Online Supplement: Should Suppliers Allow Capacity Transfers?

Neda Khanjari, Izak Duenyas, Seyed M.R. Iravani

A.1 Mathematical Results Used in our Proofs

Lemma A.1. The following simplifications hold:

Q; Qj
sz-@z-):czi—/ Pr(D; < 2)da: Ti@i,@n:/ Pr(D; > Qi+ Q; — 2. D; < ) de:

%C;QJ) =—Pr(D; > Q;, Dy < Qi + Qj); %é’@) = Pr(D; < Qi, Dy > Qi + Qj) ;
Q Qj Qi+Q;
Ti(Qi, Q5) + T5(Q;,Q:) = 3 PT(Di<y)dy+/_ PT(Dj<y)dy—/_ Pr(Dy <y)dy.

Proof of Lemma A.1. First, S;(Q;) = E[min(@i,Di)] = Q;Pr(D; > Q;) + fQZ zfi(z)dz =
Qi — [% Pr(D; < z)dz. Second, T;(Q;,Q;) = E[min(Q; — D;, Di — Q) 1(p,>0.p;<0,)] =
fQL fQ +Qj_x —y)f(z,y)dydz+ fc(;j f_%:Qj_m(x —Q;)f(x,y)dydz. Using Integration by part,
we can further simplify the two integrals in the above equation as follows: fQ 0, +Qj_m(Q] —
y)f(z,y)dyde = (x — Q) Pr(D; > x,Dy < Qi + Q))I32g, — Jo, Pr(Di > 2, Dy < Qi + Q;) da +
f_Q;O Pr(D; > Qi+ Q; —z,D; < z)dz. Similarly, fg; f_Q;:Qj_x(a: — Qi) f(z,y)dydx = fg(x -
Qi)Pr(Di=2,D; < Q;+Q;—xz)dx = —(x—Q;)Pr(D; > z,D; < Qi—ij—a:)]g":Qi—kaj Pr(D; >
z,D; < Q; + Qj — x)dx. Therefore, we obtain the expression for T; as specified in the lemma.
Third, “2:9%) = (% _pr(D; = Qi+ Q; —2.D; <w)dz = [ ~Pr(D; = Qi +Q; —2,D; <
Qi +Qj)dr = Pr(D; < Qi +Qj —z,D; < Q; + Q;)\x—_oo = —Pr(D; > Qi, Dy < Qi + Q).
Fourth, %QZQJ‘) — Pr(D; > Qi Dj < Q) — [% Pr(Di = Qi+ Q; —y,D; < y)dy = Pr(D; >
Qi, D < Qj) = Pr(D; > Qi, Dy < Qi +Qj) = Pr(D; < Qj, Dt > Q; + Qj). Finally, T;(Q;,Q;) +
Ti(Qj, Qi fQJ Pr(D; > Q; +Qj —x,D; < x) da:—l—fQi Pr(D; > Qi +Qj —x,D; < x)dx =
fQJPrD < z)dr — fQ’PrD < Q¢ —z,D; <:Edl’+lePT‘D < z)dx — lePrD<
z,D; < Qy—x)dx. Note that, f_QO’o Pr(D; < Qi—x,Dj < z)dx = f_Q;O f_QotO_w [f . Pr(Di=u,D; =
v)dvdudzr = f_Qoto Pr(D; > y— Qj,D; < y)dy. Similarly, f_Q;O Pr(D; < z,Dj < Q¢ —x)dx =
f_Q;O I f_Qoto_x Pr(D; = u,D; = v+ u)dvdudx = th Pr(D; <y —Qj,D; < y)dy. Therefore,
T(Qi, Q)) + T3(Q;, Q) = [“ Pr(D; < y)dy + [0 Pr(D; < y)dy — [CF% Pr(D;, < y)dy =
E[min(Qq, Dy)] — E[min(Qi, D;)] — E[min(Q;, Dy)]. n
Let ®(z) and ¢(z) be cdf and pdf of standard normal distribution, respectively. Define « =l
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\/# < 1. Also, define function ®,(z) = 7 [ 27”/1_7 exp (-%) dydz. Note,

®,(2) is the cdf of bivariate standard normal distribution with correlation «, calculated at (z, ).

Lemma A.2.

(%)

1. Q‘EZ) 18 positive and increasing in z.
123
9. 22 )‘(1)( ‘;) is positive and increasing in z for z > —L.
P’ Py (2)—P(2) . o ) . . .
g 2al2)( +1 )g(i)(z) (2 s positive and increasing in z, for z > —E when £ is large enough

such that probability of having negative demand is negligible (and when & > \/_ ~ 1.26).

Proof of Lemma A.2.

First, note that ®(z) is increasing and hence 161:(1)(2) is increasing in z. Second, to show item

2, it suffices to show % is increasing in z. For z < 0, we know ¢(z) is increasing and thus
a(52) Loz

% is clearly increasing. For z > 0, note that o = lljg((z)) < 1¢C(I>()z) + 7 (2((5))> > 0.

The last inequality is true because normal distribution has increasing hazard rate, 0 < a < 1

and z > 0. Therefore, 1_‘17(1()2(%) = lljg((g)) X 1?515()2) is increasing and positive. Third, we focus on

%(z)(z+1%_)$f)§)(z)_¢(§). Note 1?51?(%) is the reciprocal of hazard rate of normal distribution; hence,

it is increasing and positive. Therefore, it suffices to show %(z)(z+%(;?§a(z)_¢(§) is increasing and

positive. In this proof, we define the followings: ﬁ = \/7 R(z) = def igﬁi))’ R, (2) def ig;,

£ Y 7 R@EE dr, () L (R() = Ra(2), fole) ) BE000)

can simplify fy(z) = (z + ;) <% + FR( )) + fi(z) — %Ra(z). Also we can simplify f,(z2) =
=) zz—La?

fo 1 R (z—x) ¢;( )) dz. Since R(z—x) is increasing and sy =€ is increasing for x > 0,
then we must have fi(z) is increasing in z and hence f’, (z) > 0.

(1.) Consider —£ < 2 < 0. We show fg(z) is positive and increasing in 2. Note, fi(z) =
\/%—WR’(Z)(Z + L) — 55 Ra(2) + \/%R(z) + fi(2). When —£ < z < 0, this expression is clearly
positive. Next we show fy(2) is positive for z > —L e since £ is large enough for some small . Since
fs(2) is increasing for —£ < 2 < 0, and f4(0) > 0, for any given £, there exists an 0 < € < £ such
that fg(0) > 0 for —£ + ¢ < z < 0. Next, we argue that since £ is large enough then ¢ — 0. Note
! (2) = ¢(2) (% + \/%R(z)) > 0. Also, L (B4 (2) — B(2)) = ¢(2) (—% + \/%R(z)) Since £ is
large enough such that probability of negative demand is negligible, we have ®,(—£) — ®(—£) is

ox

—£ € . o .
negligible and it is decreasing. Hence, for a small € > 0, ®o(—£ 4 ¢) — <I>("T+) is negligible. Also
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note that ®,(—% + €)(e) > 0. Therefore, for z = —£ + ¢, for some small € > 0 and large enough

B, folz) = %(z)(”%;zga(z)_@(%) > 0. In conclusion, we have shown that for —£ + ¢ < z < 0 for

some small € > 0, f4(2) is increasing in z and it is positive.
(2.) Next Consider z > 0. We show fy(2) is positive and increasing in z. Note since fy(0) > 0, it

suffices to show it is increasing in z for z > 0. Note that for z > 0 and £ > @,

12) = =R+ 5) = 3 Rale) + =R+ £4()

1_, 2 Ju! 1 1_, 1 /
= §R (Z) (E(ZJ + ;)) + % - §Ra(2) + ER(Z) + f+(2)
> LR() — 5Ra(2) + L) = £L(2) + FL(2).

Therefore, it suffices to show f’ (z) + fi(z) > 0. To show this, we show fJ(rk)(O) + fﬁk)(O) >0
for all £ > 0, where fik)(O) and f&k)(O) are the k-th derivarive of the functions f(z) and f_(z),
respectively, at zero. Thus, we could use taylor series expansion of f! (z) + f’(z), around zero, to
show f! (z) + f(z) > 0. The rest of the proof shows that fJ(rk)(O) + £*(0) > 0 for all & > 0.

(2.1.) In this step we provide expressions for the k-th derivatives of R(z) and f_(z). We
can verify that R/'(z) = g (1 + ng(z)) and R®)(z) = <é>2 ((k = 1)R*=2(2) 4+ 2z RE=1(2)),

«

2
for k > 2. Therefore, R(O) = @ R'(0) = ﬁ, R®(0) = (g) (k — 1)R*=2)(0), for k > 2,

2k+ 2k
Rk (0) = 2kk! (g) , for k>0, RK(0) = \/22_”% (g) , for k£ > 1. Similarly, we can

find derivatives of R,(0). ,(fkﬂ)( 0) = 2~k! (é)zl€+l for k > 0, ng)( 0) = \/ﬁ% (é)%, for

k > 1. Therefore, for k > 0,
— 1! k1.
£ 0y = — (1 B 5%) (2k — 1)V/2x £ () = (1 B B2k+1) 1 2%k

26+ (k — 1)la2k 200 o2k

2.2, n this step, we provide expressions for k-th derivatives of f(z): e can verify that
In th d for k-th d ff W fy th
z k _ k— k—
Fi2) = ARG + 20:) f02) = AREDE) + L (=D @) + 2,870 (), for
k > 2. Therefore, f1(0) = —=arcsin(a), £,(0) = %, £17(0) = =R*V(z) + Lk — 1) (0),

for k > 2. Using the formulas for R*)(0), we can construct the following

k|
fJ(rzk+1)(0) - % (; % ) for k>0

(07

k=1 492
(2k) 1 (2k — 1)! arcsin(o 244150 i for k>
= 1
B0 = e i - L ;::0 CEAA o=

(2.3.) Next we show that the odd derivatives of f(0)+ f—(0) are all non-negative. Using previous
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227 515!
2j+1 (2(+1D)!
ZJ— g i (04 - 22(j+1)(j+1)!(j+1)!’8>'

To show the odd derivatives of f1(0) + f_(0) are all non-negative, it suffices to show S, (k) is non-

steps, we have f(2k+1 0 )+f£2k+1)(0) = M (ﬁzkﬂ 1+a+ CYZ? 1

a2k+
ey def
gl 6%, and Lo (k) =

(27)! 32 > Define the fol-

lowing two series: S, (k) def B _1+ata Zj:l

negative. First we show that S,(k) = L,(k) and then we show L,(k) is non-negative.
(2.3.1.) First we show that S,(k) = L,(k). Notice that L,(0) = S,(0) = vV1—0a?— (1 —«a) > 0.

Also, Sy(k 4+ 1) — Sy(k) = —ap?+! (a - 22(“%((:132@“)!5) = Lo(k + 1) — Ly(k). Therefore, we

must have S,(k) = Lo(k).
(2.8.2.) Next we show L,(k) > 0 for all k. It is easy to verify that 22<3'+§)2((§I::ll))!)(!j+1) is decreasing in j
and it approaches zero as j — co. Therefore, there exist a j > 0 such that a.— 30 +$>((]1:: D! 8>

if and only if j > j. Therefore, we know L, (k) > 0 for k > j. Consider any k < j. We know L, (k +

1) — Lo(k) = —aB?+1 <a - 22(“;2((’;1;))3(’“1),5) >0, for k < j, and Lo(0) = vI— a2 — (1—a) > 0.

