
Efficient Deep Learning Accelerator Architectures
by Model Compression and Data Orchestration

by

Jie-Fang Zhang

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Electrical and Computer Engineering)

in The University of Michigan
2022

Doctoral Committee:

Professor Zhengya Zhang, Chair
Associate Professor Ronald G. Dreslinski
Assistant Professor Hun-Seok Kim
Professor Dennis Sylvester

Jie-Fang Zhang

jfzhang@umich.edu

ORCID iD 0000-0002-6609-4383

© Jie-Fang Zhang 2022

All Rights Reserved

mailto:jfzhang@umich.edu
https://orcid.org/0000-0002-6609-4383

To my family and Yu-Hsien for always being there for me.

And to all the moments of frustration in life.

ii

ACKNOWLEDGEMENTS

I would like to thank my advisor, Professor Zhengya Zhang, who has given me

guidance and advice on both research and life. Thank you for being patient and

believing in me whenever I struggle to find a more interesting research topic or try

to make a research direction more interesting. I would also like to thank Professor

Dennis Sylvester, Professor Hun-Seok Kim, and Professor Ronald Dreslinski for being

on my dissertation committee and providing valuable feedback.

I have had the pleasure working with many talented people in the VLSISP group.

Thanks to Shuanghong, Shiming, Thomas, Wei, Chester, Sung-Gun, Alex, Teyuh,

Yaoyu, Reid, Jacob, Junkang, Cheng-Hsun, Jack, and Justin, for the valuable help

and discussions about research and life struggles.

Thanks to all the research collaborators. Especially, thanks to Chester Liu,

Thomas Chen, Wei Tang, Tim Wesley, and Cheng Fu for their help on the SNAP

chip tapeout. And thanks to Ching-En (Alex) Lee, Sophia Shao, Steve Keckler for

their helpful advice on the Stitch-X/SNAP project. Thanks to Yi-Chung Wu, Reid

Pinkham, Chester Liu, Shang-En Huang, and Wei Tang for their help and discussion

on the Point-X project. Thanks to Shang-En Huang, Miao Yin, and Salar Latifi for

the insightful advice about the TetriX project.

Thanks to my family, Yu-Hsien, and my friends for always supporting and encour-

aging me throughout the journey.

iii

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

LIST OF FIGURES . vii

LIST OF TABLES . x

LIST OF ABBREVIATIONS . xi

ABSTRACT . xiv

CHAPTER

I. Introduction . 1

1.1 DNN Computation . 2
1.2 Network Model Optimization 3

1.2.1 Model Compression 4
1.2.2 Novel Operation Types 6
1.2.3 Computation Challenges 7

1.3 Dissertation Outline . 8

II. SNAP: Accelerator Architecture for Unstructured Sparse Neu-
ral Networks . 10

2.1 Background . 14
2.1.1 Channel-Last Dataflow for Sparse DNN Processing . 15
2.1.2 Other Related Work 17

2.2 Channel-First Processing Dataflow 17
2.2.1 Compression Format 17
2.2.2 Channel-First Dataflow 19

2.3 Channel Index Matching . 21
2.3.1 Associative Index Matching 22
2.3.2 Sequence Decoder 22

iv

2.3.3 Design Tradeoff Exploration 24
2.4 Two-Level Partial Sum Reduction 25

2.4.1 PE-level Channel-Dimension Reduction 25
2.4.2 Core-Level Pixel-Dimension Reduction 27
2.4.3 Support for Pointwise CONV and FC 28

2.5 Implementation and Evaluation Results 29
2.5.1 SNAP Architecture Overview 29
2.5.2 Performance Analysis 31
2.5.3 Comparison Against State-of-the-art Works 34

2.6 Summary . 38

III. Point-X: Spatial-Locality-Aware Accelerator Architecture for
Graph-Based Point-Cloud Neural Networks 39

3.1 Background . 44
3.1.1 Edge Convolution Computation 44
3.1.2 Computation Models and Bottlenecks 45

3.2 Spatial-Locality-Aware Clustering 48
3.2.1 Graph Traversal for Spatial Locality 48
3.2.2 Speculative Breadth-First Search (SBFS) Traversal . 52
3.2.3 SLA Clustering Module Implementation 53

3.3 Locality-Aware NoC . 55
3.3.1 Chain NoC Architecture 55
3.3.2 Routing Algorithm 56

3.4 CTile Architecture . 58
3.5 Point-X System Architecture 61

3.5.1 Multi-Mode Dataflow 62
3.5.2 Workload Partitioning 64

3.6 Benchmarking and Evaluation 65
3.6.1 Evaluation Methodology 66
3.6.2 Area, Performance, Efficiency Analysis 67
3.6.3 Workload Scalability Analysis 68
3.6.4 Performance Comparison 69

3.7 Related Work . 72
3.8 Summary . 73

IV. TetriX: Efficient Accelerator Architecture for Flexible Ten-
sorized Neural Network Processing 75

4.1 Background . 78
4.1.1 Tensor Decomposition Methods 79
4.1.2 TNN Inference with Tensor Contraction 83
4.1.3 Computation Challenges 84

4.2 Optimal Contraction Sequence Search 85
4.2.1 Tensor Network Representation 86

v

4.2.2 Breadth-First Contraction Search 87
4.2.3 Contraction Sequence Analysis 88

4.3 Hybrid Contraction Sequence Mapping 90
4.3.1 Limitation of Baseline Mapping 90
4.3.2 Hybrid Inner-Outer Product Mapping 93

4.4 TetriX System Architecture 95
4.4.1 Configurable Stationary Dataflow 97
4.4.2 Index Translation 99
4.4.3 Output Gathering 101

4.5 Benchmarking and Evaluation 103
4.5.1 Evaluation Methodology 103
4.5.2 Performance, and Mapping Efficacy Analysis 103
4.5.3 Performance Comparison 106

4.6 Summary . 108

V. Conclusion and Outlook . 109

BIBLIOGRAPHY . 112

vi

LIST OF FIGURES

Figure

1.1 Top-1 accuracy, size, and complexity of modern DNNmodels. Adapted
from [1]. 1

1.2 Core computations of DNNs: (a) vector-matrix multiplication in
MLP and RNN, and (b) 2D convolution in CNN. 2

1.3 Evolution of model size in the fields of (a) CV and (b) NLP. Adapted
from [2]. 4

1.4 Common model compression techniques: (a) data quantization, (b)
network sparsification, and (c) tensor decomposition. 5

1.5 Examples of novel operations: (a) GraphSAGE in GNNs and (b)
EdgeCONV in point-cloud networks. Adapted from [3, 4]. 6

2.1 Average density of IA, W data and average effectual work of common
DNNs after network pruning. 11

2.2 Convolution computation between unstructured sparse IA and W in
a sparse DNN. The colored cells indicate nonzero entries, and the
white cells indicate zero entries. 12

2.3 Processing pipeline of a sparse DNN processor. 12
2.4 Illustration of channel-last dataflow for sparse DNN processing. . . . 15
2.5 Channel-first compression in SNAP. 18
2.6 SNAP’s channel-first dataflow with channel index matching and psum

reduction along the channel dimension. 20
2.7 Comparison between channel-last dataflow and SNAP (channel-first

dataflow) for dense, medium and sparse workloads. 21
2.8 (a) Microarchitecture of associative index matching (AIM), and (b)

microarchitecture of sequence decoder and step-by-step example of
W-IA data pair dispatch in a PE. 23

2.9 Multiplier utilization of AIM designs at different data density levels. 24
2.10 PE microarchitecture and psum reduction along the channel dimension. 25
2.11 Psum reduction configuration across an array of PEs (a) 3×3 CONV

in diagonal mode, (b) pointwise CONV in row mode, and (c) FC in
row mode. 27

2.12 SNAP system architecture. 30
2.13 Microphoto of the 16nm SNAP test chip. 31

vii

2.14 (a) Measured power consumption at different operating frequencies
and the optimal supply voltages, and (b) measured effectual energy
efficiency for synthetic sparse workloads at different data density levels. 32

2.15 Processing speedup by SNAP (a channel-first dataflow) and a channel-
last dataflow over a dense accelerator baseline running the residual
blocks of a sparse ResNet-50 model. 33

3.1 Illustration of (a) point cloud recognition pipeline, (b) EdgeCONV
layer divided into KNN graph construction and GraphCONV on ver-
tex point i, and (c) DGCNN’s network architecture for 3D object
classification [4]. 40

3.2 EdgeCONV computation models: (a) query-based model, and (b)
exchange-based model. 46

3.3 (a) KNN graph of input point cloud and its adjacency matrix repre-
sentation; (b) the KNN graph is traversed and the points clustered
following traversal order; the clustered KNN graph and its adjacency
matrix are shown. 49

3.4 Clustering performance on KNN graphs: (a) graph edge ratio, and
(b) graph edge length, using different graph traversal methods on 1k
to 10k point clouds. 51

3.5 Illustration of the SBFS algorithm with 2 traversal lanes. 52
3.6 Architecture and dataflow of SLA clustering module. 54
3.7 Speedup of the SLA clustering module using SBFS with different

traversal lane numbers over a BFS implementation baseline. 54
3.8 Architecture of (a) a chain NoC, and (b) a router for chain NoC. . . 56
3.9 Microarchitecture of (a) a compute tile (CTile), (b) a compute engine,

and (c) a sort engine. 58
3.10 Microarchitecture of a group engine. 60
3.11 Point-X system architecture. 61
3.12 Multi-mode dataflow for (a) KNN graph construction, (b) shared

MLP and FC, and (c) GraphCONV operations. 63
3.13 Workload partition schemes: (a) sequential partition and (b) diagonal

partition. 64
3.14 (a) Normalized latency, (b) latency breakdown, and (c) energy break-

down of Point-X for GraphCONV workloads in DGCNN; (d) nor-
malized latency comparison of Point-X to query-based (Q-Base) and
the exchange-based (E-Base) baselines for GraphCONV workloads of
each point size. 69

3.15 Comparison of (a) throughput and (b) energy efficiency of Point-X
to the CPU and GPU baselines. 71

4.1 Illustration of model weight and tensor decomposition for TNNs. . . 76
4.2 Tensor network graph representation of TNN layer with (a) TT, (b)

HT, (c) TR, and (d) BT tensor decomposition methods, where the
input tensor ∈ Rn1×n2×n3×n4 and the output tensor ∈ Rm1×m2×m3×m4 . 86

4.3 Illustration of breadth-first approach for optimal contraction sequence
search. 88

viii

4.4 Illustration of contraction sequences for an HT-TNN layer inference
example: optimal sequence (Optimal) and fixed contraction patterns
used in previous works (Pattern-1, Pattern-2). 89

4.5 (a) Contraction sequence space in terms of total MAC operations
and required memory size; (b) comparison of contraction sequences in
total MAC operations, required memory size, and number of memory
accesses. 89

4.6 Illustration of (a) inner product and (b) outer product operation and
memory layout. 91

4.7 Example of the mapping options for an optimal contraction sequence:
(a) inner-only mapping, (b) outer-only mapping, and (c) hybrid inner-
outer mapping, where the dimensions for contraction are indicated in
red. 92

4.8 TetriX system architecture. 96
4.9 Illustration of WS and OS dataflows in TetriX architecture. 97
4.10 Illustration of integrated PE microarchitecture for WS/OS dataflows. 98
4.11 Illustration of (a) arbitrary permute and reshape operations on tensor

data in memory, and (b) proposed index translation mechanism. . . 99
4.12 Microarchitecture of index translation for (a) WS dataflow and (b)

OS dataflow. 100
4.13 Illustration of the hierarchical output gathering mechanism using (a)

two gathering stages followed by (b) a switching stage. 102
4.14 Performance comparison of hybrid mapping (TetriX), inner-only map-

ping (TetriX-Inner), and outer-only mapping (TetriX-Outer) for (a)
TT and (b) TR workloads. 104

4.15 Performance comparison of hybrid mapping (TetriX), inner-only map-
ping (TetriX-Inner), and outer-only mapping (TetriX-Outer) for (a)
HT and (b) BT workloads. 105

4.16 Comparison of the TetriX to TIE [5] in (a) normalized latency, and
(b) total MAC count, maximum memory size, and number of memory
accesses. 106

4.17 End-to-end throughput comparison for TT and HT workloads. . . . 107

ix

LIST OF TABLES

Table

2.1 Selection of Reduction Pattern . 26
2.2 Comparison With Prior Works . 35
3.1 GraphCONV Computation Comparison with F kernels, N points,

and K neighbors per point . 47
3.2 Storage and Area Breakdown of Point-X 67
3.3 Layer Evaluation of Point-X on 1k-DGCNN [4] 67
3.4 EdgeCONV Comparison to Existing Works 70
4.1 Comparison of Tensor Decomposition Methods 82

x

LIST OF ABBREVIATIONS

AI Artificial Intelligence

AIM Associative Index Matching

ASIC Application-Specific Integrated Circuit

BDFS Bounded Depth-First Search

BFS Breadth-First Search

BT Block Term

CAM Content-Addressable Memory

CNN Convolution Neural Network

CONV Convolution

CP Canonical Polyadic

CPU Central Processing Unit

CSC Compressed Sparse Column

CSR Compressed Sparse Row

CTA Compute Tile Array

CTile Compute Tile

CV Computer Vision

DFS Depth-First Search

DNN Deep Neural Network

DP Dot-Product

xi

DRAM Dynamic Random-Access Memory

EdgeCONV Edge Convolution

FC Fully-Connected

F-Map Foreign Map

FPGA Field-Programmable Gate Array

fps Frames per Second

Fpsum Feature Partial Sum

GCN Graph Convolutional Network

GNN Graph Neural Network

GPU Graphics Processing Unit

GraphCONV Graph Convolution

GRU Gated Recurrent Unit

HT Hierarchical Tucker

IA Input Activation

Inf. Inference

KNN K-Nearest Neighbor

L-Map Local Map

LSTM Long Short Term Memory

MAC Multiply-and-Add

ML Machine Learning

MLP Multi-Layer Perceptron

MMM Matrix-Matrix Multiplication

MP Max-Pool

NLP Natural Language Processing

NN Neural Network

xii

NoC Network-on-Chip

OA Output Activation

OS Output Stationary

OP Operation

PE Processing Element

PP Post-Processing

Psum Partial Sum

ReLU Rectifier Linear Unit

RNN Recurrent Neural Network

ROI Region of Interest

SBFS Speculative Breadth-First Search

SE Sorting Element

SIMD Single Instruction Multiple Data

SLA Spatial-Locality-Aware

SNAP Sparse Neural Acceleration Processor

SRAM Static Random-Access Memory

SVD Singular-Value Decomposition

TNN Tensorized Neural Network

TR Tensor Ring

TT Tensor Train

V-ALU Vector Arithmetic Logic Unit

VMM Vector-Matrix Multiplication

W Weight

WS Weight Stationary

xiii

ABSTRACT

Deep neural networks (DNNs) have become the primary methods to solve machine

learning and artificial intelligence problems in the fields of computer vision, natural

language processing, and robotics. The advancements in DNN model development

are to a large degree attributed to the increase of model size, complexity, and versa-

tility. The continuous growth of model size, complexity, and versatility causes intense

memory storage and compute requirements, and complicates the hardware design,

especially for the more resource-constrained mobile and smart sensor platforms.

To resolve the resource bottlenecks, model compression techniques, i.e., data quan-

tization, network sparsification, and tensor decomposition, have been used to reduce

the model size while preserving the accuracy of the original model. However, they

introduce several computation challenges including 1) irregular computation in an un-

structured sparse neural network (NN) from network sparsification, and 2) complex

and arbitrary tensor orchestration for tensor contraction in a tensorized NN.

Meanwhile, DNN’s capability has been transferred to new domains and applica-

tions to handle drastically different modalities and non-Euclidean data, e.g., point

clouds and graphs. New computation challenges continue to emerge, for example,

irregular memory access for graph-structured data in a graph-based point-cloud NN.

These challenges lead to a low processing efficiency for existing hardware archi-

tectures and motivate the exploration of specialized hardware mechanisms and ac-

celerator architectures. This dissertation consists of three works that explore the

design of efficient accelerator architectures to overcome the computation challenges

by exploiting model compression characteristics and data orchestration techniques.

xiv

The first work presents the sparse neural acceleration processor (SNAP) to pro-

cess sparse NNs resulted from unstructured network pruning. SNAP uses parallel

associative search to discover valid weight and input activation pairs for parallel

computation. A two-level partial sum (psum) reduction dataflow is used to eliminate

access contention at the output buffer and cut the psum writeback traffic. The SNAP

chip is implemented and achieves a peak effectual efficiency of 21.55 TOPS/W for

sparse workloads and 3.61 TOPS/W for pruned ResNet-50.

The second work presents Point-X, a spatial-locality-aware architecture that ex-

ploits the spatial locality in point clouds for efficient graph-based point-cloud NN

processing. A clustering method extracts fine-grained and coarse-grained spatial lo-

cality from the input point cloud to maximize intra-tile computational parallelism

and minimize inter-tile data movement. A chain network-on-chip (NoC) further re-

duces the data traffic and achieves up to 3.2× speedup over a traditional mesh NoC.

The Point-X prototype achieves a throughput of 1307.1 inference/s and an energy

efficiency of 604.5 inference/J on the DGCNN workload.

The third work presents TetriX, an architecture-mapping co-design for efficient

and flexible tensorized NN inference. An optimal contraction sequence with mini-

mized computation and memory size requirements is identified for inference. A hybrid

mapping scheme is used to eliminate complex orchestration operations by alternat-

ing between inner and outer product operations. TetriX uses index translation and

output gathering to support flexible orchestration operations efficiently. TetriX is the

first work to support all existing tensor decomposition methods for tensorized NNs

and demonstrates up to 3.9× performance improvement compared to the prior work

for tensor-train workloads.

Overall, these three works explore the computation of different network optimiza-

tion techniques. They exploit the full potentials of model compression and novel

operations, and convert them into hardware performance and efficiency. The archi-

xv

tectures can also be used to further enhance and support the development of more

effective network models.

xvi

CHAPTER I

Introduction

Figure 1.1: Top-1 accuracy, size, and complexity of modern DNN models. Adapted
from [1].

Deep learning [6], or more specifically, deep neural networks (DNNs) have become

the dominant methods to solve machine learning (ML) and artificial intelligence (AI)

problems in the fields of computer vision (CV), natural langurage processing (NLP),

1

Figure 1.2: Core computations of DNNs: (a) vector-matrix multiplication in MLP
and RNN, and (b) 2D convolution in CNN.

autonomous driving, and robotics [1, 2, 7–17]. To achieve an even better accuracy,

there is an constant effort to design larger and more powerful models, resulting in

increasing number of parameters and computation complexity. Figure 1.1 presents

the accuracy of modern network models with their model size and complexity in terms

of number of parameters and operation counts.

1.1 DNN Computation

In general, there are three different network structures for DNN models: 1) multi-

layer perceptron (MLP), 2) convolutional neural network (CNN), and 3) recurrent

neural network (RNN). We present the three network structures along with its core

computation.

An MLP consists of multiple feedforward fully-connected (FC) layers cascaded

one after another. The computation of an FC layer can be formulated into a vector-

matrix multiplication (VMM) between the input vector x ∈ RC and the weight matrix

W ∈ RC×K to obtain the output vector y ∈ RK , as described in Figure 1.2(a).

A CNN is specialized to 2D image processing and uses convolution (CONV) layers

for spatial feature extraction and FC layers for classification. The input and output

are often referred as input activation (IA) and output activation (OA). A CONV

layer has a weight (W) of size R×S×C×K and receives an IA of size H×W ×C to

2

obtain an OA of sizeH ′×W ′×K, as shown in Figure 1.2(b). In terms of computation,

a CONV layer performs 2D convolution with a kernel size of R × S on the IA. The

partial sums (Psums) are accumulated across input channel C to obtain an OA. The

same operation is repeated for K kernels. The model hyperparameters C and K

are the input and output channel sizes, respectively. The output channel size is also

known as the (weight) kernel number.

An RNN uses recurrent connections to process the input sequence of the current

timestep t and the output sequence from the previous timestep t − 1. Two popular

forms of the recurrent unit are widely adopted: gated recurrent unit (GRU) and long

short term memory (LSTM). An LSTM uses input, output, forget gates, and a cell,

i.e., i, o, f, c, to keep track of features that are relevant in long term and improves

accuracy over traditional recurrent units. The computation of an LSTM can also

be formulated into a VMM (Figure 1.2(a)), where the input vectors are the input

sequence xt and the hidden sequence ht−1, the matrix is the concatenation of i, f, o, c

matrices with respect to the input or hidden sequences, and the output vector is the

hidden sequence ht.

1.2 Network Model Optimization

The continuing growth of model size and computation complexity poses a signifi-

cant challenge to the deployment to real-time applications or on resource-constrained

devices. As shown in Figure 1.3, state-of-the-art CV and NLP models requires mil-

lions or billions of parameters to obtain the best accuracy [9, 12]. Model compression

techniques are proposed to reduce the model size and computation complexity.

On the other hand, there is an increasing effort to apply deep learning into new

fields with new modalities or non-Euclidean data beyond the heavily-focused CV and

NLP fields [14, 15, 18, 19]. To obtain better accuracy, new operations are proposed

from scratch or adapted from traditional operations.

3

Figure 1.3: Evolution of model size in the fields of (a) CV and (b) NLP. Adapted
from [2].

At the algorithm-level, model compression techniques and novel operation types

successfully achieve smaller model size and better accuracy, respectively. However,

most techniques also introduce sources of inefficiency at the hardware-level, resulting

in lower compute utilization and larger computation overhead. Therefore, hardware

accelerator and specialized architecture are necessary to bridge network optimization

algorithms to hardware performance and computation efficiency.

1.2.1 Model Compression

The rapid growth of the model size and computation complexity leads to a huge

cost for model training and inference that only server-scale graphics processing units

(GPUs) and central processing units (CPUs) equipped with large compute parallelism,

memory storage, and memory bandwidth can support. For example, GPT-3 model

contains 175 billion parameters and requires trillions of multiply-and-add (MAC) op-

erations for a single inference [12]. While these heavy models perform extremely well

at server-scale, they are impractical and cannot be deployed to resource-constrained

platforms, i.e., mobile, drone, and smart sensor, where compute, memory, bandwidth,

and battery are largely limited. This has motivated researches on model compression

techniques that aim to reduce the model size and the complexity of a DNN model

while preserving the accuracy [2, 20–22]. Several model compression techniques, i.e.,

4

Figure 1.4: Common model compression techniques: (a) data quantization, (b) net-
work sparsification, and (c) tensor decomposition.

data quantization, network sparsification, and tensor decomposition, have been pro-

posed and are widely applied to DNNs.

Data quantization (Figure 1.4(a)) reduces the data bit precision of model

parameters by truncating or rounding high-precision values into lower-precision values

[23, 24]. A quantized network requires the same amount of computation (at reduced

precision), but needs much less bits for memory storage.

Network sparsification (Figure 1.4(b)) is performed via network pruning that

removes unimportant connections in the network, generating a sparse model [25–28].

A sparse network can be stored in a sparse format, i.e., compressed sparse row (CSR),

to reduce the amount of memory space needed. In addition, a sparse network reduces

the amount of computation since most multiplications are unnecessary and can be

avoided.

Tensor decomposition (Figure 1.4(c)) aims to find a simpler, low-rank ap-

proximation of the original weight matrix or tensor [29–34]. Traditional low-rank

approximation methods, i.e., singular-value decomposition (SVD) [29], are used for

2D weight model, whereas, recent tensor decomposition methods, i.e., tensor-train

(TT) [33, 34], decomposes the original model into a series of smaller tensors, largely

reducing the memory space.

Note that both data quantization and sparsification can be applied to the input

5

Figure 1.5: Examples of novel operations: (a) GraphSAGE in GNNs and (b) Edge-
CONV in point-cloud networks. Adapted from [3, 4].

vector or activation. These compression methods can also be combined when applying

on a network, which may generate an even larger compression of the model [21].

1.2.2 Novel Operation Types

After the wide success of CNNs and RNNs in the CV and NLP fields, researchers

have worked on converting the insights obtained from traditional network models to

new applications and new modalities. For example, a graph is a natural representation

of the relationship between the data points in a network and is used for graph min-

ing applications, i.e., community detection, social network analysis [18, 19]; a point

cloud is an accurate representation of 3D space and has become a popular modal-

ity for 3D vision tasks, i.e., object classification and scene segmentation [14, 16, 17].

These new modalities and non-Euclidean data may have completely different data

structures and characteristics compared to the traditional 2D images and 1D text

sequences. Therefore, the traditional operations, i.e., CONV, may not be sufficient,

leading to the development of novel operations and network models. For example,

graph convolution (GraphCONV) [35] with different frameworks i.e., GraphSAGE

[3], DeepWalk [36], are used in graph neural networks (GNNs) to obtain better graph

embeddings. Similarly, for point-cloud recognition, novel operations, like edge con-

6

volution (EdgeCONV) [4], were proposed to extract more meaningful features from

point clouds.

The novel operations proposed enable the application of DNN into new fields of

applications and successfully outperform the accuracy of traditional models [14, 15,

19].

GraphSAGE (Figure 1.5(a)): In GraphSAGE [3], the neighborhoods for each

node are first sampled from the graph. Then, each node in the graph aggregates the

representations of the nodes in its k-hop neighborhood. The aggregated neighborhood

vector is concatenated with the node’s current representation, then processed with

an FC layer to obtain the new representation of the node. This process is repeated

for every hop count k = 1, . . . , K.

EdgeCONV (Figure 1.5(b)): For each point in the point cloud, the Edge-

CONV operation forms an edge between the point and its K-nearest neighbors, then

computes the edge features based on the point feature difference for every edge. Then,

the edge features are aggregated to obtain the output feature of the point [4].

