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Abstract 
 

Most nuclear reactors are designed to be operated under either thermal or fast neutron 

spectrum, depending on the energy range of dominant neutrons that sustain the fission chain 

reaction. Almost all the commercial power reactors are thermal reactors while many Generation-

IV reactor designs are fast spectrum based. In addition to fast and thermal spectrum reactors, 

coupled fast-thermal spectrum reactor (CFTR) concepts, which have both fast and thermal 

spectrum regions, have been adopted in several research reactors, including the initial design of 

the Versatile Test Reactor (VTR). For the analysis and assessment of reactor core designs, 

numerous computational methods have been developed and implemented into legacy codes. These 

legacy methods and codes adopted different simplifications and approximations in nuclear data 

representation, multigroup cross section (XS) generation, and whole core transport and fuel cycle 

analyses, tailored for specific reactor types. Hence, their applicability to other reactor types is 

limited. Except for Monte Carlo (MC) methods, there is no existing core analysis method directly 

applicable to CFTRs. This dissertation work is intended to develop an efficient two-step method 

in replacement of full-core MC simulations for CFTR core design and analysis.  

Since a CFTR would exhibit combined neutronic characteristics of both fast and thermal 

reactors, among the legacy two-step methods, the fast reactor core calculation method is preferred 

in that the whole-core depletion calculation capability with transport flux solution is readily 

available. To be applied to CFTRs, several improvements were made in the current fast reactor 

analysis methods based on the MC2-3, VARIANT, and REBUS-3 codes of Argonne National 

Laboratory. A new computational procedure was developed by combining MC simulation and 



 xv 

MC2-3 for multigroup XS generation, incorporating partial current discontinuity factor (PCDF) 

into VARIANT for nodal transport analysis, and enabling the use of burnup dependent XSs and 

PCDFs in REBUS-3 depletion calculation.  

The new XS generation scheme was developed primarily based on MC simulations in 

assembly supercell models while MC2-3 is used to produce consistently weighted anisotropic 

scattering cross sections. Supercell models are used because of the significant spectral interference 

in CFTR environments. The long-range environmental effects are considered by imposing 

approximate source boundary conditions or including background source zones in the supercell 

model. Thorough verification tests were performed using two CFTR problems. 

To reduce assembly homogenization errors in VARIANT nodal transport calculations, 

PCDF was derived in a consistent formulation for arbitrary angular approximation orders and is 

fully compatible with the efficient red-black iteration scheme of VARIANT. Practical approaches 

were developed to generate PCDFs using the reference nodal average flux and surface averaged 

partial currents obtained from MC simulation. For practical applications, fixed source calculation 

and imbedded PCDF correction strategies were developed to treat long-range environmental 

effects on the PCDFs generated from supercell models.  

Enhancements of REBUS-3 were made in the depletion chain construction and utilization 

of burnup dependent XSs and energy dependent fission yields in a general manner. The modified 

REBUS-3 with these improvements and the improved VARIANT nodal transport method was 

verified using a 2D CFTR whole-core depletion problem. Compared to the original REBUS-3 

depletion with constant isotopic XSs and VARIANT transport calculation without PCDFs, the new 

two-step method reduced the k-effective error by ~1000 pcm. It also predicted fuel assembly 

powers accurately within a 1% deviation from the reference MC depletion results. 
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Chapter 1  
 

Introduction 
 

Most nuclear reactors are designed to be operated under either thermal or fast neutron 

spectrum, depending on the energy range of dominant neutrons that sustain the fission chain 

reaction. Almost all the commercial power reactors are thermal reactors while many Generation-

IV reactor designs, e.g., Gas-cooled Fast Reactor, Lead-cooled Fast Reactor, Sodium-cooled Fast 

Reactor, are fast spectrum based. In addition to fast and thermal spectrum reactors, the coupled 

fast-thermal spectrum reactor (CFTR) concept, which has both fast and thermal spectrum regions 

in the reactor core, has been adopted in several research reactors. For the analysis and assessment 

of reactor core designs, numerous computational modeling and simulation methods have been 

developed and implemented into legacy computer codes. These legacy methods and codes usually 

adopt different simplifications and approximations in nuclear data representation, multigroup cross 

section generation, whole core transport and fuel cycle analyses, tailored for specific reactor types. 

Hence, their applicability to other reactor types is limited. There is no existing core analysis 

method dedicated to coupled fast-thermal spectrum reactors. This dissertation work is intended to 

develop an efficient computational method in replacement of full-core Monte Carlo simulations 

for coupled-spectrum reactor core design and analysis.  

1.1 Background 

The idea of coupling a fast reactor with a locally moderated thermal zone was first proposed 

by Robert Avery [1] to obtain a combined system having the breeding ratio characteristic of a fast 
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system and at the same time exhibiting a prompt neutron lifetime characteristic of a thermal 

system. The theory to describe a coupled fast-thermal reactor was given by Avery [2] and the 

principle was experimentally demonstrated in the zero-power, coupled fast-thermal critical facility 

ZPR-V [3]. The coupled-spectrum core design was later adopted in many experimental facilities 

[4-7] to produce a targeted fast spectrum in a reduced central zone while achieving criticality 

through a thermal-spectrum booster zone. The coupled core configuration allows a significant 

reduction of fissile materials and a higher flexibility due to the thermal-spectrum kinetics 

parameters. 

In recent years, coupled fast-thermal spectrum core designs emerged in some applications. 

Subcritical blanket system for accelerator-driven systems and hybrid fusion-fission reactors were 

proposed [8]. In France, within the framework for ZEPHYR (Zero power Experimental PHYsics 

Reactor) project, coupled fast-thermal cores are considered [9] for future experimental programs 

dedicated to improving nuclear data to cope with awaited target uncertainties for Generation-IV 

fast reactors [10]. In the United States, for the Versatile Test Reactor (VTR) program to develop a 

fast spectrum test reactor to support advanced nuclear reactor research and development, a 

versatile coupled test reactor (VCTR) concept was seriously considered [11], although a full fast 

core was finally selected. In a fast reactor design with locally moderated target assemblies for 

minor actinide transmutation [12], the local thermal spectrum helps increase the capture reaction 

rates of minor actinides such that they are easily transmuted into fissile nuclides and eventually 

burned through fission. Recently, Niowave, Inc. proposed a HYbrid spectrum Subcritical Testbed 

(HYST) for neutron irradiation test of novel fuel and cladding materials [13], and has built and 

operated a small-scale zero-power demonstration facility HYST-1 [14]. Despite the active role of 

coupled-spectrum reactors in various applications, the CFTR concept is not as widely adopted as 
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thermal or fast spectrum reactors in nuclear industry. Consequently, an accurate and efficient 

numerical modeling and simulation capability for CFTR core design and analysis is still in 

absence.  

A complete reactor core design usually starts with assessing the core performance with fuel 

depletion in steady and transient states. Legacy core calculation methods and computer codes for 

conventional fast or thermal reactors were developed based on different approximations tailored 

for specific reactor types. For coupled-spectrum systems, only theoretical methods have been 

extensively studied, mainly focused on multipoint kinetics methods [2, 15-17]. The multipoint 

methods require pre-determined coupling coefficients and kinetic parameters [2]. Determination 

of these integral parameters requires the knowledge of the spatial and energy distribution of 

neutron flux, which is the pursued solution in core calculations. Previously, full-core Monte Carlo 

simulations were used to evaluate these coupling coefficients for transient analyses with multipoint 

kinetics model [8,18,19]. Given this situation, an efficient method (other than Monte Carlo) is in 

need to perform routine core calculations for coupled-spectrum reactors.  

1.2 Research Scope 

A nuclear fission reactor is a complex system that involves multiple coupled physical 

phenomena, including particle transport, nuclear depletion and activation, temperature field 

evolution, and structural change due to irradiation and thermal feedback. Each of the physical 

aspects extends over wide ranges in the time, space, and energy domains. A direct multiphysics 

simulation considering all the aspects of physics remains an extremely daunting task. The primary 

goal of neutronics simulation of nuclear fission reactors is to determine the reactivity level, neutron 

flux and reaction (mainly fission) rate distributions in the reactor core, and their evolution with 

time. In this thesis, we only consider neutron transport coupled with fuel depletion in normal 
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operating conditions. The long-term temporal evolution of neutron transport is handled in a quasi-

static way. Specifically, the flux fluctuations arising from short-time phenomena such as reactivity 

perturbation and rapid transients in accidental scenarios are not considered. Prompt and delayed 

neutrons are combined, and the time derivative of flux is neglected. The reactor is assumed to 

undergo fuel depletion under slowly varying neutron fluxes obtained from a sequence of steady-

state neutron transport calculations. The thermal feedback due to changed temperature field with 

fuel depletion is not addressed in this dissertation. 

The steady-state neutron flux field conforms to the time independent Boltzmann transport 

equation given as [20]: 

Ω̂ ⋅ ∇𝜓(𝑟, Ω̂, 𝐸) + Σ𝑡(𝑟, 𝐸)𝜓(𝑟, Ω̂, 𝐸) = ∫ 𝑑𝐸′ ∫ 𝑑Ω̂′Σ𝑠(
4𝜋

𝑟, 𝐸′ → 𝐸, Ω̂′ ⋅ Ω̂)𝜓(𝑟, 𝐸′, Ω̂′)
∞

0

+𝑄(𝑟, 𝐸, Ω̂), (1.1) 

 

where 𝜓(𝑟, 𝐸, Ω̂) is the neutron angular flux in a six-dimensional phase space: three in position 𝑟, 

two in angle Ω̂ , and energy 𝐸 . Σ𝑡  and Σs  are space and neutron energy dependent total and 

scattering cross sections, respectively. The steady state is maintained by an external source 

𝑄(𝑟, 𝐸, Ω̂) or by the fission source in a nuclear reactor: 

𝑄(𝑟, 𝐸, Ω̂) =
1

4𝜋𝑘
𝜒(𝑟, 𝐸) ∫ 𝑑𝐸′𝜈Σ𝑓(𝑟, 𝐸′) ∫ 𝑑Ω̂′

4𝜋

𝜓(𝑟, 𝐸′, Ω̂′)
∞

0

, (1.2) 

where Σ𝑓 is fission cross section, 𝜈 is number of neutrons emitted per fission,  𝜒 is fission emission 

spectrum assumed independent of incident neutron energy, and 𝑘 is effective multiplication factor 

acting as the eigenvalue to the resultant homogeneous problem with fission source only. Here the 

fission source is assumed to have isotropic angular distribution. 

The nuclide transmutation is described by the Bateman equation (1.3), where 𝑁𝑖 is number 

density of nuclide 𝑖, 𝛾𝑗𝑥
𝑖  is the yield fraction of nuclide 𝑖 from type 𝑥 reaction of nuclide 𝑗, 𝑅𝑗𝑥 is 
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the coefficient characterizing type 𝑥 reaction rate of nuclide 𝑗, 𝑅𝑖𝑎 is the loss rate coefficient of 

nuclide 𝑖 due to neutron absorption, 𝜆𝑖 is decay constant of nuclide 𝑖, 𝑁𝑖0 denotes initial number 

density of nuclide 𝑖, and 𝐼 is the total number of active nuclides undergoing nuclear transmutation.  

𝑑

𝑑𝑡
𝑁𝑖(𝑟, 𝑡) = ∑ [∑ 𝛾𝑗𝑥

𝑖 𝑅𝑗𝑥(𝑟, 𝑡)

𝑥

] 𝑁𝑗(𝑟, 𝑡)

𝑗≠𝑖

− [𝑅𝑖𝑎(𝑟, 𝑡) + 𝜆𝑖]𝑁𝑖(𝑟, 𝑡),

𝑁𝑖(𝑟, 0) = 𝑁𝑖0, 𝑖 = 1, 2, … 𝐼, (1.3)

 

Under quasi-static approximation, the coupling between neutron flux and nuclide density 

fields is through the macroscopic cross sections Σ𝑥(𝑟, 𝐸) in Eq. (1.1) and reaction rate coefficient 

𝑅𝑗𝑥(𝑟, 𝑡) in Eq. (1.3): 

Σ𝑥(𝑟, 𝐸) = 𝜎𝑖𝑥(𝐸)𝑁𝑖(𝑟), (1.4) 

𝑅𝑗𝑥(𝑟, 𝑡) = {
∫ 𝜎𝑗𝑥(𝐸)𝜙(𝑟, 𝑡)𝑑𝐸

∞

0

,  for neutron reactions 

𝜆𝑗 ,  for radioactive decay                              

, (1.5) 

where 𝜎𝑖𝑥 and 𝜎𝑗𝑥 are microscopic cross sections. Eq. (1.4) is evaluated at discrete time points for 

steady-state neutron transport calculations. Using the fluxes of a series of steady-state transport 

solutions, the reaction rates in Eq. (1.5) are evaluated and interpolated or extrapolated to determine 

the average or smoothly varying reaction rates within each discretized time interval for solving 

Eq. (1.3).  

Three major topics are covered in this dissertation: methods to prepare multigroup cross 

section data, methods for whole-core transport calculations, and methods for fuel depletion 

calculations. Although each of them can be expanded into a broad research area, the focus here is 

to utilize whatever existing research outcomes and improve or adapt them to develop an integral 

computational procedure that is applicable to coupled-spectrum reactor analyses. Dedicated 

studies in lattice calculation methods for cross section generation or development of new transport 
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solvers are not pursued. The multigroup cross section generation will heavily rely on Monte Carlo 

simulations. Nevertheless, uncertainties in the deterministic transport solution due to the statistical 

nature of the multigroup cross section data generated by Monte Carlo techniques are out of the 

research scope. Instead, Monte Carlo calculations were performed with sufficiently large number 

of particle histories to ensure that statistically meaningful results were produced. The criterion for 

the selection of the results to be included and compared in this thesis is that those values are 

significantly different in a statistical sense. When necessary, further clarifications will be made in 

cases where the results are comparable within their statistical uncertainties. On the neutron 

transport and fuel depletion calculations, the focus is developing efficient low-order transport 

models and dealing with the environmental effects on the effective multigroup cross sections and 

equivalence parameters for nodal calculations. Multiple strategies were investigated for generating 

cross sections without employing heterogeneous full-core models. 

1.3 Thesis Outline 

The objective of this thesis work is to develop a new two-step method for efficient whole-

core neutronic analysis of CFTRs, by improving the existing fast reactor analysis approach based 

on multigroup nodal transport method and whole-core isotopic depletion calculation. The 

dissertation is organized as follows.   

In Chapter 2, the readily available core calculation methods are reviewed with an emphasis 

on the challenges caused by the multigroup approximation of deterministic methods. The review 

is focused on the legacy two-step methods and the main differences between two tiers of methods 

dedicatedly developed for thermal and fast reactors are highlighted. It is also explained why a two-

step method is proposed for coupled-spectrum reactor analysis. After the methodology review, it 

is decided to develop the new method based on the existing fast reactor analysis tools. In Chapter 
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3, preliminary tests of these tools for coupled reactor analysis are performed using a simplified 

one-dimensional problem. Limitations in the existing tools for cross section generation, nodal core 

calculation, and depletion analysis are clarified, and potential improvements are proposed.  

The proposed two-step methods for coupled reactor analysis are detailed in Chapter 4. The 

three aspects of neutronics core calculation, i.e., multigroup cross section preparation, full-core 

transport calculation, and fuel depletion calculation, are discussed in separate sections. For each 

of them, case studies and examples are provided to develop the rationale of each choice made in 

the proposed method. At the end of Chapter 4, the overall computational procedure is summarized. 

The developed methods are then tested for steady-state nodal transport analysis and whole-core 

depletion calculation in Chapter 5 and Chapter 6, respectively. Chapter 7 summarizes the whole 

work and provides suggestions for future studies. 
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Chapter 2  
 

Overview of Current Methodologies 
 

There are two fundamentally different computational approaches, namely Monte Carlo 

(MC) and deterministic methods, for neutron transport analyses. MC methods are based on 

probabilistic simulation of the transport process and estimate physical quantities such as flux and 

reaction rates through the collective behavior of a large number of simulated particles with random 

and independent histories. Deterministic methods instead solve a system of algebraic equations 

obtained by discretizing the Boltzmann transport equation in each of its independent variables. 

Since the dawn of nuclear energy engineering, both MC and deterministic methods have been 

actively developed and implemented in many computer codes. Most recently, hybrid MC and 

deterministic methods are being proposed to enhance the strengths and overcome the limitations 

of individual approaches. 

In this chapter, preexisting methods commonly used for full-core calculations are briefly 

reviewed with a focus on the legacy two-step methods. For each of them, the main drawbacks 

when applied to coupled-spectrum reactors are highlighted. In short, MC methods are directly 

applicable but are limited by computational efficiency. Both one-step and two-step deterministic 

methods have major deficiencies regarding preparation of effective multigroup cross sections. The 

requirement of huge computational resources of one-step deterministic transport methods is a 

substantial impediment to routine design calculations. It appears that the hybrid MC and 

deterministic approach is a promising direction to follow.  
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2.1 Monte Carlo Methods 

Monte Carlo methods for particle transport have been driving computational developments 

since the beginning of modern computers [21,22]. The transport process is modeled by applying 

known interaction laws to simulate the random histories of radiation particles and averaging the 

results over the histories. Specifically for neutron transport simulation, a history starts with a 

neutron produced from fission or external source, undergoes various interactions with materials, 

and terminates until the neutron gets absorbed or leaks out of the problem domain. In a specific 

neutron history, when, where, and how the neutron interacts with matter is randomly sampled from 

specified probability distributions and hence is stochastic in nature. Nevertheless, physical 

quantities of interest such as neutron flux and reaction rates in the reactor are determined by the 

collective behavior of neutrons. According to the law of large numbers, when many independent 

neutron histories following the same probability distributions are simulated, the average result of 

certain estimation made in each history approaches the expected value in the system. 

2.1.1 Advantages of Monte Carlo Methods 

Reactor physics is one of the most suitable and successful application areas of MC methods 

while the extremely complex energy dependence of neutron interaction cross section poses a 

substantial challenge to deterministic methods. Since there is no discretization of space, angle, and 

energy phases in MC simulation, the exact (continuous energy) physics of neutron transport 

process is modeled, and the representation of complex geometries is explicit and usually of high-

fidelity. With known geometry and cross sections, MC simulation results would contain only 

statistical errors. MC methods are widely applied because the fundamental theory is 

straightforward, and the implementation is reactor agnostic. In other words, a MC code can be 

used to analyze different types of reactors without major modification (mostly because of 
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unsupported geometry or missing particle reaction laws). People often turn to MC codes for initial 

analyses and feasibility studies of new reactor concepts. 

2.1.2 Challenges in Monte Carlo Methods 

According to the central limit theorem, the statistical error in the estimated quantity with 

Monte Carlo is, with probability 0.68, bounded by [23]: 

�̂� ≤
𝜎

√𝑁𝑀𝐶

, (2.1) 

where �̂� is the standard deviation of sample average, i.e., MC estimation, 𝜎 is the true standard 

deviation of the quantity of interest, and 𝑁𝑀𝐶  is the number of independent histories in MC 

simulation. That is, increasing the number of simulated particles will decrease the statistical error 

with high probability. However, the inverse square root proportionality indicates a slow 

convergence rate of reducing statistical errors by increasing the number of samples. It also implies 

a challenge to MC when trying to tally rare events in a system like the response in a detector far 

from the source. This is a fundamental difficulty of MC methods. To overcome this difficulty, 

numerous variance reduction techniques have been developed to conduct biased sampling in MC 

codes [24-27]. However, these techniques require user expertise to provide problem dependent 

biasing parameters, which is another laborious task.  

 Nowadays with advancements in numerical algorithms, computer infrastructures, and 

modern programming implementations, many MC transport codes have been used in reactor core 

design and benchmark calculations [28-32]. MC is suitable for calculating integral parameters such 

as eigenvalue and average power in fuel assemblies but is inefficient to estimate detailed local 

quantities such as pin power/flux accurately. The computational efficiency issue hinders routine 

applications of MC methods in multiphysics simulations. For example, fuel depletion calculations 
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require to determine reaction rates in individual fuel pins. In coupled neutronics and thermal-

hydraulic calculations, even sub-pin heat source distributions need to be evaluated to predict the 

peaking temperature accurately to validate the designed safety margin. While steady-state 

criticality calculations for specific core configurations can be carried out on workstations in a 

reasonable wall clock time. A full-core pin-by-pin depletion calculation can easily take thousands 

of CPU hours. Coupled MC transport and thermal-fluidic calculations [33-35] are also beyond the 

scope of routine simulations as the required computational resources for a mini-core problem can 

only be provided with supercomputer clusters.  

2.2 Deterministic Methods  

Deterministic methods are characterized by the way to discretize the neutron transport 

equation (NTE) and to form a system of algebraic equations. Because of the distinct dependencies 

of NET on the energy, space, and angle variables, different methods are developed for their 

discretization. Common spatial discretization methods include the finite difference, nodal, finite 

element, characteristic, and collision probability methods. The former two methods are favored 

with regular mesh grids while the latter three are preferred for unstructured meshes. The spatial 

dependence of cross sections is typically treated with spatial discretization, assuming constant 

cross section within each spatial cell. The discretization of the angle (travel direction of neutron) 

variable is generally through either discrete-ordinates (SN) or spherical harmonics (PN) method. 

Alternatively, the angular dependency can be eliminated under the diffusion approximation. Of all 

the independent variables, energy is probably the most problematic one because of the complex 

energy dependence of cross sections. However, the multigroup approximation is almost 

universally applied to discretize the energy variable. While major advances have been made in the 

spatial and angular discretization methods, the multigroup approximation leads to the fundamental 
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difficulty of obtaining problem-dependent multigroup cross sections accurately and efficiently. 

These multigroup cross sections are defined as effective average parameters to represent the 

neutron reaction rates when multiplied with integrated fluxes in each discretized energy interval.  

2.2.1 Multigroup Approximation 

In the multigroup approach, the time independent neutron transport equation (Error! R

eference source not found.) can be rewritten as [23]: 

Ω̂ ⋅ ∇𝜓𝑔(𝑟, Ω̂) + Σ𝑡,𝑔(𝑟, Ω̂)𝜓𝑔(𝑟, Ω̂) = ∑ ∫ 𝑑Ω̂′Σ𝑠,𝑔′→𝑔(𝑟, Ω̂′, Ω̂)𝜓𝑔′(𝑟, Ω̂′)
4𝜋

𝐺

𝑔′

                                                                         +𝑄𝑔(𝑟, Ω̂), 𝑟 ∈ 𝑉,  Ω̂ ∈ 4𝜋,  1 ≤ 𝑔 ≤ 𝐺. (2.2)

 

The angular flux 𝜓𝑔(𝑟, Ω̂) for group 𝑔 is defined as: 

𝜓𝑔(𝑟, Ω̂) = ∫ 𝜓(𝑟, 𝐸, Ω̂)𝑑𝐸
𝐸𝑔−1

𝐸𝑔

. (2.3) 

where 𝐸𝑔 and 𝐸𝑔−1 are the energy boundaries of group 𝑔. Ignoring the external source and the 

incident energy dependency of fission spectrum, the integral source 𝑄𝑔(𝑟, Ω̂) in group 𝑔 is:  

𝑄𝑔(𝑟, Ω̂) =
𝜒𝑔(𝑟)

4𝜋𝑘
∑ 𝜈Σ𝑓𝑔′(𝑟)𝜙𝑔′(𝑟)

𝐺

𝑔′=1

, (2.4) 

where 

𝜒𝑔(𝑟) = ∫ 𝜒(𝑟, 𝐸)𝑑𝐸
𝐸𝑔−1

𝐸𝑔

, 𝜙𝑔′(𝑟) = ∫ 𝜓𝑔′(𝑟, Ω̂′)𝑑Ω̂′

4𝜋

. (2.5) 

The rigorous multigroup cross sections are defined as: 

Σ𝑡,𝑔(𝑟, Ω̂) =
∫ Σ𝑡(𝑟, 𝐸)𝜓(𝑟, 𝐸, Ω̂)𝑑𝐸

𝐸𝑔−1

𝐸𝑔

∫ 𝜓(𝑟, 𝐸, Ω̂)𝑑𝐸
𝐸𝑔−1

𝐸𝑔

, (2.6) 
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Σ𝑠,𝑔′→𝑔(𝑟, Ω̂′, Ω̂) =
∫ ∫ Σ𝑠(𝑟, 𝐸′ → 𝐸, Ω̂′ ⋅ Ω̂)𝜓(𝑟, 𝐸′, Ω̂′)𝑑𝐸′𝑑𝐸

𝐸
𝑔′−1

𝐸𝑔′

𝐸𝑔−1

𝐸𝑔

∫ 𝜓(𝑟, 𝐸′, Ω̂′)𝑑𝐸′
𝐸𝑔′−1

𝐸𝑔′

, (2.7) 

𝜈Σ𝑓𝑔′(𝑟) =
∫ 𝜈Σ𝑓(𝑟, 𝐸′)[∫ 𝜓(𝑟, 𝐸′, Ω̂′)𝑑Ω̂′

4𝜋
]𝑑𝐸′𝐸𝑔−1

𝐸𝑔

∫ [∫ 𝜓(𝑟, 𝐸′, Ω̂′)𝑑Ω̂′
4𝜋

]𝑑𝐸′𝐸𝑔−1

𝐸𝑔

. (2.8) 

The rigorous total and scattering cross sections are angle dependent and are not convenient 

to be incorporated in conventional deterministic code implementations [36]. In common practice, 

the angular dependence of scattering cross section is expressed as Legendre polynomial expansion: 

Σ𝑠(𝐸′ → 𝐸, Ω̂′ ⋅ Ω̂) = ∑
2𝑙 + 1

4𝜋
Σ𝑠𝑙(𝐸′ → 𝐸)𝑃𝑙(𝜇)

𝐿

𝑙=0

, 𝜇 = Ω̂′ ⋅ Ω̂ ∈ [−1,1], (2.9) 

where 𝑃𝑙(𝜇) is Legendre polynomial of order 𝑙. According to the addition theorem of spherical 

harmonics,  

𝑃𝑙(Ω̂′ ⋅ Ω̂) =
4𝜋

2𝑙 + 1
∑ �̅�𝑙𝑘(Ω̂′)𝑌𝑙𝑘(Ω̂)

𝑙

𝑘=−𝑙

, (2.10) 

where �̅�𝑙𝑘(Ω̂′) and 𝑌𝑙𝑘(Ω̂) are spherical harmonics. Accordingly, the scattering source term in Eq. 

