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ABSTRACT

The impact of instabilities on electron dynamics in a magnetic nozzle thruster

is investigated. The dispersion of a primarily azimuthal mode is measured experi-

mentally using time-resolved measurements of ion saturation current. Simultaneous

measurements from multiple probes are compared using a cross-correlation technique

to measure wave presence as a function of frequency and wave vector. This mode

is identified as a lower hybrid drift instability with finite Larmor radius effects and

field-aligned propagation. Quasi-linear theory is invoked to estimate the effective

collision frequency connected to the enhanced resistivity between electrons and ions

mediated by the wave. A corresponding Hall parameter is found and compared to the

same value predicted by Coulomb collisions. The wave-driven effect is found to be

orders of magnitude more significant, and is determined to induce a divergence loss

in the thruster efficiency. The effective, field-aligned collision frequency is then found

based on an assumption of continuity of the electrons and energy exchange between

the plasma potential and ion population. It is used in a Fourier law to estimate its

impact on inhibiting downstream heat flux. It is found to impede heat flux to an

extent several orders of magnitude higher than the classical prediction. A resulting

prediction for the polytropic index is developed based on a quasi-one dimensional

electron energy equation. The progression of the predicted heat flux is found to pre-

dict a polytropic index based on this theory comparable to what is measured. The

enhanced impedance to heat flux generated by the wave is determined to have a fur-

ther deleterious effect on thruster operation. Finally, high speed imagery is taken to

measure the presence of a coherent mode upstream. Two separate modes are found.

xviii



A global mode is observed at low flow rates and considered to be an ionization mode.

An azimuthal mode is observed ubiquitously that decreases in frequency as the flow

rate increases. This mode is determined to be an anti-drift mode driven unstable

by either parallel electric field and pressure gradient or field-aligned collisions. This

mode is discussed in terms of its potential impact on particle losses to the walls in

the ionization region. Primary findings are summarized, and a series of experiments

are outlined for future work.
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CHAPTER I

Introduction

1.1 Introduction

In this section, we first introduce magnetic nozzles and discuss their operating

principles and benefits in space propulsion. After discussing the magnetic nozzles

that have been or are currently under development, we introduce three open research

questions: The direction of azimuthal current and its relation to thrust generation,

cross-field momentum transport, and downstream heat transport. We then discuss

the potential influence that the onset of instabilities might have on each of these ques-

tions and possible modes that might be present. We then present previous research

investigating instabilities in these systems. Finally, we outline the major goals of the

current work, which involve identifying instabilities in a magnetic nozzle plasma and

investigating their significance in plume expansion.

1.2 Magnetic nozzle overview

In this section, we present an overview of the magnetic nozzle. We first explain

the fundamental physics of their operation and the mechanics of thermodynamic

expansion. We then discuss their advantages as applied to space propulsion. We

conclude this section by describing some of the many magnetic nozzles that have
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Figure 1.1: A typical magnetic nozzle geometry including the ionization and expan-
sion regions labeled. Typical electric field and pressure gradient illus-
trated with nominal azimuthal current.

been designed, tested, and operated in space.

1.2.1 Principle of Operation

Fundamentally, a magnetic nozzle consists of a diverging magnetic field applied to

a plasma to generate thrust (Fig. 1.1) by converting thermal energy into kinetic en-

ergy. These devices can typically be divided into two primary regions: the discharge

region and the expansion region. In the discharge region, a plasma is generated in

an applied magnetic field. Typically, these plasma sources are generated by radiofre-

quency [16] or microwave [120] antennas, but may implement a variety of ionization

mechanisms. As the plasma is generated, it may induce force on the thruster by direct

collisions with the back wall. This process is similar to that used by a conventional,

neutral gas nozzle and can be simply described by the pressure integrated over the
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back wall area,

Fw =
∑
s

psAw (1.1)

where ps is the pressure of species s and Aw is the area of the back wall. While this

interaction between the propellant and the wall continues downstream in a neutral gas

nozzle, magnetic nozzles typically do not have walls in the expansion region. However,

the expanding magnetic field enables a second interaction between the plasma and

the thruster. This interaction arises from a volumetric Lorentz force between the

applied magnet and the plasma, which is given by

Fj = j×B, (1.2)

where j is the current density and B is the magnetic field. A magnetic nozzle thus

also produces thrust by generating currents that interact with the magnetic field. The

currents in the plasma arise primarily from the cross-field gradients in plasma pres-

sure and potential. These gradients generate fluid forces on the plasma that induce

azimuthal motion. This azimuthal current in turn interacts with the applied field via

an axial force. As a result, the magnetic field must consist of a finite radial component

to generate thrust. Figure 1.1 outlines these mechanisms for thrust generation.

1.2.2 Advantages of magnetic nozzles

There are several key aspects to magnetic nozzle operation that make them strong

candidates for a variety of applications. First, their geometries imply a long potential

lifetime. The magnetic field geometry may be designed such that the magnetic field is

parallel to most thruster surfaces. Excepting the back wall, this feature implies that

the particle flux to the wall, and thus the erosion rate, is small compared to other

electric thrusters. As a result, magnetic nozzles are ideal for long-duration missions.
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Moreover, these thrusters have the potential to operate on a variety of readily-

available propellants inaccessible to other systems. The primary reason for this is the

lack of plasma-wetted surfaces. Contrary to Hall effect or gridded ion thrusters, which

rely on current-conducting surfaces to generate a plasma, the wave-based ionization

typically present in a magnetic nozzle does not require direct contact between an

electrode and the plasma to provide energy. As an example, one potential resource

for this operation is water. While ionizing water typically results in a high quantity

of oxygen that corrodes electrodes, wave-based magnetic nozzles may be designed to

have no such surfaces. Water is not only abundant on earth, but may further be used

in the future for missions requiring in-flight refueling. In conjunction with the lack

of surface erosion, mid-mission refueling may be a crucial enabler for long duration

missions.

Finally, when the applied magnetic field can be formed by permanent magnets,

magnetic nozzles only require a single power supply. This fact implies a low footprint

on a rocket and a simplicity of operation not universal among electric propulsion

devices. This simplicity implies a low footprint on a spacecraft, which enables their

use on smaller satellites.

Magnetic nozzles are thus ideal candidates for a wide array of space propulsion

missions. Currently, a wide array of these devices are under development. In the

following section, we provide an overview of several design.

1.2.3 Contemporary development

Contemporary interest in radiofrequency magnetic nozzles originates in the abil-

ity of similar sources to generate a high density plasma [27], which is theoretically

beneficial for thrust production. Modern examples of research devices include the

Chi Kung thruster [16], the Helicon Double Layer Thruster [74, 124], and the high

power helicon [125].

4



One further example of a radiofrequency thruster is the VASIMR VX-200SS [80],

currently being developed by Ad Astra. This thruster is being designed to operate

at a power level of 200 kW in steady state operation. It operates by generating a

plasma using a helicon source, then further heating the plasma using an ion cyclotron

resonance scheme. The resulting hot plasma is exhausted through an expanding field.

Ideally, VASIMR will be able to generate 5 N at 200 kW– however, the most recent

steady-state tests have been at 80 kW, which maintained operation for 88 hours [2].

On the other end of the power spectrum, several radiofrequency magnetic nozzles

have recently been developed and launched at low powers. The first is the Maxwell

Block 1 from Phase 4, which was first launched in January of 2021 [41]. The Block

1 has been measured in ground testing to produce a thrust of 7 mN at 500 W while

operating on xenon. Moreover, T4i recently launched Regulus, which is reported to

operate at a nominal 50 W at a specific impulse of 550 s and .55 mN thrust. Moreover,

this thruster fits into 1.5U of a cubesat. These thrusters prove the applicability of

magnetic nozzles to small satellite propulsion.

However, despite their contemporary implementation in space systems, radiofre-

quency thrusters typically operate at relatively low efficiencies. 100 W class thrusters

generally maintain < 10% total efficiency [28, 101, 25], and research is ongoing to

improve this value [109]. One potential reason for this low value is the typically

low electron temperatures (. 10 eV) present in these plasmas [69]. While radiofre-

quency antennas can produce high density plasmas, the electrothermal nature of these

thrusters implies that acceleration depends on the thermal energy [69]. A potential

way to improve magnetic nozzles over this design thus may be to increase the electron

temperature.

One possible mechanism for increasing the electron temperature is implementa-

tion of electron cyclotron resonance (ECR) sources to generate plasmas for magnetic

nozzles. These plasma sources have been used for over 50 years [66, 88] in expanding
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plasmas. ECR sources apply an electric field that oscillates with the electron gyrofre-

quency. In applying such a resonant field, the antenna is able to deposit energy into

an individual electron continuously as it orbits, drastically increasing its temperature.

Modern ECR thrusters are able to achieve electron temperatures over 30 eV [31]. Re-

cently, interest in this type of thruster has increased significantly, largely driven by

progress in development of MINOTOR at ONERA. This thruster applies microwave

power to a copper antenna mounted concentrically with the thruster discharge region.

It typically runs on xenon propellant, which it ionizes by resonant electron heating at

a magnetic field strength of 865 Gauss. Their most recent published results indicate

that they are able to operate the thruster at an operating efficiency of 16% at a 30

W condition [93], although a recent presentation claims up to 50%, a value which has

historically only been found in kW-class devices. Given the promising recent results

in ECR plasma development, we choose this technology for our investigation into

magnetic nozzle physics.

While development of thrusters based on these geometries have progressed signif-

icantly, the physics of their operation is an area of ongoing research. The interaction

of the plasma with the applied field proves complex, and decades of research have

gone into attempting to understand it. In the following sections, we elaborate on two

of these: cross-field transport and field-aligned heat conduction.

1.3 Open research topics

Due to their wide potential application in space propulsion, magnetic nozzles are

the subject of extensive, ongoing research. Three research areas of particular note to

the current work are thrust generation, cross-field transport, and heat conduction.

6



1.3.1 Thrust generation

We have previously shown that magnetic nozzles generate thrust at least in part

by downstream interactions between an applied magnetic field and azimuthal cur-

rents. However, the direction and magnitude of these currents are not completely

understood. Given Eqn. 1.2, if the net current in the plume changes sign, the im-

parted force will invert, and the plasma will be pulled back towards the thruster. An

understanding of these currents is vital to predicting how the thruster will perform.

In this case, j is predominantly determined by the cross-field gradients in plasma

pressure and electric field. The effective particle velocity induced from these gradients

can be given by [26]

uθ,s = −∇ps ×B

qsnsB2
+

E×B

B2
, (1.3)

where ps is the pressure, qs is the charge, and E is the electric field. A general

understanding of the impact of the these drifts can be found by looking at the direction

of the resulting current. We may then define the thrust in terms of this quantity by

integrating the Lorentz force term throughout the entire volume of the nozzle,

T =

∫ ∑
s

qsnsuθ,sBrdV. (1.4)

We thus find that the magnitude of the thrust directly depends on the direction of

the azimuthal current.

Alternatively, it is common to consider acceleration in these devices via a con-

servation of the electron magnetic moment, µ =
mev2e,⊥

2B
[11]. In this paradigm, the

conservation of this quantity through an expanding field results in a conversion of the

perpendicular velocity into parallel velocity through an equivalent conservation of ki-

netic energy KE = me
2

(
v2
e,⊥ + v2

e,‖

)
. This field-aligned acceleration then induces the
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ambipolar electric field that accelerates the ions. While within a different framework,

this description nonetheless produces an equivalent physical mechanism for magnetic

nozzle acceleration, since Te ∝ v2
e,⊥.

Given the direct impact of volumetric azimuthal currents in the plume, extensive

research has been done in theory, simulation, and experiment to determine their mag-

nitudes and impact on thruster performance [114, 45, 112, 40, 113]. Indeed, a common

experimental method for determining the currents in the plume includes measuring

the induced magnetic field using B-dot probes or diamagnetic pickup coils [94]. These

experiments directly measure the plasma-induced magnetic field by integrating the

signal on these probes during thruster shutdown. After having a map of this field,

applying Ampere’s law ∇B = µ0j with the boundary condition that jθ = 0 on center-

line provides a map of the total plasma current. Roberson performed the first such

experiment, which identified a uniformly diamagnetic plume [96], indicating that the

azimuthal currents were indeed thrust-producing. This informed modeling work by

Ahedo and Merino, who applied the method of characteristics to determine plasma

evolution through the plume [3]. They predicted that the direction of electron cur-

rent depended solely on the upstream conditions, i.e. the profile of plasma potential

and electron pressure generated at the source. However, further experiment revealed

that this may not be the cases. Takahashi et al. performed a similar experiment

as Roberson on a different plasma source and identified a mode transition— while

the electrons maintained a diamagnetic drift upstream, they changed direction down-

stream to the paramagnetic direction [110]. The results by Takahashi et al. implied

that predicting the drift direction and thrust production may be more complicated

than initially believed.

One possible reason for this discrepancy is the simplifying assumptions that were

made in this modeling work. As is common for laboratory plasma modeling, this

work assumed a lack of resistivity or kinetic effects. However, it is now known that
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the reality is not as straightforward, as the presence of collisions or kinetic effects will

affect the net currents [6, 89]. Indeed, more modern research into these devices has

found that kinetic effects are likely present and may dominate the expansion dynamics

[95, 86, 127]. However, the details of how this happens is not yet clear, and may

vary between devices. For instance, research involving double layer thrusters often

discusses the possibility of a high energy electron tail [1]; however, others observe the

opposite, where there is a surprising dearth of high energy electrons [126]. Regardless

of the details behind this potential discrepancy between simulation and experiment,

the literature is conclusive that these plasmas remain not understood, and the precise

mechanisms behind the direction and magnitude of the azimuthal currents remain

unknown.

While the currents in the azimuthal direction determine the thrust, cross-field

momentum flux in the r − z plane also impacts thruster performance. In the next

section, we explain this process and several theories as to how it might occur.

1.3.2 Cross-field momentum transport

The question of cross-field transport is a crucial area of research for magnetic

nozzle development. This concept is often framed in terms of detachment. Since

a magnetic nozzle exhibits an inherently closed field geometry, every field line that

exits the plasma source will ultimately return to it. In the ideal, highly-magnetized

case, a charged particle will tightly orbit a magnetic field and follow it as it bends

back towards the thruster. Without a mechanism for inward cross-field transport, the

plasma will follow the field back to the thruster and negate any thrust generation.

While this question is of vital importance for both fully- and partially-magnetized

systems, we will focus our analysis here on the partially-magnetized systems.

Outward cross-field transport can further impact thrust generation. As the plasma

diverges faster than the magnetic field, more plasma is likely to impact the thruster
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Figure 1.2: Magnetic nozzle with ion and electron streamlines representing convergent
and divergent transport schemes.

(and any spacecraft equipment in the area) and, assuming an eventual inward trans-

port mechanism, increase divergence losses. This situation may even occur in the

partially magnetized case. As the electrons diverge, they will induce a radial am-

bipolar field that will further diverge the ions as well. Figure 1.2 presents potential

electron and ion streamlines for both convergent and divergent detachment scenarios.

Previous mechanisms for cross-field transport rely on relaxing several assumptions

in the momentum equation [4],

msns
∂u

∂t
+msns(u · ∇)u = qsns [E + u× (B0 + B1)]−∇ps + Rs. (1.5)

Here, ms is the mass, u is the fluid velocity, t is time, and Rs is the resistive force.

The left hand side represents the inertia of the species, and the three terms on the left

indicate the Lorentz force, the pressure force, and the total resistivity, respectively.

The Lorentz force term includes both the applied field B0 and the plasma-induced

field B1.

Three assumptions are often made in analyzing this equation. First, the left hand
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Figure 1.3: Illustration of the approximate conversion between cylindrical and slab
geometry.

side is often set to zero for the electrons. This assumption is based on the fact that

the electron mass is far less than the ion mass. In taking the limit of me → 0, Eqn.

1.5 implies that the electrons will orbit magnetic field lines with a gyration radius (or

“Larmor radius”) of zero. The second assumption is that the induced magnetic field

is zero, such that B0 + B1 ≈ B0. Finally, the zero resistivity assumption removes

the third term from the right hand side and assumes that streaming electrons do

not interact with background ions or neutrals. Previous theories regarding cross-field

transport rely on relaxing one of these assumptions.

The concept that resistivity can induce a cross-field transport was first put forward

by Moses [89]. While he used a single-fluid model without a cross-field pressure

gradient, the idea is easily applicable to the single species momentum equations. We

can arrive at these equations by assuming ions and any neutrals to be motionless,

which allows us to take the resistivity term as Re = −meneνeue. We can further take

a slab geometry, implying symmetry in the y direction, gradients in the x direction,

and a constant magnetic field in the z direction. This geometry is illustrated in Fig.

1.3 The resulting momentum equations for massless electrons in the x and y directions

are
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0 = Ωe(vE + vD) + ue,y − ue,x (1.6)

0 = Ωeue,x + ue,y (1.7)

where we have defined the Hall parameter Ωe to be the ratio of the electron

cyclotron frequency to the collision frequency, Ωe = eBz
meν

. These may be readily

solved for the x and y velocities, yielding

ue,x =
Ωe

1 + Ωe

(vE + vD) (1.8)

ue,y =
Ω2
e

1 + Ω2
e

(vE + vD) . (1.9)

Fundamentally these relations imply that a finite collisionality slows down the elec-

tron drift and induces cross-field transport. Moreover, the direction of this transport

depends entirely on the net direction of the drift motion. If we identify the cartesian

coorinates (x, y, z) with the cylindrical equivalent (r, θ, z), we can then determine the

direction of transport. Recalling that the pressure gradient is generally inwards and

that the diamagnetic drift should be dominant for thrust production, we find that

the total azimuthal velocity is in the +ŷ = +θ̂ direction. This fact in turn implies

that transport in the x̂ = r̂ direction is also positive, meaning that electrons cross

field lines outwardly. Thus, full inward detachment of electrons from this mechanism

requires a downstream paramagnetic population.

A second theory relaxes the assumption that the induced magnetic field is zero and

instead allows the azimuthal currents to influence the total field [9, 10]. In this theory,

the plasma induces a magnetic field that stretches the applied field axially. In doing

so, the plasma is able to adhere to the field lines until the field becomes too small
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Figure 1.4: Potential influence of diamagnetic (above) and paramagnetic (below) cur-
rents on total background magnetic field.

to affect the plasma and it can be considered detached. This idea was put forward

in the context of high power magnetic nozzles with attached ions and was discussed

in terms of a single fluid theory. However, we may similarly discuss its implications

assuming a stagnant ion population and an electron fluid. Indeed, applying a simple

right-hand rule shows that the induced magnetic field from a diamagnetic drift will

counter the applied field, expanding the geometry and further diverging the plasma.

A final theory relaxes the assumption of negligible electron inertia. Ahedo and

Merino established this theory by solving the electron fluid equations in cylindrical

coordinates [6]. Incorporating finite Larmor radius effects provided a term that de-

pends on the direction of azimuthal electron drift. They ultimately found that the

extent to which electron streamlines separated from the applied field lines scaled with

meue,θ. While this term is often neglected in similar analyses due to the vanishing

mass of the electrons, they found that the magnitude of azimuthal velocity made it

comparable to other terms in the fluid equations. Moreover, they found that the di-

rection of transport depended on the sign of ue,θ– namely, a diamagnetic drift induced

outward transport while a paramagnetic drift induced inward transport.
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With all of these theories, a paramagnetic drift is required for inward transport.

While a majority diamagnetic current is desirable for thrust generation, a mode tran-

sition such as that observed by Takahashi et al. [110] may be present, yielding a

paramagnetic current and inward transport downstream. However, it is likely that

not all plasmas depend on this transition, such as the fully magnetic plume measured

by Roberson [96]. It is thus prudent to consider all of these mechanisms in terms

of thruster divergence loss. However, doing so leaves open the question of eventual,

inward electron detachment. One further possibility is the relatively simple concept

that the electrons fully demagnetize downstream. As the magnetic field weakens, it

is possible that the electron Larmor radius becomes comparable to the magnetic field

gradient length ∇ ln(B)−1. The theories we have discussed so far do not incorpo-

rate this limit, but this lack of magnetization likely implies that the concepts of drift

and transport direction fail. As the applied field continues to weaken downstream,

the electrons will progress as a balance of electric field induced by charge separation

with the ions and their own pressure gradient. This process would appear similar

to traditional ambipolar diffusion. The concept of electron demagnetization in this

way has not been thoroughly studied, but it has been theorized previously as a final

scenario to detach electrons if no other mechanism succeeds [4]. This concept is not

the subject of the current work, but does provide an explanation for how electrons

may detach from field lines and allow magnetic nozzles to generate thrust.

1.3.3 Heat conduction

While cross-field transport mainly influences divergence losses, it does not de-

termine the total amount of energy delivered to the ions. Electron-driven magnetic

nozzles deposit energy first into the electrons, which then transfer energy into the

ions. We can understand this process with the zero-inertia, field-aligned electron
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Figure 1.5: Full electron demagnetization by large Larmor radius.

momentum equation neglecting collisions:

0 = −eneE‖ +
∂(neTe)

∂ ‖
. (1.10)

Here we find that the electric field forms as the pressure decreases. The corresponding

ion momentum equation is

∂u2
i,‖

∂ ‖
= nieE‖ =

∂(neTe)

∂ ‖
(1.11)

implying that the ions accelerate along field lines directly at the expense of the elec-

tron thermal energy. From this simple analysis, we see that the thermodynamics

governing the electron expansion is thus vital to predicting ion acceleration. Despite

the connection between electron thermodynamics and ion acceleration, however, in

many cases the thermodynamics governing this expansion remains poorly understood.

To facilitate modeling modeling the thermodynamics of these systems, it is com-
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mon to adopt a polytropic equation of state,

Te

nγ−1
e

= const. (1.12)

Here, γ is referred to as the polytropic index. The justification for this assumption

typically comes from the two physical limits that γ may maintain. When γ = 1,

electrons are mobile enough to smooth out any temperature gradients, and Eqn. 1.12

reduces to the isothermal case of Te = const. The other limit arises in the so-called

adiabatic limit, where there is no heat flux in the system. In this case, γ takes a

value based on the number of degrees of freedom N of the system, γ = N+2
N

. In a

three-dimensional system, this limit corresponds to γ = 5/3. While assuming that γ

is constant simplifies the analysis, it does not reduce the number of free variables, as

we need a further closure scheme to predict the value of γ.

