
Algorithm-Architecture Co-Design for
Domain-Specific Accelerators in Communication

and Artificial Intelligence

by

Yaoyu Tao

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Electrical and Computer Engineering)

in The University of Michigan
2022

Doctoral Committee:

Professor Zhengya Zhang, Chair
Professor Michael Flynn
Assistant Professor Hun-Seok Kim
Professor Scott Mahlke



Yaoyu Tao

taoyaoyu@umich.edu

ORCID iD 0000-0001-7500-5250

© Yaoyu Tao 2022

All Rights Reserved



To all that have loved and supported me in my life

ii



ACKNOWLEDGEMENTS

First and foremost, I would like to thank my advisor, Professor Zhengya Zhang,

for his tremendous support and guidance throughout my graduate work. It has been

an honor to do research under his supervision from my undergraduate years and

later started doing Ph.D with him. His tremendous effort, valuable ideas, and warm

encouragement helped me make my Ph.D experience productive and stimulating. I

am especially thankful for the insightful discussions and ideas from Professor Zhengya

Zhang. I would also like to thank Professor Michael Flynn, Professor Scott Malhke

and Professor Hun-Seok Kim for participating in my dissertation committee and

evaluating my research proposal and reviewing the dissertation.

I have been very fortunate to work with many talented individuals at the Univer-

sity of Michigan and Stanford University. I am grateful for all the inspiring discus-

sions and valuable help from my peer graduate students. In particular, I would like

to thank Dr. Youn-Sung Park for the great cooperation on LDPC projects. I still

remember the time we worked together and the constructive discussions we had in

the lab. I would like to thank Dr. Sung-Gun Cho for the substantial support on my

polar decoder projects and the cooperation in Arvon projects. I learnt a lot in FPGA

design and VLSI physical design from him. I would like to thank all my lab mates,

Chia-Hsiang Chen, Wei Tang, Jerry Zhu, Shuanghong Sun, Jungkuk Kim, Phil Knag,

Alex Lee, Jacob Botimer, Reid Pinkham, Thomas Chen, Shiming Song, Chester Liu,

Hao Nan, Supreet Jeloka, as well as all the students I got to know from other groups

in the EECS departments for their friendship and support.

iii



I would also like to thank my collaborators from industry, including but not lim-

ited to Dr. Joyce Kwong at Apple Hardware, Dr. Rashmi Nanda and Dr. Xiaoru

Zhang at Qualcomm Wireless Research and Development, Dr. Manish Goel at Texas

Instruments Kilby Lab, Dr. Farhana Sheikh at Intel Labs, Dr. Pascal Urard at ST

Microelectronics, Dr. Engling Yeo at Marvell Semiconductor and Tim Hoang at Intel

PSG, for their valuable feedback and help in chip design and testing.

Last but not least, I would like to thank my family for their love and support

along the way. I couldn’t have made it through this challenging but fruitful journey

without their never ending encouragement.

iv



TABLE OF CONTENTS

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . iii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

LIST OF ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . xvii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xx

CHAPTER

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Domain I: Channel Coding . . . . . . . . . . . . . . . . . . . 3
1.1.1 Polar Codes . . . . . . . . . . . . . . . . . . . . . . 4
1.1.2 Low-Density Parity-Check Codes . . . . . . . . . . . 8
1.1.3 Nonbinary Low-Density Parity-Check Codes . . . . 11

1.2 Domain II: Neural Networks . . . . . . . . . . . . . . . . . . 14
1.2.1 Differentiable Neural Computer . . . . . . . . . . . 15
1.2.2 Neural Ordinary Differential Equations . . . . . . . 22

1.3 Scope of this Work . . . . . . . . . . . . . . . . . . . . . . . . 24
1.3.1 Polar Codes . . . . . . . . . . . . . . . . . . . . . . 24
1.3.2 LDPC Codes . . . . . . . . . . . . . . . . . . . . . . 25
1.3.3 NB-LDPC Codes . . . . . . . . . . . . . . . . . . . 26
1.3.4 Differentiable Neural Computer . . . . . . . . . . . 26
1.3.5 Neural Ordinary Differential Equations . . . . . . . 27
1.3.6 DNC-Aided SCL Flip Decoding of Polar Codes . . . 28

II. Configurable Split-Tree Polar SCL Decoder . . . . . . . . . . . 30

2.1 Decoding Algorithm . . . . . . . . . . . . . . . . . . . . . . . 30
2.1.1 Successive Cancellation (SC) Decoding . . . . . . . 30

v



2.1.2 Successive Cancellation List (SCL) Decoding . . . . 33
2.1.3 Split-tree SCL Decoding . . . . . . . . . . . . . . . 35

2.2 ST-SCL Decoder Architecture for High Throughput and Low
Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.2.1 Sub-Decoder Design . . . . . . . . . . . . . . . . . . 38
2.2.2 Reconciliation Design . . . . . . . . . . . . . . . . . 40
2.2.3 Pipeline and Hardware Utilization . . . . . . . . . . 41

2.3 Frame-Interleaving to Enhance Throughput and Efficiency . . 43
2.4 Summary of Decoder Design Optimization Steps . . . . . . . 47
2.5 Decoder Chip Implementation and Measurements . . . . . . . 49

2.5.1 Measurement Results . . . . . . . . . . . . . . . . . 50
2.5.2 Comparisons . . . . . . . . . . . . . . . . . . . . . . 53

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

III. Efficient Post-Processors for LDPC Codes . . . . . . . . . . . . 56

3.1 Min-Sum Decoding Algorithm . . . . . . . . . . . . . . . . . 56
3.2 Error Floor and Trapping Set . . . . . . . . . . . . . . . . . . 58
3.3 Simulated Annealing and Post-processing in BP Decoding . . 59

3.3.1 Neighborhood Identification for Trapping Sets . . . 60
3.3.2 Heating . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.3.3 Post-Processing Procedure . . . . . . . . . . . . . . 61
3.3.4 Implementing Post-Processing in Hardware . . . . . 63

3.4 Error Structure and Post-Processing Methods . . . . . . . . . 66
3.4.1 Type I ETS and Quenching . . . . . . . . . . . . . . 66
3.4.2 Type II ETS and Extended Heating . . . . . . . . . 68
3.4.3 Type III ETS and Focused Heating . . . . . . . . . 71

3.5 Application of Post-Processing Methods – Case Study on an
IEEE 802.11n LDPC Code . . . . . . . . . . . . . . . . . . . 75

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

IV. High-Throughput Architecture and Implementation for NB-
LDPC Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.1 Extended Min-Sum Decoding Algorithm . . . . . . . . . . . . 84
4.2 Decoder Architecture Design For Low Latency and High Through-

put . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.2.1 Low-Latency ECN and Improved Pipeline Schedule 87
4.2.2 Low-Latency VN . . . . . . . . . . . . . . . . . . . 89
4.2.3 Memory Conflict Resolution . . . . . . . . . . . . . 91

4.3 Low-Power Circuits Design by Fine-Grained Dynamic Clock
Gating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.3.1 Node-Level Convergence Detection . . . . . . . . . . 94
4.3.2 Fine-Grained Dynamic Clock Gating . . . . . . . . 95

4.4 Decoder Chip Implementation and Measurements . . . . . . . 97

vi



4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

V. HiMA:A Fast and Scalable History-based Memory Access
Engine for Differentiable Neural Computer . . . . . . . . . . . 104

5.1 Analysis of DNC Kernels . . . . . . . . . . . . . . . . . . . . 104
5.1.1 Theoretical Kernel Analysis . . . . . . . . . . . . . 104
5.1.2 Kernel Runtime Analysis . . . . . . . . . . . . . . . 105

5.2 HiMA Architecture Design . . . . . . . . . . . . . . . . . . . 107
5.2.1 Scalable Multi-Mode NoC . . . . . . . . . . . . . . 108
5.2.2 Submatrix-Based Memory Partition . . . . . . . . . 111
5.2.3 Two-Stage Usage Sort . . . . . . . . . . . . . . . . . 115

5.3 Algorithmic Techniques . . . . . . . . . . . . . . . . . . . . . 116
5.3.1 Distributed Execution for DNC . . . . . . . . . . . 116
5.3.2 Approximation Techniques . . . . . . . . . . . . . . 117

5.4 HiMA Prototype . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.5 Evaluations and Benchmarking . . . . . . . . . . . . . . . . . 120

5.5.1 Inference Accuracy . . . . . . . . . . . . . . . . . . 121
5.5.2 Inference Speed . . . . . . . . . . . . . . . . . . . . 122
5.5.3 Silicon Area and Power . . . . . . . . . . . . . . . . 124
5.5.4 Comparison with State-of-the-Art Accelerators . . . 125

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

VI. Hardware Acceleration for Neural Ordinary Differential Equa-
tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.1 Neural ODE Theory . . . . . . . . . . . . . . . . . . . . . . . 129
6.1.1 Adaptive Stepsize Runge-Kutta Method . . . . . . . 130
6.1.2 Neural ODE Inference . . . . . . . . . . . . . . . . . 133
6.1.3 Neural ODE Training . . . . . . . . . . . . . . . . . 134

6.2 Algorithm-Architecture Co-Design for NODE . . . . . . . . . 138
6.2.1 Neural Activation Sparsity . . . . . . . . . . . . . . 138

139subsection.6.2.2
VII. DNC-Aided SCL Flip Decoding of Polar Codes . . . . . . . . 143

7.1 State-of-the-art Flip Algorithms . . . . . . . . . . . . . . . . 144
7.2 Differentiable Neural Computer (DNC) . . . . . . . . . . . . 145
7.3 DNC-Aided Flip Decoding . . . . . . . . . . . . . . . . . . . 146

7.3.1 State and Action Encoding . . . . . . . . . . . . . . 146
7.3.2 DNC-Aided Two-Phase Decoding Flow . . . . . . . 148

7.4 Training Methodology . . . . . . . . . . . . . . . . . . . . . . 150
7.4.1 F-DNC Training . . . . . . . . . . . . . . . . . . . . 151
7.4.2 FV-DNC Training . . . . . . . . . . . . . . . . . . . 152

7.5 Experiments and Analysis . . . . . . . . . . . . . . . . . . . . 153
7.5.1 Accuracy of Identifying Error Bits . . . . . . . . . . 153

vii



7.5.2 Complexity and Latency . . . . . . . . . . . . . . . 154
7.5.3 Error-Correction Performance . . . . . . . . . . . . 155

7.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

VIII. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

viii



LIST OF FIGURES

Figure

1.1 Bit error rate (BER) comparison between uncoded and encoded sys-
tems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Conventional neural network topologies. . . . . . . . . . . . . . . . . 3

1.3 Encoding graph and SC decoding trellis of a (4,2) polar code. . . . . 5

1.4 An example H matrix and factor graph representation of an LDPC
code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5 Comparison of a binary LDPC code and an NB-LDPC code. . . . . 12

1.6 LSTM and memory-augmented neural network. . . . . . . . . . . . 18

1.7 DNC inference dataflow: history-based and content-based memory
access in DNC memory unit. . . . . . . . . . . . . . . . . . . . . . . 19

1.8 Centralized-memory architecture and tiled architecture for accelerat-
ing MANN’s memory unit. . . . . . . . . . . . . . . . . . . . . . . . 22

1.9 Left: A Residual network defines a discrete sequence of finite trans-
formations. Right: A neural ODE network defines continuous trans-
formations of the state. . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1 Encoding graph (top) and SC decoding trellis (bottom) of a (4,2)
polar code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2 SC and SCL (L = 2) decoding represented in a binary tree for a (4,4)
polar code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3 Split-tree SCL decoding tree for (8,8) polar code with list size L = 2
and split factor M = 2. . . . . . . . . . . . . . . . . . . . . . . . . . 35

ix



2.4 Top-level architecture for a 1024b list-2 split-4 configurable SCL de-
coder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.5 Processing element (PE) design. . . . . . . . . . . . . . . . . . . . . 38

2.6 256b SCL sub-decoder design. . . . . . . . . . . . . . . . . . . . . . 39

2.7 Split-tree reconciliation global sorter architecture for L = 2 and M =
4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.8 Split-tree SCL decoding pipeline for a single frame (top) and 8-frame-
interleaving (bottom). . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.9 Allocation of additional hardware units to support N -frame inter-
leaving. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.10 Throughput and area of frame-interleaved designs. Silicon area is
obtained from chip synthesis in 40nm CMOS at room temperature
and the nominal 0.9V supply voltage. . . . . . . . . . . . . . . . . . 45

2.11 Improved hardware utilization with frame interleaving. . . . . . . . 46

2.12 (a) Power breakdown of a split-4, list-2, 8-frame-interleaved ST-SCL
decoder, and (b) detailed breakdown of the sequential switching power
of the ST-SCL decoder. Power is obtained from chip synthesis in
40nm CMOS at room temperature the nominal 0.9V supply voltage. 46

2.13 Chip design optimization summary based on chip synthesis in 40nm
CMOS at room temperature and the nominal 0.9V supply voltage. . 47

2.14 Clock gating design for split-4, 8-frame-interleaved ST-SCL polar de-
coder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.15 Microphotograph of the decoder test chip fabricated in a 40nm CMOS
technology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.16 Bit error rate and frame error rate performance of 1024b rate-1/2 ST-
SCL decoder with split factor 4 and list size 2 using 6-bit quantization
and 8-bit CRC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.17 Measured throughput, power and energy efficiency of various configu-
rations for the 40nm ST-SCL decoder chip in decoding 1024b rate-1/2
polar codes at room temperature. . . . . . . . . . . . . . . . . . . . 51

x



2.18 Measured power of the 40nm test chip for decoding 512b and 1024b
polar codes at room temperature and different supply voltages. . . . 52

3.1 Illustration of a (3,3) ETS. . . . . . . . . . . . . . . . . . . . . . . . 59

3.2 Post-processing added to a fully-parallel decoder. . . . . . . . . . . 65

3.3 Post-processing added to a row-parallel decoder. . . . . . . . . . . . 66

3.4 An (8,8) ETS of a (2048,1732) RS-LDPC code. . . . . . . . . . . . . 68

3.5 Error rate of the (2048, 1723) RS-LDPC code before and after post-
processing using quenching. . . . . . . . . . . . . . . . . . . . . . . 69

3.6 Illustration of a type II (8,6) ETS. . . . . . . . . . . . . . . . . . . . 71

3.7 Illustration of a type III (6,8) ETS. . . . . . . . . . . . . . . . . . . 73

3.8 Error rate of the (2209, 1978) array LDPC code before and after
post-processing using extended and focused heating. . . . . . . . . . 75

3.9 Parity check matrix of the (1944, 1620) LDPC code for IEEE 802.11n
standard. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.10 Dominant type II ETS structures in the (1944, 1620) LDPC code for
the IEEE 802.11n standard. . . . . . . . . . . . . . . . . . . . . . . 78

3.11 Dominant type III ETS structures in the (1944, 1620) LDPC code
for IEEE 802.11n standard. . . . . . . . . . . . . . . . . . . . . . . . 78

3.12 Error rate of the (1944, 1620) IEEE 802.11n LDPC code before and
after post-processing using extended and focused heating. . . . . . . 79

4.1 Layered EMS decoding of a (2,4)-regular NB-LDPC code. . . . . . . 85

4.2 Scheduling of the (2,4)-regular layered EMS decoding. . . . . . . . . 86

4.3 ECN architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.4 Overlapped pipeline schedule. . . . . . . . . . . . . . . . . . . . . . 89

4.5 EVN architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.6 Performances of a (2,4)-regular, (960,480) NB-LDPC over GF(64). . 91

xi



4.7 Example of worst case intra-iteration memory conflicts. . . . . . . . 92

4.8 (a) Power breakdown of the 65 nm synthesized fully parallel nonbi-
nary LDPC decoder, and (b) the distribution of sequential logic used
in the decoder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.9 Implementation of fine-grained dynamic clock gating for the variable
and check node. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.10 Cumulative distribution of clock gated nodes at each iteration for var-
ious SNR levels with a decoding iteration limit of 30. The parameters
used for clock gating are M = 10 and T = 10. . . . . . . . . . . . . 97

4.11 Chip microphotograph of the decoder test chip. Locations of the test
peripherals and the decoder are labeled. . . . . . . . . . . . . . . . . 98

4.12 Bit error rate and frame error rate performance of the GF(64) (160,80)
regular-(2,4) NB-LDPC code using 5-bit quantization and floating
point. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.13 Measured NB-LDPC decoder (a) power and (b) energy efficiency at
5.0 dB SNR and 30 decoding iterations. CG denotes clock gating
and DT denotes decoder termination. The parameters used for clock
gating and decoder termination are M = 10 and T = 10. This
minimum supply voltage is used at each clock frequency. . . . . . . 100

4.14 Illustration of throughput and energy efficiency of various decoder
configurations at 5.0 dB SNR. L, M and T represents decoding it-
eration limit, minimum decoding iteration, and consecutive iteration
threshold, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.1 Kernel runtime breakdown on CPU/GPU for the bAbI dataset. The
external memory size is N ×W = 1024×64 and the LSTM is 1-layer
of size 256. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.2 Scalable and Multi-Mode HiMA-NoC. . . . . . . . . . . . . . . . . . 109

5.3 External memory partition in a 2×2 tile for (a) content-based weight-
ing, and (b) transpose and matrix-vector multiplication in history-
based weighting and soft read; (c) inter-tile traffic for memory read
kernel with various external memory partition; (d) inter-tile traffic
for forward-backward kernel with various linkage memory partition. 112

5.4 Two-stage usage sort. . . . . . . . . . . . . . . . . . . . . . . . . . . 115

xii



5.5 Illustration of memory operation in DNC and distributed execution
in DNC-D. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.6 HiMA architecture and CT/PT designs. . . . . . . . . . . . . . . . 118

5.7 Inference error by DNC-D on 20 tasks of bAbI dataset for various Nt

and usage skimming K. . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.8 HiMA speed, silicon area and power with Nt = 16. . . . . . . . . . . 123

5.9 (a) Area and power scalability of HiMA-DNC and HiMA-DNC-D for
various Nt to support larger external memory. (b)-(d) Performance,
area and power comparison of HiMA (Nt = 16) with state-of-the-
art MANN accelerators and GPU/CPU (area efficiency is measured
by throughput/area, and energy efficiency is measured by through-
put/power). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.1 NODE with different ODE solvers: (a) Euler (classical ResNet), (b)
Midpoint and (c) RK-4 Classic. . . . . . . . . . . . . . . . . . . . . 130

6.2 Fixed and adaptive stepsize integration. . . . . . . . . . . . . . . . . 131

6.3 Butcher tableau for: (a) s-th order RK method, (b) 4-th order RK
method, and (c) 4-th RK method with 3/8 rule. . . . . . . . . . . . 131

6.4 Butcher tableau for adaptive stepsize RK-4 method. . . . . . . . . . 132

6.5 A 4-layer neural ODE with classical RK-4 integration layer. . . . . . 133

6.6 Training dataflow for a 2-layer NODE. . . . . . . . . . . . . . . . . 136

6.7 Backward-pass propagation. The blue curve is the same trajectory
as in forward-pass. Both naive method and ACA method accurately
recover the forward-pass trajectory, while adjoint method forgets the
forward-pass trajectory. . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.8 Training loss with a variety of fixed thresholding on activation when
using a 4-layer NODE (with adaptive stepsize RK-4 and f function
in Figure 6.1) on CIFAR-10 dataset. . . . . . . . . . . . . . . . . . . 139

6.9 Sparsity percentage of each layer with a fixed thresholding of α =
0.1 on neural activation when using a 4-layer NODE (with adaptive
stepsize RK-4 and f function in Figure 6.1) on CIFAR-10 dataset. . 140

xiii



6.10 Top-level architecture for accelerating NODE with adaptive stepsize
RK methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

6.11 NN core architecture for accelerating f function in NODE. . . . . . 142

7.1 Overview of 1) Heuristic bit flipping, 2) LSTM-aided bit flipping and
3) proposed DNC-aided two-phase bit flipping. . . . . . . . . . . . . 144

7.2 Top-level architecture of DNC. . . . . . . . . . . . . . . . . . . . . . 145

7.3 DNC-aided two-phase flip decoding (ω = 3 case). . . . . . . . . . . . 149

7.4 Flip attempts in Phase-II for different FV-DNC output combinations
(ω = 3 case). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

7.5 Algorithm 7.3.2 DNC-Aided SCL-Flip Decoding . . . . . . . . . . . 151

7.6 Rate of identifying error bit positions for ω = {2, 5, 10} and p =
{0.2, 0.8} for SC decoding of (256,128) polar code. . . . . . . . . . . 153

7.7 Number of extra decoding attempts of DNC-SCF and state-of-the-art
flipping algorithms for (1024, 512) polar code. . . . . . . . . . . . . 154

7.8 FER performance comparison of DNC-SCF and state-of-the-art flip-
ping algorithms for (1024,512) polar code and 16b CRC. . . . . . . 156

7.9 FER performance comparison of DNC-SCLF (L = 4) and state-of-
the-art flipping algorithms for (256,128) polar code and 16b CRC. . 157

xiv



LIST OF TABLES

Table

1.1 Summary of state-of-the-art polar decoder implementations . . . . . 6

1.2 Comparison of Techniques for Lowering LDPC Error Floors . . . . . 11

1.3 Comparison of NB-LDPC Decoder Implementations Prior to This Work 14

2.1 Chip design optimization summary based on chip synthesis in 40nm
CMOS at room temperature and the nominal 0.9V supply voltage . 47

2.2 Comparison of State-of-the-Art Polar Decoders . . . . . . . . . . . . 53

3.1 Evaluation of Post-Processing Implementations of Fully-Parallel and
Row-Parallel Decoders (based on Xilinx Virtex-5 XC5VLX155T FPGA) 67

3.2 Error Profile of the (2209, 1978) Array LDPC Code and Effectiveness
of Quenching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.3 Type II ETS Error Profile of the (2209, 1978) Array LDPC Code and
Effectiveness of Quenching and Extended Heating . . . . . . . . . . 72

3.4 Type III ETS Error Profile of the (2209, 1978) Array LDPC Code
and Effectiveness of Extended Heating and Focused Heating . . . . 73

3.5 Summary of ETS and Non-ETS Errors of the (2209,1978) Array
LDPC Decoder in the Error Floor Region and the Effectiveness of
Post-Processing by Combined Extended and Focused Heating . . . . 76

3.6 Summary of ETS and Non-ETS Errors of the (1944,1620) IEEE
802.11n LDPC Decoder in the Error Floor Region and the Effective-
ness of Post-Processing by Combined Extended and Focused Heating 80

xv



3.7 Device Utilization of 4-Row-Parallel IEEE 802.11n (1944, 1620) de-
coders (based on Xilinx Virtex-5 XC5VLX155T FPGA) . . . . . . . 81

3.8 Comparison of Low-Floor LDPC Decoder Implementations . . . . . 81

3.9 Summary of Post-Processing Parameters . . . . . . . . . . . . . . . 82

4.1 Decoder Chip Measurement Summary . . . . . . . . . . . . . . . . . 101

4.2 Comparison with State-of-the-art NB-LDPC Decoders Prior to this
Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.1 Analysis of DNC Kernels . . . . . . . . . . . . . . . . . . . . . . . . 105

7.1 F-DNC/FV-DNC Hyper-parameters Set . . . . . . . . . . . . . . . 152

xvi



LIST OF ABBREVIATIONS

LDPC Low Density Parity Check

DNC Differentiable Neural Computer

NODE Neural Ordinary Differential Equation

5G Fifth Generation

SC Successive-Cancellation

SCL Successive-Cancellation List

NB-LDPC Nonbinary Low Density Parity Check

GF Galois Field

ML Machine Learning

NoC Network on Chip

DNC-D Distributed Differentiable Neural Computer

F-DNC Flip Differentiable Neural Computer

FV-DNC Flip Validate Differentiable Neural Computer

DNC-SCLF DNC-Aided SCL Flip Decoding

AI Artificial Intelligence

CPU Central Processing Unit

GPU Graphics Processing Unit

SNR Signal to Noise Ratio

FER Frame Error Rate

BER Bit Error Rate

xvii



ECC Error Correction Code

DL Deep Learning

NN Neural Network

CV Computer Vision

NLP Natural Language Processing

FNN Feed Forward Neural Network

RNN Recurrent Neural Network

ResNet Residual Neural Network

NTM Neural Turing Machine

MANN Memory Augmented Neural Network

eMBB Enhanced Mobile Broadband

6G Sixth Generation

3GPP The 3rd Generation Partnership Project

LTE Long-Term Evolution

WiFi Wireless Fidelity

DVB Digital Satellite Broadcast

BP Belief Propagation

CRC Cyclic Redundancy Check

CN Check Node

VN Variable Node

TS Trapping Set

ETS Elementary Trapping Set

BCH Bose-Chaudhuri-Hocquenghem

QC Quasi-Cyclic

LLRV Log-Likelihood Ratio Vector

LSTM Long-Short-Term Memory

GRU Gated Recurrent Units

xviii



QA Question Answering

DMN Dynamic Memory Network

ODE Ordinary Differential Equations

RK Runge-Kutta

FD-SOI Fully Depleted Silicon on Insulator

LUT Look-Up Table

MAC Multiply-And-Accumulate

xix



ABSTRACT

The past decade has witnessed an explosive growth of data and the needs for high-

speed data communications and processing. The needs continue to drive the devel-

opment of new hardware for transmitting more data reliably and processing more

data to obtain a higher level of intelligence. This thesis work explores algorithm-

architecture co-design approaches to derive efficient solutions for domain-specific com-

munication and machine learning accelerators. It focuses on advanced and most

compute-intensive accelerator designs for: 1) channel coding for data transmission,

including polar codes and low-density parity-check (LDPC) codes, and 2) neural

networks for machine learning, including differentiable neural computer (DNC) and

neural ordinary differential equations (NODE). It also covers an interdisciplinary area

of AI-aided communication, exploring DNC-aided flip decoding for polar codes.

This work introduces a split-tree successive-cancellation list (SCL) decoder that

works by dividing a polar code’s decoding tree to sub-trees following a split-tree algo-

rithm. Through algorithm-architecture co-optimizations, a 0.64mm2 40nm test chip

implements a split-4, list-2, 8-frame-interleaved decoder that supports configurable

code lengths up to 1024 bit and variable code rates. At 0.9V and room tempera-

ture, the chip achieves 3.25Gb/s with 42.8mW power, or 13.2pJ/b, and demonstrates

competitive error-correction performance.

This work advances LDPC codes in two aspects: 1) improve the error-correcting

performance at the low error rate regime by a post-processing algorithm, and 2)

xx



demonstrate the feasibility of a Gb/s nonbinary LDPC (NB-LDPC) decoder. In

designing the post-processor, we take the inspiration from simulated annealing to

generalize the post-processor design using three methods: quenching, extended heat-

ing, and focused heating, each of which targets a different decoding error structure.

The resulting post-processor is demonstrated to lower the error rate by two orders

of magnitudes. NB-LDPC is another approach to improve error-correction perfor-

mance. In this work, we present a fully parallel decoder for a (160, 80) regular-(2, 4)

NB-LDPC code over Galois field GF(64) in 65nm CMOS. The decoder employs fine-

grained dynamic clock gating and decoder early termination to achieve a throughput

of 1.22Gb/s and an energy efficiency of 3.03nJ/b, or 259pJ/b/iteration, at 1.0V and

700MHz.

This work contributes to the hardware acceleration of DNC. We present HiMA,

a tiled, history-based memory access engine with distributed memories in tiles. HiMA

incorporates a traffic-aware multi-mode network-on-chip (NoC), an optimal submatrix-

based memory partition and a two-stage usage sort method leveraging distributed

tiles. We create a distributed DNC (DNC-D) to allow almost all memory operations

to be applied to local memories. In a 40nm design, HiMA running DNC and DNC-D

demonstrates 6.47× and 39.1× higher speed, 22.8× and 164.3× better area efficiency,

and 6.1× and 61.2× better power efficiency over the state-of-the-art accelerators.

This work contributes to the hardware acceleration of NODE for improved mod-

eling capability of continuous-time events. We carry out algorithm-architecture co-

design: 1) we propose adaptive neural activation sparsity for up to 80% complexity

reduction while maintaining excellent training accuracy. 2) we develop a multi-mode

PE design for NODE compute kernels with configurable interconnects between PEs

to handle a variety of numerical ODE solvers. The hardware efficiency can be further

enhanced by exploring hardware reuse and hierarchical memory.

