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Abstract
This research considers situations in which buyers pay to reserve their suppliers’ capac-
ity for future use. The study specifically explores whether suppliers should provide
transfer rights, allowing buyers unable to use all of their reserved capacity to transfer
the excess to another buyer, and whether they should charge a transfer fee. The study
finds that, in most cases, the supplier maximizes financial outcomes when the buyer
releasing the excess capacity keeps most of the retail-level profit from the transfer and
the supplier does not charge a transfer fee.
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1 INTRODUCTION

Capacity reservation arrangements have become popular in
many industries in the past decade. In typical capacity reser-
vation situations, a buyer reserves a supplier’s capacity to
make a product it needs by paying a capacity reservation fee.
When the product demand is realized, the buyers request the
supplier to use their reserved capacity to make the needed
units; in return, they pay an execution fee to the supplier for
each unit of product made. The arrangements give buyers
the right to use only part of the supplier’s available capac-
ity, allowing the supplier to pool capacity and make products
for various buyers.

What happens when a buyer requires more or less than
its reserved capacity? Consider a real-world arrangement in
the computer hard drive industry. Hard drives require suspen-
sion assemblies, critical components enabling precise record-
ing head positioning and providing electrical connections.
Only a handful of companies manufacture suspension assem-
blies, with one offering a dominant technology and enjoy-
ing a greater market share than its competitors. Hard drive
manufacturers provide bids to computer producers to be one
of two or three suppliers for each computer model. When
they bid, the hard drive manufacturers do not know how
much of the buyer’s demand they will receive; however, they
reserve capacity at their preferred suspension assembly sup-
plier, expecting to start manufacturing hard drives as soon as
they are awarded a contract. Each hard drive manufacturer’s
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suspension assemblies fit only its hard drives and cannot be
used with another manufacturer’s product.

When the hard drive manufacturers realize their demand,
they ask their suspension assembly supplier to manufac-
ture the needed parts. Some hard drive manufacturers real-
ize demand exceeding their reserved capacity; others do not
need all the capacity they reserved. Making minor adjust-
ments to equipment, suspension assembly suppliers can make
suspensions for any hard drive manufacturer. Therefore, the
supplier can allocate unused reserved capacity from one cus-
tomer to another.

Because suspension assembly suppliers can use the same
capacity to satisfy excess demand from any customer, they
must consider the best approach to controlling reserved
capacity. In settings where a supplier sells inventory, buy-
ers simply own the manufactured products and have com-
plete control over them once they pay for it. When making
capacity reservations, buyers pay a fee for the right to use the
capacity in the future. Before signing a contract, the supplier
can set the terms of the arrangement, maintaining ownership
of reserved but unused capacity but informing buyers if and
how they can benefit if another buyer can use the capacity. For
example, the supplier could grant buyers the rights to transfer
their unused reserved capacity but charge a transfer fee for
each unit of transfer.

In this paper, we characterize whether and when suppli-
ers should keep capacity transfer rights or grant them to the
firm making the reservation. The supplier has full control of
its capacity; if a buyer wants to transfer capacity rights to
another, it cannot do so without the supplier’s knowledge.
Thus, the supplier can charge new buyers transfer fees. In
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inventory sharing, buyers always own the completed products
they purchase and can share them with other buyers without
informing their suppliers.

Various industry suppliers take different approaches to
capacity transfer. For example, a hard drive suspension
assembly supplier that we worked with informs buyers they
will lose any capacity they do not use in a given time
period and retains transfer rights itself (i.e., buyers lose all
value from unused capacity). A different approach to capac-
ity transfer is noted in Plambeck and Taylor (2007a): Tai-
wan Semiconductor Manufacturing Corporation, the world’s
largest contract semiconductor producer, is a pioneer in
what has become known as “tradable capacity options”
(Economist, 1996; LaPedus, 1995). The options give buyers
the right to trade supplier capacity among themselves. Under
the policy, suppliers collect no additional profit from trans-
ferred capacity; buyers divide the profit generated. In other
words, the suppliers grant the buyers full capacity transfer
rights. A different policy for capacity transfers is common
when manufacturers reserve warehouse capacity from third-
party logistics providers. If the firm making the reservation
does not need some of the space, it can sell it to another firm,
though logistics providers typically charge execution fees
for materials handling. Because the logistics firms typically
pick up the warehoused items, which are differentiated across
users, the manufacturers cannot exchange capacity among
themselves without the logistics providers’ knowledge. A
similar application occurs in cloud-based computing/web
services. Amazon Web Services allow users to reserve com-
puting capacity on its servers. Users can reserve what Ama-
zon calls “instances,” combinations of computer, memory,
and networking capacity, for particular applications. For users
reserving instances they do not use, Amazon has created a
marketplace where they can negotiate instance (i.e., capacity)
transfers to other users. Amazon charges 12% of the trading
price to transfer capacity on the marketplace.

While no model can capture the complexity of all real-
world capacity transfer situations, this paper explores the
primary trade-off common to the above examples. Specifi-
cally, our model describes when suppliers should or should
not charge buyers a fee for transferring capacity among
themselves.

Our work has several takeaways for managers. First, sup-
pliers improve their outcomes if the buyers releasing their
unneeded capacity to others receive most of the reward. Sec-
ond, suppliers should not charge fees for capacity transfers
from one buyer to another in most reasonable cases. Third,
in other cases where it is optimal for the supplier to charge
a fee for transfers, as long as the buyers with excess capac-
ity accrue most of the profit from transfers, not charging a
transfer fee would still perform close to optimal for suppli-
ers. Fourth, these cases where the suppliers should charge
buyers for transfers and keep capacity ownership happen
when the buyers’ profit margins on sales are very small
compared to the suppliers, and it is relatively inexpensive to
build capacity.

Our results seem counterintuitive. By not charging a fee,
suppliers might be expected to lose money. But when suppli-
ers do not charge transfer fees and grant buyers the financial
rewards for giving up unneeded capacity, suppliers can charge
a higher capacity reservation fee.

The remainder of this paper is organized as follows.
Section 2 reviews the relevant literature. Section 3 introduces
our model. In Section 4.1, we formulate the buyers’ optimal
decisions, and in Section 4.2 we derive the optimal results for
how the supplier should set the transfer fee to maximize his
profit. In Sections 4.3 and 4.4, we extend our result to a model
with asymmetric buyers and a model with more than two buy-
ers, respectively. Section 5 contains our numerical study. In
Section 6, we check the robustness of our results by consider-
ing different variations of our model. The paper concludes in
Section 7.

2 LITERATURE REVIEW

The rich inventory pooling and transshipment literature is rel-
evant to our research question. Krishnan and Rao (1965), Kar-
markar and Patel (1977), Tagaras (1989), Robinson (1989),
and Archibald et al. (1997) have studied inventory transship-
ment models in which a central planner coordinates orders
at various locations. Recent literature on inventory pool-
ing and transshipment in decentralized systems, including
Anupindi et al. (2001), Hu et al. (2007), Lippman and McCar-
dle (1997), Rudi et al. (2001), H. Zhao et al. (2005), and
X. Zhao and Atkins (2009), is also of interest but does not
consider suppliers’ decisions and transshipment’s impact on
them.

Another literature stream studies the impact of inventory
transshipment among downstream buyers on upstream sup-
pliers’ decisions and profits (Anupindi & Bassok, 1999; Dong
& Rudi, 2004; Jiang and Anupindi, 2010; Lee & Whang,
2002; Shao et al., 2009; Zhang, 2005). Whether and how sup-
pliers benefit from capacity transfer among buyers appears to
be similar to the inventory transshipment problem. But the
situations have a few key differences. First, in the inventory
transshipment problem with decentralized buyers, transfer
rights are not an issue because the buyers own the inventory.
Suppliers have no control over transshipment, regardless of
its benefits or downsides. In our paper, the question is not only
whether buyers should be able to use excess capacity but also
how suppliers should divide the generated profit among sup-
ply chain members. Suppliers could charge the buyer using
the excess capacity a transfer fee, then keep the transfer fee
or use it to reimburse the buyer transferring excess reserved
capacity. Because buyers own inventory outright, the trans-
shipment literature does not address the same issue as our
work. Second, the costs associated with the capacity transfer
problem also differ from those in transshipment, where buy-
ers purchase inventory before demand is realized and suppli-
ers receive the wholesale price for each unit. Suppliers are
not directly making profit when their buyers sell an inventory
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unit. In our problem, buyers pay suppliers a capacity reser-
vation fee for each unit before demand realization but only
remit the remaining (i.e., execution) cost for each unit actu-
ally demanded. In the model, suppliers profit both from each
capacity unit (analogous to an inventory unit) the buyer sells
to customers by charging an execution fee and each capac-
ity reservation unit. In other words, buyers reserve capac-
ity in the suppliers’ facilities and later request execution of
reserved capacity based on actual demand. These key differ-
ences result in managerial insights different from those of the
previous literature.

Our work is also related to the rich literature on capac-
ity reservation. Wu et al. (2005) provide an extensive review.
Eppen and Iyer (1997), Van Mieghem (1999), Barnes-
Schuster et al. (2002), Tomlin (2003), Erkoc and Wu (2005),
and Spinler and Huchzermeier (2006) have studied capac-
ity reservation contracts between single suppliers and buyers.
Our work considers one supplier and multiple buyers. Fur-
thermore, we focus on different capacity transfer fee strate-
gies and study their impact on suppliers.

