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A.1 Mathematical Results Used in our Proofs

Lemma A.1. The following simplifications hold:

Si(Qi) = Qi −
∫ Qi

−∞
Pr(Di < x) dx ; Ti(Qi, Qj) =

∫ Qj

−∞
Pr(Di > Qi +Qj − x,Dj < x) dx ;

dTi(Qi, Qj)

dQi
= −Pr(Di > Qi,Dt < Qi +Qj) ;

dTj(Qj, Qi)

dQi
= Pr(Di < Qi,Dt > Qi +Qj) ;

Ti(Qi, Qj) + Tj(Qj , Qi) =

∫ Qi

−∞
Pr(Di < y) dy +

∫ Qj

−∞
Pr(Dj < y) dy −

∫ Qi+Qj

−∞
Pr(Dt < y) dy .

Proof of Lemma A.1. First, Si(Qi) = E
[

min(Qi,Di)
]

= QiPr(Di > Qi) +
∫ Qi

−∞ xfi(x) dx =

Qi −
∫ Qi

−∞ Pr(Di < x) dx. Second, Ti(Qi, Qj) = E
[

min(Qj − Dj,Di − Qi)1(Di>Qi,Dj<Qj)

]

=
∫∞
Qi

∫ Qj

Qi+Qj−x(Qj − y)f(x, y) dy dx+
∫∞
Qi

∫ Qi+Qj−x

−∞ (x−Qi)f(x, y) dy dx. Using Integration by part,

we can further simplify the two integrals in the above equation as follows:
∫∞
Qi

∫ Qj

Qi+Qj−x(Qj −

y)f(x, y) dy dx = (x − Qi)Pr(Di ≥ x,Dt ≤ Qi + Qj)|∞x=Qi
−

∫∞
Qi

Pr(Di ≥ x,Dt ≤ Qi + Qj) dx +
∫ Qj

−∞ Pr(Di ≥ Qi + Qj − x,Dj ≤ x) dx. Similarly,
∫∞
Qi

∫ Qi+Qj−x

−∞ (x − Qi)f(x, y) dy dx =
∫∞
Qi

(x −

Qi)Pr(Di = x,Dj ≤ Qi+Qj−x) dx = −(x−Qi)Pr(Di ≥ x,Dj ≤ Qi+Qj−x)|∞x=Qi
+
∫∞
Qi

Pr(Di ≥

x,Dj ≤ Qi + Qj − x) dx. Therefore, we obtain the expression for Ti as specified in the lemma.

Third,
dTi(Qi,Qj)

dQi
=

∫ Qj

−∞−Pr(Di = Qi +Qj − x,Dj < x) dx =
∫ Qj

−∞−Pr(Di = Qi +Qj − x,Dt <

Qi + Qj) dx = Pr(Di ≤ Qi + Qj − x,Dt ≤ Qi + Qj)|Qj

x=−∞ = −Pr(Di ≥ Qi,Dt ≤ Qi + Qj).

Fourth,
dTi(Qi,Qj)

dQj
= Pr(Di > Qi,Dj < Qj) −

∫ Qj

−∞ Pr(Di = Qi +Qj − y,Dj < y) dy = Pr(Di >

Qi,Dj < Qj)− Pr(Di > Qi,Dt < Qi +Qj) = Pr(Dj < Qj ,Dt > Qi +Qj). Finally, Ti(Qi, Qj) +

Tj(Qj, Qi) =
∫ Qj

−∞ Pr(Di > Qi + Qj − x,Dj < x) dx +
∫ Qi

−∞ Pr(Dj > Qi + Qj − x,Di < x) dx =
∫ Qj

−∞ Pr(Dj < x) dx −
∫ Qj

−∞ Pr(Di < Qt − x,Dj < x) dx +
∫ Qi

−∞ Pr(Di < x) dx −
∫ Qi

−∞ Pr(Di <

x,Dj < Qt−x) dx. Note that,
∫ Qj

−∞ Pr(Di < Qt−x,Dj < x) dx =
∫ Qj

−∞
∫ Qt−x

−∞
∫ x

−∞ Pr(Di = u,Dj =

v) dv dudx =
∫ Qt

−∞ Pr(Di > y − Qj,Dt < y) dy. Similarly,
∫ Qi

−∞ Pr(Di < x,Dj < Qt − x) dx =
∫ Qi

−∞
∫ x

−∞
∫ Qt−x

−∞ Pr(Di = u,Dt = v + u) dv dudx =
∫ Qt

−∞ Pr(Di < y − Qj ,Dt < y) dy. Therefore,

Ti(Qi, Qj) + Tj(Qj , Qi) =
∫ Qi

−∞ Pr(Di < y) dy +
∫ Qj

−∞ Pr(Dj < y) dy −
∫ Qi+Qj

−∞ Pr(Dt < y) dy =

E
[

min(Qt,Dt)
]

− E
[

min(Qi,Di)
]

− E
[

min(Qj,Dj)
]

.

Let Φ(z) and φ(z) be cdf and pdf of standard normal distribution, respectively. Define α
def
=
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√

1+ρ
2 < 1. Also, define function Φα(z)

def
=

∫ z

−∞
∫

z
α
−∞

1
2π

√
1−α2

exp
(

−x2−2αxy+y2

2(1−α2)

)

dy dx. Note,

Φα(z) is the cdf of bivariate standard normal distribution with correlation α, calculated at (z, z
α
).

Lemma A.2.

1.
Φ( z

α
)

1−Φ( z
α
) is positive and increasing in z.

2.
φ(z)(z+µ

σ
)

1−Φ( z
α
) is positive and increasing in z for z > −µ

σ
.

3.
Φ′

α(z)(z+
µ
z
)+Φα(z)−Φ( z

α
)

1−Φ( z
α
) is positive and increasing in z, for z > −µ

σ
when µ

σ
is large enough

such that probability of having negative demand is negligible (and when µ
σ
≥

√
2π
2 ≈ 1.26).

Proof of Lemma A.2.

First, note that Φ(z) is increasing and hence
Φ( z

α
)

1−Φ( z
α
) is increasing in z. Second, to show item

2, it suffices to show φ(z)
1−Φ( z

α
) is increasing in z. For z < 0, we know φ(z) is increasing and thus

φ(z)
1−Φ( z

α
) is clearly increasing. For z > 0, note that

d

(

1−Φ(z)

1−Φ( z
α )

)

dz = 1−Φ(z)
1−Φ( z

α
)

(

− φ(z)
1−Φ(z) +

1
α
φ( z

α
)

1−Φ( z
α
)

)

> 0.

The last inequality is true because normal distribution has increasing hazard rate, 0 < α < 1

and z > 0. Therefore, φ(z)
1−Φ( z

α
) = 1−Φ(z)

1−Φ( z
α
) ×

φ(z)
1−Φ(z) is increasing and positive. Third, we focus on

Φ′

α(z)(z+
µ
z
)+Φα(z)−Φ( z

α
)

1−Φ( z
α
) . Note

φ( z
α
)

1−Φ( z
α
) is the reciprocal of hazard rate of normal distribution; hence,

it is increasing and positive. Therefore, it suffices to show
Φ′

α(z)(z+
µ
z
)+Φα(z)−Φ( z

α
)

φ( z
α
) is increasing and

positive. In this proof, we define the followings: β
def
=

√
1− α2, R(z)

def
=

Φ(β z
α)

φ(β z
α)

, Rα(z)
def
=

Φ( z
α)

φ( z
α)

,

f+(z)
def
=

∫ z

−∞
1√
2π
R(x)

φ( x
α
)

φ( z
α
) dx, f−(z)

def
= 1

2 (R(z)−Rα(z)), fφ(z)
def
=

Φ′

α(z)(z+
µ
z
)+Φα(z)−Φ( z

α
)

φ( z
α
) . We

can simplify fφ(z) =
(

z + µ
σ

)

(

1
2α + 1√

2π
R(z)

)

+ f+(z) − 1
2Rα(z). Also we can simplify f+(z) =

∫∞
0

1√
2π
R(z−x)

φ( z−x
α

)

φ( z
α
) dx. Since R(z−x) is increasing and

φ( z−x
α

)

φ( z
α
) = exz−

1
2
x2

is increasing for x > 0,

then we must have f+(z) is increasing in z and hence f ′
+(z) ≥ 0.

(1.) Consider −µ
σ

< z < 0. We show fφ(z) is positive and increasing in z. Note, f ′
φ(z) =

1√
2π
R′(z)(z + µ

σ
) − z

2α2Rα(z) +
1√
2π
R(z) + f ′

+(z). When −µ
σ
< z < 0, this expression is clearly

positive. Next we show fφ(z) is positive for z > −µ
σ
+ǫ since µ

σ
is large enough for some small ǫ. Since

fφ(z) is increasing for −µ
σ
< z < 0, and fφ(0) > 0, for any given µ

σ
, there exists an 0 < ǫ < µ

σ
such

that fφ(0) > 0 for −µ
σ
+ ǫ < z < 0. Next, we argue that since µ

σ
is large enough then ǫ → 0. Note

Φ′
α(z) = φ( z

α
)
(

1
2α + 1√

2π
R(z)

)

> 0. Also, d
dz (Φα(z)−Φ( z

α
)) = φ( z

α
)
(

− 1
2α + 1√

2π
R(z)

)

. Since µ
σ
is

large enough such that probability of negative demand is negligible, we have Φα(−µ
σ
)−Φ(− µ

σα
) is

negligible and it is decreasing. Hence, for a small ǫ > 0, Φα(−µ
σ
+ ǫ)−Φ(

−µ
σ
+ǫ

α
) is negligible. Also
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note that Φ′
α(−µ

σ
+ ǫ)(ǫ) > 0. Therefore, for z = −µ

σ
+ ǫ, for some small ǫ > 0 and large enough

µ
σ
, fφ(z) =

Φ′

α(z)(z+
µ
z
)+Φα(z)−Φ( z

α
)

φ( z
α
) > 0. In conclusion, we have shown that for −µ

σ
+ ǫ < z < 0 for

some small ǫ > 0, fφ(z) is increasing in z and it is positive.

(2.) Next Consider z ≥ 0. We show fφ(z) is positive and increasing in z. Note since fφ(0) > 0, it

suffices to show it is increasing in z for z > 0. Note that for z > 0 and µ
σ
>

√
2π
2 ,

f ′
φ(z) =

1√
2π

R′(z)(z +
µ

σ
)− z

2α2
Rα(z) +

1√
2π

R(z) + f ′
+(z)

=
1

2
R′(z)

(

2√
2π

(z +
µ

σ
)

)

+
1

2α
− 1

2
R′

α(z) +
1√
2π

R(z) + f ′
+(z)

>
1

2
R′(z)− 1

2
R′

α(z) + f ′
+(z) = f ′

−(z) + f ′
+(z) .

Therefore, it suffices to show f ′
−(z) + f ′

+(z) > 0. To show this, we show f
(k)
+ (0) + f

(k)
− (0) > 0

for all k ≥ 0, where f
(k)
+ (0) and f

(k)
− (0) are the k-th derivarive of the functions f+(z) and f−(z),

respectively, at zero. Thus, we could use taylor series expansion of f ′
+(z) + f ′

−(z), around zero, to

show f ′
+(z) + f ′

−(z) > 0. The rest of the proof shows that f
(k)
+ (0) + f

(k)
− (0) > 0 for all k ≥ 0.

(2.1.) In this step we provide expressions for the k-th derivatives of R(z) and f−(z). We

can verify that R′(z) = β
α

(

1 + β
α
zR(z)

)

and R(k)(z) =
(

β
α

)2
(

(k − 1)R(k−2)(z) + z R(k−1)(z)
)

,

for k ≥ 2. Therefore, R(0) =
√
2π
2 , R′(0) = β

α
, R(k)(0) =

(

β
α

)2
(k − 1)R(k−2)(0), for k ≥ 2,

R(2k+1)(0) = 2kk!
(

β
α

)2k+1
, for k ≥ 0, R(2k)(0) =

√
2π
2

(2k−1)!
2k−1(k−1)!

(

β
α

)2k
, for k ≥ 1. Similarly, we can

find derivatives of Rα(0). R
(2k+1)
α (0) = 2kk!

(

1
α

)2k+1
, for k ≥ 0, R

(2k)
α (0) =

√
2π
2

(2k−1)!
2k−1(k−1)!

(

1
α

)2k
, for

k ≥ 1. Therefore, for k ≥ 0,

f
(2k)
− (0) = −

(

1− β2k
) (2k − 1)!

√
2π

2k+1(k − 1)!α2k
, f

(2k+1)
− (0) = −

(

1− β2k+1
) 1

2α

2kk!

α2k
.

(2.2.) In this step, we provide expressions for k-th derivatives of f+(z): We can verify that

f ′
+(z) = 1√

2π
R(z) + z

α2 f+(z), f
(k)
+ (z) = 1√

2π
R(k−1)(z) + 1

α2

(

(k − 1)f
(k−2)
+ (z) + zf

(k−1)
+ (z)

)

, for

k ≥ 2. Therefore, f+(0) =
1√
2π

arcsin(α), f ′
+(0) =

1
2 , f

(k)
+ (0) = 1√

2π
R(k−1)(z) + 1

α2 (k − 1)f
(k−2)
+ (0),

for k ≥ 2. Using the formulas for R(k)(0), we can construct the following

f
(2k+1)
+ (0) =

2kk!

α2k





1

2
+

1

2

k
∑

j=1

(2j)!

22jj!j!

(

β2j
)



 for k ≥ 0

f
(2k)
+ (0) =

1√
2π

(2k − 1)!

α2k2k−1(k − 1)!
α





arcsin(α)

α
+

k−1
∑

j=0

22jj!j!

(2j + 1)!

(

β2j+1
)



 for k ≥ 1

(2.3.) Next we show that the odd derivatives of f+(0)+f−(0) are all non-negative. Using previous
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steps, we have f
(2k+1)
+ (0)+ f

(2k+1)
− (0) = 2k−1k!

α2k+1

(

β2k+1 − 1 + α+ α
∑k

j=1
(2j)!
22jj!j!