Lastly, this work investigates an interdisciplinary area of AI-aided communication,

xxi



applying DNC for flip decoding of polar codes. New state and action encoding are

developed for better DNC training and inference efficiency. The proposed method

consists of two phases: i) a flip DNC (F-DNC) is exploited to rank the most likely

flip positions for multi-bit flipping; ii) if decoding still fails, a flip-validate DNC

(FV-DNC) is used to re-select error bit positions for successive flip decoding trials.

Simulation results show that proposed DNC-aided SCL-Flip (DNC-SCLF) decoding

demonstrates up to 0.34dB coding gain improvement or 54.2% reduction in average

number of decoding attempts compared to prior works.

The five pieces of work presented in this thesis tackle hardware acceleration

challenges in domain-specific computing using algorithm-architecture co-design tech-

niques. The results of this work contribute to the developments of hardware acceler-

ators in channel coding and deep learning, enabling next-generation communication

and artificial intelligence from theory to efficient hardware.
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CHAPTER I

Introduction

We live in an exciting time. Information is booming by orders of magnitudes for

the past decades. The exploding demands to efficiently transmit massive amount of

information and learn useful knowledge from them have stimulated domain-specific

breakthroughs like fifth-generation (5G) wireless communication or artificial intelli-

gence (AI). The powers granted by these advancements have fundamentally changed

the way we live and are also drastically shifting the dynamics of industries and busi-

ness around the world.

However, the path to achieving high-efficiency domain-specific hardware systems

is challenging. On one hand, new paradigms in communication or AI algorithms are

computationally expensive, resulting in a low efficiency when running on commer-

cial CPUs and GPUs. On the other hand, the hardware performance requirements

(e.g. power, performance and cost) are key factors that are hindering mass commer-

cial deployment. Despite the obstacles ahead, these algorithmic advancements have

revealed rich opportunities for algorithm-architecture co-design, driving new innova-

tions within the research field of domain-specific accelerators.

Before diving into domain-specific algorithm and architecture developments, we

will take a few steps back to revisit the fundamentals in two domains: communication

and AI. The goal of efficient communication is to transmit the most information using
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Figure 1.1: Bit error rate (BER) comparison between uncoded and encoded systems.

the least energy. The ultimate theoretical limit of efficient communication is defined

by the Shannon capacity, which captures the least transmit energy, or signal-to-noise

ratio (SNR), needed for reliable transmission. For a given information reliability

measured in terms of frame error rate (FER) or bit error rate (BER), a system with

weak or no error correction codes (ECC) will require a high SNR, whereas a system

with a strong ECC will be able to reduce the necessary SNR and the transmit energy.

Figure 1.1 illustrates the difference between a coded system versus an uncoded system.

State-of-the-art ECCs include low-density parity-check (LDPC) [1], nonbinary LDPC

(NB-LDPC) [2], and polar codes [3].

On the other hand, AI techniques, particularly deep learning (DL) algorithms

based on neural networks (NN) have shown superior performance in tackling the

learning problems in the emerging fields of computer vision (CV) [4] and natural lan-

guage processing (NLP) [5]. Deep learning NNs typically consist of multiple layers of

artificial neuron cells. The cells can be categorized as input cells, output cells, hidden

cells, recurrent cells or memory cells according to the their functionalities and the
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Figure 1.2: Conventional neural network topologies.

NN topology. Figure 1.2 demonstrates some conventional NN topologies, including

feed-forward NN (FNN), recurrent NN (RNN) [6, 7], residual NN (ResNet) [8] and

neural Turing machine (NTM) [9]. However, they are still lacking the capability in

handling more complex problems like learning long-term dependencies or modeling

continuous-time events. Recent developments in NN introduce new paradigms such

as differentiable neural computer (DNC) [10] (latest variant of memory-augmented

neural networks, or MANNs) and neural ordinary differential equations (NODE) [11]

to help NN tackling a variety of complex applications.

1.1 Domain I: Channel Coding

Polar code and LDPC code are the two representative ECCs for channel coding in

state-of-the-art communication systems and they are still evolving rapidly. Polar code

was invented by Erdal Arikan [3] in 2009 with capacity achieving capability. Soon

after, they have been adopted in fifth-generation (5G) enhanced mobile broadband

(eMBB) control channels and are one of the most promising candidates for sixth-
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generation (6G) wireless standard in the near future. LDPC code is a class of near-

capacity channel codes and was rediscovered from mid 2000s. They have been widely

adopted in commercial applications, such as 3GPP-LTE, WiFi-6, and digital satellite

broadcast (DVB), etc. This section reviews LDPC, nonbinary LDPC and polar codes,

their state-of-the-art algorithms and decoder designs, and major design challenges.

1.1.1 Polar Codes

Polar codes exhibit a polarization effect [3] when transmitted over certain types

of channels and decoded using the SC algorithm. The polarization effect refers to

that certain bits become highly reliable and the other bits become highly unreliable.

To use polar codes, information is conveyed over the reliable bits and the unreliable

ones are frozen to predetermined values.

An (N , K) polar code has a code length N and code rate K/N , where N = 2n,

n ∈ Z+. Let uN−10 = (u0, u1, ..., uN−1) denotes the vector of input bits to the encoder.

The N −K least reliable bits in uN−10 , called frozen bits, are typically set to 0, while

the remaining K bits, called free bits, are used to carry information aK0 . An encoder

encodes uN−10 to the codeword xN−10 = (x0, x1, ..., xN−1). The systematic encoder is

mathematically described by (1.1).

xN−10 = uN−10 GN = uN−10 BNF
⊗n for n ≥ 1, (1.1)

where GN = BNF
⊗n is the N×N generator matrix, BN is called the bit-reversal

permutation matrix, and ⊗n denotes the n-th Kronecker power:

F⊗n = F ⊗ F⊗(n−1), F =

1 0

1 1

 and F⊗0 = 1 (1.2)
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Figure 1.3: Encoding graph and SC decoding trellis of a (4,2) polar code.

A polar codeword is produced by first setting the frozen bit locations to 0. For

example, a vector of 4 input bits (N = 4, n = 2) is set to u30 =

[
0 a0 0 a1

]
, where

the bit 0 and bit 2 are the frozen bits and are set to 0, and bit 1 and 3 are used

to carry information bits a0 and a1. For simplicity of understanding, assume B4 is

identity, then the encoder performs the following mathematical operation:

x30 = u30F
⊗2 =

[
0 a0 0 a1

]


1 0 0 0

1 1 0 0

1 0 1 0

1 1 1 1


=

[
a0 ⊕ a1 a0 ⊕ a1 a1 a1

]
, (1.3)

where modulo-2 operations are used and ⊕ represents modulo-2 addition, or XOR.

The encoder produces a (4,2) code with a block length of 4 and 2 information bits. The

mathematical operation can be illustrated in the encoding graph shown in Figure 1.3.

Notice the regular placement of XORs between every pair of bits in the first stage,

and every 2-bit blocks in the second stage. Encoding is done by propagating the bit

vector through the graph from left to right.

Although Arikan proved that polar code achieves capacity as the block length N

approaches infinity, the error-correction performance of polar codes of finite block
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Table 1.1: Summary of state-of-the-art polar decoder implementations

arXiv’18 TCAS-II’19 ASSCC’18 TCAS-I’19

[18] [19] [20] [21]

Design silicon layout silicon silicon

Code
up to 215b 1024b 1024b 1024b

variable rate rate-1/2 rate-1/2 rate-1/2

Decoding Algorithm SCL SC SC BP

Process Technology
16nm 180nm 180nm 40nm

FinFet CMOS CMOS CMOS

Decoder Area (mm2) 2.27 1.95 3.17 0.704

Supply (V) 0.9 1.8 1.8 0.9

Frequency (MHz) 1000 447 382 500

Throughput (Gb/s) 3.24 0.30 0.66 7.61

Power (mW) - 1073 - 422.7

Area Eff. (Gb/s/mm2) 1.43 0.154 0.208 10.81

Energy Eff. (pJ/b) - 7994 - 55.58

lengths are still away from the Shannon limit. Polar codes can be decoded by belief

propagation (BP) [12] or successive cancellation list (SCL) [3, 13] decoding algorithms.

There are handful of pre-silicon SCL decoder designs published in literature recently as

shown in Table 1.1. For simplicity and a fair comparison, we will cite the performance

using a common configuration of 1024-bit code length, 1/2 code rate, a list size of

L = 2 and 65nm CMOS for area. The direct mapping of an LLR-based CRC-aided

SCL decoder design [14] was estimated to achieve a 334 Mb/s decoding throughput

at a 847 MHz clock frequency. A 4-bit grouping approach was proposed in [15] to

decode neighboring bits together for a higher throughput, and the decoder design was

estimated to achieve 395 Mb/s at 500 MHz. Other speedup techniques like partial

look-ahead decoder [16] and multi-mode decoder designs [17] were shown in simulation

to achieve 537Mb/s and 1.21 Gb/s, respectively.

Area saving techniques have been developed in [22, 23]. [22] introduced an area

saving strategy based on interpolation-based code construction and layered decoding
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scheme, showing up to 50.7% area saving over a conventional SCL decoder. [23]

presented another area saving approach using a partial-sum network that efficiently

computes the list candidates, resulting in up to 70% area reduction based on synthesis.

Performance-enhanced SCL decoders proposed recently include symbol-decision

SCL decoder [24] and sphere SCL decoder designs [25] that were shown in simulation

to achieve 398 Mb/s at 500 MHz and 1.23 Gb/s at 1 GHz, respectively. These designs

however incur a high area overhead.

Complexity reduction techniques have also been developed, including simplified

SCL (SSCL) and fast-SSCL-SPC [26], where the SCL tree is pruned and a single

parity check (SPC) is introduced to maintain the error-correction performance. A

fast-SSCL-SPC decoder design was estimated to achieve 1.86 Gb/s at 885 MHz in a

1.048 mm2 area . A follow-up rate-flexible fast-SSCL decoder design [27] improved

the results to an estimated 1.22 Gb/s at 955MHz in a 1.45 mm2 area. An early

stopping criterion was introduced [28] to improve the fast-SSCL decoder further to a

projected throughput of 2.05 Gb/s at 650 MHz. However, these complexity reduction

techniques tend to hurt the error-correction performance.

When a high-speed decoder is implemented in silicon, we can expect that the

measured performance is worse, the area is larger, and the power is higher than

the estimates, because it is difficult to fully account for all the overhead of wiring,

clocking, and memory by simulation and synthesis. It is therefore more reliable to

check silicon measurements to make comparisons. For a simple and fair comparison

of silicon decoders, we will report the measured results without applying any process

or voltage normalization because popular scaling formulas are no longer reflective of

the reality of scaling in advanced processes. The latest SC decoder [20] was designed

in 180 nm CMOS, occupying 3.17 mm2 silicon area. The decoder delivered 655 Mb/s

at 382 MHz for 1024-bit codewords. The first SCL decoder [29] was designed in a

28 nm FD-SOI technology, occupying 0.44 mm2. The decoder achieved 614 Mb/s
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Figure 1.4: An example H matrix and factor graph representation of an LDPC code.

in throughput, 3.34 µs in latency, and 209 pJ/b in energy at 1.3 V for a 1024-bit

code length and L = 4. The latest SCL decoder [18] was designed in 16 nm FinFET,

occupying 2.27 mm2. The chip demonstrated a 3.24 Gb/s throughput for 1024-bit

codes, but no power measurements were reported. Clearly, it is still challenging to

meet a multi-Gb/s throughput, sub-µs latency, sub-10 pJ/b energy and compact

silicon area all at the same time.

1.1.2 Low-Density Parity-Check Codes

An LDPC code is a block code defined by an M×N parity-check matrix H, where

M is the block length (number of bits in the codeword) and N is the number of parity

checks. The element of the matrix H(i, j) are either 0 or 1 to represent whether bit

j of the codeword is part of parity check i. An H matrix can be represented using

a factor graph composed of two sets of nodes: a variable node (VN) for each column

of the H matrix and a check node for each row. An edge is drawn between VN(j)

and CN(i) if H(i, j) = 1. An example H matrix with its corresponding factor graph

is shown in Figure 1.4.

A LDPC codeword is produced by the mod 2 multiplication of the source bit

sequence and a generator matrix G, which can be obtained by putting the parity-

check matrix H into this form of [Ik—P ]. For the example shown in Figure 1.4, the

generator matrix and the codeword for the source bit sequence ’101’ can be obtained
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as (1.4), where � is the symbol for mod 2 multiplication.

[1 0 1]�G = [1 0 1]�


1 0 0 1 0 1

0 1 0 1 1 1

0 0 1 1 1 0

 = [1 0 1 0 1 1] (1.4)

LDPC codes can be efficiently decoded by the iterative belief propagation (BP)

decoding algorithm or its simplifications such as min-sum (MS) algorithm [30]. The

MS algorithm enables simple processing nodes that are easily implemented in hard-

ware. Therefore the decoder complexity can be kept low while achieving good error-

correction performance.

The coding gain of an LDPC code is captured by a waterfall curve featuring a

steep reduction in BER (and FER) with increasing SNR. Popular LDPC codes of

block length up to 2 Kb or 4 Kb for wireless [31, 32, 33] and wireline applications

[34] have demonstrated excellent waterfall performance down to a BER level of 10-7

to 10-10, below which the curve flattens in a phenomenon called error floor [35]. The

presence of an error floor degrades the achievable BER performance. With future

communication and storage systems demanding data rates at multiple Gb/s or higher,

error floors will worsen the quality of service. To prevent BER degradation due to

error floors, SNR needs to be raised excessively, moving away from the capacity that

defines the optimal performance.

Over the last decade, solving the error floor problem has been one research focus

in coding theory and decoder design communities. Past experiments have shown that

error floors can be caused by practical decoder implementation [36]. Improved algo-

rithm implementation and better numerical quantization can suppress these effects

[36]. However, error floors are fundamentally attributed to noncodeword trapping

sets (TS), especially elementary trapping sets (ETS), associated with LDPC codes
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[37, 35, 38]. A TS refers to a set of bits in a codeword, when received incorrectly, cause

the belief propagation (BP) decoding algorithm to be trapped in a local minimum

[35].

Much work has been done on lowering the error floor by improving code con-

struction using methods such as selective cycle avoidance [39], improved progressive

edge growth [40], code doping [41], and cyclic lifting [42]. These methods are effec-

tive, reporting up to 2 orders of magnitudes lower error floor, but they may produce

unstructured codes that are not amenable to efficient decoder implementation. The

irregular parity check matrices of these techniques complicate the encoder/decoder

design, introducing significant overheads in latency, throughput and hardware area.

Since theoretical approaches require complete redesign of codes, they are not appli-

cable to the current deployed LDPC systems.

Code concatenation is another approach to lower error floors. With appropriately

designed outer codes, such as Bose-Chaudhuri-Hocquenghem (BCH) codes [43, 44] or

Reed-Solomon codes [45], error floors of the concatenated codes can be lowered by

up to 2 orders of magnitude. However, the addition of an outer code increases the

system complexity, power, cost, and decoding latency.

Alternatively, improvements can be made to decoding using methods such as scal-

ing [46], averaging [38], and reordering steps [47] in BP decoding, but the effectiveness

of these methods is often limited, usually 1 to 2 orders of magnitude, and some re-

quire extra steps that are incompatible with BP decoding, leading to a higher decoder

complexity and longer latency. A backtracking approach was proposed in [48] to use a

trial and error strategy to flip bits that are likely to be incorrect, and rerun decoding

to check if the trial is successful. The approach does not rely on any prior knowl-

edge of trapping sets, but its implementation can be costly in terms of memory and

latency. Schedule diversity [49] was proposed to make multiple decoding attempts

using different decoding schedules to reduce the probability of falling into a trapping
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Table 1.2: Comparison of Techniques for Lowering LDPC Error Floors

[39] [40]

[42] [41] [43] [45] [46] [47] [50]

set. The approach is another form of trial and error, and can be costly in latency.

In theory, a more effective approach is to add a post-processing step if a decoding

error is detected, and the post-processing is done in a targeted manner without having

to rely on trial and error. An example of post-processing is the bi-mode syndrome-

erasure decoding algorithm [50, 51]. One drawback of the post-processing approach is

that it is usually limited to specific codes and it is not known whether it is generally

applicable. A redecoding approach based on attenuating a predetermined set of bits

[52] was proposed for quasi-cyclic (QC) LDPC codes. The approach involves an

offline search and it may only be applied to QC-LDPC codes. Table 1.2 summarizes

the qualitative features of techniques for lowering LDPC error floors.

1.1.3 Nonbinary Low-Density Parity-Check Codes

Binary LDPC code can be extended to nonbinary LDPC (NB-LDPC) codes [53]

defined over Galois field GF(q). NB-LDPC codes offer better coding gain than binary

LDPC codes. The main difference between an LDPC and an NB-LDPC is that an

NB-LDPC code is formed by grouping multiple bits to symbols using GF elements, as

illustrated in an example in Figure 1.5. In the example, two bits are grouped together
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Figure 1.5: Comparison of a binary LDPC code and an NB-LDPC code.

to a 2-bit symbol using GF(22) or GF(4). From the 4×6 binary LDPC H matrix on

the left-hand side, 2×2 submatrices are replaced with single GF(4) elements, resulting

in the 2×3 GF(4) nonbinary H matrix on the right-hand side. An NB-LDPC code

can also be illustrated using a factor graph composed of VNs and CNs. An edge

connects VN vj and CN ci if the corresponding entry in the H matrix H(i, j) 6= 0 in

GF(q). The message exchanged between nonbinary CNs and VNs are extended to an

log-likelihood-ratio vector (LLRV) of length q.

The decoding of NB-LDPC codes follows the same BP algorithm[53] that is used

in the decoding of binary LDPC codes. However, the complexity of an NB-LDPC de-

coder is notably higher: each message exchanged between processing nodes in an NB-

LDPC decoder carries an LLRV; parity check processing follows a forward-backward

algorithm; and high-order GF operations require expensive matching and sorting, in

contrast to the much simpler addition and compare-select used in binary LDPC decod-

ing. The complex NB-LDPC decoding has prevented any large-scale high-throughput
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chip implementations in silicon. Only FPGA designs, synthesis and layout have been

demonstrated prior to this work [54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65].

The complexity of the NB-LDPC decoder and its error-correcting performance are

determined by code construction. Quasi-cyclic LDPC codes have been invented to

provide a good error-correcting performance [66, 67, 68], and their regular structures

are amenable to efficient decoder architectures. Compared to the quasi-cyclic LDPC

codes, the (2, dc) codes [69] feature a very low variable node degree dv = 2, and a check

node degree as low as dc = 4, reducing the processing complexity, the wiring, and the

quantization loss. Therefore, the (2, dc) codes are attractive for practical implemen-

tations. A (2, dc) NB-LDPC code offers a competitive error-correcting performance

even at a short block length. The performance can be further improved by increasing

q, the order of the GF field, but a higher q increases the size and complexity of the

decoder.

The direct implementation of the BP decoding for NB-LDPC codes results in a

check node complexity of O(q2) and a variable node complexity of O(q). A fast Fourier

transform (FFT) implementation reduces the check node complexity to O(q log q) ,

but it requires check node processing in the linear domain and the conversion be-

tween linear- and log-domain messages. The extended min-sum (EMS) algorithm

[70] in the log domain reduces the check node complexity to using only a small subset

of nm values among an array of LLRs in a message, where nm � q. A further sim-

plification of the EMS algorithm truncates the least significant values in a message

and keeps only the most significant nm values in memory [71]. The processing is done

entirely using truncated messages, thereby reducing the complexity of the check node

to O(nm log nm) and the complexity of the variable node to O(nm). The truncated

EMS algorithm has demonstrated minimal loss in error-correcting performance at

low SNR compared with BP, while the performance surpasses BP at high SNR. The

truncated EMS algorithm makes it possible to design an NB-LDPC decoder with a
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Table 1.3: Comparison of NB-LDPC Decoder Implementations Prior to This Work

[64] [65] [56] [59]

reasonable complexity that is within the range of binary LDPC decoders. A further

simplification using the min-max algorithm [72] suffers from a noticeable degradation

in the error-correcting performance. Table 1.3 summarizes the NB-LDPC decoder

implementations prior to this work.

1.2 Domain II: Neural Networks

Neural networks are emerging to be the most advanced techniques in learning

useful knowledge from massive amount of data. They are inspired by mimicking

the method in which animals learn and perceive the world. A neural network is

essentially an explicit expression of neurons connections, representing features that

could be learnt in different dimensions. The term deep neural networks (DNNs)
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refers to multiple layers of neurons that are connected together, where the data can

propagate from one layer to the next.

Typically, there are two major functions that an NN needs to perform: 1) training;

and 2) inference. Training is the process where a model neural network fits itself

using a given set of input data and mathematically optimizes for a target metric (e.g.

minimization of a loss function) that describes how well the NN model is performing

with respect to its current trained status. Some training algorithms require labels (i.e.

ground truths), referred to as supervised learning, while some do not require labels,

referred to as unsupervised learning. On the other hand, the inference process takes

a trained NN and passes the input data through the network to obtain the output

result.

Conventional NN topologies include deep FNNs, RNNs or ResNets, as shown in

Figure1.2. They have shown superior performance in feature extraction or sequence

learning problems in CV, NLP, etc. However, they are still lacking the capability

in tackling more complex problems like learning long-term dependencies or modeling

continuous-time events. In this thesis, we focus on two new variants of NNs for these

complex learning problems, DNC [73], the latest version of memory-augmented neural

networks (MANNs), and neural ordinary differential equations (NODEs) [11].

1.2.1 Differentiable Neural Computer

The application of neural networks (NNs) have grown extensively to many practi-

cal problems such as natural language processing (NLP) [74], speech recognition [75]

and computer vision (CV) [76]. In the case of NLP, improvements come from the

sequence modeling capabilities of recurrent NNs (RNNs) [77] such as long short-term

memory (LSTM) [78] or gated recurrent units (GRU) [79]. However, performance

of RNNs are limited by how long memories can persist, because the dynamic states

are intrinsically embodied within the network. RNNs become less effective in tasks
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like question answering (QA) [80] where relevant information for the correct answers

could be far away from where the questions are asked. This motivated the develop-

ment of memory-augmented NNs (MANNs), a fully differentiable model that contains

an isolated external memory module that NNs can learn to store to and read from

when computing predicted outputs.

Such MANNs include memory network (MemNet and MemN2N) [80, 81], dy-

namic memory network (DMN) [82], neural Turing machine (NTM) [83] and differen-

tiable neural computer (DNC) [73]. Compared to traditional RNN/LSTM or recently

developed Transformer [84], MANNs outperform in tackling long-term dependency

problems and found many applications not only in NLP, but also in graph modeling

[85, 86], navigation [73, 87] and reinforcement learning [88, 89, 90]. Specifically, DMN

uses a GRU as the memory component. MemNet/MemN2N uses an external address-

able memory; however, neither memory content nor access history is considered in the

addressing. NTM enhances the performance by using content-based soft write and

read. An NTM with an LSTM can infer simple algorithms such as copying or sort-

ing. Subsequently, DNC extends NTM by incorporating history-based mechanisms

that consider historical events when accessing external memory. This allows DNC

to achieve better performance than NTM in handling long-term dependencies [73].

However, the enhanced performance of DNC comes at a much higher computational

cost, more complex memory operations, and more specifically history-based attention

mechanisms.

NN accelerators [91, 92, 93, 94, 95, 96] cannot run DNC due to the lack of capabil-

ity to handle elaborate memory operations. Compared to NN accelerators that store

weights, perform convolutions and accumulate partial sums, DNC accelerators need

to support more complex and diverse workloads, including new primitives like sorting

or matrix transpose and a variety of new state memories to store access history that

do not exist in NNs. MANN accelerators (for MemNets or NTM) [97, 98, 99, 100]
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also cannot run DNC due to the lack of support of DNC’s unique sorting primitive

and new state memories. The only way to run DNC using an existing accelerator is

to have it attached to a general-purpose CPU or GPU, which is unlikely to deliver a

high efficiency.

NTM accelerators only support content-based attention mechanisms without state

memories. Specifically, X-MANN [99] implements external memory using resistive

crossbars. The performance gain relies on emerging devices that are not widely avail-

able. The recently developed MANNA [100] proposed a network-on-chip (NoC) archi-

tecture for NTM. MANNA’s distributed architecture provides more memory bandwidth

and compute parallelism, but its H-tree NoC still incurs a traffic bottleneck when

running DNC’s history-based attention mechanisms. DNC accelerators have been

developed recently [101, 102]. In [102], the efficiency enhancements mainly come

from analog-based processing elements such as analog-to-digital converters (ADCs),

which are more sensitive to variations and noise, and less portable between process

technologies. These designs also followed a centralized architecture for memory ac-

cess and compute, which could lead to poor scalability when memory size increases.

Operations may need to be serialized, degrading both speed and latency.

We provide a brief overview of relevant concepts, mathematical descriptions of

DNC and review MANN accelerators.

1.2.1.1 Memory-Augmented Neural Networks

Recurrent neural networks (RNNs) [103] such as LSTMs [104] extend feedforward

DNNs by introducing recurrent connections, thereby allowing the network to store

dynamic states across iterations of inputs. Suppose xt be the input and yt be the

output at time stamp t, LSTM is composed of a chain of LSTM cells, denoted by

A, as shown in Figure 1.6. The introduction of dynamic state has benefited domains

which requires remembering of event sequences, such as QA in NLP. However, the
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Figure 1.6: LSTM and memory-augmented neural network.

amount of information that can be stored in the network is bounded by the size of

the underlying network. Therefore LSTM lacks the scalability to handle complicated

sequence events with long-term dependencies.

To address the scaling problem of LSTM, MANNs have been proposed as shown

in Figure 1.6. A memory unit is connected to an NN (typically an LSTM) and the

external memory1 can be accessed by attention-based mechanisms through soft read

and write heads. Specifically, at time t the LSTM sends an interface vector vit to the

memory unit and receives a read vector vrt from the memory unit. In this way, the

dynamic state can be explicitly decoupled from the neural network. NTM [83] is a

MANN that outperforms LSTM by employing content-based soft write and read to

access the memory, a form of attention mechanism. However, memory access history

is completely discarded in memory slot selection and weighting. DNC [73] extends

NTM and the memory is accessed based on both memory content and memory ac-

cess history. History-based attention mechanisms allow DNC to achieve much better

performance than NTM, but also introduce complex memory manipulations and a

1In the context of MANN, an external memory refers to a memory external to the NN (e.g.
LSTM) that stores data.
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variety of new state memories as highlighte in Figure 1.6.

1.2.1.2 DNC Memory Unit

In this work, we focus on DNC memory unit where elaborate memory operations

take place. The DNC inference dataflow and mathematical descriptions of the oper-

ations are shown in Figure 1.7. Compared to other variants of MANNs such as NTM

or MemNet, DNC is the only model that incorporates history-based memory access.

The NN (e.g. LSTM) sends an input to the memory unit, known as the interface

vector vi, including the necessary access information such as write key kw, read key

kr or write vector vw. The memory unit returns the output read vector vr. Suppose

the memory M is modeled as a N ×W matrix (N > W ) and the number of read

heads (i.e., number of parallel reads) is R, we provide a brief operational explanation

of the DNC soft write and read.

Soft Write: As illustrated in Figure 1.7, soft write is done in two steps: 1)

compute write weighting ww, and 2) memory write, i.e., apply the weighting ww to

the values (write vector vw and erase vector ve) and write them to memory. In DNC,

the write weighting is a combination of content-based weighting and history-based

weighting. The content-based weighting is inherited from NTM, and it is based on

the similarity to the write key. Mathematically, the memory entries M [i, ·] and the

write key kw are first normalized, and the similarity of the two are computed as the

content-based write weighting wu.