One such closure may lie in the heat flux. To connect heat flux to the polytropic

index and the total ion acceleration, we may follow the process explained in Ref. [84].

We begin by using a polytropic assumption Eqn. 1.12 to solve for ne in Eqn. 1.10,

which gives

γ

γ − 1

∂Te
∂ ‖

= eE‖. (1.13)

We may integrate this relation from the most upstream condition (subscript 0)

to a downstream condition (subscript f), assuming full expansion and full cooling of

the electrons, to give

γ

γ − 1
Te,0 = ∆φ (1.14)

where ∆φ is the total potential drop during the expansion. We may then consider the
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total downstream energy flux as a function of axial position by incorporating inertial

ion flux, electron convection, and electron heat flux Qe,

P = ṅ

(
miu

2
i

2
+

γ

γ − 1
Te,0

)
+Qe (1.15)

where ṅ is the total particle flow rate, which must be constant along the expansion

by conservation of mass. By conservation of energy, the upstream power flux must

be equal to the downstream value, where Te = Qe = 0. Equating these two limits, we

find that the initial heat flux is

Qe,0 =
3

2
ṅiTe,0

(
5/3− γ
γ − 1

)
. (1.16)

Thus, if γ takes a non-adiabatic value, the heat flux must be finite. Moreover, a

fully isothermal plasma is not possible– such a scenario would imply infinite heat flux

downstream.

In practice, the measured value of γ from simulation and experiment for expand-

ing electrons does not correspond to either of the limiting cases, rather taking an

intermediate value [100, 116, 28, 75, 63, 116, 64, 83]. This suggests that the actual

electron heat flux along the field lines in these systems is finite, though how this

term should scale remains an open question. Given the importance of the expansion

thermodynamics to modeling these systems, there is a need to better understand the

the physical nature of this flux.

To this end, there have previously been several studies on the factors that govern

the parallel electron heat flux–particularly in low temperature expanding plasmas

[126, 7, 75, 100, 115, 118]. These previous works have been couched in terms of

trying to explain the measured effective value of polytropic index, γ. One particular

promising result is the work of Little and Choueiri who hypothesized that the heat

flux is governed by a classical Fourier law, Qe = κ∇Te, whereκ = α neTe
νeme

is the thermal
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conductivity. Here α is a constant of order unity and νe is the total electron collision

frequency [75]. To evaluate this theory, they measured background plasma properties

along the centerline of their radiofrequency magnetic nozzle to directly determine the

polytropic index of the expansion. This work showed that assuming this form for

heat flux, they were able to find marked agreement between the measured polytropic

index in their experimental magnetic nozzle. However, as was noted in this work,

while the scaling of the heat flux term was correct, the actual magnitude of the heat

flux was unphysical. Indeed, the low level of collisions in their device led to heat flux

downstream that was an order of magnitude greater than the total power actually

used to create the discharge. This led the authors to conclude that there may be a

source of anomalous electron collisions in the plasma in the direction of the expanding

magnetic field, impeding the Fourier-driven heat flux. The source of this anomalous

transport, however, remained an open question. Commonly in plasma physics, such

an anomalous collision frequency may be explained by the presence of instabilities.

1.4 The role of instabilities in impacting thruster operation

Instabilities are nearly ubiquitous in plasma physics. They arise in fusion, space,

and laboratory plasmas alike, although they take a wide variety of forms. In plasma-

based propulsion, interest is continually growing on the detailed role that various

modes take in determining plasma dynamics. Perhaps the most prominent example

in contemporary propulsion research is investigations into unstable modes in the hall

effect thruster. These devices apply a crossed electric and magnetic field to confine

electrons and accelerate ions [59, 50]. However, experiments reveal a cross-field trans-

port that is often orders of magnitude greater than the classical prediction. While

several theories have been proposed to explain this phenomenon, one in particular

that is gaining traction is the role of an electron drift instability [38, 23, 18, 70, 117].

These modes grow at the expense of the electron drift, acting as an effective resistivity
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that allows electrons to cross field lines. However, the exact nature of these waves

depend strongly on the properties of the plasma. In this section, we will discuss three

potential candidates that may be present in a magnetic nozzle— anti-drift, ionization,

and lower hybrid drift moes.

1.4.1 Potential instabilities present in a magnetic nozzle

Anti-drift modes are fluid instabilities that derive energy from fluid motion. In

laboratory plasmas where ions are unlikely to be magnetized, these waves are often

connected to electron cross-field drifts. Typically, the dispersion relation is simplified

by the neglect of electron inertia, but it may include of any combination of collisions,

electric field, pressure, and propagation both perpendicular to and parallel to the

applied field [98, 102, 55, 43]. As such, the details of the dispersion relations may

vary. Fundamentally, however, the propagation frequency tends to scale inversely

with the drift velocity (hence “anti”-drift).

These modes have been understood mathematically for decades [98, 43] and have

been observed in a variety of plasmas [42, 104]. Specifically, research into various

laboratory plasmas frequently discusses these modes. The hollow cathode is one such

system where these waves have been identified [60, 62, 53]. These devices gener-

ate force a current through a plasma through an electrostatic field, thus generating

a strong electron current. In propulsion, hollow cathodes are often used in Hall

thrusters, where they are immersed in an axially expanding magnetic field akin to

that of a magnetic nozzle. In these systems, the wave is driven unstable by col-

lisions in the presence of a diamagnetic electron current and propagates primarily

azimuthally, but maintains a slight character along field lines. Moreover, when the

cathode is mounted on a Hall thruster, the presence of these modes has been cor-

related to oscillations in the discharge current [62, 53]. Namely, both high speed

imagery and probe measurements have identified modes between 50 and 90 kHz in
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these devices. These frequency patterns were matched with those measured in the

discharge current, indicating that they are at least correlated with electron transport

across field lines. This link implies that the wave likely enhances cross-field transport

in hollow cathodes and further provides motivation for their investigation in magnetic

nozzles.

Another candidate for wave presence in a magnetic nozzle is the so-called ioniza-

tion mode. These waves can typically be understood by a so-called “predator-prey”

model. In this paradigm, a large presence of background neutrals (“prey”) increases

ionization (“predator”) to start the instability. As ionization proceeds, neutrals are

depleted, which then halts ionization. Finally, a new population of neutrals enters

the system to restart the process. These waves tend to be coherent, low frequency

oscillations on the order of ≈ 10 kHz.

Similar to anti-drift modes, ionization modes have also been observed in hollow

cathodes [48], although they tend to arise when there is no applied field. In the

previous work, a full theoretical model was developed and electrostatic probe mea-

surements were taken, indicating the presence of a strong, low frequency mode that

balanced an ionization process with diffusion through the plume. In cathodes, the

presence of this wave drives the so-called plume mode operation and is linked to the

onset of the axially-propagating ion acoustic turbulence. The resulting operation is

known to enhance erosion of the cathode face. However, in the presence of a mag-

netic field, these modes are suppressed– an anti-drift mode is more likely to be present

instead.

The lower hybrid drift instability (LHDI) is driven unstable in the presence of a

strong diamagnetic drift in a partially magnetized system [68]. It is primarily observed

in plasmas undergoing magnetic reconnection [12]— a process involving the apparent

breaking apart and recombining of magnetic fields that induces significant plasma

acceleration. In these systems, the lower hybrid mode is often found at the periphery
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of the system, where it enhances plasma transport into the central, reconnecting

region and increases the resulting reconnection rate. The naming convention comes

from the maximized growth rate of the wave at the lower hybrid frequency, typically

defined in these contexts as ωLH =
√

Ωc,eΩc,i, where Ωc,s = qsB
ms

is the gyrofrequency

of species s. Furthermore, it is most unstable at a low plasma β, i.e. when the

magnetic field energy is much larger than the plasma pressure. The notable presence

of these waves when strong density gradients are present in low β plasmas make the

LHDI a prime candidate for an instability present in a magnetic nozzle.

1.4.2 The influence of instabilities on plasma dynamics

The presence of instabilities may impact all three areas of thruster operation dis-

cussed in Sct. 1.3. As instabilities grow, they derive their energy from the surround-

ing plasma. In the case of drift-driven modes such as anti-drift or lower hybrid drift

modes, this energy comes from the azimuthal electron drift. This interaction slows

the electrons, which in turn may decrease the current that determines the thrust. In

the case of a predominantly diamagnetic plume current, this phenomenon may be

harmful to thrust generation.

Moreover, the same energy loss from the electron current may be modeled as an

effective resistivity. Similar to the theory of cross-field transport by classical collisions,

the onset of a drift-driven instability may induce electron cross-field transport. This

effect will be tied to the direction of drift– in the case of a diamagnetic current, the

electrons will be forced outwards, inducing a radial electric field that will accelerate

the ions in the same direction and induce a divergence loss. Moreover, a diamagnetic

drift-driven mode in the discharge region will further force particles towards the walls.

Particles impacting the walls are most likely to recombine into a neutral particle,

which will require reionization before begin accelerated by the electric field. If a

significant number of particles recombine at the walls, the energy that was expended
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ionizing them will be lost, and thruster efficiency will suffer.

In the opposite sense, a paramagnetic current will induce inward transport. In

this situation, the beam will be collimated. While this may appear to be a more

ideal situation, its benefits are countered by the fact that the paramagnetic current

inherently negates thrust by inducing an attractive force between the plume and the

applied magnetic field.

Finally, the presence of waves may impact heat transport as well. Similar to how

the effective drag induces a resistivity along field lines, waves propagating along the

magnetic fields may impede heat flux [20]. Again, this effect would harm acceleration.

As we discussed in Sct. 1.3.3, decreasing the downstream heat flux will restrict

the total energy available to accelerate the ions, thus reducing the total momentum

transport and thrust generation.

Given the potential significance of instabilities on the operation of magnetic noz-

zles, there has been prior investigations into their presence and possible effects.

1.4.3 Previous work investigating instabilities in magnetic nozzles

Anti-drift modes have also been observed in radiofrequency plasma sources. Work

by Light et al. [73] detected their presence in a helicon discharge and linked them

to enhanced plasma loss to the walls. Their findings showed that, contrary to what

is typically assumed, the growth of this mode implied an eventual loss of plasma

confinement at higher field strengths. While this work showed the onset of these

modes in the source region, it is likely that such a plasma expanding into a nozzle

may maintain it as well. Thus, given the link between anti-drift modes and cross-field

transport and their identification in similar laboratory plasmas, we posit that they

may be present and impact transport in magnetic nozzles as well.

Finally, previous work has analyzed the potential presence of such a mode in a

magnetic nozzle [1]. This latter work developed a theory based on the existence of a
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population of electrons generated downstream and flowing upstream up the plasma

potential gradient. In this paradigm, such a population was required to drive the mode

unstable. However, further measurements of the electron energy distribution function

on the same device revealed that no such population was necessarily present [111].

Nevertheless, this prior work involved a source that maintained different background

plasma properties than the one we are considering here, and the possibility remains

that a different ionization scheme may provide an environment in which an ionization

mode may grow.

With these observations taken together, it is indeed possible that an ionization

mode is present in a magnetic nozzle. It likely does not universally take the same

characteristic as that presented by Aanesland et al. [1], but it is possible that one

more akin to the theory presented by Georgin may be present in a magnetic nozzle.

Chapter VI elaborates on this possibility.

In 2015, Olsen et al. developed an experiment to detect the presence of a lower

hybrid drift instability in the VX-200, a 100 kW class magnetic nozzle that magnetizes

both ions and electrons [92]. This device implements a helicon ionization scheme and

ion cyclotron heating to further heat the plasma, which is only possible at high (& 1

T) magnetic fields. They observed the onset of electrostatic turbulence downstream

and theorized that it may be either a modified two stream or lower hybrid instability

[91, 49]. They indeed observed an oscillating electric field in the plume and linked

it to a zone where the ions undertook ballistic trajectories, which they determined

as the detachment point. This work provided a vital first experimental investigation

into the relation between cross-field transport and the onset of instabilities.

However, the work on the VX-200 did not directly observe the dispersion of this

mode. They further did not implement the theoretical dispersion in a cross-field

transport estimate, nor did they extend their observations to the lower power devices

used in space today. Given their observation of an oscillation and the potential link
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to cross-field transport coupled to the fact that instabilities are known to induce

transport in similar devices, this work further investigates the detailed roles of these

modes on cross-field transport.

1.5 Primary objectives of the current research

Now that we have established the magnetic nozzle in the context of contemporary

space propulsion development and research questions, we are prepared to introduce

the purpose of the present work. In the rest of this thesis, we aim to answer four

primary questions. First, what modes are present in the plume a partially magnetized

magnetic nozzle? Second, what role do these waves play in enhancing cross-field

electron transport in the plume? Third, how do these modes influence downstream

heat transport? Fourth, what modes may be present in the discharge region, and how

might they impact thruster performance? Throughout this work, we will attempt to

answer these four questions from a theoretical and experimental standpoint.

1.6 Organization of the present work

The rest of this thesis is organized in the following way. We begin by further

developing the theory to justify the hypothesis that instabilities impact cross-field

transport and heat conduction in Chap. II. We next explain the experimental meth-

ods used in this work to detect and analyze waves in a magnetic nozzle in Chap. III.

Chapter IV discusses our observations in the context of electron cross-field transport,

and Chap. V presents their possible impact on heat conduction. We analyze the

presence of a low-frequency mode that is a generalization of an anti-drift instability

and an ionization wave in Chap. VI. Finally, we summarize our findings and present

possibilities for future work in Chap. VII.
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1.7 Conclusion

In this section, we have introduced the fundamental concepts upon which we

will build this thesis. We began by introducing the idea of a magnetic nozzle and

discussed their thrust generation mechanisms. We outlined their significance in the

field of electric propulsion and outined their primary strengths as propulsion devices.

We introduced the problems of cross-field transport and heat conduction in these

plasmas and described contemporary understanding of the physics that may describe

them. We then introduced the concept that the presence of instabilities may influence

both of these questions and elaborated on the three modes that we will be discussing

in this work- anti-drift modes, ionization modes, and the lower hybrid drift instability.
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CHAPTER II

Theory

2.1 Introduction

In this chapter, we establish the fundamental theory from which we determine

the impact of waves on macroscopic plasma properties. We begin by describing the

fundamentals of continuum mechanics based on a kinetic description. We introduce

the collision term, then present the resulting fluid equations based on a moment-taking

process. We then introduce Gauss’ law and explain the concept of the dispersion

relation through a linear perturbation analysis. Next, we apply nonlinear theory to

deduce the impact of higher order terms and describe the application of this theory

with the dispersion relation in what is commonly known as quasilinear theory. This

analysis reveals a wave-induced resistivity, from which we then derive an effective

collision frequency. We then derive the dispersion relation for the lower hybrid drift

instability, which will be used in the effective collision frequency. After describing

the effective collision frequency, we discuss the prediction of the polytropic index γ

using a quasi one-dimensional analysis of an expanding magnetic field. To this end,

we combine a Fourier law, a polytropic assumption, and the electron energy equation.

Finally, we summarize our findings and briefly discuss how we can use what we have

found to analyze a magnetic nozzle.
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2.2 Influence of waves on transport

In this section, we will determine the effect of waves on macroscopic plasma prop-

erties. We begin fundamentally with the collisional kinetic equation and outline the

process of taking moments to arrive at the fluid equations. Throughout the process,

we maintain an arbitrary collision operator. We then show how this collision operator

may manifest on a steady-state distribution function in the presence of an oscillating

electric field and number density at higher frequencies, and finally derive a relation

between these two values based on theory underlying a lower hybrid drift instability.

We next find an expression for an effective collision frequency induced by a wave in

a magnetic nozzle based on observable plasma properties and number density oscil-

lations. We then apply this concept to the fluid equations in a quasi-one dimensional

model of an expanding plasma to determine its effect on electron thermodynamics.

2.2.1 Kinetic equation

While any substance can be reduced to its individual particles, a continuum can

be modeled as a smooth function that describes the density of particles at a particular

time, position, and velocity. This function is thus a seven-dimensional scalar func-

tion f(t,x,v), where t is time, x is the particle position, and v is particle velocity.

Moreover, we may identify the link between the parameters in phase space as [26]

∂x

∂t
= v (2.1)

∂v

∂t
= a (2.2)
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where we have defined a as the acceleration term that we will define for a plasma

shortly. The full derivative then takes the form

df

dt
=
∂f

∂t
+
∂x

∂t
· ∂f
∂x

+
∂v

∂t
· ∂f
∂v

(2.3)

=
∂f

∂t
+ v · ∂f

∂x
+ a · ∂f

∂v
. (2.4)

This description describes the change in f along its phase space trajectory. Given

that f is by definition a phase-space density function, we can apply Liouville’s theorem

to determine how it evolves. This theorem states that, in the absence of interactions

between particles, the phase-space density will be constant, df/dt = 0. Inter-particle

interactions affect this relation in one of a variety of complex ways, so we will abstract

all of them as a currently undefined collision operator C[f ]. This term is effectively

an arbitrary source/sink term that may include Coulombic interactions, ionization,

or hard-sphere like collisions. We may incorporate this term in the definition to find

∂f

∂t
+ v · ∂f

∂x
+ a · ∂f

∂v
= C[f ]. (2.5)

The collision term can take a variety of forms. For instance, the Boltzmann col-

lision operator, a Fokker-Planck term, and the BGK collision operator are common

methods to solve the kinetic equation. We will see in Sct. 2.2.3 that plasma instabili-

ties may induce an effective collision operator as well on certain time scales. However,

we are going to allow it to remain arbitrary for this discussion.

The acceleration term can take a variety of forms, but strictly represents volu-

metric forces. In a neutral gas, this may be gravity or a centrifugal, effective force.

28



In plasmas, the dominant force acting on a species is typically the Lorentz force:

a =
qs
ms

(E + v ×B) . (2.6)

In most situations, the distribution function itself can be prohibitively difficult to

measure directly. Indeed, even knowing the external fields applied and having a good

model for the collision operator yields an infinite number of possible solutions. To

overcome this difficulty, it is often more tractable to discuss the species in terms of its

fluid equations. In the following section, we derive and explain the first three, which

are the most commonly used.

2.2.2 Fluid equations

The fluid equations arise by taking moments of the kinetic equation. This process

involves multiplying Eqn. 2.5 by a power of v and integrating over velocity space

[14]. We start with the zeroth moment, which constitutes a simple integration:

∫
∂f

∂t
+ v · ∂f

∂x
+ a · ∂f

∂v
dv =

∫
C[f ]dv. (2.7)

We can take this result term by term. We begin with the time-dependent term,

∫
∂f

∂t
dv =

∂

∂t

∫
fdv (2.8)

=
∂n

∂t
(2.9)

where we have used the fact that the time derivative and the velocity space integration

commute and defined n =
∫
fdv as the particle density in space.
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The second term can be similarly reduced,

∫
v · ∂f

∂x
dv =

∂

∂x
·
∫

vfdv (2.10)

=
∂nu

∂x
, (2.11)

where we have used the fact that v and x are independent and defined the average

velocity u = 1
n

∫
vfdv. For the acceleration term, we will use the Lorentz force and

integrate by parts to find

q

m

∫
(E + v ×B) · ∂f

∂v
dv =

q

m
E ·
∫

∂f

∂v
dv +

q

m

∫
(v ×B) · df

dv
(2.12)

= 0. (2.13)

The first term vanishes due to the fact that f approaches zero at ±∞. The second

term disappears similarly since ∂
∂v
· (v ×B) = 0.

We can then manipulate the zeroth moment of the collision term as

∫
C[f ]dv =

(
∂n

∂t

)
c

. (2.14)

This shows that the only collision terms that contribute to the zeroth moment are

those that change the total number of particles. The zeroth moment equation takes

the form

∂n

∂t
+

∂

∂x
· (nu) =

(
∂n

∂t

)
c

. (2.15)

Equation 2.15 is known as the continuity equation and represents the conservation of

mass.

Next, we may take the first moment by multiplying the kinetic equation by v

and integrating. We will again approach this equation term by term. The first term
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simply becomes

∫
v
∂f

∂t
dv =

∂nu

∂t
, (2.16)

representing the time rate of change of momentum. To evaluate the second term, we

will first make a substitution v = u + vr, where vr is the random (i.e. zero average)

component of the velocity and u is the bulk velocity. Note that dv = dvr.

∫
vv · ∂f

∂x
dv =

∫
(u + vr)(u + vr) ·

∂f

∂x
dv (2.17)

=
∂

∂x
· (nuu) +

∫
vrvr

∂f

∂x
dv (2.18)

=
∂

∂x
· (nuu) +

1

m

∂

∂x
·P (2.19)

where we have defined the pressure tensor as P = m
∫

vrvrfdv. In general, the

pressure tensor accounts for varying forces exerted by a species in all directions. For

our purposes, we will simplify by assuming an isotropic population with no shear. In

doing so, we may replace P with a scalar pressure p. Since it is equal in all directions,

we now redefine this value to be the pressure in any direction. We may thus take the

total random energy and divide by the total degrees of freedom (typically 3) as

p =
m

3

∫
vr · vrfdv. (2.20)

We may evaluate the acceleration term by integration by parts,

∫
vq (E + v ×B) · ∂f

∂v
dv = −nq (E + u×B) . (2.21)

31



Finally, the collitional term integrates simply to

∫
v

(
∂f

∂t

)
c

dv =

∫
vC[f ] (2.22)

=

(
∂nu

∂t

)
c

. (2.23)

This term represents the volumetric momentum transfer between the species of in-

terest and any other species (ions, neturals, waves, etc.) with which it interacts. Of

course, its actual form depends on the details of C[f ].

Combining the above relations and multiplying by the particle mass m yields the

equation for conservation of momentum,

nm
∂u

∂t
+ nmu · ∂u

∂x
= nq (E + u×B)− ∂p

∂x
+

∫
vC[f ]. (2.24)

We may further take the next moment to derive the conservation of energy law for

these fluids. We again split the velocity into the random and averaged components.

