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Abstract 

 
Visual speech information, especially that provided by the mouth and lips, is important 

during face-to-face communication. This has been made more evident by the increased difficulty 

of speech perception because mask usage has become commonplace in response to the COVID-

19 pandemic. Masking obscures the mouth and lips, thus eliminating meaningful information 

from visual cues that are used to perceive speech correctly. To fully understand the perceptual 

benefits afforded by visual information during audiovisual speech perception, it is necessary to 

explore the underlying neural mechanisms involved. While several studies have shown neural 

activation of auditory regions in response to visual speech, the information represented by these 

activations remain poorly understood. The objective of this dissertation is to investigate the 

neural bases for how visual speech modulates the temporal, spatial, and spectral components of 

audiovisual speech perception, and the type of information encoded by these signals. 

Most studies approach this question by using techniques sensitive to one or two important 

dimensions (temporal, spatial, or spectral). Even in studies that have used intracranial 

electroencephalography (iEEG), which is sensitive to all three dimensions, research 

conventionally quantifies effects using single-subject statistics, leaving group-level variance 

unexplained. In Study 1, I overcome these shortcomings by investigating how vision modulates 

auditory speech processes across spatial, temporal and spectral dimensions in a large group of 

epilepsy patients with intracranial electrodes implanted (n = 21). The results of this study 

demonstrate that visual speech produced multiple spatiotemporally distinct patterns of theta, 

beta, and high-gamma power changes in auditory regions in the superior temporal gyrus (STG). 
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While study 1 showed that visual speech evoked activity in auditory areas, it is not clear 

what, if any, information is encoded by these activations. In Study 2, I investigated whether these 

distinct patterns of activity in the STG, produced by visual speech, contain information about 

what word is being said. To address this question, I utilized a support-vector machine classifier 

to decode the identities of four word types (consonants beginning with ‘b’, ‘d’, ‘g’, and ‘f’) from 

activity in the STG recorded during spoken (phonemes: basic units of speech) or silent visual 

speech (visemes: basic units of lipreading information). Results from this study indicated that 

visual speech indeed encodes lipreading information in auditory regions. 

Studies 1 and 2 provided evidence from iEEG data obtained from patients with epilepsy. 

In order to replicate these results in a normative population and to leverage improved spatial 

resolution, in Study 3 I acquired data from a large cohort of normative subjects (n = 64) during a 

randomized event-related functional magnetic resonance imaging (fMRI) experiment. Similar to 

that of Study 2, I used machine learning to test for classification of phonemes and visemes 

(/fafa/, /kaka/, /mama/) from auditory, auditory-visual, and visual regions in the brain. Results 

conceptually replicated the results of Study 2, such that phoneme and viseme identities could 

both be classified from the STG, revealing that this information is encoded through distributed 

representations. Further analyses revealed similar spatial patterns in the STG between phonemes 

and visemes, consistent with the model that viseme information is used to target corresponding 

phoneme populations in auditory regions. Taken together, the findings from this dissertation 

advance our understanding of the neural mechanisms that underlie the multiple ways in which 

vision alters the temporal, spatial and spectral components of audiovisual speech perception. 
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 Introduction 

 

With rapid development in healthcare technologies and improvement in standards of 

living, many countries around the world face an unprecedented increase in their elderly 

population (Atella et al., 2019) with a corresponding increase in health complications (Fontana et 

al., 2014). These complications include risk factors for progression to chronic conditions that 

affect the quality of life of these individuals (Christensen et al., 2009). Age-related hearing loss 

is a major condition that significantly affects over a billion people worldwide and this number 

has been consistently rising over the years (Olusanya et al., 2014; Vos et al., 2016).  

While the nature of hearing loss in individuals is varied, it is usually agreed to be 

progressive (Cruickshanks et al., 2010) with a gradual decline in the ability to perceive speech in 

various environments such as in the presence of noise (Agrawal et al., 2008). While degraded 

speech perception effects differ across individuals, understanding the nature of how individuals 

compensate for this decline in hearing abilities might help in the designing of interventions that 

improve quality of life for a large section of the population. One major way the brain improves 

hearing is through integrating visual speech signals with what is heard. This dissertation focuses 

on understanding the neural bases of how individuals integrate auditory speech signals with 

visual information during face-to-face communication. Investigating the neural mechanisms 

subserving the integration of information from both the auditory and visual modalities during 

spoken speech could help build better treatment and hearing-aid technologies for individuals 

with degraded speech perception abilities. Developing these treatments and technologies is 
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critical since it would help promote healthy aging, leading to improved quality of life, 

independent living, and reduced potential health costs for individuals concerned.  

Background  

The perceptual integration of auditory and visual cues is an important aspect of social 

communication. During natural speech, auditory speech signals are conveyed rapidly (3-7 

syllables per second; Chandrasekaran et al., 2009), making the identification of individual speech 

sounds a computationally challenging task (Elliott and Theunissen, 2009). The integration of 

audiovisual information during face-to-face communication can therefore help to predict and 

constrain perceptual inferences about speech signals in both a bottom-up and top-down manner 

(Bernstein and Liebenthal, 2014; Lewis and Bastiaansen, 2015; Peele and Sommers, 2015). 

Several studies have shown that the integration of congruent speech information from the 

auditory and visual modalities results in perceptual enhancements for spoken speech compared to 

when auditory speech is presented alone (Hickock et al., 2018; Erber, 1969, Ross et al., 2007). 

To fully understand the ways that visual information benefits speech perception, it is necessary 

to explore the neural mechanisms involved.  

Mounting evidence suggests that audiovisual speech interactions may occur at multiple 

functional-anatomical stages in the auditory cortex (Okada et al., 2013). In one such stage, it is 

thought that neuronal activity is evoked within the primary auditory areas during audiovisual 

interactions (Kayser et al., 2008, Werner-Reiss et al., 2003, Schroeder et al., 2005). However, 

very little is known about the kind of information that is encoded in these interactions. Moreover, 

it is difficult to localize the precise cortical origins of early multisensory integration.  

To understand the processes underlying these audiovisual interactions, it is essential to 

investigate the types of information being transformed and integrated in auditory and 
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multisensory regions. Converging evidence overwhelmingly suggest that the superior temporal 

gyrus (STG) (Mesgarani et al., 2014) and posterior superior temporal sulcus (pSTS) (Olasagasti 

et al., 2015; Kayser and Logothetis., 2009) play a central role in the interaction and 

transformation of audiovisual information. This dissertation focuses on these two regions of 

interest to understand the neural basis of how visual speech influences auditory speech 

perception. 

  The neural mechanisms of audiovisual speech integration have traditionally been 

investigated using functional magnetic resonance imaging (fMRI) and, less often, intracranial 

electroencephalography (iEEG). Each of these methods has proven useful in providing evidence 

for the different ways in which audiovisual integration supports human speech perception. While 

iEEG provides high temporal resolution and the ability to investigate individual frequency bands 

associated with distinct activity, fMRI provides more precise spatial localization of effects and 

better generalizability to the broader population.  

However, a multimodal investigation of audiovisual speech processes combining the 

advantages of both these modalities has yet to be performed. This dissertation focuses on the use 

of both methods to identify the discrete neural processes and networks involved in audiovisual 

speech perception, with a focus on the broader primary auditory cortex. 

 

Visual influences on auditory speech perception 

In audiovisual integration, multiple features extracted from visual signals can bias or 

enhance auditory speech perception processes, including lip shapes, rhythmic articulatory 

movements, and speaker identity, among others (Chandrasekaran et al., 2009; Erber, 1975; Chen 

and Rao, 1998; Van Wassenhove et al., 2005). While the net result is improved speech 
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perception, each of these features may influence cortical auditory processes through distinct 

mechanisms. For example, visual speech is thought to influence the temporal structure of 

auditory speech processing. Auditory speech signals that are temporally correlated with lip 

closure elicit stronger neural activity, resulting in the modulation of cortical excitability in 

auditory regions (Schroeder et al., 2008). 

Converging behavioral and neurophysiological evidence also suggests that perceptual 

enhancements from audiovisual speech (e.g., better detection and faster reaction times) and 

visual recovery of auditory phoneme information (the smallest unit of speech; for example, the 

sound /fa/) are subserved by two distinct mechanisms (Eskelund et al., 2011; Plass et al., 2014). 

This distinction may reflect a neural dissociation between predictive multisensory interactions 

that optimize feedforward encoding of auditory information and later feedback processes that 

alter auditory representations generated in the auditory regions (Arnal et al., 2009; Arnal et al., 

2011, Reale et al., 2007). In support of this view, both visual speech (Besle et al., 2004; Arnal et 

al., 2009; Van Wassenhove et al., 2005) and other anticipatory visual cues (Vroomen and 

Stekelenburg, 2010) can speed up and reduce the magnitude of early physiological responses 

associated with auditory feedforward processing. This could potentially reflect optimization of 

auditory encoding in accordance with temporal or acoustic constraints imposed by visual 

information. 

 

Neural processes involved in audiovisual speech processing 

These early feedforward effects, which are insensitive to audiovisual congruity in speech, 

are temporally, spatially, and spectrally distinct from later (>300 ms) responses that are specific 

to audiovisual incongruent speech (Arnal et al., 2011; Van Wassenhove et al., 2005). These later 

incongruity-specific interactions point to a hierarchical feedback regime in which unisensory 
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speech processing is altered in accordance with integrated audiovisual information from the 

pSTS (Olasagasti et al., 2015; Kayser and Logothetis., 2009) and the general speech perception 

areas in the STG (Mesgarani et al., 2014). It should also be noted that some of these patterns of 

activities might likely be due to attentional or non-specific effects. 

Fine-grained analysis of audio-visual speech integration, with respect to the processes 

that enable multisensory speech perception, has focused on the left pSTS, which sits at the 

intersection of auditory, visual, and parietal regions (Beauchamp et al., 2010). These studies 

indicate that the pSTS is responsible for integrating contextual information between the fusiform 

face area (FFA) and early auditory regions (Ghanzafar et al., 2010, Ghanzafar et al., 2008, Zhu & 

Beauchamp, 2017). Furthermore, diffusion tensor imaging (DTI) studies in humans have 

demonstrated the presence of connections between the FFA and pSTS regions, suggesting that a 

structural network may support functional interactions between these regions (Blank et al., 

2011). Consistent with behavioral evidence that visual information can alter what is heard (such 

as in the McGurk effect), visual signals strongly modulate the response of auditory neurons to 

sounds (Ghanzafar et al., 2010, Ghanzafar et al., 2008, Zhu & Beauchamp, 2017). However, 

recent evidence suggests that phoneme-viseme correspondences are insufficient to account for 

the perceptually detailed information provided by visual speech (Bernstein et al., 2014), calling 

into question whether the pSTS is the sole region responsible for auditory-visual speech 

interactions. 

Specifically, both normal-hearing and deaf observers can readily distinguish between 

visual words composed of the same visemes, suggesting that, like auditory speech, visual speech 

conveys additional fine-grained information beyond what is encoded in coarse categorical 

representations (Bernstein et al., 2014). Because visual speech facilitates perception for both 
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spectral details and temporal dynamics in speech (Plass et al., 2020), it could plausibly enhance 

perception through multiple distinct influences on not just the pSTS, but also the STG which is 

specialized for different aspects of the auditory speech perception. Importantly, prior research 

indicates that some audiovisual speech processes are associated with neural activity in distinct 

frequency bands, suggesting that they likely correspond to unique integrational functions across 

the sensory hierarchy (Arnal et al., 2009; Kaiser 2005; Kaiser 2006; Peele and Sommers, 2015).  

Furthermore, early hemodynamic studies defined a broad network of brain regions 

believed to be involved in multisensory integration, including areas in the frontal, parietal and 

temporal lobes (Hall et al., 2005). Though these earlier studies showed increased activation in 

extrastriate cortex, inferoposterior temporal lobe, angular gyrus and superior temporal gyrus in 

response to silent-lip reading (Calvert et al., 1997), more recent studies with iEEG recordings 

have shown responses to similar stimuli in the temporo-occipital junction, posterior medial 

temporal gyrus (pMTG) and superior temporal gyrus (Besle et al, 2008). Similar results have 

also been reported using information decoding algorithms based on deep neural networks used to 

analyze iEEG signals (Zweig et al., 2016). 

In order to gain an improved understanding of the ways in which visual information 

benefits speech perception, it is necessary to identify the discrete neural processes and networks 

involved, especially in broader auditory regions. These open questions are best addressed with a 

multimodal investigation of audiovisual speech processes using fMRI and iEEG. Both methods 

have complementary advantages. For example, while fMRI can show task-related blood-oxygen 

level dependent (BOLD) activation of the STG during silent lipreading (Beauchamp et al., 2004), 

this method does not provide information about the timing or spectral composition of these 

responses. 
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Conversely, while intracranial electroencephalography (iEEG) provides substantially 

more temporal and spectral information, studies on audiovisual speech integration have largely 

focused on high-gamma power (HGp) indexes of local population firing rates (e.g., Micheli et 

al., 2020; Besle et al., 2008, Reale et al., 2007, Gyol Yi et al., 2019) and iEEG provides limited 

spatial coverage. However, the question of how audiovisual integration occurs in other spectral 

components including the theta and the beta band have not yet been investigated with iEEG. 

Moreover, analyses of iEEG data have traditionally been performed using single-subject 

statistics, which severely limit inferences about normative neural processing and fail to account 

for variance that group-level analyses correctly model.  

To investigate the neural basis for how visual speech supports speech perception, it is 

therefore necessary to study these processes at multiple levels including their spatial, temporal 

and spectral dimensions. This dissertation aims to tackle the issue of studying the temporal, 

spatial and spectral components involved in visual modulation of auditory speech perception 

using a multimodal approach, leveraging results from iEEG signals and fMRI. 

 

The current study 

Most previous studies focus on the question of how vision affects multisensory regions in 

the auditory cortex without considering the information missing from the methods used (Besle et 

al., 2004, Besle et al, 2008, Micheli et al., 2020). More specifically, they do not consider the 

spectral, temporal or spatial differences in how these modulations could occur. Past studies 

ignore the differences in how visual speech could modulate auditory speech perception in these 

multiple dimensions. This motivated the hypothesis for Study 1, in which I addressed the 

question of how visual modulations of auditory speech differ across spatial, temporal and 
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spectral dimensions in the primary auditory cortex from a large cohort of iEEG patients (n = 22). 

Crucially, a major contribution of this study was an improvement from traditional single subject 

statistics with iEEG and the development of a more robust group-level analysis to obtain more 

generalizable inferences. 

In Study 2, I used iEEG to test the hypothesis that some of the visual-evoked activity in 

the auditory system reflects the transformation of lipread signals into phonemic information. 

Specifically, I used support-vector machine (SVM) classifiers across spatial and temporal 

dimensions to demonstrate that basic visual speech features (visemes) can be decoded from 

auditory areas, consistent with our model. More generally, this study adds to the growing body of 

evidence that it is possible to decode information from cortical activity recorded using iEEG 

during audiovisual speech. Furthermore, this is the first study in literature which demonstrates 

that it is possible to decode the identity of visemes from visual regions, let alone from auditory 

regions.  

In Study 3, I used fMRI to further test the hypothesis that some of the visual-evoked 

activity in the auditory system reflects phonemic information that is extracted from lipreading. 

Specifically, I applied searchlight and region of interest (ROI) classifiers to identify where in the 

brain spatial representations encode phoneme and viseme identities. This is a complementary 

experiment to that examined in Study 2. First, we conceptually replicated the results from Study 

2, helping to generalize the results to a large normative population (n = 64). Second, it provided 

whole-brain spatial coverage which allowed a hierarchical comparison of the regions in which 

phonemes and visemes could be classified. Third, the high-spatial resolution of STG activity 

enabled high-resolution representational similarity analyses (RSA) to be constructed based on 
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spatial patterns of activity, revealing similar distributions across corresponding visemes and 

phonemes.  

In sum, these studies support a model in which visemes extracted from lipreading evoke 

distinct spatial patterns of activity in the auditory system that overlap with those of 

corresponding phoneme representations. This further clarifies the nature of visual speech 

processing in auditory regions by providing a deep understanding of the neural processes 

underlying audiovisual integration during speech perception. The results also improve upon 

previous studies by utilizing group-level analysis of iEEG signals in place of single-subject 

statistics. 
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 Visual Speech Differentially Modulates Beta, Theta and High Gamma Bands in 

The Auditory Cortex 

Abstract 

Speech perception is a central component of social communication. While principally an 

auditory process, accurate speech perception in everyday settings is supported by meaningful 

information extracted from visual cues (e.g., speech content, timing, and speaker identity). 

Previous research has shown that visual speech modulates activity in cortical areas subserving 

auditory speech perception, including the superior temporal gyrus (STG), potentially through 

feedback connections from the multisensory posterior superior temporal sulcus (pSTS).  

However, it is unknown whether visual modulation of auditory processing in the STG is a 

unitary phenomenon or, rather, consists of multiple temporally, spatially, or functionally distinct 

processes. In this context, a unitary phenomenon would indicate a single pathway (either 

anatomically or functionally) that processes visual information during audiovisual speech 

processing. To explore these questions, we examined neural responses to audiovisual speech 

measured from intracranially implanted electrodes within the temporal cortex of 21 patients 

undergoing clinical monitoring for epilepsy. We found that visual speech modulated auditory 

processes in the STG in multiple ways, eliciting temporally and spatially distinct patterns of 

activity that differed across theta, beta, and high-gamma frequency bands. For the theta band, 

visual speech suppressed the auditory response from before auditory speech onset to well after 

auditory speech onset (-93 ms to 500 ms) most strongly in the posterior STG. For the beta band, 
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suppression was seen in the anterior STG from -311 to -195 ms before auditory speech onset and 

in the middle STG from -195 ms to 235 ms after speech onset. For high gamma, enhanced 

activity was seen from -45 ms to 24 ms only in the posterior STG.  

We interpret the visual-induced changes prior to speech onset as reflecting crossmodal 

prediction of speech signals in these areas. In contrast, modulations after sound onset may reflect 

a decrease in sustained feedforward auditory activity. These results are consistent with models 

that posit multiple distinct mechanisms supporting audiovisual speech perception and provide a 

crucial map for subsequent studies to identify the types of visual features that are encoded by 

these separate mechanisms. 

2.1 Introduction 

Auditory speech signals are conveyed rapidly during natural speech (3-7 syllables per 

second; Chandrasekaran et al., 2009), making the identification of individual speech sounds a 

computationally challenging task (Elliott and Theunissen, 2009). Easing the complexity of this 

process, audiovisual signals during face-to-face communication help predict and constrain 

perceptual inferences about speech sounds in both a bottom-up and top-down manner (Bernstein 

and Liebenthal, 2014; Lewis and Bastiaansen, 2015; Peelle and Sommers, 2015).  

Multiple features extracted from visual signals can bias or enhance auditory speech 

perception processes, including lip shapes, rhythmic articulatory movements, and speaker 

identity, among others (Chandrasekaran et al., 2009; Erber, 1975; Chen and Rao, 1998; Van 

Wassenhove et al., 2005). While the net result is improved speech perception, each of these 

features may influence cortical auditory processes through distinct mechanisms. For example, 

visual speech is thought to influence the temporal structure of auditory speech processing by 
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neurally amplifying auditory speech signals that are temporally correlated with lip closure, 

accomplished by modulating cortical excitability in auditory regions (Schroeder et al., 2008). 

Indeed, functional dissociations are readily found in the auditory system. In the speech 

domain, research indicates that the superior temporal gyrus (STG) exhibits an anterior-posterior 

gradient in feature tuning, with anterior regions being more sensitive to spectral content and 

posterior regions being more sensitive to temporal information (e.g., broadband amplitude 

dynamics) (Hullet et al., 2016). Because visual speech facilitates perception for both spectral 

details and temporal dynamics in speech (Plass et al., 2020), it could plausibly enhance 

perception through multiple distinct influences on STG areas specialized for different aspects of 

the auditory speech signal. Importantly, prior research indicates that some audiovisual speech 

processes are associated with neural activity in distinct frequency bands, suggesting that they 

likely correspond to unique integrational functions across the sensory hierarchy (Arnal et al., 

2009; Kaiser 2005; Kaiser 2006; Peelle and Sommers, 2015). Similarly, studies have 

demonstrated audiovisual speech effects at multiple time points, including during the observation 

of preparatory lip movements and after speech onset (Besle et al., 2008). However, identifying 

the specific role of each mechanism would be helped by first identifying different functional 

processes that are altered by visual speech (e.g., the modulatory effect of visual speech in 

different oscillatory frequency bands at different spatial and temporal scales). 

Audiovisual speech integration studies using invasively implanted electrodes (intracranial 

electroencephalography; iEEG) have focused on raw signal amplitudes (Besle et al., 2008) or 

surrogate measures of population action potentials through high-gamma filtered power (HGp) 

(e.g., Micheli et al., 2020), showing early activation of auditory areas to audiovisual speech. 

However, these studies did not analyze the spectral composition of auditory-visual effects in 
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low- and high-frequency ranges, that can reflect distinct forms of information processing (Wang, 

2010; Engel and Fries, 2010; Ray, Crone, Niebur, Franaszczuk, and Hsiao, 2008), and have 

tended to use small sample sizes and single-participant statistics (e.g., Micheli et al., 2020; Besle 

et al., 2008). Conversely, non-invasive EEG studies have investigated the influence of visual 

speech information on low-frequency signals, with strong effects on beta and theta activity at 

different time scales (Sakowitz et al., 2005). However, as low- and high-frequency effects were 

observed across separate studies and given limitations of each approach (poor spatial resolution 

with EEG and small sample sizes with iEEG), the interdependence of these processes remains 

unclear.  