Therefore, Lo(k) > Lo(0) = V1 —a2 — (1 — ) > 0 for k < j. In conclusion, L,(k) > 0 for all k.
(2.4.) Next we show that the even derivatives of f1(0)+ f_(0) are all non-negative. Using previous

. 209) (
steps, we have fZ9(0)+£2(0) = i zarifiagiiy (aresin(o) = § (1= 4%) +a T S 64+,

Define the following two series: S, (k) =l arcsin(a) — Z (1 — %) + aZf 01(22?111] B2+ and
def

=¥, 2 ((1 -B%) 5 - (22]]113', ﬁ) To show the even derivatives of f4(0)+ f—(0) are all

Le (k)

non-negative, it suffices to show S (k) is non-negative. First we show that S.(k) = L.(k) and then
we show L. (k) is non-negative.

(2.4.1.) First we show that S.(k) = L.(k). Notice that S¢(1) = arcsin(a) = Z — arcsin V1 — a2 =
Le(1). Also, Se(k +1) — S.(k) = — g% (g (1-5) — kbl o ) = Le(k + 1) — Le(k). Therefore,
we must have Sy(k) = Lo(k).

I 'l
- is decreasing in j and

(2.4.2.) Next we show L.(k) > 0 for all k. Tt is easy to verify that (2J+'1),

it approaches zero as j — oo. Therefore, there exist a j > 0 such that (1 — 5%) — % 8> 0if

and only if j > j. Therefore, we know L.(k) > 0 for k > j. Consider any k < j. We know L. (k +
1) — Le(k) = —p%* (2 (1-p?) - 222(53_]“1')’“' ﬁ) >0, for k < j, and L¢(1) = Z — arcsinyv/1 — a2 > 0.
Therefore, Le(k) > Le(1) > 0 for k < j. In conclusion, L.(k) > 0 for all k > 1.

Steps (2.) through (2.4.2.) establishes that for z > 0, f4(2) is increasing in z and it is positive since
£ is large enough that the probability of negative demand is negligible. Also, together with step

(1.), we have fy(z2) is increasing in z for all z > —L + ¢ and it is positive since £ is large enough. m
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Lemma A.3. Define T(z def 2 @) — @ (L), and g(z) = ®(z) — Py(2), where a and ® and
o, (and ¢) are defined at the end of proof of Lemma A.1. Also, let 3 = \/137 Then

1.g = Jo~ Jo~ oz + 2)Bo(B(x +y)) dy dz,

2. éT(a z) =2 fo fo fo d(x+z—v)Bo(B(x +y+v))dydzdo,

3. z((zz)) is log convex (and hence convex).

Proof of Lemma A.3. Let go(z) = g(az) and Tp(2) = 2T(az). To show 1) is log con-

9(2)
vex, it suffices to show 5352 is log convex. First, we simplify go. Notice that go(z) = Pr(X; <

az, Xy > z), where (X1, X;) are standard bivariate normal random variables with correlation a.

Hence, go(z) = [°2 [° A 1 =7 ©XP <—ﬁ(w2 +y? - 2aa:y)) drdy. In this integral, change
the variables as follows: Ynew = 2z — % and Tpew = * — z. Then, we can simplify the inte-
gral as follows: go(z) = fooo W exp( $ (B x4+ (z+2)?) dedy = 155 1S Bo(B(x +
Y) o(x + z) dyde = [[°@ ) ¢(z + z) dydz. Second, we simplify Tp. Taking (X1, Xy)

as defined before, we have: Ty(z) = 2T(az) = 1 [*7 &(z) — @ (£) = [7_®(az) — ®(z)dz =

7 (Pr(Xi <azx)— Pr(Xy <z))dz= [ (Pr(Xi <az,X;>z)— Pr(X; > az,X; <)) dz =

1
o

f _ZOO go(u) — go(—u) du. Using the simplified version of gy, and by changing the variables of the inte-
gral as follows tpey = 2—u, we conclude Ty(z) = [ [;° (¢(z + 2z — u) — ¢(x — z + u)) &(—px) dz du.
Change the order of integration and integrate with respect to u, we have

fo ®(x + z) — ®(—x + 2)) (—pfx) dz. Replace ®(x + z) — P(—z +2) = [* ¢(v + z)dv,

we get To(z fo f_ (v+ 2)®(—px)dvdx. Change the variables as follows: “2'” = Tpew, and

r—v

52 = Upew, we have To(2) = 2 [° [;¥ ¢(z — v + 2)3P(—B(x + v)) dvdz. Expand & to its integral

form: To(z) =2 [5° [;° fo (x—v+ 2)6¢(ﬂ(x +y +v))dydz dv. Third, we know

TO _2/ Jo~ ﬂf—”+z)6¢(ﬁ(:c+y+v))dydxdv
fo I5% ¢@ +2)Bo(B(z +y)) dy da

In Lemma A .4, we show that 9. ., log(F) > 0, where F = [[* [[* Bo(B(z+y+v)) p(x—v+2) dyda

is the numerator (and also denominator with v = 0) of the above fraction. Hence, we must have,

Jo© Jo© dla— w+z)ﬁ¢(ﬁ<w+y+w>)dydm To(z) T(z)
for every v, e e Pty dy o 5002) 9(2)

and

is log-convex; hence are log-convex. m

Lemma A.4. Define F = [° [[° B¢(B(x +y + v)) ¢(x — v + 2) dydz, with parameter 8 > 0.

Then, 0, ;. log(F) > 0, where O is the partial derivative with respect to the specified parameters.

Proof of Lemma A.4. Define random variables (X,Y’) defined for positive values with the
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probability distribution function f(z,y) = +8¢(8(z+y+v)) ¢(x—v+2z). Throughout this proof, we
use the symbol E as the expected value operator with respect to distribution of (X,Y"). It is easy to
verify that 9, log(F) = v—2—p, and 9, . log(F) = —1+402, where, pi, and 02 are mean and variance
of random variable X and depend on parameters v and z. Specifically, u; = % fooo fooo zPo(B(x +
y+v) (e — v+ 2) dyde and of = % [° [ (@ — p2)?Be(B(z +y + ) p(x — v + 2) dydz.
Define y; as expected value of the X + Y. We can evaluate p; as follows: p; = % fooo fooo(m +
YBO(B(x +y+v) dlx —v+2) dyde = —v — g5 [§° 77 B¢ (B(x +y +v)) ¢z — v+ 2) dyda =
—o+ BQLF Io° Bo(B(x+v)) ¢(x —v+2) da. Hence, B2(v+ ) = + [~ Bo(B(z+v)) oz —v+2) du,
that we use below. Since, 9, ,log(F) = —1 + 02, from definition of 02, 9, . ,log(F) = 9,02 =
E[(X = pa)® = B2(X = pa)* (X +Y — )] = E[(X = p1e)® = B2(X — po)* (X +Y + 0 — v — py)].

We expand parts of this expectation as follow
BE[B*(x — pa)*(v + )] = 028%(v + ) = ol / Bo(B(z +v)) p(x — v+ 2) do
B~ ooyt ol =5 [ [ - BB o+ o) oo — 0+ 2) dy
1 o
5 | o= nePas(B + o) oo — v +2) do
Let f,(y) be marginal distribution of Y. Notice that f,(0) = + [;* Bé(B(z+v)) ¢(z—v+z) dz. Also

Bé(B(z+v)) p(x—v+2)
Be(B(z+v)) p(x—v+2) dz

Y = 0. Hence, E [-f*(X — o) *(X +Y + v —v — )] = f,(0) (—E[(X — po)?[Y = 0] + E[(X — p)?])
Hence, 9, ., 10g(F) = E [(X — 112)3] + fy(0) (= E[(X — pa)?[Y = 0] + E[(X — p12)?]).

is the conditional probability distribution function of X given

notice that -
Jo

Notice that (X,Y") are truncated bivariate normal distribution with a negative correlation. Hence
conditional distribution of (X|Y = 0) second order stochastically dominates marginal distribution
of X. Then since (¥ — p;)? is convex in z, we must have E[(z — uz)?] > E[(x — p)?|Y = 0].
Also, since (X,Y) are truncated from below, we must have E [(z — p5)?] > 0. In conclusion,
0.0 10g(F) > 0.

For the sake of completeness, next, we show that conditional distribution of (X|Y" = 0) second order
stochastically dominates marginal distribution of X. Let f,, () and f;(x) denote the conditional
pdf of (X[Y = 0) and marginal pdf of X, respectively, we must have: fy,(z) = SBo(B(z+v)) plz—
v+2z), and fo(z) = +(—B(z 4+ v)) p(z — v + 2), where G := [;° Bo(B(z +v)) p(z — v + 2) da.

To show (X|Y = 0) second order stochastically dominates X, we must show for any given w > 0,
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we have [’ fo fe(x) = foy(x)) dzdt > 0. To show this, note that
[ [t - o anat =

/ / < fx‘y( )) dz dt

- / / / (fx|y<xo>fm<:c>—fm<xo>fx\y<:c>) de0 da dt

I C s P

Since x and 20 are symmetric in the integrand, we can conclude the last line is equal to
_¢ Bz +v)  @(—p(x0 +v))
- 0 dz0dz dt
/ / / ( Bz +v)) o(B(z0 + v)) fx\y(x )f:c|y(:17) x0dz

Since, in this expression, x < t < zg, and % is decreasing in x, we must have the integrand is

always positive in the region of integration and hence the integral must be positive. This establishes
that (X|Y = 0) second order stochastically dominates X. ]

Lemma A.5. Define fp(z) et T(z) — g(2) (. + &), where T(z) and g(z) are defined in Lemma

A.3. Then
1. fo(z) = 0 has a unique solution for z > —g; Let 2 represent this unique solution.
2. fi(zf) > 0.

3. for z < 2/, we have fo(2) < 0 and for z > 2/, we have fy(z) > 0.

Proof of Lemma A.5. In Lemma A.3, we showed that :g((zz)) is log-convex. This implies that

Z;((ZZ)) — (24 £) is convex and has at most two solutions. Note that for, £ large enough, when
z — —£, we have <:§((ZZ)) —(z+ g)) — 0, and 0, (igp((j)) —(z+ g)) — —1. Also, when z — oo, we

have <:§((Z)) —(z+£)) = +oo.

In conclusion, at the lower limit, g((z)) (z + g) is zero and it is decreasing in z and at the upper

limit it is positive. In addition, it is a convex function of z. Hence, it must have a uniques solution

2/ > —£ Note that fs(z) = g(2) <TZZ)) —(z+ E)) and g(z) > 0. As a result, fs(2f) =0, and the

sign of fy(z) is consistent with the sign of T((Z)) (z 4+ £) which is positive, for z > z/ and negative

for z < z/. Tt also follows that f5(z/) > 0. [ |

Lemma A.6. In case of three symmetric buyers, let the expected transfer to buyer x, when she has

reserved capacity Q. and buyer 1 and 2 reserve capacity Q each be denoted T4 (Qy, Q). Also, let
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the expected transfer from buyer x to other buyers, when she has reserved capacity Q. and buyer 1
and 2 have reserved capacity Q each be T,—(Q, Q). Then,

T (Qe,Q) = [ Pr(Dy < y,D1 < Q Dy > Qe +Q—y)dy + [¥  Pr(D, < y,Dy <
QD1+ Dy >2Q+ Qo —y)dy+ [*"  Pr(Dy <y,D1 > Q, Dy >Q, D1+ Dy > Qu+2Q —y) dy,
15 Te—(Qu, Q) = Pr(Dy < Q) = Pr(D; < Qu, Dy + D1 < Qu+Q, Dy + D1+ Dy < Qp +2Q) > 0,
To(Qu Q) = [, Pr(Dy >y, D1 > Q, Dy < Q+Qp —y)dy + [[* Pr(Dy >y, D1 < Q, D1+
Dy <2Q+ Qz —y)dy;

15101 (Qe, Q) = —=Pr(Dy > Qu, D1 > Q, Dy + Do < Q+ Q) — Pr(Dy > QD1 < Q, Dy + D1 +

D2<2Q+Qx)<0.