(2.2) can be rewritten as: 

               𝑆𝑔(𝑟, Ω̂) = ∑ ∫ 𝑑𝐸 ∫ 𝑑𝐸′
𝐸𝑔′−1

𝐸𝑔′

𝐸𝑔−1

𝐸𝑔

∫ 𝑑Ω̂′Σ𝑠(𝑟, 𝐸′ → 𝐸, Ω̂′ ⋅ Ω̂)𝜓(𝑟, 𝐸′, Ω̂)
4𝜋

𝐺

𝑔′

              = ∑ ∑ ∑ 𝑌𝑙𝑘(Ω̂)

𝑙

𝑘=−𝑙

𝐿

𝑙=0

Σ𝑠𝑙,𝑔′→𝑔(𝑟) ∫ 𝑑𝐸 ∫ 𝑑𝐸′ ∫ 𝑑Ω̂′�̅�𝑙𝑘(Ω̂′)𝜓(𝑟, 𝐸′, Ω̂)
4𝜋

𝐸𝑔′−1

𝐸𝑔′

𝐸𝑔−1

𝐸𝑔

𝐺

𝑔′

. (2.11)

 

Correspondingly, the multigroup scattering cross sections are defined as: 

Σ𝑠𝑙𝑘,𝑔′→𝑔(𝑟) =
∫ 𝑑𝐸 ∫ 𝑑𝐸′Σ𝑠𝑙(𝑟, 𝐸′ → 𝐸)𝜓𝑙𝑘(𝑟, 𝐸′)

𝐸
𝑔′−1

𝐸𝑔′

𝐸𝑔−1

𝐸𝑔

∫ 𝜓𝑙𝑘(𝑟, 𝐸′)𝑑𝐸′
𝐸𝑔′−1

𝐸𝑔′

, (2.12) 

where 𝜓𝑙𝑘(𝑟, 𝐸′) is angular flux moment: 
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𝜓𝑙𝑘(𝑟, 𝐸′) = ∫ 𝑑Ω̂′�̅�𝑙𝑘(Ω̂′)𝜓(𝑟, 𝐸′, Ω̂)
4𝜋

. (2.13) 

  To eliminate the angular dependence of the total cross section, the total reaction rate term 

is expanded with spherical harmonics and Eq. (2.2) can be rearranged as: 

           Ω̂ ⋅ ∇𝜓𝑔(𝑟, Ω̂) + Σ̃𝑡,𝑔(𝑟)𝜓𝑔(𝑟, Ω̂) = ∑ ∑ ∑ 𝑌𝑙𝑘(Ω̂)

𝑙

𝑘=−𝑙

𝐿

𝑙=0

Σ̃𝑠𝑙𝑘,𝑔′→𝑔(𝑟)𝜓𝑙𝑘,𝑔′(𝑟)

𝐺

𝑔′

                                                +
𝜒𝑔(𝑟)

4𝜋𝑘
∑ 𝜈Σ𝑓𝑔′(𝑟)𝜙𝑔′(𝑟)

𝐺

𝑔′=1

. (2.14)

 

In Eq. (2.14), Σ̃t,g(𝑟) is an arbitrarily selected total cross section that is independent of angle and 

the modified scattering cross section is: 

Σ̃𝑠𝑙𝑘,𝑔′→𝑔(𝑟) = Σ𝑠𝑙𝑘,𝑔′→𝑔(𝑟) + [Σ̃𝑡,𝑔(𝑟) − Σ𝑡𝑙𝑘,𝑔(𝑟)]𝛿𝑔𝑔′ , (2.15) 

where 𝛿𝑔𝑔′  is Kronecker delta function and Σ𝑡𝑙𝑘,𝑔(𝑟) is the flux moment weighted total cross 

section:  

Σ𝑡𝑙𝑘,𝑔(𝑟) =
∫ Σ𝑡(𝑟, 𝐸)𝜓𝑙𝑘(𝑟, 𝐸)𝑑𝐸

𝐸𝑔−1

𝐸𝑔

∫ 𝜓𝑙𝑘(𝑟, 𝐸)𝑑𝐸
𝐸𝑔−1

𝐸𝑔

. (2.16) 

In the widely adopted consistent PN and extended transport approximation [36], Σ̃𝑡,𝑔(𝑟) is chosen 

to be the scalar flux (zeroth flux moment) weighted total cross section. This approximation requires 

to determine the weighting spectra from angularly dependent spectrum calculations.  

Other than the truncation of scattering order, the fundamental dilemma in Eq. (2.14) is that 

the exact angular flux required to define multigroup cross sections is unknown before the 

continuous energy transport equation (1.1) is solved. Therefore, numerical calculations must work 

with multigroup cross sections obtained with approximate weighting spectrum. If the number of 

energy groups is sufficiently large, multigroup cross sections are insensitive to the weighting 

spectrum. With that, the number of unknowns and the size of the system of algebraic equations 
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would be tremendous and huge memory storage would be required, which significantly deteriorate 

the computational efficiency of deterministic methods. In full-core calculations, the discretized 

energy grids should be limited to at most a few tens because the spatial discretization usually 

requires a higher resolution. With a coarse energy model, multigroup cross sections should be 

condensed with a flux (moment) spectrum close to the desired flux solution. 

Depending on the model to obtain multigroup cross sections, two groups of deterministic 

methodologies are recognized: 1) legacy two-step methods consisting of high-order transport 

calculations for assembly lattices and full-core low-order transport or diffusion calculations, and 

2) direct (or one-step) full-core transport methods. Because of the distinct spectrum characteristics 

of different types of reactors as shown in Figure 2.1, different approximations tailored for specific 

reactor types are adopted in these developed methods.  

 

Figure 2.1 Characteristic Neutron Energy Spectra in Different Types of Reactor Cores  

(Adapted from the lecture notes of NERS 561 class given by Prof. Won Sik Yang at UM) 
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It is seen that the thermal reactors (PWR and VHTR) spectra show obvious thermal flux 

peaks and a much smoother flux variation than the fast reactors. In the heavy nuclide resonance 

region (eV to keV range), the 1/E spectrum of thermal reactors is used as a basis for resonance 

self-shielding calculations [37]. In fast reactors, the small slowing-down power produces a flux 

spectrum centered in the keV to MeV energy range. The strongly jagged structure of fast reactor 

spectra is mainly due to the scattering resonance of intermediate mass nuclides in coolant and 

structure. The lack of dominant heavy nuclides causing resonance and 1/E asymptotic spectrum in 

fast reactors necessitate the use of a detailed energy model for slowing-down calculations. The 

harder spectrum also incurs non-negligible threshold reactions like (n,2n), (n,p), and inelastic 

scattering, and pronounced scattering anisotropy and unresolved resonance self-shielding effects 

in fast reactors. [38] Another important difference is that the long neutron mean free path (MFP) 

causes global spectrum transition across the fast reactor core. These distinctions in nuclear 

characteristics gave rise to separately developed cross section generation and full-core calculation 

methods dedicated to fast or thermal spectrum reactor analysis.  

2.2.2 Legacy Two-Step Methods 

Legacy two-step methods used a divide-and-conquer strategy to solve whole-core neutron 

transport problems in multiple steps: (0) preparation of base cross section library for lattice codes, 

(1) lattice physics calculations to prepare coarse-group (two to dozens of groups depending on 

reactor type) cross sections, (2) full-core calculation with homogenized coarse-group cross 

sections from step (1). Step (0) processes cross sections in the finest energy resolution without 

spatial or angular dependence, but it is not frequently performed and hence not counted in “two-

step”. Step (1) treats resonance self-shielding with intermediate energy resolution and local spatial 

heterogeneity in high resolution. Step (2) solution has the lowest energy resolution but covers the 
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full problem domain in coarser spatial resolution than lattice calculations. A finer full-core solution 

can be obtained by combining Step (1) and Step (2) information. Although subtle differences exist 

among various legacy codes at each of the steps, the following discussions will be focused on the 

comparison between the methods respectively applied to fast and thermal reactors.  

2.2.2.1 Lattice Physics Calculation 

Without going through the full list of common lattice codes [39-42], thermal reactor lattice 

calculations are mostly performed for unique pin cell or two-dimensional (2D) assembly lattice 

models with heterogeneous geometry representation and fine-group (~100 groups) cross sections. 

These cross sections are pre-generated in Step 0) and are functionalized with temperature and 

background cross sections in the resonance energy region such that they can be applied to a wide 

range of problems (typically limited to the same type of reactor). In thermal lattice codes, the 

resonance self-shielding calculation is prevalently based on equivalency theory or subgroup 

method [37]. Detailed flux distribution in a lattice is calculated to consider the strong local 

heterogeneity effects on spatial and energy self-shielding. However, thermal lattice calculations 

are generally performed with transport approximation and do not produce high order anisotropic 

scattering cross sections that are important in fast energy range. Because of the short neutron MFP 

and the relatively uniform core configuration of commercial thermal reactors, the inter-assembly 

neutron transport is not significant and reflective boundary conditions are imposed with critical 

buckling search for leakage correction. Assembly color set (supercell) model are also supported 

for better modeling of the spectral interference between different types of fuel assemblies or 

between fuel and reflector [40]. Because of the strong dependence of thermal cross sections on 

fuel burnup state, fuel depletion calculation is usually incorporated in thermal lattice codes to 

generate burnup dependent cross sections. 
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For fast reactor cross section generation, a different series of cross section generation codes 

[43-47] were developed. The Bondarenko self-shielding factor method was used in early practices 

for self-shielding treatment. Later, the ultrafine group (UFG) method is primarily adopted for 

detailed spectrum calculations. In the state-of-the-art MC2-3 code [47], resonance overlapping is 

resolved in UFG spectrum calculations for homogeneous or heterogeneous configurations. The 

self-shielded UFG (~2000 groups) cross sections are prepared either by numerical integration of 

reconstructed and Doppler broadened pointwise cross sections in the resolved resonance range 

based on the narrow resonance approximation, or by hyperfine-group (HFG) fixed source 

calculations for wide resonances. The pointwise cross sections are directly used in the HFG 

(~400,000 groups) calculations. Unresolved resonances are self-shielded using the analytic 

resonance integral method. The consistent P1 multigroup transport equation is solved for one-

dimensional (1D) unit cell problems in UFG or HFG level. Recently, to represent the local 

heterogeneity effects more accurately, the method of characteristics (MOC) was implemented to 

solve two- (2D) and three-dimensional (3D) assembly problems [48]. Like thermal lattice codes, 

the resulting UFG cross sections can be homogenized and condensed into broad-group cross 

sections with fundamental mode spectrum. To consider the global spectral transition effects in fast 

reactors, the UFG calculation is typically performed for 2D region homogenized full-core 

problems to generate region-dependent broad-group cross sections. 

Thermal and fast lattice codes are characterized by their self-shielding calculation methods. 

The use of UFG method in fast lattices code eliminates the need of pre-generated fine-group 

libraries and in principle they can be applied to a wider range of problems. In fact, MC2-3 has been 

extended to generate multigroup cross sections in the thermal energy range as well as in the fast 

energy range [49]. However, the computational inefficiency of the UFG method limits its 
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application to large-sized problems. From the core calculation point of view, different cross section 

data are produced from thermal and fast lattice codes. Since the fuel depletion is already 

incorporated in thermal lattice calculations, macroscopic few-group (usually less than ten) cross 

sections are prepared and functionalized with state condition parameters including burnup. 

Comparatively, whole-core depletion calculations are performed for fast reactors because of the 

global spectral transition effects. For this purpose, isotopic multigroup cross sections are generated 

from lattice calculations. As region dependent spectra are incorporated in the group condensation 

and a multigroup structure finer than that used for thermal core calculations is used in fast core 

calculations, the isotopic multigroup cross sections are assumed constant during fuel depletion.  

2.2.2.2 Homogenization Process 

Legacy methods for full-core calculations require homogenized multigroup cross sections 

from lattice codes. This process includes spatial homogenization as well as group condensation, 

mostly with flux-volume weighting: 

Σ̅𝛼,𝑔 =
∫ 𝑑𝑟 ∫ 𝑑𝐸Σ𝛼(𝑟, 𝐸)𝜙ℎ(𝑟, 𝐸)

𝐸𝑔−1

𝐸𝑔𝑉

∫ 𝑑𝑟 ∫ 𝑑𝐸𝜙𝑚(𝑟, 𝐸)
𝐸𝑔−1

𝐸𝑔𝑉

, (2.17) 

where Σ̅𝛼,𝑔 is the homogenized cross section for reaction type 𝛼 in a spatial region 𝑉 (called node), 

and 𝜙ℎ  and 𝜙𝑚  are the flux in the heterogeneous and homogenized region, respectively. This 

definition intends to preserve the average reaction rates of the reference heterogeneous problem in 

the homogenized calculation. However, it is well known that the cross sections homogenized by 

the flux-volume weighting generally do not preserve the reference surface leakages simultaneously 

because of the lack of degree of freedom in the homogenization process [50-53].  

Conventionally, the additional degree of freedom is introduced by certain equivalency 

parameters, including flux discontinuity factor (DF) [51], super-homogenization (SPH) factor 
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[52], and black box homogenization (BBH) method [53]. DF is widely adopted in nodal diffusion 

calculations to allow flux discontinuity on nodal surfaces. Discontinuity factors are typically 

generated for the radial boundaries of homogenized assembly in 2D lattice calculations simply as 

the ratios of surface-averaged to node-averaged fluxes. Axial discontinuity factors derived in 3D 

transport calculations were also introduced for some BWR problems to capture the strong axial 

heterogeneity [54]. SPH factor is transport-solver-agnostic and can be absorbed into multigroup 

cross sections without extra memory cost, and hence are mostly used in pin-by-pin calculations to 

reproduce pin-level reaction rates. But the determination of SPH factors is a nonlinear iteration 

procedure. As an extension to SPH and DF methods, the BBH method intends to reproduce 

reference reaction rates and net leakage by preserving partial currents on nodal surfaces. At each 

surface, two discontinuity factors are used.  

While discontinuity factors have been routinely and successfully used in diffusion theory 

core calculations, they are not broadly adopted in transport calculations although several efforts 

have been dedicated. Transport equivalence methods have been introduced in terms of SPH factors 

[52], even parity discontinuity factors [55,56], cross section correction [57], and angular flux 

discontinuity factors [58,59]. These equivalence models are mainly developed for integro-

differential transport equation to improve full-core pin-resolved transport calculations.  

2.2.2.3 Full Core Calculation 

Legacy full-core calculations are predominantly based on advanced nodal methods 

developed since early 1980s to replace the expensive fine-mesh finite difference methods [60]. 

These nodal methods are essentially not associated with specific spectrum systems. With reliable 

multigroup cross sections, they can be applied to fast, thermal, or coupled fast-thermal spectrum 
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reactors. Among these nodal methods, the nodal expansion methods and analytical nodal methods 

based on the transverse integration procedure are mostly widely used in production analysis [38].  

Because of the strong local heterogeneity effects, discontinuity factors were incorporated in most 

nodal codes for thermal reactor core calculations [61-63].  

Specifically for fast reactor analysis, the DIF3D-Nodal code [65] was initially developed 

for full-core diffusion calculations using the transverse integrated nodal expansion method. Later 

in order to treat the pronounced scattering anisotropy and transport effects in fast reactors, the 

DIF3D-VARIANT code [66,67], or briefly referred to as VARIANT, was developed based on 

variational nodal transport method [68]. It solves the second order even-parity transport equation 

in a variational approach. In VARIANT, flux and source are expanded using hierarchical complete 

polynomial trial functions in space and spherical harmonics or simplified spherical harmonics in 

angle and the coupling between nodes is through continuity of even- and odd-parity flux moments 

rather than transvers integration of leakage. Spatial and angular approximation orders in 

VARIANT can be consistently refined to achieve higher solution accuracy. Compared to the 

transverse integration nodal methods, VARIANT diffusion (P1 expansion) solution provides 

systematic flux/power reconstruction with 3D basis functions [69]. Since the assembly 

homogenization error is relatively small in typical fast reactors, initially no discontinuity factor 

was incorporated in DIF3D-Nodal and VARIANT. Subsequently, a nodal equivalence theory 

based on scalar flux DFs was implemented in VARIANT for prismatic Very High Temperature 

Reactor (VHTR) analysis [70], but it was limited to the P1 approximation. Recently, a scalar flux 

DF approach was also applied to a diffusion theory variational nodal method [71].  

 Regarding depletion and fuel cycle analysis, thermal reactor codes do not perform 

depletion calculations explicitly but use burnup dependent macroscopic cross sections as look-up 
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tables in whole-core calculations. Even though the micro-depletion calculation capability was 

introduced in recent updates of several thermal nodal codes [63,64], the focus was to correct the 

error in the interpolated macroscopic cross sections due to deviated depletion history in core 

calculations. On the other hand, fast reactor fuel cycle analysis is carried out at the core calculation 

stage. The REBUS-3 code [72,73] is a classic fast reactor fuel cycle analysis code used for both 

explicit cycle-by-cycle calculation under a specified fuel management scheme and for determining 

the equilibrium state under a fixed and periodic fuel management scheme. REBUS-3 utilizes 

DIF3D [74], DIF3D-Nodal, VARIANT, or TWODANT [75] as the flux solver. While constant 

isotopic cross sections are routinely used for fast reactor fuel cycle analyses, a limited capability 

is available to use burnup dependent capture and fission cross sections. [73]  

2.2.3 Direct Full-Core Transport Methods 

Direct full-core transport methods are often referred to as “one-step” deterministic methods 

as the lattice calculation and full-core calculation are integrated into one step. The one-step 

deterministic codes like nTRACER [76] and MPACT [77] developed for thermal reactor analysis 

still require functionalized cross section libraries for online resonance self-shielding treatment. 

The PROTEUS code [78,79] developed under the Nuclear Engineering Advanced Modeling and 

Simulation (NEAMS) program can also use the subgroup method or resonance table method for 

self-shielding calculation on the fly. However, to be applied to a wide range of problems, an 

ultrafine-group base library should be prepared [80]. Therefore, practical high-fidelity transport 

calculations for fast reactors using PROTEUS are usually performed with broad-group cross 

sections generated externally. One-step methods target high-order transport calculations for 

explicit (pin-resolved) full-core models. Rather less approximations in spatial and angular 

discretization are made compared to legacy two-step methods. Multiphysics phenomena like fuel 
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depletion and thermal feedback are modeled by embedded burnup and coupled thermal-hydraulic 

calculations. Correspondingly, the size of the equation solved by one-step methods increases 

significantly and extraordinarily large computational resources are required for core calculations. 

Thus, one-step transport methods are not suitable for routine design calculations.  

2.3 Hybrid Monte Carlo-Deterministic Methods 

The concept of “hybrid” method was originally attached to improved MC methods using 

deterministic methods to determine biasing parameters [81-83], or those using deterministic 

calculation to accelerate fission source convergence in reactor modeling [84,85]. Another tier of 

hybrid methods are essentially deterministic methods but use nonlinear functionals [86], response 

matrices [87], or more commonly multigroup cross sections [88-91] generated from MC 

simulations. Among these hybrid methods, those based on deterministic solvers and multigroup 

cross sections generated with MC received the most attentions because of their compatibility with 

the legacy code implementation. Using MC simulation for cross section generation, the difficulties 

in resonance self-shielding treatment and complex geometry modeling with conventional lattice 

codes are eliminated to a large extent. The only major drawback with MC is the generation of 

anisotropic scattering cross sections and transport corrected total cross section (or transport cross 

section).  

As shown in Eq. (2.12), the scattering cross sections should be flux moment weighted. 

However, it is not feasible to tally flux moments in standard MC simulations as the tallied results 

of near-zero flux moments would bear significant uncertainties. Consequently, anisotropic 

scattering cross sections are typically weighted with scalar flux spectrum in MC codes [88]. It is 

noted that using scalar flux weighted anisotropic scattering matrices in deterministic transport 

calculations would introduce non-negligible errors [92]. Ref. [91] developed a hybrid method for 
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fast reactor cross section generation, in which MC simulations are used only to produce UFG 

principal cross sections and isotropic elastic scattering cross sections. Scattering matrices were 

constructed using tallied isotropic scattering cross sections and energy transfer functions. Broad-

group cross sections are then generated with UFG spectrum obtained in deterministic UFG 

transport calculations.  

Anisotropic scattering cross sections are not explicitly involved in diffusion theory 

calculations. Instead, diffusion coefficient defined with the transport cross section is used. 

Rigorous determination of transport cross section and diffusion coefficient requires the knowledge 

of current (P1 flux moment) spectrum. Because of the same reason just mentioned above, MC 

codes often generate transport cross section (Σ𝑡𝑟,𝑔) with the out-scatter approximation: 

Σ𝑡𝑟,𝑔 = Σ𝑡,𝑔 −
∑ (Σ𝑠1,𝑔′→𝑔𝐽𝑔′)𝑔′

𝐽𝑔
≈ Σ𝑡,𝑔 −

∑ (Σ𝑠1,𝑔→𝑔′𝐽𝑔)𝑔′

𝐽𝑔
= Σ𝑡,𝑔 − Σ𝑠1,𝑔 , (2.18) 

where 𝐽𝑔 and Σ𝑠1,𝑔 denotes current and P1 scattering cross section, respectively. Here the current 

spectrum cancels out but the P1 scattering cross section comes from scalar flux weighting. Further 

group condensation of transport cross section and diffusion coefficient would also turn to scalar 

flux weighting. To overcome this limitation, alternative approaches were developed in various MC 

codes to determine diffusion coefficients with current weighted transport cross section [93] or the 

cumulative migration method (CMM) [94].  

2.4 Potential Options for CFTR Analysis 

Through the literature survey, MC methods turn to be the only choice that is directly 

applicable to coupled-spectrum reactor core analysis. But the computational inefficiency makes 

them inappropriate for scoping design calculations which involve iterations to optimize design 

parameters. Similarly, one-step deterministic methods are not appropriate either for coupled-



 25 

spectrum reactor applications. Among the legacy two-step methods, the fast reactor analysis 

methods are more applicable to coupled-spectrum systems than those developed for thermal 

reactors, because of the rigorous self-shielding treatment in fast lattice codes. There is no 

fundamental difference in the whole-core transport calculation between fast and thermal spectrum 

reactors with provided group constants. But because a coupled-spectrum reactor would require 

whole-core depletion calculation for fuel cycle analysis as it shares the fast-reactor feature of 

significant global spectrum transition effects, the fast reactor core calculation method based on the 

VARIANT and REBUS-3 codes is preferred in that the whole-core depletion calculation capability 

with transport flux solution is readily available. The missing parts include a nodal equivalence 

model to reduce homogenization error, and the support of burnup dependent cross sections for all 

reactions.  

 There were attempts to model the coupled-spectrum reactors using existing tools. The 

conceptual design study for VCTR was performed using a hybrid approach [11]. Multigroup cross 

sections were generated from a full-core MC simulation with Serpent [29], and deterministic 

transport calculations were performed with the MAMMOTH code [95]. It was reported that 

MAMMOTH transport calculations of VCTR yielded eigenvalue errors larger than 1,000 pcm 

even with the cross sections obtained from a full core Serpent simulation. Later, using SPH factors 

derived from the reference Serpent full-core solution in MAMMOTH calculations produced 

accurate eigenvalue and power distribution [96].  

Based on these considerations, it was decided to develop an efficient hybrid two-step 

method for coupled fast-thermal core analysis by improving the current fast reactor analysis 

methods and by developing a procedure to generate multigroup cross sections and nodal 

equivalence parameters based on Monte Carlo simulations with Serpent [29] or OpenMC [30]. For 
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high-order transport calculations, the MC2-3 code remains an alternative option to generate 

consistently weighted anisotropic scattering cross sections.  
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Chapter 3  
 

Limitations in Current Fast Reactor Analysis Methods 
 

As discussed in Chapter 2, the new two-step method for CFTR analysis is to be developed 

by improving the current fast reactor analysis methods. Therefore, it is necessary to first evaluate 

the applicability of the legacy fast reactor analysis methods to CFTRs. Quantitative assessments 

would help highlight the major deficiencies of existing methods and draw a baseline for the 

development of a new method. For this purpose, a simplified one-dimensional (1D) coupled-

spectrum problem was studied to clarify the impact of each approximation adopted in the current 

methods. This chapter outlines the main challenges encountered in developing a new deterministic 

method for CFTR analysis. We will see that the biggest difficulty is rooted in the preparation of 

effective multigroup cross sections (including nodal equivalence parameters) for homogenized 

nodal calculations.  

3.1 1D Coupled Fast-Thermal Spectrum Core Problem 

As shown in Figure 3.1,  a 1D coupled fast-thermal spectrum reactor (CFTR-1D) problem 

is constructed using four types of assemblies: one fast fuel assembly (FA), one buffer assembly 

(BA), one moderated (thermal) fuel assembly (TA), and three graphite reflector assemblies (GRs). 

Since no moderator occurs in the fast fuel assembly, a fast reactor spectrum is produced in FA. 

The buffer assembly acts as a fast neutron reflector to the fast fuel assembly while absorbing the 

thermal neutrons leaking out of the thermal fuel assembly.  
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Figure 3.1 Half-Space Configuration of One-Dimensional CFTR 

 

The fast fuel assembly is loaded with 20 at.% enriched uranium zirconium alloy (U-6Zr) 

that contains 6 wt.% zirconium. The buffer assembly contains only dummy plates made of stainless 

steel. The thermal fuel assembly is fueled with 7 at.% enriched uranium zirconium alloy (U-10Zr) 

containing 10 wt.% zirconium and is moderated with zirconium hydride (ZrH1.6) solid moderator 

(blue plates in Figure 3.1). The graphite reflectors are modeled as homogeneous mixture of bulky 

graphite, coolant and zircaloy box. HT-9 stainless steel is used as the fuel cladding and assembly 

duct materials of the fast and buffer assemblies while zircaloy cladding/duct are chosen for the 

thermal fuel assembly. The whole core is universally cooled with sodium. More detailed 

information of the CFTR-1D model is provided in Appendix A.1.  