1.2.3 Computation Challenges

At the algorithm-level, model compression techniques succeed in achieving better

balance between reasonable accuracy and affordable model size. Similarly, novel

operation design can achieve higher accuracy than a traditional model. However,

most techniques also introduce sources of inefficiency at the hardware-level. For

instance, the sparse formats from network sparsification are highly unstructured and

irregular, causing an inefficient parallel computation for a single instruction, multiple

data (SIMD) architecture. Similar irregular computation and memory access can be

observed for EdgeCONV computation in point-cloud networks. A SIMD architecture

must gather and reorganize the data obtained from scattered memory accesses before

performing parallel computation, causing a low compute utilization. In addition,

7

the set of tensors from tensor decomposition require complex and arbitrary data

orchestration to map a tensor contraction into matrix multiplication, resulting in

additional memory access and control overheads if the mapping is not optimized.

These motivate us to design specialized architectures and hardware accelerators to

unlock the full potentials of network optimizations and achieve higher processing

performance and efficiency.

1.3 Dissertation Outline

To fully benefit from model compression techniques and to support novel operation

types, specialized hardware mechanisms and signal processing techniques must be

incorporated into the accelerator architecture and design. This dissertation focuses

on the design of efficient AI and ML accelerator architecture using optimizations at

algorithm, architecture, and microarchitecture levels.

The organization of this dissertation is summarized as follows. Chapter II presents

SNAP [37, 38], a sparse neural acceleration processor for unstructured sparse neural

network (NN) processing. Specialized associative index matching (AIM) units were

designed to pair IA and W operands and provide a sufficient number of them to main-

tain compute utilization. A two-level reduction dataflow was proposed to eliminate

unnecessary memory accesses in the psum reduction process. Chapter III presents

Point-X [39, 40], a spatial-locality-aware (SLA) architecture for efficient graph-based

point-cloud NN processing. An SLA clustering extracts the spatial locality in the

input point cloud to maximize the computational parallelism at each compute tile

(CTile) and minimize the inter-CTile data movement. By exploiting the locality,

a low-cost chain NoC is designed to reduce the data exchange latency during pro-

cessing. Chapter IV presents TetriX, an architecture and mapping co-design for

efficient and flexible tensorized neural network (TNN) processing. An optimal search

is used to identify the contraction sequence with minimized computation for TNN

8

inference. A hybrid mapping scheme is proposed to eliminate complex tensor or-

chestration operations by alternating between inner and output product operations.

An index translation and an output gathering mechanisms are designed to support

arbitrary and scalable tensor permute and reshape operations. Chapter V concludes

this dissertation and provides outlooks for future research in ML and AI accelerator

design.

9

CHAPTER II

SNAP: Accelerator Architecture for Unstructured

Sparse Neural Networks

Deep learning or more specifically, deep neural network (DNN), has emerged to be

a key approach to solving complex cognition and learning problems [6, 41]. State-of-

the-art DNNs [7, 8, 42–47] require billions of operations and hundreds of megabytes

to store activations and weights. Given the trend towards even larger and deeper

networks, the compute and storage requirements will prohibit real-time, low-power

deployment on platforms that are resource and energy constrained. The compute and

storage challenges motivated efforts in network pruning to zero out a large number of

weights (W) in a DNN model with only little inference accuracy degradation [25, 26,

28]. In addition to sparsity in weights, the commonly-used rectifier linear unit (ReLU)

clamps all negative activations to zeros, resulting in sparsity in output activations

(OAs), which become input activations (IAs) of the next layer.

Figure 2.1 shows that the typical density of nonzero W (after network pruning

[26]) and IA (due to ReLU) in well-known network models: AlexNet, VGG-16 and

ResNet-50. An average of 50% density is common. Because the nonzero W and IA are

nearly randomly distributed, the amount of effectual computation, i.e., computation

that does not involve a zero, is only 25%. If a small sacrifice in inference accuracy can

be tolerated, the density of operands and the effectual computation can be further

10

Figure 2.1: Average density of IA, W data and average effectual work of common
DNNs after network pruning.

reduced.

Data sparsity can be exploited to save power. Many DNN accelerators, i.e., Eyeriss

[48], gates the computation by turning off the clock, whenever a zero in the IA is

detected in runtime. Most dense DNN accelerators can incorporate this technique to

reduce power, but it does not shorten the latency or improve the throughput.

Cnvlutin [49] and Cambricon-X [50] are well-known early architectures that ex-

ploit sparsity in compressed IA for latency reduction and throughput improvement.

However, they were designed to work with the sparsity in one of the two operands,

W or IA, but not both. A dense processing architecture can be easily adapted to

support one-operand sparsity by indirect data access.

To fully exploit sparsity in both operands, W and IA are stored in a compressed

form where nonzero elements are represented by value-index pairs. Storage in a

compressed form can reduce the memory size and bandwidth. However, unlike the

common dense array and matrix storage, a compressed storage is not amenable to

regular and efficient vector processing. One approach is to decompress the compressed

form before processing, but decompression costs performance, memory, and power.

Instead, state-of-the-art sparse DNN accelerators [51–55] process data directly in the

compressed form, offering both low memory bandwidth and high degree of accelera-

11

Figure 2.2: Convolution computation between unstructured sparse IA and W in a
sparse DNN. The colored cells indicate nonzero entries, and the white cells indicate
zero entries.

Figure 2.3: Processing pipeline of a sparse DNN processor.

tion.

Figure 2.2 illustrates sparse convolutions, and Figure 2.3 shows the high-level

computation pipeline of DNN processing in the compressed format (which will be

referred to as sparse DNN processing for simplicity). A sparse DNN processor loads

Ws and IAs in a compressed form consisting of a data array (zeros removed) and an

index array. Compressed W and IA arrays are paired by matching indices, dispatched

to a multiplier array, and the resulting partial sums (Psums) are accumulated to their

respective OAs in output buffers.

Data sparsity leads to better performance and efficiency, but major challenges

remain:

1. Front-end challenge : Multiplier under-utilization due to an insufficient num-

ber of W-IA pairs that can be extracted and dispatched to the multiplier array.

12

2. Back-end challenge : Data traffic and access contention to support accumu-

lation of psums whose destination addresses are seemingly random.

3. Flexibility challenge : Limited support for different kernel sizes and layer

types.

State-of-the-art sparse DNN accelerators including EIE [51], SCNN [52], Sticker

[53, 54], and Eyeriss v2 [55] addressed some of the challenges in sparse DNN process-

ing, but did not solve all of them. EIE [51] exploits both W and IA sparsity but is

restricted to fully-connected (FC) layers. SCNN [52] is the first attempt at exploit-

ing both W and IA sparsity for convolution (CONV) layers. It maximizes multiplier

utilization at the cost of massive psum writeback traffic and access contention, and it

supports only CONV layers. Sticker [53, 54] follows SCNN’s dataflow and uses 2-way

set-associative processing elements (PEs) to alleviate the access contention but re-

quires offline preprocessing to re-arrange IA data. Without the data re-arrangement,

the access contention remains as significant as in SCNN. Eyeriss-v2 [55] employs a

two-step search front-end to find effectual W-IA pairs by first fetching nonzero IAs,

and then using the channel index of the IA to look for nonzero Ws. Eyeriss-v2 adopts

an Eyeriss-like row stationary dataflow [56] to avoid memory access contention.

We present Sparse Neural Acceleration Processor (SNAP) that adopts a channel-

first dataflow and is optimized for the efficient processing of unstructured sparse

DNNs. To solve the front-end challenge, SNAP uses parallel associative index match-

ing (AIM) units and sequence decoders to extract a sufficient number of W-IA pairs to

maintain a high multiplier array utilization of 75%. To solve the back-end challenge,

SNAP adopts a two-level psum reduction that consists of PE level and core-level re-

duction to eliminate memory access contention and reduce psum writeback traffic to

an average of 2.79 OA reductions/cycle for a core of 63 multipliers. The core-level

reduction is configurable to support common layers in vision-based DNN models,

including general R× S CONV (R, S > 1), pointwise CONV, and FC.

13

The rest of the chapter is organized as follows. Section 2.1 introduces the channel-

last dataflow, an approach adopted by state-of-the-art sparse accelerators, and ana-

lyzes its advantages and inefficiencies in processing sparse DNNs. Section 2.2 presents

our channel-first dataflow and quantitatively compares it against the channel-last

dataflow to demonstrate its advantages. In Section 2.3, we describe our solution

to the front-end challenge using parallel index matching, and in Section 2.4, we de-

scribe our solution to the back-end challenge using two-level psum reduction. The

configurable core-level reduction makes the SNAP architecture flexible to support

different kernel sizes and layer types. Section 2.5 presents the overall SNAP archi-

tecture, followed by measurement and evaluation results using both synthetic sparse

workloads and commonly-used pruned networks. Finally, Section 2.6 summarizes the

contributions of this work.

2.1 Background

A dense CONV operation can be described by Eq. (2.1), where f represents the

activation function. For simplicity, the bias is ignored and IA padding is assumed to

be zero. FC can be viewed as a special case of CONV. In this work, we will use the

following indexing convention: a W index of (r, s, c, k) corresponds to (row, column,

channel, kernel), an IA index of (h,w, c) corresponds to (row, column, channel), and

an OA index of (x, y, k) corresponds to (row, column, output channel (kernel)).

OA(x,y,k) = f

(
R−1∑
i=0

S−1∑
j=0

C−1∑
c=0

IA(x+i,y+j,c) ×W(i,j,c,k)

)
. (2.1)

As Eq. (2.1) shows, there are two main steps in computing CONV (besides the

activation function): 1) IAs and Ws are multiplied to produce psums; and 2) the

psums are accumulated (or reduced) along the channel dimension (C) and along

the pixel dimension (R, S). The channel-dimension reduction and pixel-dimension

14

Figure 2.4: Illustration of channel-last dataflow for sparse DNN processing.

reduction are commutative. The channel indices of a W and an IA need to match for

the two to be multiplied together.

In ordering inputs for storage and processing, we can choose either the pixel

dimension first ((r, s) for W and (h,w) for IA) followed by the channel dimension

(c), termed channel-last dataflow, or vice versa, termed channel-first dataflow. Both

SCNN [52] and Sticker [54] adopt the channel-last dataflow.

2.1.1 Channel-Last Dataflow for Sparse DNN Processing

The channel-last dataflow is illustrated in Figure 2.4. In the channel-last dataflow,

the nonzero W and IA data are ordered in the pixel dimension first for storage and

processing. Because data are ordered pixel dimension first, as W and IA data are

streamed in, their channel indices are aligned. Since any nonzero W can be multiplied

15

with any nonzero IA of the same channel in a CONV operation, the W and IA can

be freely paired to produce a large number of W-IA pairs for a multiplier array.

The simple W-IA pairing results in a simple front-end for the channel-last dataflow.

Shown in Figure 2.4(a) and (b), the compressed W and IA data of size n can be broad-

cast over a n×n 2D multiplier array vertically and horizontally, respectively, so that

each W is multiplied to every IA. The drawback of the channel-last dataflow is that

the address of the OA that a psum needs to be accumulated to (will be referred to as

the psum address) does not follow a deterministic ordering. According to Eq. (2.1),

if a nonzero W and a nonzero IA have matching channel index c, they can be multi-

plied to produce a psum with an index of (x, y, k) = (h− r, w − s, k). The 3D index

is then translated to a 1D physical address. Hence, the n × n 2D multiplier array

produces n2 psums whose (x, y) indices are {(h − r, w − s)} with random drawings

of h ∈ [0, H − 1], r ∈ [0, R − 1], w ∈ [0,W − 1], and s ∈ [0, S − 1]. It is highly

likely to have two or more psums that share the same address, and in theory they

should be accumulated, or reduced, before writeback. However, it is challenging to

organize psums and reduce them before writeback. Without any psum reduction, the

writeback traffic becomes congested, and frequent contentions are possible at the OA

buffer. It requires complex hardware or wiring, e.g., a crossbar switch, to resolve the

contention, and results in pipeline stalls and a low multiplier array utilization.

This back-end challenge is illustrated in Figure 2.4(c). The psums need to be

distributed by a switch to the corresponding buffer bank. The red lines indicate the

psum writebacks that lead to buffer contentions. To avoid contentions, conflicting

psums need to be held. In the example, one output requires the accumulation of 3

psums, resulting in a 3-cycle writeback where the multiplier array stalls for 2 cycles.

16

2.1.2 Other Related Work

Numerous DNN accelerators have been proposed to exploit the parallelism in

DNN inference operations [38, 48–62]. To leverage the sparsity in Ws and IAs, some

work implemented power-saving techniques by clock-gating a PE when a zero IA

is detected [48, 59] to increase energy efficiency. Some work exploited sparsity at

the bit level [60] by skipping the computation for the zero-valued bits in the bit-

serial multiplication. Compared to earlier methods, exploiting sparsity in bit-level

reduces the overall computation cycles, and increases both efficiency and throughput.

However, the dataflows are still similar to traditional dense accelerators, where zero

elements are fetched on-chip, incurring unnecessary data transfers.

In this work, we focus on the DNN inference accelerator design that exploits

sparsity at data level and operates in the compressed form. Only nonzero elements

are fetched on-chip for computation, like in [51, 52, 54, 55]. This type of accelerator

skips all unnecessary data transfers and computation to optimize for energy efficiency

and computation throughput. We will refer to this type of accelerator as a sparse

accelerator for discussion and comparison.

2.2 Channel-First Processing Dataflow

Compared to the channel-last dataflow, the channel-first dataflow orders W and

IA data across the channel dimension first for storage and processing. The channel-

first dataflow allows the psums computed by the multiplier array to be locally reduced

before writeback.

2.2.1 Compression Format

In the channel-first dataflow, nonzero W and IA data are ordered and processed

in the channel dimension first, and then in the pixel dimension. An example of a 3×3

17

Figure 2.5: Channel-first compression in SNAP.

CONV is shown in Figure 2.5. The channel-first dataflow supports arbitrary IA data

size and a 3×3 IA data is chosen for the ease of illustration.

In Figure 2.5(a), the W and IA data are illustrated in the dense form. In our

channel-last dataflow, a bundle of nonzero W data and a bundle of nonzero IA data

are provided to a PE at a time. An IA bundle contains data in (h,w, c), where

c represents all nonzero elements along the channel dimension; and a W bundle is

larger and it contains data in (r, s, c, k), where r, c, k represent all nonzero elements

along the row, channel and kernel dimension, respectively. In general, a larger data

bundle leads to a higher utilization and processing efficiency, but we limit the IA

bundle not to span more than one pixel location to simplify channel index matching.

Figure 2.5(b) illustrates the IA bundle of (h,w, c) = (2, 2, c) and the W bundle of

(r, s, c, k) = (r, 0, c, k). The bundles are stored in the compressed form with all zeros

squeezed out as shown in Figure 2.5(c). The IA data are stored channel first. The

IA storage consists of a data array that stores nonzero IA data and a channel index

(c-idx) array that stores the channel index of the corresponding IA data. The W

data are also stored channel first, followed by row (r-idx) and kernel (k-idx). The W

18

storage consists of a data array, a c-idx array, a r-idx array and a k-idx array, as well

as a position pointer (pos-ptr) array to track the starting points in the data array of

the next r-idx and/or k-idx. For instance, the pos-ptr array stores 0 and 3, indicating

that the first three data values A, B, and C have (r, k) = (0, 0), and the data values

D, E, and F have (r, k) = (1, 0). An IA bundle and a W bundle are sent to one PE

for processing.

2.2.2 Channel-First Dataflow

In a channel-first dataflow, the nonzero W and IA data are streamed in channel

first, the addresses of the psums computed are aligned and the psums can be imme-

diately reduced along the channel dimension. Despite the appeal of the channel-first

dataflow, a W and an IA can only be paired and multiplied if their channel index

match. Hence, channel index matching must be performed at the front-end to extract

the valid W-IA pairs. Compared to the channel-last dataflow, this additional channel

index matching step introduces an overhead, but it provides immediately-reducible

psums to cut the writeback traffic, leading to potential improvements in both power

and performance.

The channel-first dataflow is illustrated in Figure 2.6. Each PE receives a W

bundle (r, s, c, k) and an IA bundle (h,w, c), as illustrated in Figure 2.5(c). The W

c-idx is matched with the IA c-idx to generate valid W-IA pairs. Valid W-IA data

pairs are fetched and multiplied to produce psums. The psums are accumulated and

saved to the OAs at (x, y, k) = (h − r, w − s, k). Due to the channel-first input

ordering and bundled processing, the address of the psums computed by one PE will

stay the same until the PE completes an IA bundle and switches to a new IA bundle

(change of h, w), or until the r-idx or k-idx changes (change of r, k) for a W bundle.

Due to the high locality of psum address, the majority of the psums are immediately

reduced to one within a PE. To process a complete convolution, the IA and W data

19

Figure 2.6: SNAP’s channel-first dataflow with channel index matching and psum
reduction along the channel dimension.

are decomposed and compressed into IA and W bundles. The IA and W bundles are

distributed to different PEs for processing as shown in Figure 2.6 until all bundles

are fully processed.

In a channel-first dataflow, channel-dimension psum reduction is done first. A

second-level pixel-dimension psum reduction can be done on-chip to further reduce

the writeback bandwidth. To enable the second-level psum reduction, PEs can be

arrayed and coordinated to facilitate the psum reduction across the PEs. The second-

level psum reduction will be described in more detail in Section 2.4.2.

To evaluate the benefits of the channel-first dataflow, we prototyped a channel-

last dataflow that follows the processing pipeline described in Figure 2.4 and quantify

the key differences between the two dataflows as shown in Figure 2.7. The channel-

last dataflow is limited by the large number of OA buffer accesses and the access

contention, causing the compute to stall and worsening both utilization and pro-

cessing latency; and in comparison, the channel-first dataflow employs a front-end

20

Figure 2.7: Comparison between channel-last dataflow and SNAP (channel-first
dataflow) for dense, medium and sparse workloads.

channel index matching to reduce the number of OA buffer accesses and remove the

access contention. The channel-first dataflow provides on average 1.51× and 1.45×

improvement over the channel-last dataflow in processing latency and multiplier uti-

lization, respectively. Only when the data density drops below a threshold, e.g., 10%

W and IA data density, does the channel-first dataflow starts to underperform the

channel-last dataflow due to two factors: 1) the lack of reduction opportunities due to

highly sparse data, and 2) the imbalance of input bundle sizes causing PE workload

imbalance.

The SNAP architecture follows the channel-first dataflow. The two key techniques,

channel index matching and two-level psum reduction, will be presented in the next

two sections.

2.3 Channel Index Matching

Channel index matching extracts pairs of nonzero W-IA pairs of matching channel

index. We propose an associative index matching (AIM) unit to extract a sufficient

21

number of W-IA pairs to sustain a high utilization of a parallel multiplier array. The

AIM performs index matching, encodes the addresses of valid W-IA pairs, and a

sequence decoder decodes the addresses and dispatches the pairs for parallel compu-

tation.

2.3.1 Associative Index Matching

Figure 2.8(a) shows the microarchitecture of the AIM and illustrates its mecha-

nism. The AIM consists of a N×N comparator array, where each row is connected to

a priority encoder. During operation, an AIM receives the W and IA channel index

arrays from a PE; and it compares each W channel index to each IA channel index.

In Figure 2.8(a), for example, the W channel indices 0, 2, 9, 5 are matched to the IA

channel index at position 0, 1, 4, 2, respectively, whereas the W channel index 4 does

not have a match. A priority encoder encodes the match result in each row into a

valid bit to indicate a match and the matched position in the IA channel index array.

Upon completion, an AIM returns a list of valid-position pairs to a PE for processing.

2.3.2 Sequence Decoder

Within a PE, a sequence decoder converts a list of valid-position pairs to W-IA

data pairs. Figure 2.8(b) shows the microarchitecture and illustrates the sequence

detection mechanism with the valid-position list output from Figure 2.8(a): 1) a 3-

way priority encoder converts 3 valid-position pairs (with valid bit = 1) at a time

to W-IA data addresses; 2) the positions in the valid-position pairs are used as the

addresses to fetch IA data, and the indices of the valid-position pairs are used as

the addresses to fetch W data; and 3) the 3 valid-position pairs are invalidated by

overwriting the valid bits to 0, and the W and IA data are sent to the multipliers to

compute psums. After completing the list of valid-position pairs, the PE requests a

new list from the AIM.

22

Figure 2.8: (a) Microarchitecture of associative index matching (AIM), and (b) mi-
croarchitecture of sequence decoder and step-by-step example of W-IA data pair
dispatch in a PE.

23

Figure 2.9: Multiplier utilization of AIM designs at different data density levels.

2.3.3 Design Tradeoff Exploration

The size of the comparator array, N , determines AIM’s throughput and effective-

ness. N needs to be sufficiently large to even out the workload density imbalance

and variations across W and IA bundles for extracting enough W-IA pairs to main-

tain a high multiplier utilization. However, the area and power consumption of AIM

increase nearly quadratically with N . To balance these two competing factors, we

avoid using a small AIM, e.g., one with a 4×4 or 8×8 comparator array, and instead

use a larger AIM and time-multiplex it between multiple PEs to amortize the cost.

Figure 2.9 shows the multiplier utilization across a range of workload densi-

ties for N = 16, 32, or 64, where a suffix S indicates that a large AIM is time-

multiplexed among an appropriate number of PEs, and a suffix P indicates that a

simple prefetch mechanism is implemented to further reduce the workload imbalance

by pre-requesting valid-position pairs from the AIM. A larger AIM provides a higher

multiplier utilization across all workload densities: the utilization improves by 10%

from N = 16 to 32, and again from 32 to 64. A large AIM with N = 64 incurs an area

overhead of 50%. A moderate-sized AIM with N = 32 cuts the area overhead below

12.5%, and adding prefetching increases the utilization by up to 5%. Therefore, in

24

Figure 2.10: PE microarchitecture and psum reduction along the channel dimension.

designing SNAP, we adopt a time-multiplexing, prefetching AIM design with a N =

32 comparator array to balance the performance, area and power consumption. This

design achieves an average multiplier utilization above 75% for our benchmarks.

2.4 Two-Level Partial Sum Reduction

To reduce the output bandwidth, after the psums are computed by the PEs, they

should be maximally accumulated to reduce the number of writebacks to the output

buffer. Following the channel-first dataflow, SNAP implements a two-level psum

reduction to minimize the read-accumulate-writes to the output buffer. The psums

are first reduced along the channel dimension inside the PEs, and then along the pixel

dimension across PEs. The across-PE reduction is configurable to support not only

CONV, but also pointwise CONV and FC.

2.4.1 PE-level Channel-Dimension Reduction

The PE microarchitecture is shown in Figure 2.10. Each PE contains a compute

path consisting of 3 multipliers and psum accumulators, an address path that com-

putes the addresses and then selects the psum reduction pattern, a sequence decoder,

25

Table 2.1: Selection of Reduction Pattern

OA Addresses Out[0] Out[1] Out[2]

AddrA = AddrB = AddrC A+B+C - -

AddrA = AddrB < AddrC A+B C -

AddrA < AddrB = AddrC A B+C -

AddrA < AddrB < AddrC A B C

a W register file (RF) and an IA RF to provide the inputs, and an OA psum RF to

store the outputs. In each cycle, the sequence decoder dispatches 3 W-IA data pairs

and their indices ((h,w) for IA data and (r, s, k) for W data). The W-IA data pairs

are directed to the compute path to produce the psums, A, B, and C; and the W and

IA indices are sent to the address path to compute the addresses (recall psum index

is (x, y, k) = (h − r, w − s, k), which is translated to a physical 1D address). Given

the 3 psum addresses, the reduction controller selects one psum reduction pattern in

the compute path.

The channel-first input processing order guarantees that the addresses for A, B,

and C are ordered and non-decreasing, i.e., AddrA ≤ AddrB ≤ AddrC . Due to the

deep channels seen in modern DNN layers, in most cases, AddrA = AddrB = AddrC ,

and the 3 psums can be accumulated and reduced to one. If not, the reduction

controller selects one of the reduction patterns according to Table 2.1. One, two or

three psums are produced and sent to the OA psum RF every cycle, avoiding stalls

in the computation pipeline. A PE retains a OA psum in the RF until all possible

reductions along the channel dimension are complete, cutting the psum writeback

traffic by up to the channel depth compared to the channel-last dataflow. Note that

the number of multipliers in a PE is set to 3 to keep a reasonable overhead for the

reduction pattern selection.

26

Figure 2.11: Psum reduction configuration across an array of PEs (a) 3×3 CONV in
diagonal mode, (b) pointwise CONV in row mode, and (c) FC in row mode.

2.4.2 Core-Level Pixel-Dimension Reduction

To reduce the writeback traffic, after the first-level psum reduction along the

channel dimension, a second-level psum reduction across an array of PEs can be

done. Figure 2.11(a) illustrates a 3×3 PE array and the input data mapping for a

3×3 CONV kernel. The three W bundles of s = 0, 1, 2 are broadcast to the three

PE columns, and the three IA bundles of (h,w) = (2, 2), (2, 3), (2, 4) are broadcast

to the three PE rows. This mapping allows W and IA reuse by a column and a

row of PEs, respectively. Following this mapping, the PEs on the same diagonal

lane produce psums of the same address. For example, assume (r, k) = (0, 0) for the

W bundles, PE11, PE22, and PE33 compute the psums going to the OA address of

(x, y, k) = (h − r, w − s, k) = (2, 2, 0); and similarly, PE12 and PE23 compute the

psums going to the OA address of (x, y, k) = (h− r, w − s, k) = (2, 1, 0). Therefore,

the psums along the diagonal lanes are accumulated.