β2j
)

. Define the fol-

lowing two series: So(k)
def
= β2k+1−1+α+α

∑k
j=1

(2j)!
22jj!j!

β2j , and Lo(k)
def
= α

∑∞
j=k β

2j+1
(

α− (2(j+1))!

22(j+1)(j+1)!(j+1)!
β
)

.

To show the odd derivatives of f+(0) + f−(0) are all non-negative, it suffices to show So(k) is non-

negative. First we show that So(k) = Lo(k) and then we show Lo(k) is non-negative.

(2.3.1.) First we show that So(k) = Lo(k). Notice that Lo(0) = So(0) =
√
1− α2 − (1 − α) ≥ 0.

Also, So(k + 1) − So(k) = −αβ2k+1
(

α− (2(k+1))!

22(k+1)(k+1)!(k+1)!
β
)

= Lo(k + 1) − Lo(k). Therefore, we

must have So(k) = Lo(k).

(2.3.2.) Next we show Lo(k) ≥ 0 for all k. It is easy to verify that (2(j+1))!

22(j+1)(j+1)!(j+1)!
is decreasing in j

and it approaches zero as j → ∞. Therefore, there exist a j̃ ≥ 0 such that α− (2(k+1))!

22(k+1)(k+1)!(k+1)!
β ≥ 0

if and only if j ≥ j̃. Therefore, we know Lo(k) ≥ 0 for k ≥ j̃. Consider any k < j̃. We know Lo(k+

1)−Lo(k) = −αβ2k+1
(

α− (2(k+1))!

22(k+1)(k+1)!(k+1)!
β
)

≥ 0, for k < j̃, and Lo(0) =
√
1− α2− (1−α) ≥ 0.

Therefore, Lo(k) ≥ Lo(0) =
√
1− α2 − (1− α) ≥ 0 for k < j̃. In conclusion, Lo(k) > 0 for all k.

(2.4.) Next we show that the even derivatives of f+(0)+f−(0) are all non-negative. Using previous

steps, we have f
(2k)
+ (0)+f

(2k)
− (0) = 1√

2π

(2k−1)!
α2k2k−1(k−1)!

(

arcsin(α) − π
2

(

1− β2k
)

+ α
∑k−1

j=0
22(j)(j)!(j)!
(2j+1)! β2j+1

)

.

Define the following two series: Se(k)
def
= arcsin(α) − π

2

(

1− β2k
)

+ α
∑k−1

j=0
22jj!j!
(2j+1)!β

2j+1, and

Le(k)
def
=

∑∞
j=k β

2j
(

(

1− β2
)

π
2 − 22jj!j!

(2j+1)!αβ
)

. To show the even derivatives of f+(0)+ f−(0) are all

non-negative, it suffices to show Se(k) is non-negative. First we show that Se(k) = Le(k) and then

we show Le(k) is non-negative.

(2.4.1.) First we show that Se(k) = Le(k). Notice that Se(1) = arcsin(α) = π
2 − arcsin

√
1− α2 =

Le(1). Also, Se(k + 1) − Se(k) = −β2k
(

π
2

(

1− β2
)

− 22kk!k!
(2k+1)!αβ

)

= Le(k + 1) − Le(k). Therefore,

we must have S0(k) = Lo(k).

(2.4.2.) Next we show Le(k) ≥ 0 for all k. It is easy to verify that 22jj!j!
(2j+1)! is decreasing in j and

it approaches zero as j → ∞. Therefore, there exist a j̃ ≥ 0 such that (1 − β2)− 22(k)k!k!
(2k+1)! αβ ≥ 0 if

and only if j ≥ j̃. Therefore, we know Le(k) ≥ 0 for k ≥ j̃. Consider any k < j̃. We know Le(k +

1) − Le(k) = −β2k
(

π
2

(

1− β2
)

− 22(k)k!k!
(2k+1)! αβ

)

≥ 0, for k < j̃, and Le(1) =
π
2 − arcsin

√
1− α2 ≥ 0.

Therefore, Le(k) ≥ Le(1) ≥ 0 for k < j̃. In conclusion, Le(k) > 0 for all k ≥ 1.

Steps (2.) through (2.4.2.) establishes that for z ≥ 0, fφ(z) is increasing in z and it is positive since

µ
σ
is large enough that the probability of negative demand is negligible. Also, together with step

(1.), we have fφ(z) is increasing in z for all z > −µ
σ
+ ǫ and it is positive since µ

σ
is large enough.
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Lemma A.3. Define T (z)
def
=

∫ z

−∞Φ(x)− Φ
(

x
α

)

, and g(z)
def
= Φ(z) − Φα(z), where α and Φ and

Φα (and φ) are defined at the end of proof of Lemma A.1. Also, let β
def
= α√

1−α2
. Then

1. g(α z) =
∫∞
0

∫∞
0 φ(x+ z)βφ(β(x + y)) dy dx,

2. 1
α
T (αz) = 2

∫∞
0

∫∞
0

∫∞
0 φ(x+ z − v)βφ(β(x + y + v)) dy dxdv,

3. T (z)
g(z) is log convex (and hence convex).

Proof of Lemma A.3. Let g0(z) = g(α z) and T0(z) = 1
α
T (α z). To show T (z)

g(z) is log con-

vex, it suffices to show T0(z)
g0(z)

is log convex. First, we simplify g0. Notice that g0(z) = Pr(X1 <

αz,Xt > z), where (X1,Xt) are standard bivariate normal random variables with correlation α.

Hence, g0(z) =
∫ αz

−∞
∫∞
z

1
2π

√
1−α2

exp
(

− 1
2
√
1−α2

(x2 + y2 − 2αxy)
)

dxdy. In this integral, change

the variables as follows: ynew = z − y
α

and xnew = x − z. Then, we can simplify the inte-

gral as follows: g0(z) =
∫∞
0

∫∞
0

β
2π exp

(

−1
2

(

β2(x+ y)2 + (x+ z)2
))

dxdy =
∫∞
0

∫∞
0 βφ(β(x +

y))φ(x + z) dy dx =
∫∞
0 Φ(−β(x))φ(x + z) dy dx. Second, we simplify T0. Taking (X1,Xt)

as defined before, we have: T0(z) = 1
α
T (αz) = 1

α

∫ αz

−∞Φ(x) − Φ
(

x
α

)

=
∫ z

−∞Φ(αx) − Φ(x) dx =
∫ z

−∞ (Pr(X1 < αx)− Pr(Xt < x)) dx =
∫ z

−∞ (Pr(X1 < αx,Xt > x)− Pr(X1 > αx,Xt < x)) dx =
∫ z

−∞ g0(u)−g0(−u) du. Using the simplified version of g0, and by changing the variables of the inte-

gral as follows unew = z−u, we conclude T0(z) =
∫∞
0

∫∞
0 (φ(x+ z − u)− φ(x− z + u)) Φ(−βx) dxdu.

Change the order of integration and integrate with respect to u, we have

T0(z) =
∫∞
0 (Φ(x+ z)− Φ(−x+ z)) Φ(−βx) dx. Replace Φ(x+ z)− Φ(−x+ z) =

∫ x

−x
φ(v + z) dv,

we get T0(z) =
∫∞
0

∫ x

−x
φ(v + z)Φ(−βx) dv dx. Change the variables as follows: x+v

2 = xnew, and

x−v
2 = vnew, we have T0(z) = 2

∫∞
0

∫∞
0 φ(x− v + z)βΦ(−β(x+ v)) dv dx. Expand Φ to its integral

form: T0(z) = 2
∫∞
0

∫∞
0

∫∞
0 φ(x− v + z)βφ(β(x + y + v)) dy dxdv. Third, we know

T0(z)

g0(z)
= 2

∫ ∞

0

∫∞
0

∫∞
0 φ(x− v + z)βφ(β(x + y + v)) dy dx
∫∞
0

∫∞
0 φ(x+ z)βφ(β(x + y)) dy dx

dv

In Lemma A.4, we show that ∂z,z,v log(F ) > 0, where F =
∫∞
0

∫∞
0 βφ(β(x+y+v))φ(x−v+z) dy dx

is the numerator (and also denominator with v = 0) of the above fraction. Hence, we must have,

for every v,
∫

∞

0

∫

∞

0 φ(x−w+z)βφ(β(x+y+w)) dy dx
∫

∞

0

∫

∞

0 φ(x+z)βφ(β(x+y)) dy dx
is log-convex; hence T0(z)

g0(z)
and T (z)

g(z) are log-convex.

Lemma A.4. Define F =
∫∞
0

∫∞
0 βφ(β(x + y + v))φ(x − v + z) dy dx, with parameter β > 0.

Then, ∂z,z,v log(F ) > 0, where ∂ is the partial derivative with respect to the specified parameters.

Proof of Lemma A.4. Define random variables (X,Y ) defined for positive values with the
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probability distribution function f(x, y) = 1
F
βφ(β(x+y+v))φ(x−v+z). Throughout this proof, we

use the symbol E as the expected value operator with respect to distribution of (X,Y ). It is easy to

verify that ∂z log(F ) = v−z−µx and ∂z,z log(F ) = −1+σ2
x, where, µx and σ2

x are mean and variance

of random variable X and depend on parameters v and z. Specifically, µx = 1
F

∫∞
0

∫∞
0 xβφ(β(x +

y + v))φ(x − v + z) dy dx and σ2
x = 1

F

∫∞
0

∫∞
0 (x − µx)

2βφ(β(x + y + v))φ(x − v + z) dy dx.

Define µt as expected value of the X + Y . We can evaluate µt as follows: µt = 1
F

∫∞
0

∫∞
0 (x +

y)βφ(β(x + y + v))φ(x − v + z) dy dx = −v − 1
β2F

∫∞
0

∫∞
0 βφ′(β(x + y + v))φ(x − v + z) dy dx =

−v+ 1
β2F

∫∞
0 βφ(β(x+ v))φ(x− v+ z) dx. Hence, β2(v+µt) =

1
F

∫∞
0 βφ(β(x+ v))φ(x− v+ z) dx,

that we use below. Since, ∂z,z log(F ) = −1 + σ2
x, from definition of σ2

x, ∂z,z,v log(F ) = ∂vσ
2
x =

E
[

(X − µx)
3 − β2(X − µx)

2(X + Y − µt)
]

= E
[

(X − µx)
3 − β2(X − µx)

2(X + Y + v − v − µt)
]

.

We expand parts of this expectation as follow

β2
E
[

β2(x− µx)
2(v + µt)

]

= σ2
xβ

2(v + µt) = σ2
x

1

F

∫ ∞

0
βφ(β(x+ v))φ(x − v + z) dx

E[β2(x− µx)
2(x+ y + v)] =

1

F

∫ ∞

0

∫ ∞

0
−(x− µx)

2βφ′(β(x+ y + v))φ(x − v + z) dy dx

=
1

F

∫ ∞

0
(x− µx)

2βφ(β(x+ v))φ(x − v + z) dx

Let fy(y) be marginal distribution of Y . Notice that fy(0) =
1
F

∫∞
0 βφ(β(x+v))φ(x−v+z) dx. Also

notice that βφ(β(x+v)) φ(x−v+z)
∫

∞

0
βφ(β(x+v)) φ(x−v+z) dx

is the conditional probability distribution function of X given

Y = 0. Hence, E
[

−β2(X − µx)
2(X + Y + v − v − µt)

]

= fy(0)
(

−E[(X − µx)
2|Y = 0] + E[(X − µx)

2]
)

Hence, ∂z,z,v log(F ) = E
[

(X − µx)
3
]

+ fy(0)(−E[(X − µx)
2|Y = 0] + E[(X − µx)

2]).

Notice that (X,Y ) are truncated bivariate normal distribution with a negative correlation. Hence

conditional distribution of (X|Y = 0) second order stochastically dominates marginal distribution

of X. Then since (x − µx)
2 is convex in x, we must have E[(x − µx)

2] > E[(x − µx)
2|Y = 0].

Also, since (X,Y ) are truncated from below, we must have E
[

(x− µx)
3
]

> 0. In conclusion,

∂z,z,v log(F ) > 0.

For the sake of completeness, next, we show that conditional distribution of (X|Y = 0) second order

stochastically dominates marginal distribution of X. Let fx|y(x) and fx(x) denote the conditional

pdf of (X|Y = 0) and marginal pdf of X, respectively, we must have: fx|y(x) =
1
G
βφ(β(x+v))φ(x−

v + z), and fx(x) =
1
F
Φ(−β(x+ v))φ(x − v + z), where G :=

∫∞
0 βφ(β(x + v))φ(x − v + z) dx.

To show (X|Y = 0) second order stochastically dominates X, we must show for any given w > 0,
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we have
∫ w

0

∫ t

0 (fx(x)− fx|y(x)) dxdt > 0. To show this, note that
∫ w

0

∫ t

0
(fx(x)− fx|y(x)) dxdt =

∫ w

0

∫ t

0

(

G

G
fx(x)−

F

F
fx|y(x)

)

dxdt

=

∫ w

0

∫ t

0

∫ ∞

0

(

fx|y(x0)fx(x)− fx(x0)fx|y(x)
)

dx0 dxdt

=
G

F

∫ w

0

∫ t

0

∫ ∞

0

(

Φ(−β(x+ v))

φ(β(x+ v))
− Φ(−β(x0 + v))

φ(β(x0 + v))

)

fx|y(x0)fx|y(x) dx0 dxdt

Since x and x0 are symmetric in the integrand, we can conclude the last line is equal to

=
G

F

∫ w

0

∫ t

0

∫ ∞

t

(

Φ(−β(x+ v))

φ(β(x+ v))
− Φ(−β(x0 + v))

φ(β(x0 + v))

)

fx|y(x0)fx|y(x) dx0 dxdt

Since, in this expression, x < t < x0, and
Φ(−β(x+v))
φ(β(x+v)) is decreasing in x, we must have the integrand is

always positive in the region of integration and hence the integral must be positive. This establishes

that (X|Y = 0) second order stochastically dominates X.

Lemma A.5. Define fθ(z)
def
= T (z) − g(z)

(

z + µ
σ

)

, where T (z) and g(z) are defined in Lemma

A.3. Then

1. fθ(z) = 0 has a unique solution for z > −µ
σ
; Let zf represent this unique solution.