Similar to our paper, Plambeck and Taylor (2005, 2007a,
2007b) examine a capacity reservation problem in a supply
chain consisting of two buyers purchasing from a single sup-
plier. However, these studies differ from our paper in their
model setup and research questions. Plambeck and Taylor
(2005) ask which member of the supply chain, the buyers
or the supplier, should make capacity and production deci-
sions to coordinate the capacity reservation and product inno-
vation. In contrast, in our paper, only the buyers decide how
much capacity to reserve from the supplier. We ask if a sup-
plier should charge a fee when a buyer with excess reserved
capacity transfers it to another with a reservation shortage.
Plambeck and Taylor (2007a, 2007b) are concerned with buy-
ers’ innovation investment. These studies model two differ-
ent capacity reservation contracts and show a specific type of
capacity contract, sometimes combined with a court-ordered
renegotiation setting, can result in the buyers investing effi-
ciently in innovation. Our study does not examine buyers’
innovation investment decisions, but rather whether and when
suppliers benefit from charging capacity reservation trans-
fer fees.

3 PROBLEM DESCRIPTION

We consider a one-period setting with one risk-neutral sup-
plier and two risk-neutral buyers. The buyers face stochas-
tic demand and reserve capacity to ensure that the supplier
has the capacity to execute their orders once they realize
their demand.

Figure 1 shows the sequence of our main model. First, the
supplier announces a capacity reservation fee r to reserve a
capacity unit and describes how any capacity transfer will be
handled. Each buyer i ∈ {1, 2} then reserves capacity Qi by
paying the total reservation fee rQi. The supplier then creates
the required capacity at a cost h per unit. Next, the buyers
observe their demands Di and order the supplier to produce up

to it. The supplier must produce up to each buyer’s reserved
capacity Qi. For demand beyond one buyer’s reserved level,
the model allocates available capacities according to the sup-
plier’s stated transfer policies.

The supplier uses one capacity unit to produce one product
unit and pays production cost c per unit. The buyers must
pay an execution fee w per unit when they receive one. The
buyers use the units purchased to create their own products
and sell them in the marketplace. Without loss of generality,
we normalize the buyers’ production cost using the supplier’s
part to zero. Each buyer receives v for each unit delivered to
a customer.

Capacity building cost h, production cost c, and the price
the buyers receive for their product v are exogenous param-
eters. To incentivize each supply chain member to partici-
pate, we require that h + c ≤ v, w ≤ v, and r + w ≤ v. In our
model, the demands of buyers D1 and D2 can be correlated.
We use Dt = D1 + D2 to denote total demand. Each buyer
chooses its capacity reservation level Qi. The supplier decides
the capacity reservation fee r and transfer policy.

Based on the available research, we assume in our work
that execution fees are exogenous, but suppliers can set their
capacity reservation fees. As an example, the wholesale price
contract, a common contract between suppliers and buyers,
is a special case of our model. In a wholesale price contract,
the supplier charges a wholesale price to reserve and execute
each unit of capacity reserved, whether it is executed or not.
Since the wholesale price is charged on each unit of capac-
ity reserved, whether it is executed or not, it is analogous to
the capacity reservation fee in our model when there is no
additional execution fee (w = 0).

For another example, consider the third-party logistics
warehousing industry, where execution (e.g., moving mate-
rial in and out of warehouses) is essentially a commodity and
most firms charge market prices for it. The logistics compa-
nies have more control over warehouse reservation pricing
because it is influenced by unique factors like location and
available capacity.

Similarly, many original equipment manufacturers select
a tier-two supplier for their tier-one supplier of a particular
component and set the execution fee between them. In these
arrangements, the execution fee is fixed, but the tier-two sup-
plier can charge a capacity reservation fee. In their review of
the capacity management literature, Wu et al. (2005) suggest
that exogenous wholesale prices (analogous to our model’s
execution fees)1 are common in the high-tech industry, where
manufacturers enter agreements with suppliers to develop
technology (i.e., the design-win phase) before negotiating
capacity reservations. In addition, the researchers point out
that charging side fees on each unit of reserved capacity (anal-
ogous to our capacity reservation fees) is usually possible
and practical.

When one buyer uses another buyer’s single unit of unused
capacity to fulfill its demand, it expects to earn v from a cus-
tomer and must pay execution fee w to the supplier. That is,
the new buyer expects to earn net profit v − w for each unit
of capacity transferred. Because the supplier still holds the
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F I G U R E 1 The sequence of events

capacity, it could decide to keep a portion of the retail level
profit by charging a transfer fee. We denote the portion of
generated profit v − w that the supplier keeps as 𝜃s ∈ [0, 1].
We call 𝜃s the supplier’s transfer share. The remaining profit
(1 − 𝜃s)(v − w) is divided among the buyers: (i) the buyer
who has extra demand and receives the unused capacity real-
izes 𝜃 ∈ [0, 1] portion of the remaining profit (1 − 𝜃s)(v − w),
and (ii) the buyer transferring its unused capacity receives
(1 − 𝜃) portion of the remaining profit (1 − 𝜃s)(v − w). We
define 𝜃 as the receiving buyer’s transfer share.

In the first part of the paper, we assume the supplier decides
𝜃s and 𝜃. In other words, we assume the supplier decides and
informs the buyers whether and how they can benefit if their
excess capacity can be used by the other before they reserve
capacity. This situation occurs when suppliers have signifi-
cant supply chain leverage. For example, the supplier might
be the only firm producing a particular part. According to
The Economist in “Invisible but Indispensable” (Economist,
2009), supplier Mabuchi makes 90% of the micromotors used
to adjust automobile rear-view mirrors, and Tokyo Electron
Ltd. makes 80% of the etchers used in LCD panel produc-
tion. Computer manufacturers still rely on Intel for a large
percentage of their microprocessor chips. In all such situa-
tions, suppliers have leverage due to their near monopoly and
can decide what to charge buyers for capacity received and
refund other buyers for capacity transferred.

To check the robustness of our model, we also study (i)
the case in which the supplier does not decide 𝜃, making it
a parameter of the model based on market standards, and (ii)
the case in which buyers decide 𝜃. In the next section, we
discuss how the reservation quantities Q1 and Q2 depend on
the parameters v, w, h, demand distribution, and the variables
𝜃, 𝜃s, and r.

4 MODEL ANALYSIS

In this section, we analytically study our main model.

4.1 Buyers’ problem: Equilibrium order
quantities

Based on our model, buyer i’s expected profit ΠBi
is a func-

tion of reserved quantity Qi and the other buyer’s reserved

quantity Qj as follows:

ΠBi
= −rQi + (v − w)Si(Qi) + (1 − 𝜃s)𝜃(v − w)Ti(Qi,Qj)

+ (1 − 𝜃s)(1 − 𝜃)(v − w)Tj(Qj,Qi), (1)

where Si(Qi) = 𝔼[ min(Qi,Di)] is buyer i’s expected sales
if it reserves quantity Qi, excluding transfers. Ti(Qi,Qj)
is buyer i’s expected transfer quantity when it has
reserved Qi and the other buyer has reserved Qj. We
must therefore have Ti(Qi,Qj) = 𝔼[ min(Qj − Dj,Di − Qi) ×
𝟙(Di > Qi,Dj < Qj)], where 𝟙(⋅) is the indicator function.

In Lemma A.1 in Supporting Information, we simplify
Ti(Qi,Qj) and Si(Qi) and obtain expressions for the deriva-
tives of Ti(Qi,Qj) with respect to reservation quantities. The
following proposition specifies the conditions for finding
equilibrium reservation quantities:

Proposition 1. We find equilibrium reservation quantities
Q1 and Q2 by solving: H1(Q1,Qt) =

r

v−w
= H2(Q2,Qt) and

Q1 + Q2 = Qt, where,

Hi(Qi,Qt) = Pr(Di > Qi) − (1 − 𝜃s)𝜃Pr(Di > Qi,Dt < Qt)

+ (1 − 𝜃s)(1 − 𝜃)Pr(Di < Qi,Dt > Qt). (2)

For symmetric buyers, Q1 = Q2 = Q at equilibrium. Conse-
quently, each buyer’s reserved equilibrium quantity Q satis-
fies H1(Q, 2Q) =

r

v−w
.

We present all proposition proofs in Supporting Informa-
tion.

4.2 Supplier’s problem: Optimal capacity
reservation fees and transfer profit division

For suppliers, we derive the capacity reservation fee r and
fractions 𝜃s and 𝜃 that maximize expected profit. Where buy-
ers’ demand distributions are symmetric, the supplier’s profit
is

Πs = (r − h)Qt + (w − c)𝔼
[

min(Qt,Dt)
]

+ 𝜃s(v − w)
(

Ti(Qi,Qj) + Tj(Qj,Qi)
)
. (3)
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Equivalently,

1
v − c

Πs = slQt − mr

(
1 −

r
v − w

)
Qt

− (1 − mr)

(
∫

Qt

−∞

Pr(Dt < y) dy

)

+ 𝜃smr

(
Ti(Qi,Qj) + Tj(Qj,Qi)

)
, (4)

where sl =
v−c−h

v−c
and mr =

v−w

v−c
.