The first term is

∂

∂t

∫
v · vfdv =

∂

∂t

[∫
vr · vrfdv + u ·

∫
vrfdvr + u · u

∫
fdvr

]
(2.25)

=
∂

∂t

[
3p

m
+ nu · u

]
(2.26)

The second moment of the spatial derivative is

∂

∂x
·
∫
v2vfdv =

∂

∂x
·
[∫

v2
rvrfdvr + 3u

∫
v2
rfdvr + 3u2

∫
vrfdvr + u2u

∫
fdvr

]
(2.27)

=
∂

∂x
·
[

2

m
(Q +

5

2
pu) + nu2u

]
(2.28)

where we have defined the heat flux Q = m
2

∫
v2
rvrfdvr. This term determines the
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total flux of random, thermal energy. It is contrasted with the next term 5
2
pu, which

represents the thermal energy transported by convection. The final term is simply

the bulk energy convection.

The acceleration term can again be integrated by parts. This reads

− q

m

∫
v2 ∂

∂v
· [E + v ×Bf ] dv = −E ·

∫
v2∂f

∂v
dv (2.29)

= 2
qn

m
E · u. (2.30)

Here again, the magnetic field term vanishes in the integration by parts due to the

orthogonality of v×B with v and ∂
∂v

. Here we recover a known property of magnetic

fields– namely, they do not impart energy onto a charged particle. The remaining

electric field term simply indicates the work done on the species by the field.

Finally, the collision term takes the form,

∫
v2C[f ]dv ≡ − 2

m

(
∂W

∂t

)
c

, (2.31)

and represents the energy lost through the collision operator. We will multiply each

term by m
2

to find the energy equation,

3

2

∂p

∂t
+
∂

∂t

mnu2

2
+

∂

∂x
·
(
n
mu2

2
u

)
= − ∂

∂x
·
(
Q+

5

2
p

)
+ qnu · E−

(
∂W

∂t

)
c

.

(2.32)

This equation can be simplified significantly by incorporating the continuity equation

on the left hand side and the momentum equation to solve for u · E. The resulting,

final energy equation takes the form
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3

2

(
∂nT

∂t
+ u · ∂nT

∂x

)
+

5

2
nT

∂

∂x
· u = − ∂

∂x
·Q + u ·

∫
m

2
vC[f ]dv −

∫
m

2
v · vC[f ]dv.

(2.33)

While somewhat less intuitive, this equation involves fewer variables and is there-

fore easier to use. It further incorporates resistive (“ohmic”) heating in the term

involving the first moment of the collision operator.

While we could in theory continue into an arbitrarily high moment, a fundamental

problem has emerged. Namely, given the presence of the term in the kinetic equation

involving ∂f/∂v, each time we take a moment we introduce a term in the resulting

equations that involves the next moment of f . The continuity equation introduces

the momentum term, the momentum equation introduces the temperature, and the

energy equation introduces the heat flux. This fundamental fact about the fluid

equation introduces the so-called closure problem, whereby for an N -moment model

of a fluid there will always be N + 1 free macroscopic parameters. Solutions to this

closure problem involve one of several processes. A convenient approach is to simply

truncate the solution, neglecting the next order term entirely. While doing so is

extremely convenient, there is typically no physical basis for doing so. Instead, often

an external closure model may be applied to approximate the next higher moment.

Often, a closure scheme is applied to the heat flux. More on this later.

The collision operator that we have defined is in truth a sum of separate colli-

sion operators. These terms may be collisions with electrons, ions, neutrals, or any

other species present. We have to separate moments of the collision operator that

contribute to the plasma evolution in different ways. We leave this discussion by

noting that, while there may be a collision operator between a species and itself in

the kinetic equation, this form of collision cannot appear in the higher moments. The

simple reason is that, while collisions transfer momentum and energy between parti-
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cles, they do not add or remove energy or momentum from the entire species. The

second moment may be finite in the classical sense with two species present if their

temperatures are different. The first moment requires a relative velocity between the

two. Indeed, a typical form that this momentum exchange term may take between

arbitrary species s and s′ is

ms

∫
vCs,s′fsdv ≡ Rs,s′ = −msnsνs,s′ (us − us′) , (2.34)

where we have defined Rs,s′ as the resistivity between the two species and νs,s′ as

the momentum loss collision frequency. We will incorporate this definition into our

analysis of wave-particle interactions in the following section.

Now that we have established the fluid equations and their dependence on the

collision operator, we must now determine the form that this operator takes. Typi-

cally, a Boltzmann equation or a Fokker-Planck equation is taken here to represent

collisions between species. Here, however, we would like to determine an effective

collision operator based on the presence of waves. To this end, we will break the dis-

tribution up into its steady state (or low-frequency) components and its oscillatory,

high frequency components. We do so in the following section.

2.2.3 Impact of waves on fluid properties

To understand how oscillations may impact a steady-state distribution function

and the derived macroscopic properties, we begin by returning to the kinetic equation

and neglecting collisions entirely. This form is traditionally known as the Vlasov

equation. We perturb the values f = f0 + f̃ and E = E0 + Ẽ to find the perturbed

Vlasov equation

d(f0 + f̃)

dt
+ v · d(f0 + f̃)

dx
+

q

m

(
E0 + Ẽ + v ×B

)
· d(f0 + f̃)

dv
= 0. (2.35)
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where a subscript 0 indicates a time-averaged value and a tilde represents the pertur-

bation. Assuming a periodic nature of the perturbed quantities allows us to Fourier

transform the perturbation as
(
f̃ , Ẽ

)
(x, t) =

∫
e−iωt

(
f̃ , Ẽ

)
(x, ω)dω. Here we have

assumed a periodic nature in t; however, we will soon see that this value is periodic

in x as well.

After performing this perturbative analysis, we may manipulate Eqn. 2.35 in

two ways according to so-called quasilinear theory. In this paradigm, we make two

separate assumptions– namely, that the wave propagates according to linear theory

but influences the steady-state distribution in a nonlinear sense. To analyze this

system, we will analyze the kinetic equation on both timescales. The first method

that we will discuss here is taking a phase average of the result, which will allow

us to determine the impact of an arbitrary wave on steady-state behavior. Since

the perturbations are assumed to be periodic, a phase average negates every term of

first order. However, second order terms remain, since the average of a product of

two sinusoids is generally finite (but, of course, depends on the relative phase of the

sinusoids). The result is

df0

dt
+ v · df0

dx
+

q

m
(E0 + v ×B) · df0

dv
= − q

m
〈Ẽ · df̃

dv
〉. (2.36)

This result can be correlated to Eqn. 2.5 in that the right hand side (a function

solely of oscillating values) implies an effective collision term on the steady state

distribution. Indeed, this term can be carried through the fluid equations to determine

its impact on each macroscopic value. First, for the continuity equation, we have

−q
m
〈Ẽ ·

∫
∂f̃

∂v
〉 = 0 (2.37)

where we have integrated by parts and incorporated the fact that the perturbed

distribution function must fall to zero as v→∞. Thus, unless the perturbed electric
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Figure 2.1: Total force imparted on a charged fluid from an oscillating electric field
a) in phase and b) out of phase with a number density oscillation.

field is strong enough as to electrostatically separate atoms, the presence of a wave

does not affect the total number of the species.

The impact on the momentum equation is less simple. We will return to our defini-

tion of resistivity in the preceding section to define the impact on species momentum

as an effective resistivity Reff . Finding this moment results in

Reff = −
∫
qv〈Ẽ · ∂f̃

∂v
〉dv = q〈ñẼ〉. (2.38)

Equation 2.38 presents the effect of an instability on the momentum of a fluid

species. We find that it is not strictly the magnitude of the electric field that influences

this value, but the phase average between the electric field and number density. While

we arrived at this result from a study of kinetics, there is a physical intuition that may

be understood from it as well. Indeed, in the absence of other forces, an oscillating

electric field will impart zero force on a single charged particle in a phase-averaged

sense. However, when a wave of the same frequency is present in number density as

well, the volumetric force may be finite. Figure 2.1 illustrates this principle.

We may define the phase average in either space or time, and ultimately this
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choice is arbitrary. Since we have already discussed the periodicity in time, we will

define a temporal phase average as

〈y〉 = lim
T→∞

1

T

T/2∫
−T/2

y(t)dt. (2.39)

We can evaluate the product in 2.38 by again assuming that Ẽ and ñ vary peri-

odically and taking their Fourier transform,

〈 ˜E(t)ñ(t)〉 = Re

 lim
T→∞

1

T

T/2∫
−T/2

∞∫
−∞

Ẽ(ω)eiω1tdω1

∞∫
−∞

ñ(ω)eiω2tdω2dt

 (2.40)

where we have defined the Fourier components Ẽ(ω) and ñ(ω). Given the orthogo-

nality of complex exponents,

Re

 lim
T→∞

1

T

T/2∫
−T/2

ãeiω1tb̃eiω2tdt

 =
1

2
Re
[
ãb̃
]
δ(ω1, ω2) (2.41)

we may let ω = ω1 = ω2 to simplify as

〈 ˜E(t)ñ(t)〉 =
1

4π

∞∫
−∞

Ẽñdω (2.42)

=
1

2

∞∫
−∞

Re
[
Ẽñ
]
dω. (2.43)

=
q

2

∞∫
−∞

kIm
[
φ̃ñ
]
dω. (2.44)

We have thus found an equation that relates the oscillating electric field and

number density present in a wave to a term in the momentum equation for the

steady-state values. We may further determine the impact on energy transfer by
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finding the second moment. These can be found to be [20]

−〈
∫

(v · v)Ẽ
∂f̃

∂v
〉 = nq〈Ẽ · ũ〉+ qu · 〈Ẽñ〉. (2.45)

= n0q

∞∫
−∞

k · Im
[
φ̃ũ
]
dω +

q

2
u ·

∞∫
−∞

kIm
[
φ̃ñ
]
dω., (2.46)

where we have defined ũ as the perturbed velocity, ũ =
∫

vf̃dv. The final wave-driven

term in the energy equation is the Ohmic heating term, which takes the form

Reff · u = qu · 〈Ẽñ〉. (2.47)

Taken together, the energy equation including wave terms is

3

2

(
∂nT

∂t
+ u · ∂nT

∂x

)
+

5

2
nT

∂

∂x
· u = − ∂

∂x
·Q + nq〈Ẽ · ũ〉 (2.48)

The values in all of these relations depend on the oscillating quantities ñ, ũ and

Ẽ. However, these quantities are prohibitively difficult to directly measure simultane-

ously. As we will see in Chap. III, however, measuring the magnitude of ñ is entirely

possible. Therefore, we now require a mathematical relation between ñ, ũ, and Ẽ to

be able to fully evaluate the effect of waves. To this end, we may return to Eqn. 2.35

but apply a different analysis. Namely, instead of taking the phase average, we will

neglect higher order terms and analyze f1 and E1 directly. Doing so, combined with

the introduction of Gauss’ law, will provide the dispersion relation and the relations

we require.
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2.2.4 The dispersion relation

The oscillating electric field and number density may be directly related by Gauss’

law:

∇ · E =
ρ

ε0
, (2.49)

where ρ = e
∑

s nsZs is the charge density, with Zs the charge state of species s. Next,

we again perturb the number density and electric field as ns = n0,s + ñs(x, t), where

n0 is the time-averaged value. Assuming a periodic nature of the perturbed quantities

allows us to Fourier transform the perturbation as ñ(x, t =
∫
e−iωtñ(x, ω)dω. The

resulting Gauss’ law becomes

∇ · E0 + k ·
∫
e−iωtẼ(x, ω)dt =

1

ε0

∑
s

qs

(
ns,0 +

∫
eik·xñs(x, ω)dω

)
. (2.50)

It is important to note that the components of the Fourier transform are orthogonal

(i.e. linearly independent). This fact allows us to separate Gauss’ law into an indi-

vidual equation for each component of the integral and one for the steady state, since

there are no higher order terms. Namely,

∇ · E0 =
1

ε0

∑
s

qsn0,s (2.51)

ik · Ẽ(x, ω) =
1

ε0

∑
s

qsñs(x, ω). (2.52)

We now rearrange Eqn. 2.52 to define the dispersion relation:

1− 1

ε0

∑
s

qsñs

ik · Ẽ
= 0 (2.53)

1 +
∑
s

χs = 0, (2.54)
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where we have defined

χs ≡
iqsñs

ε0k · Ẽ
(2.55)

as the susceptibility of species s. Finding this value provides a relation between ñs

and Ẽ, which is required to determine effective resistivity. The value of χs can be

determined once the nature of the specific wave has been determined. Indeed, there

are many different susceptibility values that depend on the details of the plasma

background. To determine the value of χs applicable to our plasma, we must first

define the expected plasma properties and find a theory that describes the waves

therein.

2.2.5 Effective collision frequency

With a full description of the general properties of waves on a plasma from a

quasilinear perspective, we now introduce the concept of an effective (or, commonly,

“anomalous”) collision frequency, following the analysis of Ref. [34]. We first assume

that the plasma in question is made up solely of electrons and singly-charged ions

with a dispersion relation of

1 + χe + χi = 0. (2.56)

Since the susceptibilities are in general complex functions, we immediately find the

identity

Im(χi) = −Im(χe). (2.57)

We may further use the definition of the susceptibility to redefine the effective
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resistivity on species s as [34]

Reff,s =

∞∫
−∞

kε0Ẽ
2Im [χs] dω (2.58)

=
q2

ε0

∫
k

k2
ñ2
sIm

(
χ−1
s

)
dω. (2.59)

Given Eqn. 2.57, we see that the effective resistivity of the ions is the negative

that of the electrons, implying that the waves act to mediate a resistivity between

the two species. For this reason, we may model the resistivity with an analogy to

classical effects,

Reff,e = −mene,0νeff (ue,0 − ui,0) (2.60)

where we have defined an effective collision frequency νeff as the characteristic fre-

quency of momentum transfer. Forming this definition assists the analysis in two

ways. First, it enables us to compare the wave-driven effects to classical collisions

more directly. Classical collisions have been studied extensively and are known to

follow Spitzer scaling [105] with an electron-ion collision frequency equal to

νe,i = 2.18× 10−11 ne

T
3/2
e

(2.61)

for xenon ions, where ne is in m−3 and Te is in eV. Moreover, the definition of a

collision frequency based on wave interactions justifies its use in a Fourier law of heat

conduction. In the next section, we will describe how this process functions in more

detail.

So far we have established a local model for how a wave may impact plasma

parameters. However, the question of the thermodynamics of these systems takes on

a more global character. To this end, to complete our discussion of the expansion, we
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Figure 2.2: Illustration of the quasi-one dimensional magnetic nozzle model.

will transition to a quasi-one dimensional model to determine the global expansion

parameters.

2.2.6 Quasi one-dimensional model

To better understand the global characteristics of the expansion process, we will

first convert the fluid equations derived in the previous section to a quasi-one dimen-

sional, or “paraxial” format. These types of models take averages over axial slices of

a given area and are common in conventional nozzle physics [8]. Moreover, this anal-

ysis has been performed previously on magnetic nozzles as well with experimentally-

verified results [78, 75, 103, 7]. Such a model is thus ideal for an understanding of

how the plasma evolves and for better understanding the impact of waves on thruster

operation.

In this paradigm, we will define the area A as the area enclosed by the outermost

magnetic field lines that intersect the thruster exit plane. We are therefore assuming

that electrons do not expand faster than the magnetic fields, and that this streamtube
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encloses all relevant particle flux. In this way, we are able to ignore any gradients in

r̂, focusing instead on the characteristics in ẑ, which are the relevant ones for thrust

production. Figure. 2.2 illustrates this view.

To find the proper paraxial energy equation, we will integrate Eqn. 2.48 over

a volume bounded by two nozzle areas separated by a small distance dz (c.f. Fig.

2.2). As we take the limit as dz → 0, we find the corresponding substitutions ∇X →

X ′ and ∇ · X → (XA)′, where the prime indicates d/dz. We further replace each

plasma property with its area-averaged equivalent, X = 1
A

∫
A
XdA′. The steady-state

continuity equation in this paradigm is

(nuA)′ = 0 (2.62)

and the energy equation is

0 =
3

2
uA(nT )′ +

5

2
nT (uzA)′ + (QA)′ − qnA〈Ẽ · ũ〉 (2.63)

While these equations are generalized to an arbitrary species, we will now specify them

to describe the electrons. We will understand Eqn. 2.63 by taking three simplifying

limits. We will begin by taking the simplest case, where all heat flux and heating

terms are zero, resulting in adiabatic flow. The resulting energy equation is

0 = uA(nT )′ +
5

3
nT (uA)′ (2.64)

= nT ′ − 2

3
n′T (2.65)

(2.66)

where we have used continuity to substitute n(uA)′ → −uAn′. We can integrate the

final result from an upstream condition (subscript 0) to a final condition (subscript
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f) to find

Tf

nγ−1
f

=
T0

nγ−1
0

(2.67)

where we have defined the polytropic index γ to be 5/3 in the ideal case. As discussed

in Chap. I, this value is the subject of ongoing research in these expanding plasmas.

It is often measured in these systems using Eqn. 2.67 or the local equivalent [7],

(
Te

nγ−1
e

)′
= 0. (2.68)

However, experimental findings of this value rarely take the adiabatic value of 5/3

[28, 116, 75, 126]. In fact, it is often closer to the so-called isothermal limit of γ = 1,

where any temperature gradients are instantly smoothed out. The reason for this

trend is a subject of ongoing research. We will attempt to explain this phenomenon

by relaxing the adiabatic assumption and including either the heat flux or the wave

heating terms. First, we will discuss the possibility of a wave-driven heat flux that

assumes a Fourier law.

2.2.7 Finite heat flux assuming a Fourier law

The basis for this analysis is the quasi-one dimensional energy equation ignoring

only wave heating terms. This takes the form

0 =
3

2
uA(nT )′ − 5

2
n′TuA+ (QA)′ (2.69)

where we have again used the continuity equation to substitute n(uA)′ = −n′uA. We

then make a few assumptions. First, we take a Fourier law for the heat flux. The
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most general form of a Fourier law is

Q = −κ∇T (2.70)

where κ is the thermal conductivity. This form is used extensively in physics of

solids, where κ is typically an experimentally determined value for a given material.

In gases, a similar form was first discovered independently by Sydney Chapman and

David Enskogg [24]. This process involved perturbing the collisionless Boltzmann

equation and performing an expansion on the Boltzmann collision operator in terms

of Laguerre polynomials. This theory was then applied to a plasma by Braginskii [17],

who found an applicable thermal conductivity invoking electron-electron collisions as

κe,e = 3.2
neTe
meνe

. (2.71)

Here, the coefficient 3.2 depends on the details of the derivation and the assump-

tions therein. For our purposes, we will abstract this parameter as a value α and

leave the discussion of its value for Chap. V. Doing so yields the Fourier law that we

will implement throughout this work,

q = −αnTT
′

mνeff
. (2.72)

We further assume a polytropic law to substitute for number density,

n = n0

(
T

T0

) 1
γ−1

, (2.73)

where we take γ to be constant. By substituting the Fourier and polytropic laws into
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the energy equation, we can solve directly for the value of γ that we predict:

γ = 1 +
meueνe
αTe

+ T ′e
Te

3
2
meueνe
αTe

− A′

A
− T ′e

Te
+ ν′e

νe
− T ′′e

T ′e

. (2.74)

There are several interesting aspects to elucidate from Eqn. 2.74. First, each term

except for the first in both the numerator and denominator involve the normalized

rate of change of the various properties. Notably, these terms do not depend on the

magnitude of each value– including the collision frequency. If we hypothetically scaled

the collision frequency arbitrarily low such that the first term in both numerator and

denominator vanished, the collision frequency profile could still be significant. It was

exactly this fact that was observed in Ref. [75]. In this prior work, the magnitude

of the collision frequency was assumed (and, later, measured) to be extremely low.

Indeed, in a typical magnetic nozzle the classical collision frequency is often vanishing.

However, the relative value of the ratio ν ′c/νc remained a significant, and the applied

scaling (using the Spitzer scaling for Coulomb collisions, Eqn. 2.61 with Argon)

predicted γ to within a few percent. However, as mentioned in Chap. I, the prediction

for the heat flux magnitude was too high.

Given that the Fourier law scaling with classical collisions predicted γ accurately

but that the collisions themselves were too infrequent, we posit that a Fourier law

with wave-driven, effective collisions may accurately describe the electron expansion.

However, it is also possible that the other terms in Eqn. 2.63 may be significant. To

this end, we now proceed to discuss the values of these terms.

2.2.8 Wave heating

We now neglect the heat flux and analyze the wave heating terms in Eqn. 2.63.

This method is an example of an alternative closure scheme for the fluid equations.

While the Fourier law assumption provides an analytical form for the next moment
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(i.e. the heat flux), this method ignores it and focuses instead on the other second-

moment terms.

After again replacing the number density with a polytropic law, we recover the

following equation for γ:

n0

(
γ − 5

3

)
A

(
T

T0

) 1
γ−1

uT ′ =
2

3
(γ − 1)

(
−qnA〈Ẽ · ũ〉+ ū · 〈Ẽñ〉

)
. (2.75)

Here we have defined n0 and T0 as the initial condition for number density and

temperature, which we will take in Chap. V to be the value at the most upstream

measurement. Equation 2.75 presents a transcendental equation for γ that must be

solved numerically. However, two important limits emerge. In this case, if wave

heating is zero, γ must again take its adiabatic value of 5/3 for the left hand side to

be zero. Moreover, if it heating dominates γ will approach unity. Thus, the presence

of this wave heating serves to push the electron plasma away from adiabaticity.

Both of these mechanisms show possible means for waves to affect electron ther-

modynamics in these systems. We will explore both of these possibilities in Chap. V

and further discuss in more detail their impacts on thruster performance. In the fol-

lowing section, we will determine the values of the phase-averaged terms determined

in this section through deriving the lower hybrid drift instability.

2.2.9 Lower hybrid drift instability

To determine the values of the phase-averaged values and χs, we will make several

assumptions to describe the plasma:

� Ions are cold and unmagnetized.

� There are negligible multiply-charged ions

� Electrons are warm and experience cross-field drifts from the pressure and

plasma potential gradients.
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� The Larmor radius of the electrons is comparable to the wavelengths that we

are interrogating.

� The magnetic field is uniform.

� Classical collisions are insignificant.

With these assumptions, we may investigate a form of the lower hybrid drift

instability (LHDI). The LHDI has been discussed in the context of a multitude of

laboratory plasmas, including magnetic nozzles [92]. It is common in plasmas in

which the ions are cold and unmagnetized but the electrons are warm and magnetized.