The history-based weighting is brand new in DNC. DNC enhances the selection of

memory cells by biasing towards those that are most recently read from (based on read

weighting wr from the previous time step), least recently written to (based on write

weighting ww from the previous time step), or deemed inconsequential (based on free

gate gf ). The history-based weighting is computed in three steps: 1) the retention

vector ψ is first calculated based on the free gate gf and the read weighting wr; 2)
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the usage vector u is updated based on the retention vector and the write weighting

ww, and then sorted; and 3) the history-based write weighting wa is computed by the

accumulation of product of the sorted usage. The content-based weighting wu and

the history-based weighting wa are combined to obtain the write weighting ww.

Soft Read: Soft read is done in two steps: 1) compute read weighting wr, and 2)

memory read, i.e., apply the weighting wr to memory M to obtain the read vector vr.

Similar to soft write, soft read combines both content-based weighting and history-

based weighting. The content-based read weighting ru is computed in the same way

as the content-based write weighting.

The history-based read weighting is computed in three steps: 1) the write weight-

ing ww is first expanded to an N ×N matrix to derive linkage matrix L. The linkage

tracks the order in which memory locations are written to; 2) the precedence vector p

is updated to track the degree each memory entry is most recently written to; and 2)

a forward and backward pass is used to merge the read weighting wr from the previous

time step with the linkage matrix L, as well as the content-based read weighting ru

to update the read weighting wr.

1.2.1.3 State-of-the-art MANN Accelerators

Conventional NN or matrix multiplication accelerators do not fully support DNC

because they lack the primitives including sorting and matrix transpose, and miss a

specialized memory unit to support a variety of state memories. MANN accelerators

[98, 97, 100, 99, 102, 101] have been proposed for MANN’s memory unit. The memory

unit receives an input interface vector from an NN accelerator that executes LSTM

inference. In performing the inference, the NN accelerator may communicate with

off-chip DRAMs. Here we focus on NTM and DNC accelerators that support both

soft write and soft read and omit simpler accelerators that do not come with such

support. Some NTM and DNC accelerators use a centralized-memory architecture
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[99, 102, 101] as shown in Figure 1.8(a). In particular, [99, 102] improve the memory

access efficiency by introducing in-memory compute through resistive crossbar or

analog operations. However, the centralized memory ultimately limits the bandwidth

and parallelism available, and the emerging devices and custom mixed-signal circuits

are not yet practical for sufficiently large memory sizes.

MANNA [100] introduces the first tiled NoC architecture as shown in Figure 1.8(b)

to solve the bandwidth and parallelism limitation. MANNA contains two types of tiles:

processing tile (PT) which includes external memory sub-banks and the associated

compute units, and controller tile (CT) which includes top-level processing units to

distribute information to the PTs and collect results from the PTs. Designed for

NTM, MANNA does not support DNC due to the lack of support for new primitives

like sorting and new state memories for maintaining access history. MANNA’s H-tree

NoC also becomes less efficient in carrying inter-tile communication when the PT

count increases. The inefficiency is exacerbated by DNC’s history-based attention

mechanisms that inject complex traffic patterns onto the NoC, limiting the scalability.

1.2.2 Neural Ordinary Differential Equations

NODE [11] is extended from ResNets [8] for enhanced capability on modeling

continuous-time events. Conventional ResNet builds complicated transformations by
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composing a sequence of transformations to a hidden state as (1.5):

hk+1 = hk + f(hk, θk), k ∈ {0, 1, ..., T}, (1.5)

where k is the layer index, hk is the discrete hidden state, and f is the network with

trainable parameters θk at k-th layer. These iterative updates can be seen as an Euler

discretization of a continuous transformation. Increasing the number of layers and

taking smaller steps in the limit, we can parameterize the continuous dynamics of

hidden units using an ODE specified by a neural network as (1.6):

dh(t)

dt
= f(h(t), t, θ), h(0) = x, t ∈ [0, T ] (1.6)

where t is a continuous time variable, h(t) is the continuous hidden state, and f is

the network with trainable parameters θ. Starting from the input layer h(0) = x, we

can define the output layer h(T ) to be the solution to this ODE initial value problem
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at some time T . Integration of (1.6) is the mechanism for feed-forward computation

of neural ODEs. The input-output relation can be described as (6.2):

h(T ) = h(0) +

T∫
0

f(h(t), t, θ)dt (1.7)

This value can be computed by a numerical differential equation solver (e.g. RK

method), which evaluates the hidden unit dynamics f wherever necessary to de-

termine the solution with the desired accuracy. Figure 1.9 contrasts conventional

ResNets and Neural ODEs. Compared to discrete-layer models, the feature map

evolves smoothly with NODE’s continuous depths. The continuous transformations

improve the modeling capability especially for time series problems or normalizing

flows; however, the numerical integration introduces higher computational complex-

ity and new kernels that cannot be accelerated by state-of-the-art DNN accelerators.

An efficient acceleration hardware is yet to be researched for Neural ODEs.

1.3 Scope of this Work

In this work, new design techniques are proposed to improve upon the state-

of-the-art designs reviewed in the previous sections through the use of algorithm,

architecture and circuit techniques that are co-optimized to work with the domain-

specific algorithms.

1.3.1 Polar Codes

In this work, we present a 0.64mm2 configurable SCL decoder chip using a split-

tree architecture in 40nm CMOS [105, 106]. The decoding tree is split to 4 subtrees to

be decoded by 4 sub-decoders in parallel with decision reconciliation in every stage.

The new split-tree architecture improves the throughput and cut the latency by nearly
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4×. To maximize utilization, 8 frames are interleaved and decoded simultaneously to

increase throughput by another 8× to 3.25Gb/s for code length up to 1024b and vari-

able code rates. Dynamic clock gating reduces the peak power dissipation to 42.8mW

at 0.9V, or 13.2pJ/b. The throughput, energy efficiency and area efficiency are 5.3×,

15.9× and 4.0× better, respectively, than the SCL decoder chip in a 28nm FD-SOI

process [29]. Compared to the latest SCL decoder chip [18] in a more advanced 16nm

process, our test chip achieves a similar throughput and 3× better area efficiency.

These results make this chip suitable for 5G applications.

1.3.2 LDPC Codes

In this work, we extend the post-processing method that was first presented in [51]

using ideas from simulated annealing (SA). The SA algorithm combines random walk

(or heating in annealing terminology) and gradient descent (or cooling) to escape

local minima [107, 108, 109]. In post-processing, we use message reweighting or

soft bit flipping to perturb, or heat up, local minima, and use BP to cool down for

convergence towards a codeword. Compared to well-known approaches above, the

cost of implementing post-processing is low: no code change is needed, and the post-

processing is entirely based on BP. As post-processing is conditionally invoked, i.e.,

when a decoder fails to converge at a low BER, the impact on decoding throughput

and power is negligible.

We further present two new methods inspired by SA: extended heating and focused

heating, aiming at eliminating the vast majority of ETS errors of various structures

[110]. We use a rate-0.89 (2209, 1978) array LDPC code [111] that is known for its

collection of ETS errors [36] to derive these methods. Finally, we combine extended

heating and focused heating into a generalized method that is applicable to LDPC

codes with unknown ETS structures. We use a rate-0.83 (1944, 1620) LDPC code for

the IEEE 802.11n standard [32] to test the effectiveness of the generalized method.
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Experimental results show that post-processing is one of the most practical and ef-

ficient solutions in designing low-error-floor LDPC decoders. Table 1.2 summarizes

the qualitative features of the proposed approach compared to prior techniques.

1.3.3 NB-LDPC Codes

In this work, we present a 7.04 mm2 65 nm CMOS NB-LDPC decoder chip for a

GF(64) (160, 80) regular-(2, 4) code using the truncated EMS algorithm [112, 113,

61]. We use a fully parallel architecture and scheduling techniques to enhance the

throughput to 1.22 Gb/s at 700 MHz. To reduce the power consumption, we design a

fine-grained dynamic clock gating based on node-level convergence detection to save

50% power.

1.3.4 Differentiable Neural Computer

In this work, we present HiMA [114], a History-based Memory Access engine to

efficiently accelerate DNC memory operations. To the best of our knowledge, HiMA

is the first distributed, tiled architecture that supports all DNC features. History-

based attention mechanisms introduce a variety of new primitives and state memories,

require access to various memories concurrently and incur complex traffic profile in

an NoC architecture. The design focuses on distributed processing of DNC and

optimizing NoC traffic to enhance scalability. We summarize the contributions of

this work as follows:

• Scalable Multi-Mode NoC. We study the DNC computation and memory access

profile, especially history-based attention mechanisms. Based on the analysis, a

multi-mode NoC is designed to adapt to DNC’s traffic profile, improving both

traffic latency and scalability.

• Optimized Memory Partition. Conventional row or column-based partition is

suboptimal for DNC’s new state memories. We consider both content-based and
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history-based mechanisms and propose a submatrix -based partition to reduce

NoC traffic amount.

• Distributed and Efficiency-Enhanced Kernels. Both memory and memory op-

erations are distributed to tiles using a new distributed DNC (DNC-D) model.

The distributed computational kernels minimize the NoC traffic and provide

a higher parallelism. We propose local-global two-stage sort, usage skimming,

and softmax approximation to reduce the complexity and improve the compu-

tational efficiency.

Prototypes of HiMA are implemented in RTL and synthesized in a 40nm tech-

nology. HiMA running DNC and DNC-D demonstrates up to 6.47× and 39.1× im-

provements in speed, 22.8× and 164.3× improvements in area efficiency, and 6.1×

and 61.2× improvements in power efficiency, respectively, over MANNA, the state-of-

the-art MANN accelerator for NTM. Compared to an Nvidia 3080Ti GPU, HiMA

shortens the inference time by up to 437× and 2,646× when running DNC and DNC-

D.

1.3.5 Neural Ordinary Differential Equations

Neural ordinary differential equations (NODE) demonstrate superior performance

in modeling continuous-time events and normalizing flows. Their higher performance

are derived by using numerical ODEs between NN’s discrete hidden layers. To run

NODE, state-of-the-art NN accelerators need to be attached to general-purpose CPUs

or GPUs for elaborate ODE operations, which is unlikely to deliver a high efficiency.

To address this, we present a programmable accelerator for training NODE. We study

the weight and activation sparsity, the data dependency and reuse patterns, and

their impacts on hardware architecture design. The accelerator employs distributed

processing elements (PEs) and hierarchical memories that focus on maximizing per-
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formance for elaborate NODE operations. The key algorithmic and architectural

features are:

• We propose an adaptive sparsity operations during NODE training for reduced

computational complexity, while still maintaining excellent training accuracy.

• We develop a multi-mode PE design for NODE compute kernels with config-

urable interconnects between PEs to handle a variety of ODE solvers.

• We carry out software/hardware co-optimizations to save redundant operations,

memory accesses and inter-PE data movements. The hardware efficiency is

further enhanced by exploring hardware reuse and memory hierarchy.

1.3.6 DNC-Aided SCL Flip Decoding of Polar Codes

In this work, we propose to use DNC for bit flipping of practical-length polar

codes to enhance the accuracy of identifying error bit positions [115]. The main

contributions are summarized as follows:

1. A new two-phase decoding is proposed assisted by two DNCs, flip DNC (F-

DNC) and flip-validate DNC (FV-DNC), as shown in Figure 7.1. F-DNC ranks

mostly likely flip positions for multi-bit flipping. If decoding still fails, FV-DNC

is used to re-select flip positions for successive flip decoding trials.

2. We propose new action encoding with soft multi-hot scheme and state encoding

considering both PMs and received LLRs for better DNC training and inference

efficiency. Training methods are designed accordingly for the two DNCs, where

training database are generated based on supervised flip decoding attempts.

3. Simulation results show that the proposed DNC-aided SCL-Flip (DNC-SCLF)

decoder outperforms the state-of-the-art techniques by up to 0.34dB in error
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correction performance or 54.2% reduction in average number of decoding at-

tempts.
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CHAPTER II

Configurable Split-Tree Polar SCL Decoder

In this section, we present a configurable split-tree SC list decoder chip1 that works

by dividing a polar code’s decoding tree to sub-trees following a split-tree decoding

algorithm.

2.1 Decoding Algorithm

2.1.1 Successive Cancellation (SC) Decoding

The bits of the codeword x30 are modulated and transmitted through a physical

channel, where noise is injected. On the receiver side, each “bit” in the codeword is

received as a multi-bit “soft” value, known as log-likelihood ratios (LLRs). A polar

decoder operates on the LLRs to produce bit estimates. SC is the first and most

widely used decoding algorithm for polar codes.

The SC decoding algorithm was proposed in [116]. It can be visualized by a

decoding trellis as shown in Figure 2.1. The LLRs are provided on the left hand

side and the bit decisions are made on the right hand side. The trellis consists of

n = log2N stages of minimum (F ) and summation (G) operations. The F function

1Special thanks to Dr. Sung-Gun Cho for his help in physical design and chip testing
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Figure 2.2: SC and SCL (L = 2) decoding represented in a binary tree for a (4,4)
polar code.

receives two LLRs L1 and L2 and finds the minimum as follows:

F (L1, L2) = sign(L1) · sign(L2) ·min(|L1|, |L2|). (2.1)

The G function receives the partial modulo-2 sum of all previously decoded bits,

ûs, (not annotated in Figure 2.1) in addition to the two LLRs, and computes the

conditional sum as follows:

G(L1, L2, ûs) = L1 · (−1)ûs + L2. (2.2)

The decoding follows a bit-by-bit sequential order. An example of SC decoding is

shown in Figure 2.1, where in each decoding step, the highlighted paths and nodes are

active. One can easily see that only a subset of F and G functions at certain stages

are active at a time to decode 1 bit, leaving the other functions in the trellis idle.

Assume it takes 1 unit time per function (F or G) and the trellis is directly mapped in

hardware. The latency to decode a bit is variable ranging from 1 to log2N . It can be

shown that the latency to decode a N -bit codeword is 2N−2. For example, decoding

a 1024bit polar code requires 2046 time units. If the trellis is directly mapped to

hardware, the hardware complexity is approximately O(N log2N).
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The SC decoding can also be represented by the depth traversal of an N -level

binary tree, as shown in Figure 2.2. For a N = 4 polar code, the binary tree consists

of 4 levels, where the branching at each level represents the decoding of a bit to either

0 or 1. The sequential decoding starts from the top and descends. At each level i, a

branch is taken, corresponding to calculating the likelihood L(ûi), based on which ûi

is decoded.

For the depth traversal, we can compute the probability of the path, or the path

metric (PM) PM(ûi−1), for the traversal to reach a node representing the decision

of ûi−1. For the next step, the path can branch to one of the child nodes, ûi = 0 or

ûi = 1. The PM can be updated as follows:

PM(ûi) = PM(ûi−1) + log(1 + e(−1)
ûiL(ûi)) (2.3)

The goal of SC decoding is to find the most likely path, or the path of the highest

PM. To achieve this goal, SC decoding takes one branch at a level, and keeps the

path of the highest PM. The highlighted path on the left in Figure 2.2 represents the

survival path in SC decoding. The value associated with each node is the PM for the

decoding path from root node to that node. Note that after selecting the survival

branch at a level, the other branch and its child nodes will never be considered. In

the example, the SC decoder chooses the path

[
0 0 1 1

]
with a PM of 0.11.

2.1.2 Successive Cancellation List (SCL) Decoding

SC decoding makes one hard decision per step and never visits other possible

paths. Though SC decoding is simple to implement, it is not guaranteed to find the

best global path because the local optimal path may not be part of the global optimal

path. In the example shown in Figure 2.2, the global optimal path is

[
1 0 0 1

]
with a PM of 0.17, but SC decoding misses this path because it takes the optimal

local decision in step 1.
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The SCL decoding algorithm [117] overcomes this drawback by keeping a list of

L candidate paths at each level in traversing the binary tree. SC decoding can be

viewed as a special case of SCL decoding with L = 1. Figure 2.2 shows SCL decoding

for L = 2. At each level, the two most likely paths are kept. Moving to the next level,

the two most likely paths branch to 4 child nodes, leading to 4 candidate paths. The

SCL decoder selects the top 2 paths among the 4 to keep. In the end, the best path

is selected.

In general, a SCL decoder calculates the PMs of all 2L child nodes (ûi = 0 or

ûi = 1) that are connected to the L survival paths from the previous step based on

(2.4). The decoder selects L paths among the 2L candidates with the highest PMs

to keep. SCL decoding enhances the decoding accuracy with larger L.

PMj(ûi) = PMj(ûi−1) + log(1 + e(−1)
ûiL(ûi))

0 ≤ j ≤ L− 1, ûi ∈ {0, 1}. (2.4)

The decoding accuracy can be further improved by concatenating polar code with

cyclic redundancy check (CRC) [118, 119]. In addition to ranking PMs, codewords

corresponding to valid paths also need to pass CRC check.

An N -bit SCL decoder can be designed with an N -bit SC decoder core and ad-

ditional processing logic and memory to sort and track L candidate paths. Assume

it takes 1 unit time to sort and track candidate paths after decoding each bit, the

SCL decoding latency is (2N − 2) + N . However, the sorting overhead is only in-

curred if a bit is a free bit. Take the 1024b, rate-1/2 polar code selected by the 5G

eMBB standard as an example. The code has 512 free bits, so the decoding latency

is (2N − 2) +N/2 = 2558 time units, or 25% longer than SC decoding.
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2.1.3 Split-tree SCL Decoding

To reduce the latency and improve the throughput of SCL decoding, a split-tree

SCL (ST-SCL) decoding algorithm [120] was proposed. Conceptually, the N -level

decoding tree is split into M subtrees of N/M levels, equivalent to splitting the N -bit

code to M N/M -bit subcodes linked by a constraint matrix. An ST-SCL decoder

consists of M N/M -bit SC sub-decoders that operate on the subcodes in parallel.

Each SC sub-decoder works on a M× shorter subcode. The hardware complexity

of all M sub-decoders is O(M · N/M log2(N/M)) = N log2(N/M). The theoretical

decoding latency is reduced by a factor of M compared to SC or SCL decoding to

O(N/M), and the throughput is increased by the same factor. ST-SCL decoding

requires an extra reconciliation stage to combine sub-decoders’ local decisions.

To illustrate ST-SCL decoding, suppose a N = 8 polar code is decoded with a

list size of L = 2 and a split factor of M = 2. The 8-level decoding tree is split

to sub-tree 0 of 4 levels and sub-tree 1 of 4 levels, as shown in Figure 2.3, sub-tree

0 for û30 and sub-tree 1 for û74. The decoding of each subcode is based on a 4-bit

code trellis, similar to Figure 2.1. Frozen bits on each sub-tree are determined by the

original 8-level decoding tree. ST-SCL decoding proceeds level by level. At level i,
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the decoding consists of two stages:

1. Sub-decoding: SC sub-decoder 0 and sub-decoder 1 operate on their code trel-

lises and compute the likelihood of bit ûi and û4+i, respectively.

2. Reconciliation: The PMs of the 4 candidate paths per sub-decoder are computed

following (2.4), and the 2 survival paths per sub-decoder (called sub-paths) are

selected. The sub-paths are assembled, checked for constraints, and the top

2 global paths are selected. The top global paths are then disassembled and

distributed to the two sub-decoders.

The stage 1 above is the same as in SCL decoding, but stage 2, the reconciliation,

is new in ST-SCL decoding. If a bit is not a frozen bit, the sub-decoder provides L

sub-paths. In decoding a level, if none of the M bits are frozen bits, there could be

up to LM possible global paths made by combinations of sub-paths. The global PMs

(GPM) for the global paths are calculated by summing the sub-path PMs.

The complexity of the reconciliation stage is proportional to LM , limiting the

maximum split factor and list size. However, some of the LM global paths are invalid

and can be removed from evaluation. For example, in Figure 2.3, if u5 is a frozen bit,

the paths with û5 = 1 are not valid because û5 can only be 0. In the best case, if

both ûi and û4+i are frozen bits at level i, reconciliation is bypassed. Only in the case

when both ûi and û4+i are free bits at level i, all LM GPMs need to be evaluated.

Valid global paths are sorted by GPM. The top L global paths are kept and are

disassembled into sub-paths and distributed to the sub-decoders.

2.2 ST-SCL Decoder Architecture for High Throughput and

Low Latency

In this section, we present a ST-SCL decoder architecture to realize the near-

theoretical latency and throughput improvements of ST-SCL decoding by an efficient
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reconciliation stage and a significantly higher utilization of the SC decoding hardware.

A prototype ST-SCL decoder is shown in Figure 2.4 for the list size L = 2 and the

split factor M = 4. The prototype design supports configurable code length up to

N = 1024 and variable code rates. In decoding a 1024b polar code, the input LLRs

are equally split to 4 groups. A group of 256 LLRs is sent to a SC sub-decoder. The

4 SC sub-decoders operate on their decoding trellises to compute the 4 bit likelihoods

in parallel.

The reconciliation stage is divided to 3 steps:

1. PM calculation: For each sub-decoder, the PMs of 2L = 4 candidate paths are

calculated following (2.4) and L = 2 sub-paths are selected.

2. Enumeration and sorting: Based on frozen bit information, valid combinations

from the LM = 16 sub-path combinations are enumerated, and the GPMs are

calculated. The GPMs are sorted to select the top L = 2 global paths.

3. Update: The top global paths are disassembled and distributed to the 4 sub-
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decoders.

The 3 steps are carried out by PM calculator (PMC), global sorter (GS) and data

structure updater (DSU) blocks shown in Figure 2.4. We discuss the details of the

sub-decoding stage and the reconciliation stage below.

2.2.1 Sub-Decoder Design

Each SC sub-decoder decodes a polar code of length up to N = 256 bits (n = 8) by

recursively passing through an 8-stage decoder trellis following the sequential order

as illustrated in Figure 2.1. We group an F and a G function in a processing element

(PE) as shown in Figure 2.5. It consists of a F function described in (2.1), a G

function described in (2.2) and XORs to compute partial modulo-2 sums of decoded

bits. Back routing is needed to feed decoded bits back to G functions. The back

routing is implemented by routers between decoding stages.

A direct mapping of the decoding trellis produces an 8-stage sub-decoder archi-

tecture and each stage consists of 128 PEs. However, the hardware utilization of a

direct mapped architecture is very low. A well-known pattern in SC decoding is that

stage i has at most 2n−1−i PEs active at the same time. For example, in Figure 2.1 for

a N = 4 bit polar code (n = 2), stage 0 has 2 PEs active and stage 1 has 1 PE active

in decoding û0. Therefore, instead of the direct mapping, we design the sub-decoder

by instantiating only 2n−1−i or 27−i PEs in decoding stage i (named Di), as shown in
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Figure 2.6. In total, the 8 stages contain
∑7

i=0 27−i = 255 PEs, instead of 128×8 =

1024 PEs for a direct mapped architecture.

To achieve a high clock rate, the sub-decoder is pipelined to 8 stages, aligned

with decoding stages, D0 to D7. The pipeline boundaries are shown as dotted lines

in Figure 2.6. The 255 pipeline registers, L0 to L255, store intermediate likelihoods

that are propagated forward, and 255 state registers, U0 to U255, store the partial

modulo-2 sums of the decoded bits that are routed back.

To support a shorter code length, decoding stages can be bypassed. For example,

to support a 512b code, the code is split to 4 128b subcodes to be decoded by the

4 sub-decoders. In each sub-decoder, stage D0 is bypassed by forwarding the 128

input LLRs to the stage D1 PEs. Multiplexers are placed at the inputs to the stage

D1 PEs to select either the bypassed input LLRs or the intermediate LLRs from the

D0-D1 router. Bypassing stage D0 shortens the latency and increases the throughput

by reducing the pipeline depth from 8 to 7 stages. The clock inputs to the bypassed

D0-D1 pipeline registers are gated to save power. Similarly, to support a 256b code,

in each sub-decoder, stage D0 and D1 are bypassed by forwarding the 64 input LLRs

to stage D2 PEs. Both D0-D1 and D1-D2 pipeline registers are clock gated to save

power.
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2.2.2 Reconciliation Design

A 3-stage reconciliation is done by PMC, GS and DSU. For each sub-decoder, the

PMC takes the soft decision of a bit (LLR of a bit decision being 0) from each sub-

decoder output and the L survival paths to compute the PMs of 2L candidate paths

by (2.4). To reduce the complexity of exponentiation and logarithm evaluations, the

PMC employs a piece-wise linear approximation (2.5).

log(1 + ex) ≈


0 for x ≤ −1

0.5(x+ 1) for − 1 < x < 1

x for x ≥ 1

(2.5)

The PMC consists of 4 sets of hardware, one set per sub-decoder. A set con-

sists of one negation block to compute the LLR of a bit decision being 1, two log-

approximation blocks and 4 adders to compute the PMs of 4 candidate paths. From

the 4 candidate paths, the top 2 candidate paths are selected to be passed on to the

GS.

The GS is shown in Figure 2.7. It consists of a feasible path calculator, a global
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path calculator and a binary sorter. The feasible path calculator uses frozen bit

lookup tables (LUTs) to generate control signals for selecting only the valid global

paths. The LUTs can be reconfigured to support different code lengths and rates. To

save area, the LUTs are implemented as 4 copies of length-256 cyclic shift registers

to store frozen bit indicators for each subcode of up to 256 bits.

The global path calculator sums up all combinations of sub-paths using LM 4-

input adders. For M = 4 and L = 2, there are a total of LM = 16 possible global

paths. The complexity of wiring to route the local PMs and the number of adders

increase exponentially with the split factor M , limiting the practical M to 4. The

16 GPMs are filtered by the feasible path calculator. The GPMs of the invalid paths

are set to the minimum value. The filtered GPMs undergo a 4-stage binary sorter to

select the top and the second top global paths. The sub-paths that are present in the

top and the second top global paths are recorded. Note that the second top global

path is approximated by the smaller GPM of the final-stage comparator and this

approximation introduces negligible performance loss in mid-to-high SNR regime.

Finally, the DSU disassembles the top L global paths to constituent sub-paths

and distributes them to the sub-decoders. The disassembling is done by marking the

corresponding local PMs as visited and updating the list state registers in controller.

The back-propagation XORs also update the state registers Us in sub-decoders. The

worst case DSU delay happens when the newly decoded bits back-propagate through

all 8 stages of XOR network inside sub-decoders.

The 3-step reconciliation, including PMC, GS and DSU, occupies only 0.02mm2

in 40nm CMOS when synthesized at a 500MHz clock frequency.

2.2.3 Pipeline and Hardware Utilization

In the ST-SCL decoder, the 4 sub-decoders operate in parallel and feed to the

3-step reconciliation. The sub-decoder is pipelined to 8 stages, from D0 to D7; and
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the 3-step reconciliation is pipelined to 3 stages, PMC, GS, and DSU, abbreviated

by P, S and U. What complicates the design is that the decoding of any given bit

follows a different set of pipeline stages. The irregularity is due to two factors: 1) the

variable path through the trellis for decoding a bit, as shown in Figure 2.1, and 2) S

and U stages can be bypassed if all four bits at a given level are frozen bits.

An example is illustrated in Figure 2.8. Decoding the 4 bits in level 0 by the 4

sub-decoders requires going through all 8 stages of the trellis, corresponding to D0 to

D7 pipeline stages; decoding the 4 bits in level 1 by the 4 sub-decoders requires only

the last two stages of the trellis, corresponding to D6 and D7 pipeline stages; and so

on. In decoding level 0, all four bits are frozen bits, so S and U pipeline stages are

bypassed; similarly in decoding level 1, 2 and 3, S and U stages are also bypassed.

The irregularity is handled by routers in the sub-decoders and the bypass switches in

reconciliation.

To estimate latency and throughput, we use the 1024b, rate-1/2 polar code se-

lected by the 5G eMBB standard as an example. The code has 512 frozen bits. We

split the code into M = 4 subcodes to be decoded by 4 256b sub-decoders in parallel.

Since the latency of SC decoding is 2N − 2 for a N -bit code, decoding a 256b sub-
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code requires 510 clock cycles. The reconciliation latency depends on the frozen bit

pattern. Among 256 decoding levels, 101 levels involve four bits that are all frozen

bits and the S and U stages are bypassed, the remaining 155 levels involve at least

one free bit. Therefore, the reconciliation latency is 101 + 155×3 = 566 clock cycles.

In total, ST-SCL decoding requires 510 + 566 = 1076 cycles to decode a 1024b code,

or 47% times faster than SC decoding.