We name an array of PEs a core. To support the popular 3×3 CONV seen in

modern DNN models, the number of columns can be set to 3 (which also sets the

number of PEs along a diagonal to 3) to achieve the full utilization. The number

27

of rows can be set based on the throughput requirement for an application. Going

beyond the 3×3 CONV, the diagonal mode reduction is used for general R×S CONV

(R, S > 1). If R, S > 3, the CONV kernel is divided into R×3 sub-kernels, and

then distributed and processed independently on multiple compute cores. A global

accumulator merges the psums from the multiple cores to compute the final OA for

writeback.

The core-level psum reduction along the pixel dimension cuts the writeback traffic

by 2.3 to 3.0×. The two-level reduction resolves the access contention seen in prior

work [52–54]. It reduces the writeback traffic to only 2.79 OAs per cycle on average for

a core of 7×3 PEs that contain a total of 63 multipliers. The output bandwidth of a

channel-first dataflow using the two-level reduction is 22× lower than the channel-last

dataflow with an equal number of multipliers.

2.4.3 Support for Pointwise CONV and FC

In our work, we considered the pointwise CONV and FC as special cases of the

CONV computation shown in Figure 2.2 with size constraints R = S = 1 and R =

S = H = W = 1, respectively. The size constraints in pointwise CONV and FC

eliminate the possibility of pixel-dimension reduction. The interconnection between

the PEs and the core reducer is configurable to support not only the diagonal mode,

but also provide a row mode to support DNN layers that do not have any pixel-

dimension reduction opportunities.

To reuse the same architecture for a pointwise CONV including the same output

bandwidth and to achieve a high utilization, the inputs are divided into groups in

the channel dimension, and the core is reconfigured to perform reduction along the

channel dimension. For example, in Figure 2.11(b), a W bundle is divided into three

groups in the channel dimension, and each group is broadcast to a column of PEs;

an IA bundle is divided into three groups in the channel dimension, and multicast to

28

the three PEs in a row. This mapping allows W reuse by the PEs along a column.

Following this mapping, the PEs on the same row produce the psums going to the

same OA address. Therefore, the core reducer is configured to accumulate the psums

from the PEs along the rows.

In processing an FC, W data cannot be reused in batch-1 processing. Similar to

the pointwise CONV, the PE array is utilized in channel-dimension reduction. An IA

bundle is divided into groups in the channel dimension; a W bundle is divided into

groups in both the channel and kernel dimensions. For example, in Figure 2.11(c),

a W bundle is divided into three groups in the channel and kernel dimension, and

multicast to the three PEs in a column; and an IA bundle is divided into three groups

in the channel dimension and broadcast to the three PEs in a column. This mapping

allows IA reuse by the PEs along a column. Similar to the pointwise CONV, the

PEs on the same row produce the psums going to the same OA address, and the core

reducer is configured to accumulate the psums from the PEs along the rows.

2.5 Implementation and Evaluation Results

We present the SNAP system architecture based on the techniques introduced

above. The SNAP architecture is prototyped in a 16nm test chip. The chip is

measured and evaluated using workloads of different sparsity levels and a pruned

ResNet-50 model. The results are summarized and compared with state-of the-art

dense and sparse DNN accelerators.

2.5.1 SNAP Architecture Overview

The SNAP high-level architecture is shown in Figure 2.12. It consists of multiple

cores, a control module, and a memory module. The control module provides the

configuration of the compute cores and coordinates the communication with the ex-

ternal interface. The memory module is composed of multi-banked IA and OA buffers

29

Figure 2.12: SNAP system architecture.

shared between the compute cores, and non-shared W buffers of each compute core.

The compressed W and IA data are fetched from off-chip and aligned by bundles.

W bundles are stored in each core’s W buffers following the system configuration,

and IA bundles are stored in the IA buffers. The output OAs are compressed before

writeback to the external memory.

Following the high-level architecture, we designed a SNAP test chip that is made

of 4 cores, and each core is implemented in a 7×3 PE array. Within a core, 7 AIM

units are shared in a time-multiplexed fashion between the 3 PEs in a row. Each PE

is implemented with 3 multipliers and a sequence decoder. The PEs output psums,

which are accumulated by the core reducer, and a global reducer is used to further

accumulate psums before the final writeback.

The SNAP test chip provides a total of 252 multipliers of 16-bit fixed-point pre-

cision and a total of 280.6KB SRAM. Note that a 8-bit design would work equally

30

Figure 2.13: Microphoto of the 16nm SNAP test chip.

as well to demonstrate the architectural advantages and show an even better per-

formance and energy efficiency. The only difference is that the overhead of index

matching, measured as a fraction of the compute core, increases from 12.5% (in a

16-bit design) to 17% (in a 8-bit design). The test chip is implemented using a 16nm

CMOS process technology with a core area of 2.3mm2. Figure 2.13 shows the chip

microphoto.

2.5.2 Performance Analysis

In our evaluations, a 16-bit fixed-point multiply and accumulate (MAC) is counted

as 2 operations (OPs). Each PE computes at most 3 MACs or 6 OPs every clock cycle.

For the evaluations, we used both synthetic sparse workloads and real workloads of

pruned DNN models, including AlexNet, VGG-16, and ResNet-50, pruned with less

than 0.5% accuracy loss using the technique from [26], to measure performance, power

consumption, and effectual energy efficiency (taking into account the input IA/W

density).

The measured chip power consumption is shown in Figure 2.14(a). At each op-

erating frequency, the power is reported at the lowest supply voltage. At 0.55V and

260MHz, the test chip achieves the peak effectual energy efficiency of 3.61TOPS/W

31

Figure 2.14: (a) Measured power consumption at different operating frequencies and
the optimal supply voltages, and (b) measured effectual energy efficiency for synthetic
sparse workloads at different data density levels.

for a sparse ResNet-50 model with an average IA/W density of 0.38/0.52. The chip

achieves the highest inference throughput of 90.98fps for the same sparse ResNet-50

model at 0.8V, 480MHz, consuming 348mW.

The measured effectual energy efficiency of the SNAP test chip running synthetic

sparse workloads of different data density levels is shown in Figure 2.14(b). In previous

work, SCNN [52] reports the results at IA/W density of 0.2/0.2 and 0.1/0.1, and

Sticker [54] reports the results at IA/W density of 0.15/0.15 and 0.05/0.05. We used

IA/W density of 0.1/0.1 to approximately match the previous work so we can fairly

compare the designs for energy efficiency. For dense (1.0/1.0), medium (0.4/0.4), and

extremely sparse (0.1/0.1) IA/W data density levels, a peak effectual energy efficiency

32

Figure 2.15: Processing speedup by SNAP (a channel-first dataflow) and a channel-
last dataflow over a dense accelerator baseline running the residual blocks of a sparse
ResNet-50 model.

of 1.67, 5.06 and 21.55TOPS/W is achieved, respectively.

We benchmark the measured throughput of the SNAP architecture and a simu-

lated channel-last dataflow architecture over a dense accelerator baseline running a

sparse ResNet-50 model. In Figure 2.15, we show the speedup in processing each

residual block. For a fair comparison, the dense accelerator baseline is constructed to

be the same as SNAP, but with uncompressed, dense inputs. Overall, the channel-last

dataflow demonstrates an average speedup of 2.20× over the dense baseline; and the

SNAP design obtains an average speedup of 2.87× over the dense baseline, which is

30.3% better over the channel-last dataflow.

Although SNAP, a channel-first dataflow, generally provides a higher performance

than a channel-last dataflow, the performance gap is more visible at the shallow and

middle layers, but less visible for deep layers, as shown in Figure 2.15. For instance,

SNAP has a 46.2% better performance than the channel-last dataflow for the first

residual block blk-2a, but only 7% better performance for the last residual block

blk-5c. The difference is attributed to two factors: 1) the deep layers are generally

sparser after pruning, resulting in less access contention and better performance for

33

the channel-last dataflow; and 2) extremely sparse workloads often come with im-

balanced zero distribution, causing challenges to SNAP’s index matching and psum

reduction.

The imbalanced zero distribution, or workload imbalance, is a design challenge for

both the SNAP front-end and back-end. At the front-end, the workload imbalance

causes PEs to receive varied number of W-IA pairs for computation, and the overall

performance is limited by the PE with the heaviest workload. This problem may

be resolved by implementing a more aggressive prefetching scheme that provides a

larger work chunk for PEs to prevent them from stalling. At the back-end, the work-

load imbalance causes each PE to have less channel-dimension reduction opportunity

before writeback to the output buffer, resulting in a higher writeback bandwidth.

Additionally, the PEs on the same core-level reduction lane may have varied reduc-

tion progress, requiring the faster PEs to be stalled to wait for the slowest one. The

back-end problem may be mitigated by implementing a larger OA psum RF to store

more psums in a PE, and implementing the OA output buffers using two-port SRAMs

or multi-banked SRAMs to provide a higher accumulation bandwidth.

2.5.3 Comparison Against State-of-the-art Works

Compared with state-of-the-art inference accelerators that support sparsity at

data-level or for power-saving shown in Table 2.2, SNAP exploits sparsity in both

compressed W and IA data for both CONV and FC layers. SNAP employs a 16-

bit fixed-point precision for data storage and computation. SNAP has a comparable

number of multipliers as many previous silicon designs. Energy efficiency is reported

for the effective efficiency evaluated on both synthetic workloads and real sparse

network workloads.

To provide a fair comparison, we also present the synthesis results of SNAP-65nm-

8b, the same SNAP design with 8b storage and computation in a 65nm GP process.

34

Table 2.2: Comparison With Prior Works

This Work
Sticker
[54]

Eyeriss-v2
[55]

SCNN
[52]

Envision
[59]

Eyeriss-v1
[48]

Sparsity
Support

Data-Level Data-Level Data-Level Data-Level Power-Saving Power-Saving

Layer
Support

CONV+FC CONV+FC CONV+FC CONV CONV+FC CONV

Technology 16nm 65nm 65nm 16nm 28nm 65nm

Silicon Yes Yes No No Yes Yes

Core Area 2.3mm2¶ 7.8mm2 2695k gates
(NAND-2)

7.9mm2 1.87mm2 12.25mm2

Num. of
MULTs

252 256 384 1024 1024/512/256 168

Data Width 16b 8b 8b 16b 4/8/16b 16b

On-Chip
SRAM

280.6KB 170KB 246KB 1200KB 144KB 108KB

Supply
Voltage

0.55–0.80V 0.67–1.0V N/A N/A 0.55–1.1V 0.82–1.17V

Frequency 33–480MHz 20–200MHz 200MHz 1000MHz 50–200MHz 100–250MHz

Power 16.3–364mW 20.5–248.4mW N/A N/A 7.5–300mW 235–332mW

Peak
Efficiency†

(TOPS/W)

D: 1.67 (16b)
M: 5.06 (16b)
S: 21.55 (16b)

D: 0.5 (8b)
M: 2.5 (8b)
S: 30 (8b)

D: 0.25 (8b)
S: N/A

N/A 0.53 (16b) 0.31 (16b)

Sparse
AlexNet‡

(TOPS/W)
3.86 (16b) 2.82 (8b) 0.96 (8b) N/A 0.8-3.8§ 0.17 (16b)

Sparse
VGG-16‡

(TOPS/W)
3.79 (16b) N/A N/A N/A 2.0§ 0.09 (16b)

Sparse
ResNet-50‡

(TOPS/W)
3.61 (16b) N/A N/A N/A N/A N/A

∗One multiply-and-accumulate (MAC) computation is counted as 2 operations (OPs). Data
width of the OPs is labeled in bracket.
†Peak effectual energy efficiency in TOPS/W evaluated on synthetic sparse workloads at 1.0/1.0
(D), 0.4/0.4 (M), and 0.1/0.1 (S) IA/W density levels.
‡Effectual energy efficiency in TOPS/W for sparse networks pruned within 0.5% accuracy loss.
§Data width not specified.
¶Post-shrinkage area. (pre-shrinkage area: 2.4mm2 [38])

35

SNAP-65nm-8b was synthesized at 250MHz with the SRAM modules re-generated

to support 8b processing. It is estimated to have an area of 9.32mm2 and consume

500mW. For a sparse AlexNet, SNAP-65nm-8b is estimated to achieve an effective

energy efficiency of 0.74TOPS/W running at 250MHz at a nominal voltage of 1.0V.

Dense and Sparse Workloads: For high and medium density workloads, SNAP

achieves a higher effectual energy efficiency than all the other sparse accelerators.

More specifically, the channel-last accelerators, including SCNN and Sticker, suffer

from memory contention and compute stalls, resulting in a lower performance. SNAP

also benefits from the large channel-dimension reduction opportunity and a low work-

load imbalance to achieve a high compute utilization and better efficiency. The NoC

in Eyeriss-v2 consumes extra power and latency for conventional DNN workloads.

Compared to Eyeriss-v2, SNAP benefits from a larger search depth and is specifically

optimized for CONV (R×S and 1×1) and FC layers. For extremely sparse work-

loads, Sticker [54] reports better effectual energy efficiency than SNAP, but uses 8-bit

storage and computation while SNAP uses 16-bit storage and computation.

In sparse workload evaluations, SNAP outperforms all the other works. Compared

to sparse accelerators, Sticker (8b) [54] and Eyeriss-v2 (8b) [55], SNAP achieves up

to 3.34× and 6.68× better effectual energy efficiency running synthetic workloads,

respectively. For sparse AlexNet, SNAP achieves 1.37× and 4.02× better effectual

energy efficiency than Sticker (8b) and Eyeriss-v2 (8b), respectively.

Index Matching Search Depth: Among all the references, Eyeriss-v2 is the

closest to SNAP in terms of architectural design. The difference between SNAP

and Eyeriss-v2 is mainly attributed to two factors. First is the difference in search

granularity in index matching. SNAP adopts a more coarse-grained compression

format. During the discover stage, the AIM searches in the first 32 nonzero entries

of the compressed W data. On the other hand, Eyeriss-v2 uses the compressed

sparse column (CSC) format. During the discover stage, Eyeriss-v2 first identifies

36

IA’s channel index, then searches for nonzero W data only across all k indices. Due

to a smaller search depth, Eyeriss-v2’s index matching mechanism is more likely to

encounter fragmentation of nonzero W data, resulting in an insufficient number of

W-IA pairs sent to the MAC array and possibly a lower compute utilization. The

second difference is that SNAP’s dataflow is specifically optimized for CONV and FC,

whereas Eyeriss-v2 implements a fully flexible NoC for routing and switching. The

NoC may be a burden on performance and power consumption.

Load Balancing Consideration: Load imbalance can be caused by front-end

workload distribution or back-end writeback or both. The channel-last accelerators

like Sticker and SCNN are not affected by the front-end workload imbalance seen in

channel-first accelerators like SNAP and Eyeriss-v2. The varying number of W-IA

pairs assigned to different PEs affects the compute utilization of each PE. With a

large enough search depth, SNAP, a channel-first accelerator, can minimize the front-

end workload imbalance. Eyeriss-v2, another channel-first accelerator, used a similar

approach, except that its search depth is smaller than SNAP.

The channel-last accelerators suffer from the back-end workload imbalance when

there are memory access contentions between the accumulation buffers and the mul-

tipliers, especially for medium to high density workloads. The memory contention

affects the number of cycles needed to complete a chunk of W and IA data and

causes progress differences between PEs, resulting in the faster PEs stalling for the

slowest one. This imbalance situation is worse for higher density workloads where

contention is more frequent. A channel-first accelerator like SNAP effectively miti-

gates the back-end workload imbalance by streamlined, maximal OA psum reduction

before writeback.

37

2.6 Summary

We present the Sparse Neural Acceleration Processor (SNAP) that exploits un-

structured sparsity in sparse DNNs for efficient inference acceleration. SNAP adopts

a new channel-first dataflow with channel index matching as the front-end and a

two-level psum reduction backend for sparse DNN processing.

At the front-end, channel index matching is done by efficient associative index

matching (AIM) units and sequence decoders to discover valid W-IA pairs for com-

putation. It results in an average compute utilization of 75% while limiting the area

overhead to only 12.5% of the compute core. At the back-end, the combination of

PE-level psum reduction along the channel dimension and core-level psum reduction

along the pixel dimension eliminates writeback access contention at the output buffer

and reduces the psum writeback traffic by 22× compared to the previous sparse ac-

celerator designs. The core-level psum reduction is configurable to support general

R× S CONV, pointwise CONV, and FC layers.

A SNAP test chip is designed using 252 16-bit multipliers organized in 4 cores

of 7×3 PEs. The chip is measured to achieve an effective energy efficiency of up

to 21.55TOPS/W running synthetic sparse workloads and 3.61TOPS/W running a

pruned ResNet-50. Compared to the state-of-the-art dense and sparse accelerators,

SNAP offers competitive performance and energy efficiency by maintaining a high

compute utilization and a low writeback data traffic.

38

CHAPTER III

Point-X: Spatial-Locality-Aware Accelerator

Architecture for Graph-Based Point-Cloud Neural

Networks

3D deep learning has attracted increasing attention in recent years due to its

wide applications in the 3D space, including indoor navigation, object classification,

scene segmentation, shape synthesis and modeling [15]. Among all 3D representa-

tions, point cloud has gained popularity since it shows an accurate representation of

the real world and can be acquired directly as the raw output from most 3D data

acquisition devices like light detection and ranging (LiDAR) and infrared (IR) sensors

[14, 16, 17, 63]. The raw point clouds undergo common preprocessing steps, including

background filtering, noise removal, and region of interest (ROI) identification, and

the preprocessed ROI frames are then ready for the point-cloud processing.

After the wide success of deep neural network (DNN) and convolutional neural

network (CNN) on 2D image applications [7, 8, 42, 43], researchers have worked

on converting the insights from CNNs to the point clouds in the 3D space. The

first attempts processed point clouds indirectly using an intermediate representation,

i.e., multi-view [64–66] or volumetric [67–69]. These methods either project point

clouds into several 2D images of different angles or convert them into voxels in a

39

Figure 3.1: Illustration of (a) point cloud recognition pipeline, (b) EdgeCONV layer
divided into KNN graph construction and GraphCONV on vertex point i, and (c)
DGCNN’s network architecture for 3D object classification [4].

3D grid, before applying well-established 2D or 3D CNNs to accomplish indirect

point-cloud processing. However, these approaches were unable to capture the fine

details and textures due to the data truncation during representation conversion.

PointNet [70] proposed a point-based network to process point clouds directly without

any projection or voxelization. However, PointNet only considers the global shape

structure and not the relations between the points, thus it is unable to capture finer

details, limiting its performance [4, 71].

To overcome the limitations, recent works propose to extract local neighborhood

information by graph-based methods [4, 72, 73], and integrate them into the global

shape structure to improve the performance over the PointNet model. In particular,

DGCNN [4] uses a graph-based operator called edge convolution (EdgeCONV) to

integrate both local and global features. Figure 3.1 shows the point cloud recognition

pipeline using the DGCNN architecture and illustrates the principles of EdgeCONV.

40

An EdgeCONV first uncovers the spatial relationship of points by constructing a K-

nearest neighbor (KNN) graph of the input point cloud. Following the KNN graph

edges, a graph convolution (GraphCONV) aggregates the local neighborhood features

and the global feature of every vertex point to produce the output feature. The

promising DGCNN results make EdgeCONV a widely adopted operator [74–77].

Variants of EdgeCONV have emerged and are employed widely in recent graph-

based point-cloud DNN works [78–80]. These variants share EdgeCONV’s computa-

tion pattern which consists of 1) graph construction to uncover the spatial relationship

between the seemingly independent data points, followed by 2) convolution on the

constructed graph to extract features for recognition. As such, the exploration and

findings on EdgeCONV are applicable to these variants.

EdgeCONV computation cannot be supported efficiently by existing computing

solutions. In computing EdgeCONV, a vertex’s neighbors may be randomly dispersed

in the system memory. Conventional general-purpose SIMD architectures, i.e., CPUs

and GPUs, have to fetch scattered graph vertices for vector computation, resulting

in a low compute utilization and a low efficiency. Existing DNN/CNN accelerators

[48, 57, 59, 81] are incapable of performing such computation because they are pur-

posely designed for sequential memory access and regular-structured data, i.e., 2D

image or 1D sequence. Existing graph processing accelerators [82, 83] are optimized

for irregular data accesses and cannot fully exploit the data reuse or provide the

computational parallelism needed in graph-based networks. Between the two ends of

the spectrum, accelerators for graph convolutional neural networks (GNNs/GCNs)

[84–90], handle both regular and irregular computation in GCNs. Different from the

common GNNs where the graph structures are known in advance, EdgeCONV oper-

ates on dynamic graphs that are constructed in runtime. Most previous works [84–88]

focused on static graphs, and did not fully support EdgeCONV due to the lack of run-

time graph construction. Recently, [89, 90] extended the support to dynamic graphs.

41

However, they did not consider the community structures of point clouds, and as a

result, they failed to capture the best efficiency for graph-based point-cloud DNNs.

To design a practical architecture for graph-based point-cloud processing, three

objectives need to be addressed:

1. Fetch efficiency : to deliver a maximal number of neighbor points to compute

under a limited transfer bandwidth.

2. Computation efficiency : to provide high compute parallelism and utiliza-

tion for irregular point cloud workloads.

3. Flexibility : to support diverse computation types in graph-based point-cloud

networks.

We present Point-X, a spatial-locality-aware accelerator architecture for efficient

graph-based point-cloud processing. Point-X extracts and leverages the spatial local-

ity in the input point cloud to increase computational parallelism and reduce com-

munication overhead, enabling higher fetch and computation efficiency. The main

contributions are:

• A speculative breadth-first search (SBFS) graph traversal method is proposed

to extract the spatial locality in the input point cloud. It achieves up to 9.2×

faster execution over a conventional breadth-first search (BFS) graph traversal.

A spatial-locality-aware clustering based on SBFS traversal is used to distribute

input points into compute tiles (CTiles) for efficient processing.

• A lightweight chain network-on-chip (NoC) architecture is designed to leverage

the spatial locality to effectively reduce the inter-tile traffic and its latency. The

chain NoC design demonstrates a 3.2× shorter latency than a mesh NoC while

incurring much lower area and energy overheads.

42

• A flexible CTile and a multi-mode dataflow are designed to support all the com-

mon operations in graph-based point-cloud networks, including EdgeCONV,

shared multi-layer perceptrons (MLPs), and fully-connected (FC) layers.

A Point-X design is synthesized in a 28nm technology. The design is estimated to

occupy an area of 6.8 mm2 and operate at a 1.0 GHz clock frequency. Point-X demon-

strates an average speedup of 7.7× for GraphCONV over a baseline accelerator, and

up to 12.1× higher energy efficiency in EdgeCONV over existing accelerators. Point-X

achieves an end-to-end throughput of 1307.1 inference/s (Inf./s) and an energy effi-

ciency of 604.5 inference/J (Inf./J) in running DGCNN for 3D object classification [4].

Compared to a general-purpose GPU and CPU, Point-X demonstrates a throughput

improvement of 4.5×, 129.7×, respectively, and an energy efficiency improvement of

342.9× and 3160.9×, respectively.

The rest of the chapter is organized as follows. Section 3.1 introduces the Edge-

CONV computation and two baseline computation models. Section 3.2 presents the

SLA clustering for extracting spatial locality from the input point cloud and our pro-

posed SBFS graph traversal to speedup execution. In Section 3.3, we describe the

chain NoC design that exploits data locality to reduce design complexity for data ex-

change, and in Section 3.4, we describe our versatile CTile design to support common

operations used in point-cloud networks. In Section 3.5, we present the Point-X archi-

tecture and its multi-mode dataflow to support different operations, then discuss the

workload partitioning scheme to support larger point clouds. Section 3.6 presents the

evaluation results of Point-X and compares it to the baseline designs, state-of-the-art

accelerator works, and general-purpose processors. Finally, Section 3.8 summarizes

the contributions of this work.

43

3.1 Background

An EdgeCONV layer in a point-cloud DNN projects the N points from an input

C-dimensional space into an output F -dimensional space. The input point cloud can

be described as X = {x0, ...,xN−1}, where xi ∈ RC is the feature of i-th point, and

C is the dimensionality of the feature space. For instance, the first EdgeCONV layer

receives an input of C = 3 which represent the (x, y, z) coordinates in a 3D space.

As illustrated in Figure 3.1(b), an EdgeCONV operation is divided into two steps: 1)

KNN graph construction and 2) GraphCONV on the KNN graph.

3.1.1 Edge Convolution Computation

KNN Graph Construction

Given an input point cloud X, a directed graph is constructed: G(X,K) = (V,E)

with self-loops, where V = {0, . . . , N − 1}, E = {(i, ji1), . . . , (i, jiK), . . . } for i, jik ∈

[0, N−1], and jik represents the k-th nearest neighbor to the vertex point i. The k-th

nearest point is found based on the Euclidean distance to vertex point i as described

in Eq. (3.1).

jik = argmin
j∈[0,N−1],k

D(i, j) = argmin
j∈[0,N−1],k

∥xi − xj∥2 . (3.1)

Graph Convolution

In GraphCONV, the vertex point i is convolved with its K neighbors ji1, . . . , jiK .

In DGCNN [4], GraphCONV is defined as the combination of the global shape struc-

ture captured by the vertex point’s feature xi and local neighborhood structures

captured by the differences between the vertex point and its neighbors (xjik − xi).

With learnable weights ϕ0, . . . ,ϕF−1,θ0, . . . ,θF−1 ∈ RC , the f -th output feature of

44

GraphCONV for the point i is defined by

x′
if = max

1≤k≤K
ReLU (ϕf · xi + θf · (xjik − xi)) , (3.2)

where ϕ weights are applied to the vertex point to compute the global feature partial

sum (Fpsum), and θ weights are applied to the difference to a neighbor point to

compute a local fpsum. A ReLU operation is applied to the sum of the global fpsum

and the local fpsum to generate an output fpsum. K output fpsums are aggregated

by a max operation to produce an output feature.