2. f ′
θ(z

f ) > 0.

3. for z < zf , we have fθ(z) < 0 and for z > zf , we have fθ(z) > 0.

Proof of Lemma A.5. In Lemma A.3, we showed that T (z)
g(z) is log-convex. This implies that

T (z)
g(z) − (z + µ

σ
) is convex and has at most two solutions. Note that for, µ

σ
large enough, when

z → −µ
σ
, we have

(

T (z)
g(z) − (z + µ

σ
)
)

→ 0, and ∂z

(

T (z)
g(z) − (z + µ

σ
)
)

→ −1. Also, when z → ∞, we

have
(

T (z)
g(z) − (z + µ

σ
)
)

→ +∞.

In conclusion, at the lower limit, T (z)
g(z) − (z + µ

σ
) is zero and it is decreasing in z and at the upper

limit it is positive. In addition, it is a convex function of z. Hence, it must have a uniques solution

zf > −µ
σ
. Note that fθ(z) = g(z)

(

T (z)
g(z) − (z + µ

σ
)
)

and g(z) > 0. As a result, fθ(z
f ) = 0, and the

sign of fθ(z) is consistent with the sign of T (z)
g(z) − (z + µ

σ
) which is positive, for z > zf and negative

for z < zf . It also follows that f ′
θ(z

f ) > 0.

Lemma A.6. In case of three symmetric buyers, let the expected transfer to buyer x, when she has

reserved capacity Qx and buyer 1 and 2 reserve capacity Q each be denoted Tx+(Qx, Q). Also, let
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the expected transfer from buyer x to other buyers, when she has reserved capacity Qx and buyer 1

and 2 have reserved capacity Q each be Tx−(Qx, Q). Then,

Tx−(Qx, Q) =
∫ Qx

y=−∞ Pr(Dx < y,D1 < Q,D2 > Qx + Q − y) dy +
∫ Qx

y=−∞ Pr(Dx < y,D1 <

Q,D1 +D2 > 2Q+Qx − y) dy +
∫ Qx

y=−∞ Pr(Dx < y,D1 > Q,D2 > Q,D1 +D2 > Qx + 2Q− y) dy,

d
dQx

Tx−(Qx, Q) = Pr(Dx < Qx)−Pr(Di < Qx,Dx+D1 < Qx+Q,Dx+D1+D2 < Qx+2Q) > 0,

Tx+(Qx, Q) =
∫∞
y=Qx

Pr(Dx > y,D1 > Q,D2 < Q+Qx − y) dy +
∫∞
y=Qx

Pr(Dx > y,D1 < Q,D1 +

D2 < 2Q+Qx − y) dy;

d
dQx

Tx+(Qx, Q) = −Pr(Dx > Qx,D1 > Q,Dx +D2 < Q+Qx)−Pr(Dx > Qx,D1 < Q,Dx+D1 +

D2 < 2Q+Qx) < 0.

Proof of Lemma A.6. By definition of Tx−(Qx, Q), we have

Tx− =
1

2
E[(Qx −Dx)× I(Dx < Qx,D1 < Q,D2 > Q)× I(Dx +D2 > Qx +Q)] (A.1)

+
1

2
E[(D2 −Q)× I(Dx < Qx,D1 < Q,D2 > Q)× I(Dx +D2 < Qx +Q)] (A.2)

+
1

2
E[(Qx −Dx)× I(Dx < Qx,D1 < Q,D2 > Q)× I(Dx +D1 +D2 > Qx + 2Q)] (A.3)

+
1

2
E[(D1 +D2 − 2Q)× I(Dx < Qx,D1 < Q,D2 > Q)× I(D1 +D2 > 2Q,Dx +D1 +D2 < Qx + 2Q)]

(A.4)

+ E[(Qx −Dx)× I(Dx < Qx,D1 > Q,D2 > Q)× I(Dx +D1 +D2 > Qx + 2Q)] (A.5)

+ E[(D1 +D2 − 2Q)× I(Dx < Qx,D1 > Q,D2 > Q)× I(Dx +D1 +D2 < Qx + 2Q)] (A.6)

+
1

2
E[(Qx −Dx)× I(Dx < Qx,D1 > Q,D2 < Q)× I(Dx +D1 > Qx +Q)] (A.7)

+
1

2
E[(D1 −Q)× I(Dx < Qx,D1 > Q,D2 < Q)× I(Dx +D1 < Qx +Q)] (A.8)

+
1

2
E[(Qx −Dx)× I(Dx < Qx,D1 > Q,D2 < Q)× I(Dx +D1 +D2 > Qx + 2Q)] (A.9)

+
1

2
E[(D1 +D2 − 2Q)× I(Dx < Qx,D1 > Q,D2 < Q)× I(D1 +D1 > 2Q,Dx +D1 +D2 < Qx + 2Q)]

(A.10)

We explain in detail how we simplify the first line (A.1) and the second line (A.2) in the above sum.

The details of how we simplify the remaining lines would be very similar to the first and second

line and we omit the details.

Suppose φ(dx, d1, d2) is joint p.d.f. of (Dx,D1,D2). Focusing on the first line in the sum (A.1), note

that
∫ x

dx=−∞
∫ Q

d1=−∞
∫∞
d2=Qx+Q−dx

φ(dx, d1, d2) dd2 dd1 ddx = Pr(Dx < x,D1 < Q,Dx +D2 > Qx +
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Q). Hence, d
dxPr(Dx < x,D1 < Q,Dx +D2 > Qx +Q) =

∫ Q

d1=−∞
∫∞
d2=Qx+Q−x

φ(x, d1, d2) dd2 dd1.

Hence,

E[(Qx −Dx)× I(Dx < Qx,D1 < Q,D2 > Q)× I(Dx +D2 > Qx +Q)]

=

∫ Qx

x=−∞
(Qx − x)

∫ Q

d1=−∞

∫ ∞

d2=Qx+Q−x

φ(di, d1, d2) dd2 dd1 dx

=

∫ Qx

x=−∞
(Qx − x)

d

dx
Pr(Dx < x,D1 < Q,Dx +D2 > Qx +Q) dx

=

∫ Qx

x=−∞
Pr(Dx < x,D1 < Q,D1 +D2 > Qx +Q) dx

Similarly, focusing on the second line (A.2) of the sum:

E[(D2 −Q)× I(Dx < Qx,D1 < Q,D2 > Q)× I(Dx +D2 < Qx +Q)]

=

∫ ∞

y=Q

Pr(D1 < Q,D2 > y,Dx +D2 < Qx +Q) dy

=

∫ Qx

x=−∞
Pr(D1 < Q,D2 > Qx +Q− x,Dx +D2 < Qx +Q) dx

As a result, the sum of the first line (A.1) and the second line (A.2) of the sum is

E[(Qx −Dx)× I(Dx < Qx,D1 < Q,D2 > Q)× I(Dx +D2 > Qx +Q)]

+ E[(D2 −Q)× I(Dx < Qx,D1 < Q,D2 > Q)× I(Dx +D2 < Qx +Q)]

=

∫ Qx

x=−∞
Pr(Dx < x,D1 < Q,Dx +D2 > Qx +Q) + Pr(D1 < Q,D2 > Qx +Q− x,Dx +D2 < Qx +Q) dx

=

∫ Qx

x=−∞
Pr(Dx < x,D1 < Q,D2 > Qx +Q− x) dx

Hence, the derivative of the first and the second term of the sum is

d

dQx
E[(Qx −Dx)× I(Dx < Qx,D1 < Q,D2 > Q)× I(Dx +D2 > Qx +Q)]

+
d

dQx
E[(D2 −Q)× I(Dx < Qx,D1 < Q,D2 > Q)× I(Dx +D2 < Qx +Q)]

= Pr(Dx < Qx,D1 < Q,D2 > Q) +

∫ Qx

x=−∞

d

dQx
Pr(Dx < x,D1 < Q,D2 > Qx +Q− x) dx

= Pr(Dx < Qx,D1 < Q,Dx +D2 > Qx +Q)
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Sum of third line (A.3), and fourth line (A.4) is

E[(Qx −Dx)× I(Dx < Qx,D1 < Q,D2 > Q)× I(Dx +D1 +D2 > Qx + 2Q)]

+ E[(D1 +D2 − 2Q)× I(Dx < Qx,D1 < Q,D2 > Q)× I(D1 +D2 > 2Q,Dx +D1 +D2 < Qx + 2Q)]

=

∫ Qx

x=−∞
Pr(Dx < x,D1 < Q,Dx +D1 +D2 > Qx + 2Q)

+ Pr(D1 < Q,Dx +D1 +D2 < Qx + 2Q,D1 +D2 > 2Q+Qx − x) dx

=

∫ Qx

x=−∞
Pr(Dx < x,D1 < Q,D1 +D2 > 2Q+Qx − x) dx

Therefore, derivative of third line (A.3), and fourth line (A.4) is

d

dQx
E[(Qx −Dx)× I(Dx < Qx,D1 < Q,D2 > Q)× I(Dx +D1 +D2 > Qx + 2Q)]

+
d

dQx
E[(D1 +D2 − 2Q)× I(Dx < Qx,D1 < Q,D2 > Q)× I(D1 +D2 > 2Q,Dx +D1 +D2 < Qx + 2Q)]

= Pr(Dx < Qx,D1 < Q,D1 +D2 > 2Q) +

∫ Qx

x=−∞

d

dQx
Pr(Dx < x,D1 < Q,D1 +D2 > 2Q+Qx − x) dx

= Pr(Dx < Qx,D1 < Q,Dx +D1 +D2 > 2Q+Qx)

Sum of fifth line (A.5), and sixth line (A.6) is

E[(Qx −Dx)× I(Dx < Qx,D1 > Q,D2 > Q)× I(Dx +D1 +D2 > Qx + 2Q)]

+ E[(D1 +D2 − 2Q)× I(Dx < Qx,D1 > Q,D2 > Q)× I(Dx +D1 +D2 < Qx + 2Q)]

=

∫ Qx

x=−∞
Pr(Dx < x,D1 > Q,D2 > Q,Dx +D1 +D2 > Qx + 2Q)

+ Pr(D1 > Q,D2 > Q,Dx +D1 +D2 < Qx + 2Q,D1 +D2 > 2Q+Qx − x) dx

=

∫ Qx

x=−∞
Pr(Dx < x,D1 > Q,D2 > Q,D1 +D2 > Qx + 2Q− x) dx

Derivatives of fifth line (A.5), and sixth line (A.6) is

d

dQx
E[(Qx −Dx)× I(Dx < Qx,D1 > Q,D2 > Q)× I(Dx +D1 +D2 > Qx + 2Q)]

+
d

dQx
E[(D1 +D2 − 2Q)× I(Dx < Qx,D1 > Q,D2 > Q)× I(Dx +D1 +D2 < Qx + 2Q)]

= Pr(Dx < Qx,D1 > Q,D2 > Q,D1 +D2 > 2Q) dx

+

∫ Qx

x=−∞

d

dQx
Pr(Dx < x,D1 > Q,D2 > Q,D1 +D2 > Qx + 2Q− x) dx

= Pr(Dx < Qx,D1 > Q,D2 > Q,Dx +D1 +D2 > 2Q+Qx)
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Because of the symmetry of the buyers, the sum of lines (A.7) to (A.10) are equal to the sum of

line (A.1) to (A.4). As a results, we can summarize that

Tx−(Qx, Q) =

∫ Qx

x=−∞
Pr(Dx < x,D1 < Q,D2 > Qx +Q− x) dx

+

∫ Qx

x=−∞
Pr(Dx < x,D1 < Q,D1 +D2 > 2Q+Qx − x) dx

∫ Qx

x=−∞
Pr(Dx < x,D1 > Q,D2 > Q,D1 +D2 > Qx + 2Q− x) dx

Also,

d

dQx
Tx−(Qx, Q) = Pr(Dx < Qx,D1 < Q,Dx +D2 > Qx +Q)

+ Pr(Dx < Qx,D1 < Q,Dx +D1 +D2 > 2Q+Qx)

+ Pr(Dx < Qx,D1 > Q,D2 > Q,Dx +D1 +D2 > 2Q+Qx)

= Pr(Dx < Qx,D1 < Q,Dx +D2 > Qx +Q) + Pr(Dx < Qx,D2 > Q,Dx +D1 +D2 > 2Q+Qx

= Pr(Dx < Qx,Dx +D1 +D2 > 2Q+Qx)

+ Pr(Dx < Qx,Dx +D2 > Q+Qx,Dx +D1 +D2 < 2Q+Qx)

= Pr(Dx < Qx)− Pr(Dx < Qx,Dx +D1 < Qx +Q,Dx +D1 +D2 < Qx + 2Q)

The details of obtaining Tx+(Qx, Q) and its derivative is very similar and we omit the details. Here,

we present the mathematical definition Tx+(Qx, Q).

Tx+ = E[(Dx −Qx)× I(Dx > Qx,D1 > Q,D2 < Q)× I(Dx +D2 < Qx +Q)] (A.11)

+ E[(Q−D2)× I(Dx > Qx,D1 > Q,D2 < Q)× I(Dx +D2 > Qx +Q)] (A.12)

+ E[(Dx −Qx)× I(Dx > Qx,D1 > Q,D2 < Q)× I(Dx +D1 +D2 < Qx + 2Q)] (A.13)

+ E[(2Q−D1 −D2)× I(Dx > Qx,D1 > Q,D2 < Q)× I(D1 +D2 < 2Q,Dx +D1 +D2 > Qx + 2Q)]

(A.14)

+ E[(Dx −Qx)× I(Dx > Qx,D1 < Q,D2 < Q)× I(Dx +D1 +D2 < Qx + 2Q)] (A.15)

+ E[(2Q−D1 −D2)× I(Dx > Qx,D1 < Q,D2 < Q)× I(Dx +D1 +D2 > Qx + 2Q)] ,

(A.16)
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A.2 Proofs of Theorems and Propositions of the Paper

Proof of Proposition 1. We provide the first order condition to maximize ΠBi
by choosing Qi.