In our analysis, we use sl =
v−c−h

v−c
to denote sup-

ply chain service level and mr =
v−w

v−c
for fraction retail

sales margin. The two parameters can take values only
between zero and one and have an intuitive meaning as
follows:

∙ Supply chain service level sl: When a supply chain is cen-
tralized, we can obtain optimal capacity Qt = Q1 + Q2
using a newsvendor model with capacity overage cost h
and capacity shortage cost v − c − h. The service level
under optimal capacity is sl = (v − c − h)∕(v − c), a num-
ber between zero and one depending on v, c, and h. The
supply chain service level therefore represents the prob-
ability that the supply chain would have enough capac-
ity to satisfy all demand under optimal capacity. For
example, if the supply chain’s service level is sl = 0.9,
agents should reserve enough capacity to give them-
selves a 90% probability of satisfying all demand. Sup-
ply chain service level sl is large when suppliers can
build capacity inexpensively (i.e., h is small) and the sup-
ply chain’s marginal profit on sales is high (i.e., v − c is
large).

∙ Fraction retail sales margin mr = (v − w)∕(v − c): In our
model, (v − w) represents buyers’ marginal profit from
each sales unit and (v − c) represents the supply chain’s
marginal profit from each sales unit. Thus, mr = (v −
w)∕(v − c) represents the buyers’ profit margin as a per-
centage of the supply chain’s margin and is a number
between zero and one. When mr is more than 0.5, buy-
ers make more profit per sale than suppliers. When mr
is less than 0.5, buyers make less profit per sale than
suppliers.

By fixing the value of sl = 1 −
h

v−c
, we determine the cost

of reserving a unit of capacity relative to the supply chain’s
marginal profit on a sale v − c. By fixing the value of mr,
we determine what percentage of the supply chain’s marginal
profit on a sale v − c the buyer collects.

The two metrics help us recognize realistic cases. For
example, a supply chain with a service level of sl ≤ 0.5 or
mr ≤ 0.1 is unrealistic. The parameters have intuitive mean-
ings, allowing us to better explain our results and summarize
our cost parameters v, w, c, and h.

4.2.1 Symmetric demand distributions

In Theorem 1, we show that 𝜃 = 0 maximizes supplier profit.
In Theorem 2, we specify the optimal value of 𝜃s for the sup-
plier.

Theorem 1. For two buyers with symmetric demand distri-
bution, supplier’s profit is maximized when the buyer with
excess demand receives no profit from a capacity transfer
(i.e., 𝜃 = 0).

The supplier’s profit increases as 𝜃 decreases. Since (1 − 𝜃)
determines the portion of the profit a buyer with excess capac-
ity retains, the buyers’ marginal profit of reserving an addi-
tional capacity unit is higher when 𝜃 is smaller. Consequently,
the supplier can charge a higher reservation fee r to induce
each buyer to reserve the same capacity quantity Q. As a
result, the supplier’s profit increases as 𝜃 decreases, suggest-
ing the supplier’s profit is maximized when the buyer with
excess demand receives no profit from a capacity transfer.

To characterize the supplier’s optimal 𝜃s, we first assume
the buyers’ demands D1 and D2 follow a symmetric bivariate
normal distribution with mean 𝜇, standard deviation 𝜎, and
correlation 𝜌. That is

(D1,D2) ∼ 
((

𝜇

𝜇

)
,

(
𝜎2 𝜌𝜎2

𝜌𝜎2 𝜎2

))
. (5)

We assume 𝜇∕𝜎 is large enough to make the probability of
negative demand negligible.

Theorem 2. For two buyers with symmetric demand distri-
butions, supplier profit is maximized either when

(i) the supplier does not charge for capacity transfer, and
the buyer with excess capacity receives all transfer-
generated profit (i.e., 𝜃s = 0 and 𝜃 = 0), or

(ii) the supplier receives all transfer-generated profit (i.e.,
𝜃s = 1).

Furthermore, 𝜃s = 0 is optimal for small sl values and 𝜃s =

1 is optimal for large sl values and small mr values.

Theorem 2 suggests suppliers should never try to obtain
only a portion of the retail level value generated by a capacity
transfer by charging a fee. The supplier should seek all of
the value (𝜃s = 1) or none of it (𝜃s = 0). Also of note, 𝜃s =

1 is optimal only when both supply chain service level sl is
relatively large and the retailer’s profit margin on sales mr
is relatively small. We explain the intuition of our results in
Section 4.2.2.

In Proposition 2, we provide expressions for optimal
capacity reservation fee r and the conditions under which
𝜃s = 1 and 𝜃s = 0 are optimal. We denote Φ(z) CDF and
𝜙(z) PDF of standard normal distribution. That is, Φ (z) =

1√
2𝜋
∫ z

−∞
e
−

t2

2 dt, 𝜑 (z) =
1√
2𝜋

e
−

z2

2 .
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Furthermore, Φ𝛼(z) defined as Φ𝛼 (z) =

∫ z

−∞
∫ z

𝛼
−∞

1

2𝜋
√

1−𝛼2
exp(−

x2−2𝛼xy+y2

2(1−𝛼2)
)dydx represents CDF

of bivariate standard normal distribution, with correlation

𝛼 calculated at z and z∕𝛼, where 𝛼
def
=
√

1+𝜌

2
< 1. Note that

Φ(x) = Pr(Di < 𝜇 + 𝜎x), Φ(
x

𝛼
) = Pr(Dt < 2(𝜇 + 𝜎x)), and

Φ𝛼(x) = Pr(Di < 𝜇 + 𝜎x,Dt < 2(𝜇 + 𝜎x)). As defined by
𝛼 =

√
(1 + 𝜌)∕2 = 𝜎t∕(2𝜎), 𝛼 is (i) a simple transformation

of 𝜌 taking positive values between 0 and 1 and (ii) the frac-
tion of total demand 𝜎t’s standard deviation over the sum of
the standard deviations of each buyer’s demand distribution
𝜎 + 𝜎 = 2𝜎.

Proposition 2. The optimal 𝜃s and capacity reservation fee r
can be represented by the following:

∙ If Π0
s (z0) ≥ Π1

s (z1), then 𝜃∗s = 0, and r∗ = (1 −
Φ𝛼(z0))(v − w) and

∙ If Π0
s (z0) < Π1

s (z1), then 𝜃∗s = 1, and r∗ = (1 − Φ(z1))(v −
w),

where z0 is the solution to mr(z +
𝜇

𝜎
)Φ′𝛼(z) + mrΦ𝛼(z) +

(1 − mr)Φ(
z

𝛼
) − sl = 0, z1 is the solution to mr(z +

𝜇

𝜎
)𝜙(z) + Φ(

z

𝛼
) − sl = 0, Π0

s (z) = (sl − mrΦ𝛼(z))(z +
𝜇

𝜎
) −

(1 − mr) ∫ z

−∞
Φ(

x

𝛼
) dx, and Π1

s (z) = (sl − mrΦ(z))(z +
𝜇

𝜎
) −

∫ z

−∞
Φ(

x

𝛼
) dx + mr ∫ z

−∞
Φ(x) dx.

Proposition 2 specifies that suppliers must determine what
capacity quantity they want buyers to reserve when setting
𝜃s = 0 (Q0 = 𝜎z0 + 𝜇) or 𝜃s = 1 (Q1 = 𝜎z1 + 𝜇) to find their
optimal capacity reservation fee r. They then compare profit
when setting 𝜃 = 0 versus 𝜃 = 1 to determine optimal 𝜃s and
r values. Generally, if capacity building cost h is large, sup-
pliers want buyers to reserve less capacity and should set
higher capacity reservation fees r. When capacity building
cost h is small and suppliers’ profit margins on sales are large,
they should encourage higher capacity reservation rates using
lower fees r.

4.2.2 Intuition for results

In Theorem 2, we characterize how suppliers should struc-
ture capacity transfer rights for buyers. We conclude that they
should either take all the transfer benefit (i.e., optimal 𝜃s = 1)
or give all retail level profits generated by the transfer to the
buyer with excess capacity (i.e., optimal 𝜃 = 0 and optimal
𝜃s = 0).

Why is the optimal 𝜃s always at the boundary?
Figure 2 shows the supplier can incentivize the buyers to
reserve a specific capacity Q with many different values of
the pair (𝜃s, r). For example, if the supplier reduces trans-
fer fee 𝜃s, it can charge a higher capacity reservation fee r
and keep Q fixed. Next, we explain among all the (𝜃s, r) pairs

resulting in a specific Q (e.g., equilibrium Q, the red line in
the figure), the pair with 𝜃s set to zero or 1 generates the
most supplier profit; hence, the optimal 𝜃s is always at the
boundary.

For any specific Q in Figure 2, the supplier compares
whether (i) increasing 𝜃s and collecting fees on transfers or
(ii) reducing 𝜃s and charging higher capacity reservation fees
yields a higher profit. For a given Q (denoted by the figure’s
isolines), the comparison favors one direction, meaning sup-
plier profit increases in only one way. Hence, the best pair
(𝜃s, r) will have 𝜃s equal to zero or 1.