3.1.2 Computation Models and Bottlenecks

KNN graph construction is embarrassingly parallel and can be supported eas-

ily by SIMD and conventional spatial architectures. However, GraphCONV cannot

be parallelized easily for two reasons: 1) there is no knowledge of a vertex point’s

neighbors prior to the KNN graph construction, limiting scheduling opportunity; and

2) the neighbors are randomly scattered in memory without a fixed pattern, limit-

ing prefetch opportunity. These two factors result in highly inefficient computation

when operating with the practical limitations of memory bandwidth, prefetch and

scheduling capability. These limitations prohibit the parallel computation on multi-

ple neighbors.

A spatial architecture utilizes multiple compute tiles (CTiles) for parallel com-

putation. To parallelize KNN graph construction and GraphCONV, one possibility

is to assign the vertex points to the CTiles to allow the outputs to be computed

independently. Under this setup, we present two EdgeCONV computation models,

a query-based model and an exchange-based model, which differ in the fetch mecha-

nisms and computation dataflow for GraphCONV computation. Figure 3.2 presents

the two computation models for EdgeCONV operation. In both models, a multi-

45

Figure 3.2: EdgeCONV computation models: (a) query-based model, and (b)
exchange-based model.

banked system memory is used to hold the point features and to support access by

multiple CTiles.

Query-Based Model: The query-based model follows a direct parallelization of

Eq. (3.2). In this model, each CTile operates independently and sees the memory as a

single shared memory. A CTile is assigned a set of vertex points. To access neighbor

points that are not available locally, a CTile sends requests to the centralized memory

controller. The controller arbitrates the requests from all CTiles. Although the query-

based model only requires a simple dataflow, the all-to-all switch and arbiter design

can be complex with poor scalability. Furthermore, frequent memory access conflicts

occur when multiple CTiles request access to the same memory bank, resulting in a

low fetch efficiency.

Fpsum Reuse: Different CTiles in the query-based model may be requesting

and performing dot-product (DP) on overlapping neighbor points, causing duplicated

computation during GraphCONV operation. We reformulate Eq. (3.2) to reduce

computation redundancy and increase fpsum reuse. Starting from the original form

in Eq. (3.2), we separate the DP of the vertex point from the neighbor points; and

46

Table 3.1: GraphCONV Computation Comparison with F kernels, N points, and K
neighbors per point

Computation Original Form, Eq. (3.2) Reuse Form, Eq. (3.3)

Dot-Product (·) F ×N + F ×N ×K 2× F ×N

Max-Pool (max) F ×N ×K F ×N ×K

Summation (+) F ×N ×K F ×N

ReLU F ×N ×K F ×N

reorder the max and ReLU operations. The reformulated GraphCONV is written as

x′
if = ReLU

(
max
1≤k≤K

(
θf · xjik

)
+ (ϕf − θf) · xi

)
. (3.3)

Each point can be a vertex point and a neighbor point of other vertex points.

Following Eq. (3.3), the vertex fpsums (DP of the point with (ϕ− θ) weights) and

the neighbor fpsums (DP of the point with θ weights) can be computed once, cached

and reused to prevent redundant DPs. Table 3.1 shows the comparison of computation

of the two forms of GraphCONV defined by Eq. (3.2) and Eq. (3.3). Using the

optimized form, the number of DP (·), summation (+), and ReLU operations are

reduced by a factor of (K + 1)/2 or K.

Exchange-Based Model: Following Eq. (3.3), the exchange-based model allows

CTiles to exchange neighbor fpsums through an NoC. In this model, each CTile is

associated to a memory bank for accessing points locally to compute vertex fpsums

and neighbor fpsums. To access a neighbor fpsum not available locally, a CTile

requests from the CTile that holds the neighbor fpsum and receives the fpsum through

the NoC. The exchange-based model cuts all redundant neighbor fpsum computation.

However, a CTile may experience a longer transfer latency when accessing points

stored in foreign CTiles far away from it. Furthermore, the feature exchange traffic

may overwhelm the NoC bandwidth, resulting in an even lower fetch efficiency.

47

3.2 Spatial-Locality-Aware Clustering

Prior works [87, 91–97] exploited the community structure of real-world graphs

to improve locality for graph applications. Similarly, KNN graphs of real-world point

clouds exhibit community structure where groups of points close in space form densely

connected subgraphs. Starting from an exchange-based model, a spatial-locality-

aware (SLA) architecture extracts and exploits the spatial locality in point clouds to

improve fetch and computation efficiencies.

More specifically, we categorize spatial locality into two types: fine-grained and

coarse-grained. The fine-grained spatial locality refers to the case that the neighbor

points are accessed from the same CTile (cluster) in computing GraphCONV of a

vertex point. The coarse-grained spatial locality refers to the case that the neighbor

points are accessed from nearby CTiles (clusters). The fine-grained spatial locality

maximizes computational parallelism of a CTile by having most neighbor points in

its local memory bank. The coarse-grained spatial locality helps reduce the data

movement between CTiles by having the foreign neighbor points needed by a CTile

located in nearby CTiles. We present a clustering technique to extract both the

fine-grained and coarse-grained spatial locality given a point cloud’s KNN graph.

3.2.1 Graph Traversal for Spatial Locality

An example of a point cloud’s KNN graph is shown in Figure 3.3(a). The nodes

are numbered during point cloud acquisition and preprocessing, and the graph is

represented by an adjacency matrix. In the KNN graph, a directed edge from node j

to node i indicates that the vertex point i is connected to its neighbor point j, and is

represented by the entry (i, j) in the adjacency matrix. Note that, following Eq. (3.1),

each point is also neighbor to itself. In Figure 3.3(a), the points of consecutive point

indices are grouped into three clusters as illustrated on the adjacency matrix. An

edge in the adjacency matrix is a local edge if both the vertex and the neighbor point

48

Figure 3.3: (a) KNN graph of input point cloud and its adjacency matrix represen-
tation; (b) the KNN graph is traversed and the points clustered following traversal
order; the clustered KNN graph and its adjacency matrix are shown.

49

belong to the same cluster or a foreign edge otherwise.

In an SLA architecture, each cluster of points is assigned to a CTile. A local edge

indicates local data access, and a foreign edge indicates access from a foreign cluster.

The number of foreign edges suggest the amount of inter-tile data movement and is

an indication of the clustering efficiency.

Our SLA clustering aims to maximize both fine-grained and coarse-grained spatial

locality by taking advantage of the spatial relationship of the points using graph

traversals. The steps and result of SLA clustering are presented in Figure 3.3(b).

Following the graph traversal order, the SLA clustering assigns every point into a

cluster by mapping its point index to a pair of {cluster index, local point index}.

Each cluster comprises a densely connected subgraph with improved fine-grained

spatial locality, which can be visualized by the more local edges and fewer foreign

edges in each cluster. As the scattered foreign edges are brought closer to the matrix

diagonal, the coarse-grained spatial locality is also improved.

Graph traversal methods help uncover the spatial relationship of nodes in a graph

[91, 93, 94]. To evaluate the capability of different graph traversal methods, we define

two metrics: graph edge ratio to measure the fine-grained spatial locality, and graph

edge length to measure the coarse-grained spatial locality. For every vertex point in

a cluster, the graph edge ratio is defined as the percentage of local edges over all

edges. For every foreign edge, the graph edge length measures the distance (i.e.,

number of clusters away) between the vertex point and its foreign neighbor point.

For instance, in Figure 3.3(a), the foreign edge from point 10 in cluster 2 to point 4

in cluster 0 has a graph edge length of 2.

The graph edge ratio and graph edge length are plotted in Figure 3.4 for com-

mon graph traversal methods, breadth-first search (BFS), depth-first search (DFS),

bounded DFS (BDFS) [91] with a depth limit, evaluated using point clouds ranging

from 1k to 10k points and compared to the input KNN graph baseline. As shown in

50

Figure 3.4: Clustering performance on KNN graphs: (a) graph edge ratio, and (b)
graph edge length, using different graph traversal methods on 1k to 10k point clouds.

Figure 3.4(a), for 1k points, all traversal methods result in a significant graph edge

ratio improvement of 4.8 to 5.8× compared to the baseline. In particular, BDFS pro-

vides the highest graph edge ratio of 56%. With increased point sizes, the baseline

shows a decrease in graph edge ratio, i.e., only 5.5% at 10k points, while the traversal

methods maintain similar graph edge ratio results, leading to an even larger improve-

ment of 7.9 to 10.5× at 10k points. All traversal methods also outperformed the

baseline in graph edge length as shown in Figure 3.4(b). Compared to the baseline

at 1k points, BFS, DFS, and BDFS reduce the graph edge length by 4.7×, 1.4×, and

2×, respectively. For increased point sizes, the baseline and depth-related methods

show significant increases in graph edge lengths, whereas BFS shows limited increase

and demonstrates larger graph edge length reduction over the baseline, i.e., 14× at

10k points.

51

Figure 3.5: Illustration of the SBFS algorithm with 2 traversal lanes.

Combining both fine-grained and coarse-grained spatial locality, BFS stands out

as the most promising method, especially notable for its scalable graph edge length.

3.2.2 Speculative Breadth-First Search (SBFS) Traversal

To ensure correctness, BFS only allows traversing neighbors of a vertex point at

a time. This requirement hinders the parallelization of BFS traversal execution [98].

We propose the speculative BFS (SBFS) algorithm to approximate BFS traversal and

parallelize execution by speculating the traversal order. The speculation is plausible

thanks to the community structure in a KNN graph. If two points are connected, they

are also likely to share neighbors. For instance, in Figure 3.3(a), point 0 and point 11

are connected and share common neighbors of points 0, 11, and 6. Traversing these

two points in parallel does not affect the traversal order.

Figure 3.5 illustrates the first four iterations of traversing the graph in Fig-

ure 3.3(a) using an SBFS-2 algorithm, where 2 indicates two active lanes for vertex

traversal. Untraversed vertices are read from the vertex queue and its neighbor points

are loaded to a traversal lane for traversal. Here is a step-by-step rundown of the

process:

52

1. The root point 0 is read from the vertex queue and its neighbors 0, 11, 6, 12

are loaded into traversal lane 0.

2. From traversal lane 0, neighbor point 11 is traversed. Since point 11 is not

visited yet, it is pushed into the vertex queue.

3. From traversal lane 0, neighbor point 6 is traversed and pushed into the vertex

queue. In the meantime, vertex point 11 is read from the vertex queue and its

neighbors 11, 0, 6, 9 are loaded into traversal lane 1.

4. From traversal lane 0, point 12 is traversed and pushed into the vertex queue,

and traversal lane 0 is cleared. From traversal lane 1, neighbor point 0 is

traversed. Since point 0 is already visited, it is skipped.

By traversing the neighbors of multiple neighboring vertices at a time, the exe-

cution time can be largely reduced with only minor changes to the graph traversal

order. The clustering metrics of SBFS-16 are plotted in Figure 3.4. SBFS-16 produces

a similar graph edge ratio and graph edge length to BFS across 1k to 10k points. The

speculation produces a close approximation to BFS in terms of clustering quality.

3.2.3 SLA Clustering Module Implementation

As Figure 3.6 shows, the SLA clustering module is realized by two submodules:

an SBFS traversal module for spatial locality extraction and a cluster graph compiler

module for converting a global graph into local subgraphs for each cluster and setting

up the inter-cluster connections.

The KNN index buffer stores the constructed KNN graph in the adjacency list for-

mat. The SBFS module reads an untraversed vertex point from the vertex queue, and

the neighbor indices are requested from the KNN buffer for loading to the traversal

lanes. The SBFS module consists of N traversal lanes operating in parallel. Consec-

utively traversed neighbor points are recorded in the cluster maptable. The cluster

53

Figure 3.6: Architecture and dataflow of SLA clustering module.

Figure 3.7: Speedup of the SLA clustering module using SBFS with different traversal
lane numbers over a BFS implementation baseline.

maptable stores the mapping between the point index and the corresponding pair of

{cluster index, local point index}. If a point index is not already recorded in the

maptable, a new {cluster index, local point index} pair is assigned in ascending order

and written to the maptable. Based on the outputs of the SBFS module and the

maptable, the cluster graph compiler module generates subgraphs and inter-cluster

connections in the form of local maps (L-Maps) and foreign maps (F-Maps) (see usage

in Section 3.4). For inter-CTile data exchange, the cluster graph compiler generates

the connectivity list and message tags (see usage in Section 3.3).

The speedup of the SLA clustering module using 2 to 16 traversal lanes for a

KNN graph (K = 20) are compared to that of BFS, and the results are shown in

54

Figure 3.7. Nearly linear speedup can be obtained, but the speedup diminishes with

more traversal lanes due to arbitration and bandwidth limitation of the vertex queue.

For example, SBFS-16 reduces the traversal latency by 9.2×.

3.3 Locality-Aware NoC

The inter-CTile data exchange is supported by an NoC. A general-purpose mesh

NoC forwards data in four directions at each router node to allow flexible routing

for diverse workloads. In comparison, we propose the locality-aware chain NoC that

takes advantage of the extracted spatial locality to achieve a lower complexity and a

higher efficiency. The chain NoC is designed with a message reuse strategy to further

improve performance and reduce area and power overheads.

3.3.1 Chain NoC Architecture

A chain NoC connects routers using two independent uni-directional networks: an

up network transfers messages upward, whereas a down network transfers messages

downward as shown in Figure 3.8. A message comprises a data field and a tag: the

data is the neighbor fpsum computed by the source CTile and the tag consists of the

point index and the directive for routing the message to its destination CTile.

The chain NoC is designed with a message reuse strategy where a message transfer

passes through all its destination CTiles in the same direction to save redundant

transfers. In SLA clustering, the cluster graph compiler (Figure 3.6) keeps track of

the furthest destination CTile that an fpsum needs to travel to in both upward and

downward directions. This approach simplifies the routing directive of a message tag

into a single distance value between the source and the furthest destination CTile.

By adopting the message reuse strategy, the chain NoC cuts the message traffic by

2.1×, which contributes to a higher efficiency for inter-CTile data exchange.

55

Figure 3.8: Architecture of (a) a chain NoC, and (b) a router for chain NoC.

3.3.2 Routing Algorithm

The routing mechanism of the chain NoC is illustrated in Figure 3.8(a). In prepa-

ration for exchanges, the router associated with a CTile receives the connectivity list

and the message tags from the SLA clustering module, and the local neighbor fpsums

from the CTile. The message tags and local neighbor fpsums are stored in the mes-

sage buffer. The connectivity list contains the indices of neighbor fpsums that need

to be fetched from other CTiles.

An fpsum exchange undergoes three stages as shown in Figure 3.8(a): in the

transfer mode, a local router reads a pair of tag and data from the message buffer and

sends a message onto the network; in the forward mode, routers forward the message

along the way; and when an incoming message tag matches the connectivity list of a

56

Algorithm 1: Chain NoC Routing

Input/Output: msgin/msgout
if (msgin != None) then

{p-idx, dist, data} = msgin
if (dist > 1) then

Forward: msgout = {p-idx, dist-1, data}
else

Read {p-idx’, dist’, data’} from Msg Buffer
Transfer: msgout = {p-idx’, dist’, data’}

if (p-idx match in connectivity list) then
Copy: send data to CTile

else
Read {p-idx’, dist’, data’} from Msg Buffer
Transfer: msgout = {p-idx’, dist’, data’}

destination router, the destination router copies the message data to the destination

CTile in the copy mode. The routing algorithm is detailed in Algorithm 1. A message

is propagated along the up or down direction. The message distance is reduced by 1

when passing through a hop in the forward mode until the message reaches its final

destination. By prioritizing the forward mode over the transfer mode, a message

is never stalled before reaching its final destination once it is transferred from the

source.

Compared to a flexible mesh NoC, the uni-directional design of the chain NoC

reduces the complexity and energy spent on complex message switching and arbi-

tration. Furthermore, the routing algorithm ensures that a message is never stalled

when traveling in the network, thus eliminating any extra input and output buffers

in the router design. As a result, the chain NoC has a low design complexity and

requires minimal area and energy overheads. In terms of performance, the chain NoC

provides a better fetch efficiency than the mesh NoC even though the chain NoC uses

only half of the mesh NoC’s physical bandwidth. By reusing the messages, the chain

NoC reduces the transfer latency by 2.1× over the mesh NoC. When SLA cluster-

ing is applied to both types of NoCs, the chain NoC reduces the transfer latency by

57

Figure 3.9: Microarchitecture of (a) a compute tile (CTile), (b) a compute engine,
and (c) a sort engine.

3.2× over the mesh NoC, demonstrating its suitability for moving data with spatial

locality.

3.4 CTile Architecture

A CTile supports the operations required for EdgeCONV, including KNN graph

construction and GraphCONV. KNN graph construction is supported by DP for dis-

tance computation and K-min sorting; and GraphCONV is supported by DP for

58

fpsum computation and feature aggregation. A CTile shown in Fig. 3.9(a) comprises

of a DP compute engine, a sort engine, and a group engine for feature aggregation.

It also consists of buffers for storing fpsums and a controller for interfaces and con-

figurations. Finally, an output buffer stores the results of CTile computation.

Fpsum Computation: The compute engine contains 2 sets of DP units, F0

phi-DP units and F0 theta-DP units (F0 is a design parameter, F0 ≤ F), and vector

arithmetic units (V-ALUs) as shown in Fig. 3.9(b). A DP unit caches and reuses the

respective ϕ and θ weights while the inputs are streamed in to compute DP. A DP

unit computes a C0-way DP per cycle (C0 is another design parameter, C0 ≤ C).

Altogether, F0 neighbor fpsums are computed per cycle by the theta-DP units, and

F0 vertex fpsums are computed per cycle by the subtraction of the outputs of the

theta-DP units from the phi-DP units. The vertex and neighbor fpsums are stored

in vertex and local neighbor buffers for reuse.

K-Min Sorting for KNN: The sort engine contains F0 K-min sorter units as

illustrated in Fig. 3.9(c). A sorter unit finds the KNN of one given vertex point using

insertion sort that is implemented in a 1D systolic array of K sorting elements (SEs)

[99]. A distance and point index pair is broadcast to all SEs. Each SE compares the

distance value to its current value, inserts the new value or takes the shifted value

from the left SE. A K-min sorter unit always maintains the K nearest points of a

vertex point sorted by distance values.

Feature Aggregation: Feature aggregation involves max-pool (MP) of the neigh-

bor fpsums, and post-processing (PP) including summing the max neighbor fpsum to

the vertex fpsum, and applying ReLU as described by Eq. (3.3). Feature aggregation

is done by the group engine shown in Fig. 3.10.

The MP process is of particular importance as it needs to access neighbor fpsums

that reside locally or on a foreign CTile. The local controller uses L-maps provided

by the SLA clustering module to locate local neighbor fpsums. The L-map of a vertex

59

Figure 3.10: Microarchitecture of a group engine.

point stores the local connections to the vertex point in adjacency matrix form. An

L-map word is decoded into point indices for accessing the neighbor fpsums stored in

the local buffer. To speed up fetching, the local neighbor buffer can be implemented

using two 2-port SRAM banks. Two even and two odd point indices are decoded

from an L-map every cycle to allow 4 neighbor fpsum words to be fetched per cycle.

Each fpsum word contains F0 neighbor fpsums. The four fpsum words are sent to the

MP units.

The foreign controller uses F-maps provided by the SLA clustering module to

locate neighbor fpsums from foreign CTiles. An F-map of a vertex point contains its

foreign neighbor point indices. An F-map word contains 4 point indices. The foreign

controller reads one word from an F-map per cycle, decodes the 4 point indices,

and looks up the indices in two content-addressable memories (CAMs). Each CAM

returns at most 2 neighbor fpsum words. If a CAM has more than 2 matches, the

foreign controller stalls for a cycle before proceeding to the next F-map word. Up to

4 neighbor fpsum words are fetched per cycle. The four fpsum words are sent to the

MP units.

Once all local and foreign neighbor fpsums are aggregated to obtain the max

60

Figure 3.11: Point-X system architecture.

neighbor fpsum, it is summed with the vertex fpsum, followed by ReLU to produce

the output feature.

3.5 Point-X System Architecture

The Point-X system architecture is outlined in Figure 3.11. Point-X consists of

a clustering module, a CTile array (CTA) module, data buffers, and controllers for

system configuration, dataflow, and external communication. The system controller

receives the compiled instructions from the host processor, and configures the other

modules according to the dataflow mode. The memory controller loads the input

features, model weights, and KNN indices, and offloads the output features to the

external memory. The global memory holds the data fetched from off-chip and dis-

tributes them to respective data buffers following the dataflow mode. The KNN

index buffer stores the constructed KNN graph, and the cluster maptable stores the

mapping after SLA clustering.

The clustering module performs SLA clustering and compiles the clustering con-

figuration for data exchange and feature aggregation for the CTA module. In the

prototype design, the CTA module consists a 4×4 2D array of CTiles connected by a

61

chain NoC with upward and downward networks. A data controller handles the input

distribution to the CTiles using a pipelined H-tree bus. Inside a CTile, a compute

engine contains 16 8-way 16b×8b DP units (F0 = 8, C0 = 8), reconfigurable to 8

8-way 16b×16b DP units. A group engine has 8 4-to-1 MP units. A sort engine has

8 K-min sorter units with 20 SEs (K = 20) each. Overall, Point-X consists of 16

CTiles, using a total of 2,048 16b×8b MACs or equivalently, 1,024 16b×16b MACs.

3.5.1 Multi-Mode Dataflow

Typical graph-based DNNs are composed of EdgeCONV (KNN graph construc-

tion and GraphCONV), shared MLP, and FC layers with different computational

requirements. Point-X provides a multi-mode dataflow that coordinates the input

loading and data distribution to support these diverse requirements. The dataflow

steps for EdgeCONV, shared MLP and FC layers are illustrated in Figure 3.12.

KNN Graph Construction (Figure 3.12(a)): Vertex point features are loaded

to DP units of each CTile by unicast and the input point features are streamed in

to the CTiles by broadcast. A pair of 16b×8b DP units are combined to compute

16b-16b point feature distances: one DP unit computes the MSB part while the

other computes the LSB part, and a V-ALU performs shift and accumulation of

the two psums. The distance values and point indices are sent to the sort engine

(Figure 3.9(c)). At completion, the K indices in each K-min sorter unit are read out.

GraphCONV (Figure 3.12(c)): The SLA clustering module loads point in-

dices from the KNN index buffer, performs SBFS traversal to produce the clustering

mapping, and compiles cluster configurations, including L-maps, F-maps, connectiv-

ity lists, and message tags. The L-maps and F-maps are used by the group engine

for feature aggregation, and the connectivity list and message tags are used by the

routers.

Following the cluster maptable, the input features are stored in the corresponding

62

Figure 3.12: Multi-mode dataflow for (a) KNN graph construction, (b) shared MLP
and FC, and (c) GraphCONV operations.

cluster bank. The weights are broadcast to all CTiles, and the input features are

unicast to the corresponding CTiles. The vertex and neighbor fpsums are computed

and stored in the local buffers. NoC data exchange can be executed concurrently with

the local fpsum aggregation. The foreign neighbor fpsums are received over the NoC,

and the group engine performs the foreign fpsum aggregation. Lastly, post-processing

is performed.

Shared MLP and FC Layers (Figure 3.12(b)): The weights are broadcast to

the CTiles, and the input features are streamed in and unicast to their corresponding

CTiles. In the FC mode, each CTile receives 2 weights via unicast and the input

vector is broadcast to the CTiles for computation.

63

Figure 3.13: Workload partition schemes: (a) sequential partition and (b) diagonal
partition.

3.5.2 Workload Partitioning

The Point-X prototype is designed for processing up to 1k points from the input

point cloud at a time. Point clouds of size of over 1k points are partitioned into

1k-blocks for Point-X to process.

For KNN graph construction, shared MLP, and FC operations, an input point

cloud is sequentially partitioned into 1k-blocks and processed with corresponding

inputs or weights. For GraphCONV operation, the sequential partition is not the most

efficient. As shown in Figure 3.13(a), the sequential partition divides the adjacency

matrix in sequentially-ordered blocks by the source and destination points. Although

being simple to execute, as the point size scales up, the scheme results in quadratically

64

increasing number of blocks to fetch.

In Point-X, we adopt a diagonal partition by exploiting the SLA clustering as

illustrated in Figure 3.13(b). The SLA clustering is applied to the entire input point

cloud. Only the diagonal blocks in the adjacency matrix are sent to Point-X for

processing. As discussed in Section 3, the SLA clustering increases the spatial locality

and computation efficiency by increasing the number of local edges and bringing the

foreign edges closer to the matrix diagonal. Consequently, the diagonal partition

provides two major advantages. First, the number of blocks scales linearly with the

point size. Only a small number of additional cross-block foreign edges need to be

handled. Second, the diagonal partition provides more spatial locality per block,

resulting in a higher computation efficiency.

In handling large point clouds, the SLA clustering module needs to access scattered

off-chip memory to fetch KNN indices of vertex points for graph traversal, which can

cause a significant delay. To reduce the delay, the global memory is used to prefetch

the KNN indices to supplement the KNN index buffer. Following the completion of

clustering, Point-X fetches points of diagonal blocks from the off-chip memory. To

improve the point fetch efficiency, the clustering results are organized so that the

points located in the same DRAM page are accessed together. This approach helps

to avoid unnecessary DRAM page changes and provides burst-like access bandwidth.