Proof of Lemma A.6. By definition of T, (Q,, @), we have

T, = SEI(Qu — Da) % 1(De < Qe Dy < QD > Q) x Dy + Dy > Qu + Q) (A1)
4 SEI(Dy ~ @) ¥ 1(Ds < Qu. D1 < QD > Q) x 1Dy + D3 < Qu + Q)] (A.2)
+ %E[(QI — D,) xI(Dy < Qp,D1 < Q,Dy > Q) xI(Dy + Dy + Dy > Q, +2Q)] (A.3)

+ %E[(Dl b Dy —20) x I(Dy < Qu, Dy < Q. Dy > Q) x I(Dy + Dy > 20, Dy + Dy + D < Qs +20Q)]
(A.4)
+E[(Qs — D) x I(Dy < Quy Dy > Q, Dy > Q) x (D, + Dy + Dy > Q. + 2Q)] (A.5)

+E[(D; + Dy — 2Q) x I(Dy < Qu, D1 > Q,Ds > Q) x I(Dy + Dy + Da < Qu +2Q)] (A.6)

+ 3EI(Qu — D) x Dy < Qo D1 > Q.2 < Q) x D, + Dy > Qs + Q)] (A7)
4 %E[(Dl — Q) xI(Dy < Qu, D1 > Q. Dy < Q) x I[(Dy + Dy < Qs + Q)] (A.8)
+ %E[(QI — D,) xI(Dy < Qp,D1 > Q,Dy < Q) xI(Dy + Dy 4+ Dy > Q, +2Q)] (A.9)
+ %E[(Dl b Dy —20) x I(Dy < Qu, Dy > Q. Dy < Q) x I(Ds + Dy > 20, Dy + Dy + D < Qs +20Q)]

(A.10)

We explain in detail how we simplify the first line (A.1) and the second line (A.2) in the above sum.
The details of how we simplify the remaining lines would be very similar to the first and second
line and we omit the details.

Suppose ¢(d,,d1,ds) is joint p.d.f. of (D,, D1, D3). Focusing on the first line in the sum (A.1), note
that [T [P S o @(de,dy,dy)ddyddy ddy = Pr(Dy < z,Dy < Q, Dy + Dy > Qu +
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Q). Hence, £ Pr(D, <2,D1 < Q,Dy+Da>Qu+Q) = [___ [7° o, 0(x.d1,dy)ddydd;.

Hence,

E[(Qx — Dx) X ]I(Dx < Qx,Dl < Q,Dg > Q) X ]I(Dx + Dy > Qm + Q)]

Qx Q oo
= / (Qz — ) / / ¢(d;, dr, d2) ddp ddy dz
T=—00 di=—00 Jd2=Q:z+Q—2

Qq d
/ (Qx—Zﬂ)aP’r’(Dm<l‘,D1 <Q,Dx+D2>Qm+Q)d:E

=—00

Qz
:/ Pr(D, <x,D1 < Q,D1+ Dy > Q.+ Q)dx
X

=—00

Similarly, focusing on the second line (A.2) of the sum:
E[(Dy — Q) x (D < Qz, D1 < Q,D3 > Q) xI(Dy + Dy < Qr + Q)]

:/ Pr(Dy < Q. Dy >y, Dy + Dy < Qu + Q) dy
y=Q

Qz
:/ Pr(Dy < Q,Ds > Qo+ Q — 2, Dy + Dy < Qy + Q) da

=—00

As a result, the sum of the first line (A.1) and the second line (A.2) of the sum is
E[(Qz — D) x (D < Qz, D1 < Q,Dy > Q) x (D, + Dy > Q. + Q)]

+E[(Ds — Q) XI(Dy < Qu, D1 < Q,D3 > Q) XI(Dy + Dy < Qy + Q)]

Qz
:/ PT(DJ:<$7D1 <Q7Dx+D2>Qx+Q)+Pr(D1<Q7D2>Qx+Q_x7D:c+D2<Qx+Q)dx

=—00
Qz

:/ PT’(Dm<l‘,D1<Q,D2>Qm+Q—$)dl‘
x

=—00

Hence, the derivative of the first and the second term of the sum is

+ %E[(m —Q)xI(Dy < QuyD1 <Q,Dy >Q) x (D, + D2 < Qr + Q)]

Qx d
= Pr(D, < Q.,D1 < Q, Dy >Q)+/ 10 Pr(D, <x,D1 <Q,Dy >Q,+Q —x)dx

:Pr(Dgc<QmaD1 <Q7Dx+D2>Qx+Q)
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Sum of third line (A.3), and fourth line (A.4) is

E[(Qz — Dy) x I(Dy < Qg, D1 < Q,D3 > Q) x I(Dy + D1 + Dy > Qn + 2Q)]

+E[(D1 + D2 —2Q) x I(Dy < Qu, D1 < Q, D2 > Q) x I(D1 + D2 > 2Q, Dy + D1 + D2 < Qy +2Q)]
:/Qw Pr(D, <z,D1 <Q,D,+ Dy + Dy > Q, +2Q)

+ Pr(Dy < Q,Dy 4+ Dy + Dy < Q, +2Q, Dy + Dy >2Q + Q, — z)dx

:/Qm Pr(D, <z,D1 <Q,D1+ D2 >2Q + Q. —x)dx

=—00

Therefore, derivative of third line (A.3), and fourth line (A.4) is

dg E[(Qs — Dy) x I(Dy < Qu, D1 < Q, Dy > Q) x I(Dy + Dy + Dy > Qu + 2Q)]
+ dg E[(Dy + Do — 2Q) x I(Dy < Qu, Dy < Q, Dy > Q) x (D1 + Dy > 2Q, Dy + Dy + Dy < Qp + 2Q)]

Qz d
= Pr(D,; < Qyz,D1 < Q,Dy+ Dy > 2Q)+/ a0 Pr(Dy <x,D1 < @Q,D1+ Dy >2Q + Q, —x)dx

T

= PT(Dm < QxyDl < Qva+D1 + Dy > 2Q+Qm)
Sum of fifth line (A.5), and sixth line (A.6) is

E[(Qr — D) x (D, < Qu, D1 > Q,Dy > Q) x I(Dy 4+ Dy + Dy > Q. + 2Q)]

+E[(D1 4 Ds —2Q) x I(Dy < Qu, Dy > Q, Dy > Q) x I(Dy + D1 + Ds < Qy +2Q)]
:/Qm Pr(D, <x,D1>Q,Dy > Q,Dy + D1+ Dy > Q. +2Q)

+ Pr(Dy > Q,Ds > Q,Dy + Dy + Dy < Qp +2Q, D1 + Do > 20 + Qy — ) da
:/Qz Pr(Dy < 2,Dy > Q,Dy > Q,D1 + Do > Qu +20Q — z) da

=—0Q

Derivatives of fifth line (A.5), and sixth line (A.6) is

dg E[(Qy — Dy) x [(Dy < Q. D1 > Q. Dy > Q) X [(Dy + Dy + Dy > Q + 20)]

+ dg E[(D; + D3 — 2Q) x I(Dy < Qz, D1 > Q,Ds > Q) x I(Dy + Dy + D < Qs + 2Q)]

:PT‘(DQD <QzD1>Q,Dy>Q,D1 + Dy > 2Q)dl‘
Q:c d
+/ wPr(Dx<x,D1>Q,D2>Q,D1+D2>Qx+2Q—x)da:

= Pr(D; < Qz, D1 > Q,Ds > Q,D, + D1 + Dy >2Q + Q)

0S.10



Because of the symmetry of the buyers, the sum of lines (A.7) to (A.10) are equal to the sum of

line (A.1) to (A.4). As a results, we can summarize that

Qz
T (Qu,Q) = / Pr(Dy < 2.0y < Q. D3> Qo+ Q — ) da

r=—0Q0

Qa
+/ Pr(D, <z,D1 < Q,D1+4+ Dy >2Q + Q, —x)dx

=—00

Qu
/ Pr(D, <x,D1 >Q,Ds >Q,D1 + Dy >Q, +2Q — z)dx
x

=—00

Also,

%n_(czm) — Pr(Dy < QD1 < Q. Dy + Dy > Qu + Q)

+ Pr(Dy < Qu, D1 < Q, Dy + Dy + Dy > 2Q + Q)

+ Pr(D; < Qz,D1 > Q,Dy > Q,D, + D1+ D2 >2Q + Q)

=Pr(D; < Quz,D1 <Q,Dy+ Dy > Qr+ Q)+ Pr(D; < Qu,Da > Q,D, + D1+ Dy >2Q + Q.
= Pr(Dy < Qu, Dy + D1 + Dy > 2Q + Q)

+ Pr(Dy < Qg Dy + Dy > Q + Qu, Dy + D1 + Dy < 2Q + Qy)

= Pr(Dy < Qz) — Pr(Dy < Qu, Dy + Dy < Qu + Q, Dy + D1 4 D2 < Qp +2Q)

The details of obtaining 7,4 (Q., Q) and its derivative is very similar and we omit the details. Here,

we present the mathematical definition T4 (Qz, Q).

Toy =E[(Dy — Qu) x I(Dy > Qz, D1 > Q,D2 < Q) xI(Dy + Doy < Qp + Q)] (A.11)
+E[(Q — D2) xI(Dy > Qr, D1 > Q,Ds < Q) X I(Dy + Dy > Qr + Q)] (A.12)
+E[(Dy — Qz) xI(Dy > Quzy, D1 > Q, D2 < Q) xI(Dy + Dy + Dy < Q + 2Q)] (A.13)

+E[(2Q—D1 —Dg) X]I(Dx > Qx,Dl > Q,DQ < Q) XH(D1+D2 < 2Q,Dx+D1+D2 > Qx+2Q)]

(A.14)

+E[(Dy — Qz) X (Dy > Qr, D1 < Q,Dy < Q) xI(D, + D1+ Dy < Qz +2Q)] (A.15)
+E[(2Q — Dy — D3) x I(Dy > Qu, D1 < Q, Dy < Q) x I(Dy + Dy + Dy > Qu + 2Q)],

(A.16)

]
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A.2 Proofs of Theorems and Propositions of the Paper

Proof of Proposition 1. We provide the first order condition to maximize IIp, by choosing ;.

Recall that

lp; = =rQi+ (v —w)Si(Qi) + (1 — 05)0(v — w)Ti(Qi, Q5) + (1 — 05)(1 = 0)(v — w)T;(Q;, Qi) ,

Therefore, using Lemma A.1, we have

R e
_ _ﬁ + Pr(D; > Qi) — (1 —60,)0Pr(D; > Qi, Dy < Qi + Q)
+(1—05)(1 —0)Pr(D; < Qi, Dy > Q; + Q)
= —F+ Hi(Qi, Qi + Qj) ,
where 7 = —L—. Therefore, one can find the equilibrium order quantities by solving H;(Q;, Q) =

v—w "’

7= H;(Qj,Q:), and Q;+Q; = Q. For symmetric buyers, since Q; = @, the equilibrium condition

reduces to H;(Q;,2Q;) = T. |

Lemma A.7. For symmetric buyers, let QQ; be the equilibrium reservation quantity of the two

buyers. That is, let Q; satisfies the equilibrium conditions H;(Q;,2Q;) = 7. Then,
dQ; dH; 1

- <0
a0 a9 dQ; +2 dQ:
- dH; dH; and when 0 = 0, <0
40 s Gor +2aq; dd,
d@; 1
= <0
dr dQ; +2 dQ¢

Proof of Lemma A.7. First, we recall the equilibrium condition in (1.). Then, we use envelop

theorem and take the derivatives of the equilibrium condition with respect to 6, 05, and 7, in (1.1.),

(1.2.), and (1.3.), respectively. Hence, we would come up with expressions for dd%', i%, and %.
In (2.) we show that dd%', and dde"' are negative, and also for 8 = 0, i% is negative.