When a cross-field electron pressure gradient is present, a diamagnetic current forms

and may drive this mode unstable. We present here the derivation of this mode from

first principles to inform our data processing in later chapters.

This derivation is based on Ref. [22]. We assume that the wave is localized,

meaning that the wavelength is much smaller than the number density gradient scale

length, ne/|∇ne|. This allows us to treat these these values as constant on this scale

so that the wave does not change character over a single oscillation. We will take a

slab model with gradients in x, current in y, and magnetic field in z.

We will further simplify our analysis by using the reference frame moving with the

electron E×B drift, i.e. −E0/B0. In this frame, the electric field is zero. Intuitively,

if there were an electric field in this frame of reference the electrons would maintain

some E×B drift, which is impossible by definition. Mathematically, this results from

a Lorentz transformation:

E′⊥ = γr (E⊥ + v ×B) , (2.76)

where γr is the relativistic Lorentz factor. If we let v = −E/B, the term in parentheses

becomes zero. Thus, in this reference frame, the electrons have no net bulk velocity,

but the ions move with speed ui = E0/B0 in the +y direction.
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We will assume the steady-state electron distribution function to be

fe,0 =
n(X)

π3/2v3
th,e

exp

(
−
v2
x + v2

y + v2
z

v2
th,e

)
, (2.77)

where X = x − vy
Ωe

. This is a common assumption in systems with a cross-field

number density gradient and fulfills the steady state Vlasov equation with an average

velocity equal to the electron diamagnetic drift. Fundamentally, we are saying that

fe,0 is a Maxwellian distribution where each particle is “counted” at the center of its

gyro orbit, since X is the orbital center of a particle at instantaneous position x with

velocity vy. We can Taylor expand n(x0 − vy
ωe

) around x0 as n(x) ≈ n(x0) − ∂n
∂x

vy
Ωe

.

Thus, the electron distribution function can further reduced with the approximation

rL << 1/∇ne as

fe,0 =
n0

π3/2v3
th,e

exp

(
−v

2
⊥ + v2

z

vth,e2

)(
1− εn

vy
Ωc,e

)
(2.78)

=

(
1− εn

vy
Ωc,e

)
, fM (2.79)

where εn = 1
n0

∂n
∂x

is the inverse of the density gradient scale length and we have defined

the Maxwellian distribution fM = n0

π3/2v3th,e
exp

(
−v2x+v2y+v2z

vth,e2

)
, with vth,e =

√
2Te/me as

the thermal speed of the electrons.

Now that we have defined a steady-state distribution function, we can move to

find an expression for the number density oscillation magnitude. To this end, we will

integrate along unperturbed orbits using the method of characteristics [108, 107]. This

process is relatively common in kinetic wave theory with magnetized particles and

involves integrating the perturbed distribution function in phase space. To do so, we

need to find an expression for the total derivative of f along this unperturbed orbit.

As we have previously noted, the kinetic equation defines exactly this derivative.

Moreover, in a linear sense, we can apply a kinetic equation to both the perturbed
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and steady-state terms of f . We thus have, in the collisionless case,

df0

dt
=
∂f0

∂t
+ v · ∂f0

∂x
+

q

m
(v ×B) · ∂f0

∂v
= 0 (2.80)

df

dt
=
∂f

∂t
+ v · ∂f

∂x
+

q

m

(
Ẽ + v ×B

)
· ∂f
∂v

= 0, (2.81)

where we recall that these equations apply in a reference frame with zero steady-

state electric field. We may consider Eqn. 2.80 an operator on an arbitrary distribu-

tion function,

d

dt

∣∣∣∣
0

= v · ∂
∂x

+
q

m
(v ×B) · ∂

∂v
. (2.82)

Applying Eqn. 2.82 to the steady state distribution function results in the Vlasvo

equation. However, since the Vlasov equation is by definition a derivative along

the phase-space trajectory of a particle, we see that applying this operator to any

function will take its derivative along these unperturbed orbits. We can thus apply

this operator to the total distribution function as

df

dt

∣∣∣∣
0

=
∂f

∂t
+ v · ∂f

∂x
+

q

m
(v ×B) · ∂f

∂v
(2.83)

df̃

dt

∣∣∣∣∣
0

= − q

m
Ẽ · ∂f0

∂v
, (2.84)

where in the final step we have substituted − q
m

Ẽ · ∂f0
∂v

for the right hand side using

Eqn. 2.81 and used the fact that df0
dt

∣∣
0

= 0 from Eqn. 2.80.

We now have a form for the derivative of the perturbed function along unperturbed

orbits. To find a form for f̃ , we need only integrate Eqn. 2.84 along this trajectory. To

this end, we will apply the method of characteristics. We first apply the electrostatic
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assumption to substitute Ẽ = − ∂
∂x
φ̃ and our assumed f0 (Eqn. 2.79) to find

f̃ =
q

m

t∫
−∞

∂φ̃

∂x
· ∂f0

∂v
dt (2.85)

=
q

m

t∫
−∞

−2fM
v2
t,e

v · ∂φ̃
∂x

+
εnfM
Ωe

∂φ̃

∂y
dt. (2.86)

Since the plasma potential does not depend on velocity, we may use its total derivative

to substitute v · ∂φ̃
∂x

= dφ̃
dt′
− ∂φ̃

∂t′
. We may then replace the spatial derivative in y with

ik. Making these substitutions gives

f̃ =
q

m

t∫
−∞

−2
fM
v2
t,e

(
dφ̃

dt
− ∂φ̃

∂t

)
+
ikyfM

Ωe

φ̃dt′ (2.87)

= −2q

m

fM
v2
t,e

φ(t) +
2q

m

fM
v2
t,e

t∫
−∞

∂φ̃

∂t′
dt′ +

ikyqεn
mΩe

fM

t∫
−∞

φdt′. (2.88)

Here we have also assumed that limt→−∞ φ̃ = 0. We now have the problem of evalu-

ating these two integrals. We can revisit our assumption that the perturbed quantity

φ̃(t) =
∫
φ̃(ik · x′ − iωt), with which we need only solve for the position coordinate.

For this purpose, we need to define the exact unperturbed orbits in this scenario.

These can be readily defined by the magnetic force acting on the particles,

dv′

dt
=

q

m
v′ ×B (2.89)

dr′

dt
= v′, (2.90)

where the prime indicates a value in the integrand. We may then integrate these to

find the position coordinates,
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x′ =
v⊥
Ωe

sin(ϕ+ Ωeτ)− v⊥
Ωe

sin(ϕ) (2.91)

y′ =
v⊥
Ωe

cos(ϕ+ Ωeτ)− v⊥
Ωe

cosϕ (2.92)

z′ = −v‖τ, (2.93)

where τ = t′− t and ϕ is a phase offset based on the initial position. In defining these

in this way, we have arbitrarily assumed that x(t) = y(t) = 0, which is fine since the

time derivatives operate on t′, so t can be treated as a constant. These definitions can

be used in the distribution function integral to find the total perturbed distribution

function as

f̃e =− 2qφ̃

m

fM

v2
th,e

[1 + i (ω − kyvD,e) (2.94)

×
∞∫

0

dτ exp

(
−i
(
k⊥v⊥

Ωe

(cos (ϕ+ Ωeτ)− cosϕ)

)
(2.95)

+
(
ω − k‖v‖

)
τ
)]
. (2.96)

We may now apply the following two identities to relate this function to Bessel

functions,

exp(iz sinϕ) =
∞∑

n=−∞

exp(inϕ)Jn(z) (2.97)

exp(iz sin(ϕ+ Ωeτ)) =
∞∑

n=−∞

exp(im(ϕ+ Ωeτ))Jn(z), (2.98)

where we have introduced Jn as the Bessel function of the first kind of order n. These
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substitutions yield the final perturbed electron distribution function

f̃e =− 2q

m

n0

π3/2v5
t,e

exp

(
−
v2
⊥ + v2

‖

v2
t,e

)
φ̃ [1− (ω − kyvD,e) . . .

×
∑
m,n

(
Jn(kθv⊥

Ωe
)Jm(kθv⊥

Ωe
) exp(i(m− n)(ϕ− π/2))

ω − k‖v‖ −mΩe

)]
. (2.99)

With Eqn. 2.99, we are finally ready to find the moments ñ and ṽ, which will

both be in terms of φ̃. The perturbed number density is thus

ñ =

∫
f̃edv =

∞∫
0

v⊥

∞∫
−∞

2π∫
0

f̃edφdv‖dv⊥

= − 2qn0

mv2
t,e

φ̃

1 + (ω − kyvD,e)
∑
m,n

∞∫
0

v⊥Jn

(
kθv⊥
Ωe

)
Jm

(
kθv⊥
Ωe

)
exp

(
− v

2
⊥
v2
t,e

)
dv⊥

×
∞∫

−∞

exp

(
−

v2‖
v2t,e

)
ω − k‖v‖ −mΩe

dv‖

2π∫
0

exp [i(m− n)(ϕ− π/2)] dϕ

 . (2.100)

The integral over phase is an average of first order sinusoids over one period, which

is be zero for all m 6= n. We next recognize the integral in v‖ as the plasma dispersion

function, defined as [44]

Z(ζ) = π−1/2

∞∫
−∞

e−t
2

t− ζ
dt. (2.101)

Using this definition, the parallel integral can be simplified to

∞∫
−∞

exp

(
−

v2‖
v2t,e

)
ω − k‖v‖ −mΩe

dv‖ = Z

(
ω −mΩe

k‖vt,e

)
. (2.102)

To evaluate the integral in perpendicular velocity, we may use the following rela-
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tion [123]:

∞∫
0

x exp(−ax2)J2
n (bx) dx =

1

2a
exp

(
− b

2

2a

)
In

(
b2

2a

)
. (2.103)

We apply this formula to the integral in perpendicular velocity, which yields

∞∫
0

v⊥J
2
n

(
kθv⊥
Ωe

)
exp

(
− v

2
⊥
v2
t,e

)
dv⊥ =

1

2
exp

(
−
k2
θv

2
t,e

2Ω2
e

)
In

(
k2
θv

2
t,e

2Ω2
e

)
, (2.104)

where In is a modified Bessel function of the first kind. Finally, we note that the

frequencies we are seeking in the LHDI are much less than Ωc,e. Looking at Eqn.

2.102, we note that this is only possible if m = 0, so we will only keep this term

in the perturbed number density. We find as the final form of the number density

perturbation,

ñe =
−2qn0

mv2
t,e

φ̃

(
1 +

ω − kyvD,e
2k‖vt,e

Z

(
ω

k‖vt,e

)
exp

(
−
k2
θv

2
t,e

2Ω2
c,e

)
In

(
k2
θv

2
t,e

2Ω2
c,e

)
.

)
(2.105)

We now move to evaluate the perturbed velocity. First, we will take the perturbed

parallel velocity ṽ‖. We make use of the derivative of the plasma dispersion function,

Z ′(ζ) = −π−1/2

∞∫
−∞

2t

t− ζ
e−t

2

dt (2.106)

to find the integral involving the parallel velocity to be

∞∫
−∞

v‖ exp

(
−

v2‖
v2t,e

)
ω − k‖v‖ −mΩe

dv‖ = −1

2
Z ′
(
ω −mΩe

k‖vt,e

)
. (2.107)
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The rest of the integration is the same as for ñe, giving us

ũ‖ =
−2qφ̃

mv2
t,e

(
ω − kyvD,e

k‖
Z ′
(

ω

k‖vt,e

)
exp

(
−
k2
θv

2
t,e

2Ω2
c,e

)
I0

(
k2
θv

2
t,e

2Ω2
c,e

))
. (2.108)

The components along vx and vy are zero. To understand why, we must return

the perpendicular integral in Eqn. 2.105 to its equivalent integration along vx and vy.

Taking the moment in vx as an example, we find

∞∫
−∞

∞∫
−∞

vx exp

(
− v2

x

v2
t,e

)
exp

(
−
v2
y

v2
t,e

)
J2

0

(
ky

Ωc,e

√
v2
x + v2

y

)
dvxdvy. (2.109)

The integrand in this case is odd in vx, implying that the integral (now over negative

numbers as well) is zero. The same reasoning applies for vy.

Given the relation of perturbed velocity to heating, we may relate these results

to the ways in which waves heat plasma particles. The first is Ohmic, where the

effective resistivity heats up the species. The second is resonance with the perturbed

species velocity along the magnetic field lines. If the electric field and the particle

velocity oscillations are in phase with each other, the wave will resonate with the

particle and deposit energy into it. Perpendicular to the magnetic field, however,

the magnetic field stops this deposition of energy. One possible physical explanation

for this stems from our assumption that the waves are much lower frequency than

the magnetic field. Thus, the particle velocity perpendicular to the magnetic field is

rather dominated by its gyromotion. On the timescale of the wave, the particle will

oscillate back and forth many times, thus inducing a zero-average energy imparted.

Now that we have established the effect of these waves on the electron population,

one more problem remains– namely, how might we relate ω to k? For this purpose,

we will further analyze the ions in a similar manner. As we have assumed that the

ions are cold and unmagnetized, we may use the ion fluid equations. The perturbed
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momentum equation is

∂u

∂t
+ ui · ∇ui =

qi
mi

E. (2.110)

Following the same perturbation analysis with the assumption that the steady-state

does not depend on time yields

ũi = − qi
mi

Ẽ

ω − k · ui,0

. (2.111)

To incorporate the ion density and solve for the susceptibility, we may incorporate

the ion continuity equation,

∇ · (niui) = 0. (2.112)

Solving the continuity equation for ũi and substituting the solution in to Eqn. 2.111

yields a final form for the perturbed density of

ñi
ni,0

=
k · ũi

ω − k · ui,0

.. (2.113)

Finally, combining Eqn. 2.111 and 2.113 yields

ñi
ni,0

= − qi
mi

k · Ẽ
(ω − k · ui,0)2 . (2.114)

After determining the ion density perturbation, we are finally ready to define the

dispersion relation for the LHDI (Eqn. 2.54. This equation takes the form

0 = 1−
ω2
pi

(ω + k⊥vE)2 +
1

k2λ2
D

[
1 +

ω − k⊥vD
k‖vte

e−k
2
⊥r

2
L/2I0

(
k2
⊥r

2
L

2

)
Z

(
ω

k‖vte

)]
,

(2.115)
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where we have replaced ui,0 with−vE as per our coordinate shift convention. Equation

2.115 represents the dispersion relation for the LHDI under the assumptions that we

have provided. Fundamentally, it represents an extra equation to relate ω to k, thus

completing our equations for the wave. We note that Eqn. 2.115 is in the still-electron

frame, with the electrons moving with azimuthal velocity ui = −vE. However, a lab

measurement in a partially magnetized system would not be in this frame– rather,

the electrons will be rotating with velocity vE and the ions would me mostly still.

To resolve this discrepancy, we only need to perform a Doppler shift on the resulting

frequency, which takes the form

ω → ω + vEky. (2.116)

In this section, we have now fully derived a prediction for an LHDI, which is driven

unstable under conditions that we may observe in a magnetic nozzle.

2.3 Conclusion

In this chapter, we have outlined from first principles two areas in which finite

amplitude waves may impact electron dynamics in magnetic nozzles. We first in-

troduced quasilinear theory in showing how their presence may induce an effective

collision term in the kinetic equation for the steady-state distribution function. We

then took moments of this term to show their possible impact on momentum and

energy transfer. We then established the appropriate assumptions applicable to a

magnetic nozzle plasma and used them in the kinetic and fluid equations with Gauss’

law to derive these quantities for the LHDI. Finally, we introduced a quasi-one dimen-

sional model for a magnetic nozzle expansion and determined the impact that waves

may have on global expansion in two ways– by inhibiting heat conduction or by di-

rectly heating the plasma. In the following section, we will present the experimental
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methods used to evaluate this theory.
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CHAPTER III

Experimental Methods

3.1 Introduction

In this chapter, we first introduce the plasma source used for the experiments in

this work and the vacuum chamber used for them. We then discuss the suite of diag-

nostics that we employed. We first introduce the background theory behind Langmuir

probes and their use in our work to determine steady-state plasma characteristics.

We then discuss ion saturation probe pairs and the Beall cross-correlation technique,

which we implemented to gain a better understanding of the wave propagation char-

acteristics. We finally discuss the high-speed imagery that we used to non-invasively

observe oscillations in the source region.

3.2 Electron cyclotron resonance thrusters

Electron cyclotron resonance (ECR) plasma sources rely on microwave power

transmission between an antenna and a partially magnetized plasma. Fundamentally,

they apply an oscillating electromagnetic wave at the electron cyclotron frequency,

Ωc,e =
eB

me

. (3.1)

An oscillating electric field in phase with the electron orbit will indefinitely en-
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Figure 3.1: ECR thruster firing at 30 W forward power and 10 sccm-Xe flow. Photo
credit: Benjamin Wachs.

ergize the particle. In this way, these sources are able to produce a plasma with a

high electron temperature. Such a plasma is ideal for a magnetic nozzle. Given the

conversion from thermal to bulk energy, a high temperature implies that more energy

is available per ion, which yields an increased specific impulse.

During this work, we operated on two separate iterations of a single ECR thruster.

The first prototype consisted of a set of annular, permanent magnets made from

neodymium mounted internally to the thruster behind the chamber. It also had

a single inlet for propellant flow into an intermediate chamber. This chamber was

connected to the main discharge by 12 holes spaced symmetrically around the back of

the discharge chamber. The walls were made of aluminum, but a ceramic plate was

used on the back wall to separate the connection it from the plasma. This plate had

a radius that was one half of the total back wall radius. Both the diameter and the
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Figure 3.2: Schematic of thruster operating in Junior with coaxial power cables, flex-
ible gas flow lines, external hardware, data acquisition, and thruster body
cutout.

length of the discharge region was 25 mm. A 1mm diameter antenna was mounted

internally on centerline and was made of copper. It was connected to a TNC feed

with solder. We operated the antenna at 2.45 GHz, which corresponds to a resonant

frequency of 875 Gauss.

The thruster used in Chap. VI was similar to the first, but had several changes.

First, we replaced the copper antenna with graphite to lower sputter losses. We also

modified the connection between the antenna and the power feed so that the antenna

was threaded onto the back wall. This design allowed us to operate more reliably at

higher powers. Finally, we replaced the neodymium magnets with samarium cobalt.
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Figure 3.3: Close up image of the thruster used in Chaps. IV and V. Note that the
version pictured is after we painted it black in an attempt to maintain
lower operating temperatures.

Figure 3.4: Close up image of the thruster used in Chap. VI. Also pictured here is
the thrust stand that it was mounted on, which is not the subject of this
work.

3.3 Junior vacuum facility

We conducted all of these experiments in the Junior vacuum facility at the Univer-

sity of Michigan. Junior is a 1m diameter by 3m length, cylindrical vacuum chamber
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Figure 3.5: The Junior vacuum chamber.

depicted in Fig. 3.5. The primary pumping mechanism for the chamber is a cryogenic

plate mounted underneath the thruster. This pump is fueled by chilled helium and

maintains a pumping speed of 32,000 L/s on xenon.

While operating the thruster in Junior, we performed several sets of diagnostic

tests. The first of these is the Langmuir probe, which we used to determine back-

ground plasma measurements.

3.4 Langmuir probe diagnostic

Langmuir probes have been extensively used in plasma physics for almost a century

[71]. The fundamental process is relatively simple– we may understand various local

parameters about a plasma from applying a voltage to a conducting metal immersed

in the plasma and reading its current. However, the details of this analysis vary

depending on the plasma and probe characteristics.

Langmuir probes operate on the principle of accelerating ions or electrons down a

sheath potential. The total current drawn is a direct function of the voltage applied.
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Figure 3.6: Example Langmuir probe trace from this experiment taken at (r, z) =
(30, 45) mm with primary current regions and plasma potential φp labeled.

In general, the current drawn is a balance between electrons and ions fluxing to the

probe, with the bias itself repelling portions of either species. Performing such a sweep

determines a current-voltage (I-V) characteristic, an example of which we show in Fig.

3.6. This trace consists of three primary areas defined by two extremes.

In the first extreme, a strong negative bias will repel any electrons, and any

current collected is made up of only the ions. In an ideal sense, ions accelerate to

such a barrier at the Bohm speed,

uB =

√
Te
mi

. (3.2)

Assuming this limit and neglecting higher charge states yields an equation for the ion
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number density,

ni =
Ii,sat
ApeuB

(3.3)

where Ap is the total area of the probe. While this is a useful approximation, the

assumptions embedded in its derivation may be prohibitive. The most important

one is the so-called thin-sheath approximation. This approximation states that the

characteristic length of the probe (the diameter for a cylindrical probe) is much less

than the Debye length, which is defined as

λD ≡
√
ε0Te
nee2

(3.4)

and characterizes the length of the sheath. When λD << rp, approximating the

current from the Bohm speed is generally accurate. However, for the plasmas used

in this study, implementing a probe large enough to fulfill this criterion downstream

would have drawn a significant portion of the total electrons present in the plume.

We thus implemented probes that had a diameter on the same order as λD. In this

regime, we must turn to a more complicated theory to accurately characterize the

plasma.

When the sheath and probe are of comparable lengths, it is recommended to

apply orbital motion limited (OML) theory [79]. In this paradigm, there is a chance

that an ion entering the sheath may “fly-by” the probe without being collected. In

this regime, the ion current does not saturate at low biases, but rather continually

increases as VB is driven more negative. The ion saturation current as a function of

VB is then

Ii,sat =
eniAp
π

√
2e(VB − φp)

mi

. (3.5)
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Once we know φp, we may apply linear regression on Ii,sat(VB) to find ni.

When not in the ion saturation regime, the finite electron current can be approx-

imated as an exponential,

Ie = Ie,sat exp

(
VB − φp
Te

)
(3.6)

where Ie,sat = eneAp

√
eTe

2πme
is the electron saturation current. This value arises as a

result of space charge limitation, which is a fundamental limit that appears in plasma

current across a potential drop. Above the electron saturation current, this idealized

theory predicts a constant value. As a result, the current draw at Vb = φp is predicted

to be non-differentiable at φp.