The hardware utilization is low if one frame is processed at a time. During sub-

decoding, P, S and U stages are idle; and during reconciliation, D0 to D7 stages are

idle. Furthermore, during sub-decoding, only one of D0 to D7 stages is active at a

time. If we define utilization as the average fraction of active hardware units at a

given clock cycle, sub-decoders’ PE utilization is only 1.57%, PMC’s utilization is

23.8%, and GS and DSU utilization are 14.4%. There is ample room to increase the

utilization for improving the efficiency and the throughput of the hardware.

2.3 Frame-Interleaving to Enhance Throughput and Efficiency

To increase the sub-decoders’ PE utilization, a straightforward way is to fold the

8 stages of 255 PEs in Figure 2.6 to 1 stage of 128 PEs. Folding reduces the PE count

to approximately half, allowing the PE utilization to be doubled to 3.14%, which is

still low. Complex wiring, muxes and control logic have to be added to support PE

reuse, costing an estimated 24% extra area and 21% longer clock period based on

synthesis.

A better approach is to exploit the pipeline to accommodate decoding of multiple

frames at the same time. Through frame interleaving, the same hardware is used

to process more workload, improving the hardware utilization and increasing the

throughput proportional to the number of frames. However, resource contentions may

occur. Suppose 8 frames are launched over 8 consecutive cycles (interleave gap = 1),

as shown in the 8-frame-interleave pipeline chart in Figure 2.8. The highlighted parts
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show contentions for a hardware unit. Resolving the contentions requires multiple

copies of hardware units, including PMCs, GSs and DSUs. For example, 2 copies of

D6 and 4 copies of D7 are required in each sub-decoder; and 4 copies of PMCs and 2

copies of GSs and DSUs are required in reconciliation.

We studied the optimal number of frames for interleaving by first checking the

amount of hardware addition as shown in Figure 2.9. With more frames, more hard-

ware units are needed for the worst-case resource contention scenarios. However, due

to the general low utilization of the baseline architecture, resource contentions due

to frame interleaving are relatively infrequent. As a result, only a small number of

hardware units need to be added to the baseline architecture, making frame interleav-

ing a relatively low-cost approach to increasing both throughput and efficiency. For

example, to support 8-frame interleaving, only 5 additional PEs are needed on top

of the 255 PEs in each sub-decoder, and 4 copies of PMCs and 2 copies of GSs and

DSUs are needed for reconciliation. What is not shown in Figure 2.9 is that N -frame

interleaving also requires N copies of state registers in each sub-decoder as well as

muxes to select frames.

Besides hardware duplication, frame interleaving also requires extra control and

dispatchers, which become more expensive with more frames. Interleaving more

frames produces a higher throughput, but the silicon area increases too. We use

chip synthesis in a 40nm CMOS technology at room temperature and the nominal
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tained from chip synthesis in 40nm CMOS at room temperature and the
nominal 0.9V supply voltage.

voltage 0.9V to evaluate the area with different number of interleaved frames. As

shown in Figure 2.10, the increased throughput initially outpaces the increase in sil-

icon area until it reaches 8 frames. If we use area efficiency, i.e., throughput/area,

as the metric, 8-frame interleaving is the optimal, as it increases the throughput by

7.8× and the area by only 3× over the baseline architecture.

As shown in Figure 2.11, with 8-frame interleaving, 2 copies of D6 and 4 copies

of D7 are used in each sub-decoder, and the PE utilization increases by 7.8×, from

1.57% to 12.4%. 4 copies of PMCs, 2 copies of GSs and DSUs are also needed, with a

utilization of 47.3%, 57.3% and 57.3%, respectively, which are 2×, 4× and 4× higher

than the baseline.

Frame interleaving proportionally increases the number of state registers. To es-

timate the power consumption, the split-4 list-2 8-frame-interleaved ST-SCL decoder

was synthesized and placed and routed in a 40nm CMOS process. Figure 2.12(a)

shows the power breakdown of the decoder. The switching power of the sequential

circuits is the dominant portion, claiming 88% of the total power. Further breakdown

of the switching power of sequential circuits in Figure 2.12(b) shows that the switch-
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Figure 2.12: (a) Power breakdown of a split-4, list-2, 8-frame-interleaved ST-SCL
decoder, and (b) detailed breakdown of the sequential switching power
of the ST-SCL decoder. Power is obtained from chip synthesis in 40nm
CMOS at room temperature the nominal 0.9V supply voltage.
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Table 2.1: Chip design optimization summary based on chip synthesis in 40nm CMOS
at room temperature and the nominal 0.9V supply voltage
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Figure 2.13: Chip design optimization summary based on chip synthesis in 40nm
CMOS at room temperature and the nominal 0.9V supply voltage.

ing power of the sub-decoders, the PMCs, and the sorters account for more than 90%

of the sequential switching power.

2.4 Summary of Decoder Design Optimization Steps

We summarize the decoder design optimization steps based on 40nm CMOS syn-

thesis for code length of 1024b and list size of 2 in Figure 2.13 and Table 2.1. The

conventional SCL decoder is set as the baseline. The baseline runs at maximum clock

rate of 720MHz to achieve a 240Mb/s throughput and a 0.43ms latency with a core

area of 0.138mm2. The PE utilization is only 0.49%.

The split-4 ST-SCL decoder enhances the throughput and latency by 2.3× to
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Figure 2.14: Clock gating design for split-4, 8-frame-interleaved ST-SCL polar de-
coder.

547Mb/s and 0.19ms, respectively, while incurring a 30% area penalty. Compared

to the baseline, the ST-SCL decoder increases the PE utilization to 1.57% and the

area efficiency to 3.11Gb/s/mm2. Folding the ST-SCL decoder produces 1.9× higher

throughput and lower latency compared to the baseline. Folding also increases the

PE utilization to 3.14%.

The split-4 ST-SCL decoder with 8-frame-interleaving boosts the throughput by

17.8× to 4.27Gb/s and shortens the latency by 2.3× compared to the baseline. The

area efficiency is 4.57× better than the baseline. The PE utilization is increased to

12.4%.

We apply a per-block clock gating (CG) strategy to reduce the active power con-

sumption of sequential circuits by exploiting the idle cycles. The PE utilization of the

sub-decoders is 12.4%, and the utilization of the reconciliation stage is approximately

50%. By systematically gating the clocks to unused hardware units, the active power

is reduced proportionally.

Adding per-block CG increases the area by 2.6% for the 8-frame-interleaved split-

4 ST-SCL decoder. CG is implemented with a CG controller sending clock enables

to sub-decoders, PMCs and GSs as shown in Figure 2.14. Clock enable patterns are

determined by code configurations including code length, code rate and frozen bit
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Figure 2.15: Microphotograph of the decoder test chip fabricated in a 40nm CMOS
technology.

locations. For each code, clock enable patterns are pre-computed based on stage D0

to D7 active/idle patterns, and they are stored in LUTs inside the CG controller.

The decoder top controller sends the code configuration to the CG controller, and

the CG controller outputs clock enable signals by reading from the LUTs. In the test

chip design, we disable clock input to a sub-decoder stage if the stage will be idle

for at least 3 consecutive cycles to avoid frequent off/on switching. For shorter code

lengths of 512b and 256b, CG latch 0 and latch 1 inside sub-decoders will switch off

the clock inputs to the bypassed stages. The CG controller also stores the number of

required PMCs and GSs for each cycle and disables the clock inputs to unused PMCs

and GSs to save power.

2.5 Decoder Chip Implementation and Measurements

A test chip for the split-4, list-2, 8-frame-interleaved, configurable polar ST-SCL

decoder supporting code length up to 1024b and variable code rates was implemented

in 40nm CMOS. The chip microphoto is shown in Figure 2.15. The chip measures

0.91mm×0.91mm, and the decoder core measures 0.70mm×0.91mm, or 0.64mm2.

49



Figure 2.16: Bit error rate and frame error rate performance of 1024b rate-1/2 ST-
SCL decoder with split factor 4 and list size 2 using 6-bit quantization
and 8-bit CRC.

The chip incorporates input buffers to provide input vectors and output buffers to

collect the decoded bits. An on-chip CPU with UART interface enable testing of

various code lengths, code rates, number of interleaving frames, and clock gating. It

also supports optional post-processing. The chip is verified to be fully functional for

code lengths of 512b and 1024b, and code rates of 1/2, 2/3, 3/4 and 5/6.

2.5.1 Measurement Results

The bit error rate (BER) and frame error rate (FER) for decoding a split-4 list-2

1024b rate-1/2 code are plotted in Figure 2.16. The 6-bit quantized decoder uses an 8-

bit CRC to assist with final path selection for a better error-correction performance.

The design achieves a FER of 10-5 at 3.55dB, demonstrating 0.15dB and 0.65dB

coding gains over the floating-point SCL (L = 2) decoder and the floating-point

SC decoder, respectively. Compared to the floating-point belief propagation (BP)

decoder, our design provides a 1.1dB coding gain.
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Figure 2.17: Measured throughput, power and energy efficiency of various configu-
rations for the 40nm ST-SCL decoder chip in decoding 1024b rate-1/2
polar codes at room temperature.

The decoder test chip runs at a maximum clock frequency of 430MHz at a 0.9V

nominal supply voltage and room temperature when decoding 1024b, rate-1/2 polar

codes. Figure 2.17 summarizes the measured throughput and power consumption of

the test chip. In the baseline design without frame interleaving and clock gating,

the decoder delivers a 407Mb/s throughput. It consumes 25.39mW power, which

translates to an energy efficiency of 61.92pJ/b. To achieve a higher throughput, 8-

frame interleaving is enabled to provide an 8× throughput to 3.25Gb/s at a power

consumption of 64.29mW. The energy efficiency is improved to 19.80pJ/b, due to the

efficient sharing and reusing of under-utilized hardware. The power increase from

the baseline to the 8-frame-interleaved design is mainly attributed to three factors:

1) the number of state registers (Ls and Us) in the sub-decoders is increased by

8×; 2) PE, PMC and GS/DSU utilization are increased to 12.4%, 47.3% and 57.3%,

respectively; and 3) decoder controller and router switching activities are increased to

support decoding 8 frames in parallel. Among the three factors, factor 1) contributes

the most power increase. The sub-decoders are estimated to consume 31% of the total

power, 90% of which is sequential power consumed by state registers. Compared to a
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Figure 2.18: Measured power of the 40nm test chip for decoding 512b and 1024b polar
codes at room temperature and different supply voltages.

decoder that supports only 1 frame at a time, the 8-frame-interleaved design requires

8 sets of state registers, and the total chip power increases by about 2.2× (calculated

from 31%×90%×8) due to the sub-decoder’s state register increase. Combining factor

2) and factor 3), the power of the 8-frame interleaved decoder increases by 2.5× over

the single-frame decoder.

Clock gating can be enabled to reduce the power consumption to 42.80mW and

improve the energy efficiency to 13.17pJ/b. Scaling the supply voltage from 0.9V to

0.6V reduces the maximum clock frequency from 430MHz to 100MHz and further

improves the energy efficiency to 7.40pJ/b.

Figure 2.18 shows the power consumption for decoding 1024b and 512b codes of

rate 1/2 and 3/4, and the effect of frame interleaving and clock gating. The power

was recorded at the lowest operating voltage at each frequency. From the baseline

without frame interleaving to 8-frame interleaving, the power increases as expected,

but the per-block clock gating effectively lowers the power. For a given code length,
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Table 2.2: Comparison of State-of-the-Art Polar Decoders

decoding a higher code rate (in this case 3/4) consumes slightly higher power, due to

more switching activities to process more free bits. For a given code rate, decoding

a shorter code length costs less power, due to the sub-decoders’ bypassing of trellis

stages.

2.5.2 Comparisons

The ST-SCL decoder test chip is compared with the state-of-the-art polar decoder

designs in Table 2.2 including both synthesis results (where no test chip was fabricated

and power was not reported) and silicon measurements. Compared to the most recent

synthesis results of SCL decoders [121, 122], our ST-SCL chip outperforms by more

than 2.15× in throughput and 1.88× in area efficiency than [121] before normalization.

After technology normalization to 40nm and 0.9V supply voltage, the area efficiency

of [121, 122] surpass our design, which is mainly due to three factors: 1) [121, 122] do

not support variable code lengths and rates; 2)[121, 122] use simplified or modified

SCL decoding algorithms with performance loss; and 3) [121, 122] are synthesis results
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only without silicon measurements. Only silicon results capture the layout and wiring

congestion overheads that can be significant in high-throughput decoder designs.

Compared to the recent fabricated silicon SCL polar decoders [29, 18] in more

advanced 28nm and 16nm technology nodes, our design exceeds the throughput re-

ported in [29, 18]. After technology normalization, our design achieves an order of

magnitude better area efficiency (in Gb/s/mm2) and an order of magnitude better

energy efficiency (in pJ/b) than [29, 18] (note that [18] did not report power, and the

energy efficiency cannot be estimated).

Compared to the much simpler SC decoder designs [20, 19], the ST-SCL decoder

delivers a better error-correction performance as shown in Figure 2.16, and the energy

efficiency is more than an order of magnitude better after technology normalization.

Compared to the most recent belief propagation (BP) decoder synthesis [21], the ST-

SCL decoder achieves more significant coding gain as shown in Figure 2.16, and the

energy efficiency is still 4.2× better.

2.6 Summary

We present a fabricated test chip in a 40nm CMOS technology that implements

a ST-SCL decoder for polar codes. In this design, a given polar code is split into 4

sub-codes and decoded separately with smaller sub-decoders followed by a reconcil-

iation step in every decoding stage. Taking advantage of the under-utilized PEs in

the sub-decoders, 8 frames are interleaved and decoded in parallel to achieve a high

throughput and area efficiency. The decoder supports variable code lengths up to

1024b and variable code rates by programming the control LUTs. Per-block clock

gating is implemented to further reduce the power consumption and improve the

energy efficiency. The 0.64mm2 test chip is measured to achieve a decoding through-

put of 3.25Gb/s at 430MHz and the nominal supply voltage of 0.9V, consuming

13.17pJ/b, and it demonstrates a competitive error-correction performance. Voltage
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and frequency scaling of the chip to 0.6V and 100MHz further improves the energy

efficiency to 7.4pJ/b at a reduced throughput of 760Mb/s. The test chip outperforms

the state-of-the-art SCL polar decoder chips in throughput, and its normalized en-

ergy efficiency and area efficiency are an order of magnitude better than the latest

published work.
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CHAPTER III

Efficient Post-Processors for LDPC Codes

In this section, we take the inspiration from simulated annealing to generalize

the post-processor design using three methods: quenching, extended heating, and

focused heating, each of which targets a different error structure. The resulting post-

processor1 is demonstrated to lower the error floors by two orders of magnitude and

can be integrated to a belief-propagation decoder with minimal overhead.

3.1 Min-Sum Decoding Algorithm

Assume a binary phase-shift keying (BPSK) modulation and an additive white

Gaussian noise (AWGN) channel. The binary values 0 and 1 are mapped to 1 and

-1, respectively. The min-sum decoding can be explained using the factor graph. In

the first step of decoding, each VN xi is initialized with the prior log-likelihood ratio

(LLR) defined in (3.1) based on the channel output yi:

Lpr(xi) = log
Pr (xi = 0 | yi)
Pr (xi = 1 | yi)

=
2

σ2
yi (3.1)

where σ2 represents the channel noise variance.

After initialization, VNs send the prior LLRs to the CNs along the edges defined

by the factor graph. The LLRs are recomputed based on parity checks, as in equa-

1Special thanks to Dr. Shuanghong Sun for her help in FPGA design and emulations
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tion (3.2), and returned to the VNs. Each VN then updates its decision based on

the posterior LLR that is computed as the sum of the prior LLR from the channel

and the LLRs received from the CNs, as in equation (3.3). One round of message

exchange between VNs and CNs completes one iteration of decoding. To start the

next iteration, each VN computes the marginalized LLRs, as in equation (3.4), and

passes them to the CN.

L(rij) = min
i′∈Row[j]\i

|L(qi′j)|
∏

i′∈Row[j]\i

sgn (L(qi′j)) (3.2)

Lps(xi) =
∑

j′∈Col[i]

L(rij′) + Lpr(xi) (3.3)

L(qij) = Lps(xi)− L(rij) (3.4)

The LLRs passed between VNs and CNs are known as the variable-to-check mes-

sage (VC message, L(qij)) and check-to-variable message (CV message, L(rij)), where

i is the VN index and j is the CN index. In representing the connectivity of the factor

graph, Col[i] refers to the set of all the CNs connected to the ith VN and Row[j]

refers to the set of all the VNs connected to the jth CN.

The magnitude of L(rij) computed using (3.2) is overestimated and correction

terms are introduced to reduce the approximation error. The correction is in the

form of either an offset or a normalization factor [123].

A hard decision is made in each iteration based on the posterior LLR, as in (3.5).

The iterative decoding is allowed to run until the hard decisions satisfy all the parity

checks or when an upper limit on the iteration number is reached.

x̂i =


0 if Lps(xi) ≥ 0

1 if Lps(xi) < 0

(3.5)
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In a practical decoder implementation, the VC messages and CV messages are

quantized to fixed point. We use the notation Qp.q to indicate a two’s-complement

fixed-point quantization with p bits for integer and q bits for fraction.

3.2 Error Floor and Trapping Set

It is known that TS is the fundamental cause of error floor in BP decoding of

LDPC codes [35]. We repeat the definition of TS [38] and a special type of TS called

elementary TS, or ETS, that is the most dominant in error floors.

Definition 1. Trapping set (TS) and elementary trapping set (ETS)

An (a, b) TS is a configuration of a number of VNs, for which the induced subgraph

in G contains b > 0 odd-degree CNs with respect to the TS. An (a, b) ETS is a TS

for which all CNs in the induced subgraph have either degree 1 or 2 with respect to

the TS, and there are exactly b CNs of degree 1 with respect to the TS. The CNs of

degree 1 are called degree-1 CNs, and the CNs of degree 2 are called degree-2 CNs.

We will focus the following discussions on ETS as it is the most common type

of TS and the most damaging in causing error floors. A factor graph of a small

LDPC code is shown in Figure 3.1, which contains a (3,3) ETS T . Each VN in T is

connected to 1 degree-1 CN and 2 degree-2 CNs.

To see how an ETS can cause a decoding error, we use an example of transmitting

an all-zero vector of length 12, which is a codeword for the code defined in Figure 3.1.

Suppose the received word contains errors in the first three bits. That is, the VNs

in T are initialized to 1 and the remaining VNs are initialized to 0. The received

word does not constitute a valid codeword, as the degree-1 CNs labeled U are not

satisfied. Note that among the satisfied CNs labeled S, the degree-2 CNs labeled F

are falsely satisfied, i.e., the ones that are connected to an even number of bits in T .

In BP decoding, the CV messages from the degree-1 CNs in U will attempt to correct
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S: satisfied checks

T: elementary trapping set

U: unsatisfied checksF: falsely satisfied checks

Figure 3.1: Illustration of a (3,3) ETS.

the wrong bits, but the CV messages from the degree-2 CNs in F will reinforce the

wrong bits. If there is stronger reinforcement than correction of the wrong bits, the

decoder is trapped in the non-codeword ETS.

Many LDPC codes contain ETS of lower weight than the minimum distance of the

code. As a result, the decoders can be more easily trapped in an ETS at a moderate

to high SNR level than converging to a minimum-distance codeword. The presence of

ETS results in error floors. Reducing the likelihood of trapping in the local minimum

due to ETS is the key to lowering the error floors of LDPC codes.

3.3 Simulated Annealing and Post-processing in BP Decod-

ing

The local minimum problem has been studied extensively in the field of opti-

mization. Notably, the SA algorithm combines gradient descent and random walk

to escape local minima [107, 108, 109]. Annealing is a process in metallurgy, where

metal is heated to a high temperature and then undergoes controlled cooling to form
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a low-energy crystalline structure. If metal contains no defects, its energy is at the

minimum; otherwise, it will be at a higher energy level. An analogy can be made for

decoding: the highest energy occurs in the beginning of decoding when most errors

or defects are present. As decoding proceeds, errors are corrected and the energy

goes down, just as the cooling process in annealing that removes defects. When the

decoding converges to a correct codeword, the energy goes down to the minimum,

like metal reaching its defect-free, lowest-energy crystalline state.

The decoder can be trapped in an ETS. The weight of the ETS that induce error

floors is often lower than the minimum distance. If an ETS is within the minimum

distance away from the correct codeword, a local search algorithm can be applied.

SA is such an algorithm that targets local minimum problems.

3.3.1 Neighborhood Identification for Trapping Sets

SA uses heating to perturb the local minimum, making it unstable before breaking

away from it. The most efficient way is to heat only the defective points in order to

keep the amount of perturbation low and reduce the risk of moving much further

away from the closest global minimum. Similarly in LDPC decoding, heating needs

to be directed to the error bits in an ETS. The ETS is not known, but the degree-1

CNs are known because they are not satisfied. We can trace the neighboring VNs of

the degree-1 CNs, called the neighborhood set N , as labeled in Figure 3.1.

The neighborhood set contains one or more VNs in the ETS, and also VNs outside

of the ETS. There is no choice but to apply heating to the entire neighborhood set.

As a result, heating will perturb not only the error bits but also the correct bits. In

practice, the neighborhood set can be as large as tens or a few hundred bits, therefore

heating needs to be carefully adjusted to be effective to resolve the local minimum,

but not too much to be pushed to a different codeword.
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3.3.2 Heating

Heating is used to perturb the local minimum. In BP decoding, perturbation

can be done by reweighting the VC and CV messages [51] or soft bit flipping. In

Figure 3.1, the bits in the ETS T are incorrect. Each VN in T receives CV messages

from 2 degree-2 CNs to reinforce the error and a CV message from 1 degree-1 CN that

attempts to correct the error. To perturb this local minimum and possibly escape the

local minimum, the CV messages from the satisfied CNs (including degree-2 CNs) are

weakened, and the CV message from the degree-1 CN is strengthened. This procedure

is called message reweighting. As the magnitude of the messages are changed, noise

is injected to the system to achieve a perturbation effect.

Message reweighting applied to the VNs in an ETS helps correct errors, but mes-

sage reweighting applied to the VNs outside the ETS can possibly introduce more

errors. For example, in Figure 3.1, v4 /∈ T , and v4 is connected to c1 and c4 that are

both satisfied and c7 that is degree-1 and unsatisfied. By the reweighting procedure

outlined above, the CV messages from c1 and c4 to v4 are weakened, and the CV

message from c7 to v4 is strengthened, which is likely to cause v4 to flip to the incor-

rect value. Therefore, heating needs to be carefully adjusted to avoid perturbing too

many correct bits and eventually converge to an undesired global minimum.

3.3.3 Post-Processing Procedure

BP decoding with post-processing follows a two-phase procedure. In the first

phase, conventional BP decoding is performed. If BP decoding fails to converge after

a set number of iterations, denoted as M , at a moderate to high SNR, the decoding

is most likely trapped in a local minimum and it enters the second phase.

In the second phase, post-processing is invoked. Neighborhood set needs to be

properly identified for effective heating. The identification can be conveniently done

in VN by inspecting the sign of incoming CV messages: if the sign indicates that the
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parity check is unsatisfied, the VN tags the bit as part of the neighborhood set N .

Heating is performed by reweighting the reliability of CV messages, i.e., increasing

the reliability of CV messages from the unsatisfied checks to N , or decreasing the

reliability of CV messages from the satisfied checks to N , or both. Equation (3.6)

describes a way to implement message reweighting that decreases the reliability of

the CV messages from the satisfied CNs S to the VNs in the neighborhood set N to

a low value A0. The value of A0 determines the amount of heating, or perturbation

injected to the local minimum. Heating can also be done using soft bit flipping to be

described in Section 3.4.3.

L(rij) =
∏

i′∈Row[j]\i

sgn (L(qi′j)) ·


A0 if vi ∈ N , cj ∈ S

mini′∈Row[j]\i |L(qi′j)| otherwise.

(3.6)

After P iterations of heating, N iterations of BP decoding is applied to cool down.

The post-processing procedure is summarized in Algorithm 1.

Algorithm 1. Post-Processing Procedure

1. BP decoding: run for M iterations. If there are unsatisfied CNs, continue

post-processing.

2. Post-processing:

(a) Heating: run P iterations of reweighted message passing.

(b) Cooling: run N iterations of BP decoding.

In Algorithm 1, M is set to ensure that the decoder has been trapped in an ETS,

and N is set to ensure that the decoder has enough time to cool down to the global

minimum after heating. In this paper, we set M = N = 20.

62



3.3.4 Implementing Post-Processing in Hardware

The primary design goal of post-processing is to lower the error floor with minimal

cost of area, power, latency and throughput. An ideal post-processor works likes a

“plug-in” feature that can be easily integrated to any standard LDPC decoder.

In a standard min-sum LDPC decoder, a CN is implemented as a comparison tree

to find the first and the second minimum. A CN often contains little memory and

does not retain states. On the other hand, a VN keeps state and stores prior and

posterior information. If post-processing is implemented by reweighting CV messages,

a CN needs to be augmented to keep track of all the VNs in the neighborhood set

N , which could be costly. Therefore, instead of reweighting CV messages, we devise

an alternative by reweighting VC messages. In this alternative approach, a VN is

augmented by 1 bit to track whether it belongs to the neighborhood set N . Because

the magnitude of VC messages tends to saturate to the maximum value allowed by

quantization in a few iterations, the reweighting is implemented in VN by decreasing

the magnitude of the VC message from a VN in the neighborhood set to a satisfied

CN to a low value A0. The reweighted (magnitude-reduced) VC message propagates

to the satisfied CN, and through the CN’s minimum operation becomes reweighted

CV message. Equation (3.7) describes post-processing by reweighting VC messages.

L(qij) =


A0 · sgn(Lps(xi)− L(rij)) if vi ∈ N , cj ∈ S

Lps(xi)− L(rij) otherwise.

(3.7)

The choice of A0 depends on the quantization. Assume VC messages are quantized

to Qp.q, the possible A0 values are {0, 2−q, 2−q+1, ..., 2p−1 − 2−q}. The lower the A0,

the more noise is injected to the local minimum. As a result, lower A0 is more effective

in resolving an ETS error, but also highly likely to cause more perturbation to the

bits outside the ETS, which may push the decoder to an undesired global minimum.

Detailed message reweighting strategies are dependent on the structures of the ETS,
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which will be elaborated in Section IV.

Post-processing does not require changing the code structure or decoder archi-

tecture. Muxes and label bit registers are added for VC message reweighting and

neighborhood identification, respectively. A controller monitors the decoding and

enables post-processing upon detecting failed CNs after M iterations; therefore post-

processing is activated at a rate of approximately the decoding FER and has a neg-

ligible impact on the decoding throughput and the average latency.

We demonstrate post-processing implementation based on two commonly used

LDPC decoder architectures, the fully-parallel architecture [124] and the row-parallel

architecture [125]. A fully-parallel architecture is efficient for short code length and

it yields the highest throughput. In a fully-parallel decoder, all CNs, VNs and their

interconnections are instantiated in hardware exactly as those in the code’s factor

graph. Assume a decoder contains Q CNs and K VNs, and the VN degree is dv.

At each VN, a label register is added to indicate whether the VN belongs to the

neighborhood set, and a post-processor is added to perform neighborhood labeling and

VC message reweighting, as shown in Figure 3.2. The post-processor takes the signs of

dv CV messages (without marginalization) as inputs sat to identify whether CNs are

satisfied. If post-processing is enabled and at least one incoming CV message indicates

that the CN is unsatisfied, the post-processor turns the VN’s neighborhood label on

with a unary NAND gate. In performing post-processing, the VN’s neighborhood

label is AND’ed with the sat of each CV message to determine whether reweighting

is enabled. If reweighting is enabled, a MUX is used to select the reduced magnitude

of A0 for the outgoing VC message v2c pp.

A row-parallel decoder architecture is the most popular architecture for moderate

to long QC LDPC codes, including many that have been used in standards. A row-

parallel architecture often employs layered BP decoding. Each iteration is divided into

multiple layers of processing. An example decoder architecture is shown in Figure 3.3.
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Figure 3.2: Post-processing added to a fully-parallel decoder.

Each layer processing is done by multiple processing elements (PEs), each consisting

of a physical VN and memory. The read/write addresses are stored in lookup tables.