(1.) Recall that the equilibrium conditions are H;(Q;, Q:) =7 = H;(Q;, Q) and Q; + Q; = Q.

(1.1.) Thus, using envelop theorem, for a fixed 7 and 65, we can take the derivatives of the above
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conditions with respect to 6 as follows:

dH; dH; dQ; dH; dQ;

=0
dQ; de dQ; db
dH; N dH; dQ; n dH; d@Q _0
dQ, do d@; do
4Qi , dQ; _ do;
de de de
Thus, we have three equations with three unknown variables d(%, d(%, and d(%. Therefore, we
can solve for ddQei as follows
dH;
dQ¢
dH; | dH; dH 1 dQ; _ dH; | @
dQ;  dQ: dQ; ng + jgi de dé jTH; . %’z
di; T dHj
de d6e
If we consider symmetric buyers, we can simplify the above dd%' = — ddlg ﬁ
dQ; th
(1.2.) Similarly, 3 dQl = — (21]6{ T 1
° daQ; th

(1.3.) Also, from equilibrium conditions,

dH; dQ;  dH; dQ;
10, dr A0, daF
dH, dQ; | dH, dQ;
dQ; &F | dQ, dr
dQ; n dQ; _ d@Q:
dr dr dr

=1

=1

Therefore, % = L

Q th
(2.) Next, we determine the signs of the derivatives we found in the previous steps. In (2.1.) we

show % < 0. In (2.2.) we show M < 0 when 6 = 0. In (2.3), we show H;(Q;, Q:) is
decreasing in @);. Finally, in (2.4.) we show H;(Q;, Q;) is decreasing in Q.

(2.1.) Note that WAL — (1 gy (Pr(D; < Q;, Dy > Q) + Pr(D; > Qi, Dy < Q1)) < 0.
Therefore, H;(Q;, Q¢) is decreasing in 6.

(2.2.) When 0 = 0, M = —Pr(D; < Q;; Dy > Q) < 0. Therefore, H;(Q;,Q;) is decreasing
in 65 when 8 = 0.

(2.3.) Rearranging H;(Q;, Q:), we have

Hi(Qi, Q1) =(1 = 05)(1 = 0)Pr(Dy > Q1) + (1 — (1 = 05)(1 = 0)) Pr(D; > Qi, Dy > Q1)

+ (1 — (1 — HS)Q)PT’(DZ > Qi,Dt < Qt),
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which is clearly decreasing in Q);.
(2.4.) We can also rearrange H;(Q;, Q) as follows:
Hz(Qza Qt) :(1 — 98)(1 — H)PT(DZ < Qi,Dt > Qt) + (1 — (1 — QS)H)PT(DZ > Qz)

+ (1 — HS)HPT(DZ > Qint > Qt)7

which is clearly decreasing in Q).

(3.) Using (1.) and (2.) together, we must have:
dQ;  dH; 1

W "0 gy <
(ilcé?; :_iii igi _:2% and when 6 = 0, icé?; <0
ddei - 4z +12§g; <0.
u
Proof of Theorem 1. Fix s to any number in interval [0,1] and consider optimization

max g){IIs|7 € [0,1], 6 € [0,1]}. First in (1.), we argue that in this optimization, 7 is an in-
terior solution and hence must satisfy the first order condition. Then in (2.), we show that the
objective function Il is decreasing in 6 for any 7 that satisfies the first order condition, which
proves our result.

(1.) We show that optimal capacity reservation fee r is an interior solution. It is easy to verify that
for any given 6 and 6,, when 7 = 0, we have Q; = oo and Il = —oo and for # = 1, we have Q; =0
and II; = 0. Therefore, we know optimal 7 is an interior solution and it must satisfy the first order
condition.

(2.) Next, we write the profit function of the supplier for symmetric buyers and then using Lemma

A.7, we write the derivatives of the suppliers’ profit function with respect to 7 and 6.
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(2.1.) In the symmetric case, since Q; = @);, we can simplify the supplier’s profit function as follows:

II, = (r — h) Qt + (w — C)E[min(@t, Dt)] + 93(’0 — w) (TZ(QZ, Q]) + Tj(Qja QZ))

D, Qi 2Q;

=2(r — h) Q; + 2(w — ¢)E[ min(Q;, 7)] + 05(v — w) <2/ Pr(D; < z)dx — Pr(Dy < x) da:)

Qi o0 —0o0
— 2 (r— ) Qi+ 2(w — €)(Qi — / Pr(D, < 22) d)

Qi Qi
+205(v — w) ( Pr(D; < z)dz — Pr(D; < 2x) da:)
Therefore,
1 _ h w—c Qi
mns:<’r’—v_w>Qi+v_w(Qi— _OOPT(Dt<2ZE)dIE)
Qi Qi
+ 0, </ Pr(D; < z)dx —/ Pr(Dy; < 2z) da:) .

(2.2.) Using Lemma A.7, we can write the derivative of Il with respect to 7 as follows:
1 1 di,

20—w dF

Qi + <<r __h ) + L7 pr(Dy > 2Q;) + 0, (Pr(Dy > 2Q;) — Pr(D; > Qi))>

v —w v —w

dQ;
dr

(2.3.) Using Lemma A.7, we can write the derivative of II; with respect to 6 as follows:

11 dlly (/. h w—c | | | ) dQ
So—w do <<r T w) + o Pr(De > 2Qi) + 05 (Pr(De > 2Qi) — Pr(D; > QZ))> %
_ # dHS B Q dC%i
2(v —w) dr ‘ %
dH;1 1 dly dH;
= + Qi

Cd 2v—w dF d6

(3.) Finally, we argue that since the optimal 7 should satisfy the first order condition, Il is de-

L dl _ _dH;1 1 dlly 4 i
i

TTdf 2v—w dr do

creasing in 6. Note that in (2.3) we have shown that 114 — 41 _1_ddL

Since the optimal 7 is an interior solution, it must satisfy the first order condition ddnfs = 0. Hence,

for any 7 that satisfies the first order condition, we have % U_l - dgf = d(fgi i < 0.

djg" < 0. Hence, the

The last inequality is true because in the proof of Lemma A.7 we showed that
supplier’s profit function is decreasing in 0 for any 7 that satisfies the first order condition. Hence,

0 = 0 results in highest profits for the supplier. [
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Lemma A.8. Consider problem max,, {I19(z;) |z > —£}, where
1(2) = s <z + g) —m, Py (2) <z + g) —(1=m,) /_ZOO o <%> dy.
Then
1. Since £ is large enough such that the probability of negative demand is negligible, there is a
unique solution 2° to this optimization.

29 is decreasing in m,., and increasing in s.

20 can arbitrary get close to co when s; is close enough to 1 and m, is close enough to zero.

0

2V can arbitrary get close to —& when s; is small enough.

If 20 < 27| then z; = 2° and 0, = 0 is the optimal solution of Problem 0.

S & e e

If 20 > 27 then z; = 2/ and 05 = [0, 1] is the optimal solution of Problem 0.

Proof of Lemma A.8.

The derivative of the objective function I19(z;) with respect to z; is Alle(z) —(1=®(2)H® (),

dz;
def PL(x)(+E) | Pal(z)-®(2
where H%(2) = m, < 1(_215@)0) + 1(—)cl>(§()a)> +(1 - sl)l—é(i) - L

/ I3 _H(&
By Lemma A.2, (7) (cbal(_zzb((zz)") + %1(2}(2()“)) is positive and increasing in z; (i7) ﬁ(i) is positive

and increasing in z. Hence HY(z) is increasing in z. Also note that since g is large enough such
that the probability of negative demand is negligible, we have lim, , » H%(z) = —s;. Also we

can verify lim, o H%(z) = oo. Hence HY(z) = 0 has a unique solution 2°. Also since both

/ 22 _ Z
<<I>“1(_Zzp(g)") + %l(j)q)(q;()“)> and ﬁ(%) are increasing in z, the solution 2% is decreasing in m, and

@

0 can arbitrary get close to oo when s; is close enough to 1 and m, is close

increasing in s;. Also, z
enough to 0 and 2" can arbitrary get close to —£ when either s; is small enough.
Next, we show if 20 < 2/, then z; = 20 and 6, = 0 is the optimal solution of Problem 0.

Suppose z° < zf. Note that for any z; < z/,

M8 (er) < max {T1(20) |2 < 2/} = TO(E") (A17)

Notice that the left hand side expression I1Y(z;) is the objective function of Problem 0. Since by
Lemma A.5, fp(z") < 0, we know that (2; = 2 and 65 = 0) is a feasible solution of Problem 1
and by this feasible solution, the objective function achieves its upper bound which is the right
hand side expression 119(z°). Hence, (z; = 2° and 6, = 0) is optimal solution of Problem 0. Also

since for any z; < 2/, we have # € (0, 1] are not feasible solutions of Problem 0, and for z; = z/,
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19(27) < M9(2%), we know 6 € (0, 1] is not optimal.

Finally, we show if 2% > 2f, then (z; = 2f and 6, = [0,1]) is the optimal solution of Problem 0.
Suppose 2z > zf. Since the derivative of T1%(z;) with respect to z; is a negative number times an
increasing function HY(z;) (as shown earlier), and z° is the solution to H°(z?) = 0, we know that
the objective function I19(z;) is increasing in z; for any z; < 2°. Hence, the solution to optimization

max,, {Hg(zi) |z < zf} is z; = 2/. Note that for any z; > 2/,

T9(21) < max {T00(zy) | 2 < o7 } = TO()

Notice that the left hand side expression ITY(z;) is the objective function of Problem 0. Since by
Lemma A.5, fg(2/) = 0, we know that (2; = 2/ and 6 = [0, 1]) are feasible solutions of Problem 0
and by these feasible solutions, the objective function achieves its upper bound which is the right

hand side expression I12(2/). Hence, (2; = 2/ and 65 = [0, 1]) are optimal solutions of Problem 0. m

Lemma A.9. Consider optimization max;, {I12(z;) + m, fo(z;) | z; > —£}. Then,

1. Since £ is large enough such that the probability of negative demand is negligible, there is a
unique solution z' to this optimization.

2% is decreasing in m, and increasing in s;.

21 can arbitrary get close to co when m, is close enough to zero and s; is close enough to 1.
2L can arbitrary get close to —L when sy is small enough.

If 28 > 27 then z; = 2' and 0, = 1 is the optimal solution of Problem 1.

If 24 < 27, then z; = 2/ and 05 = [0, 1] is the optimal solution of Problem 1.

NS S e e

It is not possible to have 2 <2f <20,

d(119(z:)+mrfo(2i))
dzi o

Proof of Lemma A.9. The derivative of the objective function with respect to z; is

~(L= BV (), where, H! () ¥ m, ez + (1 1) gy 1. By Lemma A2, we know ()
%’Zgﬁ) is increasing in z; (1) ﬁ(z) is increasing in z. Hence H'(z) is increasing in z. Also, since
£ is large enough such that the probability of negative demand is negligible, lim, , » H L(2) = —5

b(2)(z+4)

and lim,_,o, H'(2) = co. Hence, H'(2) = 0 has a unique solution z!. Also, since both BErTesn

and ﬁ(i) are increasing and positive, z! should be decreasing in m, and increasing in s;. Also, 2
«

can arbitrary get close to —£ when m, is small enough and s; is large enough and 2! can arbitrary
get close to oo when either m,. is large enough or s; is small enough.