Thus, at present the field lacks a unified framework for how visual speech information 

alters responses within auditory regions. This study sought to fill this gap by examining the 

interdependence of spatial, temporal, and spectral effects during audiovisual speech perception in 

a large cohort of patients with iEEG recordings (745 electrodes implanted in auditory areas of 21 

individuals) who performed an audiovisual speech task while undergoing clinical monitoring for 

epilepsy. Specifically, we examined visual effects on auditory speech processes across multiple 

frequency bands associated with both subthreshold oscillations and neural firing. Moreover, to 

integrate statistical results across participants, we used linear mixed-effects models to perform 

statistical inference at the group level, facilitating generalization, and compared observed effects 

to those seen at the single participant level. Analyzing these data using group-level statistics, we 

found that visual speech produced multiple spatiotemporally distinct patterns of theta, beta, and 

high-gamma power throughout the STG. These results are consistent with the view that visual 

speech enhances auditory speech processes through multiple functionally distinct mechanisms 

and provides a map for investigating the information represented in each process. 
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2.2 Materials and Methods  

2.2.1 Participants, implants and recordings 

Data were acquired from 21 patients with intractable epilepsy undergoing clinical 

evaluation using iEEG. Patients ranged in age from 15-58 years (mean = 37.1, SD = 12.8) and 

included 10 females. iEEG was acquired from clinically implanted depth electrodes (5 mm 

center-to-center spacing, 2 mm diameter) and/or subdural electrodes (10 mm center-to-center 

spacing, 3 mm diameter): 13 patients had subdural electrodes and 17 patients had depth 

electrodes (Figure 11). Across all patients, data was recorded from a total of 1367 electrodes 

(mean = 65, SD = 25.3, range = 24 - 131 per participant). The number, location, and type of 

electrodes used were based on the clinical needs of the participants. iEEG recordings were 

acquired at either 1000 Hz (n = 5), 1024 Hz (n = 11 participants), or 4096 Hz (n = 5 Participants) 

due to differences in clinical amplifiers. All participants provided informed consent under an 

institutional review board (IRB)-approved protocol at the University of Chicago, Rush 

University, University of Michigan, or Henry Ford hospital. 

2.2.2 MRI and CT acquisition and processing 

Preoperative T1-weighted magnetic resonance imaging (MRI) and a postoperative 

computed tomography (CT) scans were acquired for all participants. Registration of the pre-

operative MRI to postoperative CT was performed using the 'mutual information' method 

contained in SPM12 (Viola and Wells, 1997; Penny et al., 2006); no reslicing or resampling of 

the CT was used. Electrode localization was performed using custom software (Brang et al., 

2016; available for download online https://github.com/towle-lab/electrode-registration-app/). 

This algorithm identifies and segments electrodes from the CT based on intensity values and 
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projects subdural electrodes to the dura surface using the shape of the electrode disk to 

counteract postoperative compression. The Freesurfer image analysis suite 

(http://surfer.nmr.mgh.harvard.edu/; Dale, Fischl, and Sereno 1999; Fischl, Sereno, and Dale, 

1999) was used for subsequent image processing procedures including cortical surface 

reconstruction, volume segmentation, and anatomical labelling 

(http://surfer.nmr.mgh.harvard.edu/; Dale, Fischl, and Sereno 1999; Fischl, Sereno, and Dale, 

1999). 

2.2.3 Tasks and Stimuli 

Participants were tested in the hospital at their bedside using a 15-inch MacBook Pro 

computer running Psychtoolbox (Kleiner et al., 2007). Auditory stimuli were presented through a 

pair of free-field speakers placed approximately 15 degrees to each side of the patients' midline, 

adjacent to the laptop. Data were aggregated from three audiovisual speech perception paradigms 

(using different phonemes spoken by different individuals across tasks) to ensure generalizability 

of results and an adequate sample for group-analyses: 7 participants completed variant A, 8 

participants variant B, and 6 participants variant C. Each task presented participants with 

auditory and visual speech stimuli in various combinations. As this study examines the 

modulatory role of visual information on auditory processes, only the auditory-only and 

audiovisual (congruent auditory/visual signals) conditions were analyzed from each task variant. 

On each trial a single phoneme was presented to the participant (variant A: /ba/ /da/ /ta/ 

/tha/, variant B: /ba/ /da/ /ga/, variant C: /ba/ /ga/ /ka/ /pa/). Figure 1 shows the timing and 

structure of an example trial from task variant B. Trials began with a fixation cross against a 

black screen that served as the intertrial interval (ITI), presented for an average of 750 ms 

(random jitter plus or minus 250 ms, uniformly sampled). In the audiovisual condition, the face 
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appeared either 750 ms before sound onset (task variant B) or 500 ms before sound onset 

(variants A and C); across all three variants, face motion began at 500 ms before sound onset. In 

the auditory-only condition, either the fixation cross persisted until sound onset (variant A) or a 

uniform gray square (mean contrast of the video images and equal in size) was presented for 

either 750 ms before sound onset (variant B) or 500 ms before sound onset (variant C). Trials 

were presented in a random order and phonemes were distributed uniformly across conditions. 

While conditions were matched in terms of trial numbers, participants completed a variable 

number of trials (based on task variant and the number of blocks completed): mean = 68 trials 

per condition (SD = 23, range = 32-96). Onset of each trial was denoted online by a voltage 

isolated transistor-transistor logic (TTL) pulse.  

In variants A and B, following each trial participants were prompted to identify which 

phoneme they had heard either aloud or via button press. In variant C, participants were cued to 

identify a phoneme on only 20% of the trials (data not analyzed). As auditory stimuli were 

presented without additional noise, we anticipated high levels of accuracy. Consistent with this, 

in variants A and B accuracy did not differ across auditory-only and audiovisual conditions 

Figure 1. Schematic of the task. Task Variant B trial schematic. All trials began with a fixation cross 1500 ms 
before the onset of an auditory stimulus, lasting for an average of 750 ms (plus or minus 250 ms jitter). In the 
auditory-only condition a blank screen followed the fixation cross for 750 ms. In the audiovisual condition the face 
appeared at the offset of the fixation (750 ms before sound onset), with preparatory visual movement beginning 250 
ms later. Auditory phonemes (/ba/, /da/, or /ga/) onset at 0 ms in both conditions. 
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(behavioral data was unavailable for one participant): auditory-only mean accuracy = 95.3% (SD 

= 6.0%), audiovisual mean accuracy = 95.8% (SD = 6.4%), t(13) = 0.518, p = .61. 

2.2.4 iEEG Data Preprocessing 

Data were referenced in a bipolar fashion (signals subtracted from each immediately 

adjacent electrode in a pairwise manner) to ensure that the observed signals were derived from 

maximally local neuronal populations. Only electrodes meeting anatomical criteria within 

auditory areas were included in analyses. Anatomical selection required that an electrode be 

proximal to an auditory temporal lobe region as defined by the Freesurfer anatomical labels 

superiortemporal, middletemporal, and supramarginal in MNI space, resulting in 765 bipolar 

electrode pairs. Excessively noisy electrodes (either manually identified or due to variability in 

the raw signal greater than 5 SD compared to all electrodes) were removed from analyses, 

resulting in 745 remaining electrodes; across participants the mean proportion of channels 

rejected was 3.3% (SD = 8.7%, Range = 0 to 37.5%). 

Slow drift artifacts and power-line interference were attenuated by high-pass filtering the 

data at .1 Hz and notch-filtering at 60 Hz (and its harmonics at 120, 180, and 240 Hz). Each trial 

was then segmented into a 2-second epoch centered around the onset of the trial. Individual trials 

were then separately filtered into three frequency ranges using wavelet convolution and then 

power transformed: theta (3 - 7 Hz, wavelet cycles varied linearly from 3-5), beta (13 - 30 Hz, 

wavelet cycles varied linearly from 5-10), HGp (70 - 150 Hz in 5 Hz intervals, wavelet cycles = 

20 at 70 Hz, and increased linearly to maintain the same wavelet duration across frequencies); 

data were then resampled to 1024 Hz. Theta, beta, and HGp were selected based on previous 

reported findings of auditory-visual speech integration effects in these ranges (e.g., Arnal et al., 

2009; Kaiser 2005; Kaiser 2006; Peelle and Sommers, 2015; Micheli et al., 2020). Within each 
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frequency range and evaluated separately at each electrode, we identified outliers in spectral 

power at each time point that were 3 scaled median absolute deviations from the median trial 

response. Outlier values were replaced with the appropriate upper or lower threshold value using 

the 'clip' option of the Matlab command 'filloutliers'. Across participants, a mean of .2% of 

values were identified as outliers (SD = .1%, Range = .1 to .5%).  

Though electrodes were implanted in both the left and right hemispheres, electrodes were 

projected into the left hemisphere for visualization and analyses. This was accomplished through 

registering each participant's skull-stripped brain to the cvs_avg35_inMNI152 template image 

through affine registration using the Freesurfer function mri_robust_register (Reuter, Rosas, 

Fischl, 2010). Right-hemisphere electrode coordinates were then reflected onto the left 

hemisphere across the sagittal axis. 

Functional selection was evaluated separately for each of the three frequency bands of 

interest (theta, beta, and HGp) to identify auditory-responsive electrodes: accordingly, different 

electrode numbers were included across each of the frequency analyses. To ensure orthogonality 

with the examined condition differences, the functional localizer required electrodes to 

demonstrate a significant post-stimulus response (0 - 500 ms) regardless of condition relative to 

zero using one-sample t-tests after correcting for multiple comparisons using false discovery rate 

(FDR). Beta and theta selection applied two-tailed t-tests while HGp applied one-tailed t-tests (as 

meaningful auditory HGp responses were predicted to elicit HGp increases (Beauchamp., 2016). 

Only electrodes meeting both anatomical and functional criteria were included in analyses (n = 

465). 



19 

2.2.5 Group-Level Analyses 

Traditionally, iEEG studies have focused on individual-participant analyses utilizing 

fixed-effect statistics (e.g., Micheli et al., 2018; Besle et al., 2008; Chang et al, 2010; Plass et al., 

2020). The main reasons for this are small sample sizes and difficulty in transforming data into a 

common reference plane such as the MNI space. While these approaches are valid for estimating 

parameters and effect sizes within a single individual, they do not provide estimates across 

participants and thus lack generalizability across epilepsy patients, making inferences to the 

general population more difficult. Moreover, some studies mix between- and within-participant 

statistics by aggregating data from all participants without modeling participant as a random 

effect, violating independence assumptions (e.g., Lega, Germi, Rugg, 2017). This approach has 

been discussed extensively under the title of 'pseudoreplication' and can lead to spurious and 

poorly generalized results (for a discussion see Aarts et al., 2014; Lazic 2010; Lazic et al., 2018). 

These concerns for iEEG research have been raised and theoretically addressed previously by 

other groups using variants of a mixed-effects model (Kadipasoglu et.al., 2014; Kadipasoglu et 

al., 2015). To overcome these limitations, we employed two separate analysis approaches. 

2.2.6 Group-Level Spatial Analyses 

To identify regions of the auditory temporal lobe that responded differently to auditory-

only versus audiovisual stimuli, we conducted individual-participant statistics and aggregated 

data across participants using an approach from the meta-analysis literature (treating each 

participant as an independent replication). Specifically, each 'virtual' bipolar electrode 

(calculated as the average coordinates between the associated pair of electrodes) was transformed 

into MNI space (Freesurfer cvs_avg35_inMNI152) and linked to neighboring vertices (within 10 

mm Euclidean distance) on the Freesurfer MNI cortical pial surface (decimated from 1 mm to 4 
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mm); this one-to-many approach mitigates the imperfection of cross-participant spatial 

registration. Next, statistics were evaluated separately at each vertex for each participant using 

independent-sample t-tests, to compare auditory-only and audiovisual trials between -1000 to 

500 ms (auditory-onset at 0 ms; data were averaged across 100 ms time-windows prior to 

statistical analyses). Within-participant statistics were adjusted for multiple comparisons across 

vertices and time using FDR (Groppe, Urbach, and Kutas, 2011). The approach yielded 

individual-participant p-value maps at each of the 15 time-points. P-value maps were then 

aggregated across participants using Stouffer's Z-score method (Stouffer et al., 1949). 

2.2.7 Group-Level Regional Time-Series Analyses 

While the meta-analysis approach establishes the strength of an effect at the group-level, 

it fails to provide group-level estimates and cannot effectively model data from both within and 

between participants (as is necessary in the evaluation of interactions across time, space, and 

analyzed frequency ranges). To model more general group-level differences between auditory-

only and audiovisual conditions we used linear mixed-effects models. Because appropriately 

fitted models require more data than is often present at a single vertex, we created three regions 

of interest (ROIs) within the STG. ROIs were divided into three equal partitions from the 

"superiortemporal" label in Freesurfer, comprising anterior, middle, and posterior regions, 

similar to the division of the STG used previously (Smith et al., 2013). Electrodes within 10 mm 

of these labels were linked to the closest of the three (no electrode was linked to multiple labels). 

Our focus on the STG was motivated by previous demonstrations of strong effects of lipreading 

in this region (e.g., Smith et al., 2013). A numerical breakdown of the number of electrodes and 

participants in each of the three regions of the STG is provided in Table 1.  
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Linear mixed-effects modeling was performed using the fitlme function in Matlab 

R2019a (Mathworks Inc., Natwick, MA). Electrodes in the same ROI from the same participant 

were averaged prior to analysis to reduce the complexity of the model and as neighboring 

electrodes share variance. Individual trials were not averaged within or across participants prior 

to analysis. Nine main-effect models were constructed, in which differences between auditory-

only and audiovisual trials were separately evaluated at each of the three STG ROIs (anterior, 

middle, posterior) and three frequency bands (theta, beta, HGp) using the equation: 𝑦𝑦𝑖𝑖𝑖𝑖 =  𝛽𝛽0 +

(𝛽𝛽1 + 𝑢𝑢1,𝑖𝑖)𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖 + 𝑢𝑢0,𝑖𝑖 + 𝜀𝜀𝑖𝑖,𝑖𝑖, where, y represents the ECoG trial value, with a fixed 

effects term for the trial condition and a random intercept and slope term for the participant ID. 

In Matlab notation, this is represented as: ECoG_Trial_Value ~ Trial_Cond + 

(Trial_Cond|Participant_ID). Critically, we modeled both random intercepts and random slopes 

for trial condition as there were multiple measurements per participant and to maintain 'maximal' 

models for confirmatory hypothesis testing (Barr et al., 2013). Statistics for the main-effect 

models were adjusted for comparisons at multiple time-points from -500 to 500 ms using FDR 

correction (q = .05) (Groppe, Urbach, and Kutas, 2011). 

Interaction models were subsequently constructed to evaluate whether audiovisual versus 

auditory-only condition effects varied as a function of frequency band, ROI, and time, using the 

Matlab notation: ECoG_Trial_Value ~ Trial_Cond * FrequencyBand * ROI * Time + 

(Trial_Cond|Participant_ID). While these model parameters were selected for inclusion based on 

confirmatory hypothesis testing, we also justified model selection using AIC comparisons. 

Separate models were constructed at each 1 ms time-point for the main-effect models (shown in 

Figures 6-8). Data were averaged in 5 ms time-bins for the interaction models due to 

computational complexity and memory requirements. The inclusion of time as a random factor in 
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interaction models may appear to violate the assumption of independence as spectral power 

demonstrates autocorrelations. However, the inherent characteristics of the mixed effect model's 

covariance structure should account for this dependence (Riha et al., 2020; Barr et al., 2013).  

More generally, calculating degrees of freedom with linear mixed-effect models is a 

readily acknowledged challenge (e.g., Luke 2017). Acknowledging this, model significance was 

estimated using residual degrees of freedom. To ensure that the likely inflated degrees of 

freedom did not drive our effects, we additionally examined effects using a conservative 

estimation of degrees of freedom, based only on the number of participants who contributed data 

to a particular analysis (maximum of 21); all interactions that were significant remained 

significant (at p < .001). 

2.2.8 Individual Electrode Analyses 

To examine individual differences in the patterns of activity evoked across electrodes and 

participants, individual electrode statistics were examined at representative electrodes. Unpaired 

t-tests were conducted separately at each time-point comparing audiovisual versus auditory HGp

(random factor = trial). Statistics for the main-effect models were adjusted for comparisons at 

multiple time-points from -500 to 500 ms using FDR correction (q = .05). 

To examine whether one audiovisual effect predicted another or whether audiovisual 

effects arose from the same electrodes, we examined the linear relationship between audiovisual 

effects at separate frequency bands and time-windows, measured across individual electrodes. 

Electrodes were localized to the anterior, middle, and posterior STG and examined separately as 

three regions of interest. Activity in each frequency band was averaged across time ranges to 

capture observed audiovisual effects based on single frequency analyses: Pre-Aud HGp, -45 to 0 

ms; Post-Aud HGp, 0 to 24 ms; Pre-Aud Theta, -93 to 0 ms; Post-Aud Theta, 0 to 500 ms; Pre-
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Aud Beta, -311 to 0 ms; Post-Aud Beta, 0 to 235 ms. Trials were averaged within each electrode 

and subtracted across conditions (auditory-only minus audiovisual) to yield audiovisual effects. 

Relationships were estimated using linear mixed effect models similar to those above, using the 

Matlab notation: ECoG_Electrode_Value_Effect1 ~ ECoG_Electrode_Value_Effect2 + 

(1|Participant_ID). Effect 1 and 2 in this context reflect either frequency pairs (e.g., does the pre-

auditory high-gamma effect predict the post-auditory beta suppression effect?) or time ranges 

(e.g., is the audiovisual effect in the beta band before auditory onset related to the audiovisual 

effect in the beta band after auditory onset?). Adding the additional slope parameter to the model 

failed to explain significantly more variance.  

2.3 Results 

2.3.1 Group-Level Spatial Analyses 

Figure 2 shows the spectro-temporal plot of the event related spectral power (ERSP) for 

audiovisual signals from all auditory electrodes across all participants. Data demonstrate that 

spectral power was distributed over multiple frequency bands while audiovisual stimuli were 

Spectral Power Averaged Across All Auditory Electrodes 

Figure 2. Group-level spectral plots. Group-level plots showing event-related spectral power from 2-150 Hz. Data 
reflect ECoG activity from all anatomically localized electrodes (n = 745), first averaged across electrodes within 
each participant, then averaged across participants. Dotted lines denote auditory onset. Color scale reflects 
normalized power. 
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presented: increased power in theta and high-gamma ranges, along with beta suppression. This, 

supported by past studies, provides justification for subsequent analyses focusing on these three 

frequency bands.  

2.3.2 Group-Level Spatial Analyses: Theta Power 

Figure 3 shows group-level differences in theta power (3 - 7 Hz) between audiovisual and 

auditory-only trials. A small but significant difference (audiovisual > auditory) emerged from -

700 to -600 ms before sound onset in the supramarginal gyrus (peak coordinates: x = -60.7, y = -

56.2, z = 30.3 , p = 0.001) with a peak-response in this region between -600 to -500 ms before 

sound onset (peak coordinates: x = -60.7, y = -56.2, z = 30.3, p = 0.0003). This activation pattern 

reflected only a small percentage of the supramarginal gyrus (SMG) (1.7% of SMG vertices at 

time-point -700 to -600 ms, and 2.6% of SMG vertices at time-point -600 to -500 ms).  

In contrast to this initial pattern, the majority of condition differences were observed in 

the middle temporal gyrus (MTG) and STG with significantly more power in auditory trials 

compared to audiovisual trials. This pattern emerged as early as -300 to -200 ms (peak coord: x = 

-47.2, y = -33, z = -4.3, p = 0.0003) and peaked during the time range 100 to 200 ms following

sound onset (peak coord: x = -60.8, y = -20.5, z = 11.4, p = 9.6e-12). The greatest proportion of 

significant vertices were observed from 200 to 300 ms (STG = 27.5%, MTG = 12.4%, SMG = 

5.4%), strongly weighted towards the middle to posterior STG. These data suggest that the 

majority of theta-related activity during audiovisual speech processing occurs following sound 

onset. 

2.3.3 Group-Level Spatial Analyses: Beta Power 
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Figure 4 shows group-level differences in beta power (13 - 30 Hz) between audiovisual 

and auditory-only trials. As was observed in the theta band, a small but significant difference 

(audiovisual > auditory) emerged from -700 to -600 ms before sound onset in the supramarginal 

gyrus (peak coordinates: x = -60.1, y = -24.6, z = 15, p = 0.005; .2% of SMG vertices were 

significant); no other significant audiovisual > auditory differences were observed throughout the 

time-series. In contrast to this initial pattern, the majority of condition differences were observed 

in the STG with significantly more power in auditory trials compared to audiovisual trials; this 

observation of reduced beta power is most consistent with increased beta suppression (see 

Section 3.7 for additional evidence). 