Using continuous cross sections based on the ENDF/B-VII.0 library, a whole core Serpent 

[29] Monte Carlo simulation of the CFTR-1D core gives the spectral and spatial distributions of 

neutron fluxes as shown in Figure 3.2 and Figure 3.3, respectively. In Figure 3.2, GR1 denotes the 

reflector assembly next to the thermal fuel assembly. It is seen that the neutron spectrum varies 

significantly from the typical fast reactor spectrum in the fast fuel assembly to the thermal-peaked 

spectrum in the reflector assembly. It is also noted that the thermal fuel assembly is deeply under-

moderated, which yields a transitional spectrum different from prototypical spectrum observed in 

thermal reactors. But the thermal neutron (𝐸𝑛 < 0.6 eV) fission still makes up about 40% of the 

total fission rate. The pronounced global spectral transition indicates strong inter-assembly 

coupling and transport effects.  
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Figure 3.2 Flux Spectra in Different Assemblies of CFTR-1D Core 

 

Figure 3.3 Flux Profiles with Distance from Center of CFTR-1D Core 

 

Figure 3.3 shows the flux profiles in three energy ranges: fast (> 2 keV), intermediate (0.6 

eV ~ 2 keV), and thermal (< 0.6 eV). Because of the buffer assembly, intermediate and thermal 

neutrons can hardly enter the fast fuel assembly. It is clearly seen that the graphite reflector 

assemblies act as the dominant moderators in the system. The large gradients of fast and thermal 

fluxes indicate significant leakage and transport effects, which may cause difficulties in diffusion 

theory core calculations. Later, we will see the impact of diffusion approximation in nodal core 

calculations for this problem. 
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3.2 Steady-State Transport Calculation 

For multigroup nodal core calculations, accurate multigroup cross sections are essential to 

obtain correct flux solutions. Besides, equivalence parameters are usually introduced to reduce 

node homogenization errors. To quantify the impacts of individual approximations in nodal core 

calculations, an assembly homogenized model of CFTR-1D core is first investigated to test the 

applicability of the conventional approach for fast reactor cross section generation.  

3.2.1 Homogenized CFTR-1D Problem 

The homogenized CFTR-1D problem is illustrated in Figure 3.4. For this simplified model, 

the reference broad-group cross sections (BGXSs), including energy release per fission for power 

calculation, were directly tallied for each assembly in the reference Serpent calculation. The 

Serpent methodology for generating multigroup cross sections using Monte Carlo tallies is 

described in Ref. [88]. It is noted that the anisotropic scattering cross sections tallied in Serpent 

are weighted by scalar flux spectrum instead of the corresponding spectra of angular flux moments 

because of the infeasibility of tallying flux moments in Monte Carlo simulation. In fast spectrum 

systems, anisotropic scattering is important and hence needs to be rigorously considered. A 

previous study [92] showed that the scalar flux weighted anisotropic scattering matrices may cause 

over 500 pcm k-effective error. Therefore, alternative BGXSs were prepared using MC2-3, in 

which high-order scattering matrices are weighted with angular flux moments. The steps to prepare 

BGXSs with MC2-3 will be discussed later.  

 

Figure 3.4 Half-Space Configuration of Homogenized CFTR-1D Core 
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3.2.1.1 Core Calculation with Reference BGXSs 

VARIANT nodal transport calculations were performed with P5 angular approximation and 

P3 anisotropic scattering order. The spatial polynomial orders for flux, source, and leakage 

distribution were 6, 4, and 1, respectively. Parametric studies showed no significant improvement 

of solution with refined approximation orders. Two sets of reference BGXSs were tallied in 32 

and 13 energy groups, respectively, which are described in Appendix B. To eliminate the errors 

due to scalar flux weighted anisotropic scattering cross sections of Serpent, the reference BGXSs 

were modified by replacing the anisotropic scattering matrices with those obtained from MC2-3 

full-core calculations. The cross sections were written in the ISOTXS format [97] for use in 

VARIANT. 

In Table 3.1, the VARIANT transport solutions are compared with the reference Serpent 

solution. The ISOTXS datasets containing modified anisotropic scattering data are labeled with 

‘mixed’. As expected, neither 32G nor 13G cross sections directly from Serpent tallies predicted 

the k-effective and power distribution accurately. With the modified scattering matrices, the 

VARIANT solution with the 13G cross sections had slightly larger errors in eigenvalue and 

assembly powers but both cross section sets practically reproduced the reference solution.  

Table 3.1 VARIANT transport solutions using reference broad-group cross sections 

Code Cross section* keff 
Std dev  

/ Error 

Assembly power error 

 FA  TA 

Serpent ENDF/B VII.0 1.11002 0.00004 – – 

VARIANT ISOTXS.32G.hom_core_serp 1.11484 0.00482  1.63% -1.53% 

 ISOTXS.32G.hom_core_serp_mixed 1.11050 0.00048 -0.03%  0.03% 

 ISOTXS.13G.hom_core_serp 1.11639 0.00637  2.22% -2.07% 

 ISOTXS.13G.hom_core_serp_mixed 1.11082 0.00080  0.18% -0.17% 

*Naming rule for cross section dataset: file_format.xxG.label. xx means number of broad groups 

and label denotes the method/model to generate the cross sections. 
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The flux spatial distributions of the VARIANT 32G transport solution with the modified 

anisotropic scattering matrices are compared to those of the reference Serpent solution in Figure 

3.5. In general, the flux distributions predicted by VARIANT agreed with the Serpent results. 

Noticeable deviations occur in the fast flux shape in the buffer assembly and the intermediate flux 

shape in the graphite reflector next to the thermal fuel assembly. These deviations are mainly due 

to the use of spatially uniform BGXSs of each assembly in VARIANT calculations. Since the local 

spectra in the buffer and reflector assemblies are heavily influenced by the neighboring fuel 

assemblies, the variation of BGXSs in homogeneous assemblies is non-negligible. This type of 

homogenization error can be eliminated if a sufficiently fine group structure is used or by using 

smaller constant cross section zones. In practice, this error is usually blended with the common 

homogenization error due to local heterogeneity effects and is accommodated by equivalence 

parameters in nodal calculations.  

                

    

Figure 3.5 Comparison of Flux Profiles of Serpent and VARIANT 32G Transport Solutions 
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As shown in Table 3.1, the scalar flux weighted anisotropic scattering cross sections caused 

large errors in core calculations. Thus, the high order scattering matrices produced by Serpent (or 

other common MC codes) are not reliable for transport analysis with explicit anisotropic scattering. 

Using the BGXSs directly generated by Serpent, the best we can do is applying the transport 

corrected P0 (TCP0) approximation, which requires transport cross sections, and modified isotropic 

self-scattering matrices. Transport cross sections are generated with the out-scatter approximation 

in Serpent and are deduced from total cross sections and scalar flux weighted P1 scattering cross 

sections [88]: 

𝛴𝑡𝑟 ≈ 𝛴𝑡 − 𝛴𝑠1 (3.1) 

where 𝛴𝑠1 is the P1 scattering cross section. As well known, the outflow approximation does not 

produce accurate transport cross sections. A method to generate current weighted transport cross 

section was developed in Serpent but is not available in the publicly released version used for this 

dissertation [93]. The cumulative migration method (CMM) [94] implemented in OpenMC and 

Serpent is another option. But the current implementations are limited to those cases when the 

entire problem domain with periodic or reflective boundary conditions is homogenized. 

Table 3.2 compares several VARIANT solutions obtained with the 32G reference BGXSs 

and the same spatial expansion orders as that used for Table 3.1 results but different angular 

approximation and anisotropic scattering orders. With the flux moment weighted anisotropic 

scattering matrices (Mixed case), inclusion of P2 or P3 order anisotropic scattering could produce 

accurate transport solutions. Transport calculations with P1 scattering approximation also yielded 

plausible results because of error cancellation. While the eigenvalue error was reduced but the 

assembly power errors were increased, compared to the results with higher scattering orders. In 

VARIANT, the transport calculation with TCP0 approximation was performed by subtracting the 
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P1 scattering cross sections from the scalar flux weighted total cross sections and the diagonal 

terms of P0 (isotropic) scattering matrices and considering only P0 scattering. With the P1 scattering 

matrices from MC2-3 (Mixed case), it is seen that the TCP0 approximation produced similar results 

as using explicit P1 scattering order. With the P1 scattering matrices from Serpent, the TCP0 

approximation led to significant errors in eigenvalue and power distribution as expected.  

Table 3.2 Impact of angular approximation and scattering orders on VARIANT results 

Angular  

approximation  

Scattering  

cross section 

Scattering  

order 
Δ𝑘, pcm 

Assembly power error 

 FA  TA 

P5 expansion Mixed (a) P3  48 -0.03%  0.03% 

  P2  69 -0.02%  0.02% 

  P1 -28 -0.07%  0.06% 

  TCP0  6  0.11% -0.10% 

 Serpent TCP0  438  1.77% -1.65% 

P1 expansion Mixed P1 -536 -0.71%  0.67% 

  P0
(b) -119  0.81% -0.71% 

Notes:  

(a) Combined isotropic scattering matrix of Serpent and anisotropic scattering matrices of MC2-3. 

(b) Used transport cross section and isotropic scattering matrix directly from Serpent. The diagonal 

terms of scattering matrix were not modified.  

For diffusion (P1 expansion) calculations, however, the inclusion of explicit P1 anisotropic 

scattering resulted in larger errors than the case considering only P0 scattering, for which the 

isotropic scattering matrices from Serpent were used without modifying the diagonal terms. 

Compared to the transport solution, using the same P1 scattering matrices in diffusion resulted in 

a much worse solution, which implies significant transport effects. Assuming isotropic scattering 

(P0 case), the diffusion solution had a much smaller eigenvalue error because of error cancellation 

as the assembly power errors were not reduced. The results in Table 3.2 illustrate that both 

transport effects and scattering anisotropy are significant in coupled-spectrum reactors and should 

be treated simultaneously for reliable core calculations. 
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3.2.1.2 Core Calculation with BGXSs Generated with Legacy Methods 

The above analyses have been based on calculations performed using the reference cross 

sections. Realistic analyses usually rely on multigroup cross sections generated in simplified 

models, in which case group condensation errors are introduced by using a weighting spectrum 

deviating from the reference solution. Specifically, MC2-3 was used to generate BGXSs for the 

homogenized CFTR-1D problem in two steps. Infinite medium slowing down calculations were 

first performed for each type of assembly to prepare ultrafine-group (989 groups) cross sections. 

Subsequently, a 989G transport calculation was performed with the TWODANT SN code [75] in 

the Cartesian full-core model. Angular quadrature order of 12, P3 anisotropic scattering 

approximation were used in two TWODANT calculations with different mesh sizes. Assembly 

dependent BGXSs were then obtained by condensing the 989G cross sections using the flux 

moment spectra of TWODANT solutions.  

Table 3.3 summarizes the corresponding VARIANT broad-group transport calculation 

results using these BGXSs. To make consistent comparisons, the reference energy release per 

fission tallied in Serpent were applied in VARIANT calculations. It is seen that both 32G and 13G 

BGXSs generated in two-step MC2-3/TWODANT calculations failed to reproduce the reference 

eigenvalue and assembly powers. The use of a finer mesh size in the TWODANT calculation did 

not make a noticeable difference.  

Table 3.3 VARIANT transport solutions obtained with BGXSs prepared in two-step procedure 

TWODANT  

mesh size  
BGXSs for VARIANT calculation Δ𝑘, pcm 

Assembly power error 

 FA  TA 

0.6 cm ISOTXS.32G.mcc0D_twodant_0.6cm 274 -0.37%  0.35% 

 ISOTXS.13G.mcc0D_twodant_0.6cm 305 -0.17% 0.15% 

0.3 cm ISOTXS.32G.mcc0D_twodant_0.3cm 275 -0.38%  0.35% 

 ISOTXS.13G.mcc0D_twodant_0.3cm 306 -0.17% 0.16% 
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A direct comparison of 32G BGXSs as shown in Figure 3.6 revealed non-negligible errors 

in the macroscopic capture cross sections for fuel assemblies. The uncertainties of Serpent tallied 

cross sections were below 0.1% in most groups except for the low-energy (<100 eV) groups for 

the fast assembly, which was 0.2~0.3%. The 32G BGXSs have two error sources: inherited errors 

from the 989G cross sections and the use of inaccurate weighting spectra for group condensation. 

The weighting spectra is also affected by the errors in the 989G cross sections. For this simple 1D 

configuration, S12 angular approximation and P3 anisotropic scattering order are considered 

sufficient to perform reliable transport calculations. The other important error source in 

TWODANT calculations is mesh size because TWODANT uses the finite difference method for 

spatial discretization. However, refining mesh size did not improve the spectrum solution as 

indicated by the results in Table 3.3 and the direct spectrum comparison in Figure 3.7, where the 

reference spectrum was obtained from a full-core 3483-group MOC calculation with MC2-3. The 

self-shielded 3483-group cross sections used in the MOC calculation were generated from 

hyperfine-group fixed source calculations. Based on these observations, it seems that the broad-

group cross section errors are mainly attributed to the errors in the UFG cross sections.  

 

     

Figure 3.6 Relative Errors in 32G Macroscopic Cross Sections for Fast and Thermal Fuel 

Assemblies Generated in MC2-3/TWODANT Calculations with 0.6 cm Mesh Size 
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Figure 3.7 Comparison of 989G Spectrum in Thermal Assembly of TWODANT Solutions to 

Reference Solution of Full-core MOC Calculation 

 

 UFG cross sections are typically generated in assembly lattice calculations to consider 

resonance self-shielding and local heterogeneity effects. With about 1000 energy groups (default 

is 2082 groups in MC2-3 for fast reactor analysis), the spectral transition effect on UFG cross 

sections is assumed relatively small. To quantify this effect, the UFG cross sections obtained in 

single assembly with reflective boundary conditions are compared to those generated in supercell 

models including neighboring assemblies. The supercell models used for this problem are 

illustrated in Figure 3.8. It is noted that a single graphite reflector (GR) with tripled atom density 

was used to approximately model the three reflectors in the original configuration. As the thermal 

assembly is highly under moderated, inclusion of graphite reflectors is essential to provide realistic 

moderation.  

 

      

Figure 3.8 Illustration of Supercell Models for Fast (FA) and Thermal (TA) Fuel Assemblies 
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The UFG capture cross sections obtained with MC2-3 in single-assembly and supercell 

models are compared in Figure 3.9. Clearly, the spectrum transition due to neighboring assemblies 

increased the UFG capture cross sections in fuel assemblies while fission cross sections were not 

significantly changed because the dominant resonance isotope U-238 does not have fission 

reaction in the resonance energy range. It explains why the broad-group fission cross sections had 

smaller errors than capture cross sections as shown in Figure 3.6. It is noted that the flux level 

below 1000 eV is negligible in fast reactors and hence the errors in UFG cross sections generated 

in assembly models as usually done with MC2-3 should not make noticeable differences in fast 

reactor core calculations.  

 

 

 

Figure 3.9 Comparison of UFG Cross Sections Generated in Assembly and Supercell Models 
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As shown in Figure 3.10, the spectral transition effect on thermal assembly cross section 

is well accommodated once supercell model is used. The few noticeable cross section error below 

100 eV in the fast assembly is due to the neglect of thermal neutron source from the thermal 

assembly in the fast supercell model. It is also noted from Figure 3.11 that the environment impact 

becomes smaller when the fuel to moderator ratio decreases in the thermal assembly and the local 

spectrum is less affected by the external moderation in the graphite reflector. Another example is 

that the spectrum predicted in an assembly lattice calculation approaches the asymptotic spectrum 

in well moderated Light Water Reactors (LWRs) and hence few-group cross sections are typically 

generated in assembly lattice calculations.  

 

Figure 3.10 Comparison of UFG Cross Sections Generated in Supercell and Full-Core Models 

 

Figure 3.11 Deviations in UFG Cross Sections of Single-Assembly Model from Supercell for 

Thermal Assemblies with Different Fuel/Moderator Ratios 
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With supercell models to account for spectral transition effects, the only approximation is 

on the boundary condition, which is anticipated to have impacts on the local flux distribution and 

assembly homogenized cross sections. However, the exact knowledge of boundary conditions is 

as hard as to obtain the full-core solution. Before switching to approximated treatment of boundary 

conditions, the performance of supercell models was tested in broad-group cross section generation 

and core calculations. By replacing the single-assembly calculations with supercell calculations 

for UFG cross section generation in the MC2-3/TWODANT calculation procedure, two sets of 

BGXSs were generated and their performances in VARIANT core calculations are compared with 

the BGXSs obtained without use of supercell models in Table 3.4.  

Table 3.4 VARIANT transport solutions obtained with BGXSs generated using MC2-3 

MC2-3 model 
Broad group  

structure 
Δ𝑘, pcm 

Assembly power error 

 FA  TA 

Single assembly & 

full core model 

32G 274 -0.37%  0.35% 

13G 305 -0.17%  0.15% 

Supercell &  

full core model 

32G 146  0.30% -0.28% 

13G 179  0.51% -0.48% 

Full core model 32G 181  0.31% -0.29% 

 

It is seen that the use of supercell model for UFG cross section preparation improved the 

predicted eigenvalue in core calculations. In fact, the two 32G cross section sets obtained 

respectively in the two-step procedure and in a direct full-core MC2-3 calculation (the last case in 

Table 3.4) produced similar core calculation results. The remaining errors in VARIANT solutions 

are mainly due to the approximations in MC2-3 to produce UFG cross sections. Uniform 3483-

group cross sections were assumed for each assembly to perform MC2-3 supercell and full-core 

MOC calculations in a practical time. Although assemblies are homogenized in the CFTR-1D 

problem and about 1000 groups are used for UFG cross sections, there exists cross section variation 
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within an assembly when it is next to a different type of assembly. Figure 3.12 shows the deviations 

in the assembly averaged UFG cross sections of MC2-3 supercell calculation from Serpent 

supercell simulation. It should be noted that this error did not appear in the comparison of Figure 

3.10 because the same approximation of uniform cross sections within each assembly was applied 

in both supercell and full-core MC2-3 calculations.  

 

 

Figure 3.12 Deviations in UFG Thermal Assembly Capture Cross Sections of MC2-3 Supercell 

MOC Calculation from Serpent Supercell Simulation 

 

In principle, we can divide each assembly into smaller constant cross section zones to 

eliminate the spatial dependence. An alternative means is through continuous-energy Monte Carlo 

simulation, where the UFG cross sections are effective averages of space independent pointwise 

cross sections. For clarification, another set of UFG cross sections were generated in Serpent 

supercell calculations and used in TWODANT calculations (anisotropic scattering cross sections 

were replaced with MC2-3 values). The condensed 32G cross sections were compared with those 

generated in MC2-3 supercell and TWODANT full-core calculations in Figure 3.13. It is shown 

that the errors in supercell UFG cross sections did make a considerable difference in the resultant 

broad-group cross sections.  
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Figure 3.13 Errors in 32G Capture Cross Sections Condensed from UFG Cross Sections 

Obtained in Serpent or MC2-3 Supercell Calculations 

 

3.2.2 Heterogeneous CFTR-1D Problem 

For the heterogeneous CFTR-1D problem, the reference BGXSs (13G) were tallied in 

Serpent full-core simulation for each assembly. Direct use of Serpent cross sections in VARIANT 

nodal transport calculation would not produce accurate solutions, as shown in Table 3.5. One error 

source is the scalar flux weighted anisotropic scattering cross sections as discussed in Section 

3.2.1. Flux moment weighted anisotropic scattering matrices were prepared separately using MC2-

3 with both homogenized and heterogeneous full-core models. Replacement of Serpent anisotropic 

scattering matrices with MC2-3 values for the homogeneous and heterogeneous models resulted in 

two mixed cross section sets, which are labeled “_mixedA” and “_mixedB”, respectively.  

Table 3.5 Eigenvalue and assembly power errors of VARIANT transport solutions using 

reference broad-group cross sections for heterogeneous CFTR-1D problem 

Code Cross section keff 
Std dev  

/ Error 

Assembly power error 

 FA  TA 

Serpent ENDF/B VII.0 1.13549  0.00004  –  – 

VARIANT ISOTXS.13G.core_serp 1.13830  0.00281  2.05% -1.79% 

 ISOTXS.13G.core_serp_mixedA 1.13358 -0.00191  0.16% -0.14% 

 ISOTXS.13G.core_serp_mixedB 1.13343 -0.00206  0.03% -0.02% 



 43 

It is seen from Table 3.5 that the two mixed cross section sets yielded similar results for 

this specific problem. It may indicate that the anisotropic scattering cross sections could be 

approximately generated with homogenized models. The other major error source is assembly 

homogenization. Even if the homogenized cross sections are weighted with the flux obtained in 

the heterogeneous full-core calculation, additional equivalence parameters are needed to 

simultaneously preserve both average reaction rates and net leakage [51]. For VARIANT nodal 

transport calculations, a partial current based discontinuity factor (PCDF) was developed to better 

fit the red-black iteration scheme for the response matrix formulation of the even-parity transport 

equation. Detailed derivation of PCDF and its implementation in VARIANT will be presented in 

Chapter 4. Here we just apply it to the CFTR-1D problem to exemplify the limitation in the current 

VARIANT method.  

Table 3.6 presents the VARIANT core calculation results obtained with the reference 

BGXSs and PCDFs. For transport (P5) calculations considering explicit anisotropic scattering, the 

anisotropic scattering matrices were generated with MC2-3 for the heterogeneous core model. 

PCDFs were generated using the reference flux and surface partial currents tallied in the Serpent 

heterogeneous core calculation. It is seen that VARIANT calculations with PCDFs reproduce the 

reference heterogeneous solution in terms of eigenvalue and average assembly powers, regardless 

of the cross section set or transport approximation used in the homogenized calculation. Figure 

3.14 compares the spatial flux distributions of VARIANT homogenized calculations to those of 

reference heterogeneous simulation results with Serpent. The VARIANT flux profiles match the 

reference profile except at fuel pin positions in the thermal assembly. Flux form functions are 

needed to represent these local heterogeneities. The thermal flux is not shown here because it is 

insignificant outside the reflector region, and it is also reproduced just as the higher energy fluxes.   
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Table 3.6 VARIANT solutions obtained with reference BGXSs and PCDFs 

Cross section set 
Angular expansion 

/Scattering orders 
Δ𝑘, pcm 

Assembly power error 

 FA  TA 

ISOTXS.13G.core_serp   P5 / P3   -1  0.01% -0.01% 

   P1 / P0    3  0.00%  0.00% 

ISOTXS.13G.core_serp_mixedB   P5 / P3   -1  0.01% -0.01% 

   P1 / P0
    2  0.00%  0.00% 

 

   

Figure 3.14 VARIANT Flux Profiles Obtained with Reference Serpent XSs and PCDFs in 

Heterogeneous CFTR-1D Core  

 

 The above tests indicate that assembly homogenization error is non-negligible in the 

coupled fast-thermal reactor. In Section 3.2.1, it is shown that accurate BGXSs for coupled reactor 

analyses can be obtained in supercell calculations with proper leakage corrections. However, 

discontinuity factor is expected to be more sensitive to the boundary condition of supercell models. 

The problem is how to generate satisfactory PCDFs in local calculations without relying on the 

full-core reference solution.  

3.3 Whole-Core Depletion Calculation 

There are three major error sources in depletion calculations: approximations applied in 

Bateman equation solver, simplifications in depletion chain, approximations adopted in transport 

calculation for flux solution. In this section, the REBUS-3 code was examined in all aspects using 
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simple depletion problems to highlight its main deficiency for coupled-spectrum reactor analyses. 

First, the current Bateman equation solver of REBUS-3 was compared to alternative solvers for 

homogeneous depletion calculations to ensure its accuracy and applicability to model more 

detailed depletion chains for thermal spectrum depletion problems. Then, a simplified depletion 

chain was tested with REBUS-3 for thermal depletion calculations. The impacts of multiple 

simplifications of depletion chain were discussed as well. At last, full-core depletion calculations 

were performed for the CFTR-1D core problem for integral test of the VARIANT/REBUS-3 core 

calculation procedure. The reference depletion solutions were obtained with Serpent burnup 

calculations. For REBUS-3 depletion calculations, microscopic cross sections were generated with 

the OpenMC Monte Carlo code of version 0.12.0, which is released with HDF5 cross section 

libraries generated from ENDF/B-VII.1. To be consistent, both Serpent and OpenMC used nuclear 

data from the ENDF/B-VII.1 library.  

3.3.1 Bateman Equation Solver 

The Bateman equation can be simply put as: 

𝑑

𝑑𝑡
�⃗⃗⃗�(𝑡) = 𝐀(𝜙, 𝜎, 𝜆, 𝛾, 𝑡)�⃗⃗⃗�(𝑡) (3.2) 

where �⃗⃗⃗�(𝑡) is the time dependent nuclide density vector, 𝐀 is the depletion transmutation rate 

matrix (burn matrix) depending on flux (𝜙), microscopic cross section (𝜎), decay constant (𝜆), and 

reaction branching ratio (𝛾). The time dependency of burn matrix is due to the time dependency 

of flux and cross sections. Perhaps the predictor-corrector method is the most widely used 

approach for time discretization of Eq. (3.2). REBUS-3 employs the predictor-corrector method 

along with region density iteration. The end-of-step nuclide densities are iteratively determined in 

multiple corrector steps until they converge within a user-specified tolerance [73]. Recently, 
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predictor-corrector methods involving high-order extrapolation/interpolation have been developed 

for burnup calculations based on Monte Carlo so that the longer time steps can be used to reduce 

the required number of costly Monte Carlo simulations [98-100]. Nevertheless, since the flux 

solution is obtained in efficient nodal calculations and the region density iteration method allows 

to use large time steps without loss of accuracy, it is not imperative to modify the current predictor-

corrector algorithm of REBUS-3 for potential efficiency improvement. 

With a constant burn matrix �̅� representing the average nuclide transmutation rates in a 

discretized time interval Δ𝑡, a formal solution to the discretized Eq. (3.2) can be written as: 

�⃗⃗⃗�(𝑡 + 𝛥𝑡) = 𝑒𝑥𝑝[�̅�Δ𝑡] �⃗⃗⃗�(𝑡). (3.3)

Eq. (3.3) involves the evaluation of matrix exponential 𝑒𝑥𝑝[�̅�Δ𝑡]. There exist dozens of methods 

obtained from classical results in analysis, approximation theory, and matrix theory [101,102]. 

Among these methods, series expansion methods with scaling and squaring algorithm are efficient 

and easy to implement and hence are widely adopted. REBUS-3 employs the Taylor series 

expansion method with scaling and squaring algorithm, which works very well for fast reactor 

depletion calculation [103] because the burn matrix for fast reactor fuel cycle analysis is relatively 

small, and the equation stiffness is reduced by removing those short-lived fission products from 

depletion chain, assuming they are transmuted immediately. This approximation is acceptable in 

fast reactor analysis since the impact of fission products on neutronics properties is small and the 

short-term phenomenon is out of interest in fuel cycle analysis. However, in thermal spectrum 

systems, the large absorption cross sections of many fission products lead to a pronounced 

perturbation of the neutronics characteristics of the core. Build-up of fission products must be 

properly modeled to predict the reactivity level accurately. In this case, important fission products 

such as xenon and samarium, and burnable absorbers such as gadolinium and erbium, need to be 
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modeled explicitly, which poses a greater stiffness onto the system of depletion equations because 

of their large decay and/or large disintegration rates.  