In the row-parallel architecture, a physical VN is time-multiplexed and it assumes

the roles of multiple logical VNs (VNs in the factor graph), one in each layer. A

label memory is added to store the neighborhood labels of the logical VNs. A post-

processing controller is added to the PE to perform the same labeling and reweighting

functions as what the post-processor does in the fully-parallel architecture. The only

difference is that the post-processing controller performs the labeling and reweighting

serially as the CV messages are received one at a time.

Table 3.1 shows the overhead when post-processing is added to a fully-parallel

decoder and a row-parallel decoder for the IEEE 802.11n (648,540) LDPC code and

the IEEE 802.11n (1944,1620) LDPC code, respectively. The percentage in the brack-

ets indicate the device utilization. The 100 MHz clock frequency can be kept even

after post-processing is added, so the average throughput and latency can be kept

constant. Implementing post-processing on the row-parallel decoder uses 4.5% and

8.3% more slice registers and slice LUTs, respectively, compared to the baseline. The
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Figure 3.3: Post-processing added to a row-parallel decoder.

cost is even lower when post-processing is added to the fully-parellel decoder.

3.4 Error Structure and Post-Processing Methods

Studying the error floor phenomenon requires fast simulations. FPGA accelerated

emulations are particularly useful because software-based simulations often take weeks

or months to reach low BER levels. In previous work [126], a library and script based

approach was developed to automate the FPGA emulations for LDPC decoders. In

this work, we used it to collect errors in the error floor region.

After collecting enough errors in the error floor region, we analyze the ETS struc-

tures associated with these errors. The ETS structures are dependent on the code

structure. The post-processing method is formulated to be the most effective towards

the structures.

3.4.1 Type I ETS and Quenching

The (2048,1723) RS-LDPC code [127] for the IEEE 802.3an standard [34] is a

well-studied code for error floor investigation [36]. The H matrix of this regular code
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Table 3.1: Evaluation of Post-Processing Implementations of Fully-Parallel and Row-
Parallel Decoders (based on Xilinx Virtex-5 XC5VLX155T FPGA)

Design
Fully-par. (648,540) dec. Row-par. (1944,1620) dec.

Baseline Post-proc added Baseline Post-proc added

Slice 13,724 13,901 4,432 4,633

registers (14.24%) (14.43%) (4.60%) (4.81%)

Slice 39,007 40,822 10,066 10,901

LUTs (40.30%) (42.17%) (10.4%) (11.2%)

Occupied 10,852 11,208 4,782 4,844

slices (44.70%) (46.17%) (19.7%) (19.9%)

BRAMs
64 64 35 35

(29.9%) (29.9%) (16.4%) (16.4%)

has a column degree of 6, a row degree of 32, and 64×64 permutation matrices as

component submatrices [127]. The code has a girth of at least 6. The code has an

error floor below 10-10. It has been shown that the error floor is dominated by (8,8)

ETS errors [36].

The (8,8) ETS is illustrated in Figure 3.4 using a simplified representation that

only includes VNs in the ETS and degree-1 CNs. The (8,8) ETS consists of 8 VNs,

each of which is connected to one degree-1 CN. The degree-2 CNs are shown implicitly

in Figure 3.4 as lines connecting pairs of VNs in the ETS. The illustration makes it

clear if the bits in the ETS are initialized with incorrect binary values, these VNs will

reinforce each other through the degree-2 CNs. As each VN in the ETS neighbors 5

degree-2 CNs and only 1 degree-1 CN, a BP decoder can be easily trapped in this

local minimum. The (8,8) ETS is an example of a Type I ETS. A Type I ETS is

one in which each VN is connected to exactly 1 degree-1 CN.

To resolve a Type I ETS error, Algorithm 1 can be used with P = 1, i.e., only

one iteration of heating followed by immediate cooling, as proposed by [51]. This

post-processing method is named “quenching”. Quenching is effective towards Type

I ETS errors, since the neighborhood set traced from the unsatisfied degree-1 CNs
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Figure 3.4: An (8,8) ETS of a (2048,1732) RS-LDPC code.

contains the entire ETS. One iteration of heating reaches all VNs in the ETS, and

cooling can be applied immediately after to help convergence.

Using the (8,8) ETS illustrated in Figure 3.4 as an example, after the heating

step, each VN in the ETS receives 5 weakened CV messages from degree-2 CNs and

1 CV message from a degree-1 CN. The lower the reweighted value A0 is, the more

likely the CV message from the degree-1 CN can overcome the sum of 5 weakened

CV messages from the degree-2 CNs.

Previous work showed that over 97% of the ETS errors in the error floor region of

the (2048, 1723) RS-LDPC code are corrected using quenching with proper choice of

A0, resulting in nearly two orders of magnitude lower error floor as shown in Figure 3.5

[51]. A0 = 1 is used in this experiment.

3.4.2 Type II ETS and Extended Heating

To extend from previously proposed quenching post-processing [51], we choose

a (5,47)-regular rate-0.89 (2209, 1978) array LDPC codes [111] for investigation of
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Figure 3.5: Error rate of the (2048, 1723) RS-LDPC code before and after post-
processing using quenching.

other types of ETS structures. The H matrix of this code can be partitioned into 5

row groups and 47 columns groups of 47×47 permutation matrices.

We collected 274 errors through FPGA emulation of a Q4.0 (2209, 1978) array

LDPC decoder in the error floor region (Eb/N0 = 5.6 dB, 5.8 dB, and 6.0 dB). 243

out of the total 274 errors are ETS errors, among which there is only 1 Type I ETS

error. We then applied quenching to post-process these errors and the results are

summarized in Table 3.2. A resolving rate of only 73% indicates that quenching

alone is not sufficient to lower the error floor of array code.

From Table 3.2, one can observe that, unlike the RS-LDPC code discussed above,

the error floor of array LDPC code is not dominated by only one kind of ETS error,

but attributed to several kinds of ETS errors, including (8,6), (9,5), (8,8), and (10,4)

ETS errors [36]. An (8,6) ETS is illustrated in Figure 3.6. It is an example of type

II ETS. A Type II ETS is one in which each VN is connected to no more

than 1 degree-1 CN, and at least 1 VN is not connected to any degree-1

CN. The VNs that have no neighboring degree-1 CN are called inner bits,
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Table 3.2: Error Profile of the (2209, 1978) Array LDPC Code and Effectiveness of
Quenching

ETS
Error Resolved by

count quenching

(6,8) 6 3 (50%)

(7,9) 5 2 (40%)

(8,6) 124 105 (85%)

(8,8) 20 13 (65%)

(9,5) 37 33 (89%)

(10,4) 12 8 (67%)

(10,6) 9 5 (56%)

(10,8) 7 7 (100%)

other ETS 23 12 (52%)

non-ETS 31 11 (58%)

Total 274 199 (73%)

and the VNs that have only 1 neighboring degree-1 CN are called outer

bits.

In the type II (8,6) ETS illustrated in Figure 3.6, the inner bits, v7 and v8, are

connected to all satisfied checks, through which they reinforce the outer bits in the

ETS. The inner bits are more “deeply” trapped than the outer bits since they are

not connected to any unsatisfied checks. One iteration of heating helps correct the

outer bits, but it does not propagate to the inner bits. The immediate cooling after

only one iteration of heating hampers the full recovery. In annealing language, the

temperature of the outer bits rise after the heating step, but the inner bits are still

cold. Therefore, we propose a second post-processing method called extended heating

by setting P > 1 in Algorithm 1.

Compared to quenching, extended heating prolongs heating to P iterations, where

P > 1, before cooling. The idea is to heat all the bits in the ETS, including both outer

and inner bits, to raise the temperature evenly. The neighborhood set is updated after
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Figure 3.6: Illustration of a type II (8,6) ETS.

each iteration of heating, allowing the set to be enlarged to include inner bits so that

heating can be propagated to them. Prolonged heating allows the bits in a ETS to

accumulate enough energy to avoid falling back to the same local minimum.

Among the 236 ETS errors from FPGA emulations, there are only 1 type I ETS

error and 184 type II ETS errors that are listed in Table 3.3. Quenching with P =

1 and A0 = 1 resolves the type I ETS error but only 84% of the type II ETS errors.

In comparison, extended heating with P = 10 and A0 = 1 resolves 97% of the type

II ETS errors, which demonstrates its effectiveness. When the number of inner bits

is large, e.g., in (10,4), (10,6), and (11,5) ETS errors, the success rate of quenching

is particularly low, but extended heating works well consistently.

3.4.3 Type III ETS and Focused Heating

Besides type I and type II ETS errors, there are 58 additional ETS errors collected

for the Q4.0 (2209, 1978) array LDPC decoder. The (6,8) ETS shown in Figure 3.7 is

an example of them. The (6,8) ETS is neither type I, nor type II, because two of the

bits, v1 and v4 are each connected to two unsatisfied checks. It is an example of type
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Table 3.3: Type II ETS Error Profile of the (2209, 1978) Array LDPC Code and
Effectiveness of Quenching and Extended Heating

ETS
Inner Error Resolved by Resolved by

bits count quenching extended heating

(8,6) 2 124 105 (85%) 121 (98%)

(9,5) 4 37 33 (89%) 36 (97%)

(10,4) 6 12 8 (67%) 12 (100%)

(10,6) 4 5 3 (60%) 4 (80%)

Other - 6 6 (100%) 6 (100%)

Total - 184 155 (84%) 179 (97%)

III ETS. A Type III ETS is one in which 1 or more VNs are each connected

to more than 1 degree-1 CNs. The VNs that have only 1 neighboring

degree-1 CN are called singular bits, and the VNs that have more than 1

neighboring degree-1 CNs are called plural bits.

A type III ETS typically has more unsatisfied checks than the size of the ETS.

Since the neighborhood set is traced from the unsatisfied checks, the neighborhood

set is relatively larger. A large neighborhood set means more bits, mostly correct bits,

are perturbed in heating. Table 3.4 above lists the dominant type III ETS errors that

have been collected in the error floor region. Quenching with P = 1 and A0 = 1

resolves only 55% of the type III ETS errors. Extended heating with P = 10 and

A0 = 1 resolves 86%. Overheating is the problem in both cases that cause the two

methods to be not as effective.

In a type III ETS, a plural bit, e.g., v1 or v4 in Figure 3.7, is connected to more

than one unsatisfied checks. Therefore, a plural bit candidate can be identified as one

that is connected to more than one unsatisfied checks. After the plural bit candidates

are identified, they can be corrected by bit flipping, allowing the unsatisfied checks,

e.g., c1, c2, c5 and c6 in Figure 3.7, to be turned to satisfied checks. After bit flipping,

heating can be applied to a smaller and focused neighborhood set to be more effective.
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Figure 3.7: Illustration of a type III (6,8) ETS.

Table 3.4: Type III ETS Error Profile of the (2209, 1978) Array LDPC Code and
Effectiveness of Extended Heating and Focused Heating

ETS
Plural
bits

Error
count

Resolved by

quenching
extended extended and

heating focused heating

(6,8) 2 5 3 (60%) 4 (80%) 5 (100%)

(8,8) 2 11 7 (64%) 10 (91%) 11 (100%)

(8,8) 1 4 4 (100%) 4 (100%) 4 (100%)

(8,8) 4 4 1 (25%) 4 (100%) 4 (100%)

(10,8) 1 4 4 (100%) 4 (100%) 4 (100%)

other - 30 13 (43%) 24 (80%) 28 (93%)

Total - 58 32 (55%) 50 (86%) 56 (97%)
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In this case, bit flipping acts as another form of perturbation. To control the noise

injection, we use soft bit flipping, i.e., reduce the reliability of the soft decision to a

low value B0 to weaken the plural bits without a significant impact on the correct bits

outside the ETS. We call this method focused heating as described in Algorithm 2.

Algorithm 2. Focused Heating

1. BP decoding: run for M iterations. If there are unsatisfied checks, continue

post-processing.

2. Post-processing:

(a) Constraining: run L iterations of soft bit flipping.

(b) Cooling: run N iterations of BP.

Focused heating uses L iterations of soft bit flipping to selectively weaken the

plural bits and shrink the neighborhood set, so that extended heating can be applied

to a focused neighborhood set. In practice, extended heating and focused heating

need to be combined because a type III ETS error can include inner bits that need

to be resolved by extended heating. Assume a gap of G iterations that separates

extended and focused heating. Extended and focused heating with P = 10 and A0

= 1 (for extended heating), L = 5 and B0 = 3 (for focused heating), and G = 10

resolves 97% of the type III ETS errors, as shown in Table 3.4, more effective than

quenching or extended heating.

In total, extended and focused heating can be applied to resolve 99% of the 236

ETS errors collected in the error floor region of the Q4.0 (2209, 1978) array LDPC

decoder. Note that although the method is designed for ETS errors, extended and

focused heating can resolve 82% of the 38 non-ETS errors. Table 3.5 lists the summary

of the results. The BER in the error floor region is lowered by more than 2 orders of

magnitude at Eb/N0 = 6.0dB, as shown in Figure 3.8. This experiment is done with
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Figure 3.8: Error rate of the (2209, 1978) array LDPC code before and after post-
processing using extended and focused heating.

P = 10 and A0 = 1 (for extended heating), L = 5 and B0 = 3 (for focused heating),

and G = 10.

3.5 Application of Post-Processing Methods – Case Study

on an IEEE 802.11n LDPC Code

The focused and extended heating methods are developed based on the (2209,

1978) array LDPC code, but the methods are generally applicable. We demonstrate

these methods on an arbitrarily selected rate-0.83 (1944, 1620) LDPC code for the

IEEE 802.11n standard [32]. The H matrix of the (1944, 1620) LDPC code is made

up of a 4×24 array of 81×81 identity matrices, cyclic shifted identity matrices, or

zero matrices. The H matrix is described in Figure 3.9 [32], where a “0” indicates an

81×81 identity matrix, a number x, x > 0, indicates an 81×81 matrix obtained by

right cyclic shifting of the identity matrix by x, and a “-” indicates an 81×81 zero

matrix.
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Table 3.5: Summary of ETS and Non-ETS Errors of the (2209,1978) Array LDPC
Decoder in the Error Floor Region and the Effectiveness of Post-Processing
by Combined Extended and Focused Heating

Eb/N0
Error Number Resolved by extended

type of errors and focused heating

5.6 dB

Type I ETS 1 1 (100%)

Type II ETS 74 73 (99%)

Type III ETS 20 19 (95%)

Non-ETS 27 21 (78%)

5.8 dB

Type I ETS 0 -

Type II ETS 82 82 (100%)

Type III ETS 21 20 (95%)

Non-ETS 9 9 (100%)

6.0 dB

Type I ETS 0 -

Type II ETS 33 33 (100%)

Type III ETS 5 5 (100%)

Non-ETS 2 1 (50%)

Total
ETS errors 236 233 (99%)

Non-ETS errors 38 31 (82%)
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13 48 80 66 4 74 7 30 76 52 37 60 - 49 73 31 74 73 23 - 1 0 - -

69 63 74 56 64 77 57 65 6 16 51 - 64 - 68 9 48 62 54 27 - 0 0 -

51 15 0 80 24 25 42 54 44 71 71 9 67 35 - 58 - 29 - 53 0 - 0 0

16 29 36 41 44 56 59 37 50 24 - 65 4 65 52 - 4 - 73 52 1 - - 0

Figure 3.9: Parity check matrix of the (1944, 1620) LDPC code for IEEE 802.11n
standard.

The (1944, 1620) LDPC code is structured but not regular. Note that the identity

matrices are laid out in a staircase on the right hand side to allow for an efficient

encoder design. This design however leads to a low minimum column degree of 2.

which dictates the majority of the error patterns.

We implemented a Q5.0 decoder for this LDPC code on FPGA and collected 1830

errors in the error floor region (Eb/N0 = 5.0 dB, 5.4 dB, 5.6 dB, and 5.8 dB). More

than 99% of the errors are ETS errors, and the remaining are non-ETS errors. Type I,

type II and type III account for 7.3%, 70% and 22.5% of the ETS errors, respectively.

The dominant type II ETS errors, (3,2), (4,1), (5,1), and (5,2), account for 76% of

the type II ETS errors, and their structures are illustrated in Figure 3.10. Since they

all contain inner bits, extended heating can be applied. The dominant type III ETS

errors, (1,2), (1,3), (2,3) and (2,4), account for 82% of the type III ETS errors. Their

structures are illustrated in Figure 3.11. Extended and focused heating are applicable

to these errors.

Extended and focused heating is used to post-process the errors collected in the

Q5.0 (1944, 1620) IEEE 802.11n LDPC decoder. Table 3.6 shows that the overall

success rate is 95%. The error floor is reduced by one to two orders of magnitude

after post-processing, as shown in Figure 3.12. The results are obtained with P = 10

and A0 = 1 (for extended heating), L = 5 and B0 = 1 (for focused heating), and G =

10. In comparison, quenching alone [51] resolves 23% of the errors and the bi-mode
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Figure 3.10: Dominant type II ETS structures in the (1944, 1620) LDPC code for the
IEEE 802.11n standard.

(1,2) (1,3)
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Figure 3.11: Dominant type III ETS structures in the (1944, 1620) LDPC code for
IEEE 802.11n standard.
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Figure 3.12: Error rate of the (1944, 1620) IEEE 802.11n LDPC code before and after
post-processing using extended and focused heating.

syndrome erasure decoding [50] resolves 59% of the errors based on our simulations.

The device utilization of a row-parallel 802.11n LDPC decoder is listed in Ta-

ble 3.7. The addition of extended and focused heating introduces less than 10%

overhead. The results of this work are compared in Table 3.8 with two prior designs

[48, 63] that included hardware design and evaluation. This work demonstrates a

lower datapath overhead than [63] and requires significantly less memory than [48].

As a deterministic method, this work features a lower latency than [48] because it is

integrated as part of BP decoding, while [48] requires trial and error.

3.6 Summary

Error floors of structured LDPC codes are caused by local minima due to non-

codeword ETS and ETS-like errors. Inspired by simulated annealing, we design post-

processing methods to perturb the local minimum state, followed by cooling to help

decoding converge to the global minimum.

We use three well-known LDPC code examples, a (2048, 1723) RS-LDPC code,
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Table 3.6: Summary of ETS and Non-ETS Errors of the (1944,1620) IEEE 802.11n
LDPC Decoder in the Error Floor Region and the Effectiveness of Post-
Processing by Combined Extended and Focused Heating

Eb/N0
Error Number Resolved by extended

type of errors and focused heating

5.0 dB

type I ETS 34 31 (91%)

type II ETS 351 338 (96%)

type III ETS 91 86 (95%)

non-ETS 4 4 (100%)

5.4 dB

type I ETS 26 23 (88%)

type II ETS 324 311 (96%)

type III ETS 100 94 (94%)

non-ETS 1 1 (100%)

5.6 dB

type I ETS 38 37 (97%)

type II ETS 319 306 (96%)

type III ETS 102 96 (94%)

non-ETS 2 1 (50%)

5.8 dB

type I ETS 35 32 (91%)

type II ETS 284 267 (94%)

type III ETS 119 113 (95%)

non-ETS 0 0 (N/A)

Total

type I ETS 133 123 (92%)

type II ETS 1278 1222 (96%)

type III ETS 412 389 (94%)

non-ETS 7 6 (86%)
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Table 3.7: Device Utilization of 4-Row-Parallel IEEE 802.11n (1944, 1620) decoders
(based on Xilinx Virtex-5 XC5VLX155T FPGA)

Design Baseline Quenching
Extended + focused

heating

Slice 4,432 4,611 4,633

registers (4.60%) (4.79%) (4.81%)

Slice 10,066 10,732 10,901

LUTs (10.4%) (11.1%) (11.2%)

Occupied 4,782 4,834 4,844

slices (19.7%) (19.9%) (19.9%)

BRAMs
35 35 35

(16.4%) (16.4%) (16.4%)

Table 3.8: Comparison of Low-Floor LDPC Decoder Implementations

This work [20] [28]

Implementation FPGA Synthesis Silicon

Method
Generalized

Backtracking Quenching
post-processing

Code Any Any
(2048,1723)

RS-LDPC

Datapath
8.3% 7% 13.7%

overhead

Memory
4.5% 46% N/A

overhead
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Table 3.9: Summary of Post-Processing Parameters

Code Method P A0 L B0 G

(2048,1723)
Quenching 1 1 - - -

RS-LDPC

(2209, 1978) Extended +
10 1 5 3 10

array LDPC focused heating

(1944, 1620) Extended +
10 1 5 1 10

802.11n LDPC focused heating

a (2209, 1978) array LDPC code, and a (1944, 1620) 802.11n LDPC code for the

IEEE 802.11n standard to demonstrate three types of ETS structures: type I with

one-to-one correspondence between each unsatsified check and ETS bit, type II with

inner bits, i.e., ETS bits that are not connected to any unsatisfied check, and type

III with plural bits, i.e., ETS bits that are connected to more than one unsatisfied

checks.

Three post-processing methods are proposed to resolve ETS errors. The quenching

algorithm uses one heating step followed by immediate cooling to resolve type I ETS

errors. The extended heating algorithm prolongs heating to multiple steps to allow

the inner bits to accumulate enough energy to resolve type II ETS errors. The

focused heating algorithm applies soft bit flipping to the plural bits in order to correct

them and narrow down the neighborhood set for more effective heating. The post-

processing parameters used in this work are summarized in Table 3.9.

The post-processing methods can be easily integrated as part of BP decoding,

adding minimal overhead to the hardware implementation. As these methods are

conditionally triggered when the decoder fails to converge at a very low BER level,

the impact on decoding throughput and energy consumption is negligible.

The methods are demonstrated by post-processing the errors collected in the error

floor region of the three LDPC code examples. The success rate is over 95% for ETS

errors and over 80% for non-ETS errors for the IEEE 802.11n (1944,1620) LDPC
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CHAPTER IV

High-Throughput Architecture and

Implementation for NB-LDPC Codes

In this section, we present high-throughput decoder design through algorithm-

architecture co-optimization for a class of regular-(2,dc) NB-LDPC codes. A 1.22

Gb/s fully parallel decoder chip1 is implemented for a GF(64) (160,80) regular-(2,4)

NB-LDPC code in 65 nm CMOS with fine-grained dynamic clock gating.

4.1 Extended Min-Sum Decoding Algorithm

An NB-LDPC code is decoded by an iterative message passing on a factor graph.

A number of efficient algorithms have been proposed with different error-correcting

performance and implementation complexity [53, 37, 2, 70, 125, 64]. The EMS al-

gorithm [70] offers a good tradeoff: it achieves a performance close to the original

BP algorithm and its complexity is relatively low. The truncated EMS algorithm

claims an even lower complexity and demonstrates great potential for practical adop-

tion [71]. We briefly introduce the five steps of the truncated EMS algorithm [71]

assuming nm < q: (1) variable nodes are initialized with the prior log-likelihood ratios

(LLR): one LLR is associated with one of q possible symbols, the largest nm of which

1Special thanks to Dr. Youn-Sung Park who leaded the chip design project. I was responsible
for the front-end RTL design.
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Figure 4.1: Layered EMS decoding of a (2,4)-regular NB-LDPC code.

along with their GF indices are stored in vector L and βL respectively in descending

order; (2) variable-to-check (v-c) messages are permuted based on the H matrix and

sent to the check nodes. Note that in the first iteration, the priors are used as the v-c

messages; (3) for each adjacent variable node vj, check node ci computes the check-

to-variable (c-v) mes-sage Vij[k], k ∈ {0, . . . , nm–1}, that the parity-check equation

is satisfied if vj = βVij [k]. The computation is done using a forward-backward recur-

sion. Only the nm highest probabilities are computed and stored; (4) the c-v messages

are inverse permuted before being sent to the variable nodes; (5) each variable node

vj is updated with messages from the adjacent check nodes. A v-c message Uji[k],

k ∈ {0, . . . , nm–1}, is computed for each adjacent check node ci, based on the prior

L and all adjacent c-v messages except from check node ci. The procedure repeats

itself from step (2).

A high-level block diagram of a row-layered NB-LDPC decoding is shown in Fig-

ure 4.1 for the selected (2, 4)-regular code. The architecture consists of 4 VNs and 1

CN. The processing schedule for this architecture is shown in Figure 4.2. CN reads

v-c messages and performs forward-backward recursion on the 4-stage trellis in three

steps: (1) 1 forward step, (2) 1 backward step, and (3) 4 merging steps. Forward and

backward steps can be overlapped, and 4 merging steps can be parallelized. Each step

in the recursion is done by an elementary CN (ECN). ECN carries out the max-log

computation and sorts the results. The latency of each ECN is at least 2nm clock
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Figure 4.2: Scheduling of the (2,4)-regular layered EMS decoding.

cycles. The bubble check algorithm [128] reduces the sorter length from nm to approx-

imately
√
nm. VN starts after CN is complete and c-v messages have been written to

memory. A feature of this code that limits dv = 2 simplifies the VN operation: a v-c

message can be calculated by the vector addition of the c-v message and the prior.

However, the addition requires matching of GF indices using a content-addressable

memory. Sorting the results is also expensive, with a latency of at least 2nm cycles.

Altogether the throughput is one row per 4nm cycles. With 80 rows in the selected

code and nm = 16, one decoding iteration takes on the order of 5,120 cycles! The

decoding latency and throughput can be further degraded due to the structure of the

(2, dc)-regular codes. The non-structured H matrix introduces data dependencies

that require lengthy pipeline stalls to be inserted. The challenges with the decoder

architecture call for new processing node designs and efficient memory access schemes.

4.2 Decoder Architecture Design For Low Latency and High

Throughput

We introduce improvements in both CN and VN operations in order to enable a

pipeline with lower latency and hence higher throughput.
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4.2.1 Low-Latency ECN and Improved Pipeline Schedule

ECN is the elementary building block of CN, and it is used for forward, backward,

or merging operation. ECN takes two LLR vectors U and I along with their GF

indices βU and βI to produce a new V and its βV using the max-log algorithm [4]:

V[i] = maxS(βV [i]) (U [j] + I[p]), i ∈ {0, . . . , nm–1} and S(βV [i]) is the set of all

combinations of βV [i], βU [j], and βI [p] that satisfy βV [i] + βU [j] + βI [p] = 0 over

GF(q).

The proposed low-latency ECN is based on the bubble check algorithm [128]. We

improve upon the original algorithm by prefetching and relaxing redundancy control,

which together shorten the latency of an ECN operation from at least 2nm to nm

+ LS−ECN + 2 clock cycles, where LS−ECN is the sorter length used in ECN and

LS−ECN ¡ nm [128]. Simulation shows that relaxing redundancy control introduces

functional performance loss at high error rate, but the loss becomes negligible at low

error rate that is of more practical interest. The proposed ECN is described below,

assuming both U and I are sorted in descending order:

(1) insert U [j] + I[0], where j = 0, . . . , LS−ECN – 1, sequentially to the sorter in

descending order. Note that along with the sum U [j] + I[p], the two indices j and p

are also recorded.

(2) Set jcurr = 0 and pcurr = 1.

(3) Fetch U[jcurr] and I[pcurr]. Compute Sin = U [jcurr] + I[pcurr]. Insert Sin. if

the sorter is full, output the maximum value in the sorter Smax while inserting Sin.

(4) Find the next pair of indices jnext and pnext. Define a direction flag R, with

R = 1 initially. The second largest value in the sorter is denoted Smax,2, which is the

sum of U [jmax,2] and I[pmax,2].

(a) If (Smax,2 < Sin), then j = jcurr and p = pcurr, else j = jmax,2 and p = pmax,2

(b) if (j = 0), then R = 1, else if (p = 0 and j > LS−ECN – 1), R = 0.

(c) Set jnext = j + !R and pnext = p + R (! denotes inversion).
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Figure 4.3: ECN architecture.

(5) Set jcurr = jnext and pcurr = pnext.

(6) Go back to (3) until all nm values have been output from the sorter.

The main difference between the proposed algorithm and the bubble check algo-

rithm is the use of Smax,2 and Sin to decide one cycle ahead the next inputs. Prefetch-

ing shortens the latency because both sorting and reading can execute con-currently

without stalls. The algorithm permits redundancy in the output and therefore it

stops after nm outputs are done. The high-level architecture of the ECN is shown in

Figure 4.3. The length of the sorter LS−ECN is determined by nm. For the case of nm

= 16, the maximum number of pending candidates will be 6 and therefore LS−ECN

= 6 is the best choice [128]. The latency of the first ECN output is LS−ECN + 2 = 8

cycles, which enables early starts on ECN or VN operations. In total, one complete

ECN operation takes 24 cycles for 16 outputs.