3.6 Benchmarking and Evaluation

A prototype of Point-X is designed in a 28nm CMOS technology to evaluate

its performance, area, and efficiency. The results are compared to a CPU, a GPU,

accelerator baselines, and state-of-the-art accelerator works [89, 90] to show Point-X’s

advantages in throughput and energy efficiency in processing graph-based point-cloud

DNNs.

65

3.6.1 Evaluation Methodology

Following [4, 70, 71, 74–77, 80, 89, 90, 100–104], we used the sampled point cloud

dataset from ModelNet40 [105] with a point cloud size of 1,024. Quantization-aware

training was applied to reduce the precision of the input features and weights to

16b and 8b, respectively. The higher input feature precision is necessary for a larger

point cloud size. For instance, an 8b input precision allows only 256 distinct positions

in each dimension for the 1,024 points, making points indistinguishable. The 16b-

input, 8b-weight DGCNN achieves 92.8% accuracy on ModelNet40, and shows no

accuracy drop compared to the DGCNN trained in FP32 [4]. To evaluate Point-X’s

performance for scaled-up point cloud data, augmented datasets with 2k, 4k, 6k, 8k,

and 10k points are generated by re-sampling the original CAD models in ModelNet40.

The augmented datasets represent point clouds of higher resolutions.

A cycle-accurate model was developed to simulate the behavior and analyze the

performance of Point-X’s architecture and dataflow. For benchmarking, cycle-accurate

models were also implemented for a query-based baseline and an exchange-based base-

line.

A prototype of Point-X was implemented in RTL and synthesized in a 28nm

CMOS technology with SRAMs generated from SRAM compilers to provide more

accurate silicon area, timing, and power estimates. PrimeTime PX was used to

estimate the energy consumption of Point-X based on activity waveform in running

complete network layers of our workloads.

For performance comparison, we evaluated the query-based and exchange-based

baselines using the same workloads. Both baselines were designed using the same

number of CTiles, memory banks, and MACs in each DP unit as Point-X, but differ

from Point-X in the data fetch mechanism. The exchange-based baseline is designed

with a mesh NoC for data exchange between CTiles. Lastly, we compare Point-X’s

efficiency in EdgeCONV to existing accelerators [89, 90] and end-to-end throughput

66

Table 3.2: Storage and Area Breakdown of Point-X

Module Storage (KB) Area (mm2) Area Ratio (%)

CTile 18.39 0.288 4.25

Router 2.09 0.023 0.34

CTile Array (CTA) 327.75 4.935 72.90

SLA Clustering 26.88 0.566 8.36

System Ctrl & Mem 190.75 1.270 18.76

Point-X Total 545.4 6.8 100

Table 3.3: Layer Evaluation of Point-X on 1k-DGCNN [4]

Layer
(Kernel Size, F × C)

Latency (µs)
(Overhead)

Energy (µJ)
(Overhead)

EdgeCONV-1
(64×3)

KNN 8.3 17.0

GraphCONV 10.2 (25.9%) 7.5 (6.5%)

EdgeCONV-2
(64×64)

KNN 74.6 158.5

GraphCONV 16.8 (15.7%) 18.3 (2.6%)

EdgeCONV-3
(128×64)

KNN 74.6 158.5

GraphCONV 31.0 (8.5%) 35.9 (1.3%)

EdgeCONV-4
(256×128)

KNN 148.0 316.7

GraphCONV 89.8 (2.9%) 136.1 (0.4%)

Shared MLP (1024×512) 307.2 799.1

FC-1 (512×1024) 3.2 5.2

FC-2 (256×512) 0.9 1.3

FC-3 (40×256) 0.2 0.2

DGCNN Total 765.0 (1.38%) 1654.3 (0.12%)

and efficiency to the Nvidia GTX-1080Ti GPU and the Intel i7-7700K CPU.

3.6.2 Area, Performance, Efficiency Analysis

The memory and silicon area breakdown of Point-X implemented in a 28nm tech-

nology are shown in Table 3.2. The Point-X prototype is 6.8 mm2 in size and contains

545.4 KB of on-chip memory. The SLA clustering module costs an area overhead of

only 8.36%. Inside the CTA module, a CTile is 0.29 mm2, while a chain NoC router

is only 0.023 mm2, which is less than 1/10 the size of a CTile.

The layer-by-layer latency and energy results of the Point-X prototype when

running 1k-DGCNN are presented in Table 3.3. The results for each EdgeCONV

67

layer are shown separately for KNN graph construction and GraphCONV. For every

GraphCONV, the overhead of SLA clustering is noted in parentheses. For a small

EdgeCONV layer like EdgeCONV-1, the SLA clustering costs an overhead of 25.9%

in latency and 6.5% in energy. The SLA clustering overhead decreases in larger

EdgeCONV layers, e.g., it takes only 2.9% and 0.4% of the latency and energy in

EdgeCONV-4. For the 1k-DGCNN workload, the Point-X prototype demonstrates

an end-to-end latency of 0.77 ms at an average power consumption of 2.2 W. It

achieves a throughput of 1307.1 inference/s (Inf./s) at 604.5 inference/Joule (Inf./J).

3.6.3 Workload Scalability Analysis

Point-X is also evaluated for scaled-up workloads. Figure 3.14(a) and (b) show

the normalized latency and the latency breakdown of Point-X when running Graph-

CONV in DGCNN for different point cloud sizes. The latency breakdown looks at

the five components of GraphCONV: SLA clustering (CL), fpsum compute (DP),

local fpsum aggregation and NoC data exchange (LA&NoC), and foreign fpsum ag-

gregation and post-processing (FA&PP), and system control and memory (MEM).

The MEM component includes the configuration latency and additional data fetch

latency that cannot be fully hidden by prefetching.

For a point size of under 4k, the global memory serves both the clustering module

and the CTA module effectively by prefetching the inputs needed for GraphCONV.

This can be observed by the almost linear increase in the normalized latency and

consistent latency breakdown. For a point size larger than 4k, the input points needed

for processing a block in GraphCONV may be located across many different DRAM

pages, resulting in an increase in MEM as shown in Figure 3.14(b). The energy

breakdown of Point-X for the GraphCONV workloads is shown in Figure 3.14(c).

68

Figure 3.14: (a) Normalized latency, (b) latency breakdown, and (c) energy break-
down of Point-X for GraphCONV workloads in DGCNN; (d) normalized latency
comparison of Point-X to query-based (Q-Base) and the exchange-based (E-Base)
baselines for GraphCONV workloads of each point size.

3.6.4 Performance Comparison

In Figure 3.14(d), we show Point-X’s improvement over a query-based design (Q-

Base) and an exchange-based design (E-Base). The differences between Point-X and

the two base designs are mainly attributed to the fetch mechanisms and the workload

partition schemes for GraphCONV. In Q-Base, CTiles request neighbor points from

a centralized shared memory. It incurs a low fetch efficiency due to memory access

conflicts. In E-Base, CTiles communicate with each other through a mesh NoC to

obtain the needed neighbor points. E-Base suffers from the overloading of message

traffic across the network and the long latency of message transfer, which worsen its

fetch efficiency. Overall, Point-X provides a speedup of 8.3× and 1.4× over Q-Base

69

Table 3.4: EdgeCONV Comparison to Existing Works

Point-X Cambricon-G DeepBurning-GL

Type ASIC ASIC FPGA

Technology 28 nm 45 nm 16 nm

Frequency 1.0 GHz 1.0 GHz 200 MHz

Compute Unit 2048 MACs 2048 MACs 5893 DSPs‡

Precision 16b & 16b/8b 16b 16b

On-Chip Mem. 545.4 KB 12.1 MB 3.2 MB‡

Efficiency 858.6 GOPS/W∗ 360.9 GOPS/W† 71.1 GOPS/W†

∗ AMAC is counted as 2 OPs; comparisons in KNN are included for energy
but not counted in total OPs; Average from all EdgeCONV in [4].
† Numbers derived from [89, 90]; Only EdgeCONV (64×3) was reported.
‡ Derived from FPGA (Alveo U50) resource utilization reported in [90].

and E-Base, respectively, for GraphCONV workloads of 1k points.

The benefit of Point-X’s diagonal workload partition is illustrated in Figure 3.14(d)

showing normalized comparison for each point cloud size. As the point cloud size

increases, the efficiency of Point-X’s point fetching from DRAM decreases. As a result,

the advantage of Point-X over Q-Base shrinks slightly due to the reduced number of

edges per block (for a fixed K) and less frequent memory access conflicts that favor

Q-Base. Point-X achieves an average speedup of 7.7× and 2.5× in GraphCONV

computation across different point sizes compared to Q-Base and E-Base, respectively.

Table 3.4 compares Point-X to state-of-the-art accelerators for EdgeCONV com-

putation [89, 90]. Cambricon-G [89] has the same peak throughput as Point-X but

it uses 22× on-chip memory storage. The large storage holds all intermediate re-

sults on-chip for reuse and reduces the latency and energy overheads from external

memory communication. DeepBurning-GL [90] is implemented on an FPGA using a

customized EdgeCONV template. Both Cambricon-G and DeepBurning-GL process

EdgeCONV following Eq. (3.2) and they do not exploit the locality in point cloud,

resulting in less-efficient data fetching and redundant computation. Overall, Point-X

achieves a 2.4× and 12.1× efficiency improvement in EdgeCONV computation over

Cambricon-G and DeepBurning-GL, respectively.

70

Figure 3.15: Comparison of (a) throughput and (b) energy efficiency of Point-X to
the CPU and GPU baselines.

Point-X is also compared to a GPU (Nvidia GTX-1080Ti) and CPU (Intel i7-

7700k). Both the GPU and the CPU are in more advanced, faster, and more efficient

silicon technologies than the 28nm used for Point-X prototyping. The GPU and the

CPU run at higher clock frequencies, have larger silicon footprints, and contain larger

on-chip memories for caching. In contrast, Point-X is designed for graph-based DNNs.

It has a much smaller silicon footprint and consumes less power. Point-X provides a

total of 2,048 16b×8b MACs distributed to 16 CTiles, whereas the GPU has 3,584

cores and the CPU has 8 threads for floating point computation. In Figure 3.15,

the throughput and energy efficiency of Point-X are compared to the GPU and CPU

baselines for four workloads. When running DGCNN, Point-X achieves a 4.5× and

a 129.7× higher throughput over the GPU and the CPU, respectively, at a 342.9×

and a 3160.9× better energy efficiency, respectively. We also compared to the GPU

with batch-10 inference. On average, the GPU throughput is improved by almost

10× with only 35% power increase. However, batching is often infeasible for devices

with limited memory or real-time computing use cases.

71

3.7 Related Work

Graph-based point-cloud DNNs investigated in this work possess both regular and

irregular computation structures. Regular computation structures require hardware

designs that offer plenty of data reuse and computational parallelism; and irregular

computation structures require hardware designs that provide flexible and efficient

data fetch mechanisms. DNN/CNN accelerators [48, 57, 81] are designed for regu-

larly structured computation, and they tend to perform poorly on graph-structured

data featuring scattered memory access and limited data reuse. On the other hand,

accelerators for graph processing [82, 83] are designed for sparse and irregular data

access and computation, and they are unable to fully exploit the parallelism and data

reuse in DNN-like workloads.

GNN/GCN accelerators [84–87, 89, 90] address both regular and irregular compu-

tation structures. The GNN/GCN accelerators work on arbitrary graphs with power-

law distribution, which cause severe workload imbalance during processing. HyGCN

[84] and GRIP [85] proposed window sliding/shrinking and parallel prefetching meth-

ods to improve fetch efficiency, whereas AWB-GCN [86] proposed runtime workload

rebalancing methods to improve compute utilization. These works only focus on static

graphs and are unable to fully support EdgeCONV due to the lack of sorting units

for KNN graph construction. Recently, Cambricon-G and DeepBurning-GL [89, 90]

were proposed to support dynamic graphs, i.e., EdgeCONV operations, but they do

not exploit the data locality in point cloud data, making them unable to provide the

best efficiency. Compared to these works, Point-X leverages data reuse opportunities

to eliminate redundant computation and exploits spatial locality to achieve a higher

computational efficiency for EdgeCONV operations.

Rubik and GNNAdvisor [87, 97] proposed graph reordering techniques using locality-

sensitive hashing and Rabbit Order [106] to increase locality during GNN processing.

The graph is first preprocessed offline by a host processor before being sent to the GPU

72

or accelerator for processing. For an EdgeCONV operation where the KNN graph

is constructed in runtime, offline preprocessing is impractical due to data transfer

overheads between the host and the accelerator. In contrast, Point-X avoids the data

transfer by having an on-chip clustering based on our parallel SBFS algorithm, which

provides a significant speedup over software implementation on the host processor in

[87, 97].

General-purpose NoC router designs with lower complexity and area [107, 108]

were explored in the past. To reduce the design complexity, [107] limits the routing

to either x- or y-directions in a mesh network. The traffic in the network is prioritized

to reduce the buffers needed in the router [107, 108]. Similarly, Point-X reduces the

2D mesh to 1D chain to avoid the switching overheads and prioritizes the forward

mode to eliminate all buffers in a router. Accelerators [55, 109, 110] also adopted

NoCs for inter-PE or memory-to-PE communication, allowing more flexibility to sup-

port diverse workloads and dataflows. In comparison, Point-X’s NoC is specialized

for efficient exchange of data with coarse-grained spatial locality and targets both

compact area and stringent power budgets.

3.8 Summary

We present Point-X, an SLA accelerator architecture that extracts and leverages

the spatial locality for efficient graph-based DNN processing on point clouds. To

extract spatial locality in point clouds, an SBFS graph traversal algorithm is presented

to map points into clusters to increase intra-CTile computation parallelism and reduce

the inter-CTile communication overhead. Compared to conventional graph traversal

methods, SBFS can be parallelized to achieve a 9.2× speedup. To leverage the spatial

locality, a lightweight chain NoC is presented to reduce the data exchange latency

by 3.2× compared to a mesh NoC. Combining these innovations, Point-X is designed

with a multi-mode dataflow to support all operations in graph-based DNNs, i.e.,

73

EdgeCONV, shared MLP, and FC layers. A 1.0 GHz Point-X prototype is designed

in a 28nm technology, occupying 6.8 mm2 of silicon area. Point-X achieves up to

12.1× higher power efficiency in EdgeCONV compared to state-of-the-art accelerator

works. When evaluated on the DGCNN workload, Point-X achieves a throughput of

1307.1 Inf./s and an energy efficiency of 604.5 Inf./J. Compared to the Nvidia GTX-

1080Ti GPU, Point-X demonstrates a 4.5× and a 342.9× improvement in throughput

and energy efficiency, respectively, on DGCNN workload.

74

CHAPTER IV

TetriX: Efficient Accelerator Architecture for

Flexible Tensorized Neural Network Processing

The recent decade of advancement in AI and ML is to a large degree attributed

to the development of DNN, and its CNN and RNN variants. To keep improving

the accuracy, DNN models grow larger every year, at a rate of 1.5 to 2× increase in

model size and model complexity every year [1, 2, 20, 21, 111]. The increasing model

size and complexity create large storage and compute requirements for the underlying

compute hardware that is becoming out of reach. State-of-the-art models can still be

deployed on server-scale or desktop platforms using high-end GPUs and CPUs, but

they are practically infeasible for resource-constrained platforms i.e., mobile, edge,

and smart sensors, due to area, power, and cost budgets.

To meet these demanding requirements, researches on model compression have

shown promising results in reducing the model size and complexity without degrad-

ing the accuracy performance. The popular compression methods through network

pruning [26–28], i.e., unstructured pruning, offers good compression of a network

model but the sparse data formats, i.e., compressed sparse row (CSR), often result

in irregular computation and memory access, leading to lower hardware utilization.

Alternatively, low-rank approximation methods, i.e., singular-value decomposition

(SVD) [29] and matrix factorization [30], approximate the model’s weight matrix

75

Figure 4.1: Illustration of model weight and tensor decomposition for TNNs.

using low-rank representations. These methods produce regular data structures to

facilitate computation, but they often struggle to reach a good balance between com-

pression and accuracy. Recently, tensor decomposition [34, 112, 112–129], a high-order

generalization of the low-rank methods, has gained a lot of progress in network model

compression by demonstrating a larger compression than the 2D methods [29, 30]

while maintaining negligible accuracy drop.

However, a network compressed by tensor decomposition, which we name a ten-

sorized neural network (TNN), requires high-order tensor contraction operations for

inference. Figure 4.1 shows an example of a TNN. Compared to a traditional vector

or matrix multiplication, a tensor contraction requires additional tensor orchestration

operations that consist of arbitrary tensor reshape, permute, and transpose operations

to map a tensor into a 2D representation in memory for matrix multiplication. These

orchestration operations require additional memory operations, i.e., read-permute-

write, read-transpose-write, for general-purpose processors, reducing the computa-

tional efficiency. The orchestration operations can be optimized by designing the

memory access pattern with the datapath, and coalescing memory access and com-

putation during processing in a custom accelerator. However, existing DNN/CNN

accelerators [48, 59, 81] are only optimized for fixed tensor orders (2 for DNN, 4 for

76

CNN), and lack the support for flexible TNN workloads with arbitrary tensor orders.

On the other hand, the existing TNN accelerators [5, 130, 131] are designed for a

specific tensor decomposition method using a fixed tensor orchestration pattern, i.e.,

tensor train for TIE [5], limiting the support of a wider range of TNN workloads.

In this work, we propose TetriX, a co-design between accelerator architecture and

workload mapping to enable a flexible and efficient TNN inference. TetriX performs

TNN inference on the optimal contraction sequence which requires the minimum

computation and memory size. A hybrid inner-outer product mapping scheme is

proposed to eliminate complex orchestration operations in a TNN inference by alter-

nating between inner and outer products. The TetriX architecture is designed with a

configurable stationary dataflow to support both inner and outer product operations,

and uses index translation and output gathering mechanisms to support arbitrary

permute and reshape operations efficiently. TetriX is the first design to support all

decomposition methods. Through our evaluations, the hybrid mapping scheme is

shown to outperform the inner-only and outer-only mapping schemes for both simple

and complex decomposition methods. TetriX also shows a latency improvement of

up to 3.9× and 1.3× on average compared to TIE for tensor-train TNNs.

In this chapter, we first provide an overview of the basics of TNNs and present the

computation challenges in TNN inference in Section 4.1. Then, we present a method

to identify the optimal contraction sequence to processing a TNN, and explain the

benefits of our proposed hybrid inner-outer product mapping scheme in Sections 4.2

and 4.3. In Section 4.4, we present in detail the architecture and microarchitecture of

TetriX. Lastly, we show the evaluation results of TetriX and compare it with state-of-

the-art accelerators and general-purpose processors in Section 4.5, before summarizing

the work in Section 4.6.

77

4.1 Background

In general, the DNN computation i.e., FC, LSTM, GRU, and embedding layers,

can be formulated as a vector-matrix multiplication (VMM) between an input vector

x ∈ RN and a weight matrix W ∈ RM×N to obtain an output vector y ∈ RM using

y[j] =
∑N

k=1W[j,k] · x[k].

A TNN decomposes a large weight matrix into a series of small and high-order

tensors using tensor decomposition methods. To perform tensor decomposition, the

2D weight matrix W is first tensorized into either W ∈ Rm1×n1×m2×n2×···×md×nd or

W ∈ Rm1×···×md×n1×···×nd , depending on the tensor decomposition method. Sim-

ilarly, input vector x and output vector y must be tensorized into input tensor

X ∈ Rn1×···×nd and output tensor Y ∈ Rm1×···×md , respectively, where M =
∏d

k=1mk,

N =
∏d

k=1 nk, and d is the order of input and output tensors. The computation of a

TNN layer can be represented by a tensor-tensor multiplication as in Eq. (4.1), where

the weight tensor W is represented in tensor-decomposed format, i.e., tensor train

(TT), hierarchical Tucker (HT), tensor ring (TR), or block term (BT) [33, 132–135].

Y [j1,j2,...,jd] =

n1∑
i1=1

n2∑
i2=1

· · ·
nd∑

id=1

W [j1,i1,j2,i2,...,jd,id] ·X [i1,i2,...,id] (4.1)

In this section, we first present common tensor decomposition methods used in

TNNs, then describe how to perform TNN inference using tensor contraction. Lastly,

we present the computation challenges for TNN processing. Here, we follow the

notation convention to represent vectors, matrices, and tensors (order ≥ 3) using

boldface lowercase letters (v), boldface capital letters (M), and boldface script letters

(T), respectively [136].

78

4.1.1 Tensor Decomposition Methods

Recently, research works have demonstrated the ability of several tensor decom-

position methods to compress different network models, i.e., MLP, CNN, RNN, for

different applications, i.e., video classification, natural language understanding, im-

age classification, and large-scale recommendation model [34, 112, 112–129]. These

tensor decomposition methods differ in type, number, order, and topology of the

decomposed tensors, which lead to different compression ratio and accuracy perfor-

mance for TNNs. It is still unclear which decomposition method performs best for

a given network model or an application. Futhermore, new and improved decom-

position methods are still being proposed in recent works. Here, we present several

tensor decomposition methods that are commonly seen in TNNs. For simplicity and

consistency, we modify the naming and the letter notations from existing literatures,

and call a core tensor when it contains at least one input or output dimension, or a

transfer tensor when it only contains rank values.

Tensor Train (TT): The TT decomposition method decomposes a tensor into a

series of core tensors connected in a chain form [33]. In a TT-TNN, the weight matrix

W is first tensorized into a d-th-order tensorW ∈ R(m1×n1)×(m2×n2)×···×(md×nd). Then,

W is decomposed into d 4th-order core tensors G(k) ∈ Rrk−1×mk×nk×rk , k ∈ [1, d]. The

TT-format of W can be represented as

W [j1,i1,j2,i2,...,jd,id] =

r1∑
k1=1

r2∑
k2=1

· · ·
rd−1∑

kd−1=1

G(1)
[j1,i1,k1]

· G(2)
[k1,j2,i2,k2]

· · ·G(d)
[kd−1,jd,id]

. (4.2)

G(k) and rk are the k-th core tensor and rank, respectively, and r0 = rd = 1 by

definition. In TT-format, W requires
∑d

k=1 rk−1nkmkrk = O(dmnr2) parameters,

where r = max(rk),m = max(mk), and n = max(nk), giving a compression ratio

of (MN)/
∑d

k=1(rk−1nkmkrk). In practice, the rank values are selected to be much

smaller than the input and output dimensions, that is, r ≪ m,n, so a large compres-

79

sion ratio can be achieved.

Hierarchical Tucker (HT): The HT decomposition method decomposes a ten-

sor hierarchically into core tensors and transfer tensors connected in a binary tree form

[132, 133]. In the general HT decomposition, each HT node G(s) ∈ Rrs×nµs×···×nυs

is associated with a dimension set s ⊊ D, D = {1, 2, . . . , d}, µs = min(s), and

υs = max(s). An HT node can be recursively decomposed into a transfer tensor

U (s) ∈ Rrs×rs1×rs2 , a left node G(s1) ∈ Rrs1×nµs1
×···×nυs1 , and a right node G(s2) ∈

Rrs2×nµs2
×···×nυs2 following Eq. (4.3) until its dimension set contains only one dimen-

sion.

G(s) = U (s) × G(s1) × G(s2) (4.3)

In an HT-TNN, the weight matrix W is first tensorized into a d-th-order tensor

W ∈ R(m1×n1)×(m2×n2)×···×(md×nd). Then, W is decomposed recursively following

Eq. (4.3) and can be represented recursively as

W [j1,i1,j2,i2,...,jd,jd] =

rD∑
k=1

rD1∑
p=1

rD2∑
q=1

U (D)
[k,p,q] · G

(D1)
[p,φD1

(i,j)] · G
(D2)
[q,φD2

(i,j)] (4.4)

G(s)
[k,φs(i,j)]

=

rs1∑
p=1

rs2∑
q=1

U (s)
[k,p,q] · G

(s1)
[p,φs1 (i,j)]

· G(s2)
[q,φs2 (i,j)]

,

whereD = {1, 2, . . . , d}, D1 = {1, . . . , ⌊d/2⌋}, andD2 = {⌈d/2⌉, . . . , d} are associated

to the root node and its left and right child nodes, respectively. The mapping function

φs(i, j) produces the correct indices i ⊆ {i1, i2, . . . , id} and j ⊆ {j1, j2, . . . , jd} for a

given node G(s) with the given s and d. For example, with d = 6 and s = {3, 4}, the

output of φs(i, j) is (i3, i4, j3, j4).

The HT method decomposes W into 3rd-order core tensors G(k) ∈ Rrk×mk×nk ,

k = 1, 2, . . . , d, and 3rd-order transfer tensors U (s) ∈ Rrs×rs1×rs2 . In HT-format,

W requires
∑d

k=1 rkmknk +
∑

Φ(s,s1,s2)
rsrs1rs2 = O(dmnr + dr3) parameters, where

80

Φ(s, s1, s2) lists all valid tuples of (s, s1, s2) that appear in the HT decomposition.