When the matrix norm is large, an unfavorably short time step and a large scaling and 

squaring order are required. Matrix squaring is not cheap and accumulated round-off errors in 

continuous squaring will lead to large numerical errors. Recently, alternative methods dedicated 

to nuclear depletion problems were developed for detailed depletion calculations with complicated 

burn chains of thousands of nuclides including very short-lived nuclides with half-life less than a 

second [104-107]. Refs. [105] and [107] compared the series expansion method with Padé 

approximation, the Chebyshev rational approximation method (CRAM), and the Krylov subspace 

method for computing the exponential of a large burn matrix. Compared to the reference solution 

obtained with the transmutation trajectory analysis [108], the CRAM method outperforms the other 

methods with better accuracy and efficiency. The implementation of CRAM method in the Serpent 

code eliminates the need of special treatment of short-lived nuclides. In this circumstance, a natural 

question is whether REBUS-3 needs to be modified to use the CRAM method as well for thermal 

system depletion. 

The current REBUS-3 algorithm for the matrix exponential solution is first tested with a 

manufactured small depletion problem. This problem contains only five nuclides: U-235, I-135, 

Xe-135, Cs-135, and a pseudo nuclide DUMP. Only fission reaction of U-235 and capture reaction 

of I-135, Xe-135, and Cs-135 are considered, respectively. The pseudo nuclide is assumed to have 

no reactions. The decay chain considered here is as shown in Figure 3.15. The initial number 

density, one-group cross section, and decay constant of each isotope, and fission yields of fission 

products are given in Table 3.7. A constant flux of 2×1014 n/cm2s is assumed for depletion. This 

simple test problem is made to mimic the thermal system burn matrix with large decay and 
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disintegration rate terms for fission products and a widespread eigenvalue spectrum. For this 

simple problem with linear chains, an analytical reference solution was obtained by direct 

integration of the original differential equations. Using the TDECAY subroutine of REBUS-3, the 

nuclide densities after one-step depletion are calculated and compared to the reference results. The 

scaling and squaring algorithm with Padé approximation implemented in the expm function of 

MATLAB [109] and the CRAM method (of 14th order) implemented in EXPOKIT [110] are also 

compared for this problem. 

 

Figure 3.15 Simplified Depletion Chain for Five-Nuclide Test Problem 

 

Table 3.7 Setup of five-nuclide depletion test 

Isotope Initial Density, 

1/barn-cm 

Fission cross 

section, barn 

Capture cross 

section, barn 

Decay 

constant, 1/s 
Fission yield 

U-235 0.02 5.00E+02 - - - 

I-135 0.00 - 1.00E+02 2.92E-05 0.6 

Xe-135 0.00 - 3.00E+06 2.11E-05 0.3 

Cs-135 0.00 - 1.00E+01 0.00E+00 0.1 

DUMP 0.00 - - stable 1.0 

 

Different time intervals spanning from 0.01 to 1000 days were used in the test. The 

maximum time interval of 1000 day is impractically large for normal depletion calculation and is 

used to test the robustness of algorithms. The reference nuclide densities of the analytical solution 

are presented in Table 3.8. The corresponding maximum absolute relative errors of different 

methods are summarized in Table 3.9. In REBUS-3, the Taylor series is truncated when the infinity 

norm of the last expansion term is less than 10-8. Table 3.10 shows that refined truncation criteria 
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(TC) for Taylor expansion provide very marginal improvement of the nuclide density results. This 

is because of the numeric round-off errors in finite precision arithmetic and more importantly in 

the repeated squaring of the scaled matrix exponential. Over-scaling of the original matrix 

sometimes deteriorates the accuracy in addition to the computational efficiency. In MATLAB, the 

scaling order is carefully selected to avoid over-scaling [109]. From the comparison, all the three 

algorithms yield sufficiently accurate results for this small matrix exponential problem. The series 

method with Padé expansion in MATLAB produced even better solutions than the arising CRAM 

method. 

Table 3.8 Reference nuclide densities (1/barn-cm) of five-nuclide test problem 

Time 

interval, 

day 

0.01 0.1 1 10 100 1000 

U-235 1.9998E-02 1.9983E-02 1.9828E-02 1.8345E-02 8.4295E-03 3.5377E-06 

I-135 1.0238E-06 9.1586E-06 3.7554E-05 3.7798E-05 1.7368E-05 7.2893E-09 

Xe-135 4.1208E-07 1.3179E-06 2.7161E-06 2.6635E-06 1.2239E-06 5.1365E-10 

Cs-135 1.7684E-07 1.8994E-06 2.1095E-05 2.1458E-04 1.4952E-03 2.2412E-03 

DUMP 1.8431E-06 2.2169E-05 2.8275E-04 3.0559E-03 2.1627E-02 3.7752E-02 

 

Table 3.9 Maximum absolute relative errors in nuclide densities of different methods 

Time interval, day 0.01 0.1 1 10 100 1000 

REBUS-3 (Taylor) 2.93E-10 1.27E-11 4.34E-13 3.33E-15 0.00E+00 8.75E-13 

MATLAB (Padé) 9.77E-15 7.77E-15 0.00E+00 1.09E-14 7.48E-14 1.13E-12 

EXPOKIT (CRAM) 8.38E-12 8.49E-12 7.57E-12 5.44E-12 5.63E-12 9.53E-09 

 

Table 3.10 Maximum relative errors in rebus-3 results with different truncation criteria 

Time interval, day 0.01 0.1 1 10 100 1000 

TC = 10-8 2.93E-10 1.27E-11 4.34E-13 3.33E-15 0.00E+00 8.75E-13 

TC = 10-12 2.91E-10 1.24E-11 4.34E-13 3.33E-15 0.00E+00 8.75E-13 

TC = 10-15 2.91E-10 1.24E-11 4.34E-13 3.33E-15 0.00E+00 8.75E-13 
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The REBUS-3 algorithm for computing matrix exponential was further tested for a more 

realistic, homogenized pin-cell depletion problem. The pin cell configuration and the homogenized 

composition with fresh fuel is given in Table 3.11. A simplified depletion chain was developed to 

explicitly track 29 actinides, 151 fission products, and three dummy isotopes used to truncate 

depletion chains. Construction of this depletion chain is discussed later in Section 3.3.2, along with 

other considerations of the REBUS-3 depletion model.  

Table 3.11 Configuration of pin cell depletion problem 

Fuel form (enrichment) UO2 (3.0 wt. %)  

Fuel pellet radius, cm 0.4125 

Cladding thickness, cm 0.0625 

Pin pitch, cm 1.26 

Fission power level, kW/m 35.0 

Initial homogenized composition:  

    Isotope Number density, 1/barn-cm 

    U235 2.35126E-04 

    U238 7.50639E-03 

    O16 3.39916E-02 

    H1 3.70174E-02 

    Al27 6.61413E-03 

 

The burn matrix generated by REBUS-3 at BOC was extracted to test the matrix 

exponential solver for computing the nuclide densities after one-step depletion of 1, 10, and 100 

days. The reference solution was obtained using the MatrixExp function of the Wolfram 

Mathematica 13.0 software [111]. MatrixExp can compute the matrix exponential to an arbitrary 

precision, depending on the matrix characteristics. To get an exact reference solution, the matrix 

exponential was calculated with the matrix decomposition option. Specifically, either Jordan 

decomposition or the Putzer’s method [112] is used to evaluate the matrix exponential analytically. 

For a matrix of Jordan canonical form, the matrix exponential is composed of only a finite number 

of terms of matrix powers. 
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Table 3.12 compares the performances of the three tested algorithms for computing matrix 

exponential in terms of accuracy and efficiency. The REBUS-3 implementation of the Taylor 

series method in the TDECAY subroutine was adopted in a Fortran test program. The EXPOKIT 

implementation of the14th order CRAM method (written in MATLAB script) and the built-in expm 

function of MATLAB were directly used for the test. For a middle-size burn matrix consisting of 

183 nuclides, the scaling and squaring methods with Taylor expansion or Padé approximation 

produced more accurate results than the CRAM method, while CRAM shows better efficiency 

than the scaling and squaring method with Taylor expansion in REBUS-3.  

Table 3.12 Comparison of REBUS-3, MATLAB, and EXPOKIT for pin-cell depletion 

 Time interval, day 1 10 100 

Maximum Absolute 

Relative Error in 

Nuclide Density 

REBUS-3 (Taylor) 3.42E-11 4.65E-13 5.42E-13 

MATLAB (Padé) 9.99E-15 6.32E-14 5.28E-13 

MATLAB (Taylor) 1.07E-14 1.40E-13 6.27E-13 

EXPOKIT (CRAM) 1.12E-03 4.97E-04 3.62E-05 

Computational  

Time, Second 

REBUS-3 (Taylor) 0.0188 0.0231 0.0283 

MATLAB (Padé) 0.0023 0.0026 0.0027 

MATLAB (Taylor) 0.0059 0.0059 0.0061 

EXPOKIT (CRAM) 0.0035 0.0035 0.0035 

 

The timing of each algorithm was performed by executing the same calculation 100 times 

and taking the average CPU time. It must be noted that the REBUS-3 implementation of Taylor 

series method also evaluates the interval averaged matrix exponential for edits of burnup, breeding 

ratio, etc. For consistent comparisons, a MATLAB implementation of the Taylor series method 

only for matrix exponential evaluation was tested as well. It turns out that efficiencies of all the 

three algorithms are not sensitive to the norm of medium size burn matrix, whereas the additional 

operations in REBUS-3 implementation cause a logarithmical increase of time cost with increasing 
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time step size. Despite of this, the REBUS-3 method is reasonably efficient for routine depletion 

calculations with assembly homogenized core models. At each step, fuel depletion calculations for 

~300 fuel assemblies with 10 axial zones in each assembly will take about one minute. 

Figure 3.16 and Figure 3.17 show the absolute relative differences in the nuclide densities 

of modeled fission products and actinides after 100-day depletion of the pin cell, respectively. It 

is seen that REBUS-3 and MATLAB methods predicted consistently more accurate results than 

the CRAM method. A test calculation in Ref. [105] shows that the scaling and squaring  expansion 

method with Padé approximation has numeric instability issue and predicts unphysical nuclide 

densities with a detailed depletion chain including over 1500 nuclides. It is expected that the 

REBUS-3 method would face similar problem when applied to huge burn matrices, which are 

usually seen in lattice physics calculation with depletion rather than in nodal core calculations. In 

the whole core depletion calculations for fuel cycle analyses, simplified depletion chains are used, 

and the size of burn matrix is limited. Under this circumstance, the above comparison indicates no 

urgent need to modify the current REBUS-3 code for matrix exponential computation. 

 

 
Figure 3.16 Comparison of Fission Product Densities after 100-day Pin-cell Depletion 
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Figure 3.17 Comparison of Actinide Densities after 100-day Pin-cell Depletion 

 

3.3.2 Depletion Chain 

Depending on the final goal of depletion calculations, nuclide transmutation and decay are 

modeled in different levels of details. A detailed burnup chain may include thousands of nuclides 

for source term evaluations while only a few hundred (less than 500) important nuclides are needed 

in reactivity and power calculations. In fuel cycle analyses of fast reactors, the size of burn matrix 

is further reduced to less than 100 by utilizing lumped fission product models. In thermal reactor 

analyses, fission products with large thermal absorption cross sections should be explicitly traced. 

The Generalized Perturbation Theory [113-115] provides a practical approach to identify the 

important fission product isotopes to be explicitly modeled. In Ref. [115], a simplified 464-nuclide 

chain was developed for LWR lattice depletion calculations. Using the simplified chain, the 

effective neutron multiplication factor could be accurately predicted within 10 pcm deviation for 

burnup up to 80 MWD/kg. The depletion chain for core calculations can be further simplified to 

include about 200 nuclides only [114]. A simpler depletion chain is beneficial to saving memory 

usage, computational time, and the efforts to generate isotopic cross sections. In this thesis work, 
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isotopic cross section generation heavily relies on Monte Carlo simulation. The computational 

resource spent on cross section tallies is proportional to the number of tracked nuclides.  

For the targeted solid uranium or plutonium fueled coupled-spectrum reactors, a burn chain 

was developed based on the simplified depletion chain library of OpenMC version 0.12.0, by 

removing thorium and protactinium nuclides and a few short-lived fission products with half-life 

less than 0.01 days, and truncating fission product activation at Ho-165. The OpenMC chain library 

is built with chain nuclides included in the VERA depletion benchmark suite [116]. The further 

simplified chain contains 29 actinides, 151 fission product or activation nuclides, and three dummy 

isotopes for chain truncation. A full list of these nuclides is provided in Table 3.13.  

Table 3.13 Nuclides included in the simplified depletion chain for REBUS-3 calculation 

Heavy metals U232, U233, U234, U235, U236, U237, U238, Np236, 

Np237, Np238, Np239, Pu236, Pu237, Pu238, Pu239, Pu240, 

Pu241, Pu242, Pu243, Am241, Am242, Am242m, Am243, 

Am244, Cm242, Cm243, Cm244, Cm245, Cm246 

Fission or 

activation 

products 

w/  cross 

section 

Br81, Kr82, Kr83, Kr84, Kr85, Kr86, Sr89, Sr90, Y89, Y90, 

Y91, Zr90, Zr91, Zr92, Zr93, Zr94, Zr95, Zr96, Nb95, Mo94, 

Mo95, Mo96, Mo97, Mo98, Mo99, Mo100, Tc99, Ru100, 

Ru101, Ru102, Ru103, Ru104, Ru105, Ru106, Rh103, 

Rh105, Pd104, Pd105, Pd106, Pd107, Pd108, Ag107, Ag109, 

Ag110m, Ag111, Cd110, Cd111, Cd112, Cd113, Cd114, 

In115, Sb121, Sb123, Sb125, Te127m, Te129m, Te132, I127, 

I129, I130, I131, I135, Xe128, Xe130, Xe131, Xe132, Xe133, 

Xe134, Xe135, Xe136, Cs133, Cs134, Cs135, Cs136, Cs137, 

Ba134, Ba137, Ba140, La139, La140, Ce140, Ce141, Ce142, 

Ce143, Ce144, Pr141, Pr142, Pr143, Nd142, Nd143, Nd144, 

Nd145, Nd146, Nd147, Nd148, Nd150, Pm147, Pm148, 

Pm148m, Pm149, Pm151, Sm147, Sm148, Sm149, Sm150, 

Sm151, Sm152, Sm153, Sm154, Eu151, Eu152, Eu153, 

Eu154, Eu155, Eu156, Eu157, Gd152, Gd154, Gd155, 

Gd156, Gd157, Gd158, Gd160, Tb159, Tb160, Dy160, 

Dy161, Dy162, Dy163, Dy164, Ho165 

w/o cross 

section 

Br82, Tc99m, Rh102, Rh102m, Rh103m, Rh106m, Pd109, 

Cd115, Sb127, Te127, I128, I132, Xe135m, Pr144, Nd149, 

Pm150, Sm155, Gd159, Tb161, Dy165 

Dummy isotopes DUMP1, DUMP2, DUMFP 
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It is noted that 20 fission products or activation nuclides do not have neutron reaction cross 

sections in the ENDF library. They are interim nuclides with short half-life (greater than 0.01 days) 

and their decay daughter nuclides are explicitly traced. These nuclides are included with zero cross 

sections and used only in depletion calculations. The dummy isotopes DUMP1 and DUMP2 with 

zero cross sections are used to truncate transmutation chain of heavy nuclides. The dummy isotope 

DUMFP is used to represent fission products that are not explicitly tracked. DUMFP is assumed 

to have scattering reactions mainly and few absorption reactions, and hence is approximately 

treated as Mo92 in transport calculations.  

To be used in REBUS-3, a python script was developed to convert the XML format library 

of OpenMC into type 09 and 25 input cards of the A.BURN dataset used by REBUS-3. In this 

procedure, the average energy of neutrons inducing fissions (AFE) is provided to interpolate the 

energy dependent fission yield data given in the OpenMC library because REBUS-3 only handles 

fixed yield data. The constant branching ratios (BRs) for producing metastable isomers in Serpent 

were adopted in the simplified burn chain for REBUS-3. The same set of BRs are also available 

in the chain library of OpenMC. These constant BRs are calculated from energy dependent values 

using typical PWR flux spectrum as: 

�̅� =
∫ 𝛾(𝐸)𝜎(𝐸)𝜙(𝐸)𝑑𝐸

∞

0

∫ 𝜎(𝐸)𝜙(𝐸)𝑑𝐸
∞

0

, (3.4)

where 𝛾(𝐸) is the energy dependent branching ratio for specific isotope and reaction type and the 

other symbols are standard notations in reactor physics.  

The simplified burn chain was tested using the homogenized thermal pin cell problem 

presented in Section 3.3.1. First, a reference Serpent depletion calculation was performed for a 

burnup of 40 MWD/kg with a detailed burn chain considering ~1200 nuclides. The burnup isotopic 

cross sections were tallied in a series of OpenMC simulations with the same material composition 
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from Serpent solution at each depletion step. Then, a REBUS-3 calculation was performed with 

the simplified burn chain and burnup dependent isotopic cross sections. As Serpent normalizes 

reaction rates to the total fission power, the isotopic fission Q-values (constant energy release per 

fission event) used in Serpent were extracted and applied in the REBUS-3 power calculation.  

Figure 3.18 compares the k-infinity (k-inf) results of REBUS-3 depletion solution to the 

reference Monte Carlo solutions. The REBUS-3 solution was obtained with fission yields 

corresponding to the AFE at the middle of cycle and BRs collapsed with a typical PWR flux 

spectrum. The OpenMC results are from the steady-state calculations for isotopic cross section 

generation. The comparison shows good agreement between REBUS-3 and Serpent depletion 

solutions. The k-inf error is less than 40 pcm and is within 3𝜎 uncertainty of Serpent results. The 

remaining errors should be mainly due to uncertainties in the tallied isotopic cross sections as the 

OpenMC calculation with the same compositions and nuclear data libraries showed comparable 

deviations from Serpent results.  

 

 

Figure 3.18 Eigenvalue Errors of REBUS-3 Depletion Solution with Simplified Burn Chain 
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Figure 3.19 shows the corresponding errors in the predicted end-of-cycle (EOC) number 

densities of heavy nuclides of the REBUS-3 depletion solution. It is shown that the fuel depletion 

can be accurately modeled with the simplified burn chain, with less than 1% difference in actinide 

number densities. As shown in Figure 3.20, the number densities of most fission products are also 

accurately predicted. A few nuclides show larger errors because of the simplification of burn chain. 

Since the primary goal is to catch reactivity and power change with fuel depletion, the test results 

confirmed the validity of the simplified burn chain.  

 

 

Figure 3.19 Errors in Heavy Nuclide Number Densities at EOC of REBUS-3 Depletion Solution 

with Simplified Burn Chain (Nuclides of number density < 10-10 barn-1cm-1 are not shown) 
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different BRs under different spectra, a comparative REBUS-3 calculation was performed with the 

same simplified depletion chain, same middle-of-cycle AFE, but a different set of BRs given in 

the depletion chain library of OpenMC [117], which are calculated with a prototypical flux 

spectrum in sodium-cooled fast reactors (SFRs).  

 

 

Figure 3.20 Errors in Fission Product Number Densities at EOC of REBUS-3 Depletion Solution 

with Simplified Burn Chain 
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of negligible absorption in fission products. However, the different yield fractions between fast 

and thermal spectrum systems made 50 pcm difference in k-inf. Thus, it is necessary to consider 

the spectrum dependent fission yields in coupled-spectrum reactors. 

 

 

Figure 3.21 Comparison of Branching Ratios Weighted with PWR and SFR Flux Spectrum 

  

 

Figure 3.22 Impacts of Inaccurate Fission Yield Fractions and Branching Ratios 
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Figure 3.22 shows the impact of the neutron energy dependence of reaction branching 

ratios is marginal, as indicated by Figure 3.21, because the tested pin cell depletion started with 

fresh uranium fuel. With plutonium fuel, burned fuel, or recycled spent fuel, which easily breeds 

or contains more americium, incorrect BRs would have a larger impact. In fast reactors, use of 

TRU is not uncommon and hence the impact of inaccurate BRs is larger. Different BRs or fission 

yields of the same nuclide can be modeled in the REBUS-3 depletion chain with different isotope 

labels. Different BRs are manageable by this approach while it is too cumbersome for fission yields 

considering many actinides.  

Overall, the above tests show that the simplified burn chain derived in this subsection is 

acceptable for scoping whole-core depletion calculations with REBUS-3. Without further 

clarification, it will be used in later depletion calculations of this thesis work. 

3.3.3 CFTR-1D Depletion Problem 

An integral test of REBUS-3 was performed using the heterogeneous CFTR-1D model. 

The reference solution to a 480-day whole-core depletion problem under constant total fission 

power was obtained with Serpent. To save computational efforts while accounting for the flux 

variation in each assembly, the fast and thermal fuel assemblies were divided into three and five 

depletion zones, respectively, as shown in Figure 3.23. Each zone is depleted under the zone-

averaged flux and atom the density variation in each zone is ignored. For consistent comparison, 

the constant extrapolation and linear interpolation option was used with single sub-step for each 

time step in the Serpent depletion calculation. Figure 3.24 shows the evolution of core 

multiplication factor and assembly averaged burnups of the Serpent reference solution. At the end 

of cycle (EOC), the fuel burnups are about 32 and 40 MWD/kgU in the fast and thermal 

assemblies, respectively. 
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Figure 3.23 Grouping of Fuel Plates in Different Depletion Zones 

 

 

Figure 3.24 Depletion History of CFTR-1D Core of Reference Monte Carlo Solution 
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core depletion calculation. Since Serpent cannot tally isotopic scattering matrices, the OpenMC 

code was used to tally microscopic cross sections in fuel assemblies instead. As an example, Figure 

3.25 shows the burnup dependent fission cross sections of U235 in the two fuel assemblies of the 

CFTR-1D core. Regardless of assembly type, the cross sections in fast groups are practically 

constant while pronounced cross section change occurs in the last two groups (<5 eV). It is 

expected that for a fast assembly located far away from the thermal spectrum region, constant 

isotopic cross sections can be used in that the thermal flux would be so small that the error in 

thermal group cross section does not make a noticeable difference in core calculations.  

 

    

Figure 3.25 Burnup Dependent Fission Cross Section of U235 in Fast and Thermal Assemblies 

 

For nonfuel assemblies, only macroscopic cross sections were generated. It is seen from 

Figure 3.26 that the macroscopic BGXSs do not vary significantly as expected. Even if the thermal-

group (group 13) absorption cross section of the buffer assembly (BA) slightly decreases because 

of spectrum hardening in the neighboring thermal fuel assembly, the absorption cross section itself 

is much smaller than the scattering cross section. That is, except for control rod assembly (which 

is not present in CFTR-1D), using constant BGXSs (generated in representative environment) for 

nonfuel assemblies would not introduce significant errors in core calculations.  
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Figure 3.26 Macroscopic BGXSs for Buffer Assembly (BA) and Graphite Reflector (GR1) vs 

Core Averaged Burnup 

 

Figure 3.27 and Figure 3.28 show the impact of burnup dependency of fuel assembly cross 

sections on REBUS-3whole core depletion calculation by comparing eigenvalue and assembly 

power solutions obtained with four different cross section sets. The first one is an ISOTXS dataset 

generated at equilibrium xenon state, which is approximately reached after about a week of full 

core depletion. The second is an ISOTXS dataset generated at the middle of cycle (MOC). The 

third one is a VARIXS dataset containing burnup dependent cross sections for all compositions. 

Buffer assembly cross sections are functionalized with burnups of the fast fuel assembly and 



 64 

reflector assembly cross sections are functionalized with the thermal assembly burnups. The last 

one is a VARIXS dataset containing burnup dependent cross sections for fuel assemblies only, but 

constant cross sections generated at equilibrium xenon state for the buffer and reflector assemblies.  

Unity PCDFs were applied in the four calculations and hence the errors due to assembly 

homogenization were involved.  

 

 

Figure 3.27 K-effective Error of REBUS-3 Depletion Solutions with ISOTXS or VARIXS 

 

 

Figure 3.28 Thermal Assembly Power Errors of REBUS-3 Solution Obtained with ISOTXS or 
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 As expected, without catching the burnup dependency of fuel cross sections, significant 

errors were introduced and accumulated in depletion calculations. When burnup dependent fuel 

cross sections were used, the two core calculations with burnup dependent and constant cross 

sections for nonfuel assemblies showed less than 10 pcm difference in k-effective and less than 

0.1% difference in thermal assembly power. Therefore, constant macroscopic cross sections were 

used for buffer and reflector assemblies in the following analyses of the CFTR-1D problem. 

To eliminate the assembly homogenization error in nodal calculations, a set of PCDFs were 

generated using the reference BGXSs, nodal average fluxes, and surface average partial currents 

tallied in Serpent core calculations. Using the reference PCDFs, the REBUS-3 depletion 

calculation reproduced the Serpent reference depletion solution as shown in Figure 3.29 and Figure 

3.30. The maximum error in k-effective is 39 pcm and the relative error in assembly power is less 

than 0.3%. Comparatively, using PCDFs generated at BOC with equilibrium xenon concentration 

led to significant eigenvalue errors greater than 1000 pcm, which is worse than the solution 

obtained using unity PCDFs, i.e., without correcting assembly homogenization errors.  

 

 

Figure 3.29 K-effective Error of REBUS-3 Solution Obtained with VARIXS and Different PCDFs 
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Figure 3.30 Thermal Assembly Power Errors of REBUS-3 Solution Obtained with VARIXS and 

Different PCDFs  

 

However, Figure 3.30 shows that using BOC PCDFs reduced the assembly power error to 

below 0.5% from above 1.0% with unity PCDFs. Therefore, the use of equivalence parameter 
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Figure 3.31 One-dimensional Supercell models for Fuel Assemblies 

 

 Figure 3.32 compares the eigenvalue errors of REBUS-3 depletion solutions obtained with 

burnup dependent cross sections and PCDFs generated in full-core and supercell models. The 

corresponding errors in thermal assembly power are compared in Figure 3.33. Compared to the 

best solution obtained with the VARIXS and PCDFs generated from the reference full-core 

solution, replacing the reference VARIXS from the full-core model with the VARIXS from the 

supercell models caused a smaller difference in depletion solution than replacing the reference 

PCDFs with the approximate PCDFs generated in supercell models. On the contrary, the depletion 

solutions with supercell PCDFs showed large errors in eigenvalue and assembly powers, regardless 

of the model used to generate VARIXS. 