In practice, however, the probe current continually increases past φp. This trend

results from the fact that the collection area is not strictly the area of the probe–

rather, the area defined by the sheath may be a more accurate value (although, as

we will see, even the validity of this assumption is limited). Continually increasing

the bias expands the sheath, increasing the current collected. However, this process

typically maintains a current draw trend that is slower than exponential. The result

is a relatively clear cutoff between the two regions, as indicated by the φp label in

Fig. 3.6.

Practically, the cutoff point may be specified by finding the maximum of the first

derivative of the I-V characteristic. This point represents the upper limit of the

exponential trend, before which the graph begins to flatten. As such, we define φp

for these experiments as the bias voltage at which the derivative in the current trace

is maximized. For these measurements, we first applied a LOESS (locally estimated

scatterplot smoothing) algorithm to the data. This method implements a local second

order polynomial to find fit parameters throughout the domain, and resulted in a

single maximum value of the derivative for every case.
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The final parameter that we find from an I-V characteristic is the electron tem-

perature. While there are multiple ways to determine the temperature, they typically

rely on the assumption that the electron energy distribution function is Maxwellian,

which results from a dominant collision processes. However, it has been observed that

the electrons in magnetic nozzles are not necessarily in equilibrium, so this assumption

may not be useful [32, 126, 16]. For this reason, we instead apply the Druyvesteyn

technique [37] to analyze the electron energy distribution function directly and define

the temperature based on its second moment.

This process makes no assumptions about the distribution function of the elec-

trons, but instead uses the I-V characteristic to analyze the electron energy distribu-

tion directly. Druyvesteyn showed that the EEPF could be found from the second

derivative of the I-V characteristic as

f (E) =
2

e2Ap
(2meeE)1/2 d

2Ie
dE2

(3.7)

where E = φp − VB. Once we have measured the electron distribution function, we

may take its second moment to derive the temperature. This value is then given by

Te =
2

3ne

∞∫
0

Ef(E)dE . (3.8)

To find the second derivative of the I-V characteristic, we applied a FLOESS technique

to smooth the data enough to find a reliable value. Figure 3.8 shows an example

probability function found through this analysis.

For this work, we used tungsten probes with a length of 5 mm and a diameter

of 1 mm. We used a Keithley 2400 sourcemeter to bias the probes from -70 to 70

V and read the current to determine the I-V characteristic. This device measured

current at each point for .2 s and returned the average value recorded. We con-

nected the sourcemeter to a data acquisition computer, with which we commanded
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Figure 3.7: Schematic of the Langmuir probe diagnostic as used in this work.

the sourcemeter through a LabView program. Figure 3.7 presents the schematic of

connections used in this test.

A possible shortcoming of the Langmuir probe diagnostics is its lack of observation

of the temperature in the direction perpendicular to the magnetic field. We note that

it is likely that the measured temperatures are in the parallel direction, given that the

fields likely reduce electron current in the perpendicular direction. As described in

Chap. I, ECR plasma sources operate by energizing the electron translational modes

perpendicular to the magnetic field, and it is the perpendicular modes that determine

thrust and provide energy for drift-driven instabilities. Since most of the energy

deposited into the plasma is in the perpendicular direction, some mechanism must

be present to convert this energy into the parallel direction for these measurements

to be meaningful.
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Figure 3.8: Example electron energy probability function. To generate this graph,
a LOESS technique was applied to the raw electron current to find its
second derivative.

One such mechanism is the conservation of magnetic moment [26]. The general

idea behind this concept is that, in addition to energy, a particle traveling along an

slowly-varying magnetic field must also exhibit conservation of magnetic moment,

defined as

µ =
mv2
⊥

2B
. (3.9)

Thus, in an expanding (i.e. decreasing) magnetic field, the perpendicular velocity of

the particle will decrease. However, given the fundamental nature of the conservation
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of energy,

m

2
(v2
⊥ + v2

‖) = const, (3.10)

this energy must be translated into the parallel mode. We may perform a cursory

analysis by assuming a particle has perpendicular velocity v⊥,0 at magnetic field B0

and zero parallel velocity. We may then combine Eqns. 3.9 and 3.10 to find the

moment of isotropy, v⊥ = v‖ at B = B0/2. Assuming the ECR value of B0 = 865

Gauss, we find that isotropy occurs at B = 432.5 Gauss. The maximum magnetic field

in the downstream measurement domain is ≈ 300 Gauss (Fig. 3.10), implying that

this point has already been reached everywhere we have taken probe measurements.

Given that the perpendicular energy should have been mostly converted into par-

allel energy in the downstream measurements presented in this work, it may appear

that our field-aligned measurements are ignoring the perpendicular component of tem-

perature entirely. However, it is likely that these temperatures are in fact comparable.

While the magnetic moment conservation analysis neglects electron collisions, we see

through our measurements that the electrons are Maxwellian to a good approximation

(Fig. 3.8). This type of distribution requires an effective collisionality to generate,

implying that we may have such a source in the plasma. While classical collisions are

unlikely to be present in high value, it may be that the waves discussed in Chaps.

IV and V induce an effective collisionality that drives the electrons towards such an

equilibrium state [39]. Such an analysis is outside of the scope of this work. However,

taken together, the facts that the measurement domain is downstream of the isotropy

point and the generally Maxwellian nature of the electrons imply that we may assume

that the parallel (measured) temperature is the same as the perpendicular value.
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Figure 3.9: Image of Hall probe setup on three-axis motion stages.

3.5 Magnetic field measurement

We characterized the applied magnetic field strength by using a Lakeshore 460

3-axis Gaussmeter and a 3-axis Hall probe. We mounted the hall probe on a set

of orthogonal motion stages outside the chamber at atmosphere and measured the

magnetic field in 5 mm increments. We then repeated the measurement over the

same area with the thruster absent to determine the earth’s magnetic field directly

and subtracted the earth field from the applied field. We present the results from this

test in Fig. 3.10a, where we represent the magnitude of the field in the contour plot

and the direction by the overlaying streamlines. We further present a picture of the

Hall probe used on the motion stages in Fig. 3.9.

After understanding the background plasma properties and magnetic field, we next

applied a cross-correlation technique to determine the frequencies and wavevectors of

wave propagation in the plume. This theory is based on the ion saturation portion

of the Langmuir probe I-V characteristic.
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Figure 3.10: Map of the measured magnetic field with magnetic field line overlay.

3.6 Ion saturation probes

To measure the presence of waves, we implement time-resolved readings of Lang-

muir probes in the ion saturation limit based on the method of Beall [13]. Standard

Langmuir probe theory relates the measurement of ion saturation current to the num-

ber density as isat ∝ ni
√
Te. Assuming quasineutrality on the timescale of a wavqe

oscillation ñi ≈ ñe allows us to relate the oscillations in these readings to oscillations

in electron number density. We must finally assume isothermality of the electrons to

let T̃e = 0.

While isothermality is fundamentally an assumption, we may crudely justify its

use by returning to the polytropic equation of state,

Te
nγ−1

= const. (3.11)

We may use the polytropic assumption to estimate the relative contributions on

ion saturation current from number density and electron temperature contributions.
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This can be seen by detailing the relative fluctuation in ion saturation current by

1

isat

dIsat
dt

=
d ln isat
dt

=
d lnn

dt
+

1

2

d lnTe
dt

(3.12)

=
d lnn

dt
+
γ − 1

2

d lnn

dt
. (3.13)

We identify the first and second terms on the right hand side of Eqn. 3.13 as

the contribution from number density and temperature, respectively. The polytropic

index γ, as discussed in Chap. II, takes limits of 1 and 5/3. Within these limits,

we see the relative contribution from the electron temperature is at most 1/3 of the

contribution of the number density fluctuations. Thus, even in the fully adiabatic

limit, the electron temperature fluctuations are likely less than the number density

oscillations. For these purposes, we will neglect oscillations in temperature in this

analysis.

Given the lesser significance of the temperature fluctuations in ion saturation

current measurements, we approximate the measurements as

ĩsat
isat
≈ ñe
ne
. (3.14)

In doing so, we may perform Fourier analysis on a time-resolved single-probe mea-

surements to find the dominant frequency modes in the plasma. However, we would

like to measure the dispersion itself. The Beall technique does so by taking simulta-

neous measurements from two probes with a known spatial separation ∆x. Assuming

that a number density oscillation at frequency ω and wavenumber kx maintains co-

herency between the two probes, its value will propagate as

ñe(x, t)

ne
=
ñe
ne

(ω) exp(−iωt+ ikxx). (3.15)
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Taking simultaneous measurements of isat at x1 and x2 provides

ĩsat,1
isat,1

=
ñe(ω, kx)

ne
exp(−iωt+ kxx1) (3.16)

ĩsat,2
isat,2

=
ñe(ω, kx)

ne
exp(−iωt+ ikxx2). (3.17)

Assuming the wave maintains the same frequency and amplitude, we may deter-

mine the wavenumber directly by the phase difference as measured by each probe:

kx =
∆θ

∆x
(3.18)

where ∆θ is the phase difference as measured by each probe. We may apply a Fourier

transform to the probe reading to get F (ñ/n). We may in turn use this value to

determine the magnitude and argument of both probe readings. Knowing ω, x1, and

x2 will then allow us to determine kx. First, we have, for any complex number s̃ = eiθ,

θ = tan−1

(
Im(s̃)

Re(s̃)

)
. (3.19)

We may then use the fact that

F(s2)

F(s1)
= ei(θ2−θ1) (3.20)

to find an expression for the phase difference,

θ2 − θ1 = tan−1

(
Im (F∗(s1)F(s2))

Re (F(s1)F∗(s2))

)
(3.21)

where an asterisk indicates a complex conjugate. With this expression, we are able to

determine the phase difference in a wave at frequency ω provided only that we know

the distance between the probes. Figure 3.11 illustrates this process.
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Figure 3.11: Illustration of wave probe schematic.

One important issue arises with this understanding of phase difference. Namely,

there is a fundamental upper limit in the wavenumbers that we are able to resolve.

Since ∆θ exists in the range −π < ∆θ < π, we fundamentally have a maximum

wavenumber of

kmax =
π

∆x
. (3.22)

This relation states that any wave that performs more than a full oscillation between

the probes will be resolved at a different wavenumber,

kresolved = k − 2πN

δx
(3.23)

where N is the number of oscillations that the wave has undergone. If we have a

reason to believe this to be the case, we may alias the resulting wavenumber by
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Figure 3.12: Aliasing of an example dataset from ion saturation probes.

shifting the measured value per Eqn. 3.23. We illustrate this process in Fig. 3.12.

In this work, we mounted a total of five probes to a set of three-axis motion stages,

as illustrated in Fig. 3.13. These were arranged in two sets. The first set consisted

of a pair of probes separated vertically and pointed in the −r direction. We used

these to measure azimuthal propagation. The other set had three probes pointed

downwards in an “L” shape, which we used to measure propagation in the r and z

directions. We biased each probe to -45 V to ensure that the collection was within

the ion saturation regime of the plasma and could approximate ion number density.

We separated the azimuthal probes by 5 mm and the r − z probes by 7 mm.

We connected the probes to a 100 Ohm high speed resistor and measured the

voltage across it using an oscilloscope at a rate of 5 MHz, providing a maximum

resolvable (Nyquist) frequency of 2.5 MHz. We read data at each point for 1 s. Doing

so allowed us to repeat the analysis multiple times, resulting in a statistical spread of

intensities at each frequency.

To complete the Beall analysis, we represent the intensities in a two-dimensional

plot in (ω, k) space. Each point will take an intensity given by the average power

present at the small point in the ranges [ω, ω + ∆ω] and [k, k + ∆k]. The resolution

∆ω is determined by the time resolution and temporal bin size to be 50 Hz. We
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Figure 3.13: Drawing of primary components of the experimental setup.

further binned the wavenumber axis in 100 equally-spaced bins for each dataset.

Performing this binning technique allowed a statistical spread of the measurements,

which provides the finite width of the measurement seen in Fig. 3.12.

3.7 Error analysis of probe-based measurements

Throughout this work, we will encounter two forms of uncertainty on both of the

above probe-based measurements: statistical and systematic. Statistical uncertainty

stems from the fact that we may never be fully confident about any direct measure-

ment. For example, if we are slightly uncertain about the probe dimensions, it may

propagate into an error source in the measurement. To account for this discrepancy,
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we must assume that these measurements were wrong by a small amount. Once we

have uncertainty in the probe dimensions, the voltage we were applying, and the cur-

rent that was being drawn, we may propagate these values through the formulae for

the Langmuir probe analysis to arrive at final uncertainties for the measured values

[79]:

∂Ap
Ap
≈ 2π

Ap

√
(L+ rp)

2 ∂r2
p + r2

p∂L
2 (3.24)

∂Te
Te
≈

√
2

(
∂VB
∆VB

)2

+ 2

(
∂Ie,sat

Ie,sat

· Te
∆VB

)2

(3.25)

∂ne
ne
≈

√(
∂Ie,sat

Ie,sat

)2

+

(
∂Ap
Ap

)2

+

(
∂Te
2Te

)2

(3.26)

where ∂ indicates absolute uncertainty in a value, Vb is the bias voltage, Ie,sat is the

electron saturation current, L is the length of a cylindrical probe, rp is its radius,

and Ap is the total probe surface area. For the purposes of this work, we take the

uncertainty in both probe dimensions to be 5%, and the uncertainty in the current

measured to be 1%. The voltage step size was ∆VB = 1 V.

In results derived from these values, it is not always as simple to propagate these

uncertainties by standard techniques. For example, our calculation of γ in Chap.

V will require solving a complex equation of area-averaged plasma properties and

their derivatives. Moreover, such a calculation is fundamentally limited by values of

1 and 5/3. Standard propagation techniques may result in a bound that is outside of

physical possibility.

To get around these issues, we implement a technique known as “bootstrapping.”

This process involves randomly sampling the background parameters a large number

of times, solving for the required quantity, then generating a distribution of the results.

The error bars may then be defined by the 5th and 95th percentiles of the resulting
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distribution. We apply this method to calculate γ in Chap. V and the anomalous

collision frequency νan in Chaps. IV and V, which requires a statistical average of an

integrated quantity (ñ/n).

3.8 High speed imagery

Our final diagnostic involved high speed imagery of the plasma. This method

allows noninvasive observation of plasma oscillations. The fundamental assumption

that enables this process is the relative equivalence of pixel intensity to number den-

sity,

Ĩ

I
∝ ñe
ne

(3.27)

where I represents a pixel intensity. This assumption is predicated on the concept

that the light emission by a plasma is due to electron impact collisions with either

ions or neutrals. This method has been used successfully to observe waves in Hall

thruster channels [81, 82] and hollow cathodes [60, 53]. In making this assumption,

we may treat the pixel readings similarly to the ion saturation probe measurements in

the previous section. Namely, for each pixel p, we will define the intensity |F(Ip(t))|

and the phase arg (F(Ip(t))) to determine the primary propagation characteristics of

this mode.

It is important to note that the readings from this measurement will be line

integrated. This trait implies that it will measure values from every point in a line

that is within a certain region from the focal point, which we chose to be the end of

the antenna. Previous work has shown that this fact will lessen the total oscillation

magnitude (compare magnitudes from Refs. [60] and [62]). For this reason, this

measurement system will not provide us with a reliable measure of the wave-induced

collision frequency, since the oscillation magnitude will likely be damped. However,

80



it will prove useful in analyzing the global modes present in the system.

To this end, we will again analyze the results in two ways. We will first record

the data and store it in an m× n× l array, where the image height is m pixels, the

width is n pixels, and the length is l frames. We will first divide out the mean from

each pixel, such that the resulting intensity is

Ĩi,j(t) = T
Ii,j(t)∫
Ii,j(t′)dt′

− 1. (3.28)

where T is the timespan of the measurement. In so averaging the immediate results,

we normalize the values to ensure uniform scaling on any oscillations present. As

a result of this normalization, we are also able to more directly analyze the relative

fluctuations in intensity, which we take as a proxy for oscillations in number density.

Next, we again apply Fourier analysis to convert the intensity into frequency space,

Ii,j(ω) = F(Ii,j(t)). (3.29)

We understand the results from the Fourier analysis in two ways. First, we may

look at the magnitude of the oscillations |Ii,j(ω)|2, which provides the power spectral

density. We will look at the amplitude measurement both integrated over the entire

image and by the individual pixel. While we cannot take this as an absolute value,

it still proves useful to determine where in the plasma any oscillations are occurring.

The second analysis method will involve the phase of the Fourier transform. Sim-

ilar to the wave probe analysis, we will use this characteristic to determine the prop-

agation characteristics of the wave. One advantage of the high-speed imagery is that

we are now able to directly observe global oscillations. In particular, we will dis-

cuss these results in terms of azimuthal modes. Since we are unable to resolve axial

81



propagation, we will assume a wave character that takes the form

Ij,k(ω) = A(r)eimθ. (3.30)

Here, A(r) is the amplitude of the wave, which we will assume to vary only with

radius r. The mode is m, which is a nonnegative integer. The phase then varies with

mθ, where θ is the azimuthal coordinate. In applying this method, we may visually

observe global oscillations in the plume.

For this experiment, we used a Fastcam SA5 with a variable lens with focal lengths

between 18 and 135 mm to observe the plasma in the discharge, as depicted in Fig.

3.15. We took 1 s measurements at 300,000 fps to analyze the presence of any low

frequency modes. This framerate allowed us to take 64×256 pixel imagery. In Chap.

VI, we will present these results and discuss their implications for wave presence

in magnetic nozzles. Figure 3.14 shows a schematic of how this experiment was

arranged in Junior, and Fig. 3.15 shows a picture of the Fastcam mounted outside of

the chamber.

3.9 Conclusion

In this section, we have introduced the experimental methods we used for this

work. We first described the thruster, an ECR source that we operated in the Junior

vacuum facility. We then discussed the Langmuir probe techniques that we used

to determine the steady-state plasma values and the cross-correlation technique we

applied to observe wave presence. We finally explained how we used high-speed

imagery to determine global characteristics of the low-frequency mode in a noninvasive

way. In the next chapter, we present and discuss the results of the Langmuir probe

and wave probe tests as they relate to cross-field transport of the electrons.
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Figure 3.14: Arrangement of high speed imagery experiment (not to scale).

Figure 3.15: Picture of the high-speed camera mounted on a tripod outside of Junior
with attached lens.
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CHAPTER IV

Cross-Field Momentum Transport from a Lower

Hybrid Drift Instability

4.1 Introduction

In this chapter, we present the results of the probe-based measurements of both

waves and steady-state plasma parameters and determine to what extent they influ-

ence electron cross-field transport. We first present the details of the measurement,

including the magnetic field and the measurement domain. We analyze in turn the

steady-state Langmuir probe measurements and use them in conjunction with wave

measurements to determine the effective collision frequency in the plume. We find

that the transport induced by waves is likely significant in the evolution of the plasma

and further determine that they have a detrimental impact on thruster performance

by contributing to divergence of the ions.

4.2 Experimental methods

For this work, we mounted a set of probes downstream as described in Chap. III to

measure time-resolved ion density and relate their oscillation magnitudes to effective

wavenumbers. We further used one probe on the azimuthal arm to take steady state

measurements as per Chap. III. We measured half of the plume beginning 3 cm
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Figure 4.1: Image fo the thruster in Junior with probes mounted on three-axis motion
stages and cooling lines.

downstream of the thruster exit and extending to 14 cm downstream with a tapered

boundary in the r direction, as illustrated in Fig. 4.2b. We cooled the thruster body

by flowing water through a copper coil wrapped around the thruster body. Figure

4.1 shows an image of this setup.

Figure 4.2b shows the microwave-driven plasma source we used for this study that

was described in more detail in Chap. III as well as the magnetic field topology and

coordinate conventions. We operated the thruster at 17 W delivered power and 2

sccm-Xe flow. During this test, we operated the thruster in Junior, which provided

an operating backpressure of 4.3 × 10−6 Torr measured at the wall by a Stabil ion

gauge during thruster operation. We employed two sets of translating probes to

measure the time-varying and steady-state plume properties in the MN as shown in
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Figure 4.2: (a) Magnetic field contours, ~B, and strength B of the applied field, and
(b) Image of the MN operating on xenon along with notional probe ori-
entations (not to scale) and coordinate conventions. The probes were
operated in two orientations. In the first, their axis of symmetry was in
the θ̂ direction (out of the page). In the second, it was in the -r̂ direction
(towards centerline). The thruster has a diameter of 25 mm at the exit
plane (z = 0).

Fig. 4.2b, which provided steady-state values as per the analysis in Sct. 3.4 and wave

measurements using the analysis technique described in Sct. 3.6. We separated these

probes by 7 mm in the r and z direction and 5 mm in the θ direction.

4.3 Results

Figure 4.3 shows the measured ion density, plasma potential, and electron tem-

perature in the plume. As indicated in Fig. 4.3b, the monotonic decrease in density

downstream of the source is an indication of the expansion of the plume. The po-

tential profiles follow a similar trend, decreasing monotonically in magnitude from

the source. This potential profile is the consequence of an ambipolar field established

between ions and electrons and is responsible for ion acceleration. Similar plasma

property distributions have been observed in previous work [76, 31], and we therefore
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Figure 4.3: Two-dimensional maps of (a) ion density ni, (b) plasma potential φ, and
(c) electron temperature Te at an operating condition of 17 W power and
2 sccm xenon flow rate. The axial origin (z = 0) is defined to be at the
exit of the discharge chamber. (d) Radial profiles of each parameter at
an axial slice z = 120 mm.

expect trends similar to what we have observed.

While our trends in plasma properties match various previous works, we also mea-

sure a departure from one recent work from Little and Choueiri [77]. The prior work

observed a potential well appearing off-axis. The authors discussed this characteristic

as evidence of electron attachment to field lines. The physical reasoning therein was

that as electrons adhere to field lines but massive ions do not, the ions are free to flux

across the field at a greater rate. This process is then fundamentally limited by the

extent to which electrons are attached and the temperature of the ions, which dictates

their diffusion rate. The reason for this discrepancy may be that the electrons in our

device are more likely to diffuse across field lines and may exhibit a more upstream
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detachment point than the previous work, potentially as a result of the instabilities

that we are investigating. In this case, electrons would quickly follow them to nullify

any potential drop.

The potential instead decreases monotonically in the radial direction outside of r ≈

20 mm, with the exception of a small dip that appears closest to the the MN exit plane.