Tensor Ring (TR): The TR decomposition method decomposes a tensor into

core tensors similarly to TT decomposition method, but forms a ring structure by

connecting the first and last core tensors using r0 = rd = R, and R ≥ 1 to achieve

higher expressiveness than the TT-format [134]. In a TR-TNN, a weight matrix

W ∈ RM×N is first tensorized into a d-th-order tensor W ∈ Rn1×···×ndn×m1×···×mdm ,

where N =
∏dn

k=1 nk, M =
∏dm

k=1 mk, and d = dn + dm. Then, W is decomposed

into dn 3rd-order core tensors G(kn) ∈ Rrkn−1×nk×rkn , kn ∈ [1, dn], and dm 3rd-order

core tensors G(km) ∈ Rrkm−1×mk×rkm , km ∈ [dn + 1, d]. The TR-format of W can be

represented as

W [i1,...,idn ,j1,...,jdm]

=

r0∑
k0

· · ·
rd−1∑
kd−1

G(1)
[k0,i1,k1]

· · ·G(dn)
[kdn−1,idn ,kdn]

· G(dn+1)
[kdn ,j1,kdn+1]

· · ·G(d)
[kd−1,jdm ,k0]

. (4.5)

In practice, TNNs in TR-format have tensor cores that separate input and output

dimensions, as opposed to TNNs in TT-format. This allows a more flexible tensoriza-

tion of input and output vectors where dn and dm may be different. In TR-format, W

requires
∑dn

kn=1 rkn−1nkrkn +
∑d

km=dn+1 rkm−1mkrkm = O(dnr2 + dmr2) parameters.

Block Term (BT): The canonical polyadic (CP) method decomposes a tensor

into a sum of several component rank-1 tensors whereas the Tucker method decom-

poses a tensor into a high-order transfer tensor multiplied by a tensor along each

order [31, 32, 136]. BT decomposition method combines the key features of CP de-

composition and Tucker decomposition, and decomposes a tensor into a sum of Tucker

formats [135]. In a BT-TNN, the weight matrix W is first tensorized into a d-th-

order tensor W ∈ R(m1×n1)×(m2×n2)×···×(md×nd). With a CP-rank S, W is decomposed

into S transfer tensors U (s) ∈ Rr1×···×rd , where s ∈ [1, S], and (S × d) 3rd-order core

81

Table 4.1: Comparison of Tensor Decomposition Methods

Method
Tensor

Topology
Tensor
Type

Tensor
Order

Tensor
Number

Parameter
Number

Applications

Baseline - Matrix 2 1 MN -

TT Chain Core 4 d O(dmnr2) [34, 113–119]

HT
Binary
Tree

Transfer
Core

3
3

(d− 1)
d

O(dmnr + dr3) [122–124]

TR Ring Core 3 dn + dm O(dnr2 + dmr2) [120, 121]

BT Tree
Transfer
Core

d
3

S
S × d

O(Sdmnr + Srd) [125–128]

tensors G(s,k) ∈ Rrk×mk×nk , k ∈ [1, d]. The BT-format of W can be represented as

W [j1,i1,j2,i2,...,jd,id] =
S∑

s=1

r1∑
k1=1

· · ·
rd∑

kd=1

U (s)
[k1,...,kd]

· G(s,1)
[k1,j1,i1]

· · ·G(s,d)
[kd,jd,id]

. (4.6)

G(s,k) and U (s) are the k-th Tucker core tensor and the transfer tensor of the s-th

Tucker model, respectively. If S = 1, then the BT-format is reduced to the Tucker-

format. In BT-format, W requires S
(∑d

k=1 rkmknk +
∏d

k=1 rk

)
= O(Sdmnr + Srd)

parameters.

In general, the TT is considered as the the simplest decomposition because of its

simple and regular structure, and can be supported by most existing TNN accelerator

works [5, 130, 131]. HT, TR, and BT are more complex decomposition methods, that

rely on more complex structures to achieve higher compression ratio or better accu-

racy. Besides the tensor decomposition methods mentioned above, novel or improved

decomposition methods, i.e., KCP [129], are proposed. As a general observation, the

decomposed weight tensors have relatively small parameter sizes compared to the

original weight matrix. A core tensor is either a 3rd-order or a 4th-order tensor and

has at most one input and one output dimension. A transfer tensor is either a 3rd-

order or a d-th-order tensor and only contains rank values. Table 4.1 compares the

general property of TT, HT, TR, and BT decomposition methods.

82

4.1.2 TNN Inference with Tensor Contraction

The inference of a TNN layer can be computed element by element following

Eq. (4.1), where the weight tensor W can be represented using Eq. (4.2), (4.4),

(4.5), or (4.6). However, it requires a massive amount of MAC operations where each

component of a tensor is accessed repeatedly to compute for every element in the

output tensor, causing a lot of redundant memory accesses and MAC operations [5].

Alternatively, the inference of a TNN with K decomposed tensors can be computed

through a sequence of K tensor contraction operations. A tensor contraction can be

performed between two tensors if some of their dimensions are matched [136]. For

instance, given two tensors A ∈ Rn1×n2×n3 and B ∈ Rm1×m2×m3 , where n2 = m3, the

tensor contraction C = (A×2
3 B) ∈ Rn1×n3×m1×m2 can be mathematically expressed

as

(A×2
3 B)[i1,i3,j1,j2] =

n2∑
k=1

A[i1,k,i3] ·B[j1,j2,k]. (4.7)

In practice, a tensor contraction is often converted into a matrix-matrix multi-

plication (MMM) for processing. For example, in Eq. (4.7), tensor A undergoes a

mode-2 unfold operation to obtain matrix A ∈ R(n1×n3)×n2 and tensor B undergoes

a mode-3 unfold and transpose operations to obtain matrix B ∈ Rm3×(m1×m2). The

MMM between A and B produces matrix C ∈ R(n1×n3)×(m1×m2), which is then folded

to obtain the output tensor C. In this work, we refer to all fold and unfold opera-

tions as tensor orchestration operations, which can be viewed as a combination of

fundamental tensor permute, reshape, and transpose operations.

TNN processing requires a large variety of tensor orchestration operations. Be-

yond the example in Eq. (4.7), both the number of dimensions and the dimension

for contraction in A and B can be arbitrary. In addition, there could be multiple

dimensions for contraction between A and B, and permutation on the dimensions

83

of C may be required. All the possible combinations make the tensor orchestration

operation in TNN processing impractical to generalize.

4.1.3 Computation Challenges

The TNN inference is computed via a sequence of tensor contraction operations

which are broken down into tensor orchestration operations and MMM operations.

The general-purpose SIMD processors can perform MMMs efficiently. However, ten-

sor orchestrations require additional memory operations, i.e., read-permute-write,

read-transpose-write, to organize data in memory before MMMs. The memory opera-

tions render a SIMD architecture less efficient than a custom accelerator that coalesces

tensor orchestration and computation by optimizing the memory access along with

the datapath design. The decomposed TNN layers are all regular-structured tensors,

but the inference cannot be executed efficiently by existing DNN accelerators due

to their lack of support for flexible tensor orchestrations. Recent TNN accelerators

[5, 130, 131], were proposed for a specific tensor decomposition method and designed

for a specific tensor orchestration pattern, e.g., TT and backward processing in TIE

[5]. As a result, they are either unable to support other popular tensor decomposition

methods or suffer from unnecessary computation and memory access when processing

TNN inference. We identify the following major challenges for TNN computation.

Flexibility of TNN Workloads: Beyond the well-established decomposition

methods presented, a range of new decomposition methods are also receiving attention

[129]. In addition, researches showed that the rank hyperparameter selection of a TNN

can be optimized by neural architecture search, giving potentially better compression

and performance [137–139]. Therefore, a TNN processing architecture must be flexible

in supporting all decomposition methods, including TT, HT, TR, BT, and others, that

may have varying orders, dimensions, and rank hyperparameters to remain relevant

as this field continues to evolve.

84

Performance of TNN Inference: For a TNN layer of K decomposed weight

tensors, the output tensor can be computed in O(K!) different ways, each correspond-

ing to a unique contraction sequence. Each contraction sequence requires different

amount of MAC operations, intermediate memory storage sizes, and tensor orches-

trations, depending on the input, weight, and output tensor dimensions and rank

values. Existing TNN accelerators, i.e., TIE [5], are designed with a fixed contraction

sequence that may be far from the optimal in many cases, causing redundant MAC

computation and memory access for a TNN inference.

Efficiency of Tensor Orchestration: Versatile orchestrations are required to

support decomposition methods with more complex orchestration requirements, i.e.,

HT, TR, BT, and different contraction sequences optimized for different workloads.

For the hardware, different combinations of the permute, transpose, and reshape

operations require different memory read/write patterns, as well as the coordination

and buffering of data accessed. The diverse operations and patterns cause a large

design complexity and control overhead. Prior works [5, 130, 131] avoid the large

design complexity and overhead by only supporting limited orchestration patterns,

causing a limitation in the TNN type they can support and the contraction pattern

they can use for TNN inference. For example, TIE [5] can only support TT-TNN

inference by using a fixed contraction sequence (back to front) which only requires

one tensor orchestration operation that can be supported by a customized memory

read/write mechanism and buffering scheme.

4.2 Optimal Contraction Sequence Search

We abstract every TNN layer inference into a tensor network graph. We conduct

contraction sequence search to identify the optimal contraction sequence with the

minimum computation and memory size requirement for processing.

85

Figure 4.2: Tensor network graph representation of TNN layer with (a) TT, (b)
HT, (c) TR, and (d) BT tensor decomposition methods, where the input tensor
∈ Rn1×n2×n3×n4 and the output tensor ∈ Rm1×m2×m3×m4 .

4.2.1 Tensor Network Representation

We use the tensor network graph to represent a TNN layer inference. A tensor

network graph provides an unified abstraction for the diversified TNN layers with

different decomposition formats and input tensor specifications. Furthermore, the

abstraction is agnostic to the permutation of a tensor which facilitates the analysis

and exploration of different tensor orchestration possibilities.

Figure 4.2 illustrates common tensor decomposition methods in the tensor network

graph representation. In a tensor network graph, each node represents a decomposed

weight tensor or an input tensor. For a tensor represented by a node, every tensor

86

dimension is associated with an edge on the node, unless the dimension is 1. Two

nodes are connected by an edge if they have one or more shared dimensions that

can be contracted via a tensor contraction. A node has a loose edge if it has a free

dimension which cannot be contracted with any other node. When contracting two

tensors, the two nodes are merged into a single node that inherits all edges from both

sides except the edge connecting them. After all contractions are done, the final node

represents the output tensor and the loose edges represent the output dimensions.

4.2.2 Breadth-First Contraction Search

Different contraction sequences yield distinct computation and memory storage

costs, and searching the optimal sequence is known as a NP-hard problem. Several

approaches were proposed to search for the optimal contraction sequence. [140–142].

In this work, we focus on the breadth-first (BF) approach described in [140, 142].

For a tensor network graph with K initial nodes, a general breath-first approach

constructs all sets of candidate nodes (Setk), for k ∈ [1, K]. Set1 contains the K

initial nodes, and Setk contains Ck
K candidate nodes resulted from contractions of

k initial nodes. For each candidate node in a set, we can find a split to divide the

node into two source nodes that can be contracted to obtain the candidate node. For

instance, a node (012) in Set3 may have 3 splits: (0|12), (1|02), and (2|01). To explore

all possible contraction paths, the BF approach constructs the set of candidate nodes

sequentially from k = 1 to K. For every candidate node in each set level k, the

computation and memory storage costs from every split are calculated, and the split

with the least cost is recorded. Once the final set SetK is constructed, a backward

tracing on the split with lowest computation or memory storage cost at each set level

is performed to identify the contraction sequence with minimal cost.

In the context of TNN inference in this work, we limit the tensor contraction to be

performed only between an initial or intermediate input tensor and a weight tensor.

87

Figure 4.3: Illustration of breadth-first approach for optimal contraction sequence
search.

This additional constraint allows the obtained contraction sequence to match the

execution pattern of a tensor-by-tensor inference. In addition, it allows the removal of

any candidate node that is not a result of a contraction on the initial and intermediate

input tensor, thus reducing the search space significantly. Figure 4.3 shows an example

of the optimal contraction sequence search on a given tensor network using the BF-

approach with the input tensor constraint for TNN inference.

4.2.3 Contraction Sequence Analysis

In this work, we aim to find the optimal contraction sequence considering the

hardware cost, including the total number of MAC operations and the required mem-

ory size to hold all intermediate tensors during inference. Figure 4.4 and Figure 4.5

demonstrate the benefits of identifying the optimal contraction sequence using an

HT-TNN layer example. Figure 4.4 illustrates the optimal contraction sequence (Op-

timal) compared to two fixed contraction patterns (Pattern-1 and Pattern-2) used

in [122, 123]. Figure 4.5(a) shows the contraction sequence space in terms of total

88

Figure 4.4: Illustration of contraction sequences for an HT-TNN layer inference ex-
ample: optimal sequence (Optimal) and fixed contraction patterns used in previous
works (Pattern-1, Pattern-2).

Figure 4.5: (a) Contraction sequence space in terms of total MAC operations and
required memory size; (b) comparison of contraction sequences in total MAC opera-
tions, required memory size, and number of memory accesses.

89

MAC operations and required memory size for all intermediate tensors. By position-

ing the three contraction sequences on the search space, we can observe that even

though Pattern-1 and Pattern-2 are well positioned in the entire space compared to

most of the other possible sequences, there is still a significant gap from Optimal.

Figure 4.5(b) compares the metrics for the three contraction sequences. The opti-

mal sequence requires 2 to 3× fewer MAC operations, 2 to 7× less memory, and

2 to 4× less memory accesses, compared to fixed contraction sequences Pattern-1

and Pattern-2 used in [122, 123]. This demonstrates the importance of searching the

optimal contraction sequence for improving TNN inference performance.

4.3 Hybrid Contraction Sequence Mapping

In the above, the contraction sequence obtained from the optimal search considers

the number of MACs and the memory size and access, but not the tensor orchestra-

tion ability of the hardware. As a result, a tensor contraction from the optimal

sequence may still be too complex and costly to be supported on hardware. A stan-

dard TNN hardware may rely on either inner product or outer product to perform

tensor contraction, which limits the mapping options and costs expensive control and

buffering for complex tensor orchestrations. In this section, we propose a hybrid

mapping scheme that alternates between inner-product and outer-product mapping

to eliminate complex tensor transpose operations completely, and greatly reduces the

complexity of tensor orchestration to simpler tensor reshape and permute operations.

4.3.1 Limitation of Baseline Mapping

Existing DNN accelerator works use either inner product or outer product for

VMM or MMM computation using a specific dataflow. Figure 4.6 shows the general

execution of inner and outer product in an accelerator. The inner and outer product

operations mainly differ in the data layout in the memory and the accumulation

90

Figure 4.6: Illustration of (a) inner product and (b) outer product operation and
memory layout.

pattern. In an inner product, vectors of size C are accessed from the memory for

computation, where C represents the dimension for contraction, and the partial sums

are accumulated spatially. The weight stationary (WS) dataflow is often used to

support the inner-product operation [57, 143]. On the other hand, in an outer product,

vectors of size N and M are accessed from the memories, where N and M are non-

contractable dimensions, and the partial sums are accumulated temporally. The

output stationary (OS) dataflow is often used to support the outer-product operation

[5, 144, 145].

With a fixed dataflow to support either the inner or outer product, existing DNN

accelerators are limited in options when mapping an arbitrary contraction sequence,

leading to possible inefficiencies and overheads. For instance, Figure 4.7(a) illustrates

a possible contraction sequence obtained after the optimal contraction sequence search

and shows how existing DNN accelerators would map the contraction sequence for

inner product or outer product execution as shown in Figure 4.7(b) and (c), respec-

tively. For an inner-product design, if the tensor data is organized in the correct

inner-product format, then it can begin the computation directly. However, if the

data is organized in an incorrect format, then the inner-product design must first

perform a complex orchestration on the tensor data in the memory that involves

91

Figure 4.7: Example of the mapping options for an optimal contraction sequence: (a)
inner-only mapping, (b) outer-only mapping, and (c) hybrid inner-outer mapping,
where the dimensions for contraction are indicated in red.

92

a transpose operation. The same applies to an outer-product design. Overall, if

only inner product or outer product is supported, the accelerator design must han-

dle complex orchestration operations that require additional latency or large design

overheads.

4.3.2 Hybrid Inner-Outer Product Mapping

To avoid the cost of complex tensor orchestration operations, we propose a hybrid

mapping scheme that alternates between inner and outer product. We co-designed the

architecture with the proposed mapping scheme to identify two mapping operations

that can be used to map arbitrary contraction sequences.

More specifically, we first define two formats: 1) I-format for inner product, and

2) O-format for outer product as follows.

I-Format : [iF , i1, i2, . . . , in]× [C]

O-Format : [iF , i1, . . . ik−1, C]× [ik, . . . , in]

where iF , i1, . . . , in and C are the tensor dimensions, iF is the fixed dimension that

does not participate in orchestration, i1, . . . , in are the free dimensions for orchestra-

tion, and C is the contractable dimension. The [·] × [·] notation indicates the 2D

matrix format when the tensor data is stored in memory.

Then, the two mapping operations of the proposed hybrid mapping can be for-

mulated as follows.

Input (I-Format) : [iF , i1, i2, . . . , in]× [C]

Weight (I-Format) : [w1, w2, . . . , wm]× [C]

Output : {iF ,Φ(i1, i2, . . . , in, w1, w2, . . . , wm−1), wm} (4.8)

93

Input (O-Format) : [iF , i1, . . . ik−1, C]× [ik, . . . , in]

Weight (O-Format) : [w1, . . . wℓ−1, C]× [wℓ, . . . , wm]

Output : {iF ,Φ(i1, . . . , in, w1, . . . , wm−1), wm}

or {iF ,Φ(i1, . . . , in−1, w1, . . . , wm), in} (4.9)

where iF , i1, . . . , in, C are the input tensor dimensions, w1, . . . , wm, C are the weight

tensor dimensions, and the permute function Φ(·) represents any possible permutation

of the input and weight dimensions it encloses. Here, the output is presented in the

reshape-free notation. For instance, arbitrary reshape operations can be applied

to {a, b, c, d} to convert it into [a, b] × [c, d] or [a] × [b, c, d] and so on, where the

only requirement is the dimension ordering must remain the same after applying the

reshape operation.

Eq. (4.8) and Eq. (4.9) are referred to as the inner mapping operation and the

outer mapping operation, respectively. The inner mapping operation takes an input

and weight both in I-format, and generates an output with the last weight dimension

wm as the last output dimension. The outer mapping operation takes an input and

weight both in O-format, and generates an output that uses either of the last input

dimension in or the last weight dimension wm as the last output dimension. In both

mapping operations, the free dimensions of input and weight that are not used as

the last output dimension can be freely permuted for the output dimension. From

the outputs obtained from the mapping operations, a new fixed dimension i′F and a

new contractable dimension C ′ are identified to form the input in either I-Format or

O-Format for the next contraction.

With the mapping operations, the hybrid mapping scheme can avoid complex

tensor orchestration operations in an arbitrary contraction sequence by alternating

between inner product and outer product operations, as shown in Figure 4.7(d).

Compared to existing inner-product or outer-product accelerator designs, the hybrid

94

mapping scheme can effectively reduce any possible latency overheads due to unnec-

essary orchestration operations and avoid costly designs with large control and area

overheads.

The assumptions and heuristic for permute function Φ(·) for hybrid mapping in

TNN inference are listed as follows.

• Following the prior work [5], we assume that the weight tensors are pre-orchestrated

by a host processor before loading on-chip for TNN inference. Therefore, the

weights can be organized into either I-format or O-format according to the input

format for a tensor contraction.

• For the first contraction in the sequence, the input tensor dimension must be a

direct tensorization of the shape of the input vector for TNN inference; For the

last contraction in the sequence, the output tensor dimension must be able to

vectorize into the shape of the output vector of TNN inference.

• For the permute function Φ(·) in our design, we permute the free dimensions

contractable through inner product to the lower parts of the output dimension,

whereas the free dimensions contractable through outer product are permuted to

the upper parts of the output dimension. This heuristic limits the unnecessary

moving of the free dimensions that may result in excessive memory traffic as

the backend module (more details in Section 4.4).

4.4 TetriX System Architecture

The TetriX system architecture is presented in Figure 4.8. TetriX consists of a

compute module, an index module, and a backend module. A system controller re-

ceives the instructions and configurations from the host processor, and coordinates

the modules for processing. The compute module uses a configurable dataflow that

allows it to perform inner and outer product operations using WS and OS dataflows.

95

Figure 4.8: TetriX system architecture.

A 16×16 PE array is designed for the MMM operation. Pre-processing and post-

processing units, i.e., input/output align, index processing, data collect, are used to

assist the input streaming and output collection in both the WS and OS dataflow. A

32KB weight memory is used to store all the decomposed weight tensors for a TNN

layer, and two 256KB tensor memories are used alternately to store the input and

output tensor data for a tensor contraction operation. The memories are designed to

be multi-banked to hold flexible input and output tensor shapes. The index module

performs index translation to convert N -dimensional input and weight tensor indices

into 2D memory addresses for input, weight, and output memories. The backend

module performs hierarchical output gathering to form output data words and coor-

dinates the writeback of data words into corresponding output memory bank. Overall,

TetriX has a total of 256 PEs for 16b×16b MAC computation for a tensor contraction

operation, and has a total on-chip memory storage of 544KB to store weight tensors

and intermediate tensors during an end-to-end TNN layer inference.

96

Figure 4.9: Illustration of WS and OS dataflows in TetriX architecture.

4.4.1 Configurable Stationary Dataflow

The compute module is designed to support both WS and OS dataflows for inner

and outer product operations, respectively. Figure 4.9 illustrates the different steps of

WS and OS dataflows in TetriX. In the WS dataflow, the compute module behaves as

a systolic array to support inner-product operation. For processing, the weight vectors

are first sent to the PE array columns for reuse (Figure 4.9(a)). The input vectors are

streamed in to the PE array where the inputs are organized in a pipelined fashion for

systolic processing [146]. Similarly, the pipelined outputs collected from the PE array

are aligned to form the output vectors (Figure 4.9(b)). The WS dataflow presents an

efficient processing scheme where data only propagates between neighboring PEs and

accumulation occurs spatially during data propagation, requiring the least bandwidth

and control overhead.

97

Figure 4.10: Illustration of integrated PE microarchitecture for WS/OS dataflows.

A PE holds a weight data that is reused for multiplication across multiple input

data. During processing, a PE multiplies the input data from the left PE with the

weight data it holds, then accumulates with the input psum data from the top PE

to obtain the output psum data. Then, the input data is sent to the right PE and

the output psum data is sent to the bottom PE. The PE datapath for WS dataflow

is presented in blue in Figure 4.10.

In the OS dataflow, the compute module behaves as a spatial array to support

the outer-product operation. For processing, the input vectors and weight vectors

are broadcast across the PE array horizontally and vertically, respectively, and the

output data are accumulated temporally at each PE (Figure 4.9(c)). The output data

stored at each PE cannot be read at once due to bandwidth limitation. We propose

two output collection modes: 1) row collection, and 2) column (col) collection. In

the row collection mode, a row collector arbitrates between rows that are ready for

collection, and reads the output data and memory addresses from the granted row

(Figure 4.9(d)). Similarly for the col collection mode. The output collection modes

allow the OS dataflow to have more flexibility and offer additional workload mapping

98

Figure 4.11: Illustration of (a) arbitrary permute and reshape operations on tensor
data in memory, and (b) proposed index translation mechanism.

options for a better mapping performance. However, compared to the WS dataflow,

the OS dataflow requires a more fine-grained control on the PEs and has larger design

overheads due to the output memory address calculation and collector arbitration.

During processing, a PE computes the psum data using the received input and

weight data from broadcast, then accumulates to the psum register. Once accumu-

lated temporally, the psum is sent to the output data FIFO for output collection. In

addition to the data, lower parts of input and weight tensor indices are sent to the

compute module for index translation. They are first used to compute partial out-

put memory addresses, which are broadcast along with the data to each PE to form

a complete output memory address stored in the output address FIFO for output

collection. The PE datapath for OS dataflow is presented in yellow in Figure 4.10.

4.4.2 Index Translation

With the hybrid mapping scheme, TetriX only has to support orchestration oper-

ations that consists of reshape and permute operations, as shown in Figure 4.11(a).

However, these operations are still challenging to support since they have to operate

on a N -dimensional tensor data that is stored in a 2D matrix form in the memory.

99

Figure 4.12: Microarchitecture of index translation for (a) WS dataflow and (b) OS
dataflow.

We propose an index translation mechanism that uses grouped counters to keep track

of the N -dimensional tensor indices of input and weight during processing, and trans-

lates those tensor indices into 2D memory addresses for input, weight, and output

memory access by using dot-product operations with pre-configured memory strides.

The index translation mechanism is illustrated in Figure 4.11(b).

Figure 4.12(a) and (b) illustrate the microarchitecture of index translation mecha-

nism for WS and OS dataflow, respectively. In both WS and OS dataflow, the tensor

indices from the input and weight index counters are used to calculate the input and

weight memory address to access the N -dimensional tensor data stored in the input

and weight memory, respectively. However, the output memory address is calculated

differently in the WS and OS dataflow.

In the WS dataflow, the output translate unit receives the upper parts of weight

and input index counters to calculate the output memory address, as illustrated in Fig-

ure 4.12(a). When configuring weight data to the PE array columns (Figure 4.9(a)),

100

the output translate units computes a partial output memory address from the weight

tensor indices and stores it to the corresponding register for reuse. During input

streaming (Figure 4.9(b)), the output translate unit computes the partial output

memory address from the input tensor indices and propagates it in a systolic fashion

across the registers to calculate the complete output memory addresses.

In the OS dataflow, the upper parts of weight and input index counters are sent

to the output translate unit to calculate the output memory address offset, whereas

the lower parts are sent to the PE array to calculate the output memory address, as

illustrated in Figure 4.12(b). During processing, the output translate unit operates

similarly as in the WS dataflow. The PE array first processes the weight and input

tensor indices into partial output memory addresses, and then broadcasts them across

the array along with the input and weight data (Figure 4.9(c)). Each PE calculates

the output memory address with partial addresses from input and weight. During

output collection (Figure 4.9(d)), the output memory addresses from PEs must be

accumulated with the address offset from the output translate unit to form the final

output memory addresses.