 

 

Figure 3.32 K-effective Error of REBUS-3 Depletion Solutions with VARIXS and PCDFs from 

Full-core and Supercell Models 
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Figure 3.33 Thermal Assembly Power Errors of REBUS-3 Depletion Solutions with VARIXS 

and PCDFs from Full-core and Supercell Models 

 

It must be noted that PCDFs should be generated with the same BGXSs to be used in 
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averaged quantities and they can be well approximated in supercell models, which produce similar 

average flux spectra as in the core environment. However, PCDFs are defined on nodal surfaces 
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resonance self-shielding, local heterogeneity, and global spectrum transition effects. The 

conventional MC2-3 approach works reasonably well except for the computational inefficiency to 

model thermal system in detailed heterogeneous geometries. The Monte Carlo based lattice 

calculation provides an alternative way for multigroup cross section generation without the 

complication of self-shielding treatment. The only drawback of generating anisotropic scattering 

cross section with scalar flux weighting can be overcome by leveraging MC2-3 calculation.  

The second important finding is the need of nodal equivalence parameter for coupled-

spectrum reactor analysis. The nodal equivalence parameter can be used as a general correction 

factor based on the known reference solution. The last part is the test of the REBUS-3 code for 

non-fast spectrum depletion problems. It turns out the REBUS-3 code can be applied to coupled-

spectrum depletion problem with a more detailed depletion chain. The current solution algorithm 

in REBUS-3 for solving the Bateman equation is sufficiently efficient and accurate for thermal 

depletion problems. For coupled transport and depletion calculations, other than burnup dependent 

cross sections, the burnup dependence of nodal equivalence parameters needs to be considered.  
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Chapter 4  
 

Two-Step Method for Coupled-Spectrum Core Analysis 
 

The two-step method for coupled-spectrum reactor analysis is developed based on the fast 

reactor analysis code suite of Argonne National Laboratory (ANL). The tests performed in Chapter 

3 highlighted the major limitations in the existing methods. In this Chapter, three componential 

topics of the proposed method, i.e., multigroup cross section preparation, nodal transport 

calculation, and full-core depletion calculation, are first discussed in separate sections, followed 

by a summary of the overall procedure for core calculations.  

4.1 Multigroup Cross Section Generation 

Effective multigroup cross sections (XSs) are essential for accurate deterministic 

neutronics calculations. The preparation of multigroup XSs is one of the major challenges in 

deterministic method development. Multigroup XSs for core calculations are typically generated 

in approximate models with detailed energy resolution but simpler geometry configuration. The 

major physics to be considered include neutron slowing-down, resonance self-shielding in 

heterogeneous geometry, and spectrum shift due to environmental impacts. Fast and thermal lattice 

codes treat the three aspects in different ways. Thermal lattice codes rely on functionalized fine-

group cross section libraries that are pre-generated for specific reactor types. The resonance self-

shielding is treated approximately with equivalence theory, self-shielding factors, or subgroup 

methods. On the other hand, fast lattice codes such as MC2-3 rigorously deals with complex 
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resonance phenomena especially the resonance interference effect via ultrafine- or hyperfine-

group slowing-down calculations for specific compositions.  

Comparatively, the method adopted by MC2-3 is more generalized and has been extended 

to thermal systems [49]. Ultrafine-group (~3500 groups) or even hyperfine-group (~400,000 

groups) slowing-down calculations can be performed for the full energy range, 10-5 eV ~ 14 MeV, 

encountered in nuclear fission reactors. Neutron transport in heterogeneous Cartesian and 

hexagonal assembly lattices can be modeled with the Method of Characteristics (MOC). However, 

ultrafine-group MOC calculations in heterogeneous geometries are extremely time-consuming and 

hence a general application is limited. Besides, MC2-3 does not have the depletion calculation 

capability required for generating burnup dependent cross sections. 

This dissertation does not intend to develop a new cross section generation code but to 

search for a new computational procedure utilizing existing codes for multigroup XS generation. 

In this situation, parallelized Monte Carlo (MC) simulation becomes a complementary option to 

model neutron transport in heterogeneous geometries efficiently and MC2-3 is used only to prepare 

flux moment weighted anisotropic scattering cross sections when necessary. Among the many 

Monte Carlo codes for reactor physics simulations, Serpent [29] and OpenMC [30] were selected 

because of their convenient built-in capabilities of tallying multigroup XSs. Serpent has built-in 

depletion calculation capability while OpenMC provides Python API functions for depletion. The 

reason of choosing both MC codes for cross section generation is that Serpent cannot tally isotopic 

scattering matrices whereas OpenMC does not support current tally on hexagonal mesh surfaces, 

which is needed for partial current discontinuity factor generation. The discontinuity factor is 

discussed in Section 4.2. It is anticipated that only OpenMC will be needed in the future when the 

required capability is implemented.  
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4.1.1 General Approach 

In this study, assembly homogenized multigroup XSs are mainly generated with Serpent 

version 2.1.31 and OpenMC version 0.12.0. Figure 4.1 shows the general procedure to generate 

multigroup XSs based on MC supercell calculations. The continuous-energy MC simulation in 

explicit heterogeneous geometry eliminates the need of a sophisticated resonance self-shielding 

method. Serpent depletion calculations are performed for each type of fuel assembly with supercell 

models including a targeted assembly and its neighbors. The use of supercell models would 

accommodate most of the spectral transition effects between adjacent assemblies. Different 

approaches to consider global spectral transition effects were investigated and eventually it was 

decided to represent the core environment approximately with surface source or buffer zones in 

supercell calculations. At each burnup state, the burned fuel compositions are used in an equivalent 

OpenMC model to generate burnup dependent isotopic cross sections. Burnup independent 

macroscopic cross sections for nonfuel assemblies are tallied in Serpent directly.  

 

Macroscopic XSs for 

nonfuel assembly
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(supercell calculation)

Isotopic XSs for 
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Figure 4.1 General Procedure of MC based Multigroup Cross Section Generation 

 

One drawback of MC based cross section generation is that the anisotropic scattering cross 

sections are weighted with the spectrum of scalar flux instead of the corresponding flux moment 
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[88]. Using MC generated anisotropic scattering matrices in deterministic transport calculations 

would introduce non-negligible errors [92]. To overcome this limitation, anisotropic scattering 

XSs generated in MC2-3 supercell calculations are used in transport calculations when anisotropic 

scattering is considered explicitly. In the following subsections, each aspect of the XS generation 

scheme is discussed in more details.  

4.1.2 Energy Group Structure 

Depending on the targeted reactor type, the broad energy group structure used in core 

calculations varies from few-group structures, e.g., two groups for LWRs and four to seven groups 

for graphite moderated gas-cooled reactors, to multigroup structures (>10 groups) for fast reactors. 

The essence is to catch energy spectral properties in cross section generation with approximate 

models while minimizing computational burden in full-core calculations. Cross sections are less 

sensitive to the approximate models when represented in a refined energy group structure. Without 

pursuing an optimized group structure, we started with the widely adopted 33-group structure in 

MC2-3 for fast reactor analyses and adapted it for coupled-spectrum reactors. The resultant 32-

group (32G) structure is shown in Table B.1 of Appendix B. A coarser group structure consisting 

of 13 groups (13G) was developed by refining the last two groups (below 454 eV) of the MC2-3 

9-group structure for fast reactor calculations. The detailed group boundaries are also provided in 

Appendix B. For both the 32G and 13G structures, a single thermal energy group below 0.6 eV is 

defined because there is not much resonance in the thermal energy range and cross sections will 

be functionalized with state conditions.  

In Chapter 3, both 32G and 13G structures were used in test calculations. It is shown in 

Table 3.1, Table 3.3, and Table 3.4 that the two broad-group structures yielded comparable 

transport solutions with either reference full-core model or assembly supercell model for cross 
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section generation. Replacing 32G structure with 13G structure in core calculations induced only 

~30 pcm differences in eigenvalue. Although none of them reproduced the reference solution, the 

major error source is not the use of coarser group structure but in the model to produce the 

weighting spectra for group condensation.  

In addition to the two broad-group structures, a fine-group structure consisting of 86 groups 

(86G) and an ultrafine-group structure consisting of 989 groups (989G) were derived to investigate 

leakage correction models. The 86G structure combines the 60 groups above 5.0 eV of the MC2-3 

70-group structure and the 26 groups below 5.0 eV of the SCALE 56-group. The 989G structure 

contains 892 groups above 5.0 eV of the MC2-3 1041-group structure and 97 groups below 5.0 eV 

of the SCALE 252-group structure. The two finer group structures are supersets of the above 

broad-group structures and are used in the fine-group full-core transport calculation to account for 

global spectrum transition effects.  

In the conventional MC2-3 scheme for fast reactor cross section generation, full-core 

transport calculations are performed in ultrafine group level and ultrafine-group XSs are prepared 

in unit cell or assembly lattice calculations. In a previous study [118] conducted by the author, it 

is shown that a fine-group structure (~100 groups) can be used for the full-core calculation once 

the supercell model is used to prepare the fine-group XSs. As shown in Figure 4.2, the fine-group 

XSs tallied in a supercell model including immediate neighbors agreed well with the reference 

XSs tallied in the full-core model.  

In Ref. [118], a 157-group structure consisting of 60 groups above 5.0 eV and 97 groups 

below 5.0 eV was used. Figure 4.3 shows that the number of fine groups can be further reduced to 

86 by using only 26 groups below 5.0 eV. The 86G capture cross sections tallied in supercell (see 

Figure 3.8) and full-core models are practically the same for the thermal assembly. The relatively 



 75 

large XS errors of the fast assembly below 100 eV are due to neglect of thermal neutrons from the 

thermal zone in the supercell calculation. Below 0.01 eV, the fast assembly supercell model did 

not produce statistically meaningful XS tally due to the small thermal flux level. 

 

 

Figure 4.2 Comparison of Macroscopic Fission Cross Sections of a Fast-zone Fuel Assembly in a 

Coupled Fast-Thermal Spectrum Reactor [118] 

 

       

Figure 4.3 Comparison of 86G Macroscopic Capture XSs of Fast Assembly (FA) and Thermal 

Assembly (TA) in CFTR-1D Core 

 

4.1.3 Selection of Supercell Models 

For LWR analyses with legacy two-step methods, critical buckling search is still a common 

approach in lattice calculations to generate few-group cross sections with nonzero net leakage. 

Supercell (color set) models were used to account for spectral transition between oxide and MOX 
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fuel assemblies [119] or between fuel assembly and reflector, in which case reflective conditions 

are imposed on the outer boundaries and the buckling search for critical spectrum is typically not 

performed. The decision to generate multigroup XSs primarily with supercell models was made 

based on several compromises necessary for coupled-spectrum reactor analysis. The obvious 

negative side is that supercell calculations would be more expensive than assembly lattice 

calculations and the number of unique supercell types is generally larger than assembly types in a 

specific core configuration. On the other side, supercell models would significantly alleviate the 

burden of treating inter-assembly spectral interference.  

Typically, over 1,000 groups need to be used in assembly calculation to catch the spectrum 

transition between fuel and reflector assemblies in a fast reactor [120]. But as shown in Chapter 3, 

even with an UFG (989G) structure, non-negligible deviations in capture cross sections in the 

resonance region were observed in CFTR-1D (see Figure 3.9). From the practical point of view, 

tallying UFG cross sections in heterogeneous Monte Carlo simulation is prohibitively expensive. 

Thus, assembly supercell models are necessary for cross section generations for a heterogeneous 

core with distinct assembly types. With supercell models, the tilted distribution of burnup states in 

a fuel assembly can also be partially considered when generating burnup dependent cross sections.  

The selection of supercell models is largely based on engineering heuristics. The general 

standard for valid supercell models in this study is that fine-group cross sections can be generated 

accurately. With reliable fine-group cross sections, leakage correction models can be applied to 

produce accurate broad-group cross sections when the global spectral transition effect is 

pronounced. Through parametric studies, the modeled problem domain should extend at least three 

mean free paths (MFPs) away from the assembly of interested. By MFP, we meant the neutron 

mean free path in the neighborhood. This is usually satisfied by including immediate neighboring 
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assemblies in the supercell model in water moderated thermal reactors. With graphite moderator, 

or when the neutron moderation predominantly occurs outside the fuel assembly (like in CFTR-

1D), the supercell model should include a sufficiently thick buffer zone such that the fuel to 

moderator ratio is roughly preserved. The buffer zone size can be reduced by increasing atom 

density to preserve the optical thickness.   

In fast reactors, due to the longer neutron MFP, inclusion of more assemblies beyond the 

immediate neighbors seems inevitable. However, because not many neutrons reach the heavy 

nuclide resonance region (< 1 keV), inclusion of distinct neighbors in the supercell model would 

be sufficient to account for spectral interference in the high-energy range, as exemplified in Figure 

4.2 and Figure 4.3, where the fast assembly supercell included only adjacent neighbors and 

reflective boundary conditions were imposed. Reflective boundary conditions imply that distant 

assemblies have similar spectral properties. It is not true in general but in typical CFTR designs 

the fast zone locates inside the core for better neutron economy. The thermal neutrons from the 

exterior thermal zone can hardly enter the fast zone when a buffer zone exists. They induce small 

errors in the fine-group cross sections as shown in Figure 4.3. Treatment of this long-range 

environmental effect is discussed in the next section.  

4.1.4 Correction of Global Spectrum Transition 

To accommodate global spectral transition effects in coupled-spectrum reactors, the first 

trial was an analogy to the conventional MC2-3 two-step approach. Fine-group XSs are initially 

prepared in supercell MC calculations and then are used in homogenized full-core calculations to 

produce region dependent fine-group spectra. Subsequently, region dependent broad-group XSs 

are generated by collapsing the fine-group XSs with corresponding fine-group spectra. As tested 

for the CFTR-1D problem in Chapter 3 and for a larger 2D coupled-spectrum core problem in a 
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previous study [118], the two-step approach worked well for steady-state transport analysis as only 

one fine-group full-core (with simplified geometry) calculation is needed. However, the core 

configuration changes with fuel depletion and it is unknown when cross sections are generated. 

Instead of repeating full-core calculations at each burnup state, alternative approaches to consider 

global spectral transition effects in supercell calculations were pursued, and eventually a 

background source approximation correction was selected.  

4.1.4.1 Leakage Model for Monte Carlo Methods 

Several leakage correction models have been developed for MC based lattice calculations. 

The capability of homogeneous B1 calculation for critical buckling search is available in Serpent. 

The B1 calculation is performed with internal deterministic solver using tallied multigroup cross 

sections during the standard MC transport simulation. An energy independent critical buckling is 

determined for the homogenized region. When only part of the modeled geometry is to be 

homogenized with supercell models, the use of B1 calculation for leakage correction does not make 

much sense as the realistic environment is already included in the model. Hence, this capability of 

Serpent was not further investigated in this study.  

The B1 method implemented in MC codes is an analogy to that utilized in deterministic 

lattice codes. Other leakage correction methods developed purely in the Monte Carlo framework 

include critical albedo search [121] and layer expansion method [122]. Just as its name implies, 

critical albedo search finds the critical state by adjusting the weight of neutrons reflected at the 

boundary. As for the layer expansion method, neutrons are tracked beyond the reflective or 

periodic boundaries in an expanded fictitious lattice. The neutron weight is modified at certain 

expanded layer such that the desired eigenvalue is reached. To some extent, these two methods are 

like critical buckling search but can be easily incorporated into heterogeneous MC simulations. 
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Especially, the albedo search can be directly applied to supercell models. Both methods were 

implemented in Serpent, but the layer expansion method is not included in the standard distribution 

package of the Serpent code [122]. Comparisons between the two methods showed similar 

performances [122].  

The limitation of albedo search is that only one degree of freedom is given like buckling 

search. The same energy independent albedo is uniformly applied to all boundaries. Serpent allows 

individual albedos in the x-, y-, and z-direction (all with reflective boundary conditions) with user 

specified fractions but not for individual boundaries. Nonetheless, the specification of direction 

dependent albedo fractions is fully empirical and requires trial and error. This would cause 

problems when the environment is not symmetrical and global flux gradient exists.  

For example, Figure 4.4 compares the 32G capture cross sections directly generated with 

the supercell models, as shown in Figure 4.5, for the thermal fuel assembly in the homogenized 

CFTR-1D problem. The supercell-1 includes the buffer assembly and all three graphite reflectors, 

and the supercell-2 includes only one and half reflectors. Without albedo search, vacuum condition 

is imposed on the right boundary. When albedo search is applied to reproduce the reference 

reactivity level, the same albedo is imposed on both left and right boundaries of the 1D supercells. 

 

  

Figure 4.4 Comparison of 32G Capture XS of Thermal Assembly in CFTR-1D Core 
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Figure 4.5 Supercell Models for Thermal Assembly in Homogenized CFTR-1D (Vacuum 

conditions on the right are replaced with reflective ones when albedo search is invoked.) 

 

Figure 4.4 shows that the supercell calculations with albedo search resulted in large errors 

in the thermal group cross section. This is because the physical vacuum boundary condition is 

changed to an arbitrary partially reflective condition. Consequently, more neutrons are reflected 

into fuel assembly from the graphite reflectors, as implied by the flux spectrum comparison in 

Figure 4.6. The error is reduced when less reflectors are included, but a “correct” configuration is 

not intuitive.  

 

 

Figure 4.6 Flux spectrum of Thermal Assembly in CFTR-1D Core 

 

4.1.4.2 Buckling Search for Supercell 

Because of the limited applicability of the albedo search technique to supercell problems 

with non-uniform boundary conditions, an alternative approach is needed. Besides, the critical 
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buckling/albedo search methods only partially eliminate the spectrum distortion due to scaled 

fission source. The bigger difficulty is the spectral transition effect, for which the energy 

dependence of leakage needs to be considered. With supercell models and a fine-group structure, 

a large portion of the spectral transition effects due to neighbor assemblies is already considered.  

A case study was performed to investigate the impact of long-range spectral transition 

effects using the homogenized CFTR-1D problem and 86G cross sections generated with supercell 

models. For high-order transport calculations, the anisotropic scattering matrices were generated 

with MC2-3. Table 4.1 shows the corresponding transport results of VARIANT obtained with 

different anisotropic scattering matrices for the thermal assembly. The principal (e.g., total, 

capture, fission, etc.) and isotropic scattering XSs are all tallied in Serpent supercell simulations. 

It is seen that using the anisotropic scattering XSs from the MC2-3 supercell calculation does not 

reproduce the reference solution. It was later revealed that the thermal assembly anisotropic 

scattering XSs from the supercell MC2-3 calculation have non-negligible errors. As shown in 

Figure 4.7, while isotropic scattering cross sections of supercell and full core agree with each other 

just like the other principal cross sections, the P1 anisotropic scattering cross section generated 

with the supercell model noticeably deviates from that of the core model. 

Table 4.1 VARIANT transport solutions obtained with 86G XSs generated in supercell models 

Source of principal & 

isotropic scattering XSs 

Source of anisotropic 

scattering XSs 
Δ𝑘, pcm 

Assembly power error 

 FA  TA 

Serpent supercell MC2-3 whole core -16  0.02% -0.02% 

 MC2-3 supercell  142  0.62% -0.58% 

 Buckled supercell(a)  49  0.54% -0.51% 

 Group buckled supercell(b)  25  0.03% -0.03% 

Notes:  

(a) Use UFG cross sections and perform group independent buckling search 

(b) Use UFG cross sections and impose group dependent buckling deduced from reference leakage  
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Figure 4.7 Thermal Assembly Scattering Cross Sections Generated by MC2-3 

 

The thermal assembly supercell model cannot consider the long-range environmental 

effects due to the fast assembly. To correct the spectrum tilt due to differently scaled fission source, 

a buckling search was performed to yield the same reactivity level in the supercell calculation. 

Unlike Monte Carlo albedo search, the leakage correction was only performed for the left boundary 

and the vacuum condition was retained on the right boundary. First a set of UFG cross sections 

were generated in supercell models. Then UFG supercell transport calculations were performed 

with VARIANT and the buckling of the buffer assembly was iteratively selected such that the 

desired k-effective was reached. In VARIANT, the given buckling is used to modify the removal 

cross section of specified composition (here the buffer assembly composition), which equivalently 

alters the neutron balance resembling leakage change. At last, the UFG spectrum obtained at the 

same reactivity state as the reference core calculation was used to condense UFG cross sections 

into 86 groups.  

However, the group independent buckling search did not resolve the error in anisotropic 

scattering cross section as shown in Table 4.1 (buckled supercell case). Figure 4.8 explains the 

reason. As the scalar flux spectrum is roughly reproduced, the P1 flux moment spectrum used to 

condense the P1 scattering cross sections still deviates from core solution. This implies that the 
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current (and higher-order flux moments) spectrum is more sensitive to the boundary condition. 

Alternatively, a group dependent buckling was deduced from the reference leakage of core 

calculation and imposed in the buffer assembly composition. This is equivalent to providing an 

external source to the supercell. Without matching k-effective, the group dependent buckling 

significantly improved the P1 flux moment spectrum as shown in Figure 4.9. Using the resultant 

86G anisotropic scattering cross section in the VARIANT core calculation, the reference solution 

was reproduced as shown in Table 4.1 (group buckled supercell case).   

 

   

Figure 4.8 Comparison of Scalar Flux (Left) and P1 Flux Moment (Right) Spectra of 989G 

VARIANT Transport Solutions to Core and Supercell Problems 

 

    

Figure 4.9 Comparison of Scalar Flux (Left) and P1 Flux Moment (Right) Spectra of 989G 

VARIANT Transport Solutions to Core and Supercell with Group Dependent Buckling 
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The above test indicates that the energy dependence of leakage makes a larger difference 

in multigroup cross sections than the spectrum tilt due to different reactivity level. This observation 

inspired the background source approximation for handling long-range spectrum transition effects.  

4.1.4.3 Background Source Approximation 

In practical supercell calculations, the group dependent leakage correction is provided by 

imposing an approximate background source on the supercell boundary. This way, broad-group 

cross sections can be directly generated from Monte Carlo supercell simulations. The background 

source can be either a buffer zone producing representative neutron source or a fixed surface 

source. Figure 4.10 and Figure 4.11 show the supercell models for the fast (FA) and thermal (TA) 

fuel assemblies in the homogenized CFTR-1D core and the corresponding broad-group (13G) 

capture cross sections generated using these models, respectively. The fast assembly supercell 

model includes a half-width thermal assembly as the thermal neutron source zone. The thermal 

assembly supercell model does not include a fast zone (otherwise it would be the full core) but a 

surface source on the left boundary, for which the spectrum of the fast assembly leakage obtained 

in the fast assembly supercell model was used.  

 

        

Figure 4.10 Fuel Assembly Supercell Models with Background Source 

 

With a thermal source zone, the fast assembly cross sections were accurately generated in 

most groups. The thermal group cross section has a larger error because of the reflective boundary 

condition outside the source zone. The thermal assembly cross sections were also improved, 

especially in a high-energy group. 
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Figure 4.11 13G Capture Cross Sections Obtained in Supercell Models with Background Source 

 

Burnup dependent cross sections for fuel assemblies are generated in Monte Carlo 

depletion calculations in supercell models. The global core environment changes with depletion, 

but in supercell depletion, the background source zone or the surface source is assumed unchanged. 

This assumption is based on the observation that the leakage spectrum does not vary drastically 

with depletion, as shown Figure 4.12. 

 

   

Figure 4.12 Spectrum Variation with Fuel Depletion in CFTR-1D Core 

 

4.2 Nodal Transport Method with Partial Current Discontinuity Factor  

In this study, a new transport equivalence method was developed for implementation in the 

variational nodal transport code VARIANT. A nodal equivalence theory based on scalar flux DFs 
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was previously incorporated in VARIANT for prismatic Very High Temperature Reactor (VHTR) 

analysis [70], but it was limited to P1 approximation. However, diffusion theory solutions may not 

be satisfactory for coupled fast-thermal reactor analysis because of the pronounced transport and 

anisotropic scattering effects in the fast zone. In order to enhance the flux solution accuracy by 

reducing the assembly homogenization error, a new nodal equivalence theory method based on 

partial current discontinuity factors (PCDFs) has been developed for black-box homogenization 

and incorporated in VARIANT [118]. The PCDF based nodal equivalency model is derived in this 

section along with the method to generate PCDFs for core calculations.  

4.2.1 Variational Nodal Transport Method 

The VARIANT code solves the neutron transport equation in 3D Cartesian and hexagonal 

geometries based on assembly homogenized core models. It is based on the variational nodal 

method that guarantees nodal balance and permits refinement using hierarchical complete 

polynomial trial functions in space and spherical harmonics in angle. In the variational nodal 

method, the second-order form of the even-parity transport equation [36] is solved in each node 

and the even-parity fluxes of adjoining nodes are coupled through odd-parity fluxes at the nodal 

interface.  

The derivation of the second-order form of the even-parity transport equation starts with 

splitting the angular flux into even- and odd-parity components as: 

𝜓𝑔(𝑟, Ω̂) = 𝜓𝑔
+(𝑟, Ω̂) + 𝜓𝑔

−(𝑟, Ω̂), (4.1) 

where 𝜓𝑔
+(𝑟, Ω̂)  and 𝜓𝑔

−(𝑟, Ω̂)  are the even- and odd-parity angular fluxes that satisfy the 

following properties: 

𝜓𝑔
+(𝑟, −Ω̂) = 𝜓𝑔

+(𝑟, Ω̂),   𝜓𝑔
−(𝑟, −Ω̂) = −𝜓𝑔

−(𝑟, Ω̂). (4.2) 
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Coupled transport equations for even- and odd-parity angular fluxes are obtained by adding 

and subtracting the Boltzmann transport equations for Ω̂ and −Ω̂ directions. By eliminating the 

odd-parity angular flux, the second-order form of the even-parity transport equation can be 

obtained as: 

−Ω̂ ⋅ ∇⃗⃗⃗ [
1

Σ𝑡,𝑔(𝑟)
Ω̂ ⋅ ∇⃗⃗⃗𝜓𝑔

+(𝑟, Ω̂)] + Σ𝑡,𝑔(𝑟)𝜓𝑔
+(𝑟, Ω̂) = Σ𝑠,𝑔→𝑔(𝑟)𝜙𝑔(𝑟) + 𝑄𝑔(𝑟, Ω̂), (4.3) 

where 𝑄𝑔(𝑟, Ω̂) includes fission source as well as scattering source from other groups. It is noted 

that isotropic scattering is assumed in the derivation of Eq. (4.3) for simplicity while anisotropic 

scattering is treated in VARIANT as discussed in Ref. [67].  