Recall that

ΠBi
= −rQi + (v − w)Si(Qi) + (1− θs)θ(v − w)Ti(Qi, Qj) + (1− θs)(1 − θ)(v − w)Tj(Qj, Qi) ,

Therefore, using Lemma A.1, we have

1

v − w

dΠBi

dQi
= − r

v − w
+ Pr(Di > Qi) + (1− θs)θ

dTi(Qi, Qj)

dQi
+ (1− θs)(1− θ)

dTj(Qj , Qi)

dQi

= − r

v − w
+ Pr(Di > Qi)− (1− θs)θPr(Di > Qi,Dt < Qi +Qj)

+ (1− θs)(1 − θ)Pr(Di < Qi,Dt > Qi +Qj)

= −r̃ +Hi(Qi, Qi +Qj) ,

where r̃ = r
v−w

. Therefore, one can find the equilibrium order quantities by solving Hi(Qi, Qt) =

r̃ = Hj(Qj , Qt), and Qi+Qj = Qt. For symmetric buyers, since Qi = Qj , the equilibrium condition

reduces to Hi(Qi, 2Qi) = r̃.

Lemma A.7. For symmetric buyers, let Qi be the equilibrium reservation quantity of the two

buyers. That is, let Qi satisfies the equilibrium conditions Hi(Qi, 2Qi) = r̃. Then,

dQi

dθ
= − dHi

dθ

1
dHi

dQi
+ 2 dHi

dQt

< 0

dQi

dθs
= − dHi

dθs

1
dHi

dQi
+ 2 dHi

dQt

and when θ = 0,
dQi

dθs
< 0

dQi

dr̃
=

1
dHi

dQi
+ 2 dHi

dQt

< 0 .

Proof of Lemma A.7. First, we recall the equilibrium condition in (1.). Then, we use envelop

theorem and take the derivatives of the equilibrium condition with respect to θ, θs, and r̃, in (1.1.),

(1.2.), and (1.3.), respectively. Hence, we would come up with expressions for dQi

dθ , dQi

dθs
, and dQi

dr̃ .

In (2.) we show that dQi

dθ , and dQi

dr̃ are negative, and also for θ = 0, dQi

dθs
is negative.

(1.) Recall that the equilibrium conditions are Hi(Qi, Qt) = r̃ = Hj(Qj , Qt) and Qi +Qj = Qt.

(1.1.) Thus, using envelop theorem, for a fixed r̃ and θs, we can take the derivatives of the above
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conditions with respect to θ as follows:

dHi

dθ
+

dHi

dQi

dQi

dθ
+

dHi

dQt

dQt

dθ
= 0

dHj

dθ
+

dHj

dQj

dQj

dθ
+

dHj

dQt

dQt

dθ
= 0

dQi

dθ
+

dQj

dθ
=

dQt

dθ

Thus, we have three equations with three unknown variables dQi

dθ ,
dQj

dθ , and dQt

dθ . Therefore, we

can solve for dQi

dθ as follows





dHi

dQi
+

dHi

dQt

dHj

dQj

1
dHj

dQj
+

dHj

dQt





dQi

dθ
= − dHi

dθ











1−

dHi
dQt
dHi
dθ

dHj
dQj
dHj
dθ

+

dHj
dQt
dHj
dθ











If we consider symmetric buyers, we can simplify the above dQi

dθ = − dHi

dθ
1

dHi
dQi

+2
dHi
dQt

.

(1.2.) Similarly, dQi

dθs
= − dHi

dθs
1

dHi
dQi

+2
dHi
dQt

.

(1.3.) Also, from equilibrium conditions,

dHi

dQi

dQi

dr̃
+

dHi

dQt

dQt

dr̃
= 1

dHj

dQj

dQj

dr̃
+

dHj

dQt

dQt

dr̃
= 1

dQi

dr̃
+

dQj

dr̃
=

dQt

dr̃

Therefore, dQi

dr̃ = 1
dHi
dQi

+2
dHi
dQt

.

(2.) Next, we determine the signs of the derivatives we found in the previous steps. In (2.1.) we

show dHi(Qi,Qt)
dθ < 0. In (2.2.) we show dHi(Qi,Qt)

dθs
< 0 when θ = 0. In (2.3), we show Hi(Qi, Qt) is

decreasing in Qi. Finally, in (2.4.) we show Hi(Qi, Qt) is decreasing in Qt.

(2.1.) Note that dHi(Qi,Qt)
dθ = −(1 − θs) (Pr(Di < Qi,Dt > Qt) + Pr(Di > Qi,Dt < Qt)) < 0.

Therefore, Hi(Qi, Qt) is decreasing in θ.

(2.2.) When θ = 0, dHi(Qi,Qt)
dθs

= −Pr(Di < Qi,Dt > Qt) < 0. Therefore, Hi(Qi, Qt) is decreasing

in θs when θ = 0.

(2.3.) Rearranging Hi(Qi, Qt), we have

Hi(Qi, Qt) =(1− θs)(1− θ)Pr(Dt > Qt) + (1− (1− θs)(1− θ))Pr(Di > Qi,Dt > Qt)

+ (1− (1− θs)θ)Pr(Di > Qi,Dt < Qt) ,
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which is clearly decreasing in Qi.

(2.4.) We can also rearrange Hi(Qi, Qt) as follows:

Hi(Qi, Qt) =(1− θs)(1− θ)Pr(Di < Qi,Dt > Qt) + (1− (1− θs)θ)Pr(Di > Qi)

+ (1− θs)θPr(Di > Qi,Dt > Qt) ,

which is clearly decreasing in Qt.

(3.) Using (1.) and (2.) together, we must have:

dQi

dθ
= − dHi

dθ

1
dHi

dQi
+ 2 dHi

dQt

< 0

dQi

dθs
= − dHi

dθs

1
dHi

dQi
+ 2 dHi

dQt

and when θ = 0,
dQi

dθs
< 0

dQi

dr̃
=

1
dHi

dQi
+ 2 dHi

dQt

< 0 .

Proof of Theorem 1. Fix θs to any number in interval [0, 1] and consider optimization

max(r̃, θ){Πs|r̃ ∈ [0, 1], θ ∈ [0, 1]}. First in (1.), we argue that in this optimization, r̃ is an in-

terior solution and hence must satisfy the first order condition. Then in (2.), we show that the

objective function Πs is decreasing in θ for any r̃ that satisfies the first order condition, which

proves our result.

(1.) We show that optimal capacity reservation fee r is an interior solution. It is easy to verify that

for any given θ and θs, when r̃ = 0, we have Qi = ∞ and Πs = −∞ and for r̃ = 1, we have Qi = 0

and Πs = 0. Therefore, we know optimal r̃ is an interior solution and it must satisfy the first order

condition.

(2.) Next, we write the profit function of the supplier for symmetric buyers and then using Lemma

A.7, we write the derivatives of the suppliers’ profit function with respect to r̃ and θ.
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(2.1.) In the symmetric case, since Qi = Qj, we can simplify the supplier’s profit function as follows:

Πs = (r − h)Qt + (w − c)E
[

min(Qt,Dt)
]

+ θs(v − w) (Ti(Qi, Qj) + Tj(Qj , Qi))

= 2 (r − h)Qi + 2(w − c)E
[

min(Qi,
Dt

2
)
]

+ θs(v − w)

(

2

∫ Qi

−∞
Pr(Di < x) dx−

∫ 2Qi

−∞
Pr(Dt < x) dx

)

= 2 (r − h)Qi + 2(w − c)(Qi −
∫ Qi

−∞
Pr(Dt < 2x) dx)

+ 2θs(v − w)

(∫ Qi

−∞
Pr(Di < x) dx−

∫ Qi

−∞
Pr(Dt < 2x) dx

)

Therefore,

1

2(v − w)
Πs =

(

r̃ − h

v − w

)

Qi +
w − c

v − w
(Qi −

∫ Qi

−∞
Pr(Dt < 2x) dx)

+ θs

(
∫ Qi

−∞
Pr(Di < x) dx−

∫ Qi

−∞
Pr(Dt < 2x) dx

)

.

(2.2.) Using Lemma A.7, we can write the derivative of Πs with respect to r̃ as follows:

1

2

1

v − w

dΠs

dr̃
≡

Qi +

((

r̃ − h

v − w

)

+
w − c

v − w
Pr(Dt > 2Qi) + θs (Pr(Dt > 2Qi)− Pr(Di > Qi))

)

dQi

dr̃

(2.3.) Using Lemma A.7, we can write the derivative of Πs with respect to θ as follows:

1

2

1

v − w

dΠs

dθ
=

((

r̃ − h

v − w

)

+
w − c

v − w
Pr(Dt > 2Qi) + θs (Pr(Dt > 2Qi)− Pr(Di > Qi))

)

dQi

dθ

=

(

1

2(v − w)

dΠs

dr̃
−Qi

) dQi

dθ
dQi

dr̃

= − dHi

dθ

1

2

1

v − w

dΠs

dr̃
+

dHi

dθ
Qi

(3.) Finally, we argue that since the optimal r̃ should satisfy the first order condition, Πs is de-

creasing in θ. Note that in (2.3) we have shown that 1
2

1
v−w

dΠs

dθ = − dHi

dθ
1
2

1
v−w

dΠs

dr̃ + dHi

dθ Qi.

Since the optimal r̃ is an interior solution, it must satisfy the first order condition dΠs

dr̃ = 0. Hence,

for any r̃ that satisfies the first order condition, we have 1
2

1
v−w

dΠs

dθ = dHi

dθ Qi < 0.

The last inequality is true because in the proof of Lemma A.7 we showed that dHi

dθ < 0. Hence, the

supplier’s profit function is decreasing in θ for any r̃ that satisfies the first order condition. Hence,

θ = 0 results in highest profits for the supplier.
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Lemma A.8. Consider problem maxzi
{

Π0
s(zi) | zi ≥ −µ

σ

}

, where

Π0
s(z)

def
= sl

(

z +
µ

σ

)

−mrΦα(z)
(

z +
µ

σ

)

− (1−mr)

∫ z

−∞
Φ
( y

α

)

dy .

Then

1. Since µ
σ
is large enough such that the probability of negative demand is negligible, there is a

unique solution z0 to this optimization.

2. z0 is decreasing in mr, and increasing in sl.

3. z0 can arbitrary get close to ∞ when sl is close enough to 1 and mr is close enough to zero.

4. z0 can arbitrary get close to −µ
σ
when sl is small enough.

5. If z0 < zf , then zi = z0 and θs = 0 is the optimal solution of Problem 0.

6. If z0 ≥ zf , then zi = zf and θs = [0, 1] is the optimal solution of Problem 0.

Proof of Lemma A.8.

The derivative of the objective function Π0
s(zi) with respect to zi is

dΠ0
s(zi)
dzi

= −(1−Φ( z
α
))H0 (zi),

where H0(z)
def
= mr

(

Φ′

α(z)(z+
µ
σ
)

1−Φ( z
α
) +

Φα(z)−Φ( z
α
)

1−Φ( z
α
)

)

+ (1− sl)
1

1−Φ( z
α
) − 1.

By Lemma A.2, (i)
(

Φ′

α(z)(z+
µ
σ
)

1−Φ( z
α
) +

Φα(z)−Φ( z
α
)

1−Φ( z
α
)

)

is positive and increasing in z; (ii) 1
1−Φ( z

α
) is positive

and increasing in z. Hence H0(z) is increasing in z. Also note that since µ
σ
is large enough such

that the probability of negative demand is negligible, we have limz→−µ
σ
H0(z) = −sl. Also we

can verify limz→∞H0(z) = ∞. Hence H0(z) = 0 has a unique solution z0. Also since both
(

Φ′

α(z)(z+
µ
σ
)

1−Φ( z
α
) +

Φα(z)−Φ( z
α
)

1−Φ( z
α
)

)

and 1
1−Φ( z

α
) are increasing in z, the solution z0 is decreasing in mr and

increasing in sl. Also, z
0 can arbitrary get close to ∞ when sl is close enough to 1 and mr is close

enough to 0 and z0 can arbitrary get close to −µ
σ
when either sl is small enough.

Next, we show if z0 < zf , then zi = z0 and θs = 0 is the optimal solution of Problem 0.

Suppose z0 < zf . Note that for any zi ≤ zf ,

Π0
s(zi) ≤ max

zi

{

Π0
s(zi) | zi ≤ zf

}

= Π0
s(z

0) (A.17)

Notice that the left hand side expression Π0
s(zi) is the objective function of Problem 0. Since by

Lemma A.5, fθ(z
0) < 0, we know that (zi = z0 and θs = 0) is a feasible solution of Problem 1

and by this feasible solution, the objective function achieves its upper bound which is the right

hand side expression Π0
s(z

0). Hence, (zi = z0 and θs = 0) is optimal solution of Problem 0. Also

since for any zi < zf , we have θ ∈ (0, 1] are not feasible solutions of Problem 0, and for zi = zf ,
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Π0
s(z

f ) < Π0
s(z

0), we know θ ∈ (0, 1] is not optimal.

Finally, we show if z0 ≥ zf , then (zi = zf and θs = [0, 1]) is the optimal solution of Problem 0.

Suppose z0 ≥ zf . Since the derivative of Π0
s(zi) with respect to zi is a negative number times an

increasing function H0(zi) (as shown earlier), and z0 is the solution to H0(z0) = 0, we know that

the objective function Π0
s(zi) is increasing in zi for any zi ≤ z0. Hence, the solution to optimization

maxzi
{

Π0
s(zi) | zi ≤ zf

}

is zi = zf . Note that for any zi ≥ zf ,

Π0
s(zi) ≤ max

zi

{

Π0
s(zi) | zi ≤ zf

}

= Π0
s(z

f )

Notice that the left hand side expression Π0
s(zi) is the objective function of Problem 0. Since by

Lemma A.5, fθ(z
f ) = 0, we know that (zi = zf and θs = [0, 1]) are feasible solutions of Problem 0

and by these feasible solutions, the objective function achieves its upper bound which is the right

hand side expression Π0
s(z

f ). Hence, (zi = zf and θs = [0, 1]) are optimal solutions of Problem 0.