This latter feature may be a consequence of the presence of the central conducting

pin obstructing the plasma. According to this reference text, the formation of the

potential peak off center may be a response to upstream ions diffusing faster than

the more magnetized electrons due to a finite ion temperature. For the purpose of

this study, however, the most salient feature is the existence of strong density and

potential gradients off centerline and across the confining magnetic field topology.

These gradients drive the azimuthal drifts that can serve as the energy source for the

onset of instabilities. As we discussed in Chap. I, the dominant drifts in these devices

are the electron E×B and diamagnetic drifts given by

vD =
∇pe ×B

eneB
(4.1)

vE =
E×B

B
. (4.2)

We may calculate these velocities by taking the gradient of the data presented in Fig.

4.3 and further using the magnetic field vector shown in Fig. 4.2. We present the

resulting values of these two drifts in Fig. 4.4.

Through the results in Fig. 4.4, we see that the diamagnetic drift is uniformly

in the θ direction, whereas the E × B drift changes direction, as illustrated by the

dashed line. Upstream and close to centerline, it is positive as well, resulting from

the potential well on centerline (c.f. Fig. 3.6b). Progressing outwards or downstream

yields a transition into a negative value. However, the magnitude of this drift is
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Figure 4.4: Azimuthal velocities induced by the a) diamagnetic drift and b) E × B
drift.

dwarfed by that of the diamagnetic drift. We thus find that the electron drift main-

tains a diamagnetic character everywhere in the plume. We note that these results are

commensurate with the diamagnetic loop measurements by Roberson [96], who simi-

larly showed experimentally that the plasma currents on their device were universally

diamagnetic.

We may next discuss the results of the ion saturation probes. With this in mind,

we show in Fig. 4.5 examples of dispersion measurements in three directions (r̂, ẑ, θ̂)

at (r, z) = (25, 50) mm. These results show the intensity of relative ion saturation

fluctuations as a function of wavenumber normalized by the electron Larmor radius,

rL = mevte
eB

(3 mm locally), and frequency normalized by the ion plasma frequency

(4.4 MHz). Here we have corrected for an aliasing in wavenumber that stems from

the finite distance between probe tips by following the procedure in Ref. [61] and

concatenating the measured datasets, as described in Chap. III. This correction is

the reason for the duplicate structures, such as the traces in the upper left and lower

right of Fig. 4.5(b). The dispersion plots show that while there is little dispersion

in the radial direction, there is an evident relationship between frequency and wave

number in both the azimuthal and axial directions. This suggests the waves are

propagating in both directions with frequencies extending up to the local ion plasma
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Figure 4.5: Measured dispersion relation in the (a) radial, (b) axial, and (c) azimuthal
directions at the location z = 50 mm and r = 25 mm where the plot color
scale has been saturated to illustrate the trends. (d) The power spectral
density at the same point as (a)-(c), and (e) the power spectral density
at z = 110 m and r = 50 mm. The white and yellow lines in (c) are the
theoretical real solution and 10× the growth rate, respectively, of Eqn. 4.3
with confidence bars represented by dashed lines. Each plot presents
frequencies and wavenumbers normalized to the plasma frequency and
Larmor radius, respectively (left, bottom axes) as well as physical values
(right, top axes).

frequency. These characteristics are consistent with the physical interpretation that

instabilities can be driven unstable by gradient-driven electron drift in these devices.

Figure 4.5d shows the power spectrum corresponding to the dispersion plots in

Fig. 4.5(a)-(c). These results indicate that these oscillations are broadband and tur-

bulent in nature characterized by an inverse power law decay with frequency. We note
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that although we found that these azimuthal broadband modes persisted throughout

the measurement domain, at the downstream edge (z > 70 mm), we also observed

a more coherent oscillation superimposed on the power spectrum at approximately

13 kHz and a harmonic at 26 kHz (c.f. Fig. 4.5e). There were no unambiguous

trends in dispersion for these modes, though similar low-frequency oscillations have

been observed before in MNs and attributed to longitudinal ion acoustic or ioniza-

tion waves [36, 1]. We return to a further discussion of these modes in Chap. VI.

As the low frequency modes we measured did not appear everywhere and were not

unambiguously azimuthal, we focus here instead on a more detailed analysis of the

broadband oscillations in the drift direction.

To this end, we can interpret the dispersion measurements in the context of the

linear theory for drift-driven waves in low temperature plasmas. First, we note that

the azimuthal current is universally in the same direction as the diamagnetic current.

This suggests at least by correlation that the diagmagnetic drift is the dominant

energy source, since a wave connected to the E×B drift would change directions with

this drift according to Fig. 4.4b. Second, Fig. 4.5a-c shows that the perpendicular

wavelength is comparable to the electron Larmor radius. This implies that the wave

is characterized by finite Larmor radius (FLR) effects and is therefore likely kinetic in

nature. Finally, we measure finite propagation parallel to the magnetic field, implying

that electron motion along the fields during an oscillation

Taken together, these features of the dispersion suggest that the observed mode

may be a lower hybrid drift instability (LHDI) with finite parallel propagation [67,

21, 58]. As we explained in Chap. I, the LHDI with parallel propagation is driven

unstable by an electron pressure gradient; it propagates in the direction of the elec-

tron diamagnetic drift velocity [67, 22]; it is characterized by FLR effects; and in low

temperature, partially magnetized plasmas, it has been observed to exhibit a broad-

band power spectrum [22]. Moreover, the LHDI previously has been proposed as a
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dominant instability in higher power, fully-magnetized nozzles [92, 49] and appears

prominently in magnetic reconnection transport studies [33, 57, 97, 90, 21, 22, 12].

To analyze the LHDI in our MN, we consider a dispersion relation adapted from

the form derived by Carter et al. [22] in which they assumed a Maxwellian distribution

of electron speeds in Cartesian coordinates, allowed for finite propagation parallel to

the magnetic field and FLR. We presented this equation in Eqn. 2.115 but repeat it

here for completeness:

0 = 1−
ω2
pi

(ω + k⊥vE)2
+

1

k2λ2
D

[
1+

ω − k⊥vD
k‖vte

e−k
2
⊥r

2
L/2I0

(
k2
⊥r

2
L

2

)
Z

(
ω

k‖vte

)]
, (4.3)

where vte =
√

2Te/me is the electron thermal velocity, I indicates a modified

Bessel function of the first kind, and Z is the plasma dispersion function. Here we

have made the assumption that ions are much colder than electrons, Ti � Te and

that the phase velocity component in the parallel direction is larger than the parallel

electron drift, ω/k|| � ve||. This latter criterion is valid provided the electron drift

speed is ambipolar (i.e. comparable to the ion drift speed)[56, 85].

In order to compare the theoretical result to our measurements, we use the probe

results to estimate the terms in Eqn. 4.3. To estimate the field-aligned wavenumber

(k‖), we first fit lines to the wave intensity measurements in each direction. In doing

so, we approximately define a phase velocity as the slope in each direction, vφ,(r,z,θ) =

ω/k(r,z,θ). We then project the resulting wavevector onto the local magnetic field,

which results in the relation k‖/kθ = vφ,θB(vφ,zBz + vφ,rBr)
−1. This approximation

allows us to evaluate the relation between number density and plasma potential (Eqn.

4.3).

With these estimates, we then solve Eqn. 4.3 numerically for both real and imagi-
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nary components of the frequency as a function of perpendicular wavenumber, ω(k⊥).

Fig. 4.5 shows the result along with estimated confidence intervals. We generated

these trends by assuming the uncertainty in the plasma measurements (according to

Ref. [79]) is normally distributed, randomly sampling from these distributions, and

re-calculating the dispersion. The indicated results reveal that the real component of

the solution matches the measured dispersion within uncertainty. It is particularly

notable that the change in slope with wavenumber is also reflected by the theoret-

ical result. Moreover, the imaginary component of the frequency is positive for all

wavenumbers in the observed propagation direction, indicating that LHDI waves are

unstable and can spontaneously onset for these plasma conditions. Coupled with the

marked agreement with the real dispersion, this fact suggests that the wave is likely

LHDI.

We may repeat this measurement for every point in the plume at which we have

wave measurements. We present in Fig. 4.6 the resulting wave intensity plots with an

upper frequency cutoff of 400 kHz. We also show the radial and axial wave intensity

measurements in Figs. 4.7 and 4.8, respectively. Fitting lines to each of these points

and projecting the result onto the local magnetic field lines provides k‖, which is

necessary to solve Eqn. 4.3. We present the resulting map of k‖/kθ in Fig. 4.9.

With all of these values measured at every location, we are then prepared to

evaluate the LHDI dispersion relation throughout the plume. We present the real

solutions at each point as a white plot on each graph in Fig. 4.6. The growth rate

(not shown for clarity) was universally comparable to that depicted in Fig. 4.5c.

In repeating this analysis throughout the plume, we found that the LHDI was un-

stable at all locations in the plasma and that the real component of the predicted re-

lation matched the shape and direction of the measured dispersion everywhere. With

that said, there were some regions where the magnitude of the predicted frequency

differed by up to a factor of four from measurements. These areas were concentrated
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Figure 4.6: Beall measurements for each point in the plume with white plot over-
lay showing the real component of the solution to the LHDI dispersion
relation (Eqn. 4.3). On each graph, propagation to the right indicates
+θ. The black lines behind the intensity plots represent magnetic field
lines with the outermost line representing the last that originates in the
discharge region.

off center and upstream (r & 20mm, z . 70mm). This is not unexpected, however,

given the number of simplifying assumptions we employed Eqn. 4.3. For example,

these periphery regions near the vacuum interface have been shown to be character-

ized by effects not included in this derivation such as departures from quasineutrality
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Figure 4.7: Radial wave intensity plots for each point in the plume. On each graph,
propagation to the right indicates +r. The black lines behind the intensity
plots represent magnetic field lines with the outermost line representing
the last that originates in the discharge region.

[77]. The fact that we see marked agreement over the majority of the plume is quite

notable considering the simplifications made in deriving Eqn. 1.

Given the evidence that the observed modes are LHDI, we finally can turn to the

central question regarding its role in electron transport in the MN plume. Indeed,

the growth of the LHDI has already been linked to enhanced cross-field motion in a
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Figure 4.8: Axial wave intensity plots for each point in the plume. On each graph,
propagation to the right indicates +z. The black lines behind the intensity
plots represent magnetic field lines with the outermost line representing
the last that originates in the discharge region.

number of other plasma configurations [22, 87, 54]. To evaluate its potential impact

for our system, we adopt a quasilinear approach in which we introduce a transport

coefficient, an effective collision frequency, attributed to the LHDI. Physically, this

coefficient represents the rate at which the wave grows at the expense of the electron

momentum. As the electrons lose energy to the wave growth, they slow down in a
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Figure 4.9: Ratio of parallel to perpendicular wavenumber k‖/kθ. Black lines repre-
sent magnetic field lines originating from the discharge region. Positive
values represent downstream propagation.

manner that manifests as a resistive drag force. This drag coupled with the back-

ground magnetic field facilitates a cross-field (⊥̂) motion of the electrons. Following

Refs. [35] and [22] as described in Chap. II, the quasilinear form for the effective

collision frequency from the LHDI can be expressed as νeff = q
nemeveθ

< δEθδn >,

where δ indicates an oscillating property and angle brackets imply a phase average.

We use the theoretical expressions for these perturbed quantities from Eqns. 2.55,

2.105, and 2.59 to find
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where k =
√
k2
⊥ + k2

‖ is the total wavenumber, ñω denotes the density fluctuation for

the component of the LHDI spectrum oscillating at frequency ω, and the summation

is over all frequencies in the spectrum. To evaluate Eqn. 4.4, we use the measured

values of the plasma properties inferred from Fig. 4.3 and the linear dispersion (Eqn.

2.115) to relate ω and k⊥. For the density fluctuations at each frequency, we make

the approximation that the measured ion saturation current scales with the density

fluctuations, ĩsat/̄isat = ñi/ni ≈ ñe/ne as described in Chap. III [61, 48].

The effective collision frequency by itself, however, does not reveal much about

the evolution of the plasma. To this end, we introduce the Hall parameter,

Ωe =
Ωc,e

ν
, (4.5)

as the ratio of the cyclotron frequency to the collision frequency. This value is a

relative measure of the magnetization of a particle and indicates the number of orbits

the particle will undergo before experiencing an effective collision event.

Following this approach, we show the resulting Hall parameter using effective

collisions in Fig. 4.10b. For comparison, we also show the Hall parameter due to the

classical electron-ion collision frequency (Ref. [105]), defined in this situation to be

2.18× 10−11nT
−3/2
e for singly-charged xenon ions in Fig. 4.10a.

The resulting spatial plots illustrate that the Hall parameter attributed to the

LHDI is orders of magnitude lower than its classical equivalent, indicating that it

has a non-negligible impact on electron transport. Indeed, in the downstream region
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(z > 100 mm), the Hall parameter drops below 100, whereas classically, the Hall

parameter is over 10,000. While this decrease in Hall parameter is substantial, values

of 100 may still seem to imply confinement– electrons should not be able to cross

field lines if they orbit hundreds of times before a collision event. However, we note

that similar values have been determined to be sufficient to alter electron streamlines

substantially in other crossed-field low temperature plasmas [15]. Moreover, if we

assume an electron velocity in the r − z plane that is comparable to the ion velocity

[6] (around 10 km/s, estimated from a previous experiment on this thruster [122]),

we can calculate a mean free path corresponding to the effective collision frequency.

This value is around a centimeter, which is less than the thruster diameter and much

less than the transit length through the plume, implying that electrons are affected

by these effective collisions.

Furthermore, we may directly relate these results to previous studies on cross-

field electron transport in magnetic nozzles. A recent study by Little and Choueiri

[77] determined the impact of the electron inertia detachment mechanism (Chap. I)

on inducing cross-field transport. They devised a metric for determining the electron

detachment point based on the disappearance of the aforementioned off-axis potential

well, indicating that electrons were able to cross field lines to even out the electric

field. They then devised an estimate based on the electron inertia theory to predict

this value, finding agreement between the theorized and measured points to within

uncertainty. They further discussed the applicability of the field line stretching and

finite collisionality theories, concluding that classical collisions would need to be two

orders of magnitude more frequent to be significant in determining detachment. Our

results show that, at least for our device, the role of instabilities may account for this

two order of magnitude shortfall (Fig. 4.10). In light of these previous observations,

our results in Fig. 4.10 suggest that the role of wave-driven resistive effects in electron

transport cannot be ignored. [3, 77].
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Figure 4.10: Spatial dependence of the Hall parameter for assuming (a) classical and
(b) wave-driven collision frequencies. The axial origin (z = 0) is defined
to be at the exit of the discharge chamber.

With this in mind, this non-classical resistivity will have a direct impact on the

electron trajectories and thruster performance. To understand how, we may return

to the discussion in Chap. I, where we established the link between direction of the

azimuthal drift and the direction of transport. In the resistive case, an azimuthal

drift dominated by the diamagnetic drift will induce divergent transport, whereas the

opposite is true if the E × B drift dominates. As we have established in the results

from Fig. 4.4, the diamagnetic drift dominates universally.

Since the electron motion is diamagnetic, as the LHDI grows at the expense of this

drift, the effective azimuthal drag on the electrons combined with the magnetic field

will push the electron trajectories radially outward and down the pressure gradient.

This notably is in the same direction as predicted from FLR detachment [5, 77]. As

discussed in these previous works, the increased divergence of the electrons drives a

radially directed ambipolar field that pulls the ions away from thruster centerline.

Even the ions close to centerline that are confined by the off-axis potential peak (Fig.

4.3(b)) are likely affected, as increased radial transport of electrons would lower this
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barrier, allowing ions to expand as well. Although, the effect is likely smaller for this

population. The net effect qualitatively is an increased divergence and lower thrust.

However, we cannot quantify the degree to which this effect will adversely impact

thrust as we do not have a direct measurement of the ion and electron trajectories.

We also note that while the LHDI will drive divergent electron detachment, it cannot

be the only detachment mechanism for the electrons. Indeed, for the MN ultimately

to produce thrust, the electrons must detach inward to follow the more convergent

ions and maintain quasineutrality. This is in the opposite direction of motion that we

anticipate based on the non-classical, wave-driven effect. Thus, while we anticipate

based on our results that non-classical effects cannot be ignored in addressing the

electron dynamics of our MN, the problem of global detachment and subsequent

recombination of the species downstream remains an open question.

4.4 Conclusion

In summary, we have observed in this study azimuthally propagating waves in a

low temperature, partially magnetized MN subject to an expanding magnetic field.

We have determined based on linear dispersion relations that the observed instability

is likely an LHDI, and we have discussed the implications of this mode on the macro-

scopic transport properties of the nozzle. While we have only considered the LHDI

dispersion relation under the simplifying assumption of a uniform magnetic field, we

show here that this linear relation still appears to be valid–agreeing quantitatively

with wave measurements—in our expanding geometry. We have further explored the

effect that the LHDI has on electron transport and concluded that it can enhance

the effect of resistive transport by two orders of magnitude and in turn may lead

to divergence. The discovery of non-classical transport in this class of low temper-

ature plasma has broad implications in the field. Indeed, while turbulence-driven

cross-field transport is a well established phenomenon in large scale, higher energy
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plasmas such as those encountered in energy research [30] and astrophysical systems,

we have shown here that this effect is dominant in a lower temperature device. This

suggests that classical theory for transport may need to be revisited in a wider range

of low temperature plasma systems such as in probe analysis techniques [65, 106] and

confined plasmas employed for plasma material interactions [119]. For MNs in par-

ticular, our finding that non-classical transport may dominate the electron dynamics

is a paradigm shifting result for the understanding of electron detachment where his-

torically such resistive effects have been neglected. In the next section, we expand

our analysis of the LHDI to determine its effects on the electron energy balance.
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CHAPTER V

Impact on Heat Transport from a Lower Hybrid

Drift Instability

5.1 Introduction

In this section, we discuss the influence of the lower hybrid drift instability on

electron thermodynamics. We first summarize the relevant conclusions from Chap.

II and discuss in broad terms the influence of waves on heat flux and polytropic

index. We next present the results of the background plasma measurements in the

quasi-one dimensional sense. We then show the results from the wave-induced, field-

aligned collision frequency calculations and differentiate them from those calculated

in Chap. IV. We finally show the relevant results from the quasi-one dimensional

energy equation, including heat flux based on a Fourier law, Ohmic heating, and wave

heating.

5.2 Theory

Before presenting results, we will first show the final expressions for the values for

each wave-driven term in the energy equation that we will use in this analysis. From

Eqn. 2.63, there are three terms in this category– heat flux, resonant heating, and

Ohmic heating.
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To calculate heat flux based on a Fourier law, we require a form for the effective

collision frequency. We return to Eqn. 4.4 but specify it to the value in the field-

aligned direction. To this end, we must replace the azimuthal wavenumber with

the parallel wavenumber and the azimuthal electron drift with the relative velocity

between electrons and ions parallel to the applied field. The result takes the form

νeff,‖ =
v2
th,e

2(ue,‖ − ui,‖)
Im

{∑
ω

(
ñω
n

)2 k‖
k2

[
1 + (ω − k⊥vD)×

1

k‖vth,e
Z

(
ω

k‖vt,e

)
e−(kθrL)2/2I0((kθrL)2/2)

]−1
}
. (5.1)

Evaluating Eqn. 5.1 provides a new difficulty not present determining the az-

imuthal component. Namely, while we were safely able to assume that the relative

velocity between electrons and ions was the electron azimuthal drift, the field-aligned

velocity is more difficult to evaluate. Ideally, direct measurement of the velocity dis-

tribution functions for electrons and ions would provide this value. However, as these

were not available to us at the time of the experiment, we must make do with an

approximation.

To provide such an estimate, we recount several aspects of magnetic nozzle oper-

ation previously illustrated in Chap. I. The first concept is that of ambipolar flow.

While it is well understood that the electron and ion streamlines are likely not equal

at every point in the plume [3], the total flow of each species out of the system must

be equal to maintain charge balance. In the event that this ambipolarity does not

hold, the thruster will immediately charge. As a result, the charge species that was

escaping faster will be pulled back until balance is attained. For this reason, we begin

with the assumption that the velocities are equal as they exit the nozzle. Since we do

not have measurements at the exit plane, We will choose the point of this equality to

be our most upstream measurement point, z = 3 cm.

We will then incorporate two concepts to predict the evolution of the velocity
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of each species. For electrons, we recall that their progression downstream may be

modeled by an equation of continuity,

(neueAe)
′ = 0, (5.2)

which may in turn be integrated to find

ue(z) = ue,0
n̄e,0ūe,0Ae,0

n̄eA
. (5.3)

We further assume that the expansion area A is the effective area of the magnetic

nozzle. This assumption is valid neglecting significant cross-field transport, but may

break down if electrons separate from field lines. We will return to this assumption

in Sct. 5.4.

For the ions, we recall that the only significant force on this species is the electric

field. The equation of motion is

miui
∂ui
∂z

= −qi
∂φ

∂z
. (5.4)

We may then solve Eqn. 5.4 to find

ui(z) =

√
u2
i,0 + 2

q

m
(φ0 − φ(z)). (5.5)

This relation simply describes an exchange of energy between the plasma potential

and the ion population.

Finally, we must invoke one further assumption to determine a boundary condi-

tion. To this end, we reference the work by Wachs and Jorns [122], who directly and

noninvasively measured the ion velocity using laser diagnostics on the same device

used in the present work. They found a downstream velocity of ≈ 10 km/s, which
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we assume as an exit velocity for this work. With this assumption, we are able to

estimate the velocities of both the electrons and ions in this system.

The wave resonant term can be evaluated using the definition for u‖ (Eqn. 2.108),

neqeme〈Ẽ‖ · ue,‖〉 =∫
ne
mev

2
t,e

4

(
ñe
ne

)2

ω

(ω − kθvD,e) exp

(
−
k2
θv

2
t,e

2Ωc,e

)
I0

(
k2
θv

2
t,e

2Ωc,e

)
Z ′
(

ω

k‖vt,e

)
dω.