The variational nodal method is derived from the functional defined on nodal volumes and 

nodal interfaces, where the odd-parity flux is used as a Lagrange multiplier. Requiring this 

functional to be stationary with respect to variations of 𝜓𝑔
+ and 𝜓𝑔

− leads to the second-order form 

of the even-parity equation within each node, given in Eq. (4.3), and the odd-parity transport 

equation at the interfaces: 

Ω̂ ⋅ ∇⃗⃗⃗𝜓𝑔
+(𝑟, Ω̂) + Σ𝑡,𝑔(𝑟)𝜓𝑔

−(𝑟, Ω̂) = 0. (4.4) 

This functional is reduced to a quadratic form by expanding the even- and odd-parity fluxes in 

terms of complete polynomial trial functions in space and spherical harmonics in angle. The intra-

nodal distribution of the even-parity angular flux of group 𝑔 is expanded as: 

𝜓𝑔
+(𝑟, Ω̂) = ∑ 𝑓𝑖(𝑟)𝑔𝑚(Ω̂)𝜁𝑔,𝑖𝑚

+

𝑖,𝑚
, (4.5) 

where 𝑓𝑖(𝑟) ’s are complete polynomial trial functions, 𝑔𝑚(Ω̂) ’s are even-order spherical 

harmonics, and 𝜁𝑔,𝑖𝑚
+ ’s are the expansion coefficients called the flux moments. The odd-parity 

angular flux on each nodal interface 𝛾 is represented as: 
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𝜓𝛾,𝑔
− (𝑟, Ω̂) = ∑ ℎ𝛾,𝑗(𝑟)𝑘𝛾,𝑛(Ω̂)𝜒𝛾𝑔,𝑗𝑛

−

𝑗,𝑛
, (4.6) 

where ℎ𝛾,𝑗(𝑟)’s are polynomial trial functions and 𝑘𝛾,𝑛(Ω̂)’s are odd-order spherical harmonics, 

and 𝜒𝛾𝑔,𝑗𝑛
− ’s are odd-parity flux moments. 

The linear system of equations for the expansion coefficients or even- and odd-flux 

moments 𝜁𝑔,𝑖𝑚
+  and 𝜒𝛾𝑔,𝑗𝑛

−  is obtained by requiring the reduced functional to be stationary with 

respect to variations of these flux moments. To efficiently solve the system of algebraic equations 

of flux moments, a linear transformation of the flux moment variables is applied [123]: 

𝐽𝛾,𝑔
± =

1

4
𝜁𝛾,𝑔 ±

1

2
𝜒𝛾,𝑔 (4.7) 

where 𝐽𝛾,𝑔
±  is a vector of partial current moments on surface 𝛾, 𝜁𝛾,𝑔 and 𝜒𝛾,𝑔 are vectors of even- 

and odd-parity flux moments on the same surface. Eventually, a set of nodal response matrix 

equations are obtained for the partial currents of neutrons exiting and entering the node. The inter-

nodal continuity conditions for the partial current moments are then used to solve the global 

equations using the red-black iteration method [123]. 

4.2.2 Partial Current Discontinuity Factor 

Now we derive the partial current discontinuity factor for VARIANT implementation. This 

section is largely adapted from a previous publication [118] of the author. Omitting the group 

index, the within-group nodal response matrix equation for partial currents is simply put as: 

𝐽+ = 𝑆 + 𝑹𝐽−, (4.8) 

where 𝐽+ and 𝐽−are the outgoing and incoming partial-current-like vectors, 𝑆 is the volumetric 

source term for this group, and 𝑹 is the response matrix. In the P1 approximation, 𝐽+ and 𝐽− reduce 

to the surface partial currents in diffusion theory model. In a higher order angular approximation, 
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they are linear combinations of even- and odd-parity angular fluxes across nodal surfaces. The 

response matrix equations for a heterogeneous node and its equivalent homogenized node can be 

written as: 

𝐽ℎ
+ = 𝑆ℎ + 𝑹ℎ𝐽ℎ

−, (4.9) 

𝐽𝑚
+ = 𝑆𝑚 + 𝑹𝑚𝐽𝑚

− , (4.10) 

where the subscripts ℎ and 𝑚 denote the quantities in the heterogeneous and homogenized nodes, 

respectively. With the flux-volume weighting for cross section homogenization, the node average 

reaction rates and hence the volumetric source can be preserved only when the net leakage of the 

homogenized node matches that of the reference heterogeneous node as: 

𝐽𝑚
+ −  𝐽𝑚

− = 𝐽ℎ
+ − 𝐽ℎ

−. (4.11) 

To satisfy Eq. (4.11), the discontinuity condition of partial currents of the homogenized 

nodes is introduced with a PCDF for each partial current moment 𝑖 on each nodal surface 𝛾 as: 

𝑓𝛾,𝑖
+ =

𝐽ℎ,𝛾,𝑖
+

𝐽𝑚,𝛾,𝑖
+ ,    𝑓𝛾,𝑖

− =
𝐽ℎ,𝛾,𝑖

−

𝐽𝑚,𝛾,𝑖
− , (4.12) 

where 𝑓𝛾,𝑖
+  and 𝑓𝛾,𝑖

−  are the PCDFs for outgoing and incoming currents, respectively. By combining 

Eq. (4.12) for all partial current moments, one obtains 

 𝐽𝑚
+ = 𝑫+𝐽ℎ

+,    𝐽𝑚
− = 𝑫−𝐽ℎ

−, (4.13) 

where 𝑫+and 𝑫−are diagonal matrices composed of 1/𝑓𝑖,𝛾
+  and 1/𝑓𝑖,𝛾

− , respectively.  

Eq. (4.7) says that the net current acts as the odd-parity flux and hence the physically 

required continuity of net current across nodal interface implies the continuity of odd-parity 

angular flux. Thus, the discontinuity of partial currents is equivalent to the discontinuity of even-

parity angular flux. Therefore, a discontinuity factor (EPDF) can be directly introduced for the 

even-parity flux [55]. The reason that PCDF is preferred over EPDF for VARIANT 
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implementation is discussed in Section 4.2.3. Inserting Eq. (4.13) into Eq. (4.10) and requiring the 

reference volumetric source to be preserved yield 

 𝑫+𝐽ℎ
+ = 𝑆ℎ + 𝑹𝑚𝑫−𝐽ℎ

−. (4.14) 

Using Eq. (4.13), Eq. (4.11) can also be written as 

 𝑫+𝐽ℎ
+ − 𝑫−𝐽ℎ

− = 𝐽ℎ
+ − 𝐽ℎ

−. (4.15) 

Subtracting Eq. (4.14) from Eq. (4.15) yields 

 (𝑹𝑚 − 𝑰)𝐽𝑚
− = 𝐽ℎ

+ − 𝐽ℎ
− − 𝑆ℎ, (4.16) 

where 𝑰 is the identity matrix. Therefore, for given partial currents 𝐽ℎ
± and volumetric source 𝑆ℎ in 

the heterogeneous node, the in-coming partial currents in the homogenized node can be determined 

by solving Eq. (4.16) iteratively as: 

 𝐽𝑚
−(0)

= 𝐽ℎ
−,               𝐽𝑚

+(𝑘+1)
= 𝑹𝑚𝐽𝑚

−(𝑘)
+ 𝑆ℎ, 

 𝐽𝑚
− (𝑘+1)

= 𝐽𝑚
+(𝑘+1)

− (𝐽ℎ
+ − 𝐽ℎ

−),   𝑘 = 1,2, ⋯. (4.17) 

Once the partial currents in the homogenized node are determined using given reference values in 

the heterogeneous node, the PCDFs can be deduced from Eq. (4.12). To generate PCDFs, 

VARIANT has been modified to solve Eq. (4.17) for each homogenized node with given reference 

partial currents and nodal flux. The volumetric source is internally calculated using homogenized 

cross sections and the reference flux. 

Since PCDF is defined for each spatial and angular moment of partial currents, it can be 

applied to any angular approximation order in a consistent way. However, the determination of 

reference partial current moments in heterogeneous nodes can be non-trivial. For instance, if the 

reference heterogeneous problem is solved with the method of characteristics (MOC), the partial 

current moments must be evaluated from the spatial and angular distributions of angular fluxes at 

nodal interfaces using the trial functions of VARIANT. In this work, the reference nodal fluxes 
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and surface partial currents are obtained with Serpent MC simulations. Even though the functional 

expansion tally capability is available in Serpent, it is limited to tallying the distributions of scalar 

flux and reaction rates in Cartesian or cylindrical geometry and it is recommended to be applied 

to homogeneous material regions. Thus, only node-averaged flux and surface-averaged partial 

currents are tallied by Serpent for the time being, and PCDFs are generated only for the zeroth 

(flat) moments of partial currents. Nonetheless, node-averaged reaction rates and surface-

integrated leakages are preserved once the core calculation is consistently performed with the same 

options used to generate PCDFs. That it, only the flat partial current moment is adjusted by PCDF 

in transport calculations and the high-order moments are assumed to be continuous at nodal 

interfaces.  

4.2.3 Incorporation of PCDF in VARIANT 

The incorporation of PCDFs in VARIANT is accomplished by modifying the nodal 

interface condition. As depicted in Figure 4.13, the application of PCDFs to the discontinuous 

partial currents (solid arrows) of two adjacent homogenized nodes make them match the reference 

partial currents (dotted arrows) of the corresponding heterogeneous nodes, which are continuous 

across the interface. In the original formulation without PCDFs, the system of nodal response 

matrix equations is solved iteratively with the following continuity condition of partial currents on 

the left (L) and right (R) side of an interface:  

 𝐽𝑅
− = 𝐽𝐿

+,    𝐽𝐿
− = 𝐽𝑅

+. (4.18) 

In the modified formulation with PCDFs, the interface conditions become 

 𝐽𝑅
− =

𝑓𝐿
+

𝑓𝑅
− 𝐽𝐿

+,    𝐽𝐿
− =

𝑓𝑅
+

𝑓𝐿
− 𝐽𝑅

+. (4.19) 

The implementation of Eq. (4.19) requires no changes to the red-black iteration scheme of 

VARIANT other than adjusting the incoming partial currents by PCDF ratios before applying the 
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response matrix. Again, the current implementation applies PCDF only to the flat moments of 

partial currents.  

 

L R

RJ −

RJ +

LJ +

LJ −

L Lf J+ + R Rf J− −

L Lf J− − R Rf J+ +

 

Figure 4.13 Nodal Interface Conditions Modified with PCDFs [118] 

 

 Using the relation between partial currents and surface fluxes, the even-parity discontinuity 

factor (𝑓𝑒) for an even-parity flux moment 𝑖 on surface 𝛾 can be determined as: 

𝑓𝛾
𝑒 =

𝐽ℎ,𝛾,𝑖
+ + 𝐽ℎ,𝛾,𝑖

−

𝐽𝑚,𝛾,𝑖
+ + 𝐽𝑚,𝛾,𝑖

− . (4.20) 

In the P1 approximation, the EPDFs are equivalent to the conventional flux discontinuity factors. 

To incorporate EPDF into VARIANT, the nodal interface condition should be modified as: 

𝐽𝑅
− =

2𝑓𝐿
𝑒

𝑓𝐿
𝑒 + 𝑓𝑅

𝑒 𝐽𝐿
+ + 

𝑓𝐿
𝑒 − 𝑓𝑅

𝑒

𝑓𝐿
𝑒 + 𝑓𝑅

𝑒 𝐽𝑅
+,   and

𝐽𝐿
− =

2𝑓𝑅
𝑒

𝑓𝐿
𝑒 + 𝑓𝑅

𝑒 𝐽𝑅
+ +  

𝑓𝑅
𝑒 − 𝑓𝐿

𝑒

𝑓𝐿
𝑒 + 𝑓𝑅

𝑒 𝐽𝐿
+. (4.21)

 

Compared to Eq. (4.19), the interface condition given by Eq. (4.21) requires altering the efficient 

red-black iteration scheme of VARIANT as the incoming partial currents depend on the outgoing 

partial currents from the same node. Because of this, PCDF is preferred over EPDF to be 

incorporated in VARIANT.  

4.2.4 Use of PCDF in Transport Calculation 

In Chapter 3, we showed that PCDF would reproduce the reference solution regardless of 

transport approximation order. Another test performed in Ref. [124] showed that even with 
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multigroup XSs generated in approximate models, the PCDFs obtained with the reference nodal 

flux and partial currents reproduced the reference solution. Discontinuity factor was originally 

designed to treat assembly heterogeneity effects. The discretization error is implicitly 

accommodated and with that one-mesh-per-assembly finite difference diffusion solution could 

match the reference heterogeneous solution. Then a natural question is why we are pursuing high-

order transport calculations with discontinuity factor. As pointed out by Smith [125], discontinuity 

factors are now used to correct not only the homogenization error, but also the other deficiencies 

of nodal calculation models, such as the low-order transport approximation, coarse spatial 

discretization, and sometimes cross section errors. This is the reason the nodal model should be 

made to capture as many physics effects as possible, except local heterogeneity. Otherwise, 

discontinuity factors are nothing but lumped fudge factors, which cannot guarantee the solution 

accuracy when they are applied to a core model that is different from the setup on which they are 

generated.  

Using the heterogeneous CFTR-1D problem, the PCDFs for the thermal fuel assembly 

generated with diffusion and higher-order transport options are compared in Figure 4.14. On the 

left of the thermal assembly is the buffer assembly and on the right the graphite reflectors. Except 

for one case, these PCDFs were generated using the reference 13G cross sections from Serpent 

and replaced anisotropic scattering matrices from MC2-3. It is seen that with increased 

approximation orders for angular flux expansion and anisotropic scattering, the PCDFs approach 

asymptotic values. The difference between diffusion (P1_P0) and transport approximations is 

larger than that between different transport approximations. As expected, the increased scattering 

order makes the biggest differences in high-energy groups because scattering anisotropy is more 

pronounced in the fast energy range. The use of inconsistently weighted anisotropic scattering 
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induces less deviation in PCDFs than the diffusion approximation does. The “convergence” 

behavior of PCDFs can be seen more clearly in Figure 4.15, where the PCDFs for the incoming 

partial currents on the left surface of the thermal assembly are plotted against increasing transport 

approximation order. In some sense, the “converged” PCDFs represent the discontinuity 

conditions purely due to intra-assembly heterogeneity. The convergence property is favorable 

because further refinement of approximation orders in VARIANT transport calculations can be 

applied without regenerating PCDFs. 

 

     

     

Figure 4.14 PCDFs Obtained with Different Flux Expansion and Scattering Orders on Left and 

Right Boundaries of Thermal Assembly in CFTR-1D Problem 

 

Another test was performed for CFTR-1D by applying unity PCDFs to the graphite 

reflectors which are already homogenized in the Serpent model. The VARIANT diffusion and 
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transport calculation results are compared in Table 4.2, where GR1, GR2, and GR3 label the three 

graphite reflector assemblies and GR1 is next to the thermal fuel assembly as shown in Figure 3.4. 

It is seen from Table 4.2 that the transport calculations with unity PCDFs for reflectors produced 

more accurate eigenvalue and assembly powers than the diffusion calculations. For large problems 

with near homogeneous reflector regions, the use of PCDFs may be unnecessary in transport 

calculations, while PCDFs are necessary to correct the error induced by low-order transport 

approximations in diffusion calculations.  

 

 

Figure 4.15 “Convergence” of PCDF with Increasing Transport Order 

 

Table 4.2 VARIANT solutions obtained with different PCDFs for reflectors in CFTR-1D 

Transport order Use of PCDFs Δ𝑘, pcm 
Assembly power error 

 FA  TA 

P1 diffusion Applied to all assemblies    2  0.00%  0.00% 

 Not for GR1 / GR2 / GR3   -55 -0.36%  0.32% 

 Not for GR2 / GR3    40 -0.08%  0.07% 

P5 / P3 transport Applied to all assemblies   -1  0.01% -0.01% 

 Not for GR1 / GR2 / GR3   -24 -0.25%  0.22% 

 Not for GR2 / GR3    20  0.00%  0.00% 
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4.2.5 Generation of PCDF 

PCDFs are generated by solving Eq. (4.17) for each node to be homogenized. This 

calculation is practically node wise if the partial current moments in the heterogeneous nodes are 

known from some reference calculation. From the practical point of view, approximate models 

must be used for the reference heterogeneous calculations. In the following subsections, the one-

node and multi-node calculation procedures with given reference nodal flux and partial currents 

are first described. Then the approximate models used to perform the reference heterogeneous 

calculations are discussed.  

4.2.5.1 One-node Calculation 

When all the partial current moments of reference solution are given, Eq. (4.17) is directly 

solved for each node. All nodes are decoupled and hence it is called one-node calculation. 

However, since the heterogeneous solution is obtained in MC simulation with Serpent, only flat 

moments of partial currents and nodal average flux are tallied. Regarding nodal calculations, it is 

acceptable to use only the average flux for preserving average reaction rates. When homogeneous 

partial currents are iteratively determined, the intra-nodal flux distribution (i.e., the high-order flux 

moments) will be updated to preserve the surface leakage while the average flux level is forced to 

the reference value. But the high-order partial current moments are explicitly included in Eq. 

(4.17). Without the reference high-order partial current moments, the flat leakage approximation 

is applied in one-node calculations. Thus, the average incoming partial currents are imposed in the 

normal inward direction at each surface and the high-order moments of the resulting outgoing 

partial currents are neglected in the next iteration. In core calculations, PCDFs should be used with 

the same flat leakage approximation.  
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At a vacuum boundary surface 𝛾, the reference incoming partial current (𝐽ℎ,𝛾
− ) is zero. 

Physically, the incoming partial current through surface 𝛾 of the homogenized node should also 

be zero. According to Eq. (4.11), the outgoing partial current at surface 𝛾 should be: 

𝐽𝑚,𝛾
+ = 𝐽𝑚,𝛾

+ −  𝐽𝑚,𝛾
− = 𝐽ℎ,𝛾

+ − 𝐽ℎ,𝛾
− = 𝐽ℎ,𝛾

+ , (4.22) 

which makes the problem over-determined because 𝐽𝑚,𝛾
+  is also determined by Eq. (4.10). In this 

situation, 𝐽𝑚,𝛾
−  on surface 𝛾 is forced to zero and the constraint of Eq. (4.11) is released. Instead, 

the net leakage out of the homogenized node through surface 𝛾 is determined as: 

𝐽𝛾,𝑛𝑒𝑡 = 𝑓𝛾
+ 𝐽𝑚,𝛾

+ = 𝐽ℎ,𝛾
+ . (4.23) 

Theoretically, no negative PCDF will be produced unless the problem is ill-posed because 

neither the heterogeneous nor the homogenized model produces negative partial current solution. 

An example of the ill-posed condition is when MC tallied thermal group fluxes and partial currents 

of the fast-zone assemblies in CFTRs bear large uncertainties. Because of numeric errors, the near-

zero reference partial currents of heterogeneous nodes can lead to negative values in the one-node 

calculation to generate PCDFs. In this case, the one-node calculation is skipped for low-energy 

groups and PCDFs are set to one to avoid numerical instability in core calculations.  

4.2.5.2 Multi-node Calculation 

The one-node calculation requires the flat leakage approximation, which is unphysical in 

transport calculations. Figure 4.16 shows the flux distributions in CFTR-1D of the VARIANT 

transport solutions obtained with (“_flatJ” case) and without the flat leakage approximation. It is 

seen that the flat leakage approximation could distort the intra-nodal flux distribution although the 

average flux and net leakage are preserved. To eliminate the flat leakage approximation, multi-

node calculations can be performed for PCDF generation. Eq. (4.17) is solved in supercell models, 

where the reference nodal flux and surface partial currents are imposed only on the central node 
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of interest. During iteration, the surface-averaged net leakage of the reference solution is preserved 

while the high-order moments are iteratively determined by imposing the outgoing partial currents 

of neighbor nodes as incoming partial currents. The iteration terminates when the average partial 

currents are converged. Typically, the same supercell model for multigroup cross section 

generation can be used for multi-node calculations. The multi-node calculation is essentially one-

node calculation because the multiple nodes are not directly coupled through continuous interface 

conditions. 

   

  

Figure 4.16 Impact of Flat Leakage Approximation on Intra-nodal Flux Shape 

 

4.2.5.3 Approximate Models for PCDF Generation 

In principle, the reference heterogeneous solution can be reproduced in a homogenized 

calculation using the PCDFs determined from the reference partial currents and volumetric sources 

of the original heterogeneous problem. But the reference heterogeneous solution cannot be known 

a priori and PCDFs must be determined approximately. For instance, the conventional assembly 

discontinuity factors (ADFs) are determined as surface-to-average flux ratios in assembly lattice 

calculations with reflective boundary conditions (BCs). This approximation was based on the 

observed insensitivity of ADFs to the assembly location in the core [51] and was acceptable for 

large commercial LWRs, where similar fuel assemblies are loaded. 
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Analogous to ADFs, PCDFs can be approximately computed with information from 

assembly lattice calculations. With reflective BCs, the flux distribution in the homogenized 

assembly is flat and is required to match the average flux level in the heterogeneous assembly. The 

flat moments of partial currents (𝐽𝑚,𝛾,0
± ) of surface 𝛾 of the homogenized node are of the same 

magnitude and can be determined as: 

 𝐽𝑚,𝛾,0
+ = 𝐽𝑚,𝛾,0

− =
𝜙𝑚,𝛾

4
=

�̅�𝑚

4
=

�̅�ℎ

4
, (4.24) 

where 𝜙𝑚,𝛾 is the flux of surface 𝛾 of the homogenized node, �̄�𝑚 and �̄�ℎ are the node-averaged 

fluxes in homogenized and heterogeneous assemblies, respectively. Thus, the PCDFs of surface 𝛾 

are simply given by 

 𝑓𝛾,0
± = 4

𝐽ℎ,𝛾,0
±

�̅�ℎ
=

�̅�ℎ,𝛾

�̅�ℎ

, (4.25) 

where �̄�ℎ,𝛾 is the reference flux of surface 𝛾 in the heterogeneous node. That is, the infinite lattice 

approximation leads to the same PCDF value for incoming and outgoing partial currents and the 

value is equal to the conventional ADF.  

The infinite assembly lattice approximation might be useful for those surrounded by similar 

assemblies. For general applications, discontinuity factors should be determined for nonzero 

surface leakage. Like multigroup cross section generation, the generation of PCDF is primarily 

based on supercell models for coupled fast-thermal spectrum reactors. Unlike cross section 

generation, which relies on the representative volume-averaged spectrum, PCDFs are defined on 

individual surfaces and hence are more sensitive to the BCs imposed on supercells as the change 

of environment will change the relative magnitude of surface currents. The strategies to treat the 

long-range environment impacts on PCDF generation are discussed in the following subsections.  
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4.2.5.4 PCDF Generation with Fixed Source Calculation 

In Ref. [118], we developed a method to obtain approximate BCs for heterogeneous 

supercell models from a full core calculation with homogenized multigroup XSs and unity PCDFs 

and to use them in supercell fixed source calculations for PCDF generation. This method can be 

schematically illustrated in Figure 4.17.  

 

 

Figure 4.17 PCDF Generation with Combined Homogenized Core and Fixed Source Supercell 

Calculations [118] 

 

First multigroup XSs are generated in supercell models. Then a nodal core calculation is 

performed with unity PCDFs to obtain nodal interface partial currents. These partial currents 

would be more appropriate to represent the core environment than arbitrarily assumed BCs for 

supercell models as shown in Figure 4.18 for the partial current spectrum on an interface between 

fuel and reflector assemblies in a coupled-spectrum reactor. Using the incoming partial currents as 

external surface sources, fixed source supercell calculations are performed with vacuum BCs. The 

fixed source lattice calculation is performed with Serpent, for which flat incoming partial currents 

are applied to the boundary surfaces in the normal inward direction. This is to simplify the source 

sampling process in MC simulations. The use of supercell model reduces the impact of neglecting 

source distributions in space and angle. To be consistent with the core condition, the fission source 
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is divided by the  value of the nodal core calculation. Then PCDFs are calculated using the 

tallied node-averaged flux and surface partial currents in the fixed source simulation. A finer 

multigroup representation of the boundary condition is supposed to yield more accurate PCDFs. 

The fine-group incoming partial currents can be obtained either with a fine-group core calculation, 

or by other approximated means such as modal synthesis of fine-group solutions of lattice 

calculations and the broad-group solution of the core calculation. 

 

 

Figure 4.18 Spectrum Comparison of Incoming Partial Currents from Reflector to Fuel [118] 

 

4.2.5.5 Imbedded PCDF Correction in Core Calculation 

Using fixed source Monte Carlo simulation for PCDF generation was proved to be a 

reliable approach in steady state transport calculations [118]. However, it is also shown that a good 

approximation of the boundary condition is essential to produce accurate PCDFs. The best 

approximation is obtained from the homogenized nodal core calculation. Instead of repeating 

homogenized core calculation and local heterogeneous supercell calculations, an approach to 

generate PCDFs on the fly during core calculation is more desirable. This is because the core 

configuration keeps evolving in the design phase, and it changes with fuel depletion (and other 

variations of state parameters). It is not feasible to obtain the approximate BCs for fixed source 
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calculations in advance. There are many studies in this field that pursues functionalization of 

homogenized cross sections and nodal equivalence parameters with leakage BCs. [126-128] The 

difficulty of extending these ideas to fast or coupled-spectrum systems is that since more energy 

groups are used, more data points are needed to fit the cross section and discontinuity factors with 

the selected parameters (e.g., current to flux ratio or albedo) to represent BCs.  

Given that local boundary conditions could be well approximated using nodal full-core 

solutions, a natural pathway to treat the environmental effects is to re-generate PCDFs in core 

calculations. We consider the four neutron balances to be satisfied by the same node at the local 

heterogeneous and homogenized supercell conditions and global heterogeneous and homogenized 

core conditions: 

𝐽𝐿,ℎ
+ = 𝑆𝐿,ℎ + 𝑹𝑚𝐽𝐿,ℎ

− , (4.26) 

𝐽ℎ,𝑚
+ = 𝑆𝐿,𝑚 + 𝑹𝑚𝐽𝐿,𝑚

− , (4.27) 

𝐽𝐺,ℎ
+ = 𝑆𝐺,ℎ + 𝑹ℎ𝐽𝐺,ℎ

− , (4.28) 

𝐽𝐺,𝑚
+ = 𝑆𝐺,𝑚 + 𝑹𝑚𝐽𝐺,𝑚

− , (4.29) 

where the subscript 𝐺 denotes the global core calculation results, 𝐿 the local supercell calculation 

results, ℎ  the quantities in heterogeneous calculations, and 𝑚  the quantities in homogenized 

calculations. Equations (4.26) and (4.27) are solved in supercell calculations when PCDFs are 

generated. Eq. (4.29) is satisfied in the nodal core calculation. With these known relations, we 

would like to approximate the neutron balance given by Eq. (4.28).  