Lemma A.9. Consider optimization maxzi
{

Π0
s(zi) +mrfθ(zi) | zi ≥ −µ

σ

}

. Then,

1. Since µ
σ
is large enough such that the probability of negative demand is negligible, there is a

unique solution z1 to this optimization.

2. z1 is decreasing in mr and increasing in sl.

3. z1 can arbitrary get close to ∞ when mr is close enough to zero and sl is close enough to 1.

4. z1 can arbitrary get close to −µ
σ
when sl is small enough.

5. If z1 > zf , then zi = z1 and θs = 1 is the optimal solution of Problem 1.

6. If z1 ≤ zf , then zi = zf and θs = [0, 1] is the optimal solution of Problem 1.

7. It is not possible to have z1 ≤ zf ≤ z0.

Proof of Lemma A.9. The derivative of the objective function with respect to zi is
d(Π0

s(zi)+mrfθ(zi))
dzi

=

−(1−Φ( z
α
))H1 (zi), where, H

1(z)
def
= mr

φ(z)(z+µ
σ
)

1−Φ( z
α
) +(1−sl)

1
1−Φ( z

α
)−1. By Lemma A.2, we know (i)

φ(z)(z+µ
σ
)

1−Φ( z
α
) is increasing in z; (ii) 1

1−Φ( z
α
) is increasing in z. Hence H1(z) is increasing in z. Also, since

µ
σ
is large enough such that the probability of negative demand is negligible, limz→−µ

σ
H1(z) = −sl

and limz→∞H1(z) = ∞. Hence, H1(z) = 0 has a unique solution z1. Also, since both
φ(z)(z+µ

σ
)

1−Φ( z
α
)

and 1
1−Φ( z

α
) are increasing and positive, z1 should be decreasing in mr and increasing in sl. Also, z

1

can arbitrary get close to −µ
σ
when mr is small enough and sl is large enough and z1 can arbitrary

get close to ∞ when either mr is large enough or sl is small enough.

Next, we show if z1 > zf , then zi = z1 and θs = 1 is the optimal solution of Problem 1.
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Suppose z1 > zf . Note that for any given θs ∈ [0, 1], and for any zi ≥ zf ,

Π0
s(zi) +mrθsfθ(zi) ≤ Π0

s(zi) +mrfθ(zi) ≤ max
zi

{

Π0
s(zi) +mrfθ(zi) | zi ≥ zf

}

= Π0
s(z

1) +mrfθ(z
1)

(A.18)

Notice that the left hand side expression Π0
s(zi) +mrθsfθ(zi) is the objective function of Problem

1. Since by Lemma A.5, fθ(z
1) > 0, we know that (zi = z1 and θs = 1) is a feasible solution of

Problem 1 and by this feasible solution, the objective function achieves its upper bound which is

the right hand side expression Π0
s(z

1) +mrfθ(z
1). Hence, (zi = z1 and θs = 1) is optimal solution

of Problem 1. Also since for θ ∈ [0, 1) and zi > zf , the first inequality in (A.18) is strict, θ < 1 is

not optimal.

Finally, we show if z1 ≤ zf , then (zi = zf and θs = [0, 1]) is the optimal solution of Problem 1.

Suppose z1 ≤ zf . Since the derivative of Π0
s(zi)+mrfθ(zi) is a negative number times an increasing

function H1(z) (as shown earlier), and z1 is the solution to H1(z1) = 0, we know that the objective

function Π0
s(zi) +mrfθ(zi) is decreasing in zi for any zi ≥ z1. Hence, the solution to optimization

maxzi
{

Π0
s(zi) +mrfθ(zi) | zi ≥ zf

}

is zi = zf . Note that for any given θs ∈ [0, 1], and for any

zi ≥ zf ,

Π0
s(zi) +mrθsfθ(zi) ≤ Π0

s(zi) +mrfθ(zi) ≤ max
zi

{

Π0
s(zi) +mrfθ(zi) | zi ≥ zf

}

= Π0
s(z

f )

Notice that the left hand side expression Π0
s(zi) +mrθsfθ(zi) is the objective function of Problem

1. Since by Lemma A.5, fθ(z
f ) = 0, we know that (zi = zf and θs = [0, 1]) are feasible solutions of

Problem 1 and by these feasible solutions, the objective function achieves its upper bound which

is the right hand side expression Π0
s(z

f ). Hence, (zi = zf and θs = [0, 1]) are optimal solutions of

Problem 1.

Next, we show that it is not possible to have z1 ≤ zf ≤ z0. Suppose to the contrary we have

z1 ≤ zf ≤ z0. Also note that H0(zf ) − H1(zf ) = mr
f ′

θ
(zf )

1−Φ( z
f

α
)
. Therefore, since both H1(z) and

H0(z) are increasing in z and by Lemma A.5, f ′
θ(z

f ) > 0 we must have 0 = H0(z0) ≥ H0(zf ) >

H1(zf ) ≥ H1(z1) = 0, which is a contradiction.

Proof of Theorem 2 and Proposition 2. First, we introduce the optimization problem of the

supplier and then transform that to an equivalent optimization problem. Then we explain how we

solve the equivalent optimization.
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Supplier’s Optimization Problem

From Theorem 1, we know optimal θ = 0. Hence, we set θ = 0 and maximize the supplier’s profit

function by choosing θs and r̃. That is the supplier’s optimization problem is max(r̃, θs){Πs|r̃ ∈

[0, 1], θs ∈ [0, 1]}, assuming that θ = 0 and that Qi satisfies the equilibrium condition.

Knowing optimal θ = 0 and for symmetric buyers, the equilibrium condition simplifies to

r̃ = Pr(Di > Qi) + (1− θs)Pr(Di < Qi,Dt > 2Qi) .

Since the right hand side is decreasing in Qi, there is a one to one correspondence between r̃

and Qi for any given θs. Hence, instead of optimizing Πs for θs and r̃, we can optimize for θs

and Qi or equivalently for θs and zi
def
= Qi−µ

σ
. In the profit function of the supplier, we set

r̃ = Pr(Di > Qi) + (1 − θs)Pr(Di < Qi,Dt > 2Qi), and zi =
Qi−µ

σ
. Assuming bivariate normal

demand distribution, the supplier profit function reduces to Πs = 2σ(v − c)
(

Π0
s(zi) + θsmrfθ(zi)

)

.

Hence, the supplier optimization problem is equivalent to

Problem S: max(zi, θs){Π0
s(zi) +mrθsfθ(zi)|zi ≥ −µ

σ
, θs ∈ [0, 1]}.

Next, we explain how we solve Problem S.

Solution of Problem S

We divide the feasible region of Problem S into two regions: (i) fθ(zi) ≥ 0 and (ii) fθ(zi) ≤ 0.

Hence instead of solving Problem S, we solve two optimizations:

Problem 0: maxzi,θs
{

Π0
s(zi) +mrθsfθ(zi) | fθ(zi) ≤ 0 , zi ≥ −µ

σ
, θs ∈ [0, 1]

}

,

Problem 1: maxzi,θs
{

Π0
s(zi) +mrθsfθ(zi) | fθ(zi) ≥ 0 , zi ≥ −µ

σ
, θs ∈ [0, 1]

}

.

The optimal solution of Problem S, can be obtained by comparing the optimal solutions of Problem

0 and Problem 1 together and choosing the better one. In the following we outline the remainder

of the proof.

1. Since Π0
s(zi) and fθ(zi) are not functions of θs, in Problem 0, the optimal solutions θs and zi

should satisfy: either (θs = 0 and fθ(zi) < 0) or (θs = [0, 1] and fθ(zi) = 0). In other words,

for Problem 0, fθ(zi)θs = 0.

2. Since Π0
s(zi) and fθ(zi) are not functions of θs, in Problem 1, the optimal solutions θs and zi

satisfy (θs = 1 and fθ(zi) > 0) or (θs = [0, 1] and fθ(zi) = 0).

3. We establish in Lemma A.5 that fθ(zi) = 0 has a unique solution zf > −µ
σ
and fθ(z) < 0 if

and only if z < zf . Hence, we can write Problem 0 and Problem 1 as follows:
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Problem 0: maxzi,θs
{

Π0
s(zi) | − µ

σ
≤ zi ≤ zf , θs ∈ [0, 1], θsfθ(zi) = 0

}

,

Problem 1: maxzi,θs
{

Π0
s(zi) +mrθsfθ(zi) | zi ≥ zf , θs ∈ [0, 1]

}

.

4. We establish in Lemma A.8 that the relaxed constrained optimization maxzi
{

Π0
s(zi) | zi ≥ −µ

σ

}

has a unique solution, which we call z0. In that lemma we show if z0 < zf , then zi = z0 and

θs = 0 is the optimal solution of Problem 0 and if z0 ≥ zf , then (zi = zf and θs ∈ [0, 1]) are

the optimal solutions of Problem 0

5. We establish in Lemma A.9 that the relaxed constrained optimization maxzi
{

Π0
s(zi) +mrfθ(zi) | zi ≥ −µ

σ

}

has a unique solution, which we call z1. In that lemma, we show if z1 > zf , then zi = z1,

and θs = 1 is the optimal solution of Problem 1 and if z1 < zf , then zi = zf and θs ∈ [0, 1] is

the optimal solution of Problem 1.

6. Next we characterize the optimal solution of Problem S, using Lemma A.8, and Lemma A.9.

There are four possibilities:

(a) If z0 < zf and z1 ≤ zf , then zi = z0 and θs = 0 is the optimal solution of Problem S.

This is because, in this case, (i) optimal solution of Problem 0 is zi = z0 and θs = 0, (ii)

optimal solutions of Problem 1 are (zi = zf and θs = [0, 1]) which are feasible solutions

of Problem 0.

(b) If z0 ≥ zf and z1 > zf , then zi = z1 and θs = 1 is the optimal solution of Problem S.

This is because, in this case, (i) optimal solutions of Problem 0 are zi = zf and θs = [0, 1]

which are feasible solutions of Problem 1, (ii) optimal solution of Problem 1 is (zi = z1

and θs = 1).

(c) If z0 < zf and z1 > zf , then either (zi = z1 and θs = 1) or (zi = z0 and θs = 0) is

the optimal solution of Problem S. This is because, in this case, (i) optimal solution of

Problem 0 is zi = z0 and θs = 0, (ii) optimal solution of Problem 1 is (zi = z1 and

θs = 1). Therefore, θs = 0 or θs = 1 should be optimal solution of Problem S.

(d) We establish in Lemma A.9 that it is not possible to have (z0 ≥ zf and z1 ≤ zf ).

7. When sl is small enough, using Lemma A.8, and Lemma A.9, z1 and z0 both become smaller

than zf (which does not depend on sl or mr). Hence θs = 0 is optimal solution of Problem

S as discussed in the previous step.

8. Similarly, when mr is small enough and sl is large enough, using Lemma A.8, and Lemma

A.9, both z1 and z0 become larger than zf (which does not depend on h̃ or mr). Hence θs = 1
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is optimal solution of Problem S as discussed earlier.

This established the proof of the Theorem.

Proof of Theorem 3.

If optimal r̃ = 0, then for any θ and θs, we have Qi → ∞ and Qj → ∞, which results in negative

profit for the supplier if h > 0. Therefore, optimal r̃ > 0.

If optimal r̃ = 1, then for any θ and θs, we have Qi → 0 and Qj → 0, which results in zero profit for

the supplier. However, with r̃ = 1− ǫ > 0, for small enough ǫ, the profit of the supplier is positive.

Hence, optimal r̃ < 1. In conclusion, optimal r̃ ∈ (0, 1).

Suppose r̃∗ ∈ (0, 1), θ∗, and θ∗s are optimal solutions that maximize the supplier’s profit.

First we show that either θ ∈ {0, 1} or θs ∈ {0, 1}. That is, at least one of θ or θs is at the boundary.

Suppose to the contrary that θ∗s ∈ (0, 1) and θ∗ ∈ (0, 1). Assume Qi and Qj and Qt are the

corresponding equilibrium quantities. Also let Φi, Φj , Φt, Φit, and Φjt be the corresponding

probabilities as defined before. First suppose Φi = Φj. Then using the equilibrium conditions,

we must have Φit = Φjt. Take an arbitrary small δ > 0 and define θ2 = θ∗ − δ, θs2 = θ∗s , and

r̃2 = r̃∗1+δ(1−θ∗s)(Φi+Φt−2Φit) > r̃∗1. Since r̃
∗, θ∗, and θ∗s are all interior solutions by assumption,

when δ is small enough, we must have r̃2 ∈ (0, 1), θ2 ∈ (0, 1), and θs2 ∈ (0, 1). Also, for such δ,

the same Qi and Qj satisfies the equilibrium conditions under r̃ = r̃2, θ = θ2, and θs = θs2. Then

Πs(r̃2, θ2, θs2)−Πs(r̃
∗, θ∗, θ∗s) = δ(1 − θ∗s)(Φi +Φt − 2Φit)Qt > 0 which is a contradiction.

Next suppose Φi 6= Φj . Define y =
Φit−Φjt

2(Φit−Φjt)−(Φi−Φj)
. For a given multiplier δ, define r̃2 =

r̃∗ + δ ((1− y)(Φt − Φit)− y(Φi − Φit)), θ2 = θ∗ + δ 2y−1
(1−θ∗s )(1−θ∗s−δ) , and θs2 = θ∗s + δ. Since r̃∗, θ∗,

and θ∗s are all interior solutions by assumption, when |δ| is small enough, we must have r̃2 ∈ (0, 1),

θ2 ∈ (0, 1), and θs2 ∈ (0, 1). Also, for such δ, the same Qi and Qj satisfies the equilibrium conditions

under r̃ = r̃2, θ = θ2, and θs = θs2.

Define Mθs = Ti(Qi, Qj) + Tj(Qj , Qi) + (1− y)(Φt −Φit)Qt − y(Φi − Φit)Qt.

If Mθs > 0, take a small enough δ > 0 such that r̃2 ∈ (0, 1), θ2 ∈ (0, 1), and θs2 ∈ (0, 1). Then

Πs(r̃2, θ2, θs2)−Πs(r̃
∗, θ∗, θ∗s) = δMθs > 0, which is a contradiction.