(5.6)

In deriving Eqn. 5.6, we have made the approximation that φ̃ ≈ Te
ñe
ne

. While this

simplification is not strictly necessary as we could use Eqn. 2.105 to substitute φ̃ for

ñe instead, this form is more tractable and will suffice for an estimate to the nearest

order of magnitude. We will shortly see that this term is insignificant in the energy

equation, and any correction that we may be missing is not enough to allow the wave

resonant term to contribute to the energy balance.

Finally, to calculate ohmic heating, we directly apply the collision frequency results

from Fig. 4.10 to determine the effective resistivity and take the product with the

total azimuthal velocity,

u ·Reff ≈ mene(vD + vE)2νeff,θ. (5.7)

Here we neglect the resistivity in the field-aligned direction, since the relative velocity

is several orders of magnitude less than the azimuthal. We have further neglected

any ion swirl that may be present, which is likely valid given the large mass of this

species.
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5.3 Results

Now that we have specified the forms required to calculate the appropriate terms

in the energy equation, we next present the results of this analysis. We first present

the magnetic field and steady-state plasma properties in the quasi-one dimensional

paradigm then show each wave-driven term. We then predict γ based on the estimated

heat flux value.

5.3.1 Magnetic field

To define the magnetic nozzle area, we may alternatively describe the magnetic

field profile by a streamfunction. This substitution is valid assuming that the currents

present do not influence the magnetic field. Under this assumption, Ampere’s law

reads

∇×B = 0. (5.8)

We may also use the concept that the curl of a gradient is zero to define

B = ∇ψ (5.9)

where we define ψ as the magnetic streamfunction. Assuming azimuthal symmetry,

we find the partial derivatives of ψ as

Br = −1

r

∂ψ

∂z
(5.10)

Bz =
1

r

∂ψ

∂r
, (5.11)

with the boundary condition ψ(r = 0, z) = 0 [3, 76] and we have arbitrarily assigned

the sign convention such that ψ grows away from centerline and ∇ψ · B = 0. This
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Figure 5.1: Area-averaged magnetic field strength (solid) and effective nozzle area
(dashed) over the measurement domain.

latter relation implies that ψ is constant along a field line, allowing us to use its value

to define the shape of the nuzzle. Given these characteristics, we may define the nozzle

area as the region with ψ < ψ0, where ψ0 is the streamfunction value at the edge of

the exit plane, (r, z) = (12.5, 0) mm. Figure 5.1 presents the area-averaged magnetic

field and the nozzle area. Since the magnetic field must maintain zero divergence, we

have in the quasi-1D sense (BzA)′ = 0. Figure 5.1 shows that these two values indeed

vary inversely to each other according to this law.

5.3.2 Steady-state plasma values

With a definition of the expansion area, we are prepared to determine the back-

ground plasma characteristics from the Langmuir probe in this paradigm. To find

these measurements, we take area-averages of the results in Fig. 5.2 over the magnetic
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Figure 5.2: One-dimensional plasma properties.

nozzle area. This equivalence is found by

n̄e(z) =

∫ R
0

(z)2πrner, zdr

A(z)
(5.12)

where R is the maximum radius of the magnetic nozzle at an axial distance z. We

repeat the same calculation for the electron temperature and plasma potential to find

T̄e and φ̄. Figure 5.2 presents the results of this calculation. In this graph, error bars

are found by standard error propagation techniques [79].

We next present the results of the velocity estimates from Eqns. 5.5 and 5.3 in

Fig. 5.3. The ion velocity increases downstream, as is expected given the decrease in

plasma potential. The electrons similarly accelerate as they expand, but to a lesser

extent. This discrepancy may appear to indicate that total current ambipolarity is not

conserved universally. However, this discrepancy can be resolved in two ways. First, it

is possible that the effective area that we have used to define the electron expansion is

not in fact the one they follow. If cross-field transport occurs, the electron streamlines

will be different than the magnetic field, and the effective area would change. Given
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these results, it appears that the area would have to be smaller than the area of the

magnetic nozzle. However, even if the area of electron expansion corresponds to the

magnetic field perfectly, the difference between these velocities can expected given

the ways in which we have defined them. Namely, while the electron velocity can be

interpreted as an average velocity through the streamtube, the ion velocity is instead

effective, merely approximated by the area-averaged potential drop, and thus may

not correspond to the actual average. We take this value here to be representative in

determining the general velocity difference between electrons and ions. An alternate

scheme may be used to enforce current ambipolarity, but these require a full two-

dimensional treatment to find the relative velocity everywhere, which is outside of

the scope of the present work.

5.3.3 Effective collision frequency

Having defined the background plasma characteristics, we first discuss the field-

aligned, effective collision frequency used in the Fourier law to calculate heat flux.

To this end, we first calculate the local value of νeff,‖ everywhere in the plume, then

area-average them to find ν̄eff,‖ as per Eqn. 5.12. We further calculate the classical

equivalent representing small angle collisions between electrons and singly-charged

ions,

νe,i = 2.18× 10−11 ne

T
3/2

e

. (5.13)

Once we have performed this calculation, we are able to estimate the downstream

heat flux. Figure 5.4 presents the total heat flux downstream qA for both classical

and wave-driven collisions with the reference value of 17 W representing the total

amount of power delivered to the thruster. We first observe that classical collisions

predict heat flux roughly four orders of magnitude greater throughout the measure-
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Figure 5.3: Ion (dashed) and electron (solid) velocities in the measurement domain.

ment domain. This trend is the result of relatively low densities and high electron

temperatures, implying that the classical collision frequency is low. Wave-driven

collisions, however, predict a total heat flux comparable to the total power available.

Indeed, the prediction upstream is lower than 17 W, representing a physically possible

value. As it increases downstream with the increased relative electron-ion velocity, it

grows to roughly a factor of 5 higher than the delivered power, although the measured

value is still within uncertainty. This analysis thus represents a drastic improvement

over the classical prediction.

5.3.4 Wave-driven energy terms

After determining the heat flux, we may discuss its applicability to Eqn. 2.63 in

relation to the other wave-heating terms. We present the area-averaged value of each

term in Fig. 5.5. These results show that the resonant heating term experiences a

decrease downstream. More importantly, however, is the fact that it is dwarfed by

several orders of magnitude by the heat flux term. The divergence of the heat flux

is thus the dominant term on the right hand side. For this reason, we will neglect
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Figure 5.4: Heat flux as predicted by a Fourier law with classical, electron-ion colli-
sions (x) and wave-driven, effective collisions (o). The dash-dotted line
represents the total power delivered to the thruster during this experiment
(17 W).

Figure 5.5: Area-averaged wave heating (solid) and heat flux term (dotted) as applied
to the quasi-1D energy equation.

resonant heating in the remainder of the analysis in this section.

Having defined the significant contributions of the wave presence to energy bal-
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Figure 5.6: Gamma as directly measured with the Langmuir probe (solid, error in
grey), as predicted by classical theory (x), and as predicted by wave-
driven theory (o).

ance, we may determine how this value impacts γ. We return to Eqn. 2.74 to find γ,

repeated here for convenience:

γ = 1 +
meueνe
αTe

+ T ′e
Te

3
2
meueνe
αTe

− A′

A
− T ′e

Te
+ ν′e

νe
− T ′′e

T ′e

. (5.14)

We can again perform this calculation for both classical and wave-driven collisions

and further compare it to the directly measured value, γ = 1+ln(Te)
′/ ln(ne)

′ [7]. For

the measured and predicted values of γ, we define errors by repeating the analysis

with randomly selected plasma values within error bars. The uncertainties presented

represent the 5th and 95th percentiles of the resulting distributions.

We present the results in Fig. 5.6. Here, the solid line represents the measured
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value, and the shaded region is the uncertainty. The uncertainty of the predicted

values are shown as standard error bars. The value that we measure begins as ≈ 1.15,

then gradually increases to 1.3. These values fall well within the range of previously

measured values [116]. The scaling of classical collisions predicts values within a

few percent of the measured values. This result is expected, as it has been seen

in previous work [75]. This results primarily from the collision frequency derivative

term in Eqn. 5.14, as the term involving the magnitude of classical collisions itself

is insignificant. The wave-induced collision frequency predicts a value slightly lower

than the measured one, maintaining a value of ≈ 1.1 with only a slight increase

downstream, although the error bars overlap with those of the measured values.

In these results, we confirm a finding of Ref. [75]. Namely, in predicting γ, it is

generally not the magnitude of the collision frequency that matters, but rather the

trends. In referencing Eqn. 5.14, the term involving the gradients dominates the

result. Indeed, it takes more than an extra order of magnitude over the effective colli-

sion frequency everywhere to change the prediction of γ by more than a percent. The

simple, Spitzer-Harm scaling of ν ∝ n/T
3/2
e accurately matches the trend in observa-

tion, but the relatively stronger trend downward in the effective collision frequency

decreases correlation with the observed value.

5.4 Discussion

We have seen so far that incorporating effective collisions predicts a physical heat

flux and γ that agree with measurements within uncertainty. However, we must

address several approximations that we have made in determining the Fourier law

used to determine these values. First, a low frequency mode appears downstream that

may affect these results (c.f. Fig. 3e of Ref. [52]). This mode has been considered as

an ion acoustic mode in the past [36], but the conditions for this mode to arise have yet

to be observed directly. Downstream, while the total energy of the incoherent mode
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falls, the energy of the low frequency mode increases. Indeed, it attains power spectral

densities two or three orders of magnitude higher than the surrounding incoherent

mode. Thus, it is possible that this mode, once thoroughly identified, will decrease

this heat flux prediction further. It is moreover possible that its rise will soften the

decay in νeff , increasing the prediction for γ.

The second error source involves the assumed relative velocity between electrons

and ions. We have assumed thus far that the ions accelerate down the potential well,

while the electrons expand based on continuity. However, the control volume (i.e. the

area used in the continuity equation) was based solely on the boundary magnetic field.

This assumption assumes zero cross-field transport; however, this is likely not true

[3, 52]. Indeed, given that current-free thrusters based on these geometries produce

thrust, electrons must eventually separate inwards. This fact results from the current-

free nature in which ions only escape the inherently closed field if electrons do as

well. Thus, the actual area that should be defined for electron expansion is somewhat

indeterminate, but must approach that of the ions downstream, likely lowering the

relative velocity. Our assumption of continuity thus likely underestimates the effective

collision frequency and overestimates the heat flux.

To explore this last possible error source, we return to the α parameter that was

previously defined. As we decrease α (thus decreasing the assumed relative velocity),

the heat conduction decreases linearly. Indeed, including such a parameter at 10

predicts a downstream heat flux less than the thruster power. While this is not

definitive proof, both of these error sources imply that we may be underestimating

the effects of instabilities.

A final potential variation of this theory lies in the assumed closure scheme. When

discussing heat conduction as restricted by classical collisions, the details of the clo-

sure scheme predict a factor, typically of order unity [24], by which the standard

Fourier law must be multiplied. In this work, we have assumed this value to be unity.
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However, a more thorough theoretical description of this phenomenon will determine

what the factor in fact should be. Indeed, it is likely that this source of error will

increase the predicted heat flux by a relatively small amount. This scheme would

likely implement a Chapmann-Enskog closure scheme on the wave collision operator.

However, such a theoretical undertaking is outside the scope of the present work.

5.5 Conclusion

In summary, we have formulated a Fourier law based on an anomalous collision

frequency to explain heat conduction in an expanding magnetic field. We have deter-

mined that the field-aligned propagation present in the incoherent lower hybrid drift

instability induces a parallel collision frequency significantly greater than the classical

equivalent. We have further determined that this effective collision frequency restricts

heat conduction to the point where less heat is flowing than is being delivered to the

thruster. This comparison is true with respect to the mean prediction upstream,

but is still true to within uncertainty downstream. This result differs notably from

previous work analyzing a classical Fourier law on a similar system [75], where the

heat flux was predicted to be an order of magnitude higher than the total power

available. We further explored several sources of uncertainty in our analysis. One

factor that we did not include in the heat flux determination was the low frequency

mode, which grows downstream and reaches power spectral densities two orders of

magnitude higher than the incoherent mode. Moreover, the relative velocity that we

have assumed between the electrons and ions may differ. Indeed, given that the elec-

tron and ions should not deviate in particle flux away from the thruster to conserve

global current ambipolarity (as we predict using our analysis represented in Fig. 5.3),

it is possible that the relative velocity is significantly lower, which in turn implies a

lower heat flux. Taken together, it appears that the presence of instabilities is likely

significant in determining the thermodynamics of these systems.
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CHAPTER VI

Identification of the Coherent, Low-Frequency

Mode

6.1 Introduction

In this chapter, we return to the low frequency wave that was observed in previous

chapters. We designed an experiment using high speed imagery based on the analysis

of Sct. 3.8 to analyze this mode in more detail. We are particularly interested in

determining if the mode sustains any global characteristics in the discharge region.

To this end, we first introduce the experimental apparatus used for this test in 6.2.

We then present the results of the high speed imagery for multiple flow conditions

in Sct. 6.3. We analyze potential dispersion relations for the modes we observe in

Sct. 6.4 and discuss our findings in the context of the downstream measurements of

Chaps. IV-V. Finally, we discuss the potential implications of these findings in the

context of thruster operation and previous research on the topic.

6.2 Experimental configuration

For this experiment, we operated on the second version of the ECR thruster

discussed in Sct. 3.2. We operated the thruster at a constant 25 W of delivered

power and varied the flow rate, taking measurements at 1, 2, and 4 sccm-Xe. These
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Figure 6.1: Example still images sampled at 300,000 samples/s from each operating
condition.

corresponded to operating pressures in Junior of 7.11×10−7, 1.15× 10−6, and 2.03×

10−6 Torr-Xe. We mounted the camera to a tripod and attached a zoom lens to focus

on the thruster. For this test, we focused specifically on the end of the antenna,

which maintained focus on the entirety of the discharge chamber. We covered the

camera and viewport in a shroud to stop background light from affecting the image.

We monitored the thruster visually through a second viewport and recorded imagery

from the camera using Photron Fastcam Viewer. We took imagery at 300 kfps for a

total of one second. Figure 3.14 presents the general arrangement of this experiment.

Figure 6.1 presents an example still in grayscale at each condition. At the higher

flow conditions, the gas feeds are individually visible. This is likely a result of the

elevated neutral pressure in those regions. In each of these conditions, it appears

that the data we are able to resolve is primarily in the discharge chamber itself. The

reason we claim this is that we make out very little light radially outside of the gas

feed inlets. If we were able to see the expanding plume, we would have visible plasma

in that region, but readings in that area are dominated by the noise. We thus make

the assumption for the remainder of this analysis that the region we are analyzing is

in the plasma generation region.
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6.3 Results

In this section, will present the results of the Fastcam analysis of each flow con-

dition in turn. For each of these results, we will present a total power spectrum as

measured by averaging the individual power spectra of each pixel in the plume. We

note that these values are left in arbitrary units. The reason for this is that the mea-

surements are inherently line-averaged. The magnitudes of the oscillations are thus

likely lower as recorded by the camera, but it is not possible in the current experiment

to determine the extent. We then present the phase offset and amplitude graphs for

each condition as discussed in Sct. 3.8.

6.3.1 1 sccm

We begin by analyzing the low flow condition. The initial spectral analysis on

the modes present reveals two clear oscillations, as we show in Fig. 6.2. The first

is dominant and coherent and appears at 12 kHz. The second is less coherent but

still maintains a clear peak at 23 kHz. As the second mode is close to twice the

initial mode, it may appear that it is simply a harmonic of the first. A harmonic may

appear if a wave at a given frequency is not purely sinusoidal. In this case, the Fourier

analysis will return a summation of the fundamental mode and its even multiples.

However, harmonics are likely to maintain the coherency of the fundamental mode.

In this case, the 23 kHz wave is less coherent than the 12 kHz mode, and thus may

be a separate mode entirely.

Analysis of the phase offset and amplitude may provide further insight on this

question. After measuring the raw imagery, we apply the analysis discussed in Sct.

3.8 to determine these properties. We present the results of these analyses in Fig.

6.2b-c for the low frequency mode and Fig. 6.2d-e for the higher frequency.

At 12 kHz, we observe that the oscillation is global, exhibiting no propagation

in r or θ and indeed taking the same phase throughout the plasma. It may propa-
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Figure 6.2: Results of high speed imagery analysis for 1 sccm-Xe flow rate. a) Power
spectrum indicating two prominent modes. b) Phase analysis of the 12
kHz mode with c) the corresponding relative amplitude. d) Phase analysis
of the 23 kHz mode with e) the corresponding amplitude.

gate axially, but we are unable to observe this property using these measurements.

The amplitude graph shows no real trends other than a possible slight increase in
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magnitude halfway between the central antenna and the walls, although this trend is

faint.

The propagation characteristics are different for the 23 kHz wave. Namely, as

per Fig. 6.2d, there is a clear, m = 1 azimuthal mode that propagates in the clock-

wise direction. This characteristic is similar to the oscillations observed on similar

geometries by Refs. [73, 62, 61, 53]. We may thus conclude that the drastic change

in propagation characteristic implies that the 23 kHz mode is not a harmonic of 12

kHz, but rather a separate wave entirely.

6.3.2 2 sccm

When we increased the flow rate to 2 sccm, the propagation shifted significantly.

The low frequency mode disappeared entirely, but the less coherent mode remained.

However, its prominent frequency decreased to 18 kHz. We present these results in the

same way in Fig. 6.3. We show the resulting power spectrum in Fig. 6.3a, and 6.3b

shows the resulting phase data. This mode exhibits a similar m = 1 characteristic,

although its phase is less well defined.

6.3.3 4 sccm

Finally, we present in Fig. 6.4 the results from the high flow condition. In this case,

the m = 1 mode remains and further decreases in frequency to 4.6 kHz. Moreover,

it assumes a stronger coherency than the first two cases. Indeed, it takes a similar

character to the m = 0 mode in the low flow condition. Figure 6.4b shows that the

oscillation is fully coherent, and we further observe in Fig. 6.4c that the magnitude

of the oscillation maintains a clear peak roughly halfway between the center and the

wall.
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Figure 6.3: Results of high speed imagery analysis for 2 sccm-Xe flow rate. a) Power
spectrum indicating the prominent modes at 18 kHz. b) Phase analysis
of the 18 kHz mode with c) the corresponding relative amplitude.

6.4 Mode identification

We now proceed to identify the two distinct modes that we have seen. We first

discuss the low frequency mode that we observe in the 1 sccm flow case as a potential

ionization mode. We then identify the m = 1 mode as an anti-drift mode and discuss

its characteristics, namely how the dominant frequency changes with flow rate.

6.4.1 Ionization mode

Ionization modes have been known to cause such low frequency oscillations in

laboratory plasmas. Indeed, these types of oscillations have been theorized to cause
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Figure 6.4: Results of high speed imagery analysis for 4 sccm-Xe flow rate. a) Power
spectrum indicating the prominent modes at 4.6 kHz. b) Phase analysis
of the 4.6 kHz mode with c) the corresponding relative amplitude.

the breathing mode in Hall thrusters [51] and are present in hollow cathodes [48]. One

such mode has been previously investigated in Ref. [1] in the context of a magnetic

nozzle. This prior work observed that a low frequency mode that they theorized was

such an ionization wave, but that its instability relied on the presence of an electron

population flowing upstream. Such a population was later found to not be present in

that thruster [111].

Fundamentally, an ionization mode can be understood from a global analysis of

the continuity equations for ions and neutrals. In this paradigm, we assume constant

values of n and u for both species and integrate over the discharge volume. After
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assuming quasineutrality, this results in the following:

∂ni
∂t

+
uini
L

== nnneξ(Te) (6.1)

∂nn
∂t

+
unnn
L

== −nnneξ(Te). (6.2)

Here, we have defined ξ(Te) as the ionization rate coefficient, which is typically consid-

ered a function of the electron temperature [50]. Applying the familiar perturbation

analysis in time alone by setting ne → ne,0+n1, we may readily solve for the oscillation

frequency of such a mode as

ω =

√
uiun
L

. (6.3)

As an estimate, we may approximate the resulting frequency by assuming that

the ions exit the thruster with a velocity on the order of 3 km/s as per previous

experimental evidence [121, 32] and that the neutrals flow at their thermal speed

at room temperature (≈ 300 K), un = 200 km/s. This cursory analysis predicts a

frequency of 4 kHz. While what we observe is a factor of 3 higher than this value,

the fact that this first approximation yields a value on the same order of magnitude

implies that a further investigation of such a mode warrants further research.

One factor ignored by the prior work, however, was Ohmic heating. This effect

has been discussed in the context of an ionization mode hollow cathode [47], in which

effective resistivity from an ion acoustic wave drove the mode unstable. Physically,

the electrons are heated by the acoustic mode to the point of further ionizing the

background neutrals. As the neutrals were then depleted, electrons were continually

energized, inducing a rise in temperature. Neutral density fluctuations mediated this

process, and with sufficient heating the oscillation could be driven unstable.

An ionization mode could likely be driven unstable from heating in a magnetic

nozzle as well. This effect would be most prominent upstream, where we have a
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simple source of heating– the antenna. Indeed, it is likely that, especially at low flow

rates where temperature is high and neutral densities are low, we will see exactly

this mode. To evaluate the applicability of this theory, however, a more thorough

theoretical analysis would be necessary. As this mode only appears in one operating

condition, we leave this effort to future work.

We may, however, evaluate the other modes that we see in this device. We proceed

to do so in the following section.

6.4.2 Drift-driven mode

We consider the m = 1 mode to be a drift-driven instability. These modes can

be described locally using the continuity and momentum equations for electrons and

ions. For this mode, we will assume a slab-like geometry, with a constant magnetic

field in the ẑ direction, gradients in the x̂ direction, and symmetry in the ŷ direction,

but are ultimately driven by the electron diamagnetic drift. These modes have been

extensively studied in a variety of contexts [43, 98, 62, 53] and typically assume

cold ions and electrons with no inertia. We must further assume quasineutrality

(ni ≈ ne ≈ n), neglect higher charge states, and use conservation of momentum

between species to let Re,i = −Ri,e = menνe(ue − ui). For our analysis, we will

further assume that the ions are unmagnetized. In this context, we have the following

fluid equations:

0 =
∂ne,i
∂t

+
∂

∂x
(ne,iue,i) (6.4)

mini

(
∂

∂t
+ ui ·

∂

∂x

)
u = −qi

∂φ

∂x
−meνen (ue − ui) (6.5)

0 = e
∂φ

∂x
− eue ×B− Te

∂n

∂x
−menνe (ue − ui) . (6.6)

In magnetic nozzles, collisions are typically assumed to be negligible. The reason-

ing behind this stems from the high (∼ 20 eV) electron temperature and relatively low
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∼ 1015) number density. While collisions with neutrals have further been proposed

as a source of collisionality in magnetic nozzles [29], ECR sources with hot electrons

are likely almost fully ionized, and these collisions can be neglected [46].