This pattern emerged as early as -400 to -300 ms (peak coord: x = -61.8, y = -1, z = -11.8, 

p = 0.0001) along the anterior to middle STG/MTG and peaked -200 to -100 ms before sound 

Figure 3. Group level plots in the theta band. Group-level analyses comparing theta power between audiovisual 
and auditory-only conditions at 100 ms time-windows (sound onset at 0 ms). Statistics conducted vertex-wise at 
the individual participant level and aggregated across participants using Stouffer's Z-Score method. Multiple 
comparisons applied across time and space using FDR. Top-left plot shows the number of participants who were 
included at each vertex. Congruent audiovisual stimuli elicited reduced theta power at the middle to posterior 
STG, peaking after the onset of the speech sound. 
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onset (x = -65, y = -10, z = 0.9, p = 8.8e-08); the majority of significant vertices during this time 

range were in the STG: STG = 16.2%, MTG = 3.1%, SMG = 2.7%. Whereas the peak activation 

occurred from the -200 to -100 ms time-window, the greatest proportion of significant vertices 

were observed in the -100 to 0 ms time-window range: STG = 20.6%, MTG = 4.9%, SMG = 

2.3%. These data suggest that the majority of beta-related activity during audiovisual speech 

processing occurs before sound onset in contrast to the spatial and temporal pattern of results 

observed for theta band activity. See Section 3.9 for a direct comparison of the spatiotemporal 

effects between theta and beta band activity. As the differences did not emerge until after face-

onset but immediately prior to sound onset (i.e., during which time preparatory visual 

movements were observed by participants), we interpret these results to reflect predictive coding 

information along the STG (e.g., Bastos et al., 2012; Peelle and Sommers, 2015). 

2.3.4 Group-Level Spatial Analyses: High-Gamma Power 

Figure 4. Group level plots in the beta band. Group-level analyses comparing beta power between audiovisual 
and auditory-only conditions at 100 ms time-windows (sound onset a 0 ms). Top-left plot shows the number of 
participants who contributed data to each vertex. audiovisual stimuli elicited greater beta suppression at the 
posterior STG, peaking before sound onset. 
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Figure 5 shows group-level differences in high-gamma power (HGp; 70 - 150 Hz) 

between audiovisual and auditory-only trials. The first significant time-points in the series were 

observed in the MTG (audiovisual > auditory) beginning from -700 to -600 ms (peak coord: x = -

55.8, y = -63.2, z = 8.4, p = 1.5e-07). Small clusters of effects were observed between -600 to -

100 ms (all effects reflected less than 5% of the number of vertices in each region). Beginning 

from -100 to 0 ms, however, we observed a strong cluster of significant differences (audiovisual 

> auditory) in the MTG and STG (peak coord: x = -57.4, y = -66.6, z = 9.4, p = 8.1e-12, Region =

MTG, percent significant vertices in each region: STG = 8.2%, MTG = 10.1%, SMG = 1.7%). 

This effect persisted throughout the time-series but shifted more inferior to the MTG by 400 to 

500 ms (proportion significant vertices in each region: STG = 1.4%, MTG = 12.2%, SMG = 

0%). In contrast to results in the theta and beta frequency bands, HGp effects were largely 

restricted to the posterior STG/MTG. 

Figure 5. Group level plots in high gamma power. Group-level analyses comparing high gamma power (HGp) 
between audiovisual and auditory-only conditions at 100 ms time-windows (sound onset a 0 ms). Top-left plot 
shows the number of participants who contributed data to each vertex. audiovisual stimuli elicited greater power 
at the posterior STG, peaking beginning before sound onset. 
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2.3.5 Group-Level Regional Time-Series Analyses 

While the spatial analyses demonstrated significant patterns of activity along the STG, 

MTG, and SMG, this approach does not effectively allow comparisons across regions or allow 

the examination of interactions with time and across frequency. To model the influence of visual 

speech information on spectral power at the group level, we used linear mixed effects models for 

data aggregated into three regions of the STG (anterior, middle, and posterior regions), consistent 

with prior studies (Smith et al., 2013). Separate models were constructed at each time point and 

ROI, and multiple comparison corrections were applied. Importantly, in our estimation of 

condition effect (auditory-only versus audiovisual), we modelled both random intercepts and 

slopes (Barr et al., 2013). Table 1 shows the number of electrodes and participants who 

contributed data to each analysis. Figure 12 shows time-series analyses separated by task 

variants. 

Table 1. Number of electrodes and participants present in each of the three regions of STG analyzed. 

2.3.6 Group-Level Regional Time-Series Analyses: Theta Power 

Regardless of condition, theta power within the STG increased steadily beginning before 

sound onset and peaking immediately after sound onset, with the strongest activity observed at 

the posterior STG. Consistent with the spatial analyses, we observed significant differences 

between audiovisual and auditory-only conditions, with audiovisual trials demonstrating reduced 

auditory-related theta power (Figure 6). This condition difference was clearest at the posterior 

Anterior STG Middle STG Posterior STG 
Frequency N. Elecs N Partic. N. Elecs N Partic. N. Elecs N Partic. 

HGp 22 10 150 18 66 12 
Beta 59 14 138 18 62 12 

Theta 72 16 162 18 72 12 
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STG, which was significant from -93 to 500 ms (min p = 2.2e-06, peak time = 47 ms), yet also 

present at the middle STG, which was significant from 108 to 274 ms (min p = 0.030, peak time 

= 193 ms). No significant differences were observed at the anterior STG after correcting for 

multiple comparisons. To examine whether visual speech information differentially affected the 

three STG regions, we conducted a group-level linear mixed-effects model with additional 

factors of Time and ROI (see Methods for additional information). As expected, the effect of 

visual information varied as a function of time (Condition x Time interaction: [F(1, 2.1e+06) = 

851.6, p = 3.6e-187]), STG region (Condition x ROI interaction: [F(2, 2.1e+06) = 28.7, p = 3.5e-

13]) as well as the combination of the two (Condition x Time x ROI interaction: [F(2, 2.1e+06) = 

147.5, p = 8.8e-65]). The model with interaction terms additionally demonstrated better fit 

compared to the same model without interaction terms with a difference in AIC = 0.1e+02. 

Taken together, these results indicate that visual speech information modulates auditory theta 

activity predominantly along the posterior STG, following sound onset. 

Figure 6. Group level LME plots in the theta band. Group linear mixed-effect model (LME) estimates for each 
time-point of theta power in auditory-only (black) and audiovisual (blue) trials, calculated separately at anterior 
(left), middle (middle), and posterior (right) regions of the STG. Shaded areas reflect 95% confidence intervals. 
Pink boxes reflect significant differences after correcting for multiple comparisons. Corresponding regions are 
highlighted on the cortical surfaces in yellow with the electrodes that contributed to the analysis shown as black 
dots (some depth electrodes are located beneath the surface and are not visible). Significant differences in theta 
power emerged largely after auditory, concentrated along the posterior STG. 
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2.3.7 Group-Level Regional Time-Series Analyses: Beta Power 

Beta power in the STG showed a combination of power increases and power decreases 

(beta suppression), with the majority of activity focused on the mid- to posterior-STG. Across 

conditions, we observed significantly greater beta suppression during the audiovisual condition 

compared to the auditory-only condition, peaking before sound onset at mid- to anterior STG 

regions (Figure 7). This condition difference was significant at both the anterior STG, significant 

from -311 to -195 ms (min p = 0.002, peak time = -247 ms), and the middle STG, significant 

from -195 to 235 ms (min p = 0.003, peak time = -116 ms), with no significant differences 

observed at the posterior STG after correcting for multiple comparisons.  

To examine whether visual speech information differentially affected the three STG 

regions, we conducted a group-level linear mixed-effects model with additional factors of Time 

and ROI. As expected, the effect of visual information varied as a function of time (Condition x 

Time interaction: [F(1, 2.0e+06) = 48.5, p = 3.3e-12]), STG region (Condition x ROI interaction: 

[F(2, 2.0e+06) = 44.2, p = 6.3e-20]) but a non-significant combination of the two (Condition x 

Time x ROI interaction: [F(2, 2.0e+06) = 2.01, p = 0.134]). The model with interaction terms 

Figure 7. Group level LME plots in the beta band. Group LME model estimates for each time-point of beta power 
in auditory-only (black) and audiovisual (blue) trials, calculated separately at anterior (left), middle (middle), and 
posterior (right) regions of the STG. Pink boxes reflect significant differences after correcting for multiple 
comparisons. Corresponding regions are highlighted on the cortical surfaces in yellow with the electrodes that 
contributed to the analysis shown as black dots. Significant differences in beta power peaked before sound onset, 
concentrated in the middle to posterior STG. 
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nevertheless demonstrated better fit compared to the same model without interaction terms , with 

difference in AIC = 0.01e+02. 

2.3.8 Group-Level Regional Time-Series Analyses: High-Gamma Power 

In general, HGp in the STG showed auditory-related power increases that were biased 

towards the posterior STG. Across conditions, we observed significantly greater HGp in the 

audiovisual condition compared to the auditory-only condition, occurring before sound onset and 

localized to the posterior STG (Figure 8). This condition difference was significant only at the 

posterior STG, from -45 to 24 ms (min p = 0.028, peak time = -9 ms). No other significant 

differences were observed. To examine whether visual speech information differentially affected 

the three STG regions we conducted a group-level linear mixed-effects model with additional 

factors of Time and ROI. As expected, the effect of visual information varied as a function of 

time (Condition x Time interaction: [F(1, 1.8e+06) = 86.7, p = 1.3e-20]), STG region (Condition 

x ROI interaction: [F(2, 1.8e+06) = 29.6, p = 1.3e-13]) as well as the combination of the two 

(Condition x Time x ROI interaction: [F(2, 1.8e+06) = 20.0, p = 2.1e-09]). The model with 

interaction terms additionally demonstrated better fit compared to the same model without 

interaction terms, with difference in AIC = 0.03e+02. 

2.3.9 Group-Level Regional Time-Series Analyses: Interactions Across Frequencies 

Analyses conducted separately at each of the frequency bands demonstrated audiovisual 

effects in putatively distinct time ranges and spatial distributions. However, to test the claim that 

the spatial and temporal patterns observed across the frequency bands are indeed distinct, it is 

necessary to model frequency band and time-points in relation to task conditions. 
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To this end, we constructed a group-level linear mixed-effects model that included fixed 

effects of task condition, frequency band, region of interest along the STG, and time, modeling 

both random intercepts and random slopes for trial condition. Including all frequency bands in 

the model yielded significant interactions of Condition x Frequency Band [F(2, 2.9e+07) = 

277.4, p = 2.3e-64], Condition x Frequency Band x ROI [F(4, 2.9e+07) = 72.7, p = 4.8e-43], 

Condition x Frequency Band x Time [F(2, 2.9e+07) = 2254.0, p = 1.2e-294], and Condition x 

Frequency Band x ROI x Time [F(4, 2.9e+07) = 397.8, p = 3.7e-163]. Consistent with these 

significant interactions, the addition of each parameter improved model fit based on AIC. 

Repeating this analysis with only low-frequency signals associated with neural oscillations (theta 

and beta) yielded the same pattern, with significant interactions of Condition x Frequency Band 

[F(2, 2.0e+07) = 346.7, p = 2.2e-40], Condition x Frequency Band x ROI [F(2, 2.0e+07) = 43.2, 

p = 1.9e-15], Condition x Frequency Band x Time [F(1, 2.0e+07) = 1645.2, p = 2.5e-121], and 

Condition x Frequency Band x ROI x Time [F(2, 2.0e+07) = 357.6, p = 9.6e-78]. Again, the 

addition of each parameter improved model fit based on AIC. Taken together, these data 

Figure 8. Group level LME plots in high gamma power. Group LME model estimates for each time-point of HGp 
in auditory-only (black) and audiovisual (blue) trials, calculated separately at anterior (left), middle (middle), and 
posterior (right) regions of the STG. Pink boxes reflect significant differences after correcting for multiple 
comparisons. Corresponding regions are highlighted on the cortical surfaces in yellow with the electrodes that 
contributed to the analysis shown as black dots. Significant differences in HGp peaked before sound onset in the 
posterior STG. 
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demonstrate that visual speech information evokes distinct temporal and spatial patterns through 

theta, beta, and HGp. 

2.3.10 Individual Differences in Neural Activity 

While the linear mixed-effects models demonstrate effects that are present at the group 

level, it is important to note that highly significant condition differences that deviated from these 

group patterns were observed at individual electrodes in individual participants. In particular, 

HGp results showed greater variability across electrodes and participants than did theta and beta 

bands. For example, while the most consistently observed response was increased activity before 

sound onset in posterior regions of the STG, this was not present in all participants or all 

electrodes. Figure 9 shows pairs of individual electrode responses from 5 participants, with the 

top row highlighting one STG electrode from that participant that matches the pattern observed 

at the group level, and the bottom row highlighting a second STG electrode demonstrating a 

different (sometimes opposite) pattern. Indeed, Participant 9 (first column) showed the opposite 

pattern across two electrodes, with the lower row demonstrating more HGp for auditory trials 

before sound onset. Of note, many of the electrodes showed significantly reduced HGp to 

audiovisual versus auditory-only stimuli during sound processing (100 - 200 ms), as reported 

previously (Karas et al., 2019). While this pattern was demonstrated in many electrodes and 

participants, the anatomical region varied throughout the STG and the overall pattern did not 

reach significance at the group level. 

2.3.11 Predictability of distinct time-ranges across frequency bands. 

While the group-level spatial and regional time series analyses demonstrated the 

audiovisual effects at individual frequency bands, the effects contributed by individual electrodes 
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are not interpretable in these results. To study the variability across electrodes and the 

predictability of distinct time-ranges, we constructed pair-wise linear mixed effect models for 

every frequency band between different stimuli onsets in the anterior, middle and posterior STG 

regions.  

The mixed-effect models were constructed in three separate pair-wise analyses across 

distinct time-ranges; 1) predictability of post-auditory onset from pre-auditory onset 2) 

predictability of pre-auditory onset in any given frequency band on pre-auditory onset in other 

frequency bands 3) predictability of post-auditory onset in any given frequency band on post-

auditory onset in other frequency bands. 

To construct the linear-mixed effect models, activity in each frequency band was 

averaged across the time ranges of interest to capture the observed audiovisual effects.  

2.3.12 Predictability of distinct time-ranges across frequency bands: Theta power 

From the group-level spatial analyses and regional time-series analysis, we had 

demonstrated that the effects of individual frequency bands varied distinctly over the time-period 

Figure 9. Individual participant high gamma power activity. Individual participant HGp activity at audiovisual 
(blue) and auditory-only (black) conditions. Each column displays data from a different participant (two electrodes 
per participant). Top row displays electrodes that showed the same pattern of HGp results observed at the group-
level, with increased activity in the audiovisual condition starting before sound onset. Bottom row shows a proximal 
electrode that demonstrated a different (sometimes conflicting) pattern. Shaded areas reflect 95% confidence 
intervals. Pink boxes reflect significant differences after correcting for multiple comparisons. 
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of our stimuli. This effect can be seen in the predictability of pre-auditory onset theta band on 

post-auditory onset theta band across the anterior, middle and posterior STG, confirming the 

findings from our group-level spatial analysis and the regional time series analysis. From 

supplemental figure 3, we see that this effect is highly significant at p < 0.001 in all three 

regions. Supplemental figure 4 shows that the theta power in pre-auditory onset time period is 

significantly predictive of beta power in the post-auditory onset time period at p < 0.005. Post-

auditory onset theta power is not shown to be significantly predictive of any other frequency 

bands. 

2.3.13 Predictability of distinct time-ranges across frequency bands: Beta power 

Pre-auditory time period in the beta power was shown to be highly predictive of beta 

power in the post-auditory time period at p < 0.001 across the anterior, middle and posterior 

STG. Beta power in the pre and post-auditory time periods was not seen to be predictive of any 

other frequency bands. 

2.3.14 Predictability of distinct time-ranges across frequency bands: High-Gamma Power 

The predictability of pre-auditory onset on post-auditory onset across individual 

electrodes in the high-gamma power band was seen in the anterior, middle and posterior STG, at 

p < 0.001 in all three regions (supplemental figure 3).We also see that high-gamma power in pre-

auditory onset time period positively predicts post-auditory onset theta band in the anterior STG 

and negatively predicts post-auditory onset theta band in the middle STG. Supplemental figure 

5A, shows that high-gamma power in the pre-auditory onset time period negatively predicts pre-

auditory onset theta band in the middle STG. Finally, from supplemental figure 5B, we see that 
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high-gamma power in the post-auditory onset time period negatively predicts post-auditory onset 

theta band. 

Figure 10. Predictability of post-stimuli activity from pre-stimuli activity. Scatterplots showing the magnitude of 
audiovisual effects (auditory-only minus audiovisual) for the same frequency band, before (x-axis) or after (y-axis) 
auditory-onset. Columns reflect anatomical electrodes localized to the anterior STG (left), middle STG (middle), and 
posterior STG (right). Rows reflect separate frequency bands. Activity in each frequency band was averaged across 
time ranges to capture observed audiovisual effects (see methods). Subplot titles show linear mixed-effect modeled 
p-values (uncorrected) and the number of electrodes included. All 9 subplots showed significant positive
relationships between audiovisual effects before and after auditory-onset.
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2.4 Discussion 

Visual signals are known to affect auditory speech processes in multiple ways. For 

example, lipreading signals provide high-level phonemic representations (Bourguignon et al., 

2020), visual motion information can relay timing information (McGrath et al., 1985), lip closure 

facilitates the parsing of word-boundaries and speech rate (Chandrasekaran et al., 2009), lip-

shape provides spectral information (Plass et al., 2020), and speaker identity can further enhance 

spatial localization and multisensory binding (Vatakis and Spence, 2007; Brang 2019). Indeed, a 

persistent challenge in identifying the various effects of audiovisual speech information has been 

largely methodological in nature. fMRI studies lack the temporal resolution to identify whether 

visual speech modulates auditory regions before, simultaneously with, or after the onset of 

auditory speech. On the other hand, iEEG studies face two critical shortcomings: (1) Past studies 

investigating audiovisual speech integration have analyzed data using single-participant designs 

or traditional parametric statistics making it hard to generalize the findings to the group-level and 

thus to the general population (Micheli et al., 2020; Besle et al., 2008; Plass et al., 2020). (2) 

Even while using variants of group-level analysis such as linear mixed-effects modeling, 

previous studies (Ozker et al., 2017; Ozker et al., 2018) have focused on HGp, which indexes 

local population firing rates, ignoring low-frequency oscillations which potentially reflect 

distinct audiovisual information.  

To test for the presence of separate but concurrent visual processes in auditory areas, we 

measured neural activity using intracranially implanted electrodes in a large number of human 

participants (n = 21) during an audiovisual speech perception paradigm. These data demonstrated 

that at least three distinct patterns of activity occur in the STG during audiovisual speech 

perception relative to unimodal auditory speech perception. (1) For the theta band, visual speech 
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suppressed the auditory response predominantly in the posterior STG from before auditory 

speech onset to well after auditory speech onset (-93 ms to 500 ms, peak time = 47 ms). (2) For 

the beta band, suppression was seen in the anterior STG from -311 to -195 ms before auditory 

speech onset (peak time = -247 ms) and in the middle STG from -195 ms to 235 ms after speech 

onset (peak time = -116 ms). (3) For high gamma, suppression was seen from -45 ms to 24 ms 

only in the posterior STG (peak time = -9 ms). We interpret these distinct patterns to reflect 

distinct neural processing in auditory regions, potentially responsible for encoding different types 

of visual information to aid in auditory speech perception. Of note, filtered spectral power 

produces temporal smoothing of the data (e.g., one cycle of theta band activity is ~200 ms in 

duration) which reduces the precision of the reported time ranges.  

Converging behavioral and neurophysiological evidence suggests that audiovisual 

enhancements from audiovisual speech (e.g., better detection and faster reaction times) and 

visual recovery of phoneme information are subserved by two distinct mechanisms (Eskelund et 

al., 2011; Plass et al., 2014). This distinction may reflect a neural dissociation between predictive 

multisensory interactions that optimize feedforward encoding of auditory information and later 

feedback processes that alter auditory representations generated in the pSTS (Arnal et al., 2009; 

Arnal et al., 2011) and the posterior STG (Reale et al., 2007). In support of this view, both visual 

speech (Besle et al., 2004; Arnal et al., 2009; Van Wassenhove et al., 2005) and other 

anticipatory visual cues (Vroomen and Stekelenburg, 2010) can speed-up and reduce the 

magnitude of early physiological responses associated with auditory feedforward processing, 

potentially reflecting optimization of auditory encoding in accordance with temporal or acoustic 

constraints imposed by visual information. These early feedforward effects, which are insensitive 

to audiovisual congruity in speech, are temporally, spatially, and spectrally distinct from later 
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(>300 ms) responses that are specific to crossmodally incongruent speech (Arnal et al., 2011; 

Van Wassenhove et al., 2005). These later incongruity-specific interactions point to a 

hierarchical feedback regime in which unisensory speech processing is altered in accordance 

with integrated audiovisual information from the pSTS (Olasagasti et al., 2015; Kayser and 

Logothetis, 2009) and general speech perception areas in the STG (Mesgarani et al., 2014). 

These data are consistent with this dissociation, with several temporally and spatially discrete 

neural responses in the STG. It should also be noted that some of these activation patterns may 

be due to non-specific effects (e.g., elevated attention or physiological arousal to viewing a face). 