The change in neutron balance from local to global conditions occurs both in volumetric 

source and surface dependent partial currents. The change in volumetric source is further due to 

the change in reactivity and global flux gradient. It is assumed that this effect perturbs the 

heterogeneous and homogenized nodal balance by the similar amount. Without repeating the local 
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heterogeneous calculation as we do in Section 4.2.5.4, the perturbation of boundary conditions for 

the heterogeneous node is approximated as the differences in partial currents of the homogenized 

node between local and global calculations: 

Δ𝐽+ = 𝐽𝐺,ℎ
+ − 𝐽𝐿,ℎ

+ ≈ 𝐽𝐺,𝑚
+ − 𝐽𝐿,𝑚

+  , (4.30) 

Δ𝐽− = 𝐽𝐺,ℎ
− − 𝐽𝐿,ℎ

− ≈ 𝐽𝐺,𝑚
− − 𝐽𝐿,𝑚

−  . (4.31)

Because the local partial currents are normalized to have the same nodal average flux as 

the reference heterogeneous supercell calculation, which is generally different from the flux level 

emerging in the global calculation, the local quantities in Eqs. (4.30) and (4.31) need to be 

renormalized before taking the difference. Without a better theoretical basis, the renormalization 

is made to have the same integrated volumetric source in a node. The approximate nodal balance 

for the heterogeneous node in the core condition is: 

𝐽𝐺,ℎ
+ ≈ 𝐽𝐿,ℎ

+ + Δ𝐽+ ≈ 𝑆𝐺,𝑚 + 𝑹ℎ(𝐽𝐿,ℎ
− + Δ𝐽−). (4.32) 

The perturbed heterogeneous partial currents are used to re-generate PCDFs for core calculations. 

The above approximation does not have any good theoretical basis as the heterogeneous 

partial currents in global full-core and local supercell environments do not have direct correlations. 

To “know” the response of a heterogeneous node to given incoming partial currents, we need to 

have the response matrix 𝑹ℎ for it. The response matrices can be pre-generated for each type of 

heterogeneous node and used in the global core calculation to predict the heterogeneous partial 

currents. This approach was not adopted because of its two major deficiencies. First is the 

computational cost to generate response matrices, which is proportional to the number of energy 

groups, nodal surfaces, and state conditions. The other concern is the dependence of response 

matrices on the spatial and angular distribution of multigroup incoming partial currents. 
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4.2.6 Intra-nodal Flux and Power Reconstruction 

Nodal core calculations do not reproduce the intra-nodal flux distribution in heterogeneous 

nodes. To obtain spatially detailed reaction rates and power distributions and to predict pin-wise 

fuel depletion, the flux distribution in a heterogeneous node can be reconstructed by combining 

the smooth flux shape from the global nodal solution and pin flux form functions (PFFFs) to 

incorporate local heterogeneity effects. Since VARIANT uses multivariate polynomials for spatial 

expansion of flux distribution within each node, the pin fluxes of the homogenized core calculation 

can be simply evaluated using the basis polynomials and corresponding expansion coefficients. 

The flux form function of group 𝑔 for pin 𝑘 is defined as the ratio of reference pin flux in the 

heterogeneous node to that in the homogenized node, 

 PFFF𝑔
𝑘 =

�̅�ℎ,𝑔
𝑘

�̅�𝑚,𝑔
𝑘  , (4.33) 

where �̅�ℎ,𝑔
𝑘  is the average flux of group 𝑔 at pin 𝑘 obtained from the reference heterogeneous 

assembly calculation, and �̅�𝑚,𝑔
𝑘  is the average flux of group 𝑔  evaluated at pin 𝑘  from the 

polynomial flux shape of the VARIANT one-node solution for PCDF generation. With 

reconstructed pin fluxes, the pin power distributions in heterogeneous nodes can be determined by 

summing the products of flux and heating cross section over all energy groups. For pin power 

reconstruction, we can also define the pin power form functions (PPFFs) by the ratio of reference 

pin powers in heterogeneous calculation to those computed with homogeneous fluxes,  

PPFF𝑘 =
∑ [𝐻ℎ,𝑔

𝑘 �̅�ℎ,𝑔
𝑘 ]𝑔

∑ [𝐻𝑚,𝑔
𝑘 �̅�𝑚,𝑔

𝑘 ]𝑔

, (4.34) 

where the heating cross sections 𝐻ℎ,𝑔
𝑘  and 𝐻𝑚,𝑔

𝑘  are the products of neutron reaction cross section 

and kinetic energy released per reaction.  
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4.3 Full-Core Depletion Calculation 

As demonstrated in Section 3.3, the current REBUS-3 code can be applied to coupled-

spectrum reactor analysis with a few improvements in burnup dependent cross section usage, 

representation of fission yields depending on incident neutron energy, and use of burnup dependent 

PCDFs in nodal core calculations. The code modifications to fulfill these needs are discussed in 

the following subsections.  

4.3.1 Burnup Dependent Isotopic Cross Section 

The current REBUS-3 can utilize burnup dependent capture and fission cross sections, 

which are fitted with the number density of user specified reference nuclides. To utilize variable 

isotopic cross sections for all reaction types depending on state parameters such as burnup, 

temperature, and moderator density, a new cross section dataset VARIXS (Variable Isotopic Cross 

Sections) was defined based on the CCCC (Committee on Computer Code Coordination) standard 

isotopic cross section file format ISOTXS [97]. One can think of VARIXS as nested ISOTXS’s 

with state parameters. These parameters are not fixed but specified by user when generating the 

VARIXS dataset for specific reactor system. They are used only for interface purpose such that 

the stored cross section data can be correctly interpreted in REBUS-3. In REBUS-3, the tabulated 

cross sections are used through piecewise linear interpolation. For more information of VARIXS, 

one can refer to Appendix C. 

The REBUS-3 code was modified to utilize the state dependent isotopic cross sections 

provided with VARIXS. A new module was added to REBUS-3 for cross section interpolation at 

each depletion step. The major modification to the computational flow of REBUS-3 is shown in 

Figure 4.19. At each depletion step, the isotopic cross sections are re-evaluated by performing 

multi-dimensional linear interpolation of the VARIXS data according to the updated state 
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parameters. For the time being, only burnup state is considered. The determination of other state 

parameters, such as fuel temperature and moderator density, requires a thermal-hydraulic 

calculation module to be implemented in REBUS-3. The updated cross sections are used in 

VARIANT transport calculations and in burn matrix construction for depletion calculation. This 

iteration is terminated when the change of nuclide densities in successive iterations is smaller than 

the user specified convergence criterion and is repeated at the next time step.  

 

 

Figure 4.19 Modified Region Density Iteration for Depletion Calculation in REBUS-3 

 

4.3.2 Energy Dependent Fission Yield 

As tested in Chapter 3, the dependence of fission yields on incident neutron energy needs 

to be considered in depletion calculations for coupled-spectrum reactors because of the existence 

of distinct flux spectra in fast and thermal spectrum zones. The REBUS-3 code is modified to 

construct burn matrices using energy dependent fission yield data, which are interpolated in 

specific depletion zones with the average fission energy. The average fission energy (�̅�𝑓
𝑘,𝑖

) for 

actinide 𝑖 in depletion zone 𝑘 is computed as: 

�̅�𝑓
𝑘,𝑖 =

∑ �̅�𝑔𝜎𝑓,𝑔
𝑘,𝑖�̅�𝑘,𝑔𝑔

∑ 𝜎𝑓,𝑔
𝑘,𝑖�̅�𝑘,𝑔𝑔

, (4.35) 

where �̅�𝑔  is the average neutron energy of group 𝑔 , 𝜎𝑓,𝑔
𝑘,𝑖

 is fission cross section, and �̅�𝑘,𝑔  is 

average group flux in zone 𝑘. 
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4.3.3 Burnup Dependent PCDF 

Burnup dependent PCDFs are generated with Serpent supercell depletion calculations. At 

each burnup state, one-node or multi-node calculations are performed to produce PCDFs and the 

single-state PCDFs are then functionalized with burnup. In REBUS-3 calculations, the burnup 

dependent PCDFs are first linearly interpolated with burnup and then corrected according to the 

surface partial currents from nodal core calculation with VARIANT. A special case is that for 

nonfuel assembly, which does not have burnup state, the burnup dependent PCDFs are not 

generated as the constant macroscopic cross sections are used. The variation of PCDFs due to 

environmental change is approximately considered with the imbedded PCDF correction in core 

calculations.  

4.4 Overall Procedure for Core Calculations 

The overall computational procedure for coupled-spectrum reactor analysis is summarized 

in Figure 4.20. Starting with Serpent supercell depletion calculations, burnup dependent 

multigroup XSs and PCDFs are generated based on standard MC tallies and one-node/multi-node 

VARIANT calculations. With these XSs and PCDFs, REBUS-3 whole core depletion calculations 

are performed using VARIANT as the flux solver. At each burnup step, multigroup XSs and 

PCDFs are first interpolated according to burnup states and then used in VARIANT nodal transport 

calculations. The PCDFs can also be corrected during the nodal core calculation. With converged 

fluxes and interpolated isotopic cross sections, the burn matrix is constructed for each depletion 

zone and the nuclide depletion calculation is performed. The region density iteration algorithm is 

used for time stepping. The depletion calculation and flux calculation are iterated until the nuclide 

densities converge or the allowed maximum number of iterations is reached. After each depletion 

calculation, the burnup state is updated for XS and PCDF interpolation in the next time step.  
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Figure 4.20 Overall Computational Procedure for CFTR Analysis 
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Chapter 5  
 

Whole-Core Transport Calculation Test 
 

The proposed core calculation method was tested using a 2D coupled fast-thermal reactor 

(CFTR-2D) problem derived from the low-enriched uranium core design of VCTR [11]. This 

chapter is focused on the test of the steady-state VARIANT transport analysis method with PCDFs. 

The multigroup cross section generation method with supercell was first examined. Then, the 

performance of PCDFs was evaluated in both nodal diffusion and transport calculations.  

5.1 CFTR-2D Problem 

As shown in Figure 5.1, the CFTR-2D core consists of three subzones: the inner fast 

spectrum zone, the outer thermal spectrum zone, and a buffer zone in between that acts as reflector 

of the fast zone and filters out thermal neutrons from the thermal zone. Inside the fast zone are 15 

fuel assemblies, three control assemblies, and a central test loop.  

 

Figure 5.1 Core Configuration of 2D Coupled Fast-Thermal Spectrum Reactor 



 110 

Each fast fuel assembly contains 271 fuel rods of U-6wt%Zr (U-6Zr) alloy, in which 

uranium is 19.95 at.% enriched in U-235. The control assembly in the fast zone consists of 198 

steel dummy pins and 19 control rods. The absorber material used for the control rods is 19.90 

at.% enriched (in B-10) boron carbide (B4C). The buffer zone includes 12 steel reflector assemblies 

and 6 control assemblies. The thermal zone contains 24 fuel assemblies, each of which is composed 

of 210 U-10wt%Zr (U-10Zr) fuel rods and 61 zirconium hydride (ZrH1.6) moderator pins. To 

reduce local power peaking due to returned thermal neutrons from the graphite reflector, three fuel 

enrichments (3.0 / 7.0 / 19.95 at.%) are used for thermal fuel pins. Each of the six thermal 

assemblies located at corners contains 117 pins of 19.95% enriched fuel, 51 pins of 7 at.% fuel, 

and 42 pins of 3 at.% fuel. Each thermal assembly on the side contains 147 pins of 19.95% fuel, 

37 pins of 7 at.% fuel, and 26 pins of 3 at.% fuel. The low-enriched (3 at.%) fuel pins are arranged 

outwards facing the graphite reflectors while the 19.95 at.% enriched fuel pins are loaded next to 

the buffer zone. Outside the active core are graphite blocks canned in zircaloy as thermal reflectors. 

All assemblies are arranged in a triangular lattice with a 12.245 cm assembly pitch. Detailed 

geometric and compositional specifications of these assemblies are provided in Table A.3 of 

Appendix A. The CFTR-2D core is cooled by sodium. For the benchmarking purpose, a material 

temperature of 600 K is assumed for all components except for fuel, which is set to 900 K.  

A full-core Serpent calculation was performed for CFTR-2D using the ENDF/B-VII.1 

library. 2,000 active cycles with 100,000 neutron histories per cycle were simulated to obtain 

assembly powers with less than 0.1% statistical uncertainties. Figure 5.2 shows the core model of 

homogenized assemblies used for VARIANT nodal transport calculations. The labels in Figure 

5.2 define unique cross section regions determined by assembly types and their positions. The 

homogenized multigroup XSs were generated in 13 energy groups. 
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Figure 5.2 Assembly Homogenized 1/6 Core Model of CFTR-2D and Unique Assembly Types 

for Multigroup XS Generation 

 

5.1.1 Cross Section and PCDF Generation  

The Serpent full-core simulation of CFTR produced distinct neutron flux spectra in various 

assemblies as shown in Figure 5.3. Typical fast reactor spectrum is produced in the fast zone while 

transitional spectra occur in the buffer and thermal fuel assemblies. It turns out the thermal fuel 

assemblies are highly under moderated, resulting in a spectrum more like fission spectrum plus a 

thermal flux tail. Neutron moderation is dominantly provided by the graphite reflectors, where a 

large thermal flux peak is seen.  

 

 

Figure 5.3 Flux Spectra of Individual Assemblies in CFTR-2D Core at BOC 
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The significant spectral transition in the CFTR-2D core implies that the infinite lattice 

calculation for each type of assembly will not produce dependable multigroup XSs for core 

calculations. To generate multigroup XSs with reduced models, supercell models were prepared 

for unique assembly types. Figure 5.4 shows three examples of the supercell models used for outer 

fast fuel assembly and thermal fuel assemblies. Reflective boundary conditions were imposed on 

the fast assembly supercell model, where part of thermal assembly is included to provide thermal 

neutron source. The local moderator to fuel ratio is modified by including only 7.0 at.% fuel pins 

were included in this part of thermal assembly such that the contribution of graphite moderation 

can be approximately considered. For the thermal assembly supercell models, non-uniform 

boundary conditions were imposed. The graphite density in reflector was doubled to preserve 

optical thickness in the reduced problem domain. For the inner fast zone, a supercell model with 

fixed source as shown in Figure 5.5 is used to generate multigroup XSs. The supercell model for 

graphite reflectors is shown in Figure 5.6, where vacuum condition is applied on the right and the 

other three boundaries are reflective.  

 

           

Figure 5.4 Supercell Models for Multigroup XS Generation for Fuel Assemblies  

(The graphite density in two thermal assembly supercells were doubled) 
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Figure 5.5 Supercell Fixed Source Calculation Model for Inner Fast Zone  

 

 

Figure 5.6 Supercell Model for Graphite Reflectors 

 

In Figure 5.7, the 13G cross sections generated in Serpent supercell calculations are 

compared to the reference cross sections tallied in the full-core model. The statistical uncertainty 

(1𝜎) of cross section tally is less than 0.3% for thermal assemblies, and less than 0.7% for fast 

assemblies. It is shown that Serpent supercell calculations produced accurate broad-group XSs for 

thermal assemblies. The maximum relative error is less than 1%. The low-energy group XSs for 

the fast assembly had more than 1% errors but there is hardly neutron flux below 100 eV in fast 

assemblies. These errors are expected not to induce noticeable errors in core calculations. 
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Figure 5.7 Error in 13G Cross Sections Generated with Supercell Models 

 

For the inner fast region, the cross sections of low-energy groups are tallied with over 5% 

uncertainties. Nevertheless, they were accepted because of the reason just mentioned above. We 

care more about the cross sections in the energy range above 100 eV. Figure 5.8 shows that with 

the approximate surface source obtained from the thermal assembly supercell calculations, the 

broad-group cross sections for FA2 was significantly improved, especially between 100 eV and 1 

keV. On the other hand, critical albedo search did not make noticeable improvements. Even though 

FA2 is located far from the thermal zone, the flux spectrum is still affected as shown in Figure 5.9. 

Using these supercell models, PCDFs were generated for all unique assemblies except the 

outer reflectors that are not next to fuel assemblies, in one-node and multi-node calculations with 

P1 diffusion and P5 transport options, respectively. The one-node calculations were performed with 

the flat leakage approximation. For inner fast-zone assemblies, PCDFs for low-energy groups (𝐸𝑛 



 115 

< 100 eV) were set to one. These multigroup XSs and PCDFs were used in VARIANT nodal core 

calculations and the results are presented in the next section.  

 

 

Figure 5.8 Error in 13G Cross Sections for FA2 Generated in Supercell Models 

 

 

Figure 5.9 Flux Spectra in FA2 from Supercell Calculations with Different BCs 

 

5.1.2 Core Calculation Results  

The first calculation was performed with reference XSs and PCDFs obtained from the full-

core simulation. The reference Monte Carlo solution of k-effective is 1.07598 ± 0.00004. The 

maximum statistical uncertainty (1𝜎) in the tallied assembly powers is 0.04%. For deterministic 
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power calculations, the energy release per fission is tallied for each unique fuel assembly type in 

Serpent simulations and used in VARIANT. The VARIANT diffusion and transport calculation 

results are compared in Table 5.1. Without PCDFs, neither diffusion nor transport produced 

accurate solution. The transport calculation resulted in better k-effective but the predicted 

assembly powers were not improved. This is because of the scalar flux weighted anisotropic 

scattering cross sections. With PCDFs, both diffusion and transport calculations produced 

satisfactory results with less than 200 pcm eigenvalue error and less than 0.3% errors in assembly 

powers. The transport results are noticeably more accurate than the diffusion results because 

PCDFs were not applied to the periphery reflector assemblies.  

Table 5.1 VARIANT solutions with reference XSs and PCDFs for CFTR-2D problem 

Transport order Use of PCDFs Δ𝑘, pcm 
Assembly power error 

 rms  max 

P1 / P0 diffusion No -1419  2.04%  3.11% 

 Yes  199  0.16% -0.28% 

P5 / P3 transport No -958  2.25%  3.35% 

 Yes  67  0.10% -0.17% 

 

Next the multigroup XSs and PCDFs generated in supercell calculations were tested. The 

corresponding results are summarized in Table 5.2, where the “PCDF correction” column denotes 

whether imbedded PCDF re-generation technique is applied during core calculations. Compared 

to the best achievable results given in Table 5.1, the VARIANT solutions obtained with supercell 

XSs and PCDFs contain non-negligible errors, especially the diffusion solution. The major error 

source should be the inaccurate PCDFs, because with PCDFs the supercell XSs led to similar 

results as the XSs tallied in the full core model. Nevertheless, the performance of imbedded PCDF 

correction is promising as both the eigenvalue and assembly power errors were reduced. In the 

transport calculation, the error reduction is more than half.  
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Table 5.2 VARIANT solutions with supercell XSs and PCDFs for CFTR-2D problem 

Transport order Use of PCDFs 
PCDF 

correction? 
Δ𝑘, pcm 

Assembly power error 

 rms  max 

P1 / P0 diffusion No - -1424  2.23%  3.37% 

 Yes No  412  1.55% -1.78% 

  Yes  196  0.48% -1.38% 

P5 / P3 transport No - -964  2.19%  3.30% 

 Yes No  319  0.40% -1.24% 

  Yes  168  0.26% -0.80% 

 

In Figure 5.10, the assembly power distributions of VARIANT solutions are compared 

with the Serpent reference results. Both the diffusion and transport results are obtained with PCDFs 

and the imbedded correction. It is shown that the diffusion calculation underestimated the fast 

assembly powers and overestimated the thermal assembly powers, which may be due to the flat 

leakage approximation used in diffusion PCDFs. Diffusion approximation generally tends to 

overestimate leakage out of core and the flat leakage approximation enhanced this tendency. It is 

noted that the reference assembly power distribution showed slight asymmetry because of tally 

uncertainty. Since VARIANT solutions are symmetric, the error distributions turned to be 

asymmetric.  

 

Figure 5.10 Comparison of Assembly Power Distributions in CFTR-2D 
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5.2 Modified CFTR-2D Problem 

The CFTR-2D core does not show strong fast/thermal spectrum interference as the thermal 

fuel assembly is highly under-moderated. To demonstrate the applicability of the proposed method 

in a situation with severe spectral transition in fuel assemblies, a modified CFTR-2D core problem 

(CFTR-2DM) was developed by increasing the local moderator to fuel ratio in the thermal fuel 

assemblies. The resulting core configuration of CFTR-2DM is shown in Figure 5.11. Compared 

to the original CFTR-2D core, the only change is in the thermal fuel assemblies. To further simplify 

the problem for benchmarking purpose, a uniform thermal assembly configuration is used. Each 

thermal fuel assembly is now composed of 61 U-10Zr (7.0 at.% enriched in U-235) fuel rods and 

210 zirconium hydride (ZrH1.6) moderator pins. Detailed assembly geometric and compositional 

specifications are provided in Appendix A.  

 

 

Figure 5.11 CFTR-2DM Core Configuration 
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With Serpent Monte Carlo simulation, the neutron spectra in different regions of the CFTR-

2DM core are compared in Figure 5.12. Now with the enhanced moderation, the thermal 

assemblies show typical thermal reactor flux spectra. Since the thermal assembly is well 

moderated, the impact of fast zone on the graphite reflector spectrum is reduced, and only three 

unique reflector types were defined as shown in Figure 5.13.  

 

 

Figure 5.12 Various Neutron Flux Spectra Found in CFTR Core [118] 

 

 

Figure 5.13 Homogenized 1/6 Core Model of CFTR-2DM and Unique Assembly Types 

 

The reference Serpent simulation used 500,000 neutron histories per cycle for a total of 

2,000 active cycles. The resulting k-effective was 1.05551±0.00002. The maximum statistical 
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error in tallied assembly powers is about 0.02%. In a similar procedure, 13G XSs and PCDFs were 

generated using supercell models and used in subsequent VARIANT calculations. The VARIANT 

results are summarized in Table 5.3. One can see that the VARIANT calculations without PCDFs 

resulted in larger assembly power errors compared to the CFTR-2D case, which indicates that the 

softened spectrum in the thermal assemblies led to larger local heterogeneity effects. With PCDFs, 

the errors in nodal calculation results were significantly reduced. An interesting observation is that 

the imbedded PCDF correction caused deterioration of the transport solution. This is probably 

because the assumption made in Eqs. (4.30) and (4.31) is less applicable to the thermal assembly 

with increased local heterogeneity.  

Table 5.3 VARIANT solutions with supercell XSs and PCDFs for CFTR-2DM problem 

Transport order Use of PCDFs 
PCDF 

correction? 
Δ𝑘, pcm 

Assembly power error 

 rms  max 

P1 / P0 diffusion No - -304  2.69%  4.26% 

 Yes No -204  0.90%  1.42% 

  Yes -218  0.28%  0.63% 

P5 / P3 transport No -  373  2.65%  4.31% 

 Yes No -106  0.12% -0.26% 

  Yes  97  0.27%  0.59% 

 

Alternatively, the supercell fixed source calculation approach for PCDF generation was 

extensively investigated in a previous study [118]. The sensitivities of PCDF to the heterogeneous 

model used for fixed source calculation and to the energy resolution of the approximate surface 

source were discussed. At that time, the performance of the supercell PCDFs was much worse than 

those tested here. One reason is that previously a finer energy group structure in the thermal energy 

range was used. Correspondingly, the PCDF is more deviated from one and hence is more sensitive 

to the boundary conditions of the supercell model used for PCDF generation. Another major 

difference is in the construction of supercell model. Previous supercell models included only half   
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of the adjacent assemblies with all reflective boundary conditions. In this work, PCDFs were 

generated in larger supercell models with non-uniform boundary conditions and background 

source zone to better represent the core environment.  

 Because of the deficient performance of supercell PCDFs, the method described in Section 

4.2.5.4 was developed to generate PCDF with combined homogenized core and heterogeneous 

supercell fixed source calculations. Table 5.4 recalls the VARIANT transport solutions obtained 

with PCDFs generated in supercell eigenvalue and fixed source calculations. Table 5.5 describes 

how the PCDF sets used to obtain Table 5.4 results were generated. It is seen from Table 5.4 that 

the PCDFs generated in the supercell fixed source calculation with fine-group incoming partial 

currents as surface sources produced comparable transport results with the PCDFs from improved 

supercell models and with imbedded correction in core calculation. In addition, the assembly 

power distributions predicted by the fixed source (fixsrc) approach and imbedded correction 

(corre) are compared in Figure 5.14.  

Table 5.4 Performance of PCDFs generated in supercell fixed source calculation [118] 

Code 
PCDF set 

(fast/buffer/thermal) 
effk  Δk , pcm 

Assembly powers errors 

rms max 

Serpent - 1.05551 (2*)  Ref. - - 

VARIANT PCDF_CEL 1.05345 -206 2.96% 4.70% 

 PCDF_SRC 1.05843  292 1.20% 2.22% 

 PCDF_SRC_FG 1.05758  207 0.25% 0.64% 
* Standard deviation in pcm. 

 

Table 5.5 Description of PCDF sets used to obtain Table 5.4 results 

PCDF set Serpent model Simulation mode  Boundary condition 

PCDF_CEL Heterogeneous supercell  Eigenvalue   Reflective 

PCDF_SRC Heterogeneous supercell Fixed source   Broad-group surface source 

PCDF_SRC_FG Heterogeneous supercell Fixed source   Fine-group surface source 
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Figure 5.14 Comparison of Assembly Power Distribution in CFTR-2DM 
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Chapter 6  
 

Whole-Core Depletion Calculation Test 
 

In this chapter, the CFTR-2D problem is used to test the whole-core depletion calculation 

capability of the improved VARIANT/REBUS-3 codes for coupled fast-thermal spectrum reactors.  

6.1 Reference Depletion Calculation 

In the reference full-core depletion calculation with Serpent, each fast fuel assembly is 

treated as a depletion zone to save computational time. In each thermal assembly, each type of fuel 

pins depending on fuel enrichment are grouped into a depletion zone. The variation of burnup state 

within each depletion zone is not considered. With this setup, the CFTR-2D core was depleted at 

a constant fission power level for a 184-day fuel cycle. For each transport calculation, Serpent 

simulated 100,000 neutron histories per cycle for 2,000 active cycles. The total simulation time is 

about 3600 CPU hours. The reference depletion history of k-effective and burnups is shown in 

Figure 6.1. At the end of cycle (EOC), the average fuel burnup is 21 MWD/kgU. 