With this understanding, we first simplify Eqns. 6.6 by neglecting collisions.

Following a standard perturbation analysis, we find the dispersion relation to be [98]

kyvD
ω − kyvE

=
Te
mi

(
k2

ω2

)
. (6.7)

This mode is known as the modified Simon-Hoh instability, named after a similar

wave with magnetized ions that was independently discovered by Simon [102] and

Hoh [55]. This modified version was first investigated by Sakawa [98]. The solution

to 6.7 can then be separated into its real and imaginary components,

ωr =
kyc

2
s

2vD

γ = ky

√
c2
s

vE
vD
−
c4
sk

2
y

4v2
D

. (6.8)

Eqns. 6.8 reveal several fundamental characteristics of the modified Simon Hoh

instability. First, its real frequency scales inversely with the electron drift. We alluded

to this relation in Sct. 1.4.1 where we discussed this class of anti-drift modes. The

growth rate further elucidates its mechanism for growth. As the second term is strictly

positive, for the growth rate to be real (and, thus, for the wave to grow), the sign

of vE/vD must be positive. In other words, the electric field and pressure gradients

must be in the same direction.

However, we discussed in Sct. 1.2 that these drifts are likely in opposite directions

in a global sense. That being said, that former analysis relies on the expansion

into vacuum– the radial boundary condition for both potential and density was zero.

The case may be different upstream, where a floating, conducting wall forms the
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boundary condition. In this case, given that the magnetic field is mostly axial, particle

flux to the wall may be dominated by the unmagnetized ions, which would charge

the thruster positive and impose a potential well close to centerline, implying an

electric field co-aligned with the pressure gradient. Indeed, this idea corroborates the

upstream potential well that we observed in the two-dimensional potential map that

we presented in Fig. 5.2. While this is not proof that this pattern is present upstream

in the current experiment, we will allow this trend to be present in our analysis.

We may further evaluate Eqns. 6.8 numerically with a the background plasma

parameters. While we would ideally have these values measured directly, we do not

have access to the parameters inside of the discharge. For this purpose, we will

assume a few characteristics based on general geometry. First, we will let vE and vD

be diamagnetic in accordance with typical magnetic nozzle operation. We will let

vE vary as a free parameter between 0 and vD in accordance to Fig. 4.4. We will

allow vD to vary between values of 100, 150, and 200 km/s, and assume an electron

temperature of 20 eV. Finally, in reference to Fgi. 6.4b, we will assume the wave to

be an m = 1 mode oscillating half way between the center pin and the thruster wall.

This assumption results in a wavenumber ky = m/R = 160 m−1.

With the assumption of vE ‖ vD implying that the wave may be unstable, we may

further evaluate the applicability of this mode by analyzing the real frequency. As

we have measured the frequencies present in each system, we may use them to solve

for the diamagnetic drift velocity using the dispersion relation. Substituting in the

definition of the diamagnetic drift, we find

ωr =
ekyB

2
Ln (6.9)

where we have defined the characteristic number density gradient length scale Ln =

n(∂n/∂x)−1. Since we analyzing the upstream region of the thruster, we may assume

127



that the number density falls to zero at the thruster walls and take Ln to be the

radius of the thruster. With ky = 160m−1 and B taken to be the resonant frequency

of 875 Gauss, we find a predicted oscillation at 11 kHz. This prediction, albeit crude,

lies well within the range of values that we observe, thus implying that the modified

Simon-Hoh may be the wave that we have detected.

However, one immediate shortfall appears in this analysis. Namely, as we increase

flow rate, we observe the frequency fall. Our analysis in Eqn. 6.9 implies that the

observed frequency should be strictly a function of geometry– none of the parameters

involved change between operating conditions. Finding the proper dispersion relation

would likely involve a real frequency whose value changes based on the background

plasma parameters.

There are a multitude of possible reasons that this theory may not match the

observations perfectly. Any of the assumptions that we have made may be relaxed,

and any one of these might modify the predicted frequency. It further may be that

the magnetic field where the instability is being excited is not the resonant frequency,

or that the mode is primarily growing at regions of the plasma where the number

density gradient varies from the globally-averaged value that we have approximated.

Indeed, while we have taken these global values in predicting the frequency, it may

be that the growth of the wave occurs based on local parameters.

One further assumption that may need to be relaxed is that of zero collision

frequency. We will now explore this last possibility in more detail. We may generalize

the dispersion relation by incorporating collisions and parallel propagation. The result

is a similar anti-drift mode [62, 42],

kyvD + i k2zTe
meνe,z

ω − kyvE + i k2zTe
meνe,z

=
Te
mi

(
k2

ω2

)
. (6.10)
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Figure 6.5: Example solutions for the collision-driven anti-drift instability with as-
sumed parameters νe = 105, vE = 0,

We note here a new mechanism for instability. Namely, a finite collision fre-

quency in the presence of propagation parallel to the magnetic field may drive an

unstable mode in this system, which might appear even in the absence of the former

requirement of vD ‖ vE. To analyze the applicability of this wave without direct mea-

surements of the plasma in the discharge, we must vary several parameters. Namely,

kz, Te, νe, vD, and vE are all free parameters. We may simplify this system initially by

removing kz as a free parameter through analysis of the growth rate. We expect that

the visible wave is the one with the highest growth rate. For every case, therefore,

we may choose kz that maximizes growth rate. We show an example of this process

in Fig. 6.5.

After reducing the problem by selecting kz based on growth rate, will present the

real frequency that we predict through this analysis. We will assume throughout that

vE = 0, since the aligned drifts are not the mechanism that we wish to investigate. We

may further simplify by again expanding vD = Te
enBLn

and repeating the assumption

that Ln is equal to the thruster radius. In doing so, we reduce the problem to varying

129



Figure 6.6: Example solutions for the collision-driven anti-drift instability with as-
sumed parameters νe = 105, vE = 0,

only Te and νe. For the temperature, we may allow for a fairly limited range. Given

our experimental evidence in Chap. IV corroborated by previous measurements of

electron temperature on similar devices (see Ref. [19]), we may allow the temperature

to vary between 10 and 30 eV. We may then plot the solution for several select values

as a function of collision frequency. Figure 6.6 presents the results of this analysis for

electron temperatures of 10, 20, and 30 eV.

Two characteristics of these results are significant for our current discussion. First,

we observe that the collision frequency does not significantly affect the real value of

the solution. Indeed, until values over 108, the resulting frequency takes a constant

value ±100 Hz, before finally sharply increasing. The second characteristic is the

steady increase in predicted frequency with electron temperature. This second trend

carries direct implications when comparing to our results. Namely, we observe an

increase in observed frequencies at lower flow rates that may be connected to this

trend.

Microwave plasma sources are known to sustain increased temperatures at lower
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flow rates [46, 19]. The physical reasoning behind this trend lies in the extent to

which the gas flow is ionized. With a low ionization fraction, as the electrons gain

energy from the ECR wave, they quickly lose it again to ionization collisions. Alterna-

tively, when there are insufficient neutral particles, the electrons are able to energize

unimpeded and achieve higher temperatures. This trend has further been observed

directly in the plume of an ECR magnetic nozzle [32].

With this understanding, we may correlate the increase in flow rate in this exper-

iment to a decrease in electron temperature. As the flow rate increases, the electron

temperature likely decreases, and the observed frequency decreases as well. Thus, the

collision-driven anti-drift instability accurately predicts the trends we see experimen-

tally. However, it is clear that the magnitude of the predicted frequency is several

times higher than our observations. While incorporating an E × B velocity in the

same direction as the diamagnetic drift would fully account for this discrepancy as

per the modified Simon-Hoh instability, one further possibility exists that does not

rely on a radially-increasing plasma potential.

The other possibility to explain this difference is the incorporation of axial plasma

velocity. Thus far, we have assumed that the ions are fully stationary and that the

electrons only exhibit motion in the azimuthal direction. Relaxing this assumption

allows for a Doppler shift of the predicted frequency into the lab frame. To establish

the details of this idea, we will first recall the required global ambipolarity of the

nozzle discharge. Assuming quasineutrality, we may thus take ue,z = ui,z ≡ uz. The

Doppler shift changes the resulting observed frequency to

ωr → ωr + kzuz. (6.11)
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Figure 6.7: a) kθ for the low frequency mode as measured with the ion saturation
probes, and b) the corresponding azimuthal mode number with magnetic
field line overlay.

This relation can further be understood in the context of the dispersion relation as

kyvD + i k2zTe
meνe,z

ω − kzuz − kyvE + i k2zTe
meνe,z

=
Te
mi

(
k2

(ω − kzuz)2

)
. (6.12)

Approximating an axial wavenumber of 10 m−1, we see that we would only need

an axial plasma velocity of a few km/s to reconcile this theory with what we observe.

Thus, with significant parallel propagation, a Doppler shifted anti-drift wave may

yield the oscillation that we observe.

6.5 Presence in the downstream measurements

As we noted in Chap. IV, we observed a low frequency mode akin to what we have

discussed here using the ion saturation probe technique. This mode exhibited clear

propagation in the azimuthal direction, and as such we theorize that it originated as

a drift-driven mode. We present the results of this measurement in Fig. 6.7. As this

low frequency mode did not universally appear, white space in this graph indicates

that we did not observe the wave at that location. The frequency was universally 14

±1 kHz, so we do not include these results in such a map.
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Figure 6.7 presents a wave that propagates in the +θ, or diamagnetic, direction

but does not appear upstream in our measurements. It maintains a rotational char-

acter that may correlate with the theory of the drift-driven mode. It falls in the

frequency range that we have seen with the high-speed imagery and maintains the

same frequency ±1 kHz everywhere. However, we note that this wave does not appear

to take the same m = 1 character downstream. This fact can be understood with

the definition of m = kθr. While the wavenumber indeed increases with radius, this

increase is not linear. Instead, the effective mode then take values of up to 9. This

trend appears to be a discrepancy with what we have observed with the high speed

imagery.

We now introduce a few possibilities to resolve these apparent conflicts. First,

the disappearance of the wave upstream may be a consequence of the lower hybrid

mode. The strength of the latter mode is stronger upstream, and it may introduce

effective noise that drowns the coherent mode. We may evaluate this possibility by

showing several plots at the same radial location progressing downstream. Figure 6.8

presents such a result, where we show the power spectral densities at r = 20 mm

and z = 30, 50, 70, and 90 mm. With the first three points, we see indeed that the

coherent mode is only able to appear as the magnitude of the LHDI decreases. The

fourth data point does not support this hypothesis– its magnitude is far stronger than

the LHDI at the upstream points. This fact implies that the wave may in fact be

growing as it propagates downstream.

The reason for the breakdown in m = 1 character is less clear. It is worth noting

that we do not have upstream measurements for this operating condition– perhaps

the mode upstream is higher in this case. However, given that none of our imagery

indicates such a mode makes this possibility unlikely. A more likely possibility is

that the wave start acting locally instead of globally as the plasma expands. As the

plasma expands and the collision frequency decreases, it is possible that kz → 0, which
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invalidates the local approximation required to understand the wave in the context of

6.10. In this case, assuming that an m = 1 mode appears in the condition for which

we have downstream measurements, it is clear that the propagation characteristics

change significantly downstream.

Now having observed downstream growth of this mode, we may discuss what

may cause it to grow downstream. Recalling that it does not change frequency,

it is likely that the mode originates upstream. Indeed, given the dependence of

frequency on multiple plasma parameters in Eqn. 6.10, it is unlikely that the mode

is driven the most unstable at precisely the same frequency everywhere. However, a

wave originating upstream and propagating into the plume may maintain the same

frequency.

Out of the mechanisms that we have discussed, the only one applicable to down-

stream growth is collisionality. Given that the drifts are in opposite directions down-

stream (cf. Fig. 4.4), the mechanism of the modified Simon-Hoh cannot cause growth

in this mode. Moreover, the ionization mode is unlikely to be unstable in this op-

erating condition. We have already seen in Fig. 6.3 that this global mode does not

appear at 25 W and 2 sccm. If it indeed grows with the lack of neutral particles at

high electron temperatures, it is unlikely to grow at the same flow rate and lower

power. Furthermore, it does not predict the azimuthal character that we observe.

With this analysis taken together, it appears that the dominant low frequency

mode in these plasmas is a form of anti-drift mode that originates upstream and

propagates downstream at the same frequency. It then likely grows as it progresses

due to similar processes. We now discuss these results in the context of thruster

operation.
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Figure 6.8: Power spectral densities at r = 20 mm and z ranging from 30 to 90 mm.

6.6 Impact on thruster operation

We have determined in this work that a coherent, low frequency mode is ubiquitous

in this plasma. The dominant mode appears to take a global character at low flow

rates, but an anti-drift mode appears as the flow rate increases. However, we have

yet to determine the impact of this wave on thruster operation. As we have already

discussed the significance of waves on plume dynamics in Chaps. IV and V, we focus

our discussion here on the presence of a mode upstream.

Upstream azimuthal instabilities are likely to induce enhanced, effective resistivity

that causes cross-field electron transport. Similar to how these waves cause electrons

to diverge downstream, they likely do the same upstream since they propagate in the

direction of the diamagnetic electron drift. However, instead of inducing a divergence

loss, an electron impacting the wall is likely to neutralize [72]. These wall losses are

likely a dominant source of energy loss in magnetic nozzles [69]. The extent to which

this transport occurs is difficult to determine from these measurements. As previously

stated, the reason for this is the inherent line-integrated nature of the measurement
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inhibiting us from acquiring an accurate value for its magnitude.

A global mode such as the ionization mode we have discussed here does not im-

pact electron cross-field transport. The reason for this is that transport arises from

effective resistivity perpendicular to the magnetic field. A global mode does not ex-

hibit such behavior, but may induce field-aligned resistivity. To evaluate this directly,

we require measurements of axial propagation in the source region. The impact of

such an effect on thruster operation is similar to that produced by the field-aligned

component of the LHDI discussed in Chap. V– namely, heat flux is likely inhib-

ited, negatively impacting performance by restricting energy available to the ions

downstream. We thus may conclude that both of these instabilities hinder thruster

performance. However, further study is needed to determine the magnitude of this

impact.

6.7 Conclusion

In this work, we have determined the presence of two modes in the discharge

region of a magnetic nozzle. One, apparent only at low flow rates, takes a global

character and may be an ionization mode akin to those observed in hollow cathodes

[47]. The other, apparently ubiquitous, takes an m = 1 character upstream, but

may . This mode is likely an anti-drift mode that is driven unstable either from a

Simon-Hoh mechanism or from a finite collision frequency parallel to the magnetic

field. From analyzing downstream measurements, we have determined that the low

frequency mode observed in Chap. IV is likely a similar anti-drift mode. However,

this mode likely originates upstream, as the dominant frequency does not change. The

presence of such a mode likely induces wall losses upstream, as they propagate in the

diamagnetic direction, so the resulting effective resistivity induces outward transport

of the electrons. Moreover, the global mode may further inhibit heat conduction out

of the source, which also hinders thruster performance.
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CHAPTER VII

Conclusions and Future Work

7.1 Summary

Magnetic nozzles are strong candidates as long-duration propulsion devices due

to their ability to run simply on exotic propellants, particularly those that may cor-

rode similar devices with electrodes in contact with the plasma. Furthermore, their

scalability implies that they may be applied to missions requiring both low and high

powers. Despite their potential, they have only recently matured to the point of

usability in space. Part of the reason behind this delay lies in the lack of under-

standing in several areas of how they operate, namely in the cross-field momentum

transport of the electrons and the downstream heat flux. In this work, we have pre-

sented new understanding in how the plasmas in these devices operate throughout

their expansion.

This work has aimed to address several questions pertaining to their operation

from the perspective of an investigation into unstable modes. In particular, we have

discussed four primary questions:

1. What instabilities may be present in the plume of a magnetic nozzle?

2. What role do these have in inducing cross-field transport?

3. To what extent do they inhibit downstream heat flux?
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4. What modes may be present in the discharge region?

We have approached these questions both theoretically and experimentally. We

began by building up the theory for a lower hybrid drift instability after previous work,

then finding expressions for its effective resistivity. We then applied the concept of an

effective collision frequency which transfers momentum between electrons and ions to

a Fourier law to approximate its impact on inhibiting field-aligned heat flux. Finally,

we investigated the presence of a coherent, upstream mode noninvasively.

7.2 Primary Findings

We first applied a set of ion saturation probes to the plume of a magnetic nozzle

to measure number density oscillations directly. This analysis revealed a primarily

azimuthal mode with wavenumber comparable to the electron Larmor radius that

maintained finite propagation parallel to the applied magnetic field. Based on mea-

surements of background, steady-state plasma values we theorized that this mode is

likely a lower hybrid drift instability. We found that the dispersion for the LHDI was

indeed unstable and predicted a dispersion relation that matched our observations.

We then applied quasilinear theory to determine the impact that these waves have

on electron motion. We found that this mode likely induced cross-field transport at

a rate several orders of magnitude higher than classical collisions, which is likely

to be significant compared to other transport theories. We further determined that

the direction of transport was divergent, implying that the electrons would expand

more rapidly than the magnetic field. This effect would induce a radial electric field,

which would in turn cause ions to diverge. This effect ultimately implies a divergence

efficiency loss and negatively impacts thruster performance.

We next applied the effective collision frequency in the field-aligned direction to

a Fourier law to determine the impact of the LHDI on heat conduction. We found
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this theory to predict heat flux orders of magnitude smaller than classical collisions

might. Indeed, while Coulombic collisions predicted a heat flux that was orders of

magnitude higher than the total power delivered to the thruster, effective collisions

from the LHDI predicted values comparable to this number everywhere. We again

concluded, since heat flux has been shown to be beneficial to thruster performance,

that the field-aligned propagation of the LHDI is harmful to thruster performance.

Finally, we collected imagery at high speed of the discharge region to determine

wave presence there. We found two coherent modes that were present. The first was

a global mode that only appeared at a low flow rate. We theorized that this mode

is likely an ionization mode akin to those seen previously on hollow cathodes. We

further measured the presence of an m = 1 mode that was present at all flow rates,

but was most coherent at high flow. We theorized that this is likely an anti-drift

mode, which is driven unstable either by an electric field that is colinear with the

pressure gradient or by a field-aligned collision frequency.

Ultimately, we have found that instabilities are likely harmful to thruster perfor-

mance. Given the predominance of the diamagnetic drift, enhanced resistivity to the

azimuthal electron motion induces outward transport. The resulting charge separa-

tion generates an electric field that will pull the ions outwards too, resulting in a

divergence efficiency loss. Moreover, the presence of significant propagation parallel

to the magnetic field inhibits heat flux. This phenomenon results in less total en-

ergy downstream available to accelerate the ions and hurts performance. Lastly, the

presence of coherent modes upstream induce similar effects. While the magnitude

of these effects currently remains unknown, an azimuthal mode may enhance plasma

transport to the walls, reducing ionization efficiency, and an axial mode may further

impede heat flux from the source region. Taken together, thruster designs should

work to minimize the presence of all of these modes.

While we hope to have answered our research questions, this work has further
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prompted more potential projects. In the next section, we present several thoughts

for what future work may entail.

7.3 Future Work

Our findings in this work prompt several further theoretical and experimental

projects. The first question we would see addressed is that of the extent to which

electron streamlines deviate from the applied field as a result of the LHDI. While we

have theorized that the effect of these modes may be significant in inducing cross-field

transport, the extent to which this occurs is still unknown. This question may be

answered from two primary perspectives. First, wave-driven effects may be incorpo-

rated into simulation. While instabilities have been included in simulations recently

[99], this work only applied them as a scaling factor. A full analysis may include the

LHDI dispersion with saturation amplitudes to predict resistivity.

Momentum transport may also be investigated experimentally. One potential av-

enue for this investigation is a Thomson scattering diagnostic. This non invasive

technique has the potential to record the velocity distribution functions of the elec-

trons directly through the application of a laser. However, this diagnostic may be

difficult to apply in the case of low electron bulk velocity. In the absence of this

technique, other non invasive diagnostics may be used. In particular, it may be

productive to measure the azimuthal ion velocity instead. This may be done using

laser-induced fluorescence, which can selectively energize electronic transitions in a

xenon ion. The Doppler shift in this process is often used to determine the velocity of

an ion population. However, it may also be used to measure the effective resistivity.

This idea results from the lack of other forces acting on the ions to influence them

in the azimuthal direction. Measuring the evolution of the azimuthal ion velocity

through the plume will provide an idea of the magnitude of resistive forces acting be-

tween electrons and ions, including any wave-driven effects. In the absence of direct
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measurement of electron cross-field velocity, the azimuthal resistivity may be used to

approximate it using direct measurements.

Further work may also better determine the role of instabilities in determining

downstream heat flux. From a theoretical perspective, one might follow the process

of Chapman and Enskog [24] to find the true value of heat flux that might be present

in the presence of waves. The original work performed a perturbative analysis on

a steady-state Maxwellian distribution function. Through an expansion of Sonine

polynomials, they were able to determine that the heat flux was simply a measure

of the temperature gradient and the interaction time between particles– the Fourier

law. However, to find a full form of the heat flux as inhibited by wave-driven effects,

the wave collision operator q〈Ẽ · ∂f/∂v〉 should undergo a similar treatment.

Heat flux may also be measured using noninvasive diagnostics. Namely, Thomson

scattering may provide the electron velocity distribution function along field lines.

With this value measured, one might integrate the second moment of the result to

find the heat flux. This direct result may then be compared to that predicted by the

instability theory to determine whether wave-driven effects are in fact dominant in

determining its value.

In this work, we have presented the first identification of an unstable mode in the

plume of a magnetic nozzle and contributed to the understanding of low frequency

modes originating in the source region. While we have theorized as to how they might

impact momentum and heat transport of the electrons, an ideal continuation of this

work would further develop the theory behind these predictions and further support

the theory with direct measurements of the electron velocities.
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