To further understand the figure, let V = v − w be the buy-
ers’ marginal profit of selling a product. The supplier has
three profit sources: (i) buyers reserving capacity, denoted
by reservation profit, (ii) fees for capacity transfers among
buyers, denoted by transfer profit, and (iii) reserved capac-
ity execution, denoted by execution profit. We denote T as
expected transfer quantity and g as the chance of buyers being
able to transfer an additional capacity unit and consider the
following:

∙ A decrease of Δ𝜃s
in transfer fee 𝜃s results in an increase

in the buyers’ marginal benefit of reserving capacity by
Δ𝜃s

gV .2

∙ If the supplier increases the buyers’ marginal cost of
reserving capacity r by the same amount that the marginal
benefit increases (i.e., by Δr = −Δ𝜃s

gV in Figure 2), their
reserved capacity Q∗ does not change.

With these changes in 𝜃s and r, the equilibrium capacity
reserved Q∗ does not change, and the supplier’s profit sources
react as follows: (i) Reservation profit increases by ΔrQ

∗ =

−Δ𝜃s
g Q∗V , (ii) transfer profit decreases by Δ𝜃s

TV , and (iii)
execution profit does not change. Therefore, if g Q∗ ≥ T , the
process of coordinated change (Δ𝜃s

, Δr = −Δ𝜃s
gV) in (𝜃s, r)

weakly generates profit for the supplier. In this inequality,
(i) g determines the impact of a change in 𝜃s on the buyers’
marginal benefit of reserving capacity and how much r must
change to fix Q, (ii) Q determines the impact of a change in
r on supplier profit, and (iii) T determines the impact of a
change in 𝜃s on supplier profit. Notice that if the equilibrium
capacity reserved Q∗ does not change, the inequality does not
change. This implies the direction of the inequality stays the
same on each of the isolines in Figure 2, meaning supplier
profit increases in only one direction.

In short, 𝜃s is optimal at the boundary because (i) the trans-
fer fee and the capacity reservation fee r is charged per unit;
more generally, the supplier’s and the buyers’ profit functions
are the sum of functions of the form r × f1(Q) and 𝜃s × f2(Q),
where f1, f2 can be nonlinear functions of Q; and (ii) the sup-
plier decides the capacity reservation fee r. We emphasize
that the supplier’s profit is nonlinear in 𝜃s, because the equi-
librium Q depends on 𝜃s. However, the supplier’s profit is lin-
ear in 𝜃s in certain directions where the pair (𝜃s, r) changes
simultaneously to keep Q fixed. As a result, the optimal 𝜃s is
at the boundary.
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F I G U R E 2 The contour plot of capacity Q reserved by each buyer for different (𝜃s, r) values is shown. In the example, a red star indicates the optimal
supplier decision, 𝜃∗s = 0 and r∗ = 0.5738 × (v − w), which results in each buyer reserving Q∗ = 30.76. The supplier can induce each buyer to reserve
Q∗ = 30.76 with many suboptimal (𝜃s, r) values, represented by the red line. The figure also shows that a decrease of Δ𝜃s

in 𝜃s and an appropriate increase of
Δr in r do not impact capacity reservation quantities (Q∗ = 30.76). On each of the isolines (e.g., the red line), the supplier’s profit increases only in the
direction specified by the arrows. The parameters used are sl = 0.8, mr = 0.05, 𝜇 = 30, 𝜎 = 5, 𝜌 = −0.5. The x axis is scaled down by a factor of (v − w)
[Color figure can be viewed at wileyonlinelibrary.com]

Under what specific conditions is 𝜃s = 0 or 𝜃s = 1
optimal?
When it is relatively inexpensive for the supplier to build

capacity (i.e., sl = 1 −
h

v−c
is large) and its profit margin on

sales is large (i.e., mr = 1 −
w−c

v−c
is small), the supplier would

want each buyer to reserve a large capacity quantity Q, and
consistent with Theorem 2, 𝜃s = 1 would be optimal.

By setting a small reservation fee r, the supplier can induce
the buyers to reserve a large capacity Q. The supplier can
encourage the buyers to reserve even more capacity by fur-
ther decreasing r and/or charging a smaller transfer fee 𝜃s.
A reduction in r would also decrease the supplier’s reserva-
tion profit, and a reduction in 𝜃s would decrease the supplier’s
transfer profit. We argue reducing 𝜃s would be a weak incen-
tive to reserve capacity when Q is large, as both buyers would
likely have excess capacity and be unable to transfer it to the
other. Hence, when Q is large (i.e., the suppliers’ profit mar-
gin on sales is large and it is relatively inexpensive to build
capacity), the supplier should focus on reducing reservation
fee r to encourage buyers to reserve more capacity.

When it is relatively expensive for the supplier to build
capacity (i.e., sl is small), the supplier would like the buy-
ers to reserve less (Q will be smaller) and instead encourage
the buyers to trade their excess capacity among them. Hence,
they set 𝜃s = 0. With relatively small Q, it is likely each buyer
would need excess capacity and their incentives would be
sensitive to 𝜃s. As a result, the supplier would want to give
transfer rights to the buyers (i.e., set 𝜃s = 0) and charge a
greater reservation fee r.

4.3 Asymmetric demand distributions

With symmetric demand distributions, the supplier’s profit is
maximized either when 𝜃s = 0 and 𝜃 = 0, or when 𝜃s = 1 and
the value of 𝜃 is irrelevant. When demand distributions are

asymmetric, 𝜃 can be optimal at either boundary or its value
is irrelevant.

Using Proposition 1, with asymmetric demand dis-
tributions, the equilibrium capacity quantities Qi,
Qj, and Qt satisfy the following two equations: (i)

r

v−w
= Hi(Qi,Qt) = Hj(Qj,Qt) and (ii) Qi + Qj = Qt, where

Hi(Qi,Qt) = 1 − Φi − (1 − 𝜃s)𝜃(Φt − Φit) + (1 − 𝜃s)(1 − 𝜃)
(Φi − Φit), Φi = Pr(Di < Qi), Φt = Pr(Dt < Qt), and
Φit = Pr(Di < Qi,Dt < Qt) for i = {1, 2}. The supplier
maximizes profit Πs by choosing 𝜃, 𝜃s, and r with the
constraint that Qi, Qj, and Qt must satisfy the equilibrium
conditions.

Theorem 3. If Di and Dj are bivariate normal distributions

(Di,Dj) ∼ 
((

𝜇i
𝜇j

)
,

(
𝜎2

i 𝜌𝜎i𝜎j

𝜌𝜎i𝜎j 𝜎2
j

))
, (6)

then 𝜃s = 1 is optimal and 𝜃 is irrelevant, or optimal 𝜃 is zero
or 1.

While Theorem 3 narrows down the optimal 𝜃 and 𝜃s, in
Section 5.1, we further characterize the optimal decisions 𝜃
and 𝜃s.

4.4 Three symmetric buyers

We now extend our model to a supply chain with three sym-
metric buyers, Buyer x, Buyer 1, and Buyer 2.3 Similar to our
main model, if one buyer has reserved excess capacity and
another needs it, the supplier allows a transfer. The supplier
charges the buyers 𝜃s(v − w) for each capacity unit transfer,
the buyer with excess capacity profits (1 − 𝜃s)(1 − 𝜃)(v − w)
from each unit, and the buyer with excess demand profits
(1 − 𝜃s)𝜃(v − w). Unlike in our two buyer model, we specify
(i) how excess buyer capacity is allocated when two buyers
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are in need and (ii) which of two buyers with excess capacity
can transfer first.

In both cases, we assume the buyers are equally likely to
have the priority to receive or transfer excess capacity at the
appropriate fee. We make Dx, D1, and D2 the demands of
Buyer x, Buyer 1, and Buyer 2. We let the expected transfer to
Buyer x be denoted Tx+(Qx,Q), where it has reserved capac-
ity Qx and Buyer 1 and Buyer 2 each have reserved capac-
ity Q.4 Also, we let the expected transfer from Buyer x with
reserved capacity Qx to Buyer 1 and Buyer 2 with reserved
capacity Q be Tx−(Qx,Q). The derivation of Tx+(Qx,Q),
Tx−(Qx,Q), and their derivatives are presented as reduced
forms in Supporting Information, Lemma A.6.

When Buyer x has reserved capacity Qx and the other buy-
ers each have reserved capacity Q, Buyer x’s profit function
is

ΠBx
= −rQx + (v − w)𝔼[Qx,Dx] + (1 − 𝜃s)𝜃(v − w)Tx+

× (Qx,Q) + (1 − 𝜃s)(1 − 𝜃)(v − w)Tx−(Qx,Q). (7)

Proposition 3. At equilibrium, each of three symmetric buy-
ers reserves capacity Q to satisfy

r

v−w
= Pr(Dx > Q) + (1 −

𝜃s)𝜃dTx+(Q) + (1 − 𝜃s)(1 − 𝜃)dTx−(Q), where

dTx+(Q) = −Pr(Dx > Q,D1 > Q,Dx + D2 < 2Q)

− Pr(Dx > Q,D1 < Q,Dx + D1 + D2 < 3Q) < 0

dTx−(Q) = Pr(Dx < Q) − Pr(Dx < Q,Dx + D1 < 2Q,Dx

+ D1 + D2 < 3Q) > 0. (8)

Next, we examine the supplier’s optimal decisions regard-
ing 𝜃 and 𝜃s. The supplier’s profit is

Πs = (r − h)(3Q) + (w − c)𝔼
[
min(D1 + D2 + Qx, 3Q)

]
+ 3𝜃s(v − w)

(
Tx+(Q,Q) + Tx−(Q,Q)

)
, (9)

where Q satisfies the equilibrium condition specified in
Proposition 3.