The proposed ECN allows the pipeline latency of CN to be shortened for a higher

throughput. Figure 4.4 shows the improved pipeline schedule, where the 4 parallel

merge steps start when the first output from the forward and backward steps are

ready. With a short 8-cycle latency, the merge steps are effectively overlapped with

the forward and backward steps. Furthermore, using two sets of memories in CN
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Figure 4.4: Overlapped pipeline schedule.

RAM for alternating rows, the forward and backward step of the next row can start

right after the current row is complete, hence making full utilization of the hardware.

The improved pipeline schedule enables a high CN throughput of 1 row processing in

every 24 cycles.

4.2.2 Low-Latency VN

In order to fully take advantage of the latency reduction of the CN and the im-

proved pipeline schedule, the VN operation also needs to be improved to avoid be-

coming the bottle-neck. The four outputs produced by the CN need to be processed

in parallel by VNs within 24 cycles, or else it will stall the pipeline.

A VN takes two LLR vectors V (c-v message) and L (prior likelihoods) along with

their GF indices βV and βL to produce a new U (v-c message) and its GF index βU

[72]. Since nm < q, the VN operation needs to scan both the V vector and L vector

for matching entries with a latency of at least 2nm.

We propose a simplified VN algorithm to achieve a low-latency by skimming the

prior messages, i.e., allocate only LS−V N cycles to scan the L vector, where LS−V N
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is the sorter length used in VN and LS−V N ¡ nm. The algorithm is divided into two

stag-es, assuming both L and V are sorted in descending order:

(1) Scan the top LS−V N entries in βL sequentially: search βL[l],l ∈ {0, . . . , LS−V N–1},

in βV for matching entries. Compute Sin = L[l] + V [i], if βL[l] = βV [i]; or Sin = L[l]

+ YV , if no matching entry is found, where YV is a compensation constant. Insert Sin

to the sorter.

(2) Scan the nm entries in V sequentially. If an entry V [i], i ∈ {0, . . . , nm–1},

has not been matched in (1), compute in = V [i] + YL, where YL is a compensation

constant. The maxi-mum entry in the sorter is output every time a new in is inserted

to the sorter.

The architecture of the proposed VN is shown in Figure 4.5. A content-addressable

memory is used to search matching entries. If we choose LS−V N = 6, the VN operation

takes 24 cycles to produce 16 outputs for the perfect interleaving with CN as shown

in Figure 4.4. Note that since LS−V N < nm, some low order entries in vector L will

be missed, which degrades the functional performance by 0.65 dB at FER of 10−5 as

shown in Figure 4.6. To compensate the performance loss, we can increase LS−V N

and use two sets of VNs to accommodate a higher processing latency without stalling
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Figure 4.6: Performances of a (2,4)-regular, (960,480) NB-LDPC over GF(64).

the pipeline, i.e., while the first set is working on one row, the second set kicks in

to process the second row immediately when the inputs are available. Alternatively,

a short pipeline stall can be inserted. Simulation results in Figure 4.6 show that a

small increase to LS−V N = 10 almost eliminates the performance loss.

4.2.3 Memory Conflict Resolution

Unlike quasi-cyclic codes, the (2, dc)-regular NB-LDPC code lacks a systematic

structure. When multiple VNs operate in parallel, memory access conflicts arise

due to both intra- and inter-iteration data dependencies, causing pipeline stalls. In

particular, CN accesses 4 v-c messages at the same time, requiring them to be stored

in 4 sets of memory. CN then passes the c-v messages to 4 VNs that will output to

a centralized memory to be read by later CN processing. How-ever, as illustrated

in Figure 4.7, writing to the c-v memory can be problematic because conflicts can

occur when two or more VNs write to the same memory set. The worst-case conflict

is when all 4 VNs are attempting to write to one set. Our solution is to subdivide
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each set into smaller subsets determined by the code structure. The conflicting v-c

messages would be written to different subsets within the same set. Note that this

solution would require a separate look-up table in each set to select the correct subset

for each read and write access, but the size of the v-c memory will remain the same.

Read-after-write (RAW) hazards can also occur due to data dependencies across

consecutive iterations. For instance, if the VN that writes back to the first row shown

in Figure 4.7 does not finish in time (e.g., v0 → c0), the next iteration would read the

old values. We resolve this inter-iteration data dependency by shuffling the rows in

the H matrix such that the last row does not produce any output that is needed by the

first row. The conflict-free scheme ensures a stall-free pipeline for a high throughput.

4.3 Low-Power Circuits Design by Fine-Grained Dynamic

Clock Gating

To estimate the power consumption, a fully parallel nonbinary LDPC decoder has

been synthesized and place and routed in a 65 nm CMOS process. Figure 4.8 shows

the power breakdown of the decoder. The switching power of sequential circuits is

the dominant portion, claiming 65% of the total power. The leakage power and the
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Figure 4.8: (a) Power breakdown of the 65 nm synthesized fully parallel nonbinary
LDPC decoder, and (b) the distribution of sequential logic used in the
decoder.

switching power of combinational circuits claim the remaining 21% and 14% of the

total power,respectively. Further breakdown of the switching power of sequential

circuits in Figure 4.8(b) shows that the switching power of the VN and CN memories

and the sorters in EVNs and ECNs account for almost all of the sequential switching

power.

The high dynamic power consumption prompts us to design a dynamic clock

gating strategy to reduce the power consumption of the decoder. Clock gating disables

the clock input to sequential circuits to save switching power, which in turn cuts the

switching of combinational circuits. The use of clock gating is motivated by the

observation that the majority of the VNs converge within a few decoding iterations

before reaching the decoding iteration limit. Therefore, it is possible to clock gate

the VNs and CNs that have reached convergence to save power. To achieve the

most power savings, the clock gating is implemented at a fine-grained node level, i.e.,

at each VN and CN, and the clock gating is enabled dynamically during run time.

The fine-grained dynamic clock gating requires convergence detection at the node

level, i.e., each VN detects when it has reached convergence and can be clock gated.
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The node-level convergence detection is different from the conventional convergence

detection done at the global level by checking whether all parity checks have been

met. Although clock gating can also be based on global convergence detection, the

power savings would be greatly diminished.

4.3.1 Node-Level Convergence Detection

Node-level convergence detection is not equivalent to global convergence detection.

Our proposed node-level convergence detection is designed to match the accuracy of

the global convergence detection without causing BER degradation. The node-level

convergence detection is based on two convergence criteria: (1) meet the minimum

number of decoding iterations , and (2) VN’s hard decisions remain unchanged for the

last consecutive iterations. The two criteria are designed to prevent false convergence

and ensure stability. Each VN checks the criteria upon completing each decoding

iteration. If the criteria are met, the VN is clock gated. If a VN is clock gated, parts

of the CN that are used for storing and processing messages from and to the VN are

also clock gated. A CN is completely clock gated when all its connected VNs have

been clock gated.

With node-level convergence detection, it is possible that a VN converges to the

correct decision and is frozen, preventing it from changing to an incorrect decision.

On the other hand, it is also possible that a VN converges to an incorrect decision

and is frozen, and preventing other VNs from correcting this VN later. To best match

the BER and FER performance of global convergence detection, and need to be set

appropriately.

Fine-grained dynamic clock gating can be compared to early termination [129,

130] that is commonly used in decoder designs. Early termination relies on global

convergence detection, whereas fine-grained dynamic clock gating is based on node-

level convergence detection, and it allows a large number of VNs and CNs to be
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turned off before the global convergence is reached.

The idea of early termination can be combined with fine-grained dynamic clock

gating to save power and improve throughput by terminating the decoder once all

the VNs and CNs are clock gated. We term the approach decoder termination to

differentiate it from early termination, because decoder termination relies on node-

level convergence detection, whereas early termination commonly relies on global

convergence detection.

4.3.2 Fine-Grained Dynamic Clock Gating

The clock gating architecture is illustrated in Fig. 11. The convergence detector

inside each VN monitors the hard decisions in each iteration to check whether the

hard decisions have changed between iterations. A counter keeps track of the number

of consecutive iterations that the hard decisions have remained unchanged. When the

convergence criteria are met, the convergence detector enables the clock gating latch

(CG latch) to turn off the clock input to all sequential circuits with the exception of

essential control circuits that are needed for recovering from the clock gating state.

The majority of the VN’s dynamic power is saved, leaving only leakage.

The convergence detector propagates the clock gating signal to the CNs to enable

the CG latch of V2C message memories in the CNs, as noted in [? ]. Clock gating

V2C memories eliminates the unnecessary memory updates to save dynamic power.

In this way, CN is partially clock gated. When all the connected VNs are clock gated,

as indicated by their clock gating signals, a central CG latch is enabled to completely

turn off the CN.

A decoder termination controller monitors the VN clock gating signals. When all

the VNs are clock gated (and CNs are clock gated as a result), the decoder terminates

the current frame and moves on to the next input frame. Decoder termination reduces

the average number of decoding iterations per code frame and therefore improves the
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Figure 4.9: Implementation of fine-grained dynamic clock gating for the variable and
check node.

decoding throughput for a net gain in energy efficiency.

In our implementation, each VN stores only the hard decision (6 bit) from the

previous iteration. In each iteration, the VN compares the hard decision with the

previous hard decision, and increments a 4-bit counter if they agree. If not, the

counter is reset. After the comparison, the stored hard decision is replaced by the

current hard decision for the next iteration. The node-level convergence detection

requires only 6 bits of storage per VN (or 960 bits for the entire decoder), a small

logic in each VN to compare a pair of 6-bit decisions, and a 4-bit counter. Compared

to the size of the nonbinary VN and CN, the overhead for node-level convergence

detection is negligible.

To check the effectiveness of fine-grained dynamic clock gating, we simulated the

decoder’s behavior with node-level convergence detection. Figure 4.10 shows the

percentage of nodes that have been clock gated in each decoding iteration across

various SNR levels. The decoding iteration limit is set to 30, and the convergence

criteria are set to M = 10 and T = 10. Even at a low SNR of 2.8 dB, more than 85%
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Figure 4.10: Cumulative distribution of clock gated nodes at each iteration for various
SNR levels with a decoding iteration limit of 30. The parameters used
for clock gating are M = 10 and T = 10.

of the VNs are clock gated after 12 iterations. After 14 iterations, 95% of the VNs

are clock gated. At higher SNRs, the VNs are clock gated at an even faster pace.

The setting of M determines how much power can be saved. The lower the M , the

earlier the clock gating can be applied, and the more power we can save. However,

a lower M degrades the BER. There is a tradeoff between power consumption and

BER. We set M = 10 to ensure no loss in BER across a wide range of SNR. We could

use a lower at high SNR to achieve more power savings without affecting BER.

4.4 Decoder Chip Implementation and Measurements

A decoder test chip for the GF(64) (160, 80) regular-(2,4) NB-LDPC code was

implemented in a ST-Microelectronics 65 nm 7-metal general-purpose CMOS tech-

nology. The chip microphotograph is shown in Figure 4.11. The test chip measures

4.40 mm × 2.94 mm, and the core measures 3.52 mm × 2.00 mm, or 7.04 mm2. The
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Figure 4.11: Chip microphotograph of the decoder test chip. Locations of the test
peripherals and the decoder are labeled.

memory used in this decoder is implemented using registers.

Figure 4.12 shows the BER and FER curves for various configurations. The 5-bit

decoder incurs a relatively large quantization loss (compared to floating point) at low

SNR, because the 5 bit word length is not sufficient to separate the candidate elements

for a VN at low SNR. At moderate to high SNR, the candidate elements can be more

easily separated, which explains the much smaller quantization loss at high SNR.

Figure 4.12 is based on two months of extensive testing. With a decoding iteration

limit of 100, the decoder achieves a BER of at 4.2 dB, a significant improvement over

binary LDPC codes of similar block length, e.g., the rate-1/2 672-bit binary LDPC

code for the IEEE 802.11ad standard provides a BER of at 4.2 dB. Structured binary

LDPC codes of similar block length also encounter severe error floors, which is not

seen in the NB-LDPC code. With a more practical 30 iterations and our proposed

node-level convergence criteria of and , the decoder still provides an excellent BER

performance that is very close to the 100-iteration BER performance.

The NB-LDPC decoder test chip operates at a maximum clock frequency of 700

MHz at 1.0 V and room temperature for a coded throughput of 477 Mb/s with 30

decoding iterations. The test chip consumes 3.993 W, which translates to an en-
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Figure 4.12: Bit error rate and frame error rate performance of the GF(64) (160,80)
regular-(2,4) NB-LDPC code using 5-bit quantization and floating point.
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Figure 4.13: Measured NB-LDPC decoder (a) power and (b) energy efficiency at 5.0
dB SNR and 30 decoding iterations. CG denotes clock gating and DT
denotes decoder termination. The parameters used for clock gating and
decoder termination are M = 10 and T = 10. This minimum supply
voltage is used at each clock frequency.

Figure 4.14: Illustration of throughput and energy efficiency of various decoder con-
figurations at 5.0 dB SNR. L, M and T represents decoding iteration
limit, minimum decoding iteration, and consecutive iteration threshold,
respectively.
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Table 4.1: Decoder Chip Measurement Summary

ergy efficiency of 8.38 nJ/b. Figure 4.13, Figure 4.14 and Table 4.1 summarize the

measured power consumption of the NB-LDPC decoder test chip. To improve the

energy efficiency, fine-grained dynamic clock gating is enabled with node-level con-

vergence criteria of and , reducing the power consumption by 50% and improving the

energy efficiency to 4.14 nJ/b. To achieve a higher throughput, decoder termination

is enabled to increase the throughput from 477 Mb/s to 1.22 Gb/s at 5.0 dB SNR .

The power consumption increases due to a higher activity, but the energy efficiency

improves to 3.03 nJ/b, or 259 pJ/b/iteration. Voltage and frequency scaling can be

applied to further reduce the power consumption and improve the energy efficiency.

Scaling the supply voltage from 1.0 V to 675 mV reduces the maximum clock fre-

quency from 700 MHz to 400 MHz and improves the energy efficiency to 1.04 nJ/b,

or 89 pJ/b/iteration, at a reduced throughput of 698 Mb/s.

Table 4.2 lists the nonbinary LDPC decoder test chip along with other state-of-

the-art NB-LDPC decoder designs [64, 65, 56, 59] published prior to our design. It
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Table 4.2: Comparison with State-of-the-art NB-LDPC Decoders Prior to this Work

[64] [65] [56] [59]
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is important to note that none of the previous designs has been fabricated in silicon.

This work is the first silicon that has been published to the best of our knowledge.

The decoder claims higher throughput and energy efficiency (in pJ/b/iter), when

normalized to 65 nm and 1.0 V, than the best previously reported post-layout re-

sults. The truncated EMS algorithm allows us to achieve excellent BER performance

compared to other simplified algorithms.

4.5 Summary

We present a fully parallel NB-LDPC decoder to take advantage of the low wiring

overhead that is intrinsic to NB-LDPC codes. To further enhance the throughput, we

apply a one-step look-ahead to the elementary CN design to reduce the clock period,

and interleave the CN and VN operations for a short iteration latency of 47 cycles.

We implement a fine-grained clock gating at the node level to allow the majority of

the processing nodes to be clock-gated long before reaching the iteration limit. A 7.04

mm2 65 nm decoder test chip is designed for the GF(64) (160, 80) regular-(2, 4) NB-

LDPC code. The decoder implements fine-grained dynamic clock gating and decoder

termination to achieve a high throughput of 1.22 Gb/s at 700 MHz, consuming 3.03

nJ/b, or 259 pJ/b/iteration. The test chip demonstrates a superior error correcting

performance compared to binary LDPC decoders. Voltage and frequency scaling of

the test chip to 675 mV and 400 MHz further improve the energy efficiency to 89

pJ/b/iteration at a reduced throughput of 698 Mb/s.
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CHAPTER V

HiMA:A Fast and Scalable History-based Memory

Access Engine for Differentiable Neural Computer

5.1 Analysis of DNC Kernels

We first analyze DNC’s memory access and computational profile, followed by a

simulation study of DNC running bAbI dataset [131] on CPU and GPU.

5.1.1 Theoretical Kernel Analysis

Table 5.1 lists DNC’s computational kernels with their corresponding primitives,

associated memory access complexity and the NoC traffic condition when mapped

to a tiled architecture. Recall that the external memory M is modeled as a N ×W

matrix (N > W ) and the number of read heads is R. We categorize DNC kernels

into two types: 1) state kernels for maintaining memory states and determining how

the external memory is accessed, and 2) access kernels that do not maintain states

and perform the actual access to the external memory. NTM only needs access

kernels, while DNC requires a variety of new state kernels to support history-based

mechanisms. These new state kernels impose critical challenges:

• Computation: Kernels such as usage sort and forward-backward require compute-

intense large-scale data sorting ofO(N) or matrix-vector multiplication ofO(N2)

104



Table 5.1: Analysis of DNC Kernels

complexity, which can be major bottlenecks.

• Memory Access : Kernels such as linkage and forward-backward require O(N2)

accesses to the new linkage memory, which easily surpass the memory access by

the access kernels used by other MANNs like NTM.

• NoC Traffic: In a tiled architecture, some kernels such as linkage rely on inter-

tile traffic. The amount of NoC traffic can be as high as O(NtN
2) depending

on state and external memory partitions, and the traffic pattern is non-uniform

over time and space due to the different primitives and state memories involved.

The challenges require designing an efficient NoC and memory organization, max-

imizing distributed processing, and providing efficient computational kernels such as

sort.

5.1.2 Kernel Runtime Analysis

We simulated DNC inference on an Nvidia 3080Ti GPU and an Intel Core i7-

9700K CPU using the bAbI dataset [131] in NLP. The bAbI dataset consists of 20
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tasks. Each task is independent of the others, tests one aspect of an intended NLP

behaviour and includes 10,000 QA examples. It is the only publicly available and

practically meaningful dataset to date to demonstrate DNC’s performance. In our

experiments, we ran all tasks in the bAbI dataset and recorded the average runtime.

Figure 5.1 captures runtime breakdown of DNC kernels in different categories. The

average GPU inference time is 5.16 ms/test, 2.12× faster than the 10.94 ms/test

inference time on CPU. On both the GPU and the CPU, the NN (an LSTM) takes

less than 5% of the total runtime, while the memory unit takes more than 95% of the

total runtime. It highlights the need of a memory access engine for DNC. Additional

insights can be derived from the kernel runtime shown in Figure 5.1.

• History-based write weighting, including retention, usage sort and allocation,

accounts for 72% of the runtime on the GPU. GPU’s highly parallelized hard-

ware are not the most suitable for speeding up large-scale sorting.

• History-based read weighting, including linkage and precedence, relies on vector

and matrix operations that can be extensively parallelized by the GPU. This

part uses only 9% of the GPU’s runtime.

• Content-based write/read weighting, including normalization and similarity, in-

volves many multiply-accumulate (MAC) and softmax operations. It costs 12%

of the runtime on the GPU and 22% on the CPU, but it is not the dominant

part on either platform.

• Memory write and read1 are much faster on the GPU (4% of the runtime) than

on the CPU (53% of the runtime), because they are dominated by parallelizable

weighting operations using MAC arrays.

1In the context of DNC, memory write and memory read are not simply write to or read from
memory. Applying write weighting to data before write to memory and applying read weighting to
data read from memory are the dominant operations in memory write and memory read, respectively.
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Figure 5.1: Kernel runtime breakdown on CPU/GPU for the bAbI dataset. The
external memory size is N ×W = 1024× 64 and the LSTM is 1-layer of
size 256.

The results show that improving the DNC performance requires both optimized

computational kernels such as sort and highly parallel matrix operations. GPU and

CPU follow a centralized-memory architecture and high premiums in power and area

are paid in sustaining high-bandwidth interface and versatile memory hierarchy. In

designing an accelerator targeting high performance, high energy efficiency and low

cost, a distributed, tiled architecture is the preferred approach.

5.2 HiMA Architecture Design

HiMA is a memory access engine that follows a distributed, tiled architecture that

consists of one CT and many PTs with an NoC linking the tiles. Based on kernel

analysis and simulation results, we summarize HiMA’s architectural design goals.

Scalable and versatile NoC : A fixed NoC is sub-optimal for the complex NoC

traffic by DNC’s unique state kernels. The H-tree NoC in [100] suffers from traffic

saturation with more than 8 PTs as shown in Figure 5.2(d). A more scalable NoC

that supports DNC’s versatile kernels is desired.

Efficient memory partition: DNC’s external memory is large in size, and its state

memories can be even larger. For example, the linkage matrix requires a memory of

N×N (N > W ). A strategy is needed to optimally partition large external and state

memories and distribute them to tiles with the goal of minimizing the NoC traffic
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amount when executing DNC kernels.

Distributed compute kernels : DNC’s kernels are ideally distributed to the tiles.

The sort kernel is especially important. It is a performance bottleneck and it is not

supported by existing NN/MANN accelerators [91, 92, 93, 94, 95, 96, 100, 99, 97, 98].

The goal is to distribute such kernels along with distributed memory to tiles, while

minimizing the NoC traffic amount.

5.2.1 Scalable Multi-Mode NoC

Reconfigurable NoCs have been proposed for DNN accelerators for different tensor

sizes in kernels like convolution. Specifically, MAERI [132] and HERALD [96] employ

a multi-layer binary tree as show in Figure 5.2(a) with configurable interconnects

between adjacent sub-trees at each level. These designs are suitable for DNN’s reduc-

tion, collection and multi-cast dataflows. They are however sub-optimal for DNC’s

diverse traffic patterns, especially for transpose and matrix-vector multiplication that

require communications between distant tiles. Data transfer between two distant tiles

need to pass through their mutual root tile, which can become the traffic congestion

point that drastically increases the inter-tile communication latency. The H-tree NoC

demonstrated by MANNA [100] was designed for access kernels that require only two

types of inter-tile communication: 1) broadcast of interface vectors from CT to PTs,

and collection of read vectors from the PTs; and 2) transfer of submatrices of the

external memory between PTs for transpose and matrix-vector multiplication. In

implementing the access kernels, the H-tree NoC does not present a bottleneck up to

16 tiles [100].

To support history-based memory access, the new state kernels introduce far more

inter-tile traffic and a diverse traffic profile. To see the suitability of the H-tree NoC

and the multi-layer binary tree, we mapped DNC to a tiled architecture utilizing

these two NoCs. To check scalability, we simulate the speedup by increasing the
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Figure 5.2: Scalable and Multi-Mode HiMA-NoC.

number of PTs. Here we assume ideal CT and PTs where the memory bandwidth or

the computational parallelism do not present bottlenecks, and ideal routers that can

handle any traffic congestion by stalling. Figure 5.2(d) shows that the speedup starts

to saturate beyond the 8× point for both NoCs. The H-tree NoC requires traffic

between two tiles to go through their mutual root tile, as show in Figure 5.2(b),

resulting in traffic congestion at highest root node for the distant pairs of PTs. The

binary-tree NoC [132] is an enhanced H-tree by additional interconnects between

adjacent sub-trees at each level. It outperforms the H-tree slightly, but its scalability

still saturates at a low level.
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We analyze the traffic profile of DNC primitives and the suitable NoC topologies.

• Interface vector broadcast, read vector collection and sorting require only CT-

PT traffic. A star NoC is the most suitable, where all PTs are connected directly

to the CT with a distance of 1 hop. However, the CT needs a complex router

and can become a traffic congestion point with increasing PT count, limiting

scalability.

• Accumulation of products or sums and vector inner product require sending

accumulated results from one PT to the next PT. A ring NoC is the most

suitable.

• Matrix transpose requires transferring on-tile submatrices to other tiles along

diagonals, as shown in Figure 5.2(c). A diagonally-connected NoC is suitable.

• Matrix vector multiplication and vector outer product require each tile to send

its local submatrices to all other tiles for computation. A full-duplex mesh NoC

is the most suitable. However, the scalability of a full-duplex mesh is even

worse than the star NoC, because every tile, not only CT, can become a traffic

congestion point.

The analysis shows that a fixed NoC topology does not meet DNC’s diverse traffic

profile. We propose a multi-mode NoC (namely, HiMA-NoC) to shorten the transfer

distance, reduce the traffic congestion and enhance the scalability. Figure 5.2(c) shows

an example HiMA-NoC for 5×5 tiles. It is made by adding diagonal connections

in a mesh NoC. The worst-case inter-tile transfer distance is kept at only 4 in the

5×5 example. Compared to a fixed NoC that improves traffic conditions for some

primitives but may worsen for other primitives, HiMA-NoC can be configured in

run-time to efficiently support different traffic patterns through multi-mode routers

(Section 5.4). Using the same simulation setup, HiMA-NoC provides a more scalable
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speedup than the fixed H-tree, mesh or star NoC, as shown in Figure 5.2(d). Note

that HiMA-NoC does not reduce the amount of traffic, but enhances the tile-to-tile

communication latency.

5.2.2 Submatrix-Based Memory Partition

DNC’s external memory and state memories need to be partitioned and distributed

to the tiles during design time. The partition affects the available access bandwidth,

the achievable compute parallelism, and the amount and the patterns of inter-tile data

communication. SIMBA[95], a state-of-the-art distributed NN accelerator, distributes

weights to tiles and efficiently supports convolution and FC workloads for DNNs.

MANNA [100] partitions external memory row-wise so that each PT receives N/Nt

rows of the external memory, where Nt is the number of PTs. State memories were

not discussed in [100].

HiMA’s memory partitions are designed for new state memories (nonexistent in

NNs or other variants of MANNs like NTM) and external memory. DNC requires

accessing to various memories concurrently, and the traffic patterns are non-uniform

depending on the primitives that are running. There need to be more considerations

on memory partition to reduce the amount of traffic.

5.2.2.1 External Memory Partition

The external memory is accessed by the access kernels, first in computing content-

based weighting including normalization and similarity, followed by memory write or

read. Figure 5.3(a) illustrates three possible external memory partitions and their

corresponding traffic in computing content-based weighting for a small example of

HiMA with Nt = 4.

The row-wise partition of the external memory eliminates inter-tile transfer for

normalization because normalization is computed on a row of memory, which are
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Figure 5.3: External memory partition in a 2×2 tile for (a) content-based weight-
ing, and (b) transpose and matrix-vector multiplication in history-based
weighting and soft read; (c) inter-tile traffic for memory read kernel
with various external memory partition; (d) inter-tile traffic for forward-
backward kernel with various linkage memory partition.
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stored in the same PT. When calculating similarity, one PT produces only a partial

sum (psum), and it collects the psums from the rest of Nt − 1 PTs to compute the

global sum, followed by scaling and softmax. The softmax result is then distributed

to the Nt−1 PTs. Hence the number of inter-tile transfers is 2(Nt−1). Alternatively,

if we follow the column-wise partition of the external memory, normalization requires

2N(Nt − 1) inter-tile transfers, but similarity can be computed locally.

The row-wise and column-wise partitions can be viewed as special cases of a

generalized submatrix-based partition where the external memory is divided into Nh
t

block rows and Nw
t block columns, where Nt = Nh

t × Nw
t and Nh

t , N
w
t ∈ Z+. As

shown in Figure 5.3(a), using submatrix-based partition, normalization and similarity

calculations cost 2N(Nw
t − 1) and 2(Nh

t − 1) inter-tile transfers, respectively. Based

on Eq. (5.1), given N and Nt, to minimize the inter-tile traffic, Nw
t = 1 and Nh

t = Nt.

In other words, the row-wise partition of the external memory costs the minimum

inter-tile traffic in computing content-based weighting.

argmin
Nh

t ,N
w
t

(
2N(Nw

t − 1) + 2(Nh
t − 1)

)
(5.1)

The memory write to the external memory requires element-wise operations that

can be executed locally by PTs in parallel. The memory read from the external mem-

ory requires inter-tile traffic to support memory matrix transpose and matrix-vector

multiplication. Figure 5.3(b) illustrates the inter-tile transfer patterns. Similarly,

the optimal partition for matrix transpose and matrix-vector multiplication can be

derived mathematically as Eq. (5.2).

argmin
Nh

t ,N
w
t

(
Nw
t (Nw

t − 1)N

Nt

+W (Nh
t − 1)

)
(5.2)
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Due to the quadratic dependence on Nw
t , Nw

t should be kept at the minimum

to minimize the inter-tile transfers. Therefore, we demonstrate that the row-wise

partition of the external memory costs the minimum inter-tile traffic.