Next, we show if z! > 2/, then z; = 2! and 6, = 1 is the optimal solution of Problem 1.
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Suppose z! > z/. Note that for any given 6, € [0,1], and for any z; > 27,
I3 (25) + mebs fo(2i) < T9(2i) + my fo(zi) < max {Hg(zi) +my fo(zi) |z = Zf} = T3(z") 4+ my fo(2")
(A.18)

Notice that the left hand side expression 119(z;) + m,.0fg(2;) is the objective function of Problem
1. Since by Lemma A.5, fa(z') > 0, we know that (z; = z' and 6, = 1) is a feasible solution of
Problem 1 and by this feasible solution, the objective function achieves its upper bound which is
the right hand side expression I19(2') + m,. fa(2'). Hence, (z; = 2! and 6, = 1) is optimal solution
of Problem 1. Also since for § € [0,1) and z; > 27, the first inequality in (A.18) is strict, § < 1 is
not optimal.

Finally, we show if 2! < 2f, then (2 = 2/ and 6, = [0,1]) is the optimal solution of Problem 1.
Suppose 2! < z/. Since the derivative of TI9(z;) +m,. fo(2;) is a negative number times an increasing
function H'(z) (as shown earlier), and z! is the solution to H'(z!) = 0, we know that the objective
function I9(z;) + m, fo(2;) is decreasing in z; for any z; > z'. Hence, the solution to optimization
max,, {Hg(zi) +m,fo(zi) |z > zf} is z; = z/. Note that for any given 6, € [0,1], and for any

Z; 2 Zf7
I09(2) + mys fo(z;) < TI2(2i) + my fo(2i) < max {Hg(zi) +my fo(zi) | zi > Zf} = 119(27)

Notice that the left hand side expression I19(z;) + m,.0; fa(2;) is the objective function of Problem

1. Since by Lemma A.5, fo(zf) = 0, we know that (z; = 27 and 6, = [0, 1]) are feasible solutions of

Problem 1 and by these feasible solutions, the objective function achieves its upper bound which

is the right hand side expression I1%(z/). Hence, (2; = z/ and 6, = [0, 1]) are optimal solutions of

Problem 1.

Next, we show that it is not possible to have z! < 2/ < 29, Suppose to the contrary we have
25

2! < 2/ <29 Also note that H°(2/) — H'(2/) = mr%(zf).

HO(2) are increasing in 2 and by Lemma A.5, f;(z/) > 0 we must have 0 = H?(2%) > HO(z/) >

Therefore, since both H'(z) and

H'(z/) > H'(2') = 0, which is a contradiction. ]

Proof of Theorem 2 and Proposition 2. First, we introduce the optimization problem of the
supplier and then transform that to an equivalent optimization problem. Then we explain how we

solve the equivalent optimization.
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Supplier’s Optimization Problem

From Theorem 1, we know optimal 8 = 0. Hence, we set § = 0 and maximize the supplier’s profit
function by choosing 6, and 7. That is the supplier’s optimization problem is maX(,:,gs){Hs\f €
[0,1], 65 € [0,1]}, assuming that § = 0 and that @); satisfies the equilibrium condition.

Knowing optimal 8 = 0 and for symmetric buyers, the equilibrium condition simplifies to

T = PT(DZ > Qz) + (1 — QS)PT(DZ < QiaDt > 2Qz) .

Since the right hand side is decreasing in );, there is a one to one correspondence between 7

and @Q; for any given ;. Hence, instead of optimizing Il for 65 and 7, we can optimize for 6

. d, L . .
and Q; or equivalently for #; and z; ief % In the profit function of the supplier, we set

7= Pr(D; > Q;)+ (1 —65)Pr(D; < Q;, Dy > 2Q;), and z; = Q"U_”. Assuming bivariate normal
demand distribution, the supplier profit function reduces to I, = 20 (v — ¢) (I12(z;) + sm, fo(23))-
Hence, the supplier optimization problem is equivalent to

Problem S: max,, . \{I12(z) + m0, fo(zi)|z > =%, 6, € [0,1]}.

Next, we explain how we solve Problem S.

Solution of Problem S

We divide the feasible region of Problem S into two regions: (i) fp(z;) > 0 and (i) fa(zi) < 0.
Hence instead of solving Problem S, we solve two optimizations:

Problem 0: max., g, {I19(2;) + m, 05 fo(2i) | fo(zi) <0,z > —£, 65 € [0,1]},

Problem 1: max., g, {I19(2;) + m, 05 fo(zi) | fo(zi) > 0,2 > —£ 6, € [0,1]}.

The optimal solution of Problem S, can be obtained by comparing the optimal solutions of Problem

0 and Problem 1 together and choosing the better one. In the following we outline the remainder
of the proof.
1. Since T1%(2;) and fy(z;) are not functions of f,, in Problem 0, the optimal solutions 6, and z;
should satisfy: either (6; = 0 and fp(z;) < 0) or (65 = [0,1] and fp(z;) = 0). In other words,
for Problem 0, fy(z;)0s = 0.
2. Since I1%(z;) and fy(z;) are not functions of ,, in Problem 1, the optimal solutions 6, and z;
satisfy (6s =1 and fyg(z;) > 0) or (05 = [0,1] and fa(z) = 0).
3. We establish in Lemma A.5 that fy(z;) = 0 has a unique solution 2/ > —£ and fy(z) < 0 if

and only if z < 2/. Hence, we can write Problem 0 and Problem 1 as follows:
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Problem 0: max., g, {I19(z;)| — £ < 2 < 27, 6, €[0,1], 0, fo(z) = 0},
Problem 1: max., g, {I12(z;) +m,0sfs(z) |2z > 27, 0, € [0,1]}.

4. We establish in Lemma A.8 that the relaxed constrained optimization max;, {Hg(zi) |z > —L
has a unique solution, which we call 2°. In that lemma we show if 20 < 2/, then z; = 2° and
6, = 0 is the optimal solution of Problem 0 and if 20 > 2/, then (z; = 2/ and 6, € [0,1]) are
the optimal solutions of Problem 0

5. We establish in Lemma A.9 that the relaxed constrained optimization max., {I12(z;) 4+ my fo(2;) | z > —&
has a unique solution, which we call z!. In that lemma, we show if 2! > 2/, then z; = 2!,
and 0, = 1 is the optimal solution of Problem 1 and if 2! < 27, then z; = zy and 0, € [0,1] is
the optimal solution of Problem 1.

6. Next we characterize the optimal solution of Problem S, using Lemma A.8, and Lemma A.9.
There are four possibilities:

(a) If 2% < 2f and 2! < 2/, then z = 20 and 6, = 0 is the optimal solution of Problem S.
This is because, in this case, (i) optimal solution of Problem 0 is z; = 2° and 6, = 0, (ii)
optimal solutions of Problem 1 are (z; = 2/ and 6, = [0, 1]) which are feasible solutions
of Problem 0.

(b) If 2° > 2/ and 2! > 27/, then z; = 2! and @, = 1 is the optimal solution of Problem S.
This is because, in this case, (i) optimal solutions of Problem 0 are z; = 2/ and 6, = [0, 1]

which are feasible solutions of Problem 1, (ii) optimal solution of Problem 1 is (z; = z*

and 6, = 1).

(c) If 20 < 2/ and 2! > 2/, then either (z; = 2! and 05 = 1) or (z; = 2" and 6, = 0) is
the optimal solution of Problem S. This is because, in this case, (i) optimal solution of
Problem 0 is z; = 2° and 6, = 0, (ii) optimal solution of Problem 1 is (z; = 2! and
0s = 1). Therefore, 85 = 0 or 65 = 1 should be optimal solution of Problem S.

(d) We establish in Lemma A.9 that it is not possible to have (2° > 2/ and 2! < 27).

7. When s; is small enough, using Lemma A.8, and Lemma A.9, z' and 2% both become smaller
than 2/ (which does not depend on s; or m,). Hence §; = 0 is optimal solution of Problem
S as discussed in the previous step.

8. Similarly, when m, is small enough and s; is large enough, using Lemma A.8, and Lemma

A.9, both z! and 2° become larger than z/ (which does not depend on h or m,). Hence 65 =1
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is optimal solution of Problem S as discussed earlier.

This established the proof of the Theorem. [

Proof of Theorem 3.

If optimal 7 = 0, then for any ¢ and 0, we have @); — oo and (); — oo, which results in negative
profit for the supplier if A > 0. Therefore, optimal 7 > 0.

If optimal 7 = 1, then for any 6 and 6, we have @); — 0 and @); — 0, which results in zero profit for
the supplier. However, with 7 = 1 — e > 0, for small enough ¢, the profit of the supplier is positive.
Hence, optimal 7 < 1. In conclusion, optimal 7 € (0, 1).

Suppose 7* € (0,1), 6*, and 0% are optimal solutions that maximize the supplier’s profit.

First we show that either § € {0,1} or 65 € {0,1}. That is, at least one of 8 or 6, is at the boundary.
Suppose to the contrary that 6} € (0,1) and 6* € (0,1). Assume @; and Q; and Q; are the
corresponding equilibrium quantities. Also let ®;, ®;, ®;, ®;, and ®;; be the corresponding
probabilities as defined before. First suppose ®; = ®;. Then using the equilibrium conditions,
we must have ®; = ®;,. Take an arbitrary small 6 > 0 and define 0y = 0* — ¢, 0, = 07, and
To =7 +0(1—0%)(P;+ P, —2d;;) > 7]. Since 7*, 0%, and 0} are all interior solutions by assumption,
when ¢ is small enough, we must have 79 € (0,1), 3 € (0,1), and 652 € (0,1). Also, for such 9,
the same ; and @ satisfies the equilibrium conditions under 7 = 75, 6 = 69, and 05 = 5. Then
II5(79, 02, 052) — IIs(7*,0%,0%) = 6(1 — 0%)(P; + Dy — 2P;)Q¢ > 0 which is a contradiction.

Next suppose ®; # ®;. Define y = 2@“_(2?5?@2__%). For a given multiplier ¢, define 75 =

74 0 ((1 = y)(Pe — Pir) — y(®i = Pir)), 02 = 0" + S =gz t=gr—gy> and Os2 = 05 + 8. Since 7, 6%,
and 67 are all interior solutions by assumption, when |J| is small enough, we must have 79 € (0,1),
6> € (0,1), and O3 € (0,1). Also, for such ¢, the same Q; and Q; satisfies the equilibrium conditions
under 7 = 79, 0 = 05, and 5 = O,9.

Define My, = T;(Q4, Q;) + Tj(Qj, Qi) + (1 — y) (P — i) Qr — y(Ps — Pit) Qs

If My, > 0, take a small enough & > 0 such that 72 € (0,1), 62 € (0,1), and 052 € (0,1). Then
II4(7g, 02, 052) — M4 (7*,0%,0%) = My, > 0, which is a contradiction.

If My, < 0, take 6 < 0, where |d| small enough such that 7o € (0,1), 62 € (0,1), and 052 € (0,1).
Then II4(79, 02, 052) — s (7, 0%,0%) = —d My, > 0, which is a contradiction.

If My, = 0, take 6 > 0 large enough such that 7o € [0,1], 62 € [0,1], and 052 € [0,1] and at least

085.21



one of them is at the boundary. Then II4(72, 02, 052) — I (7*,0%,0%) = My, = 0. That is, 7o, 62,
and 69 are as good as 7*, 0%, and 0%. If 75 is at the boundary, then we have a contradiction, since,
at any optimal solution we must have 7 € (0,1). Hence, either 63, or 855 must be at the boundary.
Therefore, in any case, we can find an optimal solution such that either optimal § € {0,1} or
optimal 65 € {0,1}.

Next, we show that either 6% =1 or 6* € {0,1}.