Our observation of a dissociation among theta and beta frequency ranges is consistent 

with prior EEG and physiology research suggesting these mechanisms encode different 

information about a visual signal (e.g., Kumar et al., 2016; Wang et al., 2017). Theta activity 

effectively captures ongoing auditory timing information, including rhythmic events (e.g., 

Schroeder et al., 2009). Conversely, beta band activity has been more strongly associated with 

feedback signals that may predictively encode visual information in the auditory system prior to 

sound onset (e.g., Engel et al., 2010). The dissociation between theta and HGp observed is 

particularly interesting as HGp signals have also been implicated in a predictive coding 

framework, such that ensembles of neurons in the posterior STG initially activate neuronal 

ensembles before sound onset, leading to refined population tuning and thus less HGp following 

sound onset (Karas et al., 2019). While this reduction in HGp during audiovisual trials was 

observed in many participants (see Figure 9), it was not observed at the group level, potentially 

due to anatomical variability in the location of the response or due to heterogeneity across 

participants. 



40 

Research on the neural source of visual signals relayed to the auditory system have 

largely focused on the left posterior temporal sulcus (pSTS). This region demonstrates strong 

differences between auditory-only and audiovisual stimuli in both fMRI and iEEG research 

(Beauchamp et al., 2004b; Ozer et al., 2017; Ozker et al., 2018; Okada et al., 2013), and has 

potential causal roles in audiovisual speech integration as revealed by lesion mapping (Hickok et 

al., 2018) and inhibitory transcranial magnetic stimulation (Beauchamp et al., 2010). While these 

data indicate that some of the information observed in the present study was likely projected 

through feedback pathways originating in the pSTS, particularly given its role as a center for 

bottom-up prediction errors in language comprehension (Lewis and Bastiaansen, 2015), it is 

possible that each distinct temporal/spatial pattern has a unique corresponding source. While the 

present study does not provide evidence as to what information is encoded within each 

spatial/temporal pattern, we suggest that future research using causal measures or neural 

decoding identify the specific visual dimensions represented. 

An important point of note here is that all of the analysis were performed individually for 

each subject, with the results then transformed to the MNI space. We performed our analysis in 

this manner since there is evidence to show that anatomical boundaries for individual regions of 

the brain including the location of the auditory cortex, and more specifically the boundaries of 

Heschl’s gyrus varies across individuals (Leonard et al., 1998; Keuken et al., 2014). Hence, to 

generalize our findings across the entire sample, analysis were performed at an individual level 

followed by projection to the MNI space.  

In summary, this study demonstrates that audiovisual speech integration elicits multiple 

distinct patterns of neural activity within the STG and adjacent cortex, occurring across separate 

frequencies and temporal/spatial distributions. These data suggest that visual modulation of 
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auditory speech perception utilizes multiple mechanisms, potentially reflecting independent 

sources of information. Our results are also consistent a hybrid family of integration models as 

proposed by Peelle and Sommers (2015). Finally, this study additionally shows the advantage of 

group-level analyses of iEEG data using linear mixed-effect models, which can improve 

statistical validity and power, and importantly, improve generalization of results across patients 

and to the population at large. 
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2.5 Supplementary Figures 

Figure 11. Individual electrode maps for each patient. Red spheres reflect auditory electrodes that met anatomical 
criteria and that were not rejected during pre-processing for having excessive noise. Black spheres show remaining 
implanted electrodes that were not included in analyses. 
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Figure 12. Individual participant activity in the AV and auditory conditions. Individual participant activity at 
audiovisual (blue) and auditory-only (black) conditions separated by task variants and frequency bands. Task 
Variants A and C presented participants the moving face stimulus at 500 ms before auditory onset, whereas Task 
Variant B showed a static face beginning 750 ms before auditory onset (with motion starting at 500 ms before 
auditory onset). No clear differences across the task differences are present in the time series data. 
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Figure 13. Inter-frequency post and pre-stimuli predictability. Scatterplots showing the magnitude of audiovisual 
effects (auditory-only minus audiovisual) across pairs of frequency bands, before (x-axis) or after (y-axis) auditory-
onset. Columns reflect anatomical electrodes localized to the anterior STG (left), middle STG (middle), and 
posterior STG (right). Rows reflect separate frequency band pairs. Activity in each frequency band was averaged 
across time ranges to capture observed audiovisual effects (see methods). Subplot titles show linear mixed-effect 
modeled p-values (uncorrected) and the number of electrodes included. Gray-shaded scatterplots highlight p<.01 
significant relationships.
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Figure 14. Inter-frequency post stimuli predictability. Scatterplots showing the magnitude of audiovisual effects 
(auditory-only minus audiovisual) across pairs of frequency bands in the same time windows, either before (A) or 
after (B) auditory onset. Columns reflect anatomical electrodes localized to the anterior STG (left), middle STG 
(middle), and posterior STG (right). Rows reflect separate frequency band pairs. Activity in each frequency band 
was averaged across time ranges to capture observed audiovisual effects (see methods). Subplot titles show linear 
mixed-effect modeled p-values (uncorrected) and the number of electrodes included. Gray-shaded scatterplots 
highlight p<.01 significant relationships.  
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 Phonemic Representations Encoded in Auditory Cortex During Visual Speech 

The previous chapter discussed the various ways in which visual speech modulates 

auditory speech perception in auditory cortex. However, it is unclear if these modulations reflect 

meaningful phonemic information extracted from visual speech. In this chapter, I provide 

evidence that supports the hypothesis that visual speech encodes the identities of visemes in 

primary auditory areas during auditory-visual speech.  

3.1 Introduction 

Visual speech improves auditory speech perception (Plass et al., 2020, Micheli et al., 

2020) during face-to-face conversations. Behavioral research has demonstrated robust benefits of 

visual speech across various special populations such as older individuals with age-related 

hearing decline (Rosemann & Thiel., 2018), hearing impairments (Lee et al., 2007), and cochlear 

implants (Blackburn et al., 2019). Visual speech also increases speech intelligibility for 

normative individuals in noisy environments (Sumby & Pollack., 1954, Lusk & Mitchel, 2016). 

However, there remains limited understanding of how the brain enables these benefits. One brain 

area of interest in examining the modulatory effects of visual speech on auditory speech 

processing includes auditory areas such as the superior temporal gyrus and sulcus (STG/STS) 

because of their role in processing auditory speech (Beauchamp et al., 2004a, 2010, Karthik et 

al., 2021, Arnal et al., 2009, 2011, Reale et al., 2007).  
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A recent study by our group has shown that activity in the STG is modulated by visual 

speech, suggesting that vision provides multiple types of information to the auditory system 

(Karthik et al., 2021). Specifically, we showed visual influences in multiple temporal, spectral 

and spatial configurations, indicating that vision has multiple distinct effects on auditory 

processing. However, it is largely unknown what information is encoded in these visual-to-

auditory activations and which oscillatory frequencies and regions of the STG encode different 

visual information. To date, research has generally focused on the ability for visual motion 

information to bias auditory timing, such that lip closure is associated with the boundaries 

between words and that pre-articulatory speech can predict speech onset (Schroeder et al., 2008). 

However, behavioral research has additionally shown that vision can enhance auditory 

processing through general increases in attention and arousal, and by extracting useful statistics 

from the visual signals, including lip shapes that predict relative pitch, lipreading, and speaker 

identity (Chandrasekaran et al., 2009; Chen & Rao, 1998; Erber, 1975; Van Wassenhove et al., 

2005).  

 The notion that lipreading can bias what is heard is perhaps the best studied aspect of 

auditory-visual speech perception, providing a clear candidate for one type of information that 

would be expected to be relayed to the auditory system. But to date, no direct evidence exists 

that lipreading information is represented in the auditory system. However, recent research in the 

auditory domain may shed light on how lipreading signals are transformed into auditory speech 

units. Specifically, Mesgarani and colleagues (Mesgarani et al., 2014) used human intracranial 

electroencephalography (iEEG) recorded from high-density electrodes to demonstrate that 

phonemes (basic units of speech sounds) are represented by distributed populations of neurons in 

the STG. Combined with past research, these data support a model in which the STG contains a 
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patchy distribution of neurons that are tuned to specific phonemes via their spectro-temporal 

profiles (Formisano et al., 2008; Mesgarani et al., 2014). For example, research has demonstrated 

spatially distinct responses in these regions to spectrally similar phonemes such as /ba/ and /da/ 

(Chang et al., 2010; Formisano et al., 2008; Raizada et al., 2010), and clustered activities across 

a large phoneme-space (e.g., the distributed pattern of activity to /ma/ is more similar to /na/ than 

is it to the spectro-temporally distinct phoneme /ba/ (Mesgarani et al., 2014)). Indeed, the 

identity of a heard phoneme can be decoded by the distribution of activity in the auditory cortex. 

(Leonard et al., 2016), even when the physical auditory stimulus remains the same. 

 In contrast, we do not have the same detailed understanding of audio-visual speech 

processes, or how they integrate with phoneme-tuned neuronal populations. Using iEEG we 

recently demonstrated that visual speech elicits multiple independent changes throughout the 

STG relative to auditory-only speech (Karthik et al., 2021). Varying across theta, beta, and high-

gamma bands (HGp), we observed changes before sound onset due to the presence of a moving 

face, and separate modulations only during speech processing. Relatedly, functional magnetic 

resonance imaging (fMRI) studies have demonstrated broad activation of the STG during silent 

lipreading (Calvert et al., 1997). While these findings highlight the broad effect of visual 

information on auditory speech processing, differences in activity do not provide a mechanistic 

account for how visual speech signals are integrated with auditory neuronal populations.  

 The extraction high-level phoneme information from “visemes” (categorically encoded 

visual articulations analogous to auditory phonemes) during speechreading (lipreading) is one 

key component of crossmodal speech perception (Beauchamp et al., 2010; A. Nath & M. S. 

Beauchamp, 2011; Nath et al., 2011). Importantly, however, the computational mechanisms 

through which viseme information is transformed into phoneme representations have remained 
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theoretical. One candidate model, suggested by us and others (Beauchamp et al., 2010; Karthik et 

al., 2021), proposes that visemic signals modulate responses in neurons that are maximally 

sensitive to specific phonemes. Beauchamp and colleagues (Beauchamp et al., 2010) have 

suggested that this process occurs through a 'winner-take-all' mechanism in the pSTS, in which 

auditory and visual signals each cast votes for the 'heard' phoneme, and that the neural 

population with the highest activation profile produces the phoneme that is perceived. We agree 

with the computational properties of this model but believe it may also occur within the STG, 

consistent with recent evidence in the auditory domain, in which illusory shifts during the 

phoneme restoration effect were successfully modeled by a categorical shift in phoneme-tuned 

responses (Leonard et al., 2016).  

 Here we test this theory by using iEEG recordings in patients with epilepsy during a word 

perception task, in which participants either saw the lip movements or heard the speech sounds 

for the same groups of words, each beginning with one of four consonants (‘b’, ‘d’, ‘g’, ‘f’). 

iEEG signals were then spatially and temporally classified as belonging to one of these four 

consonant groups using SVMs separately for auditory-only and visual-alone conditions. Results 

showed that phoneme and viseme identities were successfully classified from activity in the 

STG, supporting the proposed model of auditory-visual speech integration. Additionally, 

representational similarity analysis revealed that matching phonemes and visemes encode similar 

representations in the STG. 

3.2 Materials and methods 

3.2.1 Participants, implants and recordings 

4 participants undergoing clinical evaluation using iEEG for intractable epilepsy 

consented to participate in this study under an institutional review board (IRB) approved 
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protocol at the University of Michigan or Henry Ford hospital. Clinically implanted depth 

electrodes (5 mm center-to-center spacing) and/or subdural electrodes (10 mm center-to-center 

spacing) were used to acquire iEEG data from participants. Data from a total of 210 electrodes 

were recorded from 4 participants. The type of electrodes implanted and locations were based on 

the clinical needs of the participants. iEEG recordings were acquired at either 4096 Hz (n = 3 

participants) or 1000 Hz (n = 1 participant) due to differences in clinical amplifiers. 

3.2.2 MRI and CT acquisition and processing 

Preoperative T1-weighted magnetic resonance imaging (MRI) and postoperative 

computer tomography (CT) scans were acquired for all participants. The preoperative T1 MRI 

was registered to the postoperative CT using SPM12 using the ‘mutual information’ method 

(Viola & Wells 1997). The CT was not resliced or resampled. The localization of each electrode 

was performed using custom software (Brang et al., 2016). The algorithm works by identifying 

and segmenting electrodes from the CT image based on gray scale intensity, and projects 

subdural electrodes to the dura surface using the shape of the electrode disk to counteract 

postoperative compression. For all subsequent analyses including reconstruction of cortical 

surfaces, volume segmentation and anatomical labelling, the Freesurfer image analysis suite was 

utilized (http://surfer.nmr.mgh.harvard.edu/; Dale et al., 1999; Fischl et al., 1999). 

3.2.3 Task and stimuli 

4 participants were tested in the hospital (University of Michigan, n = 3 or Henry Ford, n 

= 1) using a laptop running Psychtoolbox (Kleiner et al., 2007) at their bedside. The task 

paradigm was adapted from a prior study (Ross et al., 2007) which was designed to behaviorally 

study multiple aspects of auditory-visual speech integration. The stimuli consisted of a female 
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speaker who produced 40 commonly used 1-2 syllable words that each started with one of the 

four consonants: ‘b’, ‘f’, ‘g’, ‘d’ (10 of each). The phoneme in the second position of each of 

these words was generally balanced across each of the four groups. Each stimulus was recorded 

at a frame rate of 29.97 frames per second, and trimmed to 1100 ms in length. Further 

adjustments were made such that the first consonantal burst of each word occurred at 500 ms 

during the video playback by removing leading video frames. 

Each participant underwent two task variants using the same stimuli and task design to 

increase trial numbers, to reduce classifier overfitting. Figure 15 shows the task schematic for 

both variants of the task. In variant one, participants were presented with words one at a time, in 

one of two main conditions: auditory-only or visual-alone. Participants then identified the initial 

speech sound of the presented stimulus using a button press to select one of four options shown 

on the computer screen. For example, on a trial with the word “bag”, the options presented to 

the participant were ‘b’, ‘g’, ‘d’, ‘th’. The paradigm included 40 trials per consonant in each 

main condition, such that each of the 40 words were presented 4 times in the visual-alone 

condition and another 4 times in the auditory-only condition. This resulted in a total of 320 trials 

for each participant using task variant 1. The words used in our task are presented in Table 2. 

In task variant 2, participants were presented with trials in one of four main conditions: 

auditory-only, visual-alone, congruent audiovisual, or incongruent audiovisual. Task stimuli and 

instructions were the same as in variant 1. Variant 2 included 20 trials per consonant in each 

main condition. A second factor that was manipulated in this variant was the background noise 

level of the stimuli such that half of the words used in each condition were presented in either a 

low noise or a high noise context. In the low noise context, the auditory stimuli were presented 

as they were recorded (SNR = 32.2 dB SPL). In the high noise context, pink noise was added to 
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reduce the signal-to-noise (SNR) ratio of the signals to -6 db SPL. In this task variant, only data 

from the auditory-only and visual-only conditions were included in analyses because they 

matched the main conditions obtained from Task variant 1. This resulted in a total of 80 

auditory-only and 80 visual-alone trials for each participant using task variant 2. 

A total of 480 trials (Task variant 1: 320 trials, task variant 2: 160 trials) with 60 trials for 

each consonant (‘b’, ‘g’, ‘d’, ‘f’) per condition was obtained from the combined data of both task 

variants. 

Table 2 List of words used in the task. 10 words were used for each consonant: ‘b’, ‘d’, ‘g’, ‘f’ 

bag base bill bible bid bank beer bias beard bye 
fad fat fill fine fist fast file fish fit five 
gag gas guild guile gig gang gear guise gill guy 
dad dash dill dine disk dance dial dish digs dive 

 

 

Figure 15. Schematic of the task. Task schematic for the stimuli used. All trials had an initial fixation period with a 
blank screen. In the auditory-only condition, a gray rectangle appeared on screen at 500 ms before onset of 
phonemes, which occurred at 0 ms. In the visual-only condition, following an initial fixation period, a face appeared 
on screen at 500 ms before the time when speech sounds would naturally begin. Stimuli offsets for both the auditory-
only and visual-only conditions occurred at 600 ms after phoneme onset times. This was followed by a response 
window of 1250 ms in both conditions. 

Each participant received a randomized trial order. For the auditory-only condition, a 

grey rectangle was presented 500 ms before sound onset. Stimuli offset occurred 600 ms after 

sound onset time. In the visual-only condition, face onset occurred 500 ms before the time when 
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phoneme onset would naturally occur. A wait time of 1.25 seconds was provided for the 

participants to respond to each of the stimuli. 

3.2.4 iEEG data preprocessing 

Data were preprocessed using bipolar referencing, such that signals from adjacent 

electrodes were subtracted in a pairwise manner. This ensured that the final signals of interest 

were obtained from neuronal populations that provided maximal localized responses (Yao et al., 

2019). The analyses were restricted to electrodes anatomically located within the STG for the 

main analyses. This restriction required that every electrode that was registered in MNI space be 

proximal to the STG as defined within 10 mm of the Freesurfer anatomical label 

'superiotemporal'; subsequent analyses examining the spatial distribution of activity included the 

'middletemporal' and 'supramarginal' labels. This anatomical restriction resulted in a total of 210 

bipolar-referenced 'virtual' electrodes in the STG. Excessively noisy electrodes were removed 

either manually or statistically by identifying electrodes with raw signals that were 5 SD greater 

in comparison to all other electrodes. This resulted in a total of 197 electrodes across 

participants. For complementary analyses in visual regions, electrode locations were 

anatomically restricted to the 'inferiortemporal' and 'fusiform' labels. This resulted in a total of 65 

electrodes in these two regions, across patients.  

Drift was removed from each channel (using residuals from fits to a 3rd order polynomial 

and high-pass filtering at .1 Hz). Power-line interference was removed by notch-filtering at 60 

Hz and its harmonics. Continuous time-series were then filtered into three frequency ranges 

using wavelet convolution and then power transformed. This resulted in signals at three distinct 

frequencies reflecting the theta band (3-7 Hz wavelet cycles linearly varying from 3 to 5), beta 

band (13-30 Hz, wavelet cycles varied linearly from 5-10), and high gamma power (70-150 Hz 
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in 5 Hz intervals, wavelet cycles = 20 at 70 Hz, and increased linearly to maintain the same 

wavelet duration across frequencies). Data were then segmented into 2 second epochs centered 

around speech onset time for a specific stimulus: trial onset was defined as the point when the 

initial consonant burst occurred. All data were then resampled to 1000 Hz. The three frequency 

bands were chosen based on evidence of modulatory activity of visual speech on audiovisual 

speech integration at these frequencies (Arnal et al., 2009; Kaiser et al., 2005, 2006; Micheli et 

al., 2020; Peelle & Sommers, 2015, Karthik et al., 2021). Apart from extracting spectral 

components of the signals, single-trial event related potentials (ERPs) were also extracted as the 

raw voltage from electrode responses.  

Electrodes from both the left and right hemispheres were projected into the left 

hemisphere for analyses and visualization. This projection was performed by registering each 

participant’s skull stripped brain to the Freesurfer cvs_avg35_inMN152 template image through 

affine registration using the Freesurfer function mri_robust register (Reuter et al., 2010). Right 

hemisphere electrode coordinates were then reflected onto the left hemisphere across the sagittal 

axis. 

3.2.5 Classifiers for calculating decoding accuracy  

A support vector machine (Boser et al., 1992) classifier was utilized for calculating 

decoding accuracy. Classifiers for stimulus trials were built for individual subjects and group-

level analyses were performed by combining results from individual subjects (subject as a 

random effect). Decoding accuracies were calculated across three different levels for each of the 

four subjects and two stimulus conditions analyzed. These analyses were performed across three 

different frequency bands (theta, beta and HGp) along with the single trial ERPs across the 

conditions. The three levels of analysis performed were 1) Group-level omnibus classification of 
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auditory-only signals and visual-only signals from all STG electrodes across the time window of 

interest from 0 ms phoneme onset time until 500 ms after onset. 2) Classification of individual 

phonemes and visemes across all electrodes together at discrete time points (10 ms bins starting 

at 2000 ms before phoneme onset time until 2000 ms after onset. 3) Classification of phonemes 

and visemes at each electrode individually in an omnibus fashion from 0 ms (phoneme onset 

time) until 500 ms after onset. 

For each of the three levels of classification, accuracy rates were calculated using a four-

fold cross-validation approach with each fold consisting of 75% of the data for training and the 

remaining 25% for testing. Classifiers were built for 4-class classification problems investigating 

the differentiability of the four phonemes or four visemes, evaluated separately. 

 

Table 3. Representation of the temporospatial configurations for the various classifiers built. 0 ms reflects 
phoneme onset time. Face onset occurred at -500 ms. 

Analysis Type Spatial range for 
input 

Temporal window of 
interest for input 

Temporal window 
length 

Classes 

Group-level 
omnibus analysis 

All electrodes 0-500 ms 500 ms Phoneme/viseme 
identity 

Time Series 
Analysis 

All electrodes -2000 ms-2000 ms Moving 100 ms 
temporal window 

Phoneme/viseme 
identity 

Individual 
electrode analysis 

Individual 
electrodes 

0-500 ms 500 ms Phoneme/viseme 
identity 

 

3.2.6 Group-level omnibus analysis  

For the group-level omnibus analysis, signals were downsampled to 10 Hz such that 

every 100 ms time window represented discrete interpolated activity. Starting at 0 ms (phoneme 

onset time), until 500 ms after onset, downsampled data points (6 in total) were considered at all  

STG electrodes in each of the subjects across all the trials for each stimulus in the auditory-only 

and visual-only modalities separately. These data were then used to train and test a classifier for 
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each subject individually. Following omnibus classification for each individual subject, 

classification accuracies across subjects were combined to calculate the group-level omnibus 

classification accuracy and statistics for the auditory-only and visual-only modalities separately. 