4.4.3 Output Gathering

Once the output data and their output memory address are computed by the

compute and index modules, they need to be grouped into data words before being

written to an output memory bank. We refer to the process of grouping contiguous

data elements into data words as output gathering. Due to the flexible tensor di-

mensions, the output gathering needs to flexibly adapt to all possible scenarios. For

example, with different output tensor dimensions, 16 output data obtained from the

PE array can be gathered into 4 data words of length 4, or 5 data words of length 3

and 1 data word of length 1.

To handle the flexibility of output gathering, we propose a hierarchical output

101

Figure 4.13: Illustration of the hierarchical output gathering mechanism using (a)
two gathering stages followed by (b) a switching stage.

gathering mechanism as illustrated in Figure 4.13. The hierarchical output gathering

performs gathering across multiple stages where each stage receives the output from

the previous stage for gathering. In this approach, the d-th stage compares the

memory address (word and element indices) of every data to its neighbor data at

2d−1-distance on the left, to generate a match vector. With the match vector, an

encoding vector is calculated and used to form data words of length 2d. The boolean

expressions used to calculate the match and encoding vectors are presented as follows.

match[i] = valid[i] & (word index[i] == word index[i− 2(d−1)])

encoding[i] = valid[i] & (∼ (match[i] & encoding[i− 2(d−1)])

Figure 4.13(a) and (b) illustrate two gathering stages and a switching stage, re-

spectively. In Figure 4.13(a), stage 1 receives the initial data, and forms data words

of length 2, then, stage 2 receives the output from stage 1 and forms data words

of length 4. After the data words are formed, they are sent to the switching stage

102

where a switch uses the memory addresses to coordinate and write the data words to

corresponding output memory banks, as shown in Figure 4.13(b).

4.5 Benchmarking and Evaluation

4.5.1 Evaluation Methodology

To evaluate TetriX, we collected the specifications of the TNN workloads from

existing TNN literature [34, 112–128]. This collection is composed of more than

100 distinct TNN workloads of TT, HT, TR, BT, and Tucker formats where each

TNN workload requires 3 to 13 tensor contractions, depending on the specification.

Following the prior work [5], we used quantized inputs and weights of 16b fixed-point

precision for the TNN workload inference in our design.

Cycle-accurate models were developed to simulate the behavior and analyze the

performance of TetriX’s architecture and dataflow. To compare the effectiveness of

our hybrid mapping scheme, baseline designs using inner-only mapping and outer-only

mapping are also evaluated using the same dataset and optimal contraction sequences

as for Tetrix. We refer to the baseline designs as TetriX-Inner and TetriX-Outer. For

benchmarking and comparing with prior accelerator works, a cycle-accurate model

was also implemented for TIE accelerator. We also compare TetriX’s performance to

a commercial general-purpose GPU (Nvidia GTX-1080Ti).

4.5.2 Performance, and Mapping Efficacy Analysis

TetriX is designed with a total of 256 MACs and 544KB on-chip memory and

runs at a 1.0 GHz frequency. It achieves a compute throughput of 508.3 and 350.2

GOPS for TT and HT workloads, respectively, where 1 MAC represents 2 OPs.

Figure 4.14 and Figure 4.15 show the performance comparison of TetriX to the

mapping baselines TetriX-Inner and TetriX-Outer on TT, TR, HT, and BT workloads.

103

Figure 4.14: Performance comparison of hybrid mapping (TetriX), inner-only map-
ping (TetriX-Inner), and outer-only mapping (TetriX-Outer) for (a) TT and (b) TR
workloads.

For each decomposition method, we show the normalized latency and memory accesses

for input, weight, and output on-chip memories. Note that, all the mapping schemes

run on the same optimal contraction sequence, thus the number of MAC operations

and required memory sizes are identical.

Compared to the hybrid mapping, the inner-only and outer-only mapping schemes

have to handle complex tensor orchestrations involving tensor transpose when the

data layout is not organized correctly in memory for a contraction. However, without

the explicit support for complex tensor orchestration operations in the TetriX archi-

tecture, additional read-orchestrate-write operations must be executed and cannot be

104

Figure 4.15: Performance comparison of hybrid mapping (TetriX), inner-only map-
ping (TetriX-Inner), and outer-only mapping (TetriX-Outer) for (a) HT and (b) BT
workloads.

interleaved with the MMM processing, thus causing additional orchestration latency.

In Figure 4.14(a) and (b), TetriX is compared to the two mapping baselines for TT

and TR workloads. Compared to TetriX-Inner, TetriX shows a latency improvement

of 1.02× and 1.1× for TT and TR workloads, respectively. Compared to TetriX-

Outer, TetriX shows a latency improvement of 1.2× and 1.1× for TT and TR work-

loads. The little latency improvement in TetriX is mainly due to the simplicity of

TT and TR decomposition structures where the contraction sequence is often regular

with little variation and does not require complex tensor orchestration throughout

the workload inference.

On the other hand, Figure 4.15(a) and (b) show the comparison of TetriX to

105

Figure 4.16: Comparison of the TetriX to TIE [5] in (a) normalized latency, and (b)
total MAC count, maximum memory size, and number of memory accesses.

the two mapping baselines for HT and BT workloads. Different from TT and TR

workloads, HT and BT workloads can take better advantage of the hybrid mapping

scheme, resulting in more significant latency improvements of TetriX over the two

mapping baselines. Compared to TetriX-Inner, TetriX shows a latency improvement

of 1.5× and 1.9× for HT and BT workloads, respectively. Compared to TetriX-Outer,

TetriX shows a latency improvement of 1.2× and 1.1× for HT and BT workloads,

respectively. A larger improvement can be achieved because of the complex struc-

tures in HT and BT decomposition methods where the contraction sequence is highly

dynamic and arbitrary, requiring frequent complex tensor orchestrations and causing

additional orchestration latency for the mapping baselines.

4.5.3 Performance Comparison

In Figure 4.16, we compared the performance of TetriX to a prior accelerator work,

TIE [5], which can only support the TT decomposition method. In our optimal se-

quence search for the TT decomposition, we observe a narrower contraction sequence

space due to the simple and regular decomposition structure. The optimal search

mostly results in two contraction patterns: 1) forward processing from the first core

tensor to the last core tensor, and 2) backward processing from the last core tensor

106

Figure 4.17: End-to-end throughput comparison for TT and HT workloads.

to the first core tensor. TIE adopted the backward processing contraction pattern for

all TT workloads [5]. For TetriX, if the optimal contraction sequence overlaps with

TIE’s contraction pattern, a similar performance is achieved. However, if the optimal

contraction sequence differs from the TIE’s contraction pattern, TetriX outperforms

TIE with significant latency improvement of up to 3.9×, as shown in Figure 4.16(a).

Overall, TetriX requires on average 1.4× less MAC operations and 1.5× less mem-

ory size, and achieves on average 1.3× latency improvement across the TT workloads

of our dataset, as shown in Figure 4.16(b). With the reduction of memory size thanks

to the optimal contraction sequence, more end-to-end TNN workloads can be fully

mapped on TetriX for on-chip processing without incurring external memory access.

TetriX is also compared to a commercial general-purpose GPU (Nvidia GTX-

1080Ti). The GPU has 3,584 cores for massively parallel computation, whereas

TetriX is only designed with 256 MACs. Figure 4.17 compares the throughput of

TetriX and GPU when evaluated on end-to-end TT and HT workloads. When run-

ning on TT workloads with simple and regular structures, the GPU achieves a 19×

higher throughput compared to TetriX. In contrast, TetriX achieves a 4.8× higher

throughput compared to the GPU for HT workloads with more complex structures.

This demonstrates the effectiveness of the hybrid mapping scheme in alleviating the

orchestration overheads for complex-structured contraction sequences.

107

4.6 Summary

We present TetriX, an architecture and mapping co-design for efficient and flexible

TNN processing. TetriX can flexibly adapt to arbitrary tensor contraction operations

required in optimal contraction sequences to achieve higher performance and effi-

ciency for TNN inference. The optimal contraction sequence shows 3× and 7× less

computation and memory over contraction patterns used in previous works. A hybrid

mapping scheme is proposed to eliminate complex tensor orchestrations by alternat-

ing between inner and outer product operations. The hybrid mapping shows up to

1.9× performance improvement compared to the baseline mapping schemes for com-

plex tensor decomposition methods. Configurable dataflow, index translation, and

output gathering mechanisms are designed to support flexible tensor permute, re-

shape and matrix-matrix multiplication operations for arbitrary tensor contractions.

Compared to previous accelerator works, TetriX supports all tensor decomposition

methods used in TNNs with varying orders, dimensions, ranks. Compared to the

state-of-the-art accelerator, TetriX achieves up to 3.9× and on average 1.3× latency

improvement for TT workloads across our collected dataset. Lastly, compared to

a general-purpose GPU, TetriX shows a 4.8× throughput improvement for complex

decomposition methods, i.e., HT workloads, across our collected dataset.

108

CHAPTER V

Conclusion and Outlook

In this dissertation, three accelerator architectures and designs are presented to

address the computation challenges by exploiting model compression characteristics

and data orchestration techniques.

SNAP addresses the computation challenges in unstructured sparse DNN pro-

cessing. With the design of AIM unit, the sequence decoder, and the two-level psum

reduction, SNAP can achieve higher parallelism and efficiency for the irregular compu-

tation in unstructured sparse NNs. A 16nm SNAP test chip demonstrates an effective

energy efficiency of up to 21.55 TOPS/W for sparse workloads and 3.61 TOPS/W

for a pruned ResNet-50.

Point-X addresses the inefficiencies in graph-based point-cloud NN processing.

The SLA clustering extracts fine-grained and coarse-grained spatial locality to achieve

higher data reuse and parallelism while having less data movement during processing.

The SBFS graph traversal enables a speedup for SLA clustering execution. The chain

NoC reduces design complexity and improves efficiency for data exchange between

CTiles. A Point-X design in 28nm can achieve a throughput of 1307.1 Inf./s and an

energy efficiency of 604.5 Inf./J when running on DGCNN.

TetriX explores the co-design opportunities in architecture and workload map-

ping to address the flexibility and performance challenges in TNN processing. To

109

improve performance, the optimal contraction sequence with minimized computa-

tion requirement is identified, then mapped to the processing architecture by using

our proposed hybrid inner-outer mapping scheme. TetriX is designed with the con-

figurable dataflow, the index translation, and the output gathering mechanisms to

support flexible tensor contraction operations. TetriX can support all existing de-

composition methods used in TNNs and shows up to 3.9× performance improvement

compared to the prior work.

Throughout these accelerator architecture works, optimization techniques across

algorithm, architecture, and microarchitecture levels were investigated in order to

obtain the best performance and efficiency for compressed NNs and point-cloud net-

works. These accelerator designs and optimization techniques can guide the design

of future algorithms and more effective network models.

Research of accelerator architecture and design is always at the intersection of mul-

tiple research fields ranging from algorithm, software, compiler, architecture, circuit

design, device, and many more. The research presented in this dissertation attempts

to cover the whole processing system but the emphasis is placed on the novel aspects

of the design. The discussions are not all-inclusive, and many possible research op-

portunities have not been fully considered. Here, we briefly outline some directions

related to this work.

On the algorithm level: 1) joint model compression techniques on NNs for extreme

compression; and 2) co-design of network operations and hardware features of an

accelerator.

On the architecture level: 1) architecture design for domain-specific operations

that broadens the hardware’s flexibility to support more applications; and 2) full

system-on-chip (SoC) integration that includes a general-purpose processor, bus in-

terface, external memory, system intellectual properties (IPs), and the accelerator.

On the microarchitecture and circuit level: 1) 2.5D and 3D chiplet integration as

110

a scalable solution; 2) mix-design with novel technologies, like processing-in-memory

using resistive random-access memory (RRAM) or SRAM; and 3) design with non-

volatile memories, like magnetoresistive random-access memory (MRAM), that offer

different design tradeoffs.

111

BIBLIOGRAPHY

112

BIBLIOGRAPHY

[1] S. Bianco, R. Cadene, L. Celona, and P. Napoletano, “Benchmark analysis
of representative deep neural network architectures,” IEEE Access, vol. 6, pp.
64 270–64 277, 2018.

[2] G. Menghani, “Efficient deep learning: A survey on making deep learning mod-
els smaller, faster, and better,” arXiv preprint arXiv:2106.08962, 2021.

[3] W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive representation learning on
large graphs,” in Proceedings of the Advances in Neural Information Processing
Systems (NIPS), vol. 30, 2017, pp. 1025–1035.

[4] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M. Solomon,
“Dynamic graph CNN for learning on point clouds,” ACM Transactions on
Graphics, vol. 38, no. 5, 2019.

[5] C. Deng, F. Sun, X. Qian, J. Lin, Z. Wang, and B. Yuan, “TIE: Energy-efficient
tensor train-based inference engine for deep neural network,” in Proceedings of
the International Symposium on Computer Architecture (ISCA), 2019, pp. 264–
277.

[6] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no.
7553, pp. 436–444, 2015.

[7] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recogni-
tion,” in Proceedings of the Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2016, pp. 770–778.

[8] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the
Inception architecture for computer vision,” in Proceedings of the Conference
on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 2818–2826.

[9] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Un-
terthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly et al., “An image is
worth 16x16 words: Transformers for image recognition at scale,” arXiv preprint
arXiv:2010.11929, 2020.

[10] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” in Proceedings of the
Advances in Neural Information Processing Systems (NIPS), 2017, pp. 6000–
6010.

113

[11] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of
deep bidirectional transformers for language understanding,” arXiv preprint
arXiv:1810.04805, 2018.

[12] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss,
G. Krueger, T. Henighan, R. Child, A. Ramesh, D. Ziegler, J. Wu, C. Winter,
C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner,
S. McCandlish, A. Radford, I. Sutskever, and D. Amodei, “Language models
are few-shot learners,” in Proceedings of the Advances in Neural Information
Processing Systems (NIPS), 2020, pp. 1877–1901.

[13] A. Canziani, A. Paszke, and E. Culurciello, “An analysis of deep neural network
models for practical applications,” arXiv preprint arXiv:1605.07678, 2017.

[14] Y. Guo, H. Wang, Q. Hu, H. Liu, L. Liu, and M. Bennamoun, “Deep learning
for 3D point clouds: A survey,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 43, no. 12, pp. 4338–4364, 2021.

[15] E. Ahmed, A. Saint, A. E. R. Shabayek, K. Cherenkova, R. Das, G. Gusev,
D. Aouada, and B. E. Ottersten, “Deep learning advances on different 3D data
representations: A survey,” arXiv preprint arXiv:1808.01462, 2018.

[16] J. Zhang, X. Zhao, Z. Chen, and Z. Lu, “A review of deep learning-based se-
mantic segmentation for point cloud,” IEEE Access, vol. 7, pp. 179 118–179 133,
2019.

[17] Y. Xie, T. Jiaojiao, and X. X. Zhu, “Linking points with labels in 3D: A review
of point cloud semantic segmentation,” IEEE Geoscience and Remote Sensing
Magazine, vol. 8, no. 4, pp. 38–59, 2020.

[18] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst, “Geo-
metric deep learning: Going beyond Euclidean data,” IEEE Signal Processing
Magazine, vol. 34, no. 4, pp. 18–42, 2017.

[19] S. Zhang, H. Tong, J. Xu, and R. Maciejewski, “Graph convolutional net-
works: A comprehensive review,” Springer Computational Social Networks,
vol. 6, no. 1, 2019.

[20] J. Cheng, P.-S. Wang, G. Li, Q.-H. Hu, and H.-q. Lu, “Recent advances in
efficient computation of deep convolutional neural networks,” Springer Frontiers
of Information Technology & Electronic Engineering, vol. 19, pp. 64–77, 2018.

[21] L. Deng, G. Li, S. Han, L. Shi, and Y. Xie, “Model compression and hardware
acceleration for neural networks: A comprehensive survey,” Proceedings of the
IEEE, vol. 108, no. 4, pp. 485–532, 2020.

114

[22] Y. Cheng, D. Wang, P. Zhou, and T. Zhang, “Model compression and accelera-
tion for deep neural networks: The principles, progress, and challenges,” IEEE
Signal Processing Magazine, vol. 35, no. 1, pp. 126–136, 2018.

[23] S. Dai, R. Venkatesan, M. Ren, B. Zimmer, W. Dally, and B. Khailany, “VS-
Quant: Per-vector scaled quantization for accurate low-precision neural network
inference,” in Proceedings of the Conference on Machine Learning and Systems
(MLSys), 2021, pp. 873–884.

[24] D. D. Kalamkar, D. Mudigere, N. Mellempudi, D. Das, K. Banerjee, S. Avancha,
D. T. Vooturi, N. Jammalamadaka, J. Huang, H. Yuen, J. Yang, J. Park, A. Hei-
necke, E. Georganas, S. Srinivasan, A. Kundu, M. Smelyanskiy, B. Kaul, and
P. Dubey, “A study of BFLOAT16 for deep learning training,” arXiv preprint
arXiv:1905.12322, 2019.

[25] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep neu-
ral networks with pruning, trained quantization and Huffman coding,” Inter-
national Conference on Learning Representations (ICLR), 2016.

[26] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and connec-
tions for efficient neural network,” in Proceedings of the Advances in Neural
Information Processing Systems (NIPS), 2015, pp. 1135–1143.

[27] S. Anwar, K. Hwang, and W. Sung, “Structured pruning of deep convolutional
neural networks,” ACM Journal on Emerging Technologies in Computing Sys-
tems, vol. 13, no. 3, 2017.

[28] T. Zhang, S. Ye, K. Zhang, J. Tang, W. Wen, M. Fardad, and Y. Wang, “A
systematic DNN weight pruning framework using alternating direction method
of multipliers,” in Proceedings of the European Conference on Computer Vision
(ECCV), 2018, pp. 184–199.

[29] E. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fergus, “Exploiting linear
structure within convolutional networks for efficient evaluation,” in Proceedings
of the Advances in Neural Information Processing Systems (NIPS), 2014, pp.
1269–1277.

[30] T. N. Sainath, B. Kingsbury, V. Sindhwani, E. Arisoy, and B. Ramabhadran,
“Low-rank matrix factorization for deep neural network training with high-
dimensional output targets,” in Proceedings of the International Conference on
Acoustics, Speech and Signal Processing (ICASSP), 2013, pp. 6655–6659.

[31] J. D. Carroll and J.-J. Chang, “Analysis of individual differences in multidimen-
sional scaling via an N-way generalization of “Eckart-Young” decomposition,”
Springer Psychometrika, vol. 35, no. 3, pp. 283–319, 1970.

[32] L. R. Tucker, “Some mathematical notes on three-mode factor analysis,”
Springer Psychometrika, vol. 31, no. 3, pp. 279–311, 1966.

115

[33] I. V. Oseledets, “Tensor-train decomposition,” SIAM Journal on Scientific
Computing, vol. 33, no. 5, pp. 2295–2317, 2011.

[34] A. Novikov, D. Podoprikhin, A. Osokin, and D. Vetrov, “Tensorizing neural
networks,” in Proceedings of the Advances in Neural Information Processing
Systems (NIPS), 2015, pp. 442–450.

[35] T. N. Kipf and M. Welling, “Semi-supervised classification with graph con-
volutional networks,” International Conference on Learning Representations
(ICLR), 2017.

[36] B. Perozzi, R. Al-Rfou, and S. Skiena, “DeepWalk: Online learning of social
representations,” in Proceedings of the International Conference on Knowledge
Discovery and Data Mining (KDD), 2014, pp. 701–710.

[37] J.-F. Zhang, C.-E. Lee, C. Liu, Y. S. Shao, S. W. Keckler, and Z. Zhang, “SNAP:
An efficient sparse neural acceleration processor for unstructured sparse deep
neural network inference,” IEEE Journal of Solid-State Circuits, vol. 56, no. 2,
pp. 636–647, 2021.

[38] ——, “SNAP: A 1.67-21.55 TOPS/W sparse neural acceleration processor for
unstructured sparse deep neural network inference in 16nm CMOS,” in Pro-
ceedings of the Symposium on VLSI Circuits (VLSI), 2019, pp. 306–307.

[39] J.-F. Zhang and Z. Zhang, “Point-X: A spatial-locality-aware architecture for
energy-efficient graph-based point-cloud deep learning,” in Proceedings of the
International Symposium on Microarchitecture (MICRO), 2021, pp. 1078–1090.

[40] ——, “Exploration of energy-efficient architecture for graph-based point-cloud
deep learning,” in Proceedings of the Workshop on Signal Processing Systems
(SiPS), 2021, pp. 260–264.

[41] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet: A
large-scale hierarchical image database,” in Proceedings of the Conference on
Computer Vision and Pattern Recognition (CVPR), 2009, pp. 248–255.

[42] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with
deep convolutional neural networks,” in Proceedings of the Advances in Neural
Information Processing Systems (NIPS), 2012, pp. 1097–1105.

[43] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-
scale image recognition,” International Conference on Learning Representations
(ICLR), 2015.

[44] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Er-
han, V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
in Proceedings of the Conference on Computer Vision and Pattern Recognition
(CVPR), 2015, pp. 1–9.

116

[45] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies
for accurate object detection and semantic segmentation,” in Proceedings of the
Conference on Computer Vision and Pattern Recognition (CVPR), 2014, pp.
580–587.

[46] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Uni-
fied, real-time object detection,” in Proceedings of the Conference on Computer
Vision and Pattern Recognition (CVPR), 2016, pp. 779–788.

[47] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for se-
mantic segmentation,” in Proceedings of the Conference on Computer Vision
and Pattern Recognition (CVPR), 2015, pp. 3431–3440.

[48] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An energy-efficient
reconfigurable accelerator for deep convolutional neural networks,” IEEE Jour-
nal of Solid-State Circuits, vol. 52, no. 1, pp. 127–138, 2017.

[49] J. Albericio, P. Judd, T. H. Hetherington, T. M. Aamodt, N. D. E. Jerger, and
A. Moshovos, “Cnvlutin: Ineffectual-neuron-free deep neural network comput-
ing,” in Proceedings of the International Symposium on Computer Architecture
(ISCA), 2016, pp. 1–13.

[50] S. Zhang, Z. Du, L. Zhang, H. Lan, S. Liu, L. Li, Q. Guo, T. Chen, and Y. Chen,
“Cambricon-X: An accelerator for sparse neural networks,” in Proceedings of the
International Symposium on Microarchitecture (MICRO), 2016, pp. 1–12.

[51] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and W. J. Dally,
“EIE: Efficient inference engine on compressed deep neural network,” in Pro-
ceedings of the International Symposium on Computer Architecture (ISCA),
2016, pp. 243–254.

[52] A. Parashar, M. Rhu, A. Mukkara, A. Puglielli, R. Venkatesan, B. Khailany,
J. Emer, S. W. Keckler, and W. J. Dally, “SCNN: An accelerator for
compressed-sparse convolutional neural networks,” in Proceedings of the In-
ternational Symposium on Computer Architecture (ISCA), 2017, pp. 27–40.

[53] Z. Yuan, J. Yue, H. Yang, Z. Wang, J. Li, Y. Yang, Q. Guo, X. Li, M.-F. Chang,
H. Yang, and Y. Liu, “STICKER: A 0.41-62.1 TOPS/W 8bit neural network
processor with multi-sparsity compatible convolution arrays and online tuning
acceleration for fully connected layers,” in Proceedings of the Symposium on
VLSI Circuits (VLSI), 2018, pp. 33–34.

[54] Z. Yuan, Y. Liu, J. Yue, Y. Yang, J. Wang, X. Feng, J. Zhao, X. Li, and
H. Yang, “STICKER: An energy-efficient multi-sparsity compatible accelerator
for convolutional neural networks in 65-nm CMOS,” IEEE Journal of Solid-
State Circuits, vol. 55, no. 2, pp. 465–477, 2020.

117

[55] Y.-H. Chen, T.-J. Yang, J. Emer, and V. Sze, “Eyeriss v2: A flexible accel-
erator for emerging deep neural networks on mobile devices,” IEEE Journal
on Emerging and Selected Topics in Circuits and Systems, vol. 9, no. 2, pp.
292–308, 2019.

[56] Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A spatial architecture for energy-
efficient dataflow for convolutional neural networks,” in Proceedings of the In-
ternational Symposium on Computer Architecture (ISCA), 2016, pp. 367–379.

[57] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates,
S. Bhatia, N. Boden, A. Borchers, R. Boyle, P.-l. Cantin, C. Chao, C. Clark,
J. Coriell, M. Daley, M. Dau, J. Dean, B. Gelb, T. V. Ghaemmaghami, R. Got-
tipati, W. Gulland, R. Hagmann, C. R. Ho, D. Hogberg, J. Hu, R. Hundt,
D. Hurt, J. Ibarz, A. Jaffey, A. Jaworski, A. Kaplan, H. Khaitan, D. Kille-
brew, A. Koch, N. Kumar, S. Lacy, J. Laudon, J. Law, D. Le, C. Leary,
Z. Liu, K. Lucke, A. Lundin, G. MacKean, A. Maggiore, M. Mahony, K. Miller,
R. Nagarajan, R. Narayanaswami, R. Ni, K. Nix, T. Norrie, M. Omernick,
N. Penukonda, A. Phelps, J. Ross, M. Ross, A. Salek, E. Samadiani, C. Severn,
G. Sizikov, M. Snelham, J. Souter, D. Steinberg, A. Swing, M. Tan, G. Thorson,
B. Tian, H. Toma, E. Tuttle, V. Vasudevan, R. Walter, W. Wang, E. Wilcox,
and D. H. Yoon, “In-datacenter performance analysis of a tensor processing
unit,” in Proceedings of the International Symposium on Computer Architec-
ture (ISCA), 2017, pp. 1–12.