Theorem 4. With three symmetric buyers, the supplier’s
profit is maximized when either 𝜃 = 0 and 𝜃s = 0 or 𝜃s = 1.

Theorem 4 confirms that the supplier benefits most either
keeping all retail-level transfer benefits or giving them all
to buyers (i.e., v − w). The same intuition provided in Sec-
tion 4.2.2 explains Theorem 4.

5 NUMERICAL STUDY

We know that when the buyers’ demand distributions are
symmetric, the supplier maximizes its profit by either (i)
charging a fee capturing all transfer-related profits (and leav-

ing buyers just their participation profit) or (ii) charging no
fee and letting buyers transferring capacity away capture all
retail-level profits. Now, we further characterize the supplier’s
optimal policy for transfer fees.

First, is it still optimal to keep buyers with excess demand
from profiting from a transfer (i.e., is 𝜃 = 0 optimal) with
asymmetric buyers? Second, can we numerically extend the
analytical result of Theorem 2 regarding the impact of sl and
mr on optimal 𝜃s to our asymmetric or three symmetric buyer
models? Third, how do demand parameter values (i.e., cor-
relation 𝜌 and coefficient of variation cv) impact suppliers’
optimal decisions?

We explore two more issues related to our findings: (i)
How likely is not charging a transfer fee (𝜃s = 0) optimal?
and (ii) if 𝜃s = 0 is not optimal, how does it compare to the
optimal policy?

In our numerical study, we change our parameter values as
follows:

∙ Supply chain service level sl ∈ {0.51, 0.52, 0.53, … , 0.99}
(49 instances).

∙ Fraction retail sales margin mr ∈ {0.01, 0.02, 0.03, … ,
0.99} (99 instances).
In our analysis, v, w, h, and c appear only as sl =

v−c−h

v−c
and

mr =
v−w

v−c
; hence, we set only sl and mr instead of individ-

ual values.
∙ demand correlation 𝜌 ∈ {−0.95, −0.90, −0.85, … , +0.95}

(39 instances);
∙ coefficient of variations cv =

𝜎

𝜇
∈ {0.05, 0.10, 0.15,

… , 0.3} (six instances).
With normal distribution, we require the coefficient of vari-
ation to be less than 0.333 to make the probability of
negative demand negligible. With asymmetric buyers, we
choose the largest coefficient of variation.

To study the asymmetric buyer model, we also choose
𝜇1

𝜇1+𝜇2
∈ {0.25, 0.5, 0.75} and

𝜎1

𝜎2
∈ {0.25, 0.5, 0.75}. Our

analytical results show that the supplier’s decisions depend
only on the fractions

𝜇1

𝜇1+𝜇2
and

𝜎1

𝜎2
; thus, we do not set each

𝜎1, 𝜎2, 𝜇1, and 𝜇2 value. The parameter design accounts for
1,135,134 cases with symmetric buyers and 10,216,206 cases
with asymmetric buyers.

For the model with two symmetric buyers and two asym-
metric buyers, we also study the impact of demand parame-
ters on optimal decisions. For this study, we analyze an addi-
tional 600,000 cases for the two symmetric buyer model and
5,400,000 more cases for the two asymmetric buyer model
by expanding our demand parameter set and limiting our cost
parameters as follows:

∙ Supply chain service level sl ∈ {0.51, 0.56, 0.61, … , 0.96}
(10 instances).

∙ Fraction retail sales margin mr ∈ {0.01, 0.06, 0.11, … ,
0.96} (20 instances).

∙ Demand correlation 𝜌 ∈ {−0.99, −0.97, −0.95, … , +0.99}
(100 instances).
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∙ Coefficient of variation cv =
𝜎

𝜇
∈ {0.01, 0.02, 0.03, … ,

0.3} (30 instances).

With three symmetric buyers, we assume their demand
consists of market-specific term Γ and buyer-specific term
𝜖j for j ∈ {i, 1, 2}. Specifically, we assume Dj = Γ + 𝜖j for
j ∈ {i, 1, 2} and 𝜖j and Γ are independent random variables.
Γ specifies market conditions and dictates buyer demand.
If Γ has no variability, each buyers’ demand is indepen-
dent; otherwise, the demands are positively correlated.5

Furthermore, we assume that 𝜖j and Γ are normally
distributed. Specifically, 𝜖j ∼  (0, 𝜎𝜖) and Γ ∼  (𝜇, 𝜎𝛾).
Therefore, each buyer’s demand is Dj ∼  (𝜇, 𝜎), where 𝜎 =

𝜎𝜖

√
1 + (

𝜎𝛾

𝜎𝜖
)2. For our parameter values, we consider

𝜎𝛾

𝜎𝜖
∈

{0, 0.1, 0.2}; sl ∈ {0.51, 0.52, 0.53, … , 0.99} (49 instances);
mr ∈ {0.01, 0.02, 0.03, … , 0.99} (99 instances); and cv =

𝜎

𝜇

varies from 0.05 to 0.3 in increments of 0.05 (six instances).
The three symmetric buyer model therefore has 87,318 cases.
Overall, the parameter design accounts for 17,438,658 cases.

5.1 Optimal 𝜽 and 𝜽s with asymmetric
demand

In Theorem 3, we partially characterize how suppliers can
optimally ration capacity transfer-generated profit in the pres-
ence of buyers with asymmetric demand. We now further
characterize the supplier’s optimal 𝜃 and 𝜃s values for the
asymmetric buyer model.

We numerically solve 15,616,206 asymmetric buyer model
instances with our specified parameters. Similar to the sym-
metric buyer model, the study shows it is optimal for the
supplier to (i) not allow the buyer with excess demand to
profit from the transfer (i.e., 𝜃 = 0) and (ii) either collect all
transfer-generated profit or give it all to the buyer with excess
capacity (i.e., 𝜃s is either zero or 1).

5.2 Impact of parameters on supplier’s
decisions

5.2.1 Impact of cost parameters

In Theorem 2, we analytically show that optimal 𝜃s is 1 for a
model with two symmetric buyers when sl is relatively large
and mr is relatively small. In this section, we test whether the
result holds for our models with two asymmetric and three
symmetric buyers. We generate 2124 plots similar to those
shown in Figure 3. Among them, 2106 correspond to our
model with two asymmetric buyers and 18 correspond to our
model with three symmetric buyers. In all plots generated,
𝜃s = 1 occurs in the top left corner; that is, 𝜃s = 1 when sup-
ply chain service level sl is large and fraction retail sales mar-
gin mr is small. We confirm that when mr ≥ 0.08 or sl ≤ 0.82,
optimal 𝜃s cannot be 1. For the model with two asymmetric

buyers, our numerical studies suggest that smaller
𝜇1

𝜇1+𝜇2
and

larger
𝜎1

𝜎2
contribute to larger regions of 𝜃s = 1 in the mr × sl

space. In other words, when the variance of demand of the
two buyers is similar but average demand of one buyer is sub-
stantially smaller than the other buyer, the region with 𝜃s = 1
is larger.

For our model with three symmetric buyers, 𝜃s = 0 is opti-
mal for all our described parameters. We can observe opti-
mal 𝜃s = 1 only by focusing on very large sl and very small
mr, that is, with sl ∈ [0.95, 0.999] in increments of 0.001 and
mr ∈ [0.001, 0.05] in increments of 0.001.

5.2.2 Impact of demand parameters

Theorem 2 does not address the impact of demand parame-
ters 𝜌 and cv on optimal 𝜃s. To numerically study the demand
parameters’ impact on both 𝜃s and optimal capacity reserva-
tion fee r, we focus on our models with two symmetric and
two asymmetric buyers. We generate plots showing the sup-
plier’s optimal 𝜃s for each pair of demand parameters 𝜌 and
cv. Figures 4 and 5 show examples in which we observe the
following:

∙ The right panel of Figure 5 suggests that the supplier
charges a relatively high capacity reservation fee r when
the correlation of demand 𝜌, or coefficient of variation cv
is small. However, in the left panel of the same figure, we
observe some disturbance of this general observation. By
comparing this panel with the left panel of Figure 4, we can
conclude that the disturbance is due to the change in policy
regarding 𝜃s. Specifically, with a smaller 𝜃s, the supplier
charges a relatively high capacity reservation fee r.

∙ Figure 4 suggests the supplier should be more confident
choosing 𝜃s = 0 as the coefficient of variation becomes
smaller.

∙ The left panel of Figure 4 suggests the impact of 𝜌 on opti-
mal 𝜃s is not monotonic. As 𝜌 increases, optimal 𝜃s can
switch from zero to one and back.

The first observation is intuitive. When 𝜌 becomes smaller
or more negative, it is more likely a buyer can transfer
excess capacity to another and generate profit. In other words,
the buyer’s marginal benefit of reserving capacity increases.
Hence, the supplier could increase the marginal cost of
reserving capacity, charging a higher fee r. When the coef-
ficient of variation cv is relatively small, demand variability
is also low, creating little risk in reserving capacity. Here, the
supplier can charge the buyers an amount approaching their
sales profit margin v − w. Furthermore, when 𝜃s is relatively
small, the buyers can profit from their excess capacity and the
supplier can charge a higher capacity reservation fee r.