5.2.2.2 State Memory Partition

The state kernels require a set of state memories: usage, linkage, precedence, write

weight and read weight. State memories of size N (usage, precedence, write weight)

or N × R (read weight) can be straightforwardly partitioned to N/Nt or N/Nt × R

parts and distributed to the Nt PTs.

The linkage memory, on the other hand, has a size of N×N . The linkage memory

is used by the forward-backward kernel in matrix transpose and matrix-vector mul-

tiplication primitives. The inter-tile transfer patterns look similar to Figure 5.3(b),

except that the input matrix is N × N instead of N × W . Similarly, we find the

number of inter-tile transfers based on the generalized submatrix-based partition and

formulate the optimization mathematically in Eq. (5.3).

argmin
Nh

t ,N
w
t

(
Nh
t (Nh

t − 1)

Nt

+Nw
t︸ ︷︷ ︸

Forward

+
Nw
t (Nw

t − 1)

Nt

+Nh
t︸ ︷︷ ︸

Backward

)
(5.3)

The partition choices and the impact on inter-tile traffic are plotted in Fig-

ure 5.3(c) for a N × W = 1024 × 64 external memory used in running the bAbI

dataset. The five sets of curves correspond to various number of tiles Nt, and they

cover a range of Nw
t choices. The results show that both the low-end of Nw

t (corre-

sponds to row-wise partition, or transfer psums) and the high-end of Nw
t (corresponds

to column-wise partition, or transfer matrix elements) are suboptimal. The minimum

inter-tile traffic is somewhere in between. As an example, for Nt = 16, the optimal

submatrix partition for the linkage memory is Nh
t ×Nw

t = 4× 4.
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[102]

Figure 5.4: Two-stage usage sort.

5.2.3 Two-Stage Usage Sort

Usage vector sort is a bottleneck primitive. In HiMA, the usage vector is dis-

tributed and stored in parts on the PTs. A conventional solution using centralized

merge sort [102], as shown in Figure 5.4(a), takes N logN cycles for a length-N usage

vector. To achieve a lower latency, we propose a local-global two-stage sort for the

distributed tile architecture: 1) a local usage vector of size n = N/Nt is first sorted

by each PT, 2) global merge sort by CT to combine Nt sorted local usage vectors.

We illustrate the two-stage sort for an example of Nt = 4 tiles and an external

memory of N = 1024 rows. Each PT keeps a local usage vector of length n = 256.

In stage 1 in each PT, a local usage vector is reshaped into a P × P matrix where

P =
√
n = 16. We apply a fast multi-dimensional sorting algorithm (MDSA) [133]

to complete the local sort in only 6 phases. The 2D MDSA sorter is illustrated in

Figure 5.4(b), which is composed of a P × P register file (RF) and a P -input dual-

mode pipelined bitonic sorter (DPBS) [133] supporting both ascending and descending

order. The 16-input DPBS can be pipelined into DDPBS = 5 stages. A length n = 256

local usage vector can be sorted in only 6× (P +DDPBS) = 126 cycles.

In stage 2, sorted local usage vectors are sent from PTs to CT for global merge sort.

CT utilizes Nt memory banks to store the local usage vectors. We apply an Nt-input
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parallel merge sorter (PMS) [134] in CT to support Nt outputs per cycle, which are

to be written back to the corresponding PTs as shown in Figure 5.4(b). The pointers

are updated to keep track of the status of each memory bank. The 4-input PMS can

be pipelined into DPMS = 7 stages. The global merge sort for the example Nt = 4

takes only n + DPMS = 263 cycles. With the proposed local-global two-stage sort,

usage sort computation latency is reduced to only 6×(P +DDPBS)+n+DPMS = 389

cycles compared to N logN cycles for the centralized merge sort.

5.3 Algorithmic Techniques

A key advantage of a distributed, tiled architecture is more opportunities for par-

allel processing. However, only part of DNC primitives like element-wise operations

can take full advantage of distributed processing, while most of the primitives need

to operate on the entire external memory or the entire state memories, resulting in

excessive traffic and limited hardware scalability. We aim to distribute most of the

processing to individual PTs by presenting a distributed version of the DNC model

named DNC-D, while minimizing the accuracy loss over DNC.

5.3.1 Distributed Execution for DNC

In DNC, the LSTM provides an interface vector to the memory unit as the input

and receives a read vector as the output. As shown in Figure 5.5, in DNC-D the

LSTM provides a sub interface vector to each distributed PT instead of broadcasting

one global interface vector to all the PTs. Soft read and soft write are executed locally

on each PT’s local portion of the external memory and state memories.

DNC-D could degrade the inference accuracy. To minimize the loss, we introduce

a trainable weighted sum to merge the Nt output read vectors vri from the PTs, where

i ∈ {1, ..., Nt}, and compute the final read vector vr as output to the LSTM as (5.4)

below:
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Figure 5.5: Illustration of memory operation in DNC and distributed execution in
DNC-D.

vr =
Nt∑
i=1

αri v
r
i , (5.4)

where the trainable weights αri ∈ [0, 1] are determined by the LSTM. The distributed

execution offers several advantages: 1) it eliminates the inter-PT communication, 2)

it reduces the computations on PTs related to inter-PT data, and 3) it removes the

global sort. Without any inter-PT traffic, HiMA achieves nearly optimal speedup

scaling as shown in Figure 5.2(d). In Section 5.5, we study the improved hardware

efficiency and the accuracy loss of DNC-D.

5.3.2 Approximation Techniques

We introduce two optional approximation techniques to further reduce the com-

pute complexity.

Usage Skimming: The usage vectors are collected in computing the write al-

location. In practice, we observe that the least significant usage entries have little

effect on computation of the write allocation. We propose usage skimming to dis-

card the K smallest usage entries. Usage skimming reduces the complexity of usage

sort and write allocation proportionally. In Section 5.5, we evaluate the inference

accuracy impact of usage skimming with various K and show its hardware efficiency
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Figure 5.6: HiMA architecture and CT/PT designs.

enhancements.

Softmax Approximation: Softmax is a timing-critical compute block. State-

of-the-art softmax approximations include look-up-table (LUT) based [135] or piece-

wise linear approximation (PLA) based [136] exponential function. The drawback

of the LUT-based is that the number of entries in the table increases exponentially

with the input bit width. We combine PLA and LUT approaches: we apply the

PLA-based approximation with a small number of line pieces, each of which is an

affine function with a slope; we utilize a LUT of affine functions that stores the

corresponding function parameters. The design costs only 1 multiply and 1 add.

5.4 HiMA Prototype

Putting everything together, the HiMA architecture is depicted in Figure 5.6.

It is composed of a CT with surrounding PTs connected via the proposed HiMA-

NoC. HiMA incorporates all the architectural design techniques and optionally the

algorithmic optimizations and approximations.

Controller Tile: CT contains the LSTM and it also executes kernels that require

global-level processing. An LSTM implementation employed by [100] is used in this
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work and it handles the LSTM inference and communication with off-chip memories.

The CT design is illustrated in Figure 5.6. It sends the interface vectors to the PTs

and collects the read vectors from the PTs through routers. The global usage buffers

and merge sorter are employed for the 2nd-stage usage sort. Note that using DNC-D,

the distributed DNC model, the 2nd-stage usage sort can be eliminated for smaller

area.

Processing Tile: A PT’s memory system consists of an external memory bank

and state memory banks for linkage, precedence, usage, read weighting and writing

weighting. The memory partitions are determined based on the optimized submatrix-

based partitions. PT’s compute modules support vector and matrix operations for

the primitives outlined in Table 5.1. Two matrix buffers hold the data for processing

from the on-PT memories, the PT router or the interface collector. A matrix buffer

loader is used to format and store the data to the corresponding buffers. A matrix-

matrix engine (M-M engine) is developed to perform matrix and vector operations.

The M-M engine is made of a systolic array of processing elements (PEs) with a con-

figurable processing tree (CPT) to support configurations of different sizes of vectors

and matrices.

Each PE consists of a small RF to hold the intermediate values. The PE design

supports bypass, add, multiply, multiply-then-add or add-then-multiply modes. The

CPT consists of multiple stages of compute cells (CPT cell) including adders, multi-

pliers, special function units (SFUs) and bypass routes. It follows a binary tree for

reduction and enables faster executions for accumulation of products, inner product

and psum accumulation. PT also includes a length-N/Nt MDSA sorter for on-tile

usage sorting. The proposed architecture provides parallelism through the PE array

and the multi-entry RF inside PE. The size of PE array, depth of RF inside PE, and

the number of CPT stages can be scaled up to provide a higher degree of parallelism.

Multi-Mode NoC Router: Figure 5.6 illustrates the 8-way multi-mode router
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that supports different HiMA-NoC modes specified in Figure 5.2. In addition to the

conventional router logic and buffers, input/output ports are controlled by on/off

switches to enable traffic only in certain directions. For example, only the east/west

ports are enabled for the inner tiles in the ring mode; and only the northeast/southwest

ports are enabled in the diagonal mode. Feed-through single-cycle transfer is enabled

when the input buffer in the forward direction is empty, bypassing router logic and

reducing the latency for non-congested tiles. The multi-mode router is implemented

by route LUTs dedicatedly designed to support proposed modes and a controller that

monitors the buffer conditions and generates control signals for each mode.

5.5 Evaluations and Benchmarking

We developed a parameterized RTL simulator for HiMA to evaluate its silicon area,

inference speed and power consumption. All designs utilize a 32-bit precision for a

fair comparison with state-of-the-art MANN accelerators [102, 100]. We verified the

designs against a functional model of DNC in Python at kernel level as well as system

level. To estimate area, we synthesized designs at a 500 MHz clock frequency in a

40nm CMOS technology. We used Ansys PowerArtist to obtain power measurements

of executing DNC kernels based on switching activities.

The HiMA-baseline architecture employs the H-tree NoC used in [100]. Proposed

architectural features, including HiMA NoC, the optimized submatrix-wise memory

partition and the two-stage usage sort, are incorporated in the optimized HiMA archi-

tectures. HiMA can be further enhanced by the DNC-D model, the usage skimming

and the softmax approximation. Based on the architectural and algorithmic features,

we create two HiMA architectural prototypes, HiMA-DNC that runs DNC and HiMA-

DNC-D that runs DNC-D. Each prototype is equipped with Nt = 16 PTs and 1 CT,

and supports an external memory of size up to N ×W = 1024 × 64 for processing

the bAbI dataset.
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Figure 5.7: Inference error by DNC-D on 20 tasks of bAbI dataset for various Nt and
usage skimming K.

5.5.1 Inference Accuracy

To evaluate the inference accuracy of the DNC-D model, we performed simulations

using the bAbI dataset and report the error rates over DNC across 20 benchmark

tasks in Figure 5.7. The error rate of the DNC-D model increases with the number

of distributed tiles Nt. If Nt is capped at 32, the average error rate of DNC-D is

kept below 6% over DNC. With a usage skimming rate of K = 20% and Nt = 16,

DNC-D demonstrates an error rate of 5.8% higher than DNC. Further increasing the

skimming rate to 50% increases the error rate above 15% over DNC. The proposed

algorithmic features trade inference accuracy for a higher hardware efficiency. One

can select Nt based on the accuracy tolerance. Parameters used in approximations

can be selected based on simulations.
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5.5.2 Inference Speed

Figure 5.8(a) itemizes the inference speedup after steps of architectural optimiza-

tions over a HiMA-baseline (Nt = 16): 1) the two-stage sort provides a 1.12× speedup

over the HiMA-baseline; 2) replacing the H-tree NoC in the HiMA-baseline by the

multi-mode HiMA-NoC reduces the communication latency and improves the infer-

ence speed to 1.23× over the baseline. The improvement is mainly due to run time

savings of traffic-intensive kernels involving matrix transpose and matrix-vector mul-
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Figure 5.8: HiMA speed, silicon area and power with Nt = 16.

tiplications, such as linkage, forward-backward and memory read; 3) applying the

submatrix-wise partition increases the inference speed to 1.39× over the baseline,

where the speedup is mainly attributed to the reduced traffic amount. These im-

provements are based on architectural features only. The architecturally optimized

HiMA-DNC achieves an inference time of 11.8 µs per test. Figure 5.8(b) shows the

kernel run time breakdown in executing DNC. History-based write weighting and read

weighting are the most significant, taking 24% and 33% of the run time, respectively.

To further improve the speed, we can apply DNC-D with distributed execution
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(Nt = 16). HiMA-DNC-D achieves a 8.3× inference speedup over the baseline as

shown in Figure 5.8(a). The improvement is due to several factors: 1) the elimination

of all inter-PT traffic, 2) the computation reduction on PTs, and 3) the elimination

of global usage sort. Applying a K = 20% usage skimming and the softmax approxi-

mation increases the inference speedup to 8.4× over the baseline. The architecturally

and algorithmically optimized HiMA-DNC-D with K = 20% usage skimming short-

ens the inference time to 1.95 µs per test. As shown in Figure 5.8(b), the run time

for history-based write weighting and read weighting in DNC-D are reduced by 87%

and 89% compared to the run time in DNC, respectively.

5.5.3 Silicon Area and Power

Both HiMA-DNC and HiMA-DNC-D prototypes contain Nt = 16 PTs, and they

implement all the architectural features. Additionally, HiMA-DNC-D employs a sim-

pler PT and CT due to the elimination of the inter-PT communication and the

associated global processing. Figure 5.8(e) compares the silicon area and power con-

sumption of HiMA-DNC and HiMA-DNC-D to HiMA-baseline. HiMA-DNC has a

PT area of 5.01 mm2. The architectural features cost an overhead of 1.8% for the PT

over the baseline PT. PT’s memory system occupies 2.07 mm2, including an external

memory of 16.4 KB, a linkage memory of 262 KB and multiple 256 B state memories.

The linkage memory and the external memory account for 81.3% and 4.8% of the PT

memory area, respectively.

Figure 5.8(c) itemizes the power impact of architectural features: 1) the two-stage

sort adds 9% power over the baseline due to the introduction of local sorters in each

PT; 2) adopting the multi-mode HiMA-NoC increases the power by another 4%; 3)

applying the submatrix-wise partition reduces the total power to 0.9% below the

baseline, where the power saving comes from the reduced data movement. In all,

HiMA-DNC consumes 16.96 W for running a complete DNC inference.
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HiMA-DNC-D has a smaller on-PT linkage memory and the centralized sorter is

eliminated in CT. It results in a reduced PT area of 4.22 mm2 and a reduced CT

area of 0.18 mm2. HiMA-DNC-D employs a simpler router that only supports CT-PT

traffic as DNC-D eliminates all inter-PT traffic. HiMA-DNC-D uses 16.1% less silicon

area and consumes 39.4% less power than HiMA-DNC.

Figure 5.8(d) and Figure 5.8(f) show the kernel and module power breakdown.

Notably, DNC-D reduces the power of history-based write weighting by 79% due to the

elimination of global usage sort in CT and the usage transfers between CT and PTs.

DNC-D also cuts 98.4% of the router power because of the elimination of all inter-

PT traffic. Since DNC-D allows PT to compute based only on local memories, the

computation and traffic reduction result in power savings across all relevant kernels

and modules.

HiMA can be scaled up with more tiles to support a larger external memory and

a higher degree of parallelism. As shown in Figure 5.9(a), the power of HiMA-DNC

grows super-linearly with Nt mainly because of the increased traffic and the related

computations on each PT, while DNC-D improves the power scalability close to the

ideal (linear) scaling.

5.5.4 Comparison with State-of-the-Art Accelerators

Figure 5.9(b) compares HiMA’s performance to the state-of-the-art MANN ac-

celerators as well as an Nvidia 3080-Ti GPU and an Intel Core i7-9700K CPU. The

speedup is normalized to the GPU. Figure 5.9(c) and Figure 5.9(d) compare HiMA’s

area and power to the MANN accelerators. GPU and CPU are omitted in area and

power comparisons since it would be unfair to compare area and power of an acceler-

ator to general-purpose computing platforms. The area and power are normalized to

Farm [102]. The area is also normalized based on each design’s process technology.

Farm achieves a 68.5× faster speed over the GPU. Farm’s faster speed is mainly
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Figure 5.9: (a) Area and power scalability of HiMA-DNC and HiMA-DNC-D for vari-
ous Nt to support larger external memory. (b)-(d) Performance, area and
power comparison of HiMA (Nt = 16) with state-of-the-art MANN accel-
erators and GPU/CPU (area efficiency is measured by throughput/area,
and energy efficiency is measured by throughput/power).
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attributed to its small memory size (up to N = 256) and mixed-signal designs. How-

ever, Farm’s centralized-memory architecture is not scalable to a larger size to support

practical problems and the mixed-signal computation is not yet feasible at a large

enough scale. The 16-tile NTM accelerator MANNA [100] utilizes an H-tree NoC. It

achieves a similar speedup as Farm, but it costs 11× area and 32× power to support

20× larger external memory than Farm. MANNA still cannot run DNC due to the

lack of support for history-based memory access.

HiMA-baseline uses the same H-tree NoC as MANNA and it supports DNC’s

history-based memory access. It has a 4× larger external memory than Farm while

using only 3.16× the area of Farm. HiMA-baseline consumes a higher power than

MANNA to support DNC’s history-based mechanisms. HiMA-DNC achieves a 1.39×

faster speed over HiMA-baseline thanks to the architectural features. The overhead

of the architectural features is almost negligible, which explains why HiMA-DNC

uses similar area and power as HiMA-baseline. HiMA-DNC-D takes advantage of the

DNC-D model to increase the speed by 8.4× over HiMA-baseline and reduces the area

by 14.4% and power by 38.8% over HiMA-baseline. Compared to MANNA that was

designed in a 15nm technology, the 40nm HiMA-DNC-D demonstrates 39.1× faster

speed, 164.3× better area efficiency and 61.2× better energy efficiency.

5.6 Summary

We present HiMA, a distributed, tile-based accelerator, to efficiently speed up

history-based memory access for advanced MANN models like DNC. A multi-mode

NoC is designed to support different traffic patterns and improve latency and scala-

bility. Submatrix-wise memory partition is developed to minimize the amount of data

movements. To achieve better hardware efficiency, we leverage the tiled architecture

to design a two-stage usage sort. To fundamentally improve the efficiency of HiMA’s

distributed architecture, we distribute not only memory, but also memory operations
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to the tiles in the form of a new DNC-D model. The HiMA compute kernels can be

further optimized by skimming insignificant usage entries and applying an efficient

approximation to the softmax function.

We create two HiMA architectural prototypes: HiMA-DNC that runs DNC and

HiMA-DNC-D that runs DNC-D. The results show that HiMA-DNC and HiMA-

DNC-D achieve 6.47× and 39.1× higher speed, 22.8× and 164.3× better area effi-

ciency, and 6.1× and 61.2× better energy efficiency than MANNA, the state-of-the-art

tiled MANN accelerator for NTM. Compared to an Nvidia 3080Ti GPU, HiMA-DNC

and HiMA-DNC-D outperform by up to 437× and 2,646× in speed, respectively.
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CHAPTER VI

Hardware Acceleration for Neural Ordinary

Differential Equations

6.1 Neural ODE Theory

Recall that neural ODE is extended from classical ResNet through Euler dis-

cretization (6.1):

dh(t)

dt
= f(h(t), t, θ), h(0) = x, t ∈ [0, T ] (6.1)

where the inference becomes an integration from time 0 to the evaluation time point

T as shown in (6.2):

h(T ) = h(0) +

T∫
0

f(h(t), t, θ)dt (6.2)

The f function in NODE is typically a shallow NN. An example f function of

NODE is shown in Figure 6.1(a). It is essentially an NN that has 2 stages of {Conv,

BN, ReLU}. θ(t)[1] and θ(t)[2] are the associated weights for the 2 Conv layers at

time stamp t. A deeper NN can be used for f function to improve the modeling
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Figure 6.1: NODE with different ODE solvers: (a) Euler (classical ResNet), (b) Mid-
point and (c) RK-4 Classic. .

capabilities with higher network complexity. Classical ResNet [8] uses a first-order

Euler discretization from h(t) to h(t+4t) with a stepsize 4t.

6.1.1 Adaptive Stepsize Runge-Kutta Method

More complicated numerical integrators, such as midpoint in Figure 6.1(b) or 4-

th order Runge-Kutta (RK-4 Classic) in Figure 6.1(c), can be used to minimize the

numerical integration error. The stepsize 4t can be determined by fixed integration

grids. However, the truncation error (TE) may be unstable if the integration grids are

not set properly. Hence, advanced ODE solvers often use adaptive stepsize instead

of fixed stepsize to further improve the numerical integration accuracy as shown in

Figure 6.2. However, adaptive stepsize requires a stepping algorithm to estimate the

TE iteratively until reaching the optimal stepsize, incurring extra computations and

longer latency. From hardware perspective, a reconfigurable architecture is needed to

support the multitude of NN configurations and ODE solver choices.

The adaptive stepsize Runge-Kutta (RK) method is by far the most commonly

used ODE solver in NODE. For completeness, we briefly introduce its numerical
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Figure 6.2: Fixed and adaptive stepsize integration.
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Figure 6.3: Butcher tableau for: (a) s-th order RK method, (b) 4-th order RK
method, and (c) 4-th RK method with 3/8 rule..

integration procedure as (6.3):

dh(t)

dt
= f(t, h(t))

h(t+4t) = h(t) +4t
s∑
i=1

biki

ki = f(t+ ci4t, h(t) +4t
i−1∑
j=1

aijkj) (6.3)

where s specifies a particular order of RK method and the coefficients are usually

arranged in a mnemonic device known as a Butcher tableau as in Figure 6.3.

The stepsize 4t in (6.3) can be determined by adaptive stepping algorithms.

The most widely used adaptive stepping algorithm for RK method was proposed by
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Figure 6.4: Butcher tableau for adaptive stepsize RK-4 method.
.

Fehlberg [137] in 1969. By performing one extra calculation for error estimation, the

integration error can be controlled automatically. For the adaptive-stepsize RK-4

method, the Butcher tableau is given below in Figure 6.4 (detailed derivations can be

found in [137]). The first row of coefficients at the bottom of the table gives the 5-th

order accurate method and the second row gives the 4-th order accurate method.

The optimal stepsize is searched and updated as following:

1) ki’s are computed based on the adaptive stepsize Butcher tableau (e.g., Fig-

ure 6.4 for adaptive stepsize RK-4);

2) the weighted average is derived as (6.4):

h(t+4t) = h(t) +
s∑
i=1

C(i)ki (6.4)

where C(i) is the weights of ki that are derived based on RK order s. Readers can

refer to [137] for detailed derivations;

3) the estimation of the truncation error (TE) is then computed by (6.5):
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Figure 6.5: A 4-layer neural ODE with classical RK-4 integration layer.
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TE = |
s∑
i=1

C(i)ki| (6.5)

4) at the completion of the step, a new stepsize can be calculated by (6.6):

4tnew = 0.9 · 4t · ( ε

TE
)0.2 (6.6)

if TE > ε, the step is repeated with the new stepsize 4tnew; otherwise, the step is

completed and 4tnew is used for the next step.

6.1.2 Neural ODE Inference

Suppose a numerical integration step from h(t) to h(t+4t) is called an integration

layer, Figure 6.5 demonstrates a 4-layer neural ODE with RK-4 integration layer.

The embedded f function is usually a shallow NN as shown in Figure 6.1(a). We

can see that neural ODE inference can be viewed as multiple stages of NN inferences

with more complex connections, which can be accelerated by state-of-the-art NN
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accelerators through proper scheduling. Hence, we do not focus on accelerating NODE

inference in this work.

6.1.3 Neural ODE Training

Training a neural ODE involves reverse propagation through numerical integration

layers. For completeness, we briefly introduce the training method [11].

6.1.3.1 Reverse Propagation through Numerical Integrator

The main technical difficulty for NODE is performing reverse propagation for

gradient estimation through the ODE solver during training. The training process of

NODE can be formulated as an optimization problem in (6.7):

argmin
θ

L(h(T ), y) (6.7)

where L is the loss function and y is the target output. To optimize L, we require

gradients with respect to θ. The first step is to determine how the gradient of the loss

depends on the hidden state h(t) at each instant. This quantity is called the adjoint

a(t) as in (6.8). Its dynamics are given by another ODE, which can be thought of as

the instantaneous analog of the chain rule as (6.8):

da(t)

dt
= −a(t)T

∂f(h(t), t, θ)

∂h(t)
, a(T ) =

∂L

∂h(T )
(6.8)

The analytical form of the loss function gradient in the continuous case can be

derived as (6.9):
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dL

dθ
= −

0∫
T

a(t)T
∂f(h(t), t, θ)

∂θ
dt (6.9)

Detailed proofs can be found in [11, 138]. NODE training operations can be

summarized as four steps:

1. Solve h(t) in time 0→ T .

2. Determine adjoint a(T ) with the boundary condition at time T in (6.8).

3. Solve a(t) in time T → 0 following (6.8) and boundary condition a(T ).

4. Calculate parameter gradients by (6.9) and update network parameters.

Note that in order to calculate (6.9), a(t) and h(t) are required for every t. Since

a(t) and h(t) are solved in the opposite directions, we need to either memorize h(t), or

find a method to recover h(t). (6.9) is the analytical form and needs to be numerically

calculated in practice. Figure 6.6 demonstrates the training dataflow for a 2-layer

NODE.

6.1.3.2 Numerical Implementations for Analytical Form

There are several numerical implementations [11, 138, 139, 140] in the literature

for the analytical form dL
dθ

in Section 6.1.3.1. Forward-pass is similar for different

methods; however, the backward-pass are different. We categorize these methods as

below.

Baseline Method The baseline method [11] directly back-propagate through

the forward-pass trajectory using a numerical ODE solver, as shown in Figure 6.7. It

saves all the computation graph (including search for optimal stepsize) in memory.

The memory cost and depth are O(Nf ×Nt ×m). The computation cost is doubled

considering both forward and reverse passes.
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Figure 6.6: Training dataflow for a 2-layer NODE.
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Figure 6.7: Backward-pass propagation. The blue curve is the same trajectory as in
forward-pass. Both naive method and ACA method accurately recover
the forward-pass trajectory, while adjoint method forgets the forward-pass
trajectory.

Adjoint Method The adjoint method [11] forgets about forward-pass trajectory

h(t); instead, it remembers boundary condition h(T ) and a(T ), then solves h(t) and

a(t) in reverse-time T → 0 as a separate ODE. We use h̄ to denote reverse-time

solution. Because a(t) and h̄(t) are solved in the same direction, the integration

in Eq.(6.9) only records current values, achieving O(Nf ) memory cost. Since the

adjoint method needs to solve h̄(t) in reverse-time, it requires extra O(Nf ×Nr ×m)

computation, so the total computation cost is O(Nf × (Nt+Nr)×m). Note that h̄(t)

is not the same as h(t) due to numerical errors, the adjoint method will cause errors

in gradient estimation.

Adaptive Checkpoint Adjoint (ACA) Method To solve the inaccuracy of

adjoint method, the ACA method [138] stores forward-pass h(t) in memory for

backward-pass to avoid numerical errors, while also controlling the memory cost. ACA

deletes the search process in baseline method and only back-propagates through the

accepted steps, hence has a shallower computation graph (Nf×Nt). ACA only stores

h(ti)
Nt

i=1, and deletes the computation graph for f(h(ti), ti)
Nt

i=1, hence the memory cost

is only Nh(Nf + Nt). In this work, we adopt ACA method for NODE hardware
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acceleration.

6.2 Algorithm-Architecture Co-Design for NODE

We tackle hardware acceleration of NODE training through algorithm-hardware

co-optimizations: 1) we explore the sparsity and early termination opportunities in

NODE training algorithms, aiming to reduce the computational complexity while still

maintaining excellent training accuracy; 2) we study state-of-the-art ODE solvers

and propose a network-on-chip (NoC) architecture for NODE compute kernels with

reconfigurable interconnects to handle a variety of ODE solvers; 3) we carry out

software/hardware co-optimizations for further enhanced hardware efficiency with

hardware reuse and hierarchical memory design.