[58] Y.-H. Chen, T. Krishna, J. Emer, and V. Sze, “Eyeriss: An energy-efficient
reconfigurable accelerator for deep convolutional neural networks,” in Proceed-
ings of the International Solid-State Circuits Conference (ISSCC), 2016, pp.
262–263.

[59] B. Moons, R. Uytterhoeven, W. Dehaene, and M. Verhelst, “Envision: A 0.26-
to-10TOPS/W subword-parallel dynamic-voltage-accuracy-frequency-scalable
convolutional neural network processor in 28nm FDSOI,” in Proceedings of the
International Solid-State Circuits Conference (ISSCC), 2017, pp. 246–247.

[60] J. Albericio, A. Delmás, P. Judd, S. Sharify, G. O’Leary, R. Genov, and
A. Moshovos, “Bit-pragmatic deep neural network computing,” in Proceedings
of the International Symposium on Microarchitecture (MICRO), 2017, pp. 382–
394.

[61] J. Lee, C. Kim, S. Kang, D. Shin, S. Kim, and H.-J. Yoo, “UNPU: An energy-
efficient deep neural network accelerator with fully variable weight bit preci-
sion,” IEEE Journal of Solid-State Circuits, vol. 54, no. 1, pp. 173–185, 2018.

[62] C.-E. Lee, Y. S. Shao, J.-F. Zhang, A. Parashar, J. Emer, S. W. Keckler, and
Z. Zhang, “Stitch-X: An accelerator architecture for exploiting unstructured
sparsity in deep neural networks,” Conference on Machine Learning and Sys-
tems (MLSys), 2018.

118

[63] Y. Li and J. Ibanez-Guzman, “Lidar for autonomous driving: The principles,
challenges, and trends for automotive lidar and perception systems,” IEEE
Signal Processing Magazine, vol. 37, no. 4, pp. 50–61, 2020.

[64] H. Su, S. Maji, E. Kalogerakis, and E. Learned-Miller, “Multi-view convolu-
tional neural networks for 3D shape recognition,” in Proceedings of the Inter-
national Conference on Computer Vision (ICCV), 2015, pp. 945–953.

[65] T. Yu, J. Meng, and J. Yuan, “Multi-view harmonized bilinear network for 3d
object recognition,” in Proceedings of the Conference on Computer Vision and
Pattern Recognition (CVPR), 2018, pp. 186–194.

[66] C. R. Qi, H. Su, M. Nießner, A. Dai, M. Yan, and L. J. Guibas, “Volumetric
and multi-view CNNs for object classification on 3D data,” in Proceedings of
the Conference on Computer Vision and Pattern Recognition (CVPR), 2016,
pp. 5648–5656.

[67] D. Maturana and S. Scherer, “VoxNet: A 3D convolutional neural network for
real-time object recognition,” in Proceedings of the International Conference on
Intelligent Robots and Systems (IROS), 2015, pp. 922–928.

[68] G. Riegler, A. O. Ulusoy, and A. Geiger, “OctNet: Learning deep 3D repre-
sentations at high resolutions,” in Proceedings of the Conference on Computer
Vision and Pattern Recognition (CVPR), 2017, pp. 6620–6629.

[69] P.-S. Wang, Y. Liu, Y.-X. Guo, C.-Y. Sun, and X. Tong, “O-CNN: Octree-based
convolutional neural networks for 3D shape analysis,” ACM Transactions on
Graphics, vol. 36, no. 4, 2017.

[70] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “PointNet: Deep learning on point
sets for 3D classification and segmentation,” in Proceedings of the Conference
on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 77–85.

[71] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “PointNet++: Deep hierarchical
feature learning on point sets in a metric space,” in Proceedings of the Advances
in Neural Information Processing Systems (NIPS), 2017, pp. 5105–5114.

[72] M. Simonovsky and N. Komodakis, “Dynamic edge-conditioned filters in con-
volutional neural networks on graphs,” in Proceedings of the Conference on
Computer Vision and Pattern Recognition (CVPR), 2017, pp. 29–38.

[73] Y. Shen, C. Feng, Y. Yang, and D. Tian, “Mining point cloud local structures
by kernel correlation and graph pooling,” in Proceedings of the Conference on
Computer Vision and Pattern Recognition (CVPR), 2018, pp. 4548–4557.

[74] K. Zhang, M. Hao, J. Wang, C. W. de Silva, and C. Fu, “Linked dynamic graph
CNN: Learning on point cloud via linking hierarchical features,” arXiv preprint
arXiv:1904.10014, 2019.

119

[75] C. Chen, G. Li, R. Xu, T. Chen, M. Wang, and L. Lin, “ClusterNet: Deep
hierarchical cluster network with rigorously rotation-invariant representation
for point cloud analysis,” in Proceedings of the Conference on Computer Vision
and Pattern Recognition (CVPR), 2019, pp. 4989–4997.

[76] H. You, Y. Feng, R. Ji, and Y. Gao, “PVNet: A joint convolutional network
of point cloud and multi-view for 3D shape recognition,” in Proceedings of the
International Conference on Multimedia (MM), 2018, pp. 1310–1318.

[77] Y. Wang and J. M. Solomon, “Deep closest point: Learning representations
for point cloud registration,” in Proceedings of the International Conference on
Computer Vision (ICCV), 2019, pp. 3522–3531.

[78] K. Hassani and M. Haley, “Unsupervised multi-task feature learning on point
clouds,” in Proceedings of the International Conference on Computer Vision
(ICCV), 2019, pp. 8159–8170.

[79] S. Lan, R. Yu, G. Yu, and L. S. Davis, “Modeling local geometric structure of 3D
point clouds using Geo-CNN,” in Proceedings of the Conference on Computer
Vision and Pattern Recognition (CVPR), 2019, pp. 998–1008.

[80] C. Chen, L. Z. Fragonara, and A. Tsourdos, “GAPNet: Graph attention based
point neural network for exploiting local feature of point cloud,” arXiv preprint
arXiv:1905.08705, 2019.

[81] D. Shin, J. Lee, J. Lee, J. Lee, and H.-J. Yoo, “DNPU: An energy-efficient deep-
learning processor with heterogeneous multi-core architecture,” IEEE Micro,
vol. 38, no. 5, pp. 85–93, 2018.

[82] T. J. Ham, L. Wu, N. Sundaram, N. Satish, and M. Martonosi, “Graphicionado:
A high-performance and energy-efficient accelerator for graph analytics,” in
Proceedings of the International Symposium on Microarchitecture (MICRO),
2016, pp. 1–13.

[83] M. M. Ozdal, S. Yesil, T. Kim, A. Ayupov, J. Greth, S. Burns, and O. Ozturk,
“Energy efficient architecture for graph analytics accelerators,” in Proceedings
of the International Symposium on Computer Architecture (ISCA), 2016, pp.
166–177.

[84] M. Yan, L. Deng, X. Hu, L. Liang, Y. Feng, X. Ye, Z. Zhang, D. Fan, and
Y. Xie, “HyGCN: A GCN accelerator with hybrid architecture,” in Proceedings
of the International Symposium on High-Performance Computer Architecture
(HPCA), 2020, pp. 15–29.

[85] K. Kiningham, C. Re, and P. Levis, “GRIP: A graph neural network accelerator
architecture,” arXiv preprint arXiv:2007.13828, 2020.

120

[86] T. Geng, A. Li, R. Shi, C. Wu, T. Wang, Y. Li, P. Haghi, A. Tumeo, S. Che,
S. Reinhardt, and M. C. Herbordt, “AWB-GCN: A graph convolutional network
accelerator with runtime workload rebalancing,” in Proceedings of the Interna-
tional Symposium on Microarchitecture (MICRO), 2020, pp. 922–936.

[87] X. Chen, Y. Wang, X. Xie, X. Hu, A. Basak, L. Liang, M. Yan, L. Deng,
Y. Ding, Z. Du, Y. Chen, and Y. Xie, “Rubik: A hierarchical architecture for
efficient graph learning,” arXiv preprint arXiv:2009.12495, 2020.

[88] R. Garg, E. Qin, F. M. Mart́ınez, R. Guirado, A. Jain, S. Abadal, J. L. Abellán,
M. E. Acacio, E. Alarcón, S. Rajamanickam, and T. Krishna, “Understanding
the design space of sparse/dense multiphase dataflows for mapping graph neural
networks on spatial accelerators,” arXiv preprint arXiv:2103.07977, 2021.

[89] X. Song, T. Zhi, Z. Fan, Z. Zhang, X. Zeng, W. Li, X. Hu, Z. Du, Q. Guo,
and Y. Chen, “Cambricon-G: A polyvalent energy-efficient accelerator for dy-
namic graph neural networks,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 41, no. 1, pp. 116–128, 2022.

[90] S. Liang, C. Liu, Y. Wang, H. Li, and X. Li, “DeepBurning-GL: An automated
framework for generating graph neural network accelerators,” in Proceedings of
the International Conference on Computer-Aided Design (ICCAD), 2020, pp.
1–9.

[91] A. Mukkara, N. Beckmann, M. Abeydeera, X. Ma, and D. Sanchez, “Exploiting
locality in graph analytics through hardware-accelerated traversal scheduling,”
in Proceedings of the International Symposium on Microarchitecture (MICRO),
2018, pp. 1–14.

[92] A. Mukkara, N. Beckmann, and D. Sanchez, “Cache-guided scheduling: Ex-
ploiting caches to maximize locality in graph processing,” International Work-
shop on Architecture for Graph Processing, 2017.

[93] J. Banerjee, W. Kim, S.-J. Kim, and J. F. Garza, “Clustering a DAG for CAD
databases,” IEEE Transactions on Software Engineering, vol. 14, no. 11, pp.
1684–1699, 1988.

[94] P. Yuan, C. Xie, L. Liu, and H. Jin, “PathGraph: A path centric graph process-
ing system,” IEEE Transactions on Parallel and Distributed Systems, vol. 27,
no. 10, pp. 2998–3012, 2016.

[95] H. Wei, J. X. Yu, C. Lu, and X. Lin, “Speedup graph processing by graph
ordering,” in Proceedings of the International Conference on Management of
Data (SIGMOD), 2016, pp. 1813–1828.

[96] P. Yao, L. Zheng, Z. Zeng, Y. Huang, C. Gui, X. Liao, H. Jin, and J. Xue,
“A locality-aware energy-efficient accelerator for graph mining applications,”
in Proceedings of the International Symposium on Microarchitecture (MICRO),
2020, pp. 895–907.

121

[97] Y. Wang, B. Feng, G. Li, S. Li, L. Deng, Y. Xie, and Y. Ding, “GNNAdvisor:
An adaptive and efficient runtime system for GNN acceleration on GPUs,” in
Proceedings of the Symposium on Operating Systems Design and Implementa-
tion (OSDI), 2021, pp. 515–531.

[98] C. E. Leiserson and T. B. Schardl, “A work-efficient parallel breadth-first search
algorithm (or how to cope with the nondeterminism of reducers),” in Proceed-
ings of the Symposium on Parallelism in Algorithms and Architectures (SPAA),
2010, pp. 303–314.

[99] Y.-C. Wu, C.-H. Chang, J.-H. Hung, and C.-H. Yang, “A 135-mW fully inte-
grated data processor for next-generation sequencing,” IEEE Transactions on
Biomedical Circuits and Systems, vol. 11, no. 6, pp. 1216–1225, 2017.

[100] Y. Liu, B. Fan, G. Meng, J. Lu, S. Xiang, and C. Pan, “DensePoint: Learning
densely contextual representation for efficient point cloud processing,” in Pro-
ceedings of the International Conference on Computer Vision (ICCV), 2019,
pp. 5238–5247.

[101] Q. Xu, X. Sun, C.-Y. Wu, P. Wang, and U. Neumann, “Grid-GCN for fast and
scalable point cloud learning,” in Proceedings of the Conference on Computer
Vision and Pattern Recognition (CVPR), 2020, pp. 5660–5669.

[102] Y. Liu, B. Fan, S. Xiang, and C. Pan, “Relation-shape convolutional neural
network for point cloud analysis,” in Proceedings of the Conference on Computer
Vision and Pattern Recognition (CVPR), 2019, pp. 8887–8896.

[103] M. Atzmon, H. Maron, and Y. Lipman, “Point convolutional neural networks
by extension operators,” ACM Transactions on Graphics, vol. 37, no. 4, 2018.

[104] H. Thomas, C. R. Qi, J.-E. Deschaud, B. Marcotegui, F. Goulette, and L. J.
Guibas, “KPConv: Flexible and deformable convolution for point clouds,” in
Proceedings of the International Conference on Computer Vision (ICCV), 2019,
pp. 6410–6419.

[105] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao, “3D
ShapeNets: A deep representation for volumetric shapes,” in Proceedings of
the Conference on Computer Vision and Pattern Recognition (CVPR), 2015,
pp. 1912–1920.

[106] J. Arai, H. Shiokawa, T. Yamamuro, M. Onizuka, and S. Iwamura, “Rabbit
order: Just-in-time parallel reordering for fast graph analysis,” in Proceedings
of the International Parallel and Distributed Processing Symposium (IPDPS),
2016, pp. 22–31.

[107] J. Kim, “Low-cost router microarchitecture for on-chip networks,” in Proceed-
ings of the International Symposium on Microarchitecture (MICRO), 2009, pp.
255–266.

122

[108] S. Park, T. Krishna, C.-H. Chen, B. Daya, A. Chandrakasan, and L.-S. Peh,
“Approaching the theoretical limits of a mesh NoC with a 16-node chip pro-
totype in 45nm SOI,” in Proceedings of the Design Automation Conference
(DAC), 2012, pp. 398–405.

[109] H. Kwon, A. Samajdar, and T. Krishna, “MAERI: Enabling flexible dataflow
mapping over DNN accelerators via reconfigurable interconnects,” in Proceed-
ings of the International Conference on Architectural Support for Programming
Languages and Operation Systems (ASPLOS), 2018, pp. 461–475.

[110] ——, “Rethinking NoCs for spatial neural network accelerators,” in Proceedings
of the International Symposium on Networks-on-Chip (NOCS), 2017, pp. 1–8.

[111] N. P. Jouppi, D. Hyun Yoon, M. Ashcraft, M. Gottscho, T. B. Jablin, G. Kurian,
J. Laudon, S. Li, P. Ma, X. Ma, T. Norrie, N. Patil, S. Prasad, C. Young,
Z. Zhou, and D. Patterson, “Ten lessons from three generations shaped Google’s
TPUv4i: Industrial product,” in Proceedings of the International Symposium
on Computer Architecture (ISCA), 2021, pp. 1–14.

[112] Y.-D. Kim, E. Park, S. Yoo, T. Choi, L. Yang, and D. Shin, “Compression of
deep convolutional neural networks for fast and low power mobile applications,”
arXiv preprint arXiv:1511.06530, 2016.

[113] A. Tjandra, S. Sakti, and S. Nakamura, “Compressing recurrent neural network
with tensor train,” in Proceedings of the International Joint Conference on
Neural Networks (IJCNN), 2017, pp. 4451–4458.

[114] Y. Yang, D. Krompass, and V. Tresp, “Tensor-train recurrent neural networks
for video classification,” in Proceedings of the International Conference on Ma-
chine Learning (ICML), 2017, pp. 3891–3900.

[115] A. Tjandra, S. Sakti, and S. Nakamura, “Tensor decomposition for compressing
recurrent neural network,” in Proceedings of the International Joint Conference
on Neural Networks (IJCNN), 2018, pp. 1–8.

[116] O. Hrinchuk, V. Khrulkov, L. Mirvakhabova, E. Orlova, and I. Oseledets,
“Tensorized embedding layers for efficient model compression,” arXiv preprint
arXiv:1901.10787, 2019.

[117] H. Huang and H. Yu, “LTNN: A layerwise tensorized compression of multilayer
neural network,” IEEE Transactions on Neural Networks and Learning Systems,
vol. 30, no. 5, pp. 1497–1511, 2019.

[118] C. C. Onu, J. E. Miller, and D. Precup, “A fully tensorized recurrent neural
network,” arXiv preprint arXiv:2010.04196, 2020.

[119] C. Yin, B. Acun, C.-J. Wu, and X. Liu, “TT-Rec: Tensor train compression
for deep learning recommendation models,” in Proceedings of the Conference
on Machine Learning and Systems (MLSys), 2021, pp. 448–462.

123

[120] V. Aggarwal, W. Wang, B. Eriksson, Y. Sun, andW.Wang, “Wide compression:
Tensor ring nets,” in Proceedings of the Conference on Computer Vision and
Pattern Recognition (CVPR), 2018, pp. 9329–9338.

[121] Y. Pan, J. Xu, M. Wang, J. Ye, F. Wang, K. Bai, and Z. Xu, “Compressing re-
current neural networks with tensor ring for action recognition,” in Proceedings
of the Conference on Artificial Intelligence (AAAI), 2019, pp. 4683–4690.

[122] M. Yin, S. Liao, X.-Y. Liu, X. Wang, and B. Yuan, “Compressing recurrent
neural networks using hierarchical Tucker tensor decomposition,” arXiv preprint
arXiv:2005.04366, 2020.

[123] B. Wu, D. Wang, G. Zhao, L. Deng, and G. Li, “Hybrid tensor decomposition in
neural network compression,” Elsevier Neural Networks, vol. 132, pp. 309–320,
2020.

[124] M. Yin, S. Liao, X.-Y. Liu, X. Wang, and B. Yuan, “Towards extremely com-
pact RNNs for video recognition with fully decomposed hierarchical Tucker
structure,” in Proceedings of the Conference on Computer Vision and Pattern
Recognition (CVPR), 2021, pp. 12 085–12 094.

[125] G. Li, J. Ye, H. Yang, D. Chen, S. Yan, and Z. Xu, “BT-Nets: Simpli-
fying deep neural networks via block term decomposition,” arXiv preprint
arXiv:1712.05689, 2017.

[126] J. Ye, L. Wang, G. Li, D. Chen, S. Zhe, X. Chu, and Z. Xu, “Learning compact
recurrent neural networks with block-term tensor decomposition,” in Proceed-
ings of the Conference on Computer Vision and Pattern Recognition (CVPR),
2018, pp. 9378–9387.

[127] X. Ma, P. Zhang, S. Zhang, N. Duan, Y. Hou, M. Zhou, and D. Song, “A
tensorized transformer for language modeling,” in Proceedings of the Advances
in Neural Information Processing Systems (NIPS), 2019, pp. 2232–2242.

[128] J. Ye, G. Li, D. Chen, H. Yang, S. Zhe, and Z. Xu, “Block-term tensor neural
networks,” Elsevier Neural Networks, vol. 130, pp. 11–21, 2020.

[129] D. Wang, B. Wu, G. Zhao, M. Yao, H. Chen, L. Deng, T. Yan, and G. Li,
“Kronecker CP decomposition with fast multiplication for compressing RNNs,”
IEEE Transactions on Neural Networks and Learning Systems, pp. 1–15, 2021.

[130] R. Guo, Z. Yue, X. Si, T. Hu, H. Li, L. Tang, Y. Wang, L. Liu, M.-F. Chang,
Q. Li, S. Wei, and S. Yin, “A 5.99-to-691.1TOPS/W tensor-train in-memory-
computing processor using bit-level-sparsity-based optimization and variable-
precision quantization,” in Proceedings of the International Solid-State Circuits
Conference (ISSCC), 2021, pp. 242–244.

124

[131] H. Huang, L. Ni, K. Wang, Y. Wang, and H. Yu, “A highly parallel and energy
efficient three-dimensional multilayer CMOS-RRAM accelerator for tensorized
neural network,” IEEE Transactions on Nanotechnology, vol. 17, no. 4, pp.
645–656, 2018.

[132] W. Hackbusch and S. Kühn, “A new scheme for the tensor representation,”
Springer Journal of Fourier Analysis and Applications, vol. 15, no. 5, pp. 706–
722, 2009.

[133] L. Grasedyck, “Hierarchical singular value decomposition of tensors,” SIAM
Journal on Matrix Analysis and Applications, vol. 31, no. 4, pp. 2029–2054,
2010.

[134] Q. Zhao, G. Zhou, S. Xie, L. Zhang, and A. Cichocki, “Tensor ring decomposi-
tion,” arXiv preprint arXiv:1606.05535, 2016.

[135] L. De Lathauwer, “Decompositions of a higher-order tensor in block terms–
part II: Definitions and uniqueness,” SIAM Journal on Matrix Analysis and
Applications, vol. 30, no. 3, pp. 1033–1066, 2008.

[136] T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,” SIAM
Review, vol. 51, no. 3, pp. 455–500, 2009.

[137] M. Yin, Y. Sui, S. Liao, and B. Yuan, “Towards efficient tensor decomposition-
based DNN model compression with optimization framework,” in Proceedings
of the Conference on Computer Vision and Pattern Recognition (CVPR), 2021,
pp. 10 674–10 683.

[138] C. Hawkins, X. Liu, and Z. Zhang, “Towards compact neural networks via
end-to-end training: A Bayesian tensor approach with automatic rank deter-
mination,” SIAM Journal on Mathematics of Data Science, vol. 4, no. 1, pp.
46–71, 2022.

[139] F. Sedighin, A. Cichocki, and A.-H. Phan, “Adaptive rank selection for tensor
ring decomposition,” IEEE Journal of Selected Topics in Signal Processing,
vol. 15, no. 3, pp. 454–463, 2021.

[140] R. N. C. Pfeifer, J. Haegeman, and F. Verstraete, “Faster identification of
optimal contraction sequences for tensor networks,” APS Physics Review E,
vol. 90, p. 033315, 2014.

[141] C.-C. Lam, P. Sadayappan, and R. Wenger, “On optimizing a class of multi-
dimensional loops with reduction for parallel execution,” World Scientific Par-
allel Processing Letters, vol. 7, no. 2, pp. 157–168, 1997.

[142] L. Liang, J. Xu, L. Deng, M. Yan, X. Hu, Z. Zhang, G. Li, and Y. Xie, “Fast
search of the optimal contraction sequence in tensor networks,” IEEE Journal
of Selected Topics in Signal Processing, vol. 15, no. 3, pp. 574–586, 2021.

125

[143] L. Cavigelli and L. Benini, “Origami: A 803-GOp/s/W convolutional network
accelerator,” IEEE Transactions on Circuits and Systems for Video Technology,
vol. 27, no. 11, pp. 2461–2475, 2017.

[144] S. Pal, J. Beaumont, D.-H. Park, A. Amarnath, S. Feng, C. Chakrabarti, H.-S.
Kim, D. Blaauw, T. Mudge, and R. Dreslinski, “OuterSPACE: An outer product
based sparse matrix multiplication accelerator,” in Proceedings of the Interna-
tional Symposium on High-Performance Computer Architecture (HPCA), 2018,
pp. 724–736.

[145] Z. Du, R. Fasthuber, T. Chen, P. Ienne, L. Li, T. Luo, X. Feng, Y. Chen, and
O. Temam, “ShiDianNao: Shifting vision processing closer to the sensor,” in
Proceedings of the International Symposium on Computer Architecture (ISCA),
2015, pp. 92–104.

[146] H.-T. Kung, “Why systolic architectures?” IEEE Computer, vol. 15, no. 1, pp.
37–46, 1982.

126

	DEDICATION
	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ABBREVIATIONS
	ABSTRACT
	Introduction
	DNN Computation
	Network Model Optimization
	Model Compression
	Novel Operation Types
	Computation Challenges

	Dissertation Outline

	SNAP: Accelerator Architecture for Unstructured Sparse Neural Networks
	Background
	Channel-Last Dataflow for Sparse DNN Processing
	Other Related Work

	Channel-First Processing Dataflow
	Compression Format
	Channel-First Dataflow

	Channel Index Matching
	Associative Index Matching
	Sequence Decoder
	Design Tradeoff Exploration

	Two-Level Partial Sum Reduction
	PE-level Channel-Dimension Reduction
	Core-Level Pixel-Dimension Reduction
	Support for Pointwise CONV and FC

	Implementation and Evaluation Results
	SNAP Architecture Overview
	Performance Analysis
	Comparison Against State-of-the-art Works

	Summary

	Point-X: Spatial-Locality-Aware Accelerator Architecture for Graph-Based Point-Cloud Neural Networks
	Background
	Edge Convolution Computation
	Computation Models and Bottlenecks

	Spatial-Locality-Aware Clustering
	Graph Traversal for Spatial Locality
	Speculative Breadth-First Search (SBFS) Traversal
	SLA Clustering Module Implementation

	Locality-Aware NoC
	Chain NoC Architecture
	Routing Algorithm

	CTile Architecture
	Point-X System Architecture
	Multi-Mode Dataflow
	Workload Partitioning

	Benchmarking and Evaluation
	Evaluation Methodology
	Area, Performance, Efficiency Analysis
	Workload Scalability Analysis
	Performance Comparison

	Related Work
	Summary

	TetriX: Efficient Accelerator Architecture for Flexible Tensorized Neural Network Processing
	Background
	Tensor Decomposition Methods
	TNN Inference with Tensor Contraction
	Computation Challenges

	Optimal Contraction Sequence Search
	Tensor Network Representation
	Breadth-First Contraction Search
	Contraction Sequence Analysis

	Hybrid Contraction Sequence Mapping
	Limitation of Baseline Mapping
	Hybrid Inner-Outer Product Mapping

	TetriX System Architecture
	Configurable Stationary Dataflow
	Index Translation
	Output Gathering

	Benchmarking and Evaluation
	Evaluation Methodology
	Performance, and Mapping Efficacy Analysis
	Performance Comparison

	Summary

	Conclusion and Outlook
	BIBLIOGRAPHY