If Mθs < 0, take δ < 0, where |δ| small enough such that r̃2 ∈ (0, 1), θ2 ∈ (0, 1), and θs2 ∈ (0, 1).

Then Πs(r̃2, θ2, θs2)−Πs(r̃
∗, θ∗, θ∗s) = −δMθs > 0, which is a contradiction.

If Mθs = 0, take δ > 0 large enough such that r̃2 ∈ [0, 1], θ2 ∈ [0, 1], and θs2 ∈ [0, 1] and at least
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one of them is at the boundary. Then Πs(r̃2, θ2, θs2) − Πs(r̃
∗, θ∗, θ∗s) = δMθs = 0. That is, r̃2, θ2,

and θs2 are as good as r̃∗, θ∗, and θ∗s . If r̃2 is at the boundary, then we have a contradiction, since,

at any optimal solution we must have r̃ ∈ (0, 1). Hence, either θ2, or θs2 must be at the boundary.

Therefore, in any case, we can find an optimal solution such that either optimal θ ∈ {0, 1} or

optimal θs ∈ {0, 1}.

Next, we show that either θ∗s = 1 or θ∗ ∈ {0, 1}.

Previously, we showed that either optimal θ∗ ∈ {0, 1} or optimal θ∗s ∈ {0, 1}. Therefore we have one

the four cases for optimal θ∗s and the optimal θ∗: (i) θ∗s = 1, θ∗ ∈ [0, 1]; (ii) θ∗s = 0, and θ∗ ∈ [0, 1];

(iii) θ∗s ∈ [0, 1] and θ∗ = 0; or (iv) θ∗s ∈ [0, 1], and θ∗ = 1. Note that when θ∗s = 1, the value of

θ is irrelevant. Hence, to show that either θ∗s = 1 or θ∗ ∈ {0, 1}, it is enough to show that it is

impossible to have θ∗s = 0, and θ∗ ∈ (0, 1).

Suppose to the contrary that θ∗s = 0 and θ∗ ∈ (0, 1) and r̃∗ ∈ (0, 1) are optimal. Suppose the

corresponding equilibrium quantities are Q∗
i , Q

∗
j and Q∗

t = Q∗
i + Q∗

j . Let Φ∗
i = Pr(Di < Q∗

i ),

Φ∗
t = Pr(Dt < Qt), Φ

∗
it = Pr(Di < Q∗

i ,Dt < Q∗
t ).

Choose θ̃ = 0. Also let H̃i(Qi) = Hi(Qi, Q
∗
t ; θ = θ̃). Note that H̃i(Q

∗
i )− r∗

v−w
= (θ − θ̃)(Φ∗

i +Φ∗
t −

2Φ∗
it) > 0, for i ∈ {1, 2}. Also note dH̃(Qi)

dQi
= −θ̃ dΦi

dQi
+ (2θ̃ − 1) dΦit

dQi
< 0, for i ∈ {1, 2}.

Without loss of generality, suppose H̃1(Q
∗
1) > H̃2(Q

∗
2) (in case of asymmetric buyers, they cannot

be equal). Since H̃i(Qi) is decreasing in Qi, there exists a Q̃2 < Q∗
2 such that H̃1(Q

∗
t − Q̃2) =

H̃2(Q̃2) > H̃i(Q
∗
i ) > r̃∗.

Let r̃ = H̃2(Q̃2). Consider the supplier’s profit by choosing r = r̃, θ = 0, and θs = 0. With these

decision variables, the equilibrium quantities are Q1 = Q∗
t − Q̃2, Q2 = Q̃2, Qt = Q∗

t .

Then we have Πs(r = r̃, θs = 0, θ = θ̃)−Πs(r = r∗, θs = 0, θ = θ∗) = (H̃i(Q
∗
i )− r̃∗)(Q∗

t )(v−w) > 0.

That is the profit improves. Hence, if θ∗s = 0, θ∗ cannot be greater than zero and it must be θ = 0.

As a result, the optimal pair (θ, θs) can only be the following options:

1. if θs = 0, we must have θ = 0;

2. if θs = 1, θ is irrelevant;

3. if θs ∈ [0, 1], we must have θ ∈ {0, 1}.

Therefore, either θs = 1 or θ ∈ {0, 1}.

Proof of Proposition 3. Consider a quantity Q that satisfies r
v−w

= Pr(Dx > Q) + (1 −
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θs)θdTx+(Q)+(1−θs)(1−θ)dTx−(Q). We claim that Buyer i, Buyer 1, and Buyer 2, each ordering

Q is the equilibrium. To show that each buyer orderingQ is equilibrium, due to symmetry of buyers,

we only need to show that if Buyers 1 and 2 reserve capacity Q, then Buyer i cannot unilaterally

improve her profit by deviating from reserving capacity Q and instead reserve a capacity Qi.

Suppose Buyer 1 and Buyer 2 reserve capacity Q. We will show that the quantity that maximizes

the profit of buyer i is Qi = Q.

Optimal Qi must satisfy the first order condition of the buyer i’s profit function. Note that

1

v − w

d

dQi
ΠBi

= − r

v − w
+ Pr(Dx > Qi) + (1− θs)θ

d

dQi
Tx+(Qi, Q) + (1− θs)(1− θ)

d

dQi
Tx−(Qi, Q)

Hence, optimal Qi must satisfy r
v−w

= Pr(Dx > Qi) + (1 − θs)θ
d

dQi
Tx+(Qi, Q) + (1 − θs)(1 −

θ) d
dQi

Tx−(Qi, Q). Note that, by definition of Q, Q satisfies this first order condition. That is, if

Buyer 1 and Buyer 2 reserve quantity Q that satisfies r
v−w

= Pr(Dx > Q)+(1−θs)θdTx+(Q)+(1−

θs)(1− θ)dTx−(Q), buyer i, would do the same. Hence, we have the statement of the proposition.

Proof of Theorem 4. Let dTx+(Q) = d
dQi

Tx+(Qi, Q)|Qi=Q and dTx−(Q) = d
dQi

Tx−(Qi, Q)|Qi=Q.

Note that based on Lemma A.6, dTx+(Q) < 0, and dTx−(Q) > 0.

Replacing the equilibrium quantities in the expression of the supplier’s profit function and simpli-

fying the expression, we have

1

3

1

v − c
Πs = slQ+mr(−Pr(Dx < Q) + (1− θs)θdTx+(Q) + (1− θs)(1 − θ)dTx−(Q))Q

− (1−mr)

∫ Q

−∞
Pr(

D1 +D2 +Dx

3
< x) dx

+ θsmr

(∫ Q

−∞
Pr(Dx < x) dx−

∫ Q

−∞
Pr(

D1 +D2 +Dx

3
< x) dx

)

Since there is a one to one correspondence between (r, θ, θs) and (Q, θ, θs), we can let the supplier

choose (Q, θ, θs). Note that, for any given Q, and θs < 1,

1

3

1

v − w

d

dθ
Πs = (1− θs)(dTx+(Q)− dTx−(Q)) < 0.

Hence optimal θ = 0 when its value is relevant, i.e., when θs < 1. The supplier’s profit function at
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θ = 0 reduces to:

1

3

1

v − c
Πs = slQ+mr(−Pr(Dx < Q) + dTx−(Q))Q− (1−mr)

∫ Q

−∞
Pr(

D1 +D2 +Dx

3
< x) dx

+ θsmr

(
∫ Q

−∞
Pr(Dx < x) dx−

∫ Q

−∞
Pr(

D1 +D2 +Dx

3
< x) dx− dTx−(Q)Q

)

Notice that, for any given Q, the profit function Πs is linear in θs. Hence, the boundaries θs = 0

or θs = 1 is included in the optimal solution for any given Q. That is, optimal θs ∈ {0, 1}. As a

result, we have the statement of the Theorem.

Proof of Theorem 5. Please note that the capacity building cost only appears in the supplier’s

profit function. As a result, from the buyer’s perspective, capacity building cost is irrelevant in

their decision about how much capacity to reserve. Hence, similar to our analysis of the main

model, each buyer reserve quantity Q of capacity, where Q satisfies:

r

v − w
=Pr(Di > Q)− (1− θs)θPr(Di > Q,Dt < 2Q) + (1− θs)(1 − θ)Pr(Di < Q,Dt > 2Q) .

Since the equilibrium equation is a one to one correspondence between (r, θ, θs) and (Q, θ, θs), the

supplier can decide the second triple and deduce the optimal r.

Replacing the equilibrium conditions, the supplier’s profit would be

1

2(v − c)
Πs = Q− h(2Q)

2(v − c)
− (1−mr)

(∫ Q

−∞
Pr(Dt <

y

2
) dy

)

+mr (−Pr(Di < Q)− (1− θs)θPr(Di > Q,Dt < 2Q) + (1− θs)(1− θ)Pr(Di < Q,Dt > 2Q))Q

+ θsmr

(
∫ Q

−∞
Pr(Di < x) dx−

∫ Q

−∞
Pr(Dt <

y

2
) dy

)

For any given value of (Q, θs), the supplier’s profit function is decreasing in θ. Consequently, the

optimal θ = 0.

We define z = Q−µ
σ

. The supplier’s problem is to find the optimal pair (Q, θs) or equivalently, the

optimal pair (z, θs). Define, Π0i(z) = (z+ µ
σ
)− hi

2σ(v−c) −(1−mr)
(

∫ z

−∞Φ( y
α
) dy

)

−mrΦα(z)(z+
µ
σ
),

and Πi(z) = Π0i(z) + θsmrfθ(z), where fθ(z) is defined in Lemma A.5.

With the assumption that the demand is normally distributed, and the fact that optimal θ = 0, we

can verify that the supplier’s profit function Πs in the interval (qi−1, qi] is 2σ(v − c)Πi(z).

To find the optimal (Q, θs) (or equivalently (z, θs)), for each piece i of the step function h(Q),

the supplier solves optimization i defined as max(z,θs){Πi : s.t. qi−1 ≤ σz + µ ≤ qi}. Then the
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global optimal (z, θs) is determined based on the best of all optimal objective function of all such

optimizations. We need to show that in any optimization i optimal θs ∈ {0, 1}.

Recall that, in Lemma A.5, we show that fθ(z) has a unique solution zf and it is increasing at its

solution, i.e. f ′
θ(z

f ) > 0, furthermore, fθ(z) < 0 for z < zf and fθ(z) > 0 for z > zf . As a result,

(1) if qi < σzf + µ, then optimization i is decreasing in θs for any feasible z, and consequently, for

optimization i, optimal θs = 0; (2) if qi−1 > σzf + µ, then optimization i is increasing in θs for

any feasible z, and consequently, for optimization i, optimal θs = 1; (3) Next, we focus on the case

where qi−1 ≤ σzf + µ ≤ qi.

In this case, the supplier’s optimization problem is

max

{

max
(z,θs)

{Πi(z) : s.t.
qi−1 − µ

σ
≤ z ≤ zf},max

(z,θs)
{Πi(z) : s.t. z

f ≤ z ≤ qi − µ

σ
}
}

.

In this case, for any z < zf , the supplier’s profit function is decreasing in θs and hence for any

z < zf , optimal θs = 0. Similarly, for any z > zf , the supplier’s profit function is increasing in θs

and hence for any z > zf , optimal θs = 1. That is, for any z 6= zf , optimal θs is at the boundary.

Next, we explain that zf cannot be optimal solution. We need to show, either d(Π0i(zf )+mrfθ(z
f ))

dz > 0

or dΠ̃0i(z
f )

dz < 0 (or both), which means deviating from zf improves the objective function. Suppose

to the contrary, dΠ̃1
s(z

f )
dz ≤ 0 and dΠ̃0

s(z
f )

dz ≥ 0. Then, mrf
′
θ(z) = dΠ̃1

s(z
f )

dz − dΠ̃0
s(z

f )
dz ≤ 0 which is

contradiction to the fact that f ′
θ(z

f ) > 0. Therefore, optimal z 6= zf .

Therefore, we can conclude that at optimal z, optimal θs is either zero or one.

Proof of Theorem 6. The buyer i’s profit function when she reserves capacity Qi and the other

buyer reserves capacity Qj is

ΠBi
= −rR(Qi) + (v − w)Si(Qi) + (v − w)(1 − θs)(θTi(Qi, Qj) + (1− θ)Tj(Qj , Qi)) .

The optimal decision of the buyer regarding her reserved quantity satisfies the first order condition.

That is, the optimal solution Qi satisfies

dΠBi

dQi
= −rR′(Qi) + (v − w)Hi(Qi, Qi +Qj) = 0 ,

whereHi is the same as what is defined before and we know, for any given Qi and Qj, it is decreasing

in θ. With symmetric buyers, we must have that the equilibrium capacity Q reserved by each buyer

should satisfy −rR′(Q)+(v−w)Hi(Q, 2Q) = 0 or equivalently, r = (v−w)Hi(Q,2Q)
R′(Q) . Next, we solve
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the supplier’s problem. The supplier’s profit function, when each buyer has reserved capacity Q is

Πs = 2rR(Q)− βh(2Q) + (w − c)St(2Q) + 2(v − w)θs(Ti(Q,Q)) .

The supplier maximizes his profit by choosing r, θ, and θs and with the constraint that at equilib-

rium, we must have r = (v−w)Hi(Q,2Q)
R′(Q) . Note that, since R(Q) is increasing in Q and convex, R′(Q)

is positive and increasing in Q. Also, as shown in proof of Lemma A.7, Hi(Q, 2Q) is decreasing in

Q for any given θ and θs. Hence, for any given θ and θs,
Hi(Q,2Q)
R′(Q) is decreasing in Q. Therefore,

for any given θ and θs, there is a one-to-one correspondence between r and Q. Hence, the manu-

facturer can choose Q instead and based on the equilibrium condition, deduce the corresponding r

and announce it to buyers. Hence, the supplier’s optimization problem is

max
Q,θ,θs

Πs = 2(v − w)
R(Q)

R′(Q)
Hi(Q, 2Q)− βh(2Q) + (w − c)St(2Q) + 2(v − w)θs(Ti(Q,Q))

s.t. r = (v − w)
Hi(Q, 2Q)

R′(Q)

Note, using Lemma A.7, dΠs

dθs
= 2(v − w) R(Q)

R′(Q)
dHi(Q,2Q)

dθ < 0. Therefore, Πs is decreasing in θ and

hence the optimal θ = 0. We can simplify the profit function of the supplier as follows:

Πs =2(v − w)
R(Q)

R′(Q)
(Pr(Di > Q,Dt < 2Q) + Pr(Dt > 2Q)) − βh(2Q) + (w − c)St(2Q)

+ 2(v − w)θs

(

Ti(Q,Q)− R(Q)

R′(Q)
Pr(Di < Q,Dt > 2Q)

)

This function is linear in θs and hence, the optimal θs is at the boundary.