Addressing the second and third observations, we first

define the z-value of reserved quantity Q as z =
Q−𝜇

𝜎
. The

value indicates how many standard deviations above or below
expected demand each buyer’s reserved capacity is. Recall
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F I G U R E 3 The figure, in which cv = 0.3, demonstrates optimal 𝜃s depends on cost parameters sl and mr when the supplier sets 𝜃 to zero. The x-axis
features mr; the y-axis shows sl. The left plot corresponds to the two asymmetric buyer model; the right plot shows the three symmetric buyer model

F I G U R E 4 The figure shows optimal 𝜃s depends on the demand parameters 𝜌 and cv when the supplier sets 𝜃 to zero. The x-axis features 𝜌; the y-axis
shows cv. The left plot corresponds to the two symmetric buyer model; the right plot shows the two asymmetric buyer model

F I G U R E 5 The figure shows optimal r depends on the demand parameters 𝜌 and cv when the supplier sets 𝜃 to zero. The x-axis features 𝜌; the y-axis
shows cv. The left plot corresponds to the model with two symmetric buyers; the right plot shows the model with two asymmetric buyers
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that when deciding 𝜃s, the supplier compares expected trans-
fer T with g × Q, where g is additional transfer probability
and Q is capacity quantity. The supplier compares whether
increasing 𝜃s and collecting fees on expected transfers T or
reducing 𝜃s and charging a higher reservation fee (i.e., adding
g × (v − w) to the capacity reservation fee) is more beneficial.
We can argue that because the z-value determines expected

transfer probabilities in normal distributions,
T

𝜎
(expected

transfers in standard deviation units) and g (additional trans-
fer probability) depend on the z-value and demand correla-

tion, and
Q

𝜎
= z + 1∕cv depends on the z-value and coefficient

of variation cv.
For a fixed z-value,

Q

𝜎
decreases as cv increases, but

T

𝜎
and g

remain the same. As a result, it is more likely that
T

𝜎
> g ×

Q

𝜎
,

implying 𝜃s = 1 is optimal. As demand correlation increases

for a fixed z-value, both expected transfer
T

𝜎
and additional

transfer probability g decrease while
Q

𝜎
remains fixed. There-

fore, a higher demand correlation can result in optimal 𝜃s
switching from 1 to zero or vice versa. Changing cv or 𝜌 also
impacts the z-value at the optimal solution, which compli-
cates the comparisons.

5.3 A simple policy for transfer fees

The optimal value of 𝜃s, which determines whether a supplier
should charge a transfer fee, can be zero or 1 and depends on
several model parameters. Next, we explain 𝜃s = 1 is opti-
mal for only a small parameter set, and even in those cases
𝜃s = 0 performs well. Always choosing 𝜃s = 0 and collect-
ing no transfer fee is therefore a simple policy that is not far
from optimal. On the other hand, we show choosing 𝜃s = 1
by mistake can result in great profit loss.

We define an optimality gap of 𝜃 = 𝜏, denoted Gap𝜏 for
𝜏 ∈ {0, 1}, as the supplier’s percentage profit loss if the firm

sets 𝜃s as 𝜏 instead of optimal. Specifically, Gap𝜏 =
Π𝜏

s−Π
∗
s

Π∗
s

×

100%, where Π∗
s is the supplier’s profit when optimizing 𝜃s,

as well as r and 𝜃, and Π𝜏
s is the supplier’s profit when setting

𝜃s suboptimally but optimizing r and 𝜃.
In the two symmetric buyer model, 𝜃s = 0 is optimal in

99.93% of 1,735,134 cases (see Table 1). In cases where 𝜃s =

0 is not optimal (0.07%), the average optimality gap is 0.02%
and the maximum gap is 0.17%. 𝜃s = 1 is optimal in only
0.07% of the cases. When 𝜃s = 1 is not optimal (99.93% of
cases), the average optimality gap is 6.67%. The gap can be
as high as 42.82%. We observe similar numbers for our two
asymmetric buyer model.

We conclude that a simple policy that performs well for the
supplier is to never charge the buyers any transfer fee (and
instead charge a higher capacity reservation fee). The reason
for this observation is as follows: 𝜃s = 1 is optimal only when
sl is relatively large and mr is relatively small, equivalently,
when capacity Q reserved by each buyer is relatively large.
With a large Q, buyers are unlikely to require transfers; there-
fore, transfer-generated profits are insubstantial when 𝜃s = 1
is optimal. As a result, 𝜃s = 0 would perform close to 𝜃s = 1.

TA B L E 1 Shown is the optimality gap for the symmetric and
asymmetric two buyer models in which the supplier sets 𝜃 and r optimally
after deciding 𝜃s. The ‘‘count optimal” column specifies the percentage of
1,735,134 symmetric buyer model instances and 15,616,206 asymmetric
buyer model instances considered, depending on whether 𝜃s = 0 or 𝜃s = 1
is optimal

Optimality gap

(if not optimal)

Model Policy
Count
optimal Mean Median Max

Symmetric buyers 𝜃s = 0 99.93% 0.02% 0.02% 0.17%

𝜃s = 1 0.07% 6.67% 5.05% 42.82%

Asymmetric buyers 𝜃s = 0 99.99% 0.01% 0.01% 0.11%

𝜃s = 1 0.01% 4.63% 3.33% 46.4%

6 ROBUSTNESS CHECKS

We find suppliers perform best by either keeping all capacity
transfer-generated benefits or charging buyers transfer fees
but letting those with excess capacity keep all the profit gen-
erated. We now consider our primary result’s robustness with
respect to model changes.

6.1 Nonlinear cost structure

To confirm our primary result is not due to linear costs, we
study two new models with nonlinear cost structures based
on our two symmetric buyer model.

6.1.1 Capacity building cost as a step function

Building capacity often involves adding new machines to a
production facility. The supplier spends a fixed amount on
each machine to increase capacity by a certain quantity. We
can model the situation by assuming the capacity building
cost is an increasing step function expressed as follows:

h(Q) =

{
0 if Q = 0

hi if qi−1 ≤ Q < qi for i ∈ {1, 2, 3, … },
(10)

where hi is nondecreasing in i and capacity building cost
jumps at thresholds qi. Similar to our original model, the sup-
plier charges r per unit of capacity reserved. Theorem 5 con-
firms our primary result.

Theorem 5. When capacity building cost is a step function,
the supplier’s optimal 𝜃 = 0 and 𝜃s is either zero or 1.

Optimal 𝜃s is more likely to be zero with larger jumps in
the capacity building cost function (i.e., hi − hi−1), as the sup-
ply chain would resist investing in capacity. That is, Q would
be relatively smaller with larger jumps in the capacity build-
ing cost function. When Q is small, buyers are likely to be
able to transfer their excess capacity; therefore, the buyers
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F I G U R E 6 The model’s event sequence when 𝜃 is an exogenous parameter

would be sensitive to the value of transfer fee 𝜃s. As explained
earlier, this implies 𝜃s is more likely to be zero.

6.1.2 Convex capacity building costs and
reservation fees

We also check our primary result’s robustness by allowing
capacity building cost to be a nonlinear function of Q. Sim-
ilar to Erkoc and Wu (2005) and Huang et al. (2018), we
let capacity building cost be a convex function. According
to Erkoc and Wu (2005), “the capacity expansion in the con-
text of high-tech industry demonstrates diseconomy of scale,”
which the convex function captures.

We give the capacity reservation fee function a similar con-
vex shape. Specifically, we assume capacity building cost
is 𝛽 × h(Q) for some convex increasing function h(Q) and
𝛽 > 0, and capacity reservation fee is r × R(Q) for some con-
vex increasing function R(Q), where the supplier decides r.
Note that h(⋅) and R(⋅) can also be linear. For example, we
can construct the model in Erkoc and Wu (2005) by allowing
h(⋅) to be convex and R(⋅) to be linear. Theorem 6 summarizes
our new model’s results, which are consistent with those of
our main model.

Theorem 6. At equilibrium, each buyer’s reservation
Q satisfies Pr(Di > Q) − (1 − 𝜃s)𝜃Pr(Di > Q,Dt < 2Q) +

(1 − 𝜃s)(1 − 𝜃)Pr(Di < Q,Dt > 2Q) =
r

(v−w)

R(Q)

R′(Q)
. For the

supplier, the optimal 𝜃 is zero and 𝜃s is either zero or 1.

6.2 𝜽 as an exogenous parameter

In Theorem 2, we show the optimal 𝜃s is either zero or
1 when 𝜃 is set optimally at zero. While the supplier can
easily set 𝜃s, it may not be able to impose a particular 𝜃
value. Here, we study the optimal value of 𝜃s and capacity
reservation fee r when 𝜃 is an exogenous parameter based
on market standards. The sequence of events is shown in
Figure 6.

Theorem 7. For two buyers with symmetric demand distribu-
tions where Di and Dj follow bivariate normal distribution as
specified in (5), optimal 𝜃s is zero or 1 even if 𝜃 is a nonzero
parameter (i.e., 0 < 𝜃 ≤ 1).