Previously, we showed that either optimal * € {0,1} or optimal 8% € {0,1}. Therefore we have one
the four cases for optimal 6% and the optimal 6*: (i) 0% =1, 6* € [0, 1]; (ii) 6% = 0, and 6* € [0, 1];
(13i) 0% € [0,1] and 6* = 0; or (iv) 6% € [0,1], and #* = 1. Note that when 0} = 1, the value of
0 is irrelevant. Hence, to show that either #¥ = 1 or §* € {0,1}, it is enough to show that it is
impossible to have 6% =0, and 6* € (0,1).

Suppose to the contrary that 87 = 0 and 0* € (0,1) and 7* € (0,1) are optimal. Suppose the
corresponding equilibrium quantities are @7, @ and Qf = Q] + Q;. Let ®f = Pr(D; < Q),
O; = Pr(Dy < Qt), ®f, = Pr(D; < QF, Dy < Q).

*

Choose § = 0. Also let H;(Q;) = H;(Qy,Q;;60 = f). Note that H;(QF) — -~

v—w:(

0 — 0)(®F + bf —
20%) > 0, for i € {1,2}. Also note 142 — —§48: 4 (20 — 1)4%e <0, for i € {1,2}.
Without loss of generality, suppose H 1(Q7) > ﬁg(Q’z‘) (in case of asymmetric buyers, they cannot

be equal). Since JSIZ(Q,) is decreasing in Q;, there exists a Qs < Q%5 such that H 1(QF — Qg) =
Hy(Qo) > Hi(QF) > 7.
Let 7 = ﬁg(@g). Consider the supplier’s profit by choosing r = 7, § = 0, and 85, = 0. With these
decision variables, the equilibrium quantities are Q1 = Qf — Q2. Q3 = Qq, Q; = Q5.
Then we have II,(r = 7,05 = 0,0 = 0) — Il (r = 7,0, = 0,0 = 0*) = (H;(Q}) — 7)(Q}) (v —w) > 0.
That is the profit improves. Hence, if 7 = 0, 8* cannot be greater than zero and it must be § = 0.
As a result, the optimal pair (6, 6s) can only be the following options:

1. if 65, = 0, we must have 6 = 0;

2. if 65, = 1, 0 is irrelevant;

3. if 65 € [0, 1], we must have 6 € {0, 1}.

Therefore, either 6, =1 or 6 € {0,1}. [

Proof of Proposition 3.  Consider a quantity @ that satisfies —*— = Pr(D, > Q) + (1 —

w
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05)0dT,+(Q)+ (1 —05)(1—0)dT,—(Q). We claim that Buyer i, Buyer 1, and Buyer 2, each ordering
Q is the equilibrium. To show that each buyer ordering ) is equilibrium, due to symmetry of buyers,
we only need to show that if Buyers 1 and 2 reserve capacity @, then Buyer i cannot unilaterally
improve her profit by deviating from reserving capacity ) and instead reserve a capacity Q.
Suppose Buyer 1 and Buyer 2 reserve capacity ). We will show that the quantity that maximizes
the profit of buyer i is Q; = Q.

Optimal @); must satisfy the first order condition of the buyer i’s profit function. Note that

1 d , .
v —w inHBi i —— Pr(Dy > Q)+ (1 — GS)HT@TQEJF(QZ-,Q) L (1-0,)(1-0)

d—CQZTx— (QZ) Q)

Hence, optimal Q; must satisfy —t— = Pr(D, > Q;) + (1 — HS)H%TIJF(QZ-,Q) +(1—65)(1 —
0)%@Tm_(Qi, Q). Note that, by definition of @, @ satisfies this first order condition. That is, if

Buyer 1 and Buyer 2 reserve quantity @ that satisfies ——— = Pr(D, > Q)+ (1—05)0dT,+(Q)+ (1—

v—w

05)(1 —0)dT,—(Q), buyer i, would do the same. Hence, we have the statement of the proposition.

Proof of Theorem 4. Let dT,.(Q) = %@TH(Q“ Q)|gi=¢ and dT,—(Q) = %QiTx_(Qi, Q)lgi=0-
Note that based on Lemma A.6, dT,+(Q) < 0, and dT,—(Q) > 0.
Replacing the equilibrium quantities in the expression of the supplier’s profit function and simpli-

fying the expression, we have

1 1

3v—c

Iy = 5,Q + mr(_PT(Dm < Q) + (1 - es)edTm—l-(Q) + (1 - 93)(1 - H)de_(Q))Q

Q Dy + Dy + D,
—(1—mr)/ Pr(%<x)d$

—00

/Q Dy + Dy + D,

Q
+ 0sm, </ Pr(D; < z)dx — Pr(f <) dx)

—0o0 —0o0
Since there is a one to one correspondence between (7,0, 65) and (Q,0,05), we can let the supplier

choose (Q,0,0;). Note that, for any given @, and 6, < 1,

1 1 d
3v—w db

Iy = (1 - 03)(dTﬂc+(Q) - de—(Q)) <0.

Hence optimal § = 0 when its value is relevant, i.e., when 65 < 1. The supplier’s profit function at
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6 = 0 reduces to:

1 1
3v—c

Q
IT, = 5,Q + m,(—Pr(D, < Q) +dT,—(Q)Q — (1 — mr)/ PT(W B

Q Q
+ 0sm, </ Pr(D, < z)dzx —/ PT(W < z)dxr — dTw_(Q)Q>

x)dz

Notice that, for any given @, the profit function Il is linear in 6. Hence, the boundaries 6; = 0
or 65 = 1 is included in the optimal solution for any given (). That is, optimal 6, € {0,1}. As a

result, we have the statement of the Theorem. [

Proof of Theorem 5. Please note that the capacity building cost only appears in the supplier’s
profit function. As a result, from the buyer’s perspective, capacity building cost is irrelevant in
their decision about how much capacity to reserve. Hence, similar to our analysis of the main

model, each buyer reserve quantity () of capacity, where () satisfies:

r

=Pr(D; > Q) — (1—465)0Pr(D; > Q,D; <2Q)+ (1 —05)(1 —0)Pr(D; < Q,D; > 2Q).

v—w
Since the equilibrium equation is a one to one correspondence between (r,6,6,) and (Q, 6, 05), the
supplier can decide the second triple and deduce the optimal r.

Replacing the equilibrium conditions, the supplier’s profit would be

1 _o. M) @ . y
o= @ g~ (=) ([ Pr(oi< D)

oo

+m, (=Pr(D; < Q) — (1 —65)0Pr(D; > Q,D; <2Q)+ (1 —05)(1—0)Pr(D; < Q,D; >2Q))Q

Q Q y
+ 05y (/ Pr(D; < x)dzx —/ Pr(D; < 5) dy>

For any given value of (Q,6;), the supplier’s profit function is decreasing in 6. Consequently, the
optimal 6 = 0.

We define z = % The supplier’s problem is to find the optimal pair (Q, 6s) or equivalently, the
optimal pair (z,6;). Define, Ilp;i(z) = (24 %) — 20(}3—0) —(1—m,) (f_zoo o(4) dy) —m,®q(2)(2+£),
and I1;(z) = Hy;(2) 4+ 0sm, fo(z), where fp(z) is defined in Lemma A.5.

With the assumption that the demand is normally distributed, and the fact that optimal 6 = 0, we
can verify that the supplier’s profit function Il in the interval (g;—1,¢q;] is 20(v — ¢)II;(2).
To find the optimal (Q,0s) (or equivalently (z,6;)), for each piece i of the step function A(Q),

the supplier solves optimization 7 defined as maX(zﬂs){Hi i st.qi—1 < oz+p < ¢}. Then the
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global optimal (z, ;) is determined based on the best of all optimal objective function of all such
optimizations. We need to show that in any optimization 7 optimal 6, € {0, 1}.

Recall that, in Lemma A.5, we show that fg(z) has a unique solution 2! and it is increasing at its
solution, i.e. fj(z/) > 0, furthermore, fy(z) < 0 for z < 2/ and fp(2) > 0 for z > 2/. As a result,
(1) if ¢; < o2/ + p, then optimization i is decreasing in 6, for any feasible z, and consequently, for
optimization i, optimal 65 = 0; (2) if ¢;_1 > o2/ + p, then optimization 4 is increasing in 6, for
any feasible z, and consequently, for optimization i, optimal 85 = 1; (3) Next, we focus on the case
where ¢;_1 < ozl + w < q.

In this case, the supplier’s optimization problem is

max {%na}g{ﬂi(z) s, IR <z <2V max{IL;(z) s sit.2f <2< %= ,u}} .
2,05 g

(2,0s) o
In this case, for any z < zf, the supplier’s profit function is decreasing in 6 and hence for any
z < 2!, optimal 6, = 0. Similarly, for any z > 27, the supplier’s profit function is increasing in 6,

and hence for any z > 2/, optimal f; = 1. That is, for any z # 2/, optimal 6, is at the boundary.

(Mo; (z7)+mer fo(21))
dz

>0

Next, we explain that z/ cannot be optimal solution. We need to show, either d

[To; (2 . .. . . . .
or % < 0 (or both), which means deviating from z/ improves the objective function. Suppose
il (ot [0 (o f il (of [0 (2 f L
to the contrary, dngi(;) < 0 and %(Zz) > 0. Then, m, f)(z) = dng(j ) _ dng(j ) < 0 which is

contradiction to the fact that fj(z/) > 0. Therefore, optimal z # z/.

Therefore, we can conclude that at optimal z, optimal 8, is either zero or one. [

Proof of Theorem 6. The buyer i’s profit function when she reserves capacity ); and the other

buyer reserves capacity @; is
g, = =rR(Q:) + (v — w)Si(Qi) + (v — w)(1 = 05)(0T5(Qs, Q5) + (1 — O)T;(Q5, Qi) -

The optimal decision of the buyer regarding her reserved quantity satisfies the first order condition.

That is, the optimal solution @; satisfies
dllp,
dQ;

where H; is the same as what is defined before and we know, for any given (); and @Q);, it is decreasing

= —T‘R,(Qi) + (v — w)H;(Qi, Qs + Qj) =0,

in 8. With symmetric buyers, we must have that the equilibrium capacity ) reserved by each buyer

should satisfy —rR'(Q) + (v —w)H;(Q, 2Q) = 0 or equivalently, r = (v— w)%. Next, we solve
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the supplier’s problem. The supplier’s profit function, when each buyer has reserved capacity @ is
I, = 2rR(Q) — Bh(2Q) + (w — )5 (2Q) + 2(v — w)b(T3(Q, Q)) -

The supplier maximizes his profit by choosing r, 8, and 6; and with the constraint that at equilib-
rium, we must have r = (v—w)%. Note that, since R(Q) is increasing in ) and convex, R/(Q)
is positive and increasing in (). Also, as shown in proof of Lemma A.7, H;(Q,2Q) is decreasing in
Q for any given 6 and 6;. Hence, for any given 6 and 6, % is decreasing in ). Therefore,
for any given 6 and 6, there is a one-to-one correspondence between r and (). Hence, the manu-
facturer can choose @ instead and based on the equilibrium condition, deduce the corresponding r

and announce it to buyers. Hence, the supplier’s optimization problem is

R
a1 = 20— 0) g H(Q.2Q) — Fh(2Q) + (1w~ S,(2Q) + 200 — )6, (T:(Q. @)
st. r=W—-w)————
S (0]
Note, using Lemma A.7, ‘fi—l(}ss =2(v—w) 5,((%)) W < 0. Therefore, I, is decreasing in 6 and

hence the optimal # = 0. We can simplify the profit function of the supplier as follows:

RR/((%)) (Pr(D; > Q, Dy < 2Q) + Pr(Dy > 2Q)) — Bh(2Q) + (w — ¢)S;(2Q)
R(Q)

+20 - (TQ.Q) - o)

This function is linear in 65 and hence, the optimal 0 is at the boundary. [

II; =2(v — w)

Pr(D; < Q,D; > 2@)>

Proof of Theorem 7.