3.2.7 Time-series analysis  

For the time series analyses, signals were downsampled to 100 Hz. Then, using a sliding 

window of 500 ms in duration, data were examined at each time point starting at 2000 ms before 

phoneme onset time until 2000 ms after onset. Data from all electrodes were included in the 

analyses, for all the trials in the auditory-only and visual-only modalities separately. With these 

data, individual classifiers were built at every time point for individual subjects, using four-fold 

cross validation. Once classification accuracies were calculated for individual subjects, group-

level accuracies at each time-point were calculated as the average of classification accuracies at 

each of the time points. This analysis was performed separately for auditory-only and visual-only 

conditions. 

3.2.8 Individual electrode analysis 

For the classification at individual electrodes, data from each electrode for every subject 

was examined from 0 ms (phoneme onset time) until 500 ms after onset at 100 Hz (6 points per 

trial). Data for this time duration was prepared in the same manner as to the group-level omnibus 

analysis. Then, a classifier was built at every electrode using four-fold cross-validation for the 

auditory-only and visual-only conditions separately, to identify individual trial labels. 

3.2.9 Representational similarity analysis  

Apart from the three levels of classification applied in the individual modalities, a 

representational similarity analysis was performed to investigate a combined omnibus 
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classification. The difference between the omnibus analysis performed in section 3.2.6 and the 

representational similarity analysis was that instead of using a four-class classifier to examine the 

differentiability between phonemes in either the auditory-only or visual-only modalities, we used 

an eight-class classifier to study the differentiability between the four phonemes and four 

visemes. Following this, a correlational analysis using Pearson correlation was used to measure 

the association between misclassification between phonemes and visemes. Specifically, we 

compared the off-diagonal classification frequencies across matching stimuli in auditory-only 

and visual-alone conditions. This method enabled a test of whether incorrectly classified 

phonemes and visemes were related, which would suggest overlapping representations. 

3.2.10 Calculating individual subject classification significance 

Small sample datasets, especially in neural signals can be faced with the challenge of 

exceeding chance-level by chance (Combrisson et al., 2015). This would mean that in a four-

class classification problem for discriminating between phonemes or visemes with initial 

consonants ‘b’, ‘f’, ‘g’ and ‘d’, a chance level of 25% will not accurately capture the underlying 

characteristics of the data; e.g., randomly sampled labels will be classified at more than 25% 

with relatively high frequency. Hence, a binomial chance threshold needs to be calculated at each 

instance of classification using the binomial probability distribution function (Demandt et al., 

2012, Combrisson et al., 2015). We utilized the ‘binocdf’ function in MATLAB for this, by 

considering two parameters: the number of trials, and probability of success at each instance 

(25%). This gives rise to a binomial chance-level probability that varies depending on the 

number of data points used for classification in each of the models that were built. This resulted 

in a chance probability of 29.58% (p = 0.05) for a 4-class classifier with 240 trials and 15.00% (p 

= 0.05) for a 8-class classifier with 480 trials.  



 

 58 

3.3 Results 

3.3.1 Behavioral results 

Participants’ mean behavioral accuracy across the two conditions was significantly above 

chance at the group level: Auditory-only (M = 96.15%, SD = 1.65%, t(3) = 74.7, p < .001), 

visual-only (M = 76.35%, SD = 7.54%, t(3) = 11.8, p = .001). As expected, auditory trials were 

correctly identified significantly more often than visual trials, t(3) = 5.76, p = .01. 

3.3.2 Decoding analyses at individual frequency bands 

A previous iEEG study from our group (Karthik et al., 2021) reported spectral power 

changes during an auditory-visual speech task observed across multiple frequency bands. To test 

whether visual speech information encodes visemic information in the STG, we first classified 

single-trial event-related potentials (ERPs) due to the high temporal resolution of ERPs and 

because they reflect a combination of spectral phase and power information. To provide a 

stronger mechanistic interpretation, we additionally classified single-trial responses in theta, 

beta, and high-gamma power (HGp) filtered data.  

3.3.3 Single-Trial ERP Classification 

Figure 16 shows the group-level average confusion matrices using SVM classifiers on 

single-trial ERPs produced in response to phonemes and visemes. SVMs were run separately for 

the classification of four phonemes and four visemes at the individual subject level: single trial 

labels (60 for each phoneme and viseme for a total of 480 trials) were classified using time 

points and electrodes as dimensions. Across all four subjects we observed significant 

classification (evaluated using binomial statistics) of both auditory-only (phoneme) and visual-

alone (viseme) trials using activity recorded from STG electrodes (single-subject values shown 
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in Table 4). Averaging classification matrices across subjects additionally revealed significant 

group-level classification for both phonemes (t(3) = 14.45, p<0.001) and visemes (t(3) = 21.13, 

p<.0001). However, we did not observe a significant difference between group-level phoneme 

and viseme classifications (t(3)= 1.73, p = .18), likely due to poor group-level statistical power. 

The successful classification of phonemes and visemes in the STG indicated that auditory 

areas were able to reliably discriminate between the consonant initial words for both auditory-

only and visual-only speech stimuli. The diagonal of the confusion matrices shows that this 

classification was robust and significantly above chance for each of the four phonemes and 

visemes considered (binomial chance = 29.58%, p = 0.05).  

   

 

                            Auditory-only                                          Visual-only 

 

 

                     Quartile ranges  

 

Figure 16. Confusion matrices for ERPs. (Left, Middle) Group-level confusion matrices accuracy using ERPs for 
discriminating between 4 phonemes and 4 visemes in the auditory-only and visual-only conditions, respectively. Cell 
values denote the frequency at which each consonant was predicted (x-axis) relative to the true labels (y-axis) Both 
the auditory-only and visual-only modalities demonstrated reliable above-chance classification performance. No 
significant differences were observed between the group-level classification performances of the auditory-only and 
visual-only modalities. 
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3.3.4 Time-series classification performance  

Classification accuracy for the auditory-only and visual-only stimuli were also calculated 

across the entire epoch time-course. Each of the classifiers were built for each subject separately 

at each of the time points considered across all the electrodes. 

 

Table 4. Single-trial ERP classification accuracies for individual subjects in the auditory-only and visual-only 
conditions. 

Subject Auditory-only Visual-only 

1 34.16 (p < 0.001) 36.66 (p < 0.001) 

2 38.75 (p < 0.001) 32.91 (p = 0.002) 

3 45.00 (p < 0.001) 38.75 (p < 0.001) 

4 46.25 (p < 0.001) 31.66 (p = 0.008) 
 

M = 41.04%, SD = 4.88% M = 34.99%, SD = 2.84% 
 

Figure 17 shows the average time series classification accuracy using an SVM classifier 

on single-trial ERPs across all four subjects considered over the entire duration of the stimuli in 

both the auditory-only and visual-only modalities. From the time-series classification accuracy 

pattern, we see that the auditory-only modality stayed at chance level until 100 ms before 

phoneme onset time and reached peak classification accuracy (43.54%) at 300 ms following 

phoneme onset time. This above-chance performance continued until 900 ms after phoneme 

onset time, followed by a drop back to chance-level.  

The visual-only modality stayed at chance level until 0 ms after phoneme onset time, 100 

ms after significant classification was observed in the auditory-only condition. Peak 

classification accuracy (34.27%) was observed at 200 ms following phoneme onset time, and 
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100 ms before classification peak in the auditory-only condition. Above-chance performance 

lasted until 1300 ms after phoneme onset time. 

 

Figure 17. Time series classification accuracies using ERPs for the entire duration of the stimuli starting at 
2000ms before phoneme onset time until 2000ms after onset. 

3.3.5 Classification performance at individual electrodes 

Classifiers were also built for individual electrodes for each subject to understand the 

spatial distribution of activity that helped capture variance across trials to provide an above-

chance classification performance. Figure 18 shows the spatial distribution of STG, MTG, and 

SMG electrodes present across the four subjects. This figure also indicates the location of 

electrodes that reliably classified between identities of phonemes or visemes using ERPs. Table 5 

shows the total number of electrodes in each subject across different analysis conditions. Figure 

19 shows a conjunction analyses that shows the location of electrodes that 1) classified only 

phonemes 2) classified only visemes 3) classified both phonemes and visemes.  
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Auditory only                                             Visual only 

 

                  

  
Figure 18. Spatial distribution of the electrodes that reliably decoded (indicated in red) and electrodes that did not 
reliably decode (indicated in black) between identities of phonemes and visemes using ERP responses. All 
classification were done as a group-level analysis at individual electrodes in the time-range between 0 ms and 500 
ms after onset of stimuli. 

 

 

 

Figure 19. Across condition spatial distribution of electrodes. Spatial distribution of the electrodes that reliably 
decoded phonemes in the auditory modality (indicated in blue) and electrodes that did reliably decoded phonemes in 
the visual modality (indicated in red) and electrodes that reliably decoded in both the auditory and visual modalities 
(indicated in green). 

From these results, we observed that out of a total of 53 electrodes that had significant 

above chance classification in the auditory-only condition, 44 (83.01%) were present in the STG. 

Out of a total of 33 electrodes that had significant above-chance classification in the visual-only 

condition, 25 (75.75%) were present in the STG. Out of these two samples (44 and 25 

electrodes), 7 had significant above-chance classification in both the conditions. 
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Table 5. Total number of electrodes for the four subjects. ‘Sig’ indicates the number of electrodes in each of the 
subjects that were able to reliably classify phonemes above chance in the time range of 0 ms after onset of stimuli to 
500 ms after onset of stimu 

Subject 

 
 

Auditory-only 
 

Visual-only 

 

   Total 
Elecs 

Elecs in 
STG 

Sig. in 
STG 

Sig. in aud 
but not in 

vis 

Sig. in 
STG 

Sig. in vis 
but not in 

aud 

Sig. in both 
aud and vis 

1 36 11 5 4 2 1 1 

2 45 25 10 6 10 6 3 

3 66 42 11 7 11 7 2 

4 48 38 18 18 2 0 1 

Total 195 116 44 35 25 14 7 
 

 

 

Figure 20. Example ERPs from an STG electrode in one of the patients. The left plot shows auditory ERPs to the 
four phonemes and the right plot the ERPs to the four visemes. Black bars denote significant time-points from 
univariate analyses (one-way ANOVAs) examined separately at each time-point and corrected for multiple 
comparisons using FDR. Viseme-related activity begins shortly after face-onset (at -.5 seconds) whereas phoneme-
related activity begins after sound onset (at 0 seconds). F-initial words evoked more negative going ERPs in the first 
300 ms of both phoneme and viseme trials, whereas B-initial words evoked more positive going ERPs in this same 
time range. 
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3.3.6 Representational similarity analysis 

From analyses performed in the previous sections, we saw that the ERPs were able to 

reliably encode phonemic information from visual speech in the auditory areas. But these 

analyses do not indicate if phoneme and viseme information is represented in a similar manner 

across stimulus types. To understand the representation of phonemes and visemes in the auditory 

areas, we performed representational similarity analysis using 8-class confusion matrices (4 

visemes and 4 phonemes). 

Figure 21 (left) shows the confusion matrix of an omnibus classification between the 

individual stimuli across auditory-only and visual-only modalities. The upper left quadrant of the 

matrix shows the confusion matrix for the auditory-only conditions while the lower right 

quadrant shows the confusion matrix for the visual-only conditions. From this matrix, we can see 

that both the auditory-only and visual-only modalities performed significantly above-chance 

even in the 8-class classification framework as they did in their respective 4-class classification 

frameworks. To investigate if phonemes in the auditory-only conditions had similar 

representations in the auditory areas as the visemes in the visual-only condition, we compared 

the levels of misclassification for each of the phoneme/viseme pairs. For example, is the 

confusability between auditory 'f' and auditory 'b' similar to that between visual 'f' and visual 'b'?  
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Figure 21. Confusion matrix across auditory and visual modalities. (Left) Confusion matrix showing the 
classification accuracies across a 8-class classification framework. (Right) To test for a similar pattern of 
misclassification between auditory and visual trials, we compared off-diagonal responses in the upper left and lower 
right quadrants in the confusion matrix, shown as a scatter plot. Mis-classification rates were highly correlated (r = 
0.88 , p = 0.001) consistent with the hypothesis that visemes evoke activity in matching auditory phoneme 
populations in the STG. 

Because phonemes are represented through population coded responses, misclassification 

can reveal information about related neural processes. To test for related representations, we 

calculated a correlation between each of the phoneme-pairs across both the modalities on group-

averaged confusion matrices. Figure 21 (right) shows the scatterplot for this analysis, where the 

x-axis represents the off-diagonal values of the auditory-only confusion matrix and y-axis

represents the off-diagonal values of the visual-only confusion matrix (12 values from each). 

This analysis reveals that there is very high correlation (r = 0.88) between the confusability of 

phonemes in the auditory-only modality and visemes in the visual-only modality. We calculated 

the significance of this test by randomly permuting the stimulus labels of each trial and repeating 

the full classification analysis n = 1000 times. Results showed the observed correlation value to 

be highly significant, p = .001. This is consistent with our hypothesis that the spatiotemporal 

neural representation of viseme identities in the auditory areas is similar to that of phonemes. 



 

 66 

3.3.7 Classification of Spectral Power 

Average auditory and visual classification rates for theta, beta, and HGp are shown in 

table 6. In auditory trials, significant group-level classification was observed for theta band, t(3) 

= 4.14, p = 0.01; and HGp filtered data t(3) = 4.67, p = 0.009 , but not beta, t(3) = -0.45, p = 

0.65. In visual trials, only a marginal group-level classification was observed for HGp: t(3) = 

3.16, p = 0.06, with no above-chance differences observed for theta band, t(3) = -0.81, p = 0.48, 

or beta band, t(3) = -2.37, p = 0.1, activity. 

Table 6. Average group-level classification accuracies across all four subjects considered for the theta band, beta 
band and HGp. The numbers in the parentheses indicate the number of significant subjects out of the total number 
of subjects analyzed. 

Modality ERP Theta band  Beta band High Gamma power 

Aud 41.04% (4/4) 35.93% (3/4) 27.91% (2/4) 36.14% (4/4) 

Vis 34.99% (4/4) 23.43% (0/4) 24.27% (0/4) 27.26% (2/4) 
 

3.3.8 Classification in Visual Regions 

To understand the complementary encoding of viseme information from visual regions, 

we investigated the ability to classify single-trial responses from the inferior temporal lobe 

(including the fusiform gyrus) during auditory-only and visual-only speech. Two out of the four 

subjects had electrode coverage in these regions and classifiers were constructed separately for 

each of these two subjects across 47 electrodes (subject 1, 27 electrodes; subject 2, 20 

electrodes). 
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                            Auditory-only                                          Visual-only 

 

 

                     Quartile ranges  

 

Figure 22. Confusion matrix in the fusiform region. Group-level classification accuracies using ERPs for 
discriminating between 4 phoneme and 4 visemes conditions in the auditory-only and visual-only modalities 
respectively in the fusiform region. 

 

Figure 22 shows the group-level average confusion matrices across 2 subjects using SVM 

classifiers on single-trial ERPs recorded from visual regions in response to phonemes and 

visemes. Classifiers were built in the same manner as for analyses in auditory regions. Confusion 

matrices revealed above-chance classification accuracies for visemes in both subjects: Subject 1 

= 37.08%, p < 0.001, Subject 2 = 34.58%, p = 0.001. However, consistent with the unidirectional 

transfer of speech information, we observed chance-level classification accuracies for phonemes 

in both subjects: Subject 1 = 24.17%, p = 0.53 , Subject 2 = 25.25%, p = 0.45.. 

Decoding at individual time-points can be seen in Figure 23, and demonstrated that 

phonemic classification stayed at chance levels throughout the time-course of the stimuli. 

Conversely, the visual condition stayed at chance-level until phoneme onset time around 0 ms, 
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lasting until 1500 ms after phoneme onset time. A peak classification of 37.50% was seen at 900 

ms after phoneme onset time. 

 

Figure 23. Time series classification accuracies using ERPs at the fusiform region, for the entire duration of the 
stimuli starting at 2000 ms before onset of stimuli until 2000 ms after onset of stimuli. 

 

Decoding at individual electrodes revealed that no electrode from the fusiform region in 

either of the subjects were able to reliably classify phoneme identities in the auditory-only 

condition. On the other hand, in the visual-only condition a total of 11 electrodes (subject 1 = 6 

electrodes, subject 2 = 5 electrodes) were able to reliably classify phonemic identities above-

chance. The spatial distribution of electrodes in each of the condition can be seen in Figure 24. 
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Auditory-only Visual-only 

Figure 24. Spatial distribution of the electrodes in the fusiform region that reliably decoded (indicated in red) and 
electrodes that did not reliably decode (indicated in black) between identities of phonemes and visemes using ERP 
responses. All classification were done as a group-level analysis at individual electrodes in the time-range between 
0 ms and 500 ms after onset of stimuli. 

 

3.4 Discussion 

Prior research has demonstrated that visual speech can influence auditory speech 

perception in multiple distinct ways. Visual speech has been most studied for the visemic 

influence it provides, as seen in the McGurk effect (McGurk & McDonald, 1976). Visual speech 

also provides complimentary information about what is heard via phonemic representations 

(Bourguignon et al., 2020), timing information (McGrath & Summerfield., 1985), speech rate 

(Chandrasekaran et al., 2009), and spectral information (Plass et al., 2020). Moreover, it has also 

been shown that these visual influences are represented spectrally, temporally and spatially with 

multiple distinct processes occurring simultaneously (Karthik et al., 2021). One possibility is that 

some of this visual activity in auditory areas reflects the transformation and representation of 

viseme information to bias and improve auditory speech processing. To test this hypothesis, we 

examined whether viseme identities during visual speech could be decoded from iEEG signals in 

the human auditory cortex. We analyzed data from 4 patients with epilepsy who had intracranial 

electrodes intracranially implanted in the auditory cortex including the STG, MTG and 
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supramarginal regions. We constructed a classification pipeline to decode the identities of 

phonemes and visemes in the primary auditory areas during auditory and visual speech.  

Classification results from our group-level omnibus analysis on electrodes in auditory 

areas (STG) demonstrated significant above-chance decoding in both the auditory-only and 

visual-only conditions using ERP responses. Hence, we performed all our further analysis using 

ERP responses in both the auditory-only and visual-only stimuli conditions. These results 

demonstrate that visual speech information is indeed encoded in the auditory cortex. We also 

noticed above chance-level decoding in the visual-only condition in the fusiform region, while 

the auditory-only condition provided chance-level decoding in the fusiform. The fact that this 

information are maximally available in ERPs as opposed to spectral components could mean that 

visual speech by itself is not sufficient to generate large field potentials in the auditory areas, 

indicating subthreshold activity. Moreover, given the small sample size we utilized in our study, 

the high variance in beta and theta band could further hamper our ability to interpret results in 

those frequency bands.  

With ERPs, the classifiers showed above-chance decoding accuracies for individual 

phonemes, indicating that the classifiers captured the variances reliably across all the phonemes 

analyzed. Notably, in both the auditory-only and visual-only conditions, ‘b’ and ‘f’ had lower 

confusability than ‘g’ and ‘d’. More specifically, ‘f’ had a higher decoding accuracy in 

comparison to all the other phonemes in both the auditory-only and visual-only modalities. In 

conjunction with the representation similarity analysis, this difference in decoding accuracies 

across different phonemes sheds more light on the nature of phonemic representations in the 

neuronal populations of the auditory cortex. From the individual phonemic decoding accuracies 

in each of our stimuli and their representational similarity analysis, we see that there is very high 
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correlation between the decoding accuracies of auditory-only and visual-only stimuli. This 

similarity extends to the higher decoding accuracies of /f/ in both these modalities and similarity 

in patterns of decoding accuracies across the other phonemes.  

The similarity in pair-wise representations of these individual phonemes align with the  

known representation of phonemes in the auditory cortex, which follow a highly selective, 

spatially distributed pattern (Gyol Yi et al., 2020). This representation allows for the identities of 

individual families of phonemes to be selectively encoded in specific regions of the auditory 

areas. Accordingly, individual phonemes are grouped into specific families depending on their 

similarities and it was shown that ‘b’, ‘d’, and ‘g’ belonged to the same family, while ‘f’ belong 

to a second, but highly related family of phonemes. Our results complement the results from 

Gyol Yi et al by replicating a similar pattern of phoneme representation in the auditory areas, and 

extend their findings by showing that viseme distributions similarly overlap with phoneme 

encoding.  

A time-series analysis of decoding accuracies in the auditory-only and visual-only 

modalities across the entire time course of the stimuli showed that it is possible to decode 

identities of individual phonemes/visemes over the time course of our stimuli. Interestingly, it 

was observed that the above-chance classification performance in the visual-only condition had a 

temporal lag in comparison to the auditory-only condition. Interestingly, the visual-only 

condition has a 100ms head start (100ms after stimuli onset) compared to the auditory condition 

(200ms after stimuli onset) when comparing when the electrodes start encoding stimuli identity 

information. Seen together with previous results from our group (Karthik et al., 2021) which 

showed modulatory effects of visual speech on auditory speech perception, this visual head start 

of 100ms lines up neatly with established behavioral evidence (Karas 2019), and hints that the 
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visual speech’s neural modulatory effects in fact encode meaningful information about the 

phonemic representation of the speech content. Critically, this time-lag could help argue against 

the idea that neural activity in the auditory cortex in response to visual speech might be 

generated by internally vocalized speech (Bourginon 2020). Previously, this idea has been 

argued by research that showed low frequency entrainment of the unheard envelope during silent 

speech in the auditory cortex (Bourginon 2020, Hauswald 2018), but such theories fail to explain 

word and phonemic level visual speech benefits (Ross 2007) and would be anticipated to have a 

much longer lag time.  