Proof of Theorem 7.

For any given θ, we maximize the supplier’s profit function by choosing θs and r̃. That is the

supplier’s optimization problem is max(r̃, θs){Πs|r̃ ∈ [0, 1], θs ∈ [0, 1]}, assuming Qi satisfies the

equilibrium condition.

For symmetric buyers, the equilibrium condition simplifies to

r̃ = 1− Φ(z)− (1− θs)θ(Φ(
z

α
)− Φα(z)) + (1− θs)(1− θ)(Φ(z)− Φα(z)) ,

where z = Qi−µ
σ

. Since the right hand side is decreasing in Qi, there is a one to one correspondence

between r̃ and Qi for any given θs. Hence, instead of optimizing Πs for θs and r̃, we can optimize

for θs and Qi or equivalently for θs and z. We can simplify the profit function of the supplier, using
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the equilibrium condition and definition of z: 1
2σ(v−c)Πs = f2(z, θ) +mrθsf3(z, θ), where

f2(z, θ) = sl

(

z +
µ

σ

)

− (1−mr)

∫ z

−∞
Φ(

x

α
) dx+mr

(

−θΦ(z)− θΦ(
z

α
) + (2θ − 1)Φα(z)

)(

z +
µ

σ

)

,

f3(z, θ) =

∫ z

−∞

(

Φ(x)− Φ
(x

α

))

dx−
(

−θΦ(
z

α
) + (2θ − 1)Φα(z) + (1− θ)Φ(z)

)(

z +
µ

σ

)

Note Φα(z) is c.d.f of bivariate standard normal distribution with correlation α, calculated at z

and z
α
as specified before.

Notice that the profit function Πs is linear in θs. Hence, the boundaries θs = 0 or θs = 1 is included

in the optimal solution for any given θ and any given z.

Proof of Proposition 4. We use backward induction. At the last stage, the buyers decide the

order quantity Q. The buyer’s profit function is:

ΠBi
= −rQi + (v − w)Si(Qi) + (1− θs)θ(v − w)Ti(Qi, Qj) + (1− θs)(1 − θ)(v − w)Tj(Qj, Qi) .

Given θ, θs, and r, the problem of the buyers to solve for the optimal quantity is the same as

our original model. Hence the equilibrium quantity of the buyers satisfies the same condition

Hi(Q, 2Q) = r
v−w

, where

Hi(Qi, Qt) =Pr(Di > Qi)− (1− θs)θPr(Di > Qi,Dt < Qt) + (1− θs)(1− θ)Pr(Di < Qi,Dt > Qt) .

Since at equilibrium Ti(Q,Q) = Tj(Q,Q), the Buyer i’s profit function reduces to:

ΠBi
= −rQ+ (v − w)(Q−

∫ Q

−∞
Pr(Di < x) dx) + (1− θs)(v − w)

∫ Q

−∞
Pr(Di > 2Q− x,Dj < x) dx .

Hence

dΠBi

dθ
= (v − w)

dQ

dθ

(

− r

v − w
+ 1− θsPr(Di < Q)− (1− θs)Pr(Dt < 2Q)

)

By envelop theorem, we can differentiate the equilibrium condition with respect to θ to get dQ
dθ (

dHi

Qi
+

2 dHi

Qt
) + (1− θs)(Pr(Di < Q,Dt > 2Q) +Pr(Di > Q,Dt < 2Q) = 0; hence, we must have dQ

dθ > 0.

Also, − r
v−w

+ 1− θsPr(Di < Q)− (1− θs)Pr(Dt < 2Q) is decreasing in Q. Hence, optimal ΠBi
is

quasi-concave in θ and the optimal θ satisfies the first order condition.

Therefore, either θs = 1 and θ does not matter, or θs < 1 and at optimal θ, Q must satisfy

r
v−w

= 1− θsPr(Di < Q)− (1− θs)Pr(Dt < 2Q).

Combined with equilibrium condition, we can conclude:

θ = Pr(Di>Q,Dt<2Q)
Pr(Di<Q,Dt>2Q)+Pr(Di>Q,Dt<2Q), and 1− r

v−w
= θsPr(Di < Q) + (1− θs)Pr(Dt < 2Q).
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Proof of Theorem 8. The supplier’s profit function is:

Πs = (r − h)(2Q) + (w − c)(2Q −
∫ 2Q

−∞
Pr(Dt < x) dx) + (v − w)θs(Ti(Q, 2Q) + Tj(Q, 2Q)) .

Define z = Q−µ
σ

. Then we can simplify the supplier’s profit function:

1

2σ(v − c)
Πs = (

r

v − w
− 1)mr(z +

µ

σ
) + sl(z +

µ

σ
)− (1−mr)

∫ z

−∞
Φ(

x

α
) dx+mrθs(

∫ z

−∞
Φ(x)− Φ(

x

α
) dx) .

We can replace the equilibrium condition for Q in the above expression and simplify 1
2σ(v−c)Πs =

Π0θ∗(z) +mrθsfθ∗(z), where

Π0θ∗(z) = sl(z +
µ

σ
)−mrΦ(

z

α
)(z +

µ

σ
)− (1−mr)

∫ z

−∞
Φ(

x

α
) dx

fθ∗(z) =

∫ z

−∞
Φ(x)− Φ(

x

α
) dx− (Φ(z)− Φ(

z

α
))(z +

µ

σ
) .

The supplier maximizes his profit by choosing r and θs or equivalently by maximizing for z and θs.

Next, we characterize the solution of the function fθ∗ = 0 which does not depend on sl or mr.

Lemma A.10.

1. fθ∗(z) = 0 has a unique solution for z > −µ
σ
. Let zfθ∗ represent this unique solution.

2. f ′
θ∗(z

fθ∗ ) > 0.

3. for z < zfθ∗ , we have fθ∗(z) < 0 and for z > zfθ∗ , we have fθ∗(z) > 0.

4. zfθ∗ < 0.

Proof of Lemma A.10. Note that we can simplify fθ∗(z) = −(Φ(z)−Φ( z
α
))µ

σ
+(φ(z)−αφ( z

α
)).

Also derivative of fθ∗(z) is
dfθ∗ (z)

dz = −(µ
σ
+ z) 1

α
φ(z)(α −

√
2πφ(

√

1−α2

α
z)).

Therefore dfθ∗ (z)
dz = 0 has exactly two solutions. Also, dfθ∗ (z)

dz < 0 when z → −∞ and dfθ∗ (z)
dz < 0

when z → ∞. Hence, fθ∗(z) is decreasing, then increasing and then decreasing. Also, limz→±∞ fθ∗(z) =

0. Hence, fθ∗(z) = 0 has exactly one solution and at this unique solution, fθ∗(z) is strictly increas-

ing. Hence, for z < zfθ∗ , we have fθ∗(z) < 0 and for z > zfθ∗ , we have fθ∗(z) > 0. Also, since

f(0) = 1−α√
2π

> 0, we must have zfθ∗ < 0.

Next, we characterize the solution to optimization maxz{Π0θ∗(z) | z ∈ [ µt

2σi
, zfθ∗ ]}.

Lemma A.11.

1. For z ∈ [µ
σ
, zfθ∗ ], Π0θ∗(z) is concave and hence has a unique maximizer in the interval.

2. If Π′
0θ∗(z

fθ∗ ) ≥ 0, then argmaxz{Π0θ∗(z) | z ∈ [ µt

2σi
, zfθ∗ ]} = zfθ∗ .

3. If Π′
0θ∗(z

fθ∗ ) < 0, then argmaxz{Π0θ∗(z) | z ∈ [ µt

2σi
, zfθ∗ ]} satisfies Π′

0θ∗(z) = 0 and z < zfθ∗ .
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We label the solution to Π′
0θ∗(z) = 0 as z0θ

∗

.

4. z0θ
∗

is decreasing in mr and increasing in sl. When sl large enough and mr small enough,

z0θ
∗

can be arbitrarily large (e.g., larger than zfθ∗ ); when sl is small enough, z0θ
∗

can be

arbitrarily small (e.g., smaller than zfθ∗ ).

Proof of Lemma A.11. Note that:

1

1− Φ( z
α
)

dΠ0θ∗(z)

dz
= 1− (1− sl)

1

1−Φ( z
α
)
−mr

1
α
φ( z

α
)(z + µ

σ
)

1− Φ( z
α
)

Since 1
1−Φ( z

α
) and

1
α
φ( z

α
)(z+µ

σ
)

1−Φ( z
α
) are increasing in z, 1

1−Φ( z
α
)
dΠ0θ∗(z)

dz is decreasing in z.

Also, since when z → −µ
σ
, we have dΠ0θ∗(z)

dz → sl > 0, and when z → ∞, we have dΠ0θ∗(z)
dz →

−(1 − sl) < 0, we must have that dΠ0θ∗(z)
dz has a unique solution. As a result, the first three

statements of the lemma follows.

Next, we show the last statement. Note that dΠ0θ∗ (z)
dz is increasing in sl and decreasing in mr and

decreasing in z. Hence, when sl increases, the solution to dΠ0θ∗ (z)
dz = 0 should increase as well; and

when mr increases, the solution to dΠ0θ∗ (z)
dz = 0 should decrease as well.

Furthermore, when sl → 1 and mr → 0, dΠ0θ∗ (z)
dz → 1 − Φ( z

α
). Hence, z0θ

∗ → +∞. Also, when

sl → 0, dΠ0θ∗(z)
dz → −Φ( z

α
) − mr

1
α
φ( z

α
)(z + µ

σ
). Hence, z0θ

∗ → −∞. That is, we have the last

statement of the Lemma.

Next, we characterize the solution to optimization maxz{Π1θ∗(z) | z ≥ zfθ∗}.

Lemma A.12.

1. For z ≥ zfθ∗ , we have Π1θ∗(z)
def
= Π1θ∗(z)+mrfθ∗(z) is quasi-concave and hence has a unique

maximizer in the interval.

2. If Π′
1θ∗(z

fθ∗ ) ≤ 0, then argmaxz{Π1θ∗(z) | z ≥ zfθ∗} = zfθ∗ .

3. If Π′
1θ∗(z

fθ∗ ) > 0, then argmaxz{Π1θ∗(z) | z ≥ zfθ∗} satisfies Π′
1θ∗(z) = 0 and z > zfθ∗ . We

label the solution to Π′
1θ∗(z) = 0 as z1θ

∗

.

4. z1θ
∗

is decreasing in mr and increasing in sl. When sl large enough and mr small enough,

z1θ
∗

can be arbitrarily large (e.g., larger than zfθ∗ ); when sl is small enough, z1θ
∗

can be

arbitrarily small (e.g., smaller than zfθ∗ ).
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Proof of Lemma A.12. Note that:

1

1− Φ( z
α
)

dΠ1θ∗(z)

dz
= 1− (1− sl)

1

1− Φ( z
α
)
−mr

(

φ(z)(z + µ
σ
)

1− Φ( z
α
)

)

Next we show that
φ(z)(z+µ

σ
)

1−Φ( z
α
) is increasing in z.

For z ≤ 0, φ(z) is increasing in z; hence
φ(z)(z+µ

σ
)

1−Φ( z
α
) is increasing in z. For z > 0, (i) φ(z)

1−Φ(z) is hazard

rate of normal distribution and it is positive, increasing and convex; (ii) (z + µ
σ
) is positive and

increasing in z; (iii) 1−Φ(z)
1−Φ( z

α
) is positive and it is increasing in z because:

1− Φ( z
α
)

1 − Φ(z)
× d

dz
(
1− Φ(z)

1−Φ( z
α
)
) = − φ(z)

1− Φ(z)
+

1

α

φ( z
α
)

1− Φ( z
α
)
.

Since z > 0 and 0 ≤ α ≤ 1, and φ(z)
1−Φ(z) is convex, we must have 1−Φ(z)

1−Φ( z
α
) is increasing in z for z > 0.

As a result,
φ(z)(z+µ

σ
)

1−Φ( z
α
) = φ(z)

1−Φ(z) × (z + µ
σ
)× 1−Φ(z)

1−Φ( z
α
) is increasing in z for z > 0.

In summary,
φ(z)(z+µ

σ
)

1−Φ( z
α
) is increasing in z for any z.

Since 1
1−Φ( z

α
) and

φ(z)(z+µ
σ
)

1−Φ( z
α
) are increasing in z, 1

1−Φ( z
α
)
dΠ1θ∗ (z)

dz is decreasing in z.

Also, since when z → −µ
σ
, we have dΠ1θ∗(z)

dz → sl > 0, and when z → ∞, we have dΠ1θ∗(z)
dz →

−(1 − sl) < 0, we must have that dΠ1θ∗(z)
dz has a unique solution. As a result, the first three

statements of the lemma follows.

Next, we show the last statement. Note that 1
1−Φ( z

α
)
dΠ1θ∗ (z)

dz is increasing in sl and decreasing in

mr and decreasing in z. Hence, when sl increases, the solution to z1θ
∗

should increase as well; and

when mr increases, the solution z1θ
∗

should decrease as well.

Furthermore, when sl → 1 and mr → 0, dΠ1θ∗ (z)
dz → 1 − Φ( z

α
). Hence, z1θ

∗ → +∞. Also, when

sl → 0, dΠ1θ∗ (z)
dz → −Φ( z

α
) − mrφ(z)(z + µ

σ
). Hence, z1θ

∗ → −∞. That is, we have the last

statement of the Lemma.