For any given 6, we maximize the supplier’s profit function by choosing 6; and 7. That is the
supplier’s optimization problem is max g,){Ils|7 € [0,1], 65 € [0,1]}, assuming @Q; satisfies the
equilibrium condition.

For symmetric buyers, the equilibrium condition simplifies to

f

1= 9(2) — (1= 6)0(P(2) — Ba(2) + (1~ 6)(1 ~ )(P(2) ~ Ba(2)).

where z = Qio_“ . Since the right hand side is decreasing in ();, there is a one to one correspondence

between 7 and @; for any given 6. Hence, instead of optimizing II; for 65 and 7, we can optimize

for 05 and Q; or equivalently for 6, and z. We can simplify the profit function of the supplier, using
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the equilibrium condition and definition of z: mﬂs = fa(z,0) + m,-05f3(z,0), where

_ M _aomy [ e 0 (2) — 05(Z - a
falz) =5 (= +2) 1 mT)/_OO (L )zt my (~09(2) — 05(2) + (26 - () (= + 1),
_ [ “ o (2)) do— (—00(2 _ _ r
Fol,0) = /_Oo (@)~ (2)) de— (-68(2) + (20~ )@a() + (1 - 0)2(2) (= 4+ 2)
Note ®,(z) is c.d.f of bivariate standard normal distribution with correlation «, calculated at z
and Z as specified before.

Notice that the profit function Il is linear in 8,. Hence, the boundaries 8, = 0 or 8, = 1 is included

in the optimal solution for any given € and any given z. [

Proof of Proposition 4. We use backward induction. At the last stage, the buyers decide the

order quantity ). The buyer’s profit function is:
g, = —rQ; + (v — w)Si(Qs) + (1 — 05)0(v — w)T;(Qi, Q5) + (1 — 05)(1 — 0) (v — w)T}(Q5, Q) -

Given 6, 05, and r, the problem of the buyers to solve for the optimal quantity is the same as

our original model. Hence the equilibrium quantity of the buyers satisfies the same condition

H@(Q,2Q) = ﬁ? where

Hz(Qth) :PT(DZ > Qz) — (1 — HS)QPT(DZ > QiaDt < Qt) + (1 — 95)(1 — H)PT(DZ < QiaDt > Qt) .

Since at equilibrium T;(Q, Q) = T;(Q, Q), the Buyer i’s profit function reduces to:

Q Q
IIp, = —rQ+ (v —w)(Q — / Pr(D; < z)dz) + (1 —60s)(v — w)/ Pr(D; >2Q —z,D; < x)dx.
Hence

s, _ 40
a9 de

<— L 4 1-0,Pr(D; < Q) — (1—0,)Pr(D, < 2Q)>

v—w

By envelop theorem, we can differentiate the equilibrium condition with respect to 6 to get C(li—g( dQI{Z

2%) +(1—65)(Pr(D; < Q,D; > 2Q)+ Pr(D; > Q, D < 2Q) = 0; hence, we must have % > 0.

Also, ——"=+1—-0,Pr(D; < Q) — (1 —0,)Pr(D; < 2Q) is decreasing in ). Hence, optimal Ilp, is

—w

quasi-concave in 8 and the optimal 6 satisfies the first order condition.

Therefore, either 8, = 1 and 6 does not matter, or s < 1 and at optimal 6, Q must satisfy

r_—1-0,Pr(D; < Q) — (1—0,)Pr(D, < 2Q).

v—w

Combined with equilibrium condition, we can conclude:

o Pr(D;>Q,D:<2Q r_
0 = Pr(Di<Q,Dt(>2Q)+P;(Di>)Q,Dt<2Q)’ and 1 — L = 0,Pr(D; < Q) + (1 — 05)Pr(D; < 2Q). m
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Proof of Theorem 8. The supplier’s profit function is:
2Q
Iy = (r = h)(2Q) + (w — ¢)(2Q — / Pr(Dy < x)dz) + (v — w)0s(Ti(Q, 2Q) + T;(Q, 2Q)) -

Define z = Q— Then we can simplify the supplier’s profit function:

1 r
- I =
20(v—c) ° (v—w

z z

o(%)de + mTHS(/ a(r) ~ #() dr).

—00

— Dz + )+ + B - —mr)/

—00
We can replace the equilibrium condition for ) in the above expression and simplify mﬂs =

Hog«(2) + my0s fo- (2), where

The supplier maximizes his profit by choosing r and 65 or equivalently by maximizing for z and 6,.

Next, we characterize the solution of the function fg« = 0 which does not depend on s; or m,..

Lemma A.10.
1. fg=(2) = 0 has a unique solution for z > —L. Let 2fo* represent this unique solution.
2. fh(21e7) > 0.
3. for z < 2le* | we have fg«(2) <0 and for z > 276* | we have fq-(2) > 0.

4. zlor < 0.

Proof of Lemma A.10. Note that we can simplify fy«(z) = ((ID(z) D(2))E + (p(2) —ad(2)).
Also derivative of fy-(z) is df%_*z(z) = —(L+2)1¢(2) (a0 — V2mo(y/ 1=

Therefore df%—*z(z) = 0 has exactly two solutions. Also, df —= =) < when z — —o0 and % —= @ <9

when z — co. Hence, fg«(z) is decreasing, then increasing and then decreasing. Also, lim,_, 1 fp=(2) =

0. Hence, fp«(z) = 0 has exactly one solution and at this unique solution, fg«(z) is strictly increas-

ing. Hence, for z < 276, we have fp«(2) < 0 and for z > 276, we have fp(2) > 0. Also, since
e Sox

f(O)—m>0, we must have z/e* < 0. [ |

Next, we characterize the solution to optimization max,{Ilpg-(2) |z € [4= zf o*]}.

Lemma A.11.
1. Forze [k , 2007], Tlgg+(2) is concave and hence has a unique mazimizer in the interval.
2. If I, (20" ) > 0, then arg max,{Ilgy(2) | 2 € [“—t_,zfe*]} = 2fo~.

3. If Iy, (290*) < 0, then argmax.{Ilgg«(z) | z € [£L zfe*]} satisfies ). (2) = 0 and z < 270"
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We label the solution to Ilj,.(2) =0 as 2%,

4. 2% is decreasing in m, and increasing in s;. When s; large enough and m, small enough,

06*

z can be arbitrarily large (e.g., larger than z70* ); when s; is small enough, 2% can be

arbitrarily small (e.g., smaller than z/o* ).

Proof of Lemma A.11. Note that:

1 dllg-(2) 1 Lo6(2)(z+4)

o @z T TTeE T T e

1 z N
. 1 S(£)(z+1) . S 1 dllggx(2) o
Since T=8(2) and Top(z) - are increasing in 2, y—gr=y— - I8 decreasing in z.

"

Also, since when z — —%, we have dn%;(z) — s; > 0, and when z — oo, we have dn%;(z)

_)

dlgg+ (2)
dz

—(1 — ;) < 0, we must have that has a unique solution. As a result, the first three

statements of the lemma follows.

Next, we show the last statement. Note that dn%;(z) is increasing in s; and decreasing in m, and
decreasing in z. Hence, when s; increases, the solution to dn(g,; (2) — () should increase as well; and
when m,. increases, the solution to dn%;('z) = 0 should decrease as well.

Furthermore, when s; — 1 and m, — 0, (ﬂ_l%;(z) — 1 —®(Z). Hence, 209" 5 400, Also, when
sp — 0, dn%;‘(z) — —®(Z) —m, 2¢(2)(z + £). Hence, 2" — —oco. That is, we have the last
statement of the Lemma. ]

Next, we characterize the solution to optimization max,{IIjg-(2)|2z > 2/e*}.

Lemma A.12.
1. For z > 2fo* | we have Mg« (2) = I+ (2) +my fo= (2) is quasi-concave and hence has a unique
mazximizer in the interval.
2. If I . (2767) <0, then argmax,{Iljg- (2) | 2 > 2for } = 2Jo~.
8. If W, (210*) > 0, then argmax,{Il1g+(2) |z > 2z/o*} satisfies I} ,.(2) = 0 and z > zlor. We
label the solution to I1},.(2) = 0 as z19".
4. 219 is decreasing in m, and increasing in s;. When s; large enough and m, small enough,
219 can be arbitrarily large (e.g., larger than 270" ); when s; is small enough, ' can be

arbitrarily small (e.g., smaller than zfe* ).
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Proof of Lemma A.12. Note that:

1 dllyge(z) 1 ¢(2)(z + £)
1— ®(2) ldez _1_(1_8l)1—@(§)_m"<1—cI>(£)>

e e

%{k)) is 1ncreas1ng in z.

For z < 0, ¢(z) is increasing in z; hence %(Jr)) is increasing in z. For z > 0, (i) 1?&5&) is hazard

Next we show that

rate of normal distribution and it is positive, increasing and convex; (i7) (z 4+ £) is positive and

increasing in z; (m) ((?) is positive and it is increasing in z because:
L-0() A4 1-0() o) 1 4(3)
—®(z) dz1-®(2) 1-®(z) al-0(2)
Since z >0 and 0 < a <1, and = C(I>() ) is convex, we must have %k(fz)) is increasing in z for z > 0.
As a result, iz_)((;(gg) = 1f"(1f()z) X (z4£) x 11—;)(%)) is increasing in z for z > 0.
P(2)(z+15)

In summary, Toe(Z) is increasing in z for any z.

P(2)(2+4) . o 1 dllpe(2) - e
Since 7= c1>( y @ and —= (=5~ are increasing in 2, =y —¢, I decreasing in z.
dIl g dIl o+
Also, since when z — —£, we have #(Z) — s; > 0, and when z — oo, we have #(Z) —

—(1 — s;) < 0, we must have that

(m%;(z) has a unique solution. As a result, the first three

statements of the lemma follows.

dng* (Z)

Next, we show the last statement. Note that - (I)( ) dz is increasing in s; and decreasing in

. . . . * .
m, and decreasing in z. Hence, when s; increases, the solution to z'" should increase as well; and
. . *
when m, increases, the solution z'%" should decrease as well.

Furthermore, when s; — 1 and m, — 0, Al (2) g ®(Z). Hence, 219" — 400, Also, when

dz
sp — 0, dn%;‘(z) — —®(£) — my¢(2)(z + £). Hence, 2! — —oco. That is, we have the last
statement of the Lemma. ]

Note that the supplier’s problem is to find optimal z and 6 as specified before. More specifically, the
supplier’s problem is max, g.){Ilog+ + m0sfp-(2)|0s € [0,1]}. The feasible region of the supplier’s
problem can be divided to two regions: (i) Region 0 where z € [—£, 2/0*], and (ii) Region 1 where
z > zfo« In region 0, either optimal z < z/¢* and the optimal §; = 0 or optimal z = zfé+ and
Osfo«(z) = 0. That is, the optimization in Region 0 reduces to §; = 0 and solving for optimal
solution of the optimization problem discussed in Lemma A.11.

In region 1, either optimal z > z/¢« and the optimal 6, = 1 or optimal z = zf6= and 6 fy- (2)=0=

fox(2). That is, the optimization in Region 1 reduces to 85 = 1 and solving for optimal solution of
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the optimization problem discussed in Lemma A.12.

The following Lemma shows that at z = z/% is never optimal for the supplier.
Lemma A.13. It is impossible that both II),. (2/0*) > 0 and IT},. (270*) < 0.