TA B L E 2 Shown is the optimality gap for the model with two
symmetric buyers when 𝜃 is exogenous and the supplier sets r optimally
after 𝜃s is decided. The “Count optimal” column specifies the percentage of
1,135,134 instances considered for each 𝜃, 𝜃s = 0, or 𝜃s = 1

Optimality gap

(if not optimal)

Exogenous 𝜽 Policy
Count
optimal Mean Median Max

𝜃 = 0.1 𝜃s = 0 99.63% 0.06 0.04 0.38

𝜃s = 1 0.37% 5.78 4.37 34.89

𝜃 = 0.2 𝜃s = 0 98.75% 0.11 0.07 0.70

𝜃s = 1 1.25% 4.75 3.50 29.55

𝜃 = 0.3 𝜃s = 0 96.63% 0.18 0.11 1.14

𝜃s = 1 3.37% 3.77 2.70 23.63

𝜃 = 0.4 𝜃s = 0 91.83% 0.28 0.17 1.73

𝜃s = 1 8.17% 2.88 1.99 17.52

𝜃 = 0.6 𝜃s = 0 58.38% 0.68 0.51 3.44

𝜃s = 1 41.62% 1.69 1.18 7.38

𝜃 = 0.8 𝜃s = 0 26.96% 1.67 1.32 5.91

𝜃s = 1 73.04% 0.60 0.49 1.58

Theorem 7 shows that the supplier should set 𝜃s as zero
or 1 even when it has no control over 𝜃, which can be any
arbitrary value.

In Table 1, where 𝜃 is optimally set to zero, the sup-
plier should almost always grant capacity transfer rights and
charge no fee. But should the supplier grant buyers capacity
transfer rights and not charge a fee even when 𝜃 is a nonzero
parameter? We numerically investigate the effect of nonzero
𝜃 on the optimal 𝜃s value using the same set of parameters
used previously to study the impact of cost parameters. In
addition, we consider 𝜃 ∈ {0.1, 0.2, 0.3, 0.4, 0.6, 0.8}. The
parameter design accounts for 6,810,804 cases.

Table 2 shows, in our numerical study, as long as 𝜃 ≤ 0.4,
𝜃s = 0 is optimal in most cases, with an optimality gap of at
most 1.73% when it is not. Furthermore, 𝜃s = 1 is not optimal
in most cases and has a relatively large optimality gap. Hence,
we conclude, in our numerical study, for cases where 𝜃 ≤ 0.4,
not charging for the transfers is either optimal or it is a simple
policy that performs close to optimal for the supplier.

Comparing Tables 1 and 2, we conclude the parameter set
for which 𝜃s = 0 is optimal shrinks when 𝜃 is an exogenous
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F I G U R E 7 The model’s event sequence when the buyers determine 𝜃

parameter. The reason is that with large 𝜃, the buyers prefer
to receive capacity transfers; hence, they reserve less upfront.
As a result, with large 𝜃, the supplier requires a reduced reser-
vation fee r to induce the buyers to reserve a certain capac-
ity quantity Q. However, the supplier can cease this adverse
effect of 𝜃 being large by setting 𝜃s = 1, that is, by leaving
no transfer profit to the buyers. Indeed, when 𝜃 is relatively
large, the supplier has even more incentive to keep 𝜃s = 1.

6.3 When buyers decide 𝜽

To further check our primary result’s robustness, we inves-
tigate our model when buyers decide 𝜃. We consider three
models:

1. The buyers agree on 𝜃 before demand is realized, that
is, before they know if they have a capacity shortage or
excess.

2. The buyer with excess capacity sets 𝜃 after realizing
demand.

3. The buyer with a capacity shortage sets 𝜃 after realizing
demand.

We detail the latter two models in Section A.4 of Support-
ing Information. In Theorem A.1, we show that allowing the
buyer with excess capacity to set 𝜃 yields a model equiva-
lent to that in which the supplier sets 𝜃. In both models, 𝜃,
𝜃s, and r are the same at equilibrium, and the supplier’s and
buyers’ expected profits are the same. In Theorem A.2, we
show that optimal 𝜃 is 1 for the buyer and optimal 𝜃s is 1 for
the supplier (i.e., the supplier receives all transfer benefits) if
the buyer with a shortage of capacity sets 𝜃. The result of this
last model is different from our recommended policy 𝜃s = 0.
However, it is not very realistic to assume the buyer with a
shortage of capacity sets the value of 𝜃.

Next, we focus on the first model in which the buyers col-
lectively decide and agree on the 𝜃 value that maximizes their
profits. We assume symmetric buyers so there is no disagree-
ment among them. Figure 7 details the sequence of events:
First, the supplier sets the optimal capacity reservation fee r
and 𝜃s and announces them to the buyers. Then, each buyer
finds the 𝜃 value maximizing its own profit. Since the buy-
ers are symmetric, they agree on the optimal value. Based on
the values of r, 𝜃s, and 𝜃, Buyer 1 and Buyer 2 simultane-
ously reserve quantities Q1 and Q2. The buyers then realize
their demand and make initial sales based on their reserved
capacity. Any capacity transfers then occur, and the buyer

receiving excess capacity makes additional sales. Proposi-
tion 4 provides expressions for the optimal 𝜃 value for buyers,
as well as equilibrium quantities.

Proposition 4. For a given 𝜃s < 1 and r, the buyers

choose 𝜃 =
Pr(Di>Q∗,Dt<2Q∗)

Pr(Di<Q∗,Dt>2Q∗)+Pr(Di>Q∗,Dt<2Q∗)
, where Q∗ is

the solution to 1 −
r

v−w
= 𝜃sPr(Di < Q∗) + (1 − 𝜃s)Pr(Dt <

2Q∗). At equilibrium, each buyer reserves capacity Q = Q∗.

Pr(Di > Q∗,Dt < 2Q∗) is the probability that a buyer has a
capacity shortage the other buyer’s excess can satisfy. Equiv-
alently, it is the probability that the buyer could reserve one
less unit of capacity and receive one more transfer from the
other buyer and profit proportional to 𝜃. Similarly, Pr(Di <

Q∗,Dt > 2Q∗) is the probability that the buyer could reserve
one more unit of capacity to transfer to the other and profit
proportional to 1 − 𝜃. Theorem 8 characterizes the supplier’s
optimal 𝜃s and optimal reservation fee r.

Theorem 8. The supplier’s optimal 𝜃s is either zero or 1.
When sl is relatively large and mr is relatively small, 𝜃s = 1
is optimal; when sl is small, 𝜃s = 0 is optimal. The optimal
capacity reservation fee r and optimal 𝜃s can be obtained as
follows:

∙ If Π0𝜃∗ (z0𝜃∗) ≥ Π1𝜃∗ (z1𝜃∗), then 𝜃∗s = 0, and r∗ = (1 −

Φ(
z0𝜃∗

𝛼
))(v − w), and

∙ If Π0𝜃∗ (z0𝜃∗) < Π1𝜃∗ (z1𝜃∗), then 𝜃∗s = 1 and r∗ = (1 −
Φ(z1𝜃∗))(v − w),

where z0𝜃∗ is the solution to mr
1

𝛼
𝜙(

z

𝛼
)(z +

𝜇

𝜎
) + Φ(

z

𝛼
) − sl =

0 and z1𝜃∗ is the solution to mr𝜙(z)(z +
𝜇

𝜎
) + Φ(

z

𝛼
) −

sl = 0. Also, Π0𝜃∗ (z) = (sl − mrΦ(
z

𝛼
))(z +

𝜇

𝜎
) − (1 −

mr) ∫ z

−∞
Φ(

x

𝛼
) dx and Π1𝜃∗ (z) = Π0𝜃∗ (z) + mr(∫ z

−∞
(Φ(x) −

Φ(
x

𝛼
)) dx − (Φ(z) − Φ(

z

𝛼
))(z +

𝜇

𝜎
)).

Here, the intuition for 𝜃s is similar to that of our origi-
nal model. The supplier compares whether increasing 𝜃s and
collecting fees on expected transfers T or reducing 𝜃s while
charging a higher reservation fee r is more beneficial. In
the new model, lowering 𝜃s has a different impact on the
buyers’ profit because they can receive a portion even with a
capacity shortage. Hence, the value by which the supplier can
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F I G U R E 8 Shown is how the optimal 𝜃s, 𝜃, and r values depend on the cost parameters sl and mr or demand parameters cv and sl. In the model,
symmetric buyers decide 𝜃. In the left panels, mr is represented on the x-axis and sl is on the y-axis. In the right panels, 𝜌 is on the x-axis and cv is on the
y-axis. The upper plots show optimal 𝜃s, the center plots show the corresponding optimal r, and the lower plots show the corresponding optimal 𝜃. In the
region where 𝜃s = 1, the 𝜃 value is irrelevant

increase r when decreasing 𝜃s is related not only to the prob-
ability the buyers can transfer an additional unit of capacity
(denoted g = Pr(Di < Q,Dt > 2Q)) but also on the probabil-
ity one buyer can make a profit from the transfers by reserv-
ing one less marginal capacity unit and receiving the other’s
excess capacity (denoted g̃ = Pr(Di > Q,Dt < 2Q)). Here,
the supplier compares expected transfers T with (g − g̃) × Q

and decides whether 𝜃s = 1 or 𝜃s = 0 is optimal for each Q.
The supplier can then choose the optimal Q and set 𝜃s and r
to achieve the desired Q. We numerically investigate the opti-
mal values of 𝜃, 𝜃s, and r using the same set of parameters
discussed previously.