The topographical distribution of phoneme and viseme information across auditory 

regions was quantified in the individual electrode analysis. This analysis showed that the spatial 

distribution of electrodes that reliably decoded visual-only information is distributed over the 

STG and parts of the MTG. Additionally, individual electrodes that reliably decoded information 

from both auditory-only and visual-only modalities were concentrated in the pSTG and pSTS. 

The dual encoding of visemes and phonemes in pSTS is well in line with a previous body of 

work that demonstrated the role of pSTS in audiovisual speech integration (Nath, 2010). Here, 

we extended such findings by providing the first evidence that some of these audiovisual 

responses in the pSTG and STG reflect population-coded information about viseme identities.  

Moreover, some electrodes in the STG and MTG showed significant classification for visual-

only by not auditory-only stimuli. We think two possible explanations account for this pattern. 

First, some neuronal populations in the STG are targeted purely by visemes and not phonemes 

(Falchier et al., 2002, Barraclough et al., 2005). Second, and perhaps more likely, the viseme-

targeted regions included auditory neurons that are responsible for processing phonemes in 

noise, in more challenging situations (e.g., under noise). This is ecologically valid because 
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visemes are most useful when phonemes are hard to hear, and this is consistent with the lack of 

phonemes classification in these regions because the auditory-only stimuli were largely clear (50 

out of 60 of the trials used for each phoneme).  

While we obtained a larger data size for each subject by combining two different task 

sets, there might be concerns about the validity of combining task variant 1 (where participants 

were presented with only auditory-only or visual-only stimuli) and task variant 2 (where 

participants were presented with four conditions: auditory-only, visual-only, incongruent 

auditory-visual and congruent auditory-visual). However, these concerns were addressed by the 

results that showed comparable decoding performance across both the task variants.  

In summary, the current study demonstrates that phonemic and visemic level stimuli of 

spoken auditory and visual speech are both encoded in the auditory cortex during speech 

perception. Phonemic and visemic information aren’t just encoded in the auditory cortex, we also 

provided evidence that categorical visemic information is encoded in the fusiform area, echoing 

previous findings that visual cortex performs visemic level processing of visual speech stimuli 

(Nidiffer, 2021). This provides a foundation for future work to investigate the role of the visual 

regions in audiovisual integration and information transfer between the auditory and visual 

regions during audiovisual speech processing. Furthermore, results in literature have shown that 

it is possible to decode identities of spoken words in a noisy environment from the auditory 

cortex (Chan et al., 2014). Given that visual components of spoken speech provide enhancements 

in audiovisual speech perception (Bourguignon et al., 2020, Plass et al., 2020), the methodology 

and results from the current study could help build towards understanding what phonemic 

information from visual speech aids in enhancement of perception during audiovisual speech in a 

naturalistic environment. 
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3.5 Supplemental Material 

3.5.1 Electrode preselection  

In order to circumvent the problem of curse of dimensionality (Aggarwal et al., 2005, 

Verleysen et al., 2005 Bach et al., 2017), we present a novel technique to preselect electrodes 

that are not only functionally significant but have similar event related potentials associated with 

the stimuli of interest. This would lead to potential improvements in classification performance 

by acting as a feature selection procedure (Remeseiro et al., 2019) by reducing the 

dimensionality of data and ignoring noisy electrodes, and hence leading to better signal to noise 

ratio for classifier discriminability of phonemes. For the preselection procedure, we used a 

clustering-based approach utilizing a k-medoids algorithm with dynamic time-warping (DTW) as 

a distance measure.  

3.5.2 K-medoids clustering with dynamic time warping  

To preselect electrodes, we chose to cluster electrodes that responded similarly to the 

stimuli of interest. This could be achieved through a clustering algorithm. K-means clustering 

(Ahmed et al., 2020) which is a popular algorithm for clustering has been widely utilized for 

grouping together observations in data that are similar to each other. However, a drawback with 

this algorithm is that the centroids of each of the chosen clusters are virtual (i.e., the centroids do 

not exist in the actual data and are created virtually in an iterative fashion). Moreover, the 

algorithm does not perform optimally for time series data of high dimensions that have similar 

shapes in individual clusters (Ahn et al., 2018). To handle these issues we propose using k-

medoids clustering (Kaufman et al., 1990), which is a modified version of the more popular k-

means algorithm. 



 

 75 

3.5.3 K-medoids 

The advantage of using k-medoids clustering over k-means clustering is that the 

algorithm allows for using real observations within the data set as its centroids. This leads to 

partitioning of the data with observational data present within the dataset as a reference point. 

This leads to better interpretability of the clustering results, where an electrode present within 

each of the clusters can be identified as the cluster’s reference point and verified for robustness. 

Additionally, the k-means algorithm conventionally utilizes Euclidean distances as a distance-

measure for calculating the distances between individual data points and the cluster’s centroids. 

This reduces the versatility of this algorithm since in some cases (e.g., clustering time series 

data) Euclidean distance measures might not be an accurate representation of distances (Kalpakis 

et al., 2001). In k-medoids, the distance measures are versatile and can be chosen according to 

the data in question. Hence, for clustering of data generated by individual electrodes we utilized 

dynamic time warping (Berndt et al., 1994), which is a distance measure utilized for calculating 

the similarity between pairs of temporal sequences 

3.5.4 Dynamic Time Warping (DTW) 

The algorithm functions by calculating the warped distances between two temporal 

sequences of data, hence finding how similar/dissimilar two signals are (Berndt et al., 1994). 

Thus, the technique allows for calculating similarities between signals of different shapes. By 

using DTW as a distance metric for calculating the similarity between electrodes, we calculate 

the similarities between the data generating processes underlying these electrodes. Once the 

similarities between pairs of time series signals generated by the electrodes are calculated, it is 

used as a proxy for the distance measure required for the k-medoids clustering algorithm. 

Electrodes with similar data generating processes as evidenced by similarities in the time-series 
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signals generated by these electrodes are then clustered together using k-medoids algorithm with 

DTW as a distance metric. 

3.5.5 Choosing the optimal value of k 

One heuristic that needs to be chosen for the optimal functioning of any clustering 

algorithm is selection of the required number of clusters. While there are no standard ways to 

choose the optimal number of clusters, there are acceptable ways to measure the stability of the 

chosen number of clusters (Ben-David et al., 2007). The most commonly used technique is the 

elbow method, where the intra-cluster variance (calculated as the inertia of each cluster) is 

calculated at each k, indicating the k at which the variance begins to become unstable. While this 

technique works well for low-dimensional data, it is unclear about empirical methods that can be 

used for high dimensional temporal sequences. Hence, we visually inspected the cluster 

robustness by checking the patterns of data for varying values of k and chose 3 as the optimal 

number of clusters for our data of interest. 

3.5.6 Partitioning the data to avoid overfitting  

Selecting electrodes as a preselection procedure before utilizing them for classification 

could lead to overfitting since there could be a double bias in terms of which electrodes get 

selected, and hence which data is used for the final training and testing of the model. To avoid 

this, we split the data from each electrode into two halves (e.g., if an electrode contains data from 

a total of 80 trials, it was split into 40 trials in each half). One half of this data was used to cluster 

the electrodes into different clusters. Once the electrodes were clustered using one half of the 

data, an omnibus classifier was built (section 3.2.6) across each of these clusters individually 
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using the same data that was used to cluster the electrodes. The cluster with the highest test 

accuracy was chosen as the one which contained the most amount of decodable information. 

3.5.7 Representational responses of electrodes clustered with k-medoids and DTW 

The electrode preselection performed using k-medoids and DTW acted as a feature 

selection technique where only electrodes of interest in specific clusters were chosen. 

Representational plots of these clusters are shown in Figure 25 shows results from the visual 

only condition for high gamma power where we can see the individual electrode responses to 

each phoneme in each of the three clusters. Figure 26 shows the mean responses of these clusters 

to each of the four phonemes across all electrodes. 

 

Figure 25. Individual cluster responses. Responses of the individual electrodes to each of the four phonemes in the 
three clusters considered in the visual only condition of high gamma power. 
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Figure 26. Average responses of the individual phonemes across all electrodes present in each of the three clusters 
in the visual only condition of high gamma power. 
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 Phonemic Representations Encoded in Auditory Cortex During Visual Speech: 

A Study Using fMRI 

 

While speech perception is largely an auditory process, visual information from the 

speaker's face perceptually enhances relevant information for the listener. This information 

includes the speaker's voice as well as articulatory movements from the speaker's face and lips. 

While several studies have shown significant activation of auditory regions in response to visual 

speech, the information encoded by these activations remains poorly understood. Indeed, our 

results in the previous chapters demonstrated that visual speech modulates auditory speech 

processing at multiple temporal, spatial, and spectral scales, indicating multiple discrete 

influences of vision on speech. We also showed evidence in support of the hypothesis that it is 

indeed possible to decode information about phonemic representations encoded in the auditory 

cortex during visual speech. But this information was decoded using a single-subject analysis, on 

spatial data whose locations were constrained with respect to where the electrodes were 

implanted. Specifically, the location of the electrodes was dictated by clinical needs. This leads 

to the question of generalizability across a normative population, with replicable group-level 

effects across a larger set of subjects. Moreover, the sparse coverage in patients prevents a 

comparison of decoding accuracy across regions, preventing a hierarchical view of how viseme 

information is represented across auditory, auditory-visual, and visual regions. 

The goal of this chapter is to conceptually replicate the results from the previous chapter 

in a normative population with comparable spatial data across multiple subjects, and to further 
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understand how visemes influence auditory population responses . To this end we used 

functional magnetic resonance imaging (fMRI) to test whether visemes (visual units of speech) 

can be classified from auditory cortex. This chapter presents data collected from a large sample 

of individuals (n=64, pre-registered at osf.io) who were presented with three phoneme and 

viseme exemplars (consonant-vowel pairs /FAFA/, /MAMA/, /KAKA/) in a randomized event-

related design. We trained and tested classifiers to discriminate between the three specific 

phonemes and separately the three specific visemes. Analyses were performed using a whole-

brain searchlight classifier as well as ROI-based analyses focusing on auditory, auditory-visual, 

and visual regions. Results showed significant above-chance decoding accuracy in both the 

phoneme and viseme conditions in auditory regions, including the posterior superior temporal 

sulcus (pSTS) and superior temporal gyrus (STG). Multivariate analyses showed similar spatial 

patterns between phoneme and viseme pairs, suggesting that visemes target matching phoneme 

populations. These results demonstrate that visual speech crossmodally activates and encodes 

phonemic information in auditory regions. 

 

4.1 Introduction 

Though sounds play a major role in understanding spoken speech, meaningful 

information provided by visual cues to speech content, timing, and speaker identity aid in 

perceptual enhancements for the listener (Chandrasekaran et al., 2009; Van Wassenhove et al., 

2005). In the presence of audio-visual stimuli, listeners naturally tend to integrate information 

from both modalities to create a unified percept. This unified percept is thought to be created as a 

result of using complementary information, such as spatiotemporal and statistical 

correspondences obtained from the two modalities (Spence., 2007, Reale et al., 2007). This 
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information includes the speaker's voice as well as articulatory movements from the speaker's 

face (Chandrasekaran et al., 2009; Erber, 1975; Chen and Rao, 1998; Van Wassenhove et al., 

2005) and lips (Besle et al, 2008). 

Consistent with behavioral evidence that visual information can alter what is heard, such 

as in the McGurk effect, visual signals strongly modulate the response of auditory neurons to 

sounds (Ghanzafar et al., 2010, Ghanzafar et al., 2008, Zhu & Beauchamp, 2017). It has also 

been observed that silent lip-reading activates the auditory cortices and entrains cortical 

oscillations in the same manner and anatomical regions as auditory-only speech (Bourguignon et 

al., 2020). Further, apart from activating the auditory cortex, visual speech also modulates 

auditory speech in multiple ways (Karthik et al., 2021), indicating that audiovisual speech 

integration is not a unitary phenomenon. The anatomical regions implicated in these modulations 

involve the primary auditory cortex and the superior temporal gyrus (STG) (Beauchamp et al., 

2004). These audiovisual modulations likely occur through feedback connections from the 

multisensory posterior superior temporal sulcus (pSTS) (Beauchamp et al., 2010). 

Though the auditory cortex has been shown to be responsive to silent lipreading (Yi et 

al., 2019, Beauchamp et al., 2004, Ye et al., 2017), the functional bases of these responses are 

still unclear. It is yet to be understood whether the neural responses in STG during visual speech 

are caused purely due to visual cues, such as speaker identity, lip movements and articulatory 

gestures, or whether they also encode information about phonemic representations in the speech. 

The neural responses in STG during visual speech could also be driven by arousal or attentional 

increases that are general perceptive processes with no phonemic information being represented 

in them. While prior studies with fMRI (DeWitt & Rauschecker, 2011) and intracranial electrode 

recordings (Chan et al., 2014) have implicated the STG and pSTS in multiple aspects of 
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phonological processing and visual representations of speech (Ye et al., 2017), they also lead to 

other related questions about the very nature of neural representations of multisensory speech 

signals. These questions include fundamental expositions about the identity of features encoded 

in the auditory cortex and the acoustic, visual, and phonemic descriptions of speech in general. 

These questions can be understood by differentiating between task-based regional activations 

and the type of information encoded in those regions. This is motivated by studies that have 

shown visemes to be responsible for activating phonemic population of neurons during visual 

speech (Karthik et al., 2021, Beauchamp et al., 2010). Past literature also point to evidence 

which indicates that visemes can be transformed into categorical phonemic units in the pSTS 

(Beauchamp et al., 2010).  

One way to differentiate between activation magnitude and informational content 

encoded in activations is to perform a multivariate analyses using a classifier-based decoding 

approach such as fMRI-based multivariate pattern analysis (MVPA) (Haxby et al., 2014). 

Previous decoding-based approaches using electrocorticography demonstrated that speech 

patterns could be reconstructed with signals from the auditory cortex (Mesgarani & Chang, 2012, 

Makin et al., 2020). These findings also provide evidence to show that phonemic identities are 

represented in a distributed fashion in the neuronal populations of the STG. Moreover, they 

indicated the validity of using informational-decoding based analysis to understand the nature of 

information encoded during speech comprehension. In this study, we used both searchlight 

(Kriegeskorte et al., 2006) and ROI-based MVPA analyses to investigate the nature of visual 

activations that occur in the auditory cortex during speech perception. To this end, we test the 

hypothesis that part of the visually-evoked activity in the STG reflects the activation of 

phoneme-specific populations by visual speech. In line with results from previous studies, we 
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focus on the STG and the pSTS, including the supramarginal gyrus (Beauchamp et al., 2010, 

Claire & Chang, 2019, Yi et al., 2019, Bourguignon et al., 2020). 

4.2 Materials and methods 

This study was pre-registered at OSF (https://osf.io/6fzwd/). Minor deviations from the 

pre-registered protocol are noted throughout the methods section. The study was approved by the 

Institutional Review Board (IRB) of the University of Michigan. A power analysis was 

conducted to estimate the number of subjects required to test the proposed hypothesis (see 

section 4.2.2 below). Based on this power analysis, data was acquired from 64 subjects. Subjects 

were recruited by emailing individuals who had voluntarily registered to be participants in the 

University of Michigan’s Psychology paid-subject pool and through word of mouth, including 

individuals who had previously expressed interest in studies at the University of Michigan. We 

recruited 64 participants (F = 47, M = 17) in the age range of 18-32 (Mean: 22.87, SD = 3.29) 

irrespective of their gender, race or handedness. Participants were paid USD $20 per hour for 

their time. All subjects were provided with details about the study and IRB approved consenting 

procedures were completed before proceeding with data collection. Data was collected from each 

participant in a single session lasting approximately 1 hour and 15 minutes. 

4.2.1 Tasks, Stimuli and Experimental Design 

We used an auditory and visual speech paradigm optimized for an event-related fMRI 

design. On each trial, participants were presented with a three-alternative forced-choice task that 

consisted of either an auditory-only stimulus or a visual-alone stimulus. Three types of 

phonemes; /fafa/, /kaka/ and /mama/ and three types of visemes; /fafa/, /kaka/ and /mama/ were 

used for this task. These specific phonemes were chosen to maximize the differentiability 
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between the individual phonemic representations in the neuronal populations of the STG 

(Mesgarani & Chang, 2012, Gyol Yi et al., 2019). Figure 27 shows the timing and structure of 

the task. Each trial for both the auditory-only and visual-alone conditions lasted for 2 seconds. 

The auditory-only trials began with a fixation cross against a black screen, with the phonemes 

presented 250 ms after the appearance of the fixation cross. The visual-alone trial began with the 

appearance of a female actor’s face on the screen, with lip movements beginning 250 ms after 

face onset. After the presentation of each auditory-only or visual-alone trial, subjects were 

presented with 3 options (fa, ka, and ma) and were instructed to press one of three associated 

buttons on an MRI-safe button response box.  

The first 24 participants were shown response choices that always appeared in the same 

order (fa, ka, or ma) with a stable mapping between response choice and button (the index finger 

was always used to make the response for /fa/, the middle finger for /ka/ and the ring finger for 

/ma/). While performing the sample size estimates for our power analysis, we saw that the stable 

mapping between response choices and button presses resulted in response type differentiability 

in the motor cortex consistent with prior evidence for motor regions encoding information about 

finger movements (Shen et al., 2014). Hence, to counteract this effect and to negate the 

confounds of motor region responses during speech perception (Wilson et al., 2004), we altered 

the pre-registered protocol for the remaining 40 participants, who were shown response choices 

that were randomized after each trial.  
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Figure 27. Schematic of the task. Trial schematic for the Visual and Auditory conditions. All visual stimuli begin 
with a female actor’s static face appearing on the screen. 250 ms later the actor makes preparatory lip movements, 
following which at 500 ms visual-only speech onset occurs. This lasts for 1500 ms. This is followed by a 1250 ms 
response period. All auditory stimuli begin with the appearance of a fixation cross. 250 ms following the 
appearance of a fixation cross, auditory-only speech onset occurs that lasts for 1750 ms. This is followed by a 1250 
ms response period. Both the visual-only and auditory-only conditions use three types of double-visemes or 
phonemes respectively: /fafa/, /kaka/, and /mama/ 

Participants had 1.25 seconds to respond to the answer choices. If the participant failed to 

register a response within 1.25 seconds, the trial was recorded as a missed response. Every trial 

was followed by a 5-6 second jitter period (sampled from a uniform random distribution) which 

acted as the intertrial interval (ITI). In each run, participants completed 60 trials that were split 

between 30 auditory-only and 30 visual-alone trials, with 10 trials each for every phoneme and 

viseme; trial types and stimuli were randomly intermixed in each run. 

In total, participants completed five runs, resulting in 300 trials in total (150 phonemes, 

150 visemes) during the task, with each run lasting 8 minutes and 30 seconds. Psychtoolbox was 

used for stimulus delivery and recording timing information and participant responses. Auditory 
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stimuli were presented using fMRI compatible Avotec headphones that had integrated earmuffs 

in order to achieve maximum reduction of scanner noise. The sound level of stimuli was held 

constant for all participants. While presenting auditory speech stimuli in an MRI scanner can be 

challenging, the undegraded nature of the auditory stimuli enabled near perfect accuracy 

throughout the task. A mirror system reflected the visual stimuli from an LCD projector onto a 

mirror (width of the mirror: 12cm, approximate viewing distance between eye and mirror: 15cm; 

width and height of the face on screen: 9cm x 12cm) located inside the magnet bore of the 

scanner. 

4.2.2 Sample Size, Stopping Rule and Pre-registration 

The main comparison of interest in our study was whether viseme identity can be 

decoded from a region in the brain, particularly within auditory and auditory-visual regions. To 

estimate a required sample size, we conducted a power analysis on a separate condition 

(phoneme perception trials) in the first 24 subjects as an orthogonal contrast to our main question 

of interest. Since our study intends to perform multivariate pattern analysis (MVPA) based 

decoding, there is no direct way to perform a power analysis in order to obtain a suitable sample 

size. Hence, we performed a series of paired t-tests across phonemes, based on the assumption 

that this approach would yield a more conservative estimate to identify group differences in 

comparison to MVPA based decoding, and used these results for power analyses. In this 

analysis, we examined the group differences between the three phonemes in the auditory-only 

condition. Whole-brain auditory phoneme power analyses were calculated using NeuroPower 

(http://neuropowertools.org/neuropower/neuropowerstart/). 

Results demonstrated 80% power estimates at the following sample sizes for each of the 

three comparisons (using random field theory, cluster threshold p = .05, alpha = .05, n = 24): 

http://neuropowertools.org/neuropower/neuropowerstart/
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/fafa vs /mama n = 64, /fafa vs /kaka n = 62, /kaka vs /mama n = 63. On the assumption that 

equivalent visual stimuli would yield similar magnitude effect sizes, we used the maximum 

sample estimated by these comparisons: n = 64. Using this estimated sample size, we pre-

registered the number of subjects to be scanned and analyzed (https://osf.io/6fzwd/). As part of 

the pre-registration process, we also specified the ROIs to be analyzed and chose four specific 

ROIs: pSTG, pSTS, fusiform and hMT+ 

4.2.3 Measured Behavioral Variable and data exclusion criteria 

To ensure that the participants paid attention during the task, we set exclusion criteria to 

remove participants with behavioral accuracy rates less than 75% for either auditory or visual 

conditions: no participants were excluded based on this cutoff. 