Proof of Lemma A.13.  Assume II/,;. (2%0*) > 0 and IT},.(2/o*) < 0. Then m, fj.(z/o*) =
Lo+ (2767) — 0} (267 ) < 0, which contradicts Lemma A.10. [

Since, the profit function of the supplier is continuous, Lemma A.13 implies that either z'%" or

09" is the optimal solution of the supplier’s problem which are different from z/¢* because 2% <

z
2fo < 219" Finally, note that, when s; is arbitrary close to 1 and m, is arbitrary close to zero, by
Lemma A.11 and Lemma A.12, both 2% and 29" get arbitrary larger than 2o+ and hence 6, = 1
is the optimal solution of the supplier’s problem. Similarly, when s; gets arbitrary close to zero,

by Lemma A.11 and Lemma A.12, both z°" and 29" get arbitrary smaller than zf6+ and hence

fs = 0 is the optimal solution of the supplier’s problem. [

A.3 Robustness Check: Underinvestment with Breach Remedy

In this section, we compare the setting in ? by allowing the supplier to underinvest in capacity
with a breach remedy with our setting in which the supplier always invests in sufficient capacity.

Similar to 7, we assume that the supplier exercises a breach remedy. More specifically, in case
the supplier underinvests in capacity and cannot deliver the reserved capacity of buyers, he would
compensate the buyers for their losses that can be due to (i) inability to satisfy their own demand
with their own reserved capacity, (i7) inability to transfer their excess reserved capacity to another
buyer in need of capacity for a fee, or (7i7) inability to receive transfers from another buyer who
could have excess capacity. In summary, similar to 7, the buyers do not lose profit if the supplier
decides to underinvest in capacity.

Denote the capacity that the supplier reserves by C. Assume the supplier is allowed to reserve
capacity C' less than what the buyers have asked for, i.e., C < Q. The supplier decides r, 8, and
0s before the buyers decide the capacity to reserve @; and @;. After the buyers order to reserve
capacity (); and @, the supplier decides how much capacity C' < Q; + @Q; to invest. We focus on

buyers with symmetric normal demand distributions.

Proposition A.1. The supplier never underinvests in capacity. That is, the supplier never invests
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in less capacity than requested by buyers, i.e., C' is never less than Q.
This proposition implies that even if we allow underinvestment like the setting in ?, the supplier

would not underinvest in capacity.
Proof of Proposition A.1. The supplier’s profit in this model is
C
L= 1@y~ hC+ (= (C [ PriDi < a)ds) + 0,0~ w)(Ti(Qi @) + T5(@: Q)

— (v —w)Emin{Q; — C,D; — C} x 1(D; > C)]

We can simplify the supplier’s profit as follows:
C

1
I = (—— — Dm,Q + 5iC — (1 - mr)/ Pr(D; < z)dx
v—oc v—w Cw
Qi Qj Q¢
+ 0sm, < Pr(D; < z)dx —I—/ Pr(D; < z)dx — / Pr(D; < ) dx)
Q¢
+m, Pr(D; < x)dz
C

We use backward induction. In the last stage, the supplier determines the quantity C' to reserve,

given quantities ); and @Q; reserved by buyers, and given the values of r and ¢, with the constraint

that C < Q¢, where )y = @); + @)j. Note that %%S = s, — Pr(D; < C). As a result, the optimal
C* satisfies the follow: (i) if Pr(D; < Q) > s;, then C* satisfies s; = Pr(D; < C*); (i) if
Pr(D; < Q) < sy, then C* = Q. If C* = @y, we have the proof. Suppose C* < @Q); which means

s; = Pr(Dy < C*). In this case, C* does not depend on Q. That is ‘é—g: =0.

In the next stage, the buyers optimize for the quantity of capacity to reserve. The buyer’s profit

function is:

Qi
g, = —rQi + (v —w)(Qi — Pr(D; <z)dz) + (1= 05)(v —w) (1 - 0)T3(Qi, Q;) + 0T5(Q;, Qi)

—0o0

The buyers’ problem is similar to our original model. Hence, for symmetric buyers, we can conclude

r
v—w’

where, H(Q) =1—Pr(D; < Q)—(1—60,)0Pr(D; > Q,D; <2Q)+(1—60,)(1—0)Pr(D; < Q,D; >
2Q).

In the next stage, the supplier optimizes for (r, 6, ;) at the same time. Define function z(Q) = %

that at equilibrium, the buyers each reserve the same quantity Q* that satisfies: H(Q*) =

(or in short z). Since there is a one to one correspondence between (7,6, 65) and (2(Q*), 0, 05), the

supplier can instead optimize his profit by choosing (z,,6,), and then optimal r is obtained by
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equilibrium condition.

Replacing the equilibrium condition in the profit function of the supplier we have

LI, = ((-Pr(D; < Q*) — (1 — 0,)0Pr(D; > Q*, Dy < 2Q*)

+(1—6,)(1 = 0)Pr(D; < Q*, Dy > 2Q%))m,(2Q%) + 5,C* — (1 —m,) [ Pr(D; < z)dz

+ Osm, (2 f_Q; Pr(D; < z)dz — f—2§o Pr(D; < z) d:z:) +m, C%Q Pr(D; < z)dx.

Note that ks = —2Q(v—c)m,(1-05) (Pr(D; > Q, D; < 2Q) + Pr(D; < @, Dy > 2Q)) < 0. Hence,

optimal # = 0. The supplier’s profit reduces to
LI, = (—®(2) + (1 — 0,)(2(2) — Pal2))) mp(2(n + 02)) + 5,C* — (1 —m,) f_coo Pr(Dy < z)dx +
O, (2 f_(’;:gz) Pr(D; < z)dz — ff&frgz) Pr(Dy < x) dx) + m, C%SfH'UZ) Pr(Dy < x)da.

Hence, ;1o to e = — (1 — 0,)(®,(2)(2 + £) + Ba(2) — B(2)) — Ou(2) (2 + £).

Y v—c 20m,

Using Lemma A.2, the last expression is negative. That is, Il is decreasing in z or equivalently
increasing in capacity reservation fee r < v — w, if the supplier underinvests in capacity. As a
result, r* = v — w, which implies Q* = 0. But we had assumed Cx < @Q; = 2QQ* = 0 which is a

contradiction. Hence, if the supplier determines C', we must have C* = ;. [

A.4 Robustness Check: 6 is set by one of the buyers after demand

is realized.

In this section, we check the robustness of our result by extending our analysis to cases in which
the value of 0 is set by one of the buyers, after their demand is realized and they recognize their
shortage and excess capacities. More specifically, in two different models, we allow (1) the buyer
with an excess capacity, and (2) the buyer with a shortage of capacity to set the value of §. We
focus on two symmetric buyers. We are interested to how the solution to the model changes in this

new scenarios. The sequence of events for this scenario is shown in Figure 1.

Supplier sets Supplier builds )
r, and 9, DBuyerl capacit 0 is set by Capacity transfers
J reserves Q1 “( one of the buyers

Buyer 2 Demand is realized
reserves Q2

Figure 1: The sequence of events when 6 is set by the buyer with an excess or a shortage of capacity.

Let us focus on the case in which the buyer with an excess capacity sets the value of . Note
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that, if capacity is not transferred, value of 6 is not relevant.

Theorem A.1. The model in which the buyer with an excess capacity sets the wvalue of 0 is
equivalent to a model in which the supplier sets the value of 6. More specifically, in both models, at
equilibrium, 6, Os, and r are the same, and the supplier’s expected profit and the buyers’ expected

profits are the same.

Proof of Theorem A.1. Consider the model in which the buyer with an excess capacity sets
the value of 8. We use backward induction to solve the problem.

Suppose demand of Buyer ¢ and Buyer j is realized and they are d;, and d; respectively. Without
loss of generality, assume buyer ¢ has excess capacity and buyer j has shortage of capacity. That

is, Q; > d; and Q; < d;j. Then, the profit of the Buyer ¢ is:
g, = —rQi+ (v —w)(Qi — di) + (1 — 0,)(1 — 0)(min{Q; — di, d; — Qj}).

This profit function is decreasing in value of . Hence, for the buyer with an excess capacity, optimal
0 = 0. As a result, the expected profit of buyer ¢ is E[HBZ.] =—rQi+ (v—w)(Q; — ff?;o)Pr(Di <
z)de + (1 —0,)T5(Qj,Q:)-

Therefore, using Lemma A.1, we have

1 dllg 7 S0 995595, Qi)
o+ P> Q) + (1= 6)— g

v—w d@Q; =
=———+ Pr(D; > Qi)+ (1 —05)Pr(D; < Qi, Dy > Qi + Q) .

T
v —

Since, ex-ante, Buyer ¢ and Buyer j are identical, we can find the equilibrium reserved capacities

Qi = Q; by solving the following equation —— = Pr(D; > Q;) + (1 — 05)Pr(D; < Q;, Dy > 2Q;).

v—w

Notice that this equilibrium condition is the same condition as the model in which the supplier sets
the value of 8 = 0. As a result, in both models, where the supplier sets the value of 8 or the buyer
with an excess demand sets the value of 6, the supplier’s problem to find the optimal 8, and r is

the same. That is, the two models result in the same equilibrium 6, 6, r, and profits. ]

Theorem A.2. In the model in which the buyer with a shortage of capacity sets the value of 0,

0 =1, and 05 = 1. That is, the supplier gets all the benefits from the transfers.

Proof of Theorem A.2. Consider the model in which the buyer with a shortage of capacity

sets the value of 8. We use backward induction to solve the problem.
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Suppose demand of Buyer ¢ and Buyer j is realized and they are d;, and d; respectively. Without
loss of generality, assume buyer ¢ has shortage of capacity and buyer j has excess of capacity. That
is, Qi < d; and Q; > d;. Then, the profit of the Buyer ¢ is lIp, = —rQi + (v — w)Q; + (1 —
65)0(min{d; — Q;,Q; — d;}). This profit function is increasing in value of ¢. Hence, for the buyer
with a shortage of capacity, optimal 6§ = 1.

As a result, the expected profit of buyer i is E[llp,| = —rQi + (v — w)(Q; — f_Q;O)PT(Di <
z)dx + (1 — 05)T;(Qi, Q). Therefore, using Lemma A.1, we have

1 dlp, 7 S -\ 4Ti(Q4, Q)
T U_w+Pr(DZ>Q2)+(1 95)7&%

- _ﬁ + Pr(D; > Qi) — (1 —0)Pr(D; > Qi, Dy < Qi + Q).

Since, ex-ante, Buyer ¢ and Buyer j are identical, we can find the equilibrium reserved capacities

Qi = Q; by solving the following equation —— = 1—Pr(D; < Q;)—(1—05)Pr(D; > Q;, Dy < 2Q;).

The supplier’s expected profit is II; = (r — h)Q; + (w — ¢)E[min(Qy, Dy)] + 85 (v — w)(T;(Qs, QJ) +

T;(Qj,Q;)). Hence, at equilibrium,

Qi
2(Ul_ C)Hs — Qi —m, <1 - - ﬁ w) Qi — (1 —my) N Pr(D; < 2z)dx + 0sm, T;(Q:, Q;)
Qi
= 51Qi —my (Pr(D; < Qi) + Pr(D; > Qi, Dy < 2Q;)) Qi — (1 — mr)/ Pr(D; < 2x)dx

+ 0smy (T3(Qs, Qi) + Pr(D; > Q;, Dy < 2Q;)Q;)

where ); satisfies the equilibrium condition =1-Pr(D; < Q;)—(1—05)Pr(D; > Q;, Dy < 2Q;.

v
Since based on the equilibrium condition, there is a one to one correspondence between (6, ) and
(05, Q;), instead of optimizing for (6, 7), the supplier can optimize for (65, @;) and find the optimal
value of r from the equilibrium condition.

Notice that, for any given @;, the expected profit function of the supplier is increasing in 6.

Therefore, optimal 65 = 1 for any given @);. As a result, in equilibrium, optimal 8, = 1. [
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