The left panels of Figure 8 show an example of how opti-
mal 𝜃s, r, and 𝜃 values depend on cost parameters mr and sl.
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TA B L E 3 Shown is the optimality gap for the two symmetric buyer
model when the buyers decide 𝜃 and the supplier sets r optimally after 𝜃s is
decided. The “Count optimal” column specifies the percentage of 1,735,134
instances considered, depending on whether 𝜃s = 0 or 𝜃s = 1 is optimal

Optimality gap

(if not optimal)

Policy
Count
optimal Mean Median Max

𝜃s = 0 87.92% 0.4% 0.23% 2.69%

𝜃s = 1 12.08% 5.36% 3.45% 42.52%

Similar to our main model, we observe that 𝜃s = 1 is optimal
only when mr is relatively small and sl is relatively large (see
the top left panel of Figure 8) and the optimal capacity reser-
vation fee r is small when mr is small and sl is large (see the
middle left panel of Figure 8).

From plots similar to the bottom left panel of Figure 8,
we observe that 𝜃 is relatively large when mr is small and sl
is large 6 (i.e., the cost of building capacity is small and the
supplier’s sales profit margin is large compared to the buy-
ers’) because, in that case, the supplier wants the buyers to
reserve large capacity quantities. When they do so, it is more
likely that they will profit by reserving one fewer capacity
unit and receiving excess capacity from the other buyer (i.e.,
Pr(Di > Q,Dt < 2Q)) than by reserving one more capacity
unit and transferring excess capacity (i.e., Pr(Di < Q,Dt >

2Q)). Hence, the buyers are incentivized to increase 𝜃.
We also investigate how optimal decisions regarding 𝜃s, r,

and 𝜃 depend on the demand parameters cv and 𝜌. The right
panels of Figure 8 show an example of how optimal 𝜃s, r, and
𝜃 values depend on demand parameters cv and 𝜌. Similar to
our main model, optimal r is relatively small when cv and 𝜌
are relatively large (see the middle right panel of Figure 8),
and 𝜃s = 1 is optimal when the coefficient of variation cv is
relatively large (see the top right panel of Figure 8). Contrary
to our main model, the impact of 𝜌 on optimal 𝜃s is mono-
tone in all cases considered (see the middle right panel of
Figure 8); specifically, with a relatively large 𝜌, it is more
likely that 𝜃s = 1 is optimal. As discussed, lowering 𝜃s has a
different impact on profit when the buyers determine 𝜃, lead-
ing to a different impact of 𝜌 on optimal 𝜃s.

Next, we show that when optimal 𝜃s = 1, setting 𝜃s = 0 is
still close to optimal. We examine the optimality gap between
setting 𝜃s = 0 and 𝜃s = 1 when buyers determine 𝜃 (see
Table 3) using the same parameters set described for our main
model. We find 𝜃s = 0 is optimal in 87.92% of 1,735,134
cases. In the 12.08% of cases in which 𝜃s = 0 is not opti-
mal, the average optimality gap is 0.4%, with a maximum
of 2.69%. When 𝜃s = 1 is not optimal, we find an average
optimality gap of 5.36%, with a maximum of 42.52%. As in
our main model, setting 𝜃s = 1 and charging buyers transfer
fees can hurt supplier profits more than simply never charging
transfer fees. This is because whenever the supplier’s optimal
𝜃s = 1, the likelihood of capacity transfers is small, making
profit division less impactful.

F I G U R E 9 The line separating optimal 𝜃s = 1 and 𝜃s = 0 regions
depends on the decision-maker of 𝜃. The solid red line separates the region
in which 𝜃s = 1 is optimal from that in which 𝜃s = 0 is optimal when the
supplier decides 𝜃. The dashed orange line separates the regions for the
model in which the buyers agree on 𝜃. In region ①, 𝜃s = 1 is optimal
regardless of which party decides 𝜃. In region ③, 𝜃s = 0 is also optimal
regardless of decision-maker. However, in region ②, 𝜃s = 1 is optimal when
the buyers decide 𝜃, while 𝜃s = 0 is optimal when the supplier makes the
decision [Color figure can be viewed at wileyonlinelibrary.com]

How does a change in the decision-maker of 𝜃 influence
the supplier’s 𝜃s policy? To examine the situation, we gener-
ate plots to simultaneously find the lines separating optimal
𝜃s = 1 and 𝜃s = 0 regions when 𝜃 is decided by the supplier
versus the buyers. Figure 9 shows an example. We generate
figures for all parameter sets used in the numerical study. In
all figures, the region in which 𝜃s = 1 is optimal when the
supplier chooses 𝜃 is smaller and contained in the region in
which 𝜃s = 1 is optimal when the buyers choose 𝜃. That is,
the parameter set for which 𝜃s = 1 is optimal expands when
the buyers decide 𝜃. As this parameter set grows, suppliers
should be less willing to grant capacity transfer rights to buy-
ers if they control how the benefits are divided.

Suppliers are likely to set 𝜃 to zero. Buyers are likely to
make it larger than zero. Previously, we explained that with
large 𝜃, the supplier has more incentive to set 𝜃s to 1. As a
result, the parameter set in which 𝜃s = 1 is optimal is larger
when buyers decide it than when the supplier decides it.

7 CONCLUSIONS

Researchers have studied inventory transshipment and its
impact on the supply chain extensively. However, much less
is known about capacity reservation and whether its transfer
among buyers benefits suppliers. Unlike inventory problems,
where buyers own the manufactured product after purchase,
capacity reservation gives buyers and suppliers multiple con-
tractual options regarding unused reserved capacity.

Our capacity reservation examination consistently shows
that supplier profit is maximized when either (i) the supplier
collects all transfer benefits via a fee (i.e., 𝜃s = 1) or (ii) the
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supplier charges no capacity transfer fee (i.e., 𝜃s = 0) and
all retail-level benefits accrue to the buyer releasing excess
capacity. Not charging buyers for transfers allows the sup-
plier to set a higher capacity reservation fee r. The drivers
of this result are the assumptions that (i) the transfer fee and
the capacity reservation fee r is charged per unit; and (ii) the
supplier decides the capacity reservation fee r.

We demonstrate that the supplier can perform close to opti-
mal by not charging a transfer fee in all cases, even when 𝜃s =

1 is optimal. However, the reverse statement is not true: If not
charging a transfer fee is optimal, the supplier’s profit can
substantially decrease when charging a transfer fee in error.

In our hard drive suspension assembly example, the sup-
plier informed buyers they would lose any unused capacity
after a given time, allowing the supplier to regain control. In
our model, the decision corresponds to 𝜃s = 1, in which the
supplier, not the buyers, benefits from excess reserved capac-
ity. We find 𝜃s = 1 can be optimal in some cases; however,
the hard drive suspension assembly supplier was not exactly
sure they actually should be following this policy, and asked
us what in fact the optimal policy should be.

Taiwan Semiconductor Manufacturing Corporation grants
its buyers capacity transfer rights and does not charge fees.
In our model, the decision corresponds to 𝜃s = 0. Our results
suggest that 𝜃s = 0 is a simple policy that is either optimal
or close to optimal in all situations, and Taiwan Semicon-
ductor has become a pioneer in “tradable capacity options”
(Economist, 1996; LaPedus, 1995) as a result of its approach.

Amazon Web Services allow its users to transfer capacity
but charges a fee of 12% of the trading price. The approach is
fairly consistent with 𝜃s = 0 in our model. Amazon charges
only a small capacity transfer fee and also incurs direct costs
to set up an excess capacity marketplace and collect and trans-
fer payments among parties. We do not model such transac-
tional costs in our paper but can assume the 12% fee is an
attempt to recoup them.

We believe our results both explain why we see lib-
eral capacity transfer policies in the field and provide guid-
ance to managers making decisions about capacity trans-
fer fees. Specifically, we suggest a simple policy of not
charging capacity transfer fees is either optimal or performs
close to optimal in all cases. Although our model is stylized
using two or three buyers, we believe the insights generalize
to other situations. However, further research verifying our
results and intuitions in cases with more buyers would be of
interest.

E N D N O T E S
1 In Wu et al. (2005), the contracts considered are more sophisticated than

typical wholesale pricing contracts in the literature. What Wu et al. (2005)
label as wholesale price is charged on each unit of capacity executed, not
reserved, making it analogous to our execution fee.

2 Buyers reserve an additional capacity unit only if (i) they have a high prob-
ability of using it and making profit V (which does not depend on 𝜃s) or (ii)
they have a high probability of transferring it (i.e., g) and making a profit of
(1 − 𝜃s)V . Therefore, a buyer’s marginal benefit of reserving an additional
capacity unit is related to 𝜃s by the term (1 − 𝜃s)gV .

3 If the average of the buyers’ demands is different but their standard devia-
tions are the same, we can use the same analysis with slight modification.

4 We must show Buyer x cannot unilaterally deviate from the equilibrium in
which each buyer orders the same specified quantity Q and make a profit;
hence, we find the expected transfers when Buyer x has reserved a random
quantity Qx and the other two buyers each have reserved quantity Q.

5 Three symmetric buyers cannot have negative demand correlations.
6 When 𝜃s = 1, the value of 𝜃 is irrelevant.
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