4.2.4 fMRI data collection 

Subjects were scanned in a GE Discovery MR750 3.0 Tesla scanner with a Nova 32 

channel standard adult-sized coil (Milwaukee, WI). One high-resolution T1-weighted structural 

image was obtained for each participant that was used in preprocessing, flip angle = 8, FOV = 

25.6 mm, slice thickness = 1 mm, 256 slices. Then, for each of the five runs, functional T2*-

weighted BOLD images were obtained using a multiband gradient-echo, echo planar imaging 

sequence with a resolution of 2.4 x 2.4 x 2.4 mm3, TR of 800 ms and, TE of 30 ms, Flip Angle of 

52, for a total of 644 3D volumes of the whole brain with a FOV of 216 mm. To account for 

signal saturation, the task did not start until the first 10 TRs were acquired and discarded by the 

scanner in each run. 
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4.2.5 Data Processing 

fMRI data was reconstructed with realignment and fieldmap correction applied using 

SPM12 to each of the five T2* runs for inhomogeneity recovery of signal in the B0 field. 

Physiological noise was removed using RETROICOR (Glover at al., 2000). For both the 

univariate and multivariate analysis, preprocessing steps were completed using SPM12 

(Wellcome Department of Cognitive Neurology, London, UK). For all of the post-processed 

multivariate analysis including searchlight and ROI based decoding, we utilized The Decoding 

Toolbox (https://sites.google.com/site/tdtdecodingtoolbox/) version 3.997. 

4.2.6 Preprocessing 

Before preprocessing the functional images, SPM’s display tool was used to set the origin 

of the anatomical volumes for each subject manually by picking the location of the anterior 

commissure. After this, functional volumes were reconstructed and realigned, physiological 

noise was removed, and field map correction was applied. This was followed by slice time 

correction to account for acquisition time differences between slices for each of the whole brain 

functional volumes. This data was then co-registered to the subject’s anatomical space using a 

4th degree B-spline, followed by segmentation of the tissues from the anatomical image with a 

forward deformation field. Information generated during the segmentation process was then used 

to transform the co-registered functional volumes into the standard MNI anatomical space with 

isotropic voxel volume dimensions of 2mm. The normalized data was then spatially smoothed 

using a full-width half maximum (FWHM) kernel of 5mm. 
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4.2.7 Univariate Analysis 

We performed a univariate, contrast-based analysis of auditory-only phonemes (averaged 

across the 3 phonemes) and visual-alone visemes (averaged across the 3 visemes) in order to 

identify the regions that demonstrate significantly different activation patterns across stimulus 

types. We utilized a canonical hemodynamic response function with event duration set to 2 

seconds for each of the phonemes (AuditoryFA + AuditoryKA + AuditoryMA) and visemes 

VisualFA + VisualKA + VisualMA) and 5.5 seconds for the fixation periods (Fixation). Event 

onsets times were defined as the moment when the fixation cross (for auditory trials) or face 

(visual trials) appeared on the screen. 

In the first level analysis, whole brain beta maps were generated individually for all seven 

conditions for each of the 64 subjects. These maps also included information from regressors for 

motion correction (six head movement parameters). In the second level, contrasts were defined 

in the model estimation stage for each of the conditions of interest ([AuditoryFA + AuditoryKA 

+ AuditoryMA > Fixation] and [VisualFA + VisualKA + VisualMA > Fixation]) to calculate the 

averaged main effects of the phonemes and visemes across all subjects. These averaged contrast 

estimates were then z-scored to compute the t-statistic at each voxel. Significant voxels were 

then reported at a threshold of p < 0.0001 family-wise error corrected (FWE) for multiple 

comparisons at the voxel level, with a cluster-correction size of 100 voxels. 

4.2.8 Multivariate analysis 

To identify regions that reliably differentiate classes of phonemes and classes of visemes, 

we performed searchlight based MVPA analyses. Preprocessing steps for univariate and 

multivariate analyses were matched except for the normalization and smoothing, such that for the 

multivariate analysis, these two steps were performed after the first level analysis was 
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completed. For the decoding analysis, we utilized The Decoding Toolbox (Hebart, Görgen, & 

Haynes, 2015) with a LIBSVM (Chang & Lin, 2011) based support vector machine (SVM) 

implementation. For each of the individual subjects, we built a SVM classifier with a cross-

validation scheme for the five runs. We used these classifiers to build two separate models: one 

to classify between the three phonemes and the other to classify between the three visemes. The 

phoneme models were constructed to identify voxels that reliably decoded the identity of each of 

the three phonemes while the viseme models were built to identify voxels that reliably decoded 

the identity for each of the three visemes. These models were implemented as independent 

whole-brain searchlight analyses in the first level of the MVPA model. For each of the models, 

beta estimates were calculated and extracted from a 3-voxel radius sphere. 80% of the data from 

each run was used for training while the remaining 20% was used as the testing set. The 

searchlight center was shifted through voxel-wise patterns throughout the brain to extract whole-

brain accuracy maps for auditory-only and visual-alone conditions.  

Auditory-only and visual-alone mean accuracy maps were then transformed into an map 

of differences between accuracy (VolAcc) and chance (33%) at each voxel. These volumes 

(VolAcc-Chance) were then normalized to the MNI space through the individual subject 

anatomical volumes, similar to the first-level preprocessing step described in the univariate 

analysis. Following normalization, volumes were smoothed using a FWHM kernel of 5mm. 

These smoothed volumes were then used to estimate average decoding accuracy across all the 

subjects. Average decoding volumes were then z-scored to compute the t-statistic at each voxel 

and significant voxels were reported at a cluster corrected threshold of p < 0.0001, with a cluster-

correction size of 100 voxels. 
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4.2.9 ROI based decoding analysis 

Following the whole-brain searchlight analysis, we selected four regions of interests 

(ROI) based on results from literature (Beauchamp et al., 2004, Beauchamp et al., 2010, Yi et al., 

2017). Three out of the four ROIs (pSTG, pSTS, and hMT+) were chosen based on our pre-

registration at osf.io. The fourth preregistered ROI (fusiform region) did not provide sufficient 

evidence for a difference in decoding between phonemes and visemes. Hence, we chose to 

exclude this region from the final analyses and replace it with an early visual cortex ROI (V1 and 

V2). The four regions were chosen based on previous works (Mesgarani & Chang, 2012, Gyol 

Yi et al., 2019, Beauchamp et al., 2004a, Beauchamp et al., 2010, Karthik et al., 2021) that 

implicated them in encoding phonemic representation of phonemes during visual speech. The 

ROI decoding procedure was similar to the process described in Section 4.2.8 with the only 

difference being that analyses were restricted to the individual ROI under consideration. Each of 

the ROIs were analyzed in both the left and right hemispheres. The masks for the regions were 

created for each individual subject using Freesurfer anatomical labels generated during the 

recon-all procedure. The pSTG ROI was generated by dividing the “superiortemporal” label of 

the Freesurfer parcellation into three equal parts and choosing the posterior most label (Karthik 

et al., 2021). The pSTS ROI was generated using the “bankssts” label, while the medial temporal 

ROI was created using the “MT_exvivo.thresh” label. The visual ROI was created by merging 

the “V1_exvivo.thresh” and “V2_exvivo.thresh” labels.  

Once individual ROI decoding accuracies were obtained, accuracy rates were calculated 

for each subject using their confusion matrices. Using these individual accuracy rates, average 

decoding accuracy rates across all subjects for each ROI was calculated and submitted to one-

sample t-tests. 
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4.2.10 Conjunction Analysis 

To investigate if viseme activity targets phoneme specific neurons in the auditory cortex, 

we performed a conjunction analysis by overlaying regions from the MVPA decoding analysis 

that showed significant decoding accuracy for auditory-only stimuli with regions that showed 

significant decoding accuracy for visual-only stimuli. As an initial step of this analysis, we 

performed a volumetric voxel count to quantify the proportion of voxels that were significant in 

the decoding vs. univariate analyses. This would provide a coarse measure of how extensive 

phoneme/viseme information extends within active regions of the STG. To further understand 

the spatial decoding patterns, we performed a slice-wise analysis of decoding accuracies in the 

STG. For this analysis, we created a mask using voxels that had significant decoding accuracy in 

the auditory-only and visual-only conditions. Since a visual analysis of the slices showed 

significant overlap between the two conditions only in slices 172 to 189 (MNI x-coordinate), we 

utilized only these 9 slices in our analysis. In each of these slices, we calculate the average 

decoding accuracy from posterior to anterior (MNI y-coordinate) along the MNI z-axis. 

4.2.11 Multivariate Similarity Analysis 

In addition to presenting univariate analysis activations and decoding decoding 

accuracies for each of the stimulus types, we also report similarity measures from the contrast 

estimates across each pair of stimuli. For this analysis, we calculated the similarities of the beta 

estimates obtained from the contrast maps for each pairwise stimulus across all six stimuli pairs 

(AuditoryFA-Fixation, AuditoryKA-Fixation, AuditoryMA-Fixation, VisualFA-Fixation, 

VisualKA-Fixation, VisualMA-Fixation). For this, we begin by extracting the beta estimates 

from all the voxels in the left pSTG from the contrast maps generated through the procedure 

described in section 3.2.7 separately for each subject. We then calculated the pairwise 
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similarities for each of the six pairs of stimuli as the Spearman correlation estimate (r) between 

the beta estimates of their contrast maps in the left pSTG. To investigate the differences in 

representations between like-phoneme (AuditoryFA: VisualFA, AuditoryKA: VisualKA, 

AuditoryMA: VisualMA), and unlike-phoneme pairs of the auditory and visual stimuli, we 

performed a paired t-test between the diagonal elements of the lower left quadrant of the 

similarity matrix shown in Figure 34 representing like-phoneme pairs and its off-diagonal 

elements representing unlike-phoneme pairs (random effect = participant). The final similarity 

matrix is obtained as the mean of r across all subjects in each cell of the pairwise similarity 

matrix. 

4.3 Results 

4.3.1 Behavioral results 

The overall accuracy of behavioral responses in participants was 93.99% (n = 64, SD = 

3.15%), with a mean accuracy of 95.67% (n = 64, SD = 3.01%) in the auditory-only condition 

and a mean accuracy of 92.31% (n = 64, SD = 3.72%) in the visual-alone condition. As 

expected, the mean accuracy in the auditory-only condition was significantly higher than the 

visual alone condition; t(63) = 6.57, p < 0.0001, Cohen’s d = 0.96. None of the 64 participants 

performed below the pre-registered exclusion threshold (accuracy in either condition below 

75%).  

4.3.2 Imaging results overview 

The primary goal of this study was to test the hypothesis that visual speech provides 

phonemic information to auditory regions (the pSTG and pSTS). We first replicated prior 

observations that silent visual speech activates auditory areas using a whole brain univariate 
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analysis. Next, to examine whether viseme information is spatially encoded in auditory regions, 

we used whole brain MVPA decoding to identify regions at which individual phonemes and 

visemes could be reliably classified. To further measure the relative strength of phoneme and 

viseme representations, we used MVPA decoding within a priori set ROIs. Finally, to test 

whether visemes and phonemes produced shared representations within the STG, we used 

multivariate similarity analysis. 

4.3.3 Univariate contrast analysis 

For the univariate analysis, we utilized contrast estimates calculated through parametric t-

tests comparing our stimuli conditions of interest against a fixation period. Figures 28 and 29 

show fMRI-BOLD activations in the auditory-only and visual-alone conditions respectively. All 

the values are reported at a cluster correction threshold of 100 voxels with the individual p-

values corrected for multiple comparisons using family-wise error rate values of p < 0.001. From 

Figure 28, we see that in the auditory-only condition, contrast estimates between BOLD signals 

from phonemes and fixation revealed peak activations in the right pSTG (MNI: x=52, y=-12, 

z=6, t(63) = 15.25, p < 0.001) and left pSTG (MNI: x=-54, y=-18, z=4, t(63) = 15.03, p < 0.001). 

From Figure 29, we see that in the visual-alone condition, contrast estimate revealed peak 

activations in the right pSTG (MNI: x=52, y=-12, z=6, t(63) = 15.25, p < 0.001), right fusiform 

(MNI: x=42, y=-46, z=-18, t(63) = 12.43, p < 0.001), right occipital/v1 (MNI: x=20, y=-94, z=0, 

t(63) = 12.16, p < 0.001) , left occipital/v1 (MNI: x=-20, y=-98, z=4, t(63) = 12.32, p < 0.001), 

and the right pSTS (MNI: x=54, y=-38, z=10, t(63) = 11.38, p < 0.001). Table 7 shows the peak 

activations in each of the regions and their corresponding cluster-sizes along with the MNI 

coordinates with the maximum t-statistic. 
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Figure 28. Univariate analysis in the auditory condition. Univariate analysis comparing contrast estimates 
between phonemes in the auditory-only stimuli condition and the fixation period. All results are reported at a cluster 
correction threshold of 100 voxels with the individual p-values corrected for multiple comparisons using family-wise 
error rate values of p < 0.001. Peak t-values were seen in both right and left pSTG, apart from broad activity 
noticed bilaterally in the STG. 

 

 

Figure 29. Univariate analysis in the visual condition. Univariate analysis comparing contrast estimates between 
phonemes in the visual-only stimuli condition and the fixation period. All results are reported at a cluster correction 
threshold of 100 voxels with the individual p-values corrected for multiple comparisons using family-wise error rate 
values of p < 0.001. Peak t-values were seen in the right pSTG, right fusiform, right occipital/V1, left occipital/V1 
and the right pSTG and right pSTS.  
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Table 7. MNI coordinates and cluster sizes in the univariate analysis. MNI coordinates and cluster sizes of peak t-
values calculated in the univariate analysis for the auditory-only and visual-alone stimuli conditions. 

Condition 
Brain region Peak MNI 

coordinates 
X,Y,Z 

PFWE-corr 
 

t(63) KE 

 
 

Auditory 
 
 

 
Right pSTG 

52,-12,6 <0.001 15.25  
1962 66,-24,8 <0.001 14.67 

64,-32,10 <0.001 13.34 
 

Left pSTG 
-54,-18,4 <0.001 15.03  

1816 -64,-30,8 <0.001 12.69 
-50,-10,-2 <0.001 12.63 

 
 
 
 

Visual 
 
 

 
Right pSTG 

52,-12,6 <0.001 15.25  
1962 66,-24,8 <0.001 14.67 

64,-32,10 <0.001 13.34 
 

Right Fusiform 
42,-46,-18 <0.001 12.43 1520 
38,-56,-14 <0.001 11.50 

Right 
Occipital/V1 

20,-94,0 <0.001 12.16 1520 

Left 
Occipital/V1 

-20,-98,4 <0.001 12.32 237 

Right pSTG/s 54,-38,10 <0.001 11.38 355 
 

4.3.4 MVPA decoding analysis 

Decoding was conducted separately for each of the two conditions of interest (phonemes 

and visemes). Initially, whole-brain exploratory decoding was performed using an SVM-based 

decoder. The results of this analysis can be seen in Figures 30 and 31 for the auditory-only and 

visual-alone conditions respectively. For the auditory-only condition, peak decoding accuracy 

was seen in the right pSTG (MNI: x=-54, y=-16, z=2, t(63) = 6.44, p < 0.001) and the left pSTG 

(MNI: x=-60, y=-34, z=10, t(63) = 7.25, p < 0.001). For the visual-alone condition, peak 

decoding accuracy was seen in the right occipital/v1 (MNI: x=28, y=-94, z=4, t(63) = 6.56, p < 

0.001), right hMT+ (MNI: x=50, y=-70, z=8, t(63) = 4.95, p < 0.001), left occipital/v1 (MNI: x=-

16, y=-98, z=2, t(63) = 5.30, p < 0.001), left pSTG/s (MNI: x=-54, y=-36, z=12, t(63) = 5.10, p < 



 

 97 

0.001) and left MTG (MNI: x=-60, y=-16, z=-2, t(63) = 4.69, p < 0.001). All p-values are 

reported after thresholding at p < 0.001 with a cluster correction threshold of 100 voxels. Table 8 

shows the p-values for peak decoding accuracy in each of the regions and their corresponding 

cluster-sizes along with the MNI coordinates and their maximum t-statistic. 

 

Figure 30. MVPA analysis in the auditory condition. MVPA analysis representing decoding p-values for 
differentiability between different phonemes in the auditory-only stimuli condition. All results are reported at a 
cluster correction threshold of 100 voxels. Peak t-values were seen in both right and left pSTG, apart from broad 
activity noticed bilaterally in the STG. 

 

Figure 31. MVPA analysis in the visual condition. MVPA analysis representing decoding p-values for 
differentiability between different phonemes in the visual-alone stimuli condition. All results are reported at a 
cluster correction threshold of 100 voxels. Peak t-values were seen in right occipital/V1, left occipital/V1, right 
hMT+, left pSTG, left pSTS, and left MTG. 



 

 98 

 

Table 8. MNI coordinates and cluster sizes in the MVPA analysis MNI coordinates and cluster sizes of peak t-
values calculated in the MVPA analysis for the auditory-only and visual-alone stimuli conditions 

Condition 
Brain region Peak MNI 

coordinates 
X,Y,Z 

PFWE-corr 
 

t(63) KE 

 
 

Auditory 
 
 

 
Right pSTG 

54,-16,2 <0.0001 6.44  
1266 64,-18,0 <0.0001 5.24 

72,-20,-2 <0.0001 5.16 
 

Left pSTG 
-60,-34,10 <0.0001 7.25  

2410 -60,-18,0 <0.0001 7.13 
-66,-36,18 <0.0001 6.86 

 
 
 
 
 

Visual 
 
 

Right 
Occipital/V1 

28,-94,4 <0.0001 6.56 1112 
20,-80,-10 <0.0001 5.52 

Right hMT+ 50,-70,8 <0.0001 4.95 182 
Left 

Occipital/V1 
-16,-98,2 <0.0001 5.30  

795 -26,-88,4 <0.0001 5.02 
-16,-76,-12 <0.0001 4.86 

 
Left pSTG/s 

-54,-36,12 <0.0001 5.10  
475 -48,-36,22 <0.0001 4.71 

-50,-46,12 <0.0001 4.52 
Left MTG -60,-16,-2 <0.0001 4.69 115 

-54,-22,-6 <0.0001 4.34 
 

4.3.5 MVPA ROI Decoding analysis 

To validate our hypothesis about phonemic and visemic information being encoded in 

specific regions of interest, we performed a decoding analysis in the pre-registered ROIs. We 

observed that the auditory-only decoding accuracy was above chance in two of the four ROIs in 

the right hemisphere, including right pSTG (M = 41.32%, t(63) = -4.51, p < 0.0001) and right 

pSTS (M = 38.33%, t(63) = -2.52, p = 0.007). We also observed that the auditory-only condition 

showed significantly above chance decoding in three of the four ROIs in the left hemisphere; 

including left pSTG (M = 40.62%, t(63) = -3.68, p < 0.0001), left pSTS (M = 40.75%, t(63) = -

4.08, p < 0.0001), and left hMT+ (M = 37.65%, t(63) = -2.38, p = 0.01)  
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The visual-alone condition showed significant decoding accuracy in two of the right hemisphere 

ROIs: hMT+ (M = 39.63%, t(63) = -4.25, p < 0.0001) and occipital/v1 (M = 37.86, t(63) = -2.38, 

p = 0.01). The visual alone condition showed significant decoding accuracy in all four left 

hemisphere ROIs: left pSTG (M = 40%, t(63) = -3.26, p < 0.0001), left pSTS (M = 39.68%, t(63) 

= -3.23, p < 0.0001), left visual (M = 40.36%, t(63) = -4.16, p < 0.0001), and left hMT+ (M = 

36.77%, t(63) = -2.11, p = 0.01). The ROIs considered (overlaid on a MNI template) and their 

respective decoding accuracies are shown in Figure 32. 

 

 

Figure 32. ROIs and their decoding accuracies. The ROIs considered for investigating the MVPA decoding 
accuracies for the auditory-only and visual-alone stimuli conditions. Bilateral ROIs were considered for the pSTG 
(highlighted in red), banks of STS (highlighted in yellow), MT (highlighted in blue), and V1 (highlighted in maroon). 
All the ROIs showed statistically above chance decoding accuracies bilaterally. While the right pSTG and pSTS 
showed significantly higher decoding accuracies in the auditory-only stimuli condition compared to visual-only 
stimuli condition, the left V1, right V1 and right MT showed significantly higher decoding rates in the visual-only 
stimuli condition compared to the auditory-only stimuli condition. 
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4.3.6 Conjunction analysis 

The univariate analysis and decoding analysis individually revealed information about 

voxels that responded to phonemes and visemes, as well as voxels that had above-chance 

decoding accuracy for each of the stimuli conditions. To understand the distribution and overlap 

of the voxels that overlapped in each of the analysis, we performed a volumetric voxel count of 

the overlap between voxels in the two stimuli conditions. This analysis revealed that out of 

22032 voxels in the STG that responded significantly to auditory only stimuli in the univariate 

analysis, 15905 voxels (72.19%) had above chance accuracy in the decoding analysis. Similarly, 

out of 6221 voxels in the STG that responded significantly to visual only stimuli in the univariate 

analysis, 612 voxels (9.83%) had above chance accuracy in the decoding analysis. These results 

indicate that a high percentage of voxels that respond to phonemes in the STG also encode 

phonemic representations in the STG. Conversely, only a minority of voxels that respond to 

visemes in the STG also encode visemic representations in the STG.  