 

Figure 6.1 History of K-effective and Average Burnups in Fast and Thermal Zones of CFTR-2D 
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6.2 Generation of Multigroup XSs and PCDFs 

From the reference depletion calculation, the burnup dependence of multigroup XSs for 

nonfuel assemblies were first checked. As shown in Figure 6.2, the macroscopic XSs for the buffer 

control and reflector assembly are practically constant during fuel depletion. Hence, the 

homogenized broad-group XSs for nonfuel assemblies generated at the beginning of cycle (BOC) 

were used for depletion calculations. 

 

 

Figure 6.2 Burnup Dependence of Macroscopic XSs for Nonfuel Assemblies 

 

 For fuel assemblies, a series of Serpent depletion calculations were performed using the 

supercell models defined in Chapter 5. At each burnup step, the depleted fuel compositions were 

fed into the equivalent OpenMC models for isotopic XS generation. The tallied isotopic XSs were 

tabulated with burnup and written into the VARIXS (Variable Isotopic Cross Sections) dataset. 

Meanwhile, the nodal average fluxes and surface partial currents tallied at each burnup step with 

Serpent were used in one-node or multi-node calculations for burnup dependent PCDF generation. 

To keep consistency, both Serpent and OpenMC simulations were performed with the ENDF/B-

VII.1 base library as the official cross section library for OpenMC starts from version VII.1.  
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 The burnup dependent PCDFs for the thermal assembly TAC (see Figure 5.2) are shown 

in Figure 6.3 for the left and right surfaces and Figure 6.4 for the interface between TAC and TAS. 

Generally, the variation of PCDFs with burnup is not significant, especially in high-energy groups. 

The PCDFs at the right surface are more sensitive to burnup than those at the left surface. 

Especially for the thermal group (group 13), both PCDFs for the incoming and outgoing partial 

currents through the right surface noticeably decrease with burnup. This is because the 3.0 at.% 

enriched fuel loaded next to the reflector are depleted faster than the interior high-enriched fuel, 

which led to a larger change in the local heterogeneity condition. At the interface between TAC 

and TAS assemblies, all the PCDFs remain almost constant in that the difference in fuel depletion 

rate among different pin positions were not considered within the same depletion zone.  

 

   

   

Figure 6.3 Burnup Dependent PCDFs of TAC for Incoming (𝐽−) and Outgoing (𝐽+) Partial 

Currents through Left (Next to SCA) and Right (Next to GR1) Surfaces 
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Figure 6.4 Burnup Dependent PCDFs of TAC for Incoming (Left) and Outgoing (Right) Partial 

Currents through Interface between TAC and TAS 

 

6.3 REBUS-3 Depletion Calculation 

 For REBUS-3 calculation, a simplified depletion chain including 183 active isotopes as 

defined in Table 3.13 of Section 3.3.2 was used. According to the steady-state calculation results 

in Chapter 5, the VARIANT P5 transport option was used for flux calculation. To make consistent 

power normalization of reaction rates, the isotopic constant fission Q-values available in the 

Serpent library were extracted and stored in the VARIXS dataset for REBUS-3 use. In REBUS-3, 

each fuel assembly is treated as a depletion zone.  

We first look at the impact of using different combinations of multigroup cross sections 

and PCDFs in REBUS-3. Figure 6.5 compares the k-effective results obtained with different 

options, where “boc DF” means using PCDFs generated at BOC, “burnup” denotes use of burnup 

dependent PCDFs, and “corrected” denotes the use of imbedded PCDF correction in core 

calculation. Without use of PCDFs, the REBUS-3 prediction of k-effective evolution largely 

deviated from the reference solution from the very beginning. This is expected because the 

homogenization error caused distorted distribution of assembly powers and the error is 

accumulated through the depletion cycle. It is noted that the use of constant (BOC) PCDFs still 
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leads to large errors after fuel depletion, although the burnup dependence of PCDFs is not 

significant as shown in Figure 6.3 and Figure 6.4.  

 

 

Figure 6.5 Comparison of K-effective Results of REBUS-3 Depletion Calculations 

 

With burnup dependent PCDFs, the eigenvalue error was reduced but not as much as for 

BOC. The reason is partially in the supercell depletion model for XS and PCDF generation, where 

the background source zone is not depleted. In the core condition, the global power distribution 

shift as shown in Figure 6.6 changes the background source distribution for specific supercell. 

With the imbedded PCDF correction, the REBUS-3 calculation predicted the k-effective history 

more accurately. Although a non-negligible error remains, the error seems not to drastically 

increase with depletion.  

Figure 6.7 shows the variation of root mean square (rms) and maximum relative errors in 

fuel assembly powers during the depletion cycle. It is seen that the rms error was slightly increased 

with the imbedded PCDF correction while the maximum error is considerably reduced. Overall, 

the assembly powers were predicted rather accurately, with a maximum error less than 1%. 

-1500

-1000

-500

0

500

1000

1500

0.98

1.00

1.02

1.04

1.06

1.08

1.10

0 50 100 150 200

E
rr

o
r,

 p
c
m

k
-e

ff
e

c
ti
v
e

Days

Ref. Serpent k-effective

Error w/ VARIXS, no PCDF

Error w/ VARIXS, boc PCDF

Error w/ VARIXS, burnup PCDF

Error w/ VARIXS, burnup PCDF (corrected)



 128 

 

Figure 6.6 Shift of Global Power Distribution 

  

 

Figure 6.7 Root Mean Square (rms) and Maximum Assembly Power Errors of REBUS-3 

Calculations with VARIXS and Burnup Dependent PCDFs 
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in the CFTR-2D core yield hard neutron spectra, the difference in AFE is not large. The AFE is ~ 

0.65 MeV in fast assemblies and is ~ 0.35 MeV in thermal assemblies. During the depletion cycle, 

the change in AFE is negligible.  

 

 

Figure 6.8 K-effective Difference Caused by Using Constant Fission Yields for All Assemblies 
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Chapter 7  
 

Summary, Conclusions and Future Work 
 

The primary objective of this thesis work is to develop an efficient two-step method for 

coupled fast-thermal spectrum reactor (CFTR) core analysis. For this purpose, three aspects of the 

legacy fast reactor analysis method were examined, and several improvements were made to the 

VARIANT nodal transport and REBUS-3 depletion calculation methods. Eventually, a systematic 

computational procedure was developed by utilizing Serpent, OpenMC, and MC2-3 codes for 

multigroup cross section generation, using VARIANT for nodal core calculation, and using 

REBUS-3 for depletion analysis. The proposed method was verified using multiple CFTR core 

problems. Compared to the reference transport and depletion calculation results obtained with 

Serpent, the proposed methods accurately predicted the eigenvalue and assembly powers in both 

steady-state transport and fuel depletion calculations.  

7.1 MC-based Multigroup Cross Section Generation 

Generation of effective multigroup cross section remains the most challenging difficulty in 

multigroup deterministic neutron transport calculation. For CFTR analysis, the complication is 

exacerbated because the conventional simplifications adopted in fast or thermal reactor cross 

section generation methods are not valid anymore. Therefore, a new cross section generation 

scheme was developed by combining MC simulation and MC2-3 calculation using assembly 

supercell models. Supercell models are preferred because of the significant spectral interference 

in CFTR environments. While rigorous physics are modeled with little approximations in MC 
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neutron transport and nuclide depletion simulations, the long-range environmental effects must be 

considered in the supercell model with a reduced problem domain. The conventional leakage 

correction models such as critical buckling search with homogeneous B1 calculation or critical 

albedo search in MC framework cannot catch the complex spectrum interference in CFTRs. To 

overcome this limitation, it is proposed to apply approximate source boundary conditions or to 

include background source zones in the supercell model. This method was verified using two 

CFTR problems. 

7.2 Nodal Equivalence Model for VARIANT 

To reduce assembly homogenization errors in VARIANT nodal transport calculations for 

CFTR analyses, a nodal equivalence theory was developed by introducing partial current 

discontinuity factors (PCDFs). The PCDF is consistently derived for arbitrary angular expansion 

orders and is fully compatible with the efficient red-black iteration scheme of VARIANT to solve 

response matrix equations. When used in low-order transport models, PCDF acts as a lumped 

correction factor to correct homogenization errors as well as the errors due to low-order transport 

approximations and inaccurate cross sections. It is found that PCDFs generated with increased 

transport approximation orders tend to converge to asymptotic values, which represent the 

corrections needed only for nodal homogenization errors. Because of this, it is recommended to 

apply PCDFs to higher-order transport calculations such that different physics are treated 

separately and PCDFs are less sensitive to the environment in which they are generated.  

Using MC simulation to solve the reference heterogeneous problem, two approaches were 

developed to generate PCDFs by preserving surface average partial currents in one-node and multi-

node VARIANT calculations. Even though only the average partial currents are preserved, PCDFs 

can be generated in one-node calculations with flat leakage approximation or in multi-node 
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calculations to reproduce the heterogeneous solution. For practical applications, two strategies 

were developed to treat long-range environmental effects on the PCDFs generated from supercell 

models. The first approach performs supercell fixed source calculation with approximate boundary 

conditions obtained in a homogenized core calculation. The other strategy directly uses the 

perturbation in the boundary conditions of a homogenized node to estimate the perturbation for 

the corresponding heterogeneous node. While both strategies showed promising performance in 

test calculations, the latter is preferred as it leaves out the need of homogenized core calculation.  

7.3 REBUS-3 Enhancement for General Depletion Problem 

The REBUS-3 code was assessed for non-fast spectrum depletion problems. Test results 

showed no major deficiencies in the current implementation of REBUS-3. Enhancements of 

REBUS-3 were made in the depletion chain construction and utilization of burnup dependent cross 

sections and energy dependent fission yields in a general manner. The modified REBUS-3 with 

these improvements and the improved VARIANT nodal transport method was verified using a 2D 

CFTR whole-core depletion problem. Compared to the original REBUS-3 depletion with constant 

isotopic XSs and VARIANT transport calculation without PCDFs, the new two-step method 

reduced the k-effective error by ~1000 pcm. It also predicted fuel assembly powers accurately 

within 1% deviation from the reference MC depletion results 

7.4 Discussion of Research Merit 

The work presented in this thesis was initiated during the Versatile Test Reactor (VTR) 

program period. The original VTR design featured a reconfigurable test reactor for which a 

coupled fast-thermal spectrum core configuration was anticipated. At that time, the focus was to 

provide reliable tools for daily calculations for coupled-spectrum core design and analysis. At the 

same time, the Idaho National Laboratory (INL) analyzed the original coupled core design using 
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finite element methods and SPH factors generated with the full-core MC reference solutions. The 

proposed core calculation method based on the variational nodal transport method and PCDFs was 

thought to be more efficient and much cheaper for design calculations. In this sense, a MC based 

XS and PCDF generation method is more desirable if it does not require full-core simulations.  

Now that VTR is not under active development, the interests in coupled-spectrum reactors 

are receding. But some of the difficulties faced by CFTR core analysis are also encountered in the 

Very High Temperature Reactor (VHTR) and the Resource Renewable Boiling Water Reactor 

(RBWR) [129], mainly because of their longer neutron mean free path than LWRs. It is not to say 

that VHTR or RBWR produces both fast and thermal spectra in the core but rather the enhanced 

global spectral transition effects make the conventional thermal reactor lattice calculation methods 

less applicable. For VHTR analysis, a scalar flux discontinuity factor was introduced to VARIANT 

P1 calculations [70]. As we showed in Section 4.2.4, the combination of VARIANT transport 

calculation and PCDFs would eliminate the burden of generating PCDFs for near-homogenized 

graphite blocks in VHTR. Ref. [54] derived discontinuity factors for high-order PN calculations in 

1D case to treat the significant axial heterogeneity in RBWR. The study performed here seems 

directly applicable to that situation.  

7.5 Future Work 

The studies performed in this work have been limited to simple 1D and 2D cases. Although 

there are no theoretical differences when applying the proposed methods to general three-

dimensional (3D) problems, test of the proposed methods in 3D cases appears an immediate need. 

In the case of pronounced axial heterogeneity as mentioned above for RBWR, 3D Monte Carlo 

models will be used for XS and PCDF generations. Meanwhile, the possibility of using reduced 

2D models for axially homogeneous core will be investigated.  
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The biggest challenge encountered in this study was to find the way to model long-range 

environmental effects on PCDFs. The developed fixed source calculation approach turns too 

cumbersome, especially when burnup dependent PCDFs are to be prepared. The performance of 

the imbedded PCDF correction strategy is promising but the tested cases are very limited, and 

hence further investigations are required to validate its applicability to general problems. It is also 

recommended to reconsider the basic approximation and implementation details. For example, 

other than to renormalize partial currents with total volumetric source, what would be a better 

renormalization criterion? More fundamentally, what would be a physical model to consider the 

boundary perturbation between local and global calculations?  

In the depletion calculation test with the CFTR-2D problem, the reference MC simulation 

was performed without considering pin wise depletion. Investigations are needed to validate 

supercell models for considering the impact of the local burnup distribution due to global flux 

gradient on the homogenized XSs and PCDFs. Although not demonstrated in this dissertation, the 

capability of reconstructing pin power distributions from VARIANT solution was established and 

verified in Ref. [118]. The current implementation does not support pin power reconstruction in a 

burned fuel assembly, where the nuclide densities in fuel pins depends on pin positions. The future 

development will include the treatment of varied nuclide densities in fuel pins due to different 

burnup states.  

At last, PCDFs for higher moments were not generated in this study. Even though the 

preservation of average flux and surface currents preserves the eigenvalue and power distribution, 

it is worthwhile to investigate the impacts of high-order discontinuity factors in nodal calculations.  

The PCDFs for higher-order moments will be generated with an appropriate deterministic method 

to solve the heterogeneous transport problem.  
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Appendix A 

Model Descriptions 

A.1 CFTR-1D Model 

 The heterogeneous configuration of one-dimensional coupled fast-thermal reactor core 

(CFTR-1D) is shown in Figure A.1. Table A.1 lists geometric design parameters of individual 

assemblies. Table A.2 gives the nuclides densities of each material used in CFTR-1D. 

 

 

Figure A.1 CFTR-1D Core Configuration 

 

Table A.1 Geometric Design Parameters of CFTR-1D 

 FA BA TA  GR 

Assembly pitch, cm 12.245 12.245 12.245 12.245 

Duct material HT9 HT9 Zr Zr 

Duct thickness, cm 0.28 0.28 0.28 0.28 

Outer flat-to-flat, cm 12.205 12.205 12.205 12.205 

Number of plates 17 15 12 fuel / 4 mod. - 

Plate thickness, cm 0.408 0.60 0.408 - 

Plate pitch, cm 0.68 0.76 0.68 - 

Plate / block material U-6Zr HT9 U-10Zr / B4C graphite 

Clad. material HT9 HT9 Zr Zr 

Clad. thickness, cm 0.0356 - 0.0356 - 
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Table A.2 Nuclide Densities of CFTR-1D Compositions 

Material Nuclide Densities Material Nuclide Densities Material Nuclide Densities 

HT9 Fe54  4.14754E-03 

Fe56  6.51075E-02 

Fe57  1.50361E-03 

Fe58  2.00104E-04 

Ni58  2.97841E-04 

Ni60  1.14728E-04 

Ni61  4.98757E-06 

Ni62  1.58990E-05 

Ni64  4.05130E-06 

Cr50  4.58427E-04 

Cr52  8.84031E-03 

Cr53  1.00242E-03 

Cr54  2.49524E-04 

Mn55  4.67412E-04 

Mo92  7.40233E-05 

Mo94  4.61399E-05 

Mo95  7.94105E-05 

Mo96  8.32015E-05 

Mo97  4.76363E-05 

Mo98  1.20363E-04 

Mo100 4.80353E-05 

U-6Zr U234  8.74435E-06 

U235  5.81394E-03 

U238  2.33175E-02 

 Zr90  2.48785E-03 

 Zr91  5.42539E-04 

 Zr92  8.29282E-04 

 Zr94  8.40404E-04 

 Zr96  1.35393E-04 

ZrH1.6 Zr90  1.89232E-02 

Zr91  4.12670E-03 

Zr92  6.30775E-03 

Zr94  6.39233E-03 

Zr96  1.02983E-03 

 H1    5.88477E-02 

U-10Zr U234  8.02013e-06 

U235  1.87087e-03 

U238  2.48478e-02 

 Zr90  3.97852e-03 

 Zr91  8.67619e-04 

 Zr92  1.32617e-03 

 Zr94  1.34396e-03 

 Zr96  2.16518e-04 

Zr Zr90  2.20768E-02 

Zr91  4.81441E-03 

Zr92  7.35891E-03 

Zr94  7.45761E-03 

Zr96  1.20145E-03 

Sodium Na23 2.24106E-02 

graphite  C  9.27545E-02 

 

A.2 CFTR-2D Model 

The geometric design parameters for various assembly types in CFTR-2D are summarized 

in Table A.3. The nuclide densities of smeared fuels are given in Table A.4. The other structure, 

coolant, and moderator materials are same as those given in Table A.2. For the modified CFTR-

2D problem, i.e., the CFTR-2DM model, all the setup is same as CFTR-1D except that all fuel 

pins in thermal assemblies are loaded with 7.0 at.% enriched U-10Zr fuel. 

 

Table A.3 Design Parameters of Different Types of Assemblies in CFTR-2D 

 Fast  

fuel 

Thermal fuel Fast  

control  

Buffer 

control 

Steel 

reflector 

Graphite 

reflector Side Corner  

Assembly pitch, cm 12.245 12.245 12.245 12.245 12.245 12.245 12.245 

Duct material HT9 Zr Zr HT9 HT9 HT9 Zr 

Duct thickness, cm 0.3 0.3 0.3 0.3 0.3 0.3 0.3 

Outer flat-to-flat, cm 12.205 12.205 12.205 12.205 12.205 12.205 12.205 
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Table A.3 Design Parameters of Different Types of Assemblies in CFTR-2D (continued) 

 
Fast  

fuel 

Thermal fuel Fast  

control  

Buffer 

control 

Steel 

reflector 

Graphite 

reflector Side Corner  

Number of pins 271 210 fuel 

61 mod. 

210 fuel 

61 mod. 

19 B4C  

198 HT9 

37 B4C 

180 HT9 

217 - 

  # 19.95 at. % pins  271 147 117 - - - - 

  # 7.0 at. % pins - 37 51 - - - - 

  # 3.0 at. % pins - 26 42 - - - - 

Pin diameter, cm 0.6112 0.6112 0.6112 0.68 0.68 0.68 - 

Pin pitch, cm 0.7015 0.7015 0.7015 0.76 0.76 0.76 - 

Slug material U-6Zr U-10Zr/ 

ZrH1.6 

U-10Zr/ 

ZrH1.6 

B4C B4C - - 

Slug density, g/cc 16.3 15.64/5.67 15.64/5.67 2.52 2.52 - - 

Slug smeared density 75% 75%/100% 75%/100% 85% 85% - - 

Clad. material HT9 Zr Zr HT9 HT9 - - 

Clad. thickness, cm 0.0356 0.0356 0.0356 0.02 0.02 - - 

 

Table A.4 Fuel Nuclide Densities (×1024/cm3) of CFTR-2D 

Material Nuclide Densities Material Nuclide Densities 

U-6Zr  Zr90  2.48785E-03 

 Zr91  5.42539E-04 

 Zr92  8.29282E-04 

 Zr94  8.40404E-04 

 Zr96  1.35393E-04 

U234  8.74435E-06 

U235  5.81394E-03 

U238  2.33175E-02 

U-10Zr 

(19.95% enriched) 

 Zr90  3.97852E-03 

 Zr91  8.67619E-04 

 Zr92  1.32617E-03 

 Zr94  1.34396E-03 

 Zr96  2.16518E-04 

U234  8.03325E-06 

U235  5.34115E-03 

U238  2.14213E-02 

U-10Zr 

(7.0% enriched) 

 Zr90  3.97852E-03 

 Zr91  8.67619E-04 

 Zr92  1.32617E-03 

 Zr94  1.34396E-03 

 Zr96  2.16518E-04 

U234  8.02013E-06  

U235  1.87087E-03 

U238  2.48478E-02 

U-10Zr 

(3.0% enriched) 

 Zr90  3.97852E-03 

 Zr91  8.67619E-04 

 Zr92  1.32617E-03 

 Zr94  1.34396E-03 

 Zr96  2.16518E-04 

U234  8.01608E-06 

U235  8.01397E-04 

U238  2.59038E-02 
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Appendix B 

Group Structures 

 

Two broad-group and two fine-group structures were used in this study. The common 

lower energy boundary is 10-5 eV. The 32-group (32G) structure is based on the built-in ANL33 

group structure of MC2-3 but contains single thermal group below 0.6 eV. The 13-group (13G) 

structure is derived from the ANL9 group structure of MC2-3 by dividing the last two groups into 

finer ones. Table B.1 shows the group boundaries of these two group structures. 

Table B.1 Broad-group structures for nodal core calculations 

 Group 
Upper Energy, 

eV 
Group 

Upper Energy, 

eV 
Group 

Upper Energy, 

eV 

32G 

1 1.41907E+07 12 6.73794E+04 23 2.75364E+02 

2 1.00000E+07 13 4.08677E+04 24 1.67017E+02 

3 6.06531E+06 14 2.47875E+04 25 1.01301E+02 

4 3.67879E+06 15 1.50344E+04 26 6.14421E+01 

5 2.23130E+06 16 9.11881E+03 27 3.72665E+01 

6 1.35335E+06 17 5.53084E+03 28 2.26033E+01 

7 8.20850E+05 18 3.35462E+03 29 1.37096E+01 

8 4.97871E+05 19 2.03468E+03 30 8.31528E+00 

9 3.01974E+05 20 1.23410E+03 31 5.00162E+00 

10 1.83156E+05 21 7.48518E+02 32 6.24249E-01 

11 1.11090E+05 22 4.53999E+02 𝐸min  1.00000E-05 

13G 

1 1.41907E+07 6 9.11881E+03 11 5.00162E+00 

2 2.23130E+06 7 2.03468E+03 12 1.85897E+00 

3 8.20850E+05 8 4.53999E+02 13 6.24249E-01 

4 1.83156E+05 9 1.01301E+02 𝐸min 1.00000E-05 

5 4.08677E+04 10 1.76034E+01   

 

In addition to the broad-group structures, a finer 86-group (86G) structure as shown in 

Table B.2 is deduced by combining the ANL70 structure of MC2-3 for fast reactor calculations 
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and SCALE 56-group structure for thermal spectrum calculations. The 86G structure is used in 

fine-group supercell lattice calculations for leakage correction. The last one is a 989-group 

structure for ultrafine-group calculations. It contains 892 groups above 5.0 eV of the MC2-3 1041-

group structure and 97 groups below 5.0 eV of the SCALE 252-group structure.  

Table B.2 86G structure for fine-group lattice calculations 

Group 
Upper Energy, 

eV 
Group 

Upper Energy, 

eV 
Group 

Upper Energy, 

eV 

1 1.41907E+07 30 9.11881E+03 59 6.47595E+00 

2 1.00000E+07 31 7.10174E+03 60 5.04347E+00 

3 7.78801E+06 32 5.53084E+03 61 5.00162E+00 

4 6.06531E+06 33 4.30742E+03 62 4.69961E+00 

5 4.72367E+06 34 3.35462E+03 63 3.72759E+00 

6 3.67879E+06 35 2.61258E+03 64 2.46927E+00 

7 2.86505E+06 36 2.03468E+03 65 1.85897E+00 

8 2.23130E+06 37 1.58461E+03 66 1.44844E+00 

9 1.73774E+06 38 1.23410E+03 67 1.24885E+00 

10 1.35335E+06 39 9.61116E+02 68 1.17448E+00 

11 1.05399E+06 40 7.48518E+02 69 1.12936E+00 

12 8.20850E+05 41 5.82946E+02 70 1.07909E+00 

13 6.39279E+05 42 4.53999E+02 71 1.00925E+00 

14 4.97871E+05 43 3.53575E+02 72 9.69727E-01 

15 3.87742E+05 44 2.75364E+02 73 9.22891E-01 

16 3.01974E+05 45 2.14454E+02 74 7.48574E-01 

17 2.35177E+05 46 1.67017E+02 75 6.24249E-01 

18 1.83156E+05 47 1.30073E+02 76 4.98484E-01 

19 1.42642E+05 48 1.01301E+02 77 3.49410E-01 

20 1.11090E+05 49 7.88932E+01 78 2.74993E-01 

21 8.65169E+04 50 6.14421E+01 79 1.98234E-01 

22 6.73794E+04 51 4.78512E+01 80 1.49705E-01 

23 5.24751E+04 52 3.72665E+01 81 9.94222E-02 

24 4.08677E+04 53 2.90232E+01 82 7.96875E-02 

25 3.18278E+04 54 2.26033E+01 83 5.62500E-02 

26 2.47875E+04 55 1.76034E+01 84 3.87113E-02 

27 1.93045E+04 56 1.37096E+01 85 2.78568E-02 

28 1.50344E+04 57 1.06770E+01 86 9.37500E-03 

29 1.17088E+04 58 8.31528E+00 𝐸min 1.00000E-05 
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Appendix C 

Description of VARIXS Dataset 

 

The VARIXS dataset contains three file header records that specifies the interface 

information and general data structure, and a series of nested data records of isotopic cross 

sections. The general data structure of VARIXS is depicted in Table C.1. The file header records 

(0D ~ 2D) contain the necessary information for file I/O such as energy group structure, list of 

isotope names, and involved state parameters. These parameters are used only for interface purpose 

such that the stored cross section data can be correctly interpreted in core calculation. The isotope 

header records specify the cross section dependencies and interpolation rules with state parameters.  

Table C.1 General data structure of VARIXS 

 

0D: File ID 

1D: Number of groups, isotopes, scattering blocks, state parameters, etc.

2D: User isotope labels, energy group structure, state parameter labels, etc.

3D: User label, absolute name, dependencies on each state parameter, cross section interpolation rule

3D-1: Interpolation grid data

3D-2: Atomic mass, energy release per fission / capture, cross section flags, data dimension parameters

4D: Principal cross sections

5D: Fission chi matrix
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The 4D to 6D records contain the cross sections of an isotope at single state condition. The 

nesting structure is determined by the dependencies on individual state parameters and the grid 

points where the cross sections are generated. In total, the nested records form a multi-dimensional 

table to be interpolated for the cross section at given state condition. Even if the microscopic cross 

sections of all nuclides in a composition are generated at the same group of state conditions, the 

same cross section interpolation rule and grid information (3D and 3D-1) are stored for every 

nuclide such that VARIXS can be conveniently split or merged.  

A utility code GenVARIXS was developed to post-process a series of OpenMC tally 

outputs or a series of ISOTXS datasets that are generated at a wide range of state conditions and 

to write the state dependent cross sections in the VARIXS format. 
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