6.2.1 Neural Activation Sparsity

Sparsification can lead to more efficient models that reduces the representational

complexity using only a subset of the weight or activation. We study the sparsifi-

cation where neural activations are set to zero during the forward integration and

reverse propagation of training. We further observe that the iterative stepsize search

accounts for majority of the latency in forward integration; hence, an early termi-

nation mechanism is proposed that can skip the unnecessary computations in error

normalization.

The output activations of any RELU-based NN layer are naturally sparse due to

the the property of RELU activation function. Intuitively, with random inputs, half

of the output values of an NN layer would be 0’s. The sparsity can be significantly

higher than 50% with sparsification. State-of-the-art sparsification methods include

1) α-thresholding, where activations with magnitudes smaller than α are set to 0’s,

and 2) top-K sparsification, where neural activations with K largest magnitudes are

kept and others are set to 0’s. We select α-thresholding for NODE sparsification due
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Figure 6.8: Training loss with a variety of fixed thresholding on activation when us-
ing a 4-layer NODE (with adaptive stepsize RK-4 and f function in Fig-
ure 6.1) on CIFAR-10 dataset.

to its simple hardware implementations without comparators or sorters.

We simulate a 4-layer NODE using adaptive stepsize RK-4 and f function in

Figure 6.1 on a CIFAR-10 dataset. The training loss with a variety of fixed thresh-

olding on output activations are demonstrated in Figure 6.8. We observe that fixed

thresholding of α = 0.1 have negligible degradation in training loss and the sparsity of

neural activations can be as high as 80%, as shown in Figure 6.9. This presents an op-

portunity to greatly reduce the computational complexity and enables new hardware

architecture for sparse activation training. The sparsity processor design is ongoing.

6.2.2 Top-Level Architecture1 with Adaptive Stepsize ODE Solvers

To efficiently support adaptive stepsize RK ODE solvers, we propose a top-level

architecture as shown in Figure 6.10. It utilizes a network-on-chip architecture with

an array of NN cores to accelerate NODE’s embedded NNs. The NoC routers can be

configured during run-time to support a variety of ODE solvers. A stepsize engine

is instantiated to compute the initial stepsize based on input activations, derive the

output truncation error based on output activations, and compare the truncation error

1Acknowledgement to Junkang (Jerry) Zhu for his contributions
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to a given ε. It consists of an error norm calculator with early termination: once the

accumulated truncation error TE > ε, the error norm computations terminate and

an updated stepsize is calculated based on (6.6).

The hidden states and trained weights of forward integration steps are stored in

a main memory and are pre-fetched to an hidden state and weight cache (denoted by

H/W $ in Figure 6.10). At the beginning of a step, the hidden states and weights are

loaded to corresponding NN cores for inference. Upon completion of each step, the

H/W cache are updated based on the output activations and newly trained weights.

Moreover, the adaptive stepsize ODE solvers introduce stepsize searching iterations

within a numerical integration step: the intermediate activations from completed k’s

are stored in a hidden state cache that can be frequently written to and read from

for computations of downstream k’s.

The architecture of NN core is illustrated in Figure 6.11. It consists of a conv

core, a norm core, and a ReLU core with corresponding programmable LUTs and

local buffers (denoted by P and B in Figure 6.11, respectively). The programmable

LUTs are used to configure NN layers (for embedded f in Figure 6.5). The local

buffers are used to store intermediate activations of NN layers. A scratchpad memory

is instantiated to store input/output activations as well as weights in each NN core.

The NN core also includes a pre-fetcher/sender block to transfer data from/to caches

or other NN cores. Note that a sparsity processor is implemented to exploit the

sparsity of activations and weights for reduced hardware complexity.
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CHAPTER VII

DNC-Aided SCL Flip Decoding of Polar Codes

Capacity-achieving polar codes [116] have been adopted in modern communica-

tion systems such as 5th generation (5G) wireless standard. They can be decoded

sequentially on a trellis using successive cancellation list (SCL) [117] decoder. Upon

receiving log-likelihood ratios (LLRs), SCL calculates path metrics (PMs) following

a bit after bit order. A list of L most likely paths are kept during decoding and de-

coded bits are determined by the most likely path that passes cyclic redundancy check

(CRC). However, the decoding performance is not very satisfactory with moderate

code length N . Once wrong bit decisions occur on the trellis, they have no chance to

be corrected due to the sequential decoding order.

To solve this problem, flip algorithms are used when standard decoding fails with

CRC. Error bit positions are searched and flipped in subsequent decoding attempts.

Clearly, the key for successful flip decoding is to accurately identify error bit positions.

As shown in Figure 7.1, heuristic methods [141, 142, 143, 144, 145, 146, 147, 148, 149,

150, 151, 152, 153, 154] use explicit mathematical metric to estimate the likelihood

of each bit being an error bit. The likelihoods are sorted to obtain the flip position

set.
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Figure 7.1: Overview of 1) Heuristic bit flipping, 2) LSTM-aided bit flipping and 3)
proposed DNC-aided two-phase bit flipping.

7.1 State-of-the-art Flip Algorithms

Heuristic methods like [141, 142, 143, 144, 147] use received LLRs or their absolute

values as the metric to derive flip positions. Specifically, [144] introduces a critical

set to reduce the search space of flip positions for lower complexity. [147] subdivides

the codeword into partitions, on which SC-Flip (SCF) is run for shorter latency.

However, these methods can only flip one bit at a time. [148, 149, 152, 151] propose a

dynamic SC-Flip (DSCF) that allows flipping of multiple bits at a time and improves

the latency of SCF. Multi-bit flipping requires identifying multiple error bit positions

concurrently. DSCF introduces a new metric considering not only received LLRs but

also the trajectories in the sequential SCL decoding. [151, 152] introduce variations

of DSCF to improve the accuracy of identifying error bit positions. [146, 154] extends

the bit-flipping from SC to SCL for a SCL-Flip decoding (SCLF). Similarly, SCF is

a special case of SCLF when L = 1.

However, the optimal flipping strategy is still an open problem to date. Recent

works on flip algorithms involve deep learning (DL). Recently developed DL-aided

SCF/SCLF [155, 156, 145, 157] exploit a trained LSTM to locate error bit posi-
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tions instead of heuristic metric. They have shown slightly better performance than

heuristic methods for short polar codes of length 64 or 128. However, the accuracy of

identifying error bit positions is limited by the scalability of LSTMs when code length

increases. On the other hand, state-of-the-art LSTM methods use simple state and

action encoding that do not support multi-bit flipping efficiently, resulting in more

decoding attempts compared to heuristic methods.

7.2 Differentiable Neural Computer (DNC)

DNC addresses LSTM’s scalability problem with help of an external memory.

Since its invention, DNC has found many applications like question answering [158,

159]. DNC can be considered as an LSTM augmented with an external memory

through soft read and write heads, as shown in Figure 7.2. In this work, we use

DNCs to enhance the accuracy of identifying error bit positions.

A top level architecture of DNC is demonstrated in Figure 7.2. DNC periodically

receives xt as input vector and produces yt as output vector at time t. The output

vector yt is usually made into a probability distribution using softmax. At time t, the

DNC 1) reads an input xt, 2) writes the new information into the external memory

using interface vector vtc through memory controller, 3) reads the updated memory

M t and 4) produces an output yt. Assume the external memory is a matrix of Mh
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slots, each slot is a length-Mw vector. To interface with this external memory, DNC

computes read and write keys to locate slots. The memory slot is found using simi-

larity between key and slot content. This mechanism is known as the content-based

addressing. In addition, DNC also uses dynamic memory allocation and temporal

memory linkage mechanisms for computing write and read weights. We omit the

mathematical descriptions of DNC here and readers can refer to [160] for more de-

tails.

7.3 DNC-Aided Flip Decoding

Bit-flipping can be modeled as a game and the DNC is the player to identify flip

positions towards successful decoding. Upon CRC failure, the DNC player needs to

take an action based on current state, either reverting falsely flipped positions or

adding more flip positions. The proposed DNC-aided method includes: 1) new state

and action encoding; and 2) a DNC-aided two-phase decoding flow.

7.3.1 State and Action Encoding

One of the keys for efficient DNC inference is to design good input (state) and

output (action) vector for training and inference. We discuss the encoding of existing

LSTM-based approaches [155, 145, 156, 157] and present a new encoding scheme.

7.3.1.1 State Encoding

a straightforward way to encode states is to directly use the received LLR sequence

rN−10 . [155, 145] use the amplitudes of received LLRs as the LSTM input. [156] uses

the amplitudes of received LLRs combining the syndromes generated by CRC for state

encoding. However, path metric information in sequential decoding are discarded in

these methods, resulting in a loss in representing error path selection probability. [157]

proposed a state encoding by taking the PM ratio of discarded paths and survival
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paths. However, this representation requires extra computations for PM summations

at each bit position and does not include received LLR information.

In this work, we introduce a new state encoding scheme using the gradients of

L survival paths concatenated with received LLRs. It takes both PMs and received

LLRs into consideration. The PM gradients OP(`)i for i-th bit can be described as

(7.1):

OP(`)i = ln(1 + e−(1−2ûi(`))L
ûi (`)) (7.1)

Note that OP(`)i can be directly taken from existed PM calculations in standard

SCL without extra computations. The state encoding S is therefore a vector as (7.2)

and is used as DNC input in this work.

S = {OP(`)N−10 , rN−10 } (7.2)

7.3.1.2 Action Encoding

the one-hot scheme used in state-of-the-art LSTM-based flip algorithms are effi-

cient in identifying the first error bit, but lacks the capability to flip multiple bits at

a time. This results in more decoding attempts. To improve bit flipping efficiency,

we propose a soft multi-hot (i.e. ω-hot) flip vector vf to encode both first error bit

and subsequent error bits, aiming to correctly flip multiple bits in one attempt. vf is

a length-N vector that has ω non-zero entries. An action is therefore encoded by vf .

Each possible flip position in vf is a non-zero soft value indicating the flip likelihood

of the bit.

For training purpose, we introduce a scaled logarithmic series distribution (LSD)
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to assign flip likelihoods to the ω flip positions, where p ∈ (0, 1) is a shape parameter

of LSD. The intention is to create a distribution with descending probabilities for first

error bit position and subsequent error bit positions and to provide enough likelihood

differences between them. Suppose the k-th bit in polar code has an index IF(k) in

the flip position set F . Non-zero entries of vf can be derived as (7.3):

vf (k) = K −1

ln(1− p)
pIF (k)

IF(k)
for k ∈ F

where scaling factor K = 1/

∫
F

vf
(7.3)

Reference vf generation for training are discussed in Section 7.4. The impacts of

parameters ω and p on the accuracy of identifying error bit positions are discussed in

Section 7.5.1..

7.3.2 DNC-Aided Two-Phase Decoding Flow

We design a two-phase flip decoding flow aiming to reduce the number of SCL

attempts while achieving good error correction performance. The two phases in this

flow are: i) multi-bit flipping and ii) successive flip decoding trials. In the first

phase, the received symbols are first decoded with a standard decoder. If it fails

CRC, a flip DNC (F-DNC) exploits the state encoding S to score the actions, i.e.,

estimate the probability of each bit being error bits and output a flip vector vf .

Figure 7.3 shows an example of ω = 3 where F = {7, 9, 2} is the flip position set with

descending likelihoods {0.4, 0.3, 0.1}. To avoid wrong flips of subsequent positions

with insignificant flip likelihoods, an α-thresholding is applied to keep only positions

with vf (i) > α, i = {0, ..., N−1}, for multi-bit flipping. A subsequent decode attempt

is then carried out with multi-bit flipping of bit positions {7, 9} in the example.

If CRC still fails after multi-bit flipping, we enter Phase-II that successively re-
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select or confirm a single error bit position. The reasons of failed decoding in Phase-I

are either: 1) first error bit position is wrong; or 2) first error bit position is right

but some subsequent flip positions are wrong. Our proposed solution is to flip each

possible error bit position one at a time and use a flip-validate DNC (FV-DNC) to

confirm if this is a correct flip before moving to the next possible error bit position.

The first attempt in Phase-II flips the highest ranked error bit position in F , i.e., bit

7 in the example shown in Figure 7.3.

If FV-DNC invalidates the single-bit flip (bit 7 in this case), we discard bit 7 and

re-select the flip position to next bit 9 in F . Alternatively, if FV-DNC confirms the

flip of bit 7, we continue by adding bit 9 into the flip queue Qf and flip Qf = {7, 9}

in next attempt. The process runs successively until CRC passes or reaching the end

of F . Figure 7.4 shows all possible flip combinations given different FV-DNC output

combinations in the ω = 3 case. The number of decoding attempts of Phase-II is

bounded by ω. The two-phase DNC-SCLF can be described as Algorithm 7.5.

7.4 Training Methodology

In this section, we discuss training for the DNCs used in proposed DNC-SCLF. The

training is conducted off-line and does not increase the run-time decoding complexity.
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Figure 7.5: Algorithm 7.3.2 DNC-Aided SCL-Flip Decoding

We adopt the cross-entropy function which has been widely used in classification tasks

[161].

7.4.1 F-DNC Training

In the first training stage, we run extensive SCL decoder simulations and collect

error frames upon CRC failure. The F-DNC training database consists of pairs of S

from (7.2) as DNC input and a corresponding vf from (7.3) as reference output. S

can be straightforwardly derived based on received LLRs and PMs of collected error

frames. However, vf is determined by parameter ω and p, whose values will affect

the training and inference efficiency. We first label the error bit positions w.r.t the

transmitted sequence for each sample as candidate flip positions. Intuitively, small ω

and p strengthen the likelihood of identifying first error bit position, but attenuate

the likelihoods of subsequent error bit positions. Hence there is a trade-off between

the accuracy of identifying first error bit position and the accuracy of identifying
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Table 7.1: F-DNC/FV-DNC Hyper-parameters Set

Parameter Description

LSTM controller 1 layer of size 128

Size of access heads 1 write head, 4 read heads

Size of external memory Mh = 256,Mw = 128

Size of training set 106 for F-DNC, 3× 107 for FV-DNC

Size of validation set 5× 104

Mini-batch size 100

Dropout probability 0.05

Optimizer Adam

Environment Tensorflow 1.14.0 on Nvidia GTX 1080Ti

subsequent error bit positions. In this work, we carried out reference vf generations

with ω = {2, 5, 10} and p = {0.2, 0.8}. The experimental results with these parameter

choices are discussed in Section 7.5.

7.4.2 FV-DNC Training

The error frames that can not be decoded correctly in Phase-I enter Phase-II,

where single bit positions are flipped and tested successively as shown in Figure 7.4.

This is to prevent wrong flips that will lead the DNC player into a trapping state and

can never recover. The FV-DNC is a classifier taking either ”re-select” or ”continue”

action given the knowledge of received LLRs and PMs from most recent attempt.

The key for FV-DNC training is to create a well-categorized database that can detect

trapping state effectively. We carry out supervised flip decoding attempts based

on reference vf in F-DNC database. For each collected error:1) the first 5 error

bit positions in reference vf are flipped bit after bit and their corresponding state

encoding S are recorded. These samples result in a “continue” action. 2) After

flipping each of the first 5 error bit positions, we flip 5 random positions and record

their state encoding S. These samples indicate trapping state and result in a “re-
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Figure 7.6: Rate of identifying error bit positions for ω = {2, 5, 10} and p = {0.2, 0.8}
for SC decoding of (256,128) polar code.

select” action. For each collected frame, we have 5 samples for “continue” action and

25 samples for “re-select” action.

7.5 Experiments and Analysis

To show the competitiveness of DNC in tackling long-distance dependencies in

polar decoding trellis, we evaluate the performances for polar codes of length N =

256, 1024 with SC and SCL (L = 4). The code rate is set to 1/2 with an 16b CRC.

Error frames are collected at SNR 2dB. In this paper we do not focus on the hyper-

parameter optimizations for DNC and just demonstrate a set of configurations that

work through our experiments for F-DNC and FV-DNC in Table 7.1.

7.5.1 Accuracy of Identifying Error Bits

Firstly, we study the impacts of parameters ω and p introduced in action encoding.

For a fair comparison, we pick the same code length N = 256 and SC decoding used

in heuristic method [149] and LSTM-based method [155]. Figure 7.6 presents the

accuracy of identifying the first 5 error bit positions. For a given ω, a smaller p

(p = 0.2) enhances the probability of identifying the first error bit position, but

attenuates the probability of identifying subsequent error bit positions. We achieve a
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Figure 7.7: Number of extra decoding attempts of DNC-SCF and state-of-the-art
flipping algorithms for (1024, 512) polar code.

0.573 success rate of identifying the first error bit position with ω = 2, outperforming

the 0.425 and 0.51 success rate with heuristic DSCF [149] and LSTM-aided SCF [155],

respectively. Comparing ω = 2 and ω = 5 with same p = 0.8, a bigger ω helps to

identify more error bit positions, but the success rates of identifying each position are

degraded.

We pick p = 0.8 in our two-phase DNC-SCLF experiments to strengthen the

success rates of identifying subsequent error bit positions and slightly sacrifice the

success rate of identifying first error bit position. This is because with help of FV-

DNC, even though F-DNC may not identify the first error bit position accurately in

Phase-I, the two-phase decoding can re-select it in Phase-II. We use an α = 0.03 for

thresholding through our experiments.

7.5.2 Complexity and Latency

Metric calculation and sorting in heuristic methods can be implemented inside

standard SC/SCL decoders. However, DL-aided algorithms introduce higher com-

plexity and require an inference accelerator to interact with the decoder. We use

GPU that achieves a speed of 1.7 ms/inference. For practical adoptions, a dedicated
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accelerator can be implemented for faster inference. Bit flipping is conditionally trig-

gered when the standard decoder fails and the triggering rate is lower than the FER.

DL-aided algorithms are more suitable for the low FER regime where the inference

latency can be hidden behind successful decoding runs with help of LLR buffers. In

this work we do not focus on the inference acceleration and LLR buffering strategy,

but focus on the average number of flip decoding attempts that determines the overall

latency.

Assume β1 is the rate of successful decoding with multi-bit flipping in Phase-I,

the average number of decoding attempts Tavg for a DNC-aided flip decoding can be

calculated as (7.4):

Tavg = β1 + ω2,avg(1− β1) (7.4)

where ω2,avg is the average number of attempts in Phase-II and ω2,avg ≤ ω. Figure 7.7

demonstrates the Tavg for proposed DNC-SCF and the state-of-the-art techniques. At

a 2dB SNR, DNC-SCF with ω = 2 improves the average decoding attempts by 45.7%

and 54.2% compared to state-of-the-art heuristic [151] and LSTM-aided methods

[156], respectively.

7.5.3 Error-Correction Performance

We compare coding gain of DNC-SCF at FER 10−4 with state-of-the-art heuristic

methods [149, 151] and LSTM-based methods [156] for a (1024, 512) polar code and

16b CRC. DNC-SCF ω = 2 achieves 0.5dB coding gain w.r.t SC decoder. Increasing

ω to 5 provides another 0.31dB coding gain. DNC-SCF ω = 5 also outperforms

DSCF [149] or Fast-DSCF [151] with T = 10 by 0.03dB and 0.05dB, respectively,

while reducing the number of decoding attempts by 45.7%. Further increasing ω to
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Figure 7.8: FER performance comparison of DNC-SCF and state-of-the-art flipping
algorithms for (1024,512) polar code and 16b CRC.

DNC-SCF ω = 10 provides 0.21dB coding gain compared to DSCF T = 10 while

reducing the number of decoding attempts by 18.9%.

The LSTM-based approach in [155] does not report FER, but has shown up to

10% improvement in the accuracy of identifying first error bit position over DSCF

with T = 1 at 1dB SNR for (64, 32) polar code. Another LSTM-based SCF [156]

provides FER for (64, 32) polar code with T = 6 and claims 0.2dB improvement over

DSCF T = 6. The FER of [156] with 1024b and T = 10 is shown in Figure 7.8,

worse than DNC-SCF ω = 5. LSTM’s capability of identifying error bit positions

gets weakened when code length increases.

We further compare the FER of DNC-SCLF (L = 4) on (256, 128) polar code

and 16b CRC with state-of-the-art heuristic methods [146, 154] and LSTM-based

approaches [145, 157] as shown in Figure 7.9. At FER 10−4, DNC-SCLF ω = 2

achieves a 0.27dB coding gain w.r.t standard SCL. Increasing ω to 5 results in 0.59dB

coding gain from the standard SCL. DNC-SCLF ω = 5 achieves 0.21dB and 0.01dB

better performance than heuristic SCLF [154] and LSTM-SCLF [157] with T = 10,

respectively. Further increasing ω to DNC-SCLF ω = 10 improves the coding gain to

0.34dB and 0.16dB compared with [154] and [157], respectively.

156



Figure 7.9: FER performance comparison of DNC-SCLF (L = 4) and state-of-the-art
flipping algorithms for (256,128) polar code and 16b CRC.

7.6 Summary

In this paper, we present a new DNC-aided SCLF decoding. We propose a two-

phase decoding assisted by two DNCs, F-DNC and FV-DNC, to identify error bit

positions for multi-bit flipping and to re-select error bit positions for successive flip

decoding trials, respectively. The multi-bit flipping reduces number of flip decoding

attempts while successive flip decoding trials lowers the probability of going into

trapping state. Training methods are proposed accordingly to efficiently train F-

DNC and FV-DNC. Simulation results show that the proposed DNC-SCLF helps

to identify error bits more accurately, achieving better error correction performance

and reducing the number of flip decoding attempts than the the state-of-the-art flip

algorithms. We plan to investigate the parameter optimizations for proposed DNC-

SCLF in follow-up research.
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CHAPTER VIII

Conclusion

The explosive growth of data and the needs for high-speed data communications

and processing continuously drive the development of new hardware for transmitting

more data reliably and processing more data to obtain a higher level of intelligence.

Domain-specific communication and machine learning accelerators require algorithm-

architecture co-design to derive efficient solutions for future applications. We have

explored into the designs of: 1) channel decoders for polar codes, LDPC codes, and

nonbinary LDPC codes; and 2) NN accelerators such as DNC and NODE. We also

looked into interdisciplinary area of AI-aided communication, such as DNC-aided

polar flip decoding.

Recently invented polar codes are the first provably capacity achieving code. We

present a chip in a 40nm CMOS technology that implements a ST-SCL decoder for

polar codes. In this design, a given polar code is split into 4 sub-codes and decoded

separately with smaller sub-decoders followed by a reconciliation step in every decod-

ing stage. Taking advantage of the under-utilized PEs in the sub-decoders, 8 frames

are interleaved and decoded in parallel to achieve a high throughput and area effi-

ciency. The decoder supports variable code lengths up to 1024b and variable code

rates by programming the control LUTs. Per-block clock gating is implemented to fur-

ther reduce the power consumption and improve the energy efficiency. The 0.64mm2
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test chip is measured to achieve a decoding throughput of 3.25Gb/s at 430MHz and

the nominal supply voltage of 0.9V, consuming 13.17pJ/b, and it demonstrates a

competitive error-correction performance. Voltage and frequency scaling of the chip

to 0.6V and 100MHz further improves the energy efficiency to 7.4pJ/b at a reduced

throughput of 760Mb/s.

Error floors of structured binary LDPC codes are caused by local minima due to

non-codeword ETS and ETS-like errors. Inspired by simulated annealing, we design

post-processing methods to perturb the local minimum state, followed by cooling to

help decoding converge to the global minimum. The post-processing methods can be

easily integrated as part of BP decoding, adding minimal overhead to the hardware

implementation. As these methods are conditionally triggered when the decoder fails

to converge at a very low BER level, the impact on decoding throughput and energy

consumption is negligible. The success rate of resolving errors in the error-floor region

is over 95% for ETS errors and over 80% for non-ETS errors for the IEEE 802.11n

(1944,1620) LDPC code.

The NB-LDPC codes defined over GF(q) are extended from binary LDPC codes

to improve error-correction performance. However, its decoding complexity is signif-

icantly higher. We present a fully parallel NB-LDPC decoder to take advantage of

the low wiring overhead that is intrinsic to NB-LDPC codes. To further enhance the

throughput, we apply a one-step look-ahead to the elementary CN design to reduce

the clock period, and interleave the CN and VN operations. We implement a fine-

grained clock gating at the node level to allow the majority of the processing nodes

to be clock-gated long before reaching the iteration limit. A 7.04 mm2 65 nm decoder

test chip is designed for the GF(64) (160, 80) regular-(2, 4) NB-LDPC code. The

decoder implements fine-grained dynamic clock gating and decoder termination to

achieve a high throughput of 1.22 Gb/s at 700 MHz, consuming 3.03 nJ/b, or 259

pJ/b/iteration.
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The recently developed differentiable neural computer (DNC) is a memory-augmented

neural network (MANN) that has been shown to outperform in representing com-

plicated data structures and learning long-term dependencies. DNC’s higher perfor-

mance is derived from new history-based attention mechanisms in addition to the pre-

viously used content-based attention mechanisms. History-based mechanisms require

a variety of new compute primitives and state memories, which are not supported

by existing neural network (NN) or MANN accelerators. We present HiMA, a tiled,

history-based memory access engine with distributed memories in tiles. HiMA incor-

porates a multi-mode network-on-chip (NoC) to reduce the communication latency

and improve scalability. An optimal submatrix-based memory partition strategy is

applied to reduce the amount of NoC traffic; and a two-stage usage sort method lever-

ages distributed tiles to improve computation speed. To make HiMA fundamentally

scalable, we create a distributed version of DNC called DNC-D to allow almost all

memory operations to be applied to local memories with trainable weighted summa-

tion to produce the global memory output. Two approximation techniques, usage

skimming and softmax approximation, are proposed to further enhance hardware ef-

ficiency. HiMA prototypes are created in RTL and synthesized in a 40nm technology.

By simulations, HiMA running DNC and DNC-D demonstrates 6.47× and 39.1×

higher speed, 22.8× and 164.3× better area efficiency, and 6.1× and 61.2× better

power efficiency over the state-of-the-art MANN accelerator. Compared to an Nvidia

3080Ti GPU, HiMA demonstrates speedup by up to 437× and 2,646× when running

DNC and DNC-D, respectively.

The recently invented neural ordinary differential equations (NODE) demonstrate

superior performance in modeling continuous-time events and normalizing flows. Their

higher performance are derived by using numerical ODEs between NN’s discrete hid-

den layers. To train NODE, state-of-the-art NN accelerators need to be attached

to general-purpose CPUs or GPUs for elaborate ODE operations, which is unlikely
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to deliver a high efficiency. To address this, we present a programmable accelerator

architecture for training NODE. We analyze the NODE training process, the neu-

ral activation sparsity, the data dependency and reuse patterns, and their impacts

on hardware architecture design. By simulations, the sparsity operations based on

adaptive thresholding during NODE training results in up to 80% neural activation

sparsity, while still maintaining excellent training accuracy. We develop an accelerator

architecture that employs an NoC architecture with distributed processing elements

(PEs) and hierarchical memories, focusing on maximizing performance for elaborate

NODE operations. The architecture supports reconfigurability for NODE’s embedded

NNs as well as a variety of adaptive step-size ODE solvers. The hardware efficiency

can be enhanced with algorithm-architecture co-optimizations.

Applying DNC on polar decoding, we propose a new DNC-aided flip algorithm to

improve the error-correction performance. Successive-cancellation list (SCL) decod-

ing of polar codes has been adopted for 5G. However, the performance is not very

satisfactory with moderate code length. Heuristic or deep-learning-aided (DL-aided)

flip algorithms have been developed to tackle this problem. The key for successful

flip decoding is to accurately identify error bit positions. New state and action en-

coding are developed for better DNC training and inference efficiency. The proposed

method consists of two phases: i) a flip DNC (F-DNC) is exploited to rank the most

likely flip positions for multi-bit flipping; ii) if decoding still fails, a flip-validate DNC

(FV-DNC) is used to re-select error bit positions for successive flip decoding trials.

Supervised training methods are designed accordingly for the two DNCs. Simulation

results show that the proposed DNC-aided SCL-Flip (DNC-SCLF) decoding demon-

strates up to 0.34dB coding gain improvement or 54.2% reduction in average number

of decoding attempts compared to prior works.
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