Table 9. Overlap between univariate and MVPA voxels. Number of voxels in the STG that were significant in the 
univariate analysis and their overlap with the voxels in the decoding analysis. 

Stimuli condition Satistically 
significant 
Univariate voxels in 
STG 

Decoding voxels that 
overlapped with 
univariate voxels in the 
STG 

Overlap 
percentage 

Auditory-only 22032 voxels  15905 72.19% 
Visual-only 6221 voxels 612 9.83% 

 

In the decoding only analysis, 17070 voxels in the STG had above chance decoding 

accuracy in the auditory-only condition. 2576 voxels in the STG had above chance decoding 

accuracy in the visual only condition. 2479 voxels in the STG had above chance decoding 

accuracy in both the auditory only and visual only conditions.  
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Table 10. Number of voxels that had above-chance decoding accuracy in the STG for phonemes and visemes. 

Decoding analysis in 
the STG 

Voxels with above-
chance accuracy 
for phonemes 

Voxels with above-
chance accuracy 
for visemes 

Voxels with above-
chance accuracy for 
both phonemes and 
visemes 

 17070 2576 2479 
 

The above conjunction analysis revealed that visemes targeted a unique population of 

neurons in the left pSTG/s. The results from this seen in Figure 33 show that viseme activity 

indeed targeted spatially unique neuronal populations in the STG that did not provide significant 

decoding accuracies to phoneme activity. These results support the visual evidence showing a 

unique population of neurons in the posterior regions of the left pSTG/s that encode viseme 

information and not phoneme information. 

 

Figure 33. Conjunction analysis. Slices showing voxels that had significant above chance decoding in the auditory-
only stimuli condition (highlighted in yellow), visual-only stimuli condition (highlighted in blue), and voxels that had 
significant above chance decoding in both the auditory-only and visual-only stimuli conditions (highlighted in cyan). 
We observe that visemes target population of neurons that did not encode phonemic information in regions of the 
pSTG and pSTS. 
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4.3.7 Multivariate similarity analysis 

While the decoding analyses provide information about which regions of the brain 

encode the identities of individual phonemes and visemes, it is not possible to directly 

investigate similarities between how these phonemes and visemes are represented in these 

regions. For example, an examination of the spatial and temporal (dis)similarities for phonemes 

vs visemes would aid in the interpretation of how visemic identities are transformed and encoded 

in the auditory regions. 

 

Figure 34. Multivariate similarity analysis showing the similarity representations in contrast estimates between 
individual phonemes and visemes in the left pSTG. 

Hence, to understand the similarity in representation between each of the phonemes and 

visemes in the left pSTG, we performed a multivariate similarity analysis. This analysis revealed 

that the similarity in representation of phonemes (upper left-quadrant in Figure 34, mean r = 

0.90) was significantly higher than the similarity in representation of visemes (lower right-

quadrant in Figure 34, mean r = 0.87), at t(63) = 3.26, p < 0.001. A t-test between the similarity 

measures of like-phoneme/viseme pairs (VisualFa:AuditoryFa+ VisualKa:AuditoryKa+ 
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VisualMa:AuditoryMa) and unlike-phoneme/viseme pairs (VisualFa:AuditoryKa + 

VisualFa:AuditoryMa + VisualKa:AuditoryFa + VisualKa:AuditoryMa + VisualMa:AuditoryFa 

+ VisualMa:AuditoryMa) revealed a significant difference between representations of like-

phoneme/viseme pairs (mean r = 0.72) and unlike-phoneme/viseme pairs (mean r = 0.69), at 

t(63) = 3.18, p = 0.001. This indicated that identities of phonemes and visemes have similar 

representations in the left pSTG.  

4.4 Discussion 

Several studies have shown that silent visual speech can activate neuronal populations in 

the primary auditory areas (Beauchamp et al., 2004, Beauchamp et al., 2010, Mesgarani & 

Chang., 2012, Gyol Yi et al., 2019, Karthik et al., 2021).  

However, what information is represented by this activation has remained an open 

question. Here we tested the hypothesis that some of this activity reflects the transfer of 

phonemic information from visual speech into auditory areas, potentially targeting corresponding 

phoneme neurons in the STG. 

This question is important because fMRI activity evoked by silent visual speech in 

auditory areas may reflect a variety of processes and information types, including motion timing 

information (McGrath & Summerfield, 1985), speech rate (Chandrasekaran et al., 2009), spectral 

information (Plass et al., 2020), general effects on attention or arousal (Schroeder et al., 2008), or 

as we sought to investigate, viseme-to-phoneme transformations (Karthik et al., 2021). It has also 

previously been observed that silent lip-reading activates the auditory cortices reflecting fast 

synthesis of the auditory stimulus (Bourguignon et al., 2020). In this study, we utilized an 

MVPA based information decoding approach and multivariate similarity analyses to study the 

informational content encoded in auditory areas during a silent lip-reading task. 
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Participants demonstrated high accuracy during the behavioral task, indicating that the 

auditory and visual stimuli used were suitable for testing in an fMRI environment. In a univariate 

analysis, we observed that visemes produced a distributed network of activation that included 

auditory, visual, and classical multisensory regions (pSTS). Followed by this, we performed 

whole-brain searchlight MVPA analyses to quantify where phonemic and visemeic information 

was encoded. Replicating past research in the auditory domain, we observed significant decoding 

of individual phonemes from the STG bilaterally. Consistent with our predictions, significant 

decoding of individual visemes was also observed from the STG, along with other canonical 

visual areas (V1/V2 and hMT+) and multisensory regions (pSTS). This result demonstrates that 

visual speech information is represented within the auditory system. ROI-based analyses 

revealed a similar pattern of results and highlighted that maximal viseme decoding was present 

in visual cortex at almost equal accuracy to that in the the STG and pSTS. 

The results obtained here indicate that visual speech indeed encodes phonemic 

information in the primary auditory areas including left pSTG/s and left MTG apart from the 

motion sensitive right hMT+ region. Moreover, we also noticed that though there was strong 

overlap between neuronal populations that encoded phoneme information and populations that 

encoded viseme information, there was a unique population of neurons in the pSTG/s area that 

encoded purely viseme information. This indicates that phonemic information in visual speech 

targets an independent set of neurons in regions that have conventionally been associated with 

multisensory integration of auditory and visual speech (Beauchamp et al., 2004a, Beauchamp et 

al., 2010, Karthik et al., 2021).  

The targeting of an independent set of neurons by visemes is interesting given that there 

are phonemes that could sound unique and can be differentiated easily in the auditory modality 
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(e.g., the words ‘pet’ and ‘bet’) with a corresponding viseme that cannot be differentiated 

without the underlying sound. Hence, it can be putatively hypothesized that audiovisual 

integration targets a unique population of neurons that have a probabilistic distribution with what 

kind of sensory modality they encode or respond to. This becomes more relevant when seen in 

relation to conditions where visual information can alter phonemic perception, such as in the 

McGurk effect (McGurk & McDonald, 1978). 

We also studied this hypothesis through a multivariate similarity analysis to investigate 

whether viseme spatial patterns overlap with phoneme spatial patterns. If they do, they would 

target the same neurons with similar information encoded for identical phoneme/visemes pairs 

(e.g., auditory /ba/ and visual /ba/). This analysis revealed that there was similar information 

encoded in the left pSTG, with like phoneme/viseme pairs eliciting significantly different 

activation levels compared to unlike phoneme/viseme pairs. This indicates that along with the 

presence of a unique informational hierarchy in the multisensory regions about the type of 

modality the neurons respond to (Karthik et al., 2021), there also exists a hierarchy of 

information encoding with individual population of neurons selectively responding to and 

encoding phonemic information about the speech content. 

These results provide strong support to complementary studies that show a strong 

entrainment of cortical activity in the auditory areas during visual speech (Bourguignon et al., 

2020). Our results also provide opposing evidence to previous studies that hypothesized that 

activations in auditory areas during a silent lip-reading task might reflect imagery information 

that is unrelated to the spoken speech (Bernstein and Liebenthal, 2014). This evidence is also 

strengthened by the fact that there exist unique neuronal populations that encode phonemic 

information about visual speech in the multisensory regions. This would provide directions for 
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future investigation where this evidence can be analyzed considering previous studies which 

indicate that phonemic information in visual speech is obtained from the visual areas (Hauswald 

et al., 2018). 

Taken together, these results suggest that during visual speech, phonemic information 

causes activation patterns in the audiovisual multisensory regions widely reported in literature. 

They also indicate that there exist visual-speech specific neuronal populations in these regions 

that exclusively encode information from visual speech, providing a framework for further 

investigation to implore into the nature of this dissociation. The absence of a statistically 

significant difference in decoding accuracy between phonemes and visemes in all the 

multisensory ROIs examined, indicate that these regions encode equally probable phonemic 

information from both the auditory and visual modalities. The validity of our results is 

strengthened by the fact that all the analysis were preregistered, and the sample size chosen 

through a power analysis. 
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 Summary, Limitations and Future Research 

 

 Face-to-face verbal communication is an important aspect of social behavior in humans. 

The visual component in audiovisual speech both facilitates and enhances auditory speech 

perception (Sumbly & Pollock., 1954, Grant & Seitz, 2000). However, it is unclear how visual 

cues contribute to these effects and what multisensory information they provide. In this 

dissertation, I investigated neural processes in auditory cortex that subserve the perceptual 

benefits of visual information during audiovisual speech perception. Across three studies, I used 

a multimodal fMRI-iEEG approach to investigate audiovisual speech processes and provided 

evidence for the multiple ways in which visual speech modulates and encodes information in the 

major auditory areas of the human brain.  

In Study 1 (Karthik et al., 2021), I showed that audiovisual speech integration elicits 

multiple distinct patterns of neural activity within the STG and adjacent cortices. These 

processes were shown to occur in multiple ways across different oscillatory bands in which the 

brain functions, and at different temporal scales across multiple regions of the auditory cortex. 

This study demonstrated that visual modulation of auditory speech processing is not a unitary 

phenomenon, but rather consists of multiple functionally distinct processes. Past studies 

investigating audiovisual speech integration have analyzed iEEG data using single-participant 

designs with fixed-effect statistics, making it hard to generalize the findings to the group-level 

and thus to the general population (Micheli et al., 2020; Besle et al., 2008; Plass et al., 2020). 

Even while using variants of group-level analysis such as linear mixed-effects modeling, 
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previous studies (Ozker et al., 2017; Ozker et al., 2018) have focused on HGp, which indexes 

local population firing rates, ignoring low-frequency oscillations which potentially reflect 

distinct audiovisual information. I addressed both shortcomings in this study by using linear 

mixed effects models to analyze iEEG signals at multiple frequency bands (theta band, beta band 

and high gamma power). This helped uncover multiple distinct processes that occur in visual 

modulation of auditory speech processing. Additionally, as a novel contribution, I also showed 

the effectiveness of utilizing a linear mixed effects model in the group-level analysis of iEEG 

signals obtained from a large cohort of subjects (n = 21).  

In Study 2, I built on results from Study 1 by investigating the underlying information 

encoded in the neural processes involved in visual modulation of audiovisual speech perception. 

Previous studies have shown strong entrainment of cortical activity in the auditory areas during 

visual speech (Bourguignon et al., 2020). Using machine-learning based approaches, I showed 

that visual speech not only modulates the neural processes in auditory cortex, but also encodes 

the identity of lipread visemes. This result is of particular interest since information encoding in 

auditory areas during visual speech is yet to be fully understood. Critically, this is the first study 

in literature to show that it is possible to identify phonemic information from neural activity in 

the auditory cortex during visual speech. I also showed that the phonemic representations of both 

auditory and visual speech in auditory cortex have a statistically significant correlation. This 

signifies that viseme information targets phoneme populations in the auditory cortex during 

audiovisual speech processing.  

In Study 3, I acquired fMRI from a large cohort of participants (n = 64) to replicate and 

extend my findings from Studies 1 and 2 in a non-patient population. The benefits of this study 

are twofold. It allowed me to 1) extend the results obtained from an epileptic sample to a larger 
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cohort of normative population, and 2) confirm the robust iEEG results with fMRI data, which 

has better generalizability and provides superior spatial resolution. Results from this study also 

provided novel evidence that there are distinct areas of the auditory cortex that are targeted 

selectively by information from visual speech input. The results from my study complement past 

studies in literature where there is mounting evidence indicating that phonemic content in visual 

speech can be transformed into categorical phonemic units in the multisensory regions of 

auditory cortex (Beauchamp et. al., 2010). While past studies focused on localizing the cortical 

regions involved in these transformations, I extend these findings by demonstrating the 

information content encoded in the neuronal populations of these cortical regions during 

auditory-visual speech processing.  

These results provide concrete evidence to the fact that viseme information is used to 

modulate or prime associated populations of phoneme-sensitive neurons in the auditory areas 

including the STG. This could in turn enable visemes to bias, modulate or influence auditory 

speech processing. As argued in literature before (Magnotti & Beauchamp., 2017), this would 

likely occur through a “winner-take-all” mechanism such that what is heard/perceived depends 

on the maximal representation of the specific population of neurons. This could also potentially 

explain the McGurk effect where the neuronal activity disagrees between the distribution of 

phonemes and visemes. This might lead to the creation of a spatial pattern that matches an 

unrelated third phoneme. Another interesting observation from these results is that visual 

information encoding was not observed in the high gamma power, reflecting potential 

subthreshold effects. This is important since large amounts of evoked action potentials in the 

auditory areas in response to visual speech could lead to auditory hallucinations (or synesthetic 

experiences).  
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Discussion 

 The results from these studies lead us to an understanding of the neural bases of 

audiovisual speech perception. More specifically, we understand that the auditory areas of the 

brain utilizes information from visual speech not only to alter the ways in which auditory speech 

processing is performed, but also encodes phonemic information about visual speech in these 

regions. We also showed that the auditory areas not only encode phonemic information about 

visual speech, but the representations of these information are highly similar to phonemic 

information from auditory speech. All of these evidences point to the fact that audiovisual speech 

processing actively utilizes information from both auditory and visual speech signals and these 

signals are transformed into similar type of representations while they are processed in the 

multisensory regions of the auditory cortex. This lends support to a converging idea in literature 

which posits that phonemic information about visual speech undergoes categorical 

transformations in the auditory areas (Mesgarani et al., 2014).  

Indeed, there could be conflicting information provided by visual speech signals during 

audiovisual speech processing. For instance, while auditory speech has unique phonemic 

representations for every sound processed in the auditory areas, visual information need not have 

a unique representation for every visual input. One such example could be the visemes /ba/ and 

/ma/ that have unique auditory or phonemic representations, but similar visemic representations. 

This could lead to a many-to-one mapping in the auditory regions. These type of ambiguous 

visual information would have us argue that while auditory speech perception can be greatly 

enhanced with additional information from visual speech, the effect of these enhancements in the 

context of natural speech is yet to be fully investigated.  
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Arguments could also be made about the effect of internal vocalization on the neural 

responses seen in the auditory areas during visual speech (such as during a silent lip reading 

task). But results from all three studies provide evidences contrary to this argument due to two 

related observations from the data. 1) In studies 1 and 2, we see that the ERPs evoked during a 

visual-only task follows a pattern where the activation arises immediately after the onset of 

stimuli. This would mean that the processes enabling the activation patterns do not follow the 

patterns that would be expected if they were a result of internal vocalization. These patterns also 

closely follow the ERP patterns of auditory-only signals. 2) In study 3, we notice that while the 

auditory-only and visual-only stimuli evoke activations in the auditory areas of the left STG, 

only the auditory-only stimuli evoke activations in the right STG. If the activations patterns were 

caused due to internal vocalization, we would expect similar activations in both the auditory-only 

and visual-only stimuli conditions.  

From these arguments we can safely provide support to indicate that the effect of visual 

speech in the auditory areas are in fact caused by the processing of these signals by neuronal 

populations in the auditory regions as opposed to internal vocalization.  

These results indicate a preliminary support to the idea that visual speech influences 

audiovisual speech processing in the auditory areas. But it should be noted that the data do not 

lead to an understanding of the ways in which natural speech perception occur in everyday 

settings since the experiments conducted in this dissertation rely on the use of non-naturalistic 

stimuli. But, we provide concrete evidence that could be used as a basis for further investigation 

to understand the multiple processes that could subserve the utilization of visual information for 

perceiving audiovisual speech in everyday settings and naturalistic face-to-face communication.  
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The understanding of the ways in which the neural bases of audiovisual speech 

perception happens can assist in developing better hearing-aid technologies that utilize 

information not only from purely auditory signals, but also from visual speech inputs, thereby 

providing greater fidelity in hearing experiences for individuals utilizing these aids.  

Limitations & Future research  

One potential limitation of the presented work is the use of iEEG to investigate 

audiovisual speech processing. While iEEG has multiple benefits, including superior temporal 

and spectral properties, the placement of electrodes is an invasive procedure leading to localized 

inflammation and changes in the brain’s physical shape and structure. This can make the 

generalization of results challenging. Brain inflammation makes finding physical 

correspondences in electrode location among multiple subjects a computationally complex 

problem. Furthermore, because electrode placement is dictated by clinical as opposed to research 

needs, placements vary widely among subjects. It is therefore imperative to find ways to address 

the issue of generalizability. The studies in this dissertation address this problem with the use of 

a novel group-level analysis technique and by registering locations of electrodes across multiple 

participants. My results and technique have also been successfully replicated internally within 

our group. However, the techniques proposed in my study have yet to be replicated by other 

groups. Hence, it will be imperative to encourage replication of my proposed technique by other 

research groups.  

Another limitation of iEEG research is that it only involves clinical populations; due to 

the technique’s invasive nature, participants are often those with epilepsy or tumors. The use of 

an atypical sample may limit the generalizability of results to a normative population.  
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A further limitation is the relatively small sample size of iEEG studies. While Study 1 had quite 

a large sample with 21 patients, Study 2’s sample only included 4 patients. Though iEEG data is 

difficult to obtain, and small sample sizes (n<10) are standard in the literature, this presents 

further concerns surrounding generalizability that need to be addressed by finding ways to 

incorporate data from multiple tasks and studies. Study 2 does so by integrating data from two 

types of tasks to expand the size of data available for individual participants. Apart from the 

small size of data in Study 1, another reason to use a different set of data for Study 2 was that the 

neuronal representations (as evidenced by the evoked potentials) of the various phonemes 

utilized were extremely similar to each other in Study 1. This made it difficult to build a 

classifier that was able to distinguish between the identities of the phonemes used. Hence, for 

Study 2, I utilized a dataset that had good differentiability between individual phonemes. 

However, this tactic presents limitations of its own, for instance: how do we expand the size of 

data if there are no comparable task sets that a participant has performed? This could be a 

direction for future research. While it might be difficult to increase the number of participants in 

an iEEG research study, we could explore ways to increase the sample size of data available for 

each participant by combining comparable task sets that a participant performs. 

 Across all the studies, no analysis was performed that related neural underpinnings with 

behavioral performance of the subjects. While this could be a potential shortcoming, the main 

reason for not investigating this relationship was that the performance of subjects across all the 

studies consistently remained at ceiling. Any analysis that was performed to investigate neural 

underpinnings with behavior that was at ceiling would result in underpowered results. One way 

to address this shortcoming could be to design follow-up experiments that provide performance 
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levels that capture a wide variance across individual subjects. This can also help in investigating 

if lower accuracies result in reduced activation levels at the individual subject level.  

An additional limitation of both the iEEG and fMRI results is the use of non-naturalistic 

stimuli. We utilized stimuli that were tailored for event-related neural responses. While these 

types of stimuli provide extremely robust neural responses that are easier to model, it can be hard 

to extend these results to a more naturalistic setting. One way to tackle this issue in future work 

is to utilize more naturalistic stimuli to replicate the results obtained from these studies. A 

naturalistic stimuli with auditory, visual and audiovisual stimuli would help map out the 

complete distribution of phoneme and viseme representations in the auditory areas. Since 

visemes have a many-to-one mapping with respect to phonemes (i.e., the same lip movements 

could produce different phonemes), a naturalistic stimuli with all three components of speech 

(audio, visual and audiovisual) could help understand where visual and auditory neuronal 

populations overlap and where differences in processing might arise.  

Though the dissertation touched upon details about information encoded by visual speech 

in the visual areas, it largely focused on the effects of visual speech in the auditory areas. But, to 

what extent are these effects in the auditory areas a result of visual speech modulating auditory 

speech as opposed to the auditory areas internally synthesizing internal speech? While Study 2 

provides a starting point by arguing that the modulations are not just internally synthesized 

speech, (as evidenced by the temporal decoding accuracy patterns in the auditory and visual 

speech conditions), the sample size (n=4) was small. Future research could include a broader 

investigation of these results using a larger sample. 
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Another future direction of this work could include developing multimodal data 

processing techniques to integrate data from iEEG and fMRI. While similar conclusions were 

derived from each of these two modalities, the rich set of data available from these 

complementary imaging techniques could help build a more concrete framework for 

understanding the neural processes involved in audiovisual speech perception. 
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