Note that the supplier’s problem is to find optimal z and θs as specified before. More specifically, the

supplier’s problem is max(z,θs){Π0θ∗ +mrθsfθ∗(z)|θs ∈ [0, 1]}. The feasible region of the supplier’s

problem can be divided to two regions: (i) Region 0 where z ∈ [−µ
σ
, zfθ∗ ], and (ii) Region 1 where

z ≥ zfθ∗ . In region 0, either optimal z < zfθ∗ and the optimal θs = 0 or optimal z = zfθ∗ and

θsfθ∗(z) = 0. That is, the optimization in Region 0 reduces to θs = 0 and solving for optimal

solution of the optimization problem discussed in Lemma A.11.

In region 1, either optimal z > zfθ∗ and the optimal θs = 1 or optimal z = zfθ∗ and θsfθ∗(z) = 0 =

fθ∗(z). That is, the optimization in Region 1 reduces to θs = 1 and solving for optimal solution of
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the optimization problem discussed in Lemma A.12.

The following Lemma shows that at z = zfθ∗ is never optimal for the supplier.

Lemma A.13. It is impossible that both Π′
0θ∗(z

fθ∗ ) ≥ 0 and Π′
1θ∗(z

fθ∗ ) ≤ 0.

Proof of Lemma A.13. Assume Π′
0θ∗(z

fθ∗ ) ≥ 0 and Π′
1θ∗(z

fθ∗ ) ≤ 0. Then mrf
′
θ∗(z

fθ∗ ) =

Π′
1θ∗(z

fθ∗ )−Π′
0θ∗(z

fθ∗ ) ≤ 0, which contradicts Lemma A.10.

Since, the profit function of the supplier is continuous, Lemma A.13 implies that either z1θ
∗

or

z0θ
∗

is the optimal solution of the supplier’s problem which are different from zfθ∗ because z0θ
∗

<

zfθ∗ < z1θ
∗

. Finally, note that, when sl is arbitrary close to 1 and mr is arbitrary close to zero, by

Lemma A.11 and Lemma A.12, both z0θ
∗

and z0θ
∗

get arbitrary larger than zfθ∗ and hence θs = 1

is the optimal solution of the supplier’s problem. Similarly, when sl gets arbitrary close to zero,

by Lemma A.11 and Lemma A.12, both z0θ
∗

and z0θ
∗

get arbitrary smaller than zfθ∗ and hence

θs = 0 is the optimal solution of the supplier’s problem.

A.3 Robustness Check: Underinvestment with Breach Remedy

In this section, we compare the setting in ? by allowing the supplier to underinvest in capacity

with a breach remedy with our setting in which the supplier always invests in sufficient capacity.

Similar to ?, we assume that the supplier exercises a breach remedy. More specifically, in case

the supplier underinvests in capacity and cannot deliver the reserved capacity of buyers, he would

compensate the buyers for their losses that can be due to (i) inability to satisfy their own demand

with their own reserved capacity, (ii) inability to transfer their excess reserved capacity to another

buyer in need of capacity for a fee, or (iii) inability to receive transfers from another buyer who

could have excess capacity. In summary, similar to ?, the buyers do not lose profit if the supplier

decides to underinvest in capacity.

Denote the capacity that the supplier reserves by C. Assume the supplier is allowed to reserve

capacity C less than what the buyers have asked for, i.e., C ≤ Qt. The supplier decides r, θ, and

θs before the buyers decide the capacity to reserve Qi and Qj. After the buyers order to reserve

capacity Qi and Qj, the supplier decides how much capacity C ≤ Qi +Qj to invest. We focus on

buyers with symmetric normal demand distributions.

Proposition A.1. The supplier never underinvests in capacity. That is, the supplier never invests
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in less capacity than requested by buyers, i.e., C is never less than Qt.

This proposition implies that even if we allow underinvestment like the setting in ?, the supplier

would not underinvest in capacity.

Proof of Proposition A.1. The supplier’s profit in this model is

Πs = rQt − hC + (w − c)(C −
∫ C

−∞
Pr(Dt < x) dx) + θs(v − w)(Ti(Qi, Qj) + Tj(Qj , Qi))

− (v − w)E[min{Qt − C,Dt − C} × 1(Dt > C)]

We can simplify the supplier’s profit as follows:

1

v − c
Πs = (

r

v − w
− 1)mrQt + slC − (1−mr)

∫ C

−∞
Pr(Dt < x) dx

+ θsmr

(∫ Qi

−∞
Pr(Di < x) dx+

∫ Qj

−∞
Pr(Dj < x) dx−

∫ Qt

−∞
Pr(Dt < x) dx

)

+mr

∫ Qt

C

Pr(Dt < x) dx

We use backward induction. In the last stage, the supplier determines the quantity C to reserve,

given quantities Qi and Qj reserved by buyers, and given the values of r and θ, with the constraint

that C ≤ Qt, where Qt = Qi + Qj . Note that dΠs

dC = sl − Pr(Dt < C). As a result, the optimal

C∗ satisfies the follow: (i) if Pr(Dt < Qt) > sl, then C∗ satisfies sl = Pr(Dt < C∗); (ii) if

Pr(Dt < Qt) ≤ sl, then C∗ = Qt. If C∗ = Qt, we have the proof. Suppose C∗ < Qt which means

sl = Pr(Dt < C∗). In this case, C∗ does not depend on Qt. That is
dC∗

dQt
= 0.

In the next stage, the buyers optimize for the quantity of capacity to reserve. The buyer’s profit

function is:

ΠBi
= −rQi + (v − w)(Qi −

∫ Qi

−∞
Pr(Di < x) dx) + (1− θs)(v −w) ((1− θ)Ti(Qi, Qj) + θTj(Qj , Qi))

The buyers’ problem is similar to our original model. Hence, for symmetric buyers, we can conclude

that at equilibrium, the buyers each reserve the same quantity Q∗ that satisfies: H(Q∗) = r
v−w

,

where, H(Q) = 1−Pr(Di < Q)− (1− θs)θPr(Di > Q,Dt < 2Q)+ (1− θs)(1− θ)Pr(Di < Q,Dt >

2Q).

In the next stage, the supplier optimizes for (r, θ, θs) at the same time. Define function z(Q) = Q−µ
σ

(or in short z). Since there is a one to one correspondence between (r, θ, θs) and (z(Q∗), θ, θs), the

supplier can instead optimize his profit by choosing (z, θ, θs), and then optimal r is obtained by
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equilibrium condition.

Replacing the equilibrium condition in the profit function of the supplier we have

1
v−c

Πs =
(

(−Pr(Di < Q∗)− (1− θs)θPr(Di > Q∗,Dt < 2Q∗)

+ (1− θs)(1 − θ)Pr(Di < Q∗,Dt > 2Q∗)
)

mr(2Q
∗) + slC

∗ − (1−mr)
∫ C∗

−∞ Pr(Dt < x) dx

+ θsmr

(

2
∫ Q∗

−∞ Pr(Di < x) dx−
∫ 2Q∗

−∞ Pr(Dt < x) dx
)

+mr

∫ 2Q∗

C∗ Pr(Dt < x) dx.

Note that dΠs

dθ = −2Q(v−c)mr(1−θs) (Pr(Di > Q,Dt < 2Q) + Pr(Di < Q,Dt > 2Q)) < 0. Hence,

optimal θ = 0. The supplier’s profit reduces to

1
v−c

Πs = (−Φ(z) + (1− θs)(Φ(z) − Φα(z)))mr(2(µ+ σz)) + slC
∗ − (1−mr)

∫ C∗

−∞ Pr(Dt < x) dx+

θsmr

(

2
∫ (µ+σz)
−∞ Pr(Di < x) dx−

∫ 2(µ+σz)
−∞ Pr(Dt < x) dx

)

+mr

∫ 2(µ+σz)
C∗ Pr(Dt < x) dx.

Hence, 1
v−c

1
2σmr

dΠs

dz = −(1− θs)(Φ
′
α(z)(z +

µ
σ
) + Φα(z)− Φ( z

α
))− θsφ(z)(z +

µ
σ
).

Using Lemma A.2, the last expression is negative. That is, Πs is decreasing in z or equivalently

increasing in capacity reservation fee r < v − w, if the supplier underinvests in capacity. As a

result, r∗ = v − w, which implies Q∗ = 0. But we had assumed C∗ < Qt = 2Q∗ = 0 which is a

contradiction. Hence, if the supplier determines C, we must have C∗ = Qt.

A.4 Robustness Check: θ is set by one of the buyers after demand

is realized.

In this section, we check the robustness of our result by extending our analysis to cases in which

the value of θ is set by one of the buyers, after their demand is realized and they recognize their

shortage and excess capacities. More specifically, in two different models, we allow (1) the buyer

with an excess capacity, and (2) the buyer with a shortage of capacity to set the value of θ. We

focus on two symmetric buyers. We are interested to how the solution to the model changes in this

new scenarios. The sequence of events for this scenario is shown in Figure 1.

θ is set by

one of the buyers

Supplier sets

r, and θs Buyer 1

reserves Q1

Buyer 2

reserves Q2

Demand is realized

Capacity transfers

Supplier builds

capacity

Figure 1: The sequence of events when θ is set by the buyer with an excess or a shortage of capacity.

Let us focus on the case in which the buyer with an excess capacity sets the value of θ. Note
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that, if capacity is not transferred, value of θ is not relevant.

Theorem A.1. The model in which the buyer with an excess capacity sets the value of θ is

equivalent to a model in which the supplier sets the value of θ. More specifically, in both models, at

equilibrium, θ, θs, and r are the same, and the supplier’s expected profit and the buyers’ expected

profits are the same.

Proof of Theorem A.1. Consider the model in which the buyer with an excess capacity sets

the value of θ. We use backward induction to solve the problem.

Suppose demand of Buyer i and Buyer j is realized and they are di, and dj respectively. Without

loss of generality, assume buyer i has excess capacity and buyer j has shortage of capacity. That

is, Qi > di and Qj < dj . Then, the profit of the Buyer i is:

ΠBi
= −rQi+ (v −w)(Qi − di) + (1− θs)(1 − θ)(min{Qi − di, dj −Qj}) .

This profit function is decreasing in value of θ. Hence, for the buyer with an excess capacity, optimal

θ = 0. As a result, the expected profit of buyer i is E
[

ΠBi

]

= −rQi+ (v − w)(Qi −
∫ Qi

−∞)Pr(Di <

x) dx+ (1− θs)Tj(Qj , Qi).

Therefore, using Lemma A.1, we have

1

v − w

dΠBi

dQi
= − r

v −w
+ Pr(Di > Qi) + (1− θs)

dTj(Qj , Qi)

dQi

= − r

v −w
+ Pr(Di > Qi) + (1− θs)Pr(Di < Qi,Dt > Qi +Qj) .

Since, ex-ante, Buyer i and Buyer j are identical, we can find the equilibrium reserved capacities

Qi = Qj by solving the following equation r
v−w

= Pr(Di > Qi) + (1− θs)Pr(Di < Qi,Dt > 2Qi).

Notice that this equilibrium condition is the same condition as the model in which the supplier sets

the value of θ = 0. As a result, in both models, where the supplier sets the value of θ or the buyer

with an excess demand sets the value of θ, the supplier’s problem to find the optimal θs and r is

the same. That is, the two models result in the same equilibrium θ, θs, r, and profits.

Theorem A.2. In the model in which the buyer with a shortage of capacity sets the value of θ,

θ = 1, and θs = 1. That is, the supplier gets all the benefits from the transfers.

Proof of Theorem A.2. Consider the model in which the buyer with a shortage of capacity

sets the value of θ. We use backward induction to solve the problem.
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Suppose demand of Buyer i and Buyer j is realized and they are di, and dj respectively. Without

loss of generality, assume buyer i has shortage of capacity and buyer j has excess of capacity. That

is, Qi < di and Qj > dj . Then, the profit of the Buyer i is ΠBi
= −rQi + (v − w)Qi + (1 −

θs)θ(min{di −Qi, Qj − dj}). This profit function is increasing in value of θ. Hence, for the buyer

with a shortage of capacity, optimal θ = 1.

As a result, the expected profit of buyer i is E
[

ΠBi

]

= −rQi + (v − w)(Qi −
∫ Qi

−∞)Pr(Di <

x) dx+ (1− θs)Ti(Qi, Qj). Therefore, using Lemma A.1, we have

1

v − w

dΠBi

dQi
= − r

v −w
+ Pr(Di > Qi) + (1− θs)

dTi(Qi, Qj)

dQi

= − r

v −w
+ Pr(Di > Qi)− (1− θs)Pr(Di > Qi,Dt < Qi +Qj) .

Since, ex-ante, Buyer i and Buyer j are identical, we can find the equilibrium reserved capacities

Qi = Qj by solving the following equation r
v−w

= 1−Pr(Di < Qi)−(1−θs)Pr(Di > Qi,Dt < 2Qi).

The supplier’s expected profit is Πs = (r− h)Qt + (w− c)E
[

min(Qt,Dt)
]

+ θs(v−w)(Ti(Qi, Qj) +

Tj(Qj, Qi)). Hence, at equilibrium,

1

2(v − c)
Πs = slQi −mr

(

1− r

v − w

)

Qi − (1−mr)

∫ Qi

−∞
Pr(Dt < 2x) dx+ θsmrTi(Qi, Qi)

= slQi −mr (Pr(Di < Qi) + Pr(Di > Qi,Dt < 2Qi))Qi − (1−mr)

∫ Qi

−∞
Pr(Dt < 2x) dx

+ θsmr (Ti(Qi, Qi) + Pr(Di > Qi,Dt < 2Qi)Qi)

where Qi satisfies the equilibrium condition r
v−w

= 1−Pr(Di < Qi)−(1−θs)Pr(Di > Qi,Dt < 2Qi.

Since based on the equilibrium condition, there is a one to one correspondence between (θs, r) and

(θs, Qi), instead of optimizing for (θs, r), the supplier can optimize for (θs, Qi) and find the optimal

value of r from the equilibrium condition.

Notice that, for any given Qi, the expected profit function of the supplier is increasing in θs.

Therefore, optimal θs = 1 for any given Qi. As a result, in equilibrium, optimal θs = 1.
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