4-1, 4-

2A-B). These surface proteins have a history of immune selection and exhibit tolerance to 

mutations allowing for immune escape (Stephens and Waelbroeck 1999; Plotkin and Dushoff 

2003; Thyagarajan and Bloom 2014; Doud and Bloom 2016; Visher et al. 2016). Charge changes 

were also some of the most beneficial type of radical changes (Figure 4-2); it is interesting to 

speculate whether this advantage is enhanced under selection for immune escape. DMS data is 

available to answer this question, which could be incorporated into further work. Furthermore, 

studies of codon usage have also found a bias towards non-synonymously mutating codons in the 

HA protein (Plotkin and Dushoff 2003) or that enhance evolvability and robustness (Lauring et 
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al. 2012), but a potential bias towards codons with a propensity for charge changes was not 

evaluated. DMS data could be used to further investigate the advantages or disadvantages of the 

wild-type codon usage compared to simulated alternatives.  The role of radical changes in 

cluster-transition mutations, which are those that drastically change the antigenic properties of 

influenza and prompt vaccine updates (Koelle et al. 2006), could also be investigated.   

Conclusion 

In contrast to biased forms of epistasis in other theories, the crucial idea of idiosyncratic epistasis 

is that the immense number of interactions that determine a phenotype leads to unpredictability 

of mutational effects. Phrased another way, more idiosyncratic epistasis makes quite different 

phenotypes accessible by fewer mutational steps.  From this perspective, idiosyncrasy may 

promote the evolvability and great phenotypic diversity of life.  Perhaps it contributes to the 

surprising genetic similarity of quite different organisms (King and Wilson 1975) or speeds up 

phenotypic evolution in response to environmental changes. Furthermore, as any phenotype 

becomes more accessible from any genotype, idiosyncrasy also means that very different 

genotypes may have similar phenotypes. Perhaps this underlies convergence at the phenotypic 

level. Indeed, ancient proteins with conserved functions have continued to diverge over billions 

of years seemingly without limit on sequence dissimilarity (Povolotskaya and Kondrashov 

2010). In the midst of the idiosyncrasy we find, it is surprising that simple radical versus 

conservative distinctions in amino acid substitutions have predictable differences.  However, if 

such biological features never mattered to fitness – if idiosyncrasy was complete – the fitness 

landscape may become too rugged to sustain adaptation for long and any drift would be 

drastically deleterious.  Similar to Kauffman’s idea that the most evolvable systems lie at the 
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boundary “between order and chaos” (Kauffman 1993), might the right balance of idiosyncrasy 

distinguish evolvable complex systems from non-living ones? 
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