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Abstract

This research considers situations in which buyers pay to reserve their suppliers’ capacity

for future use. The study specifically explores whether suppliers should provide transfer

rights, allowing buyers unable to use all of their reserved capacity to transfer the excess

to another buyer, and whether they should charge a transfer fee. The study finds that,

in most cases, the supplier maximizes financial outcomes when the buyer releasing the

excess capacity keeps most of the retail-level profit from the transfer and the supplier

does not charge a transfer fee.
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1 Introduction

Capacity reservation arrangements have become popular in many industries in the last decade. In

typical capacity reservation situations, a buyer reserves a supplier’s capacity to make a product

it needs by paying a capacity reservation fee. When the product demand is realized, the buyers

request the supplier to use their reserved capacity to make the needed units; in return, they pay

an execution fee to the supplier for each unit of product made. The arrangements give buyers the

right to use only part of the supplier’s available capacity, allowing the supplier to pool capacity

and make products for various buyers.

What happens when a buyer requires more or less than its reserved capacity? Consider a

real-world arrangement in the computer hard drive industry. Hard drives require suspension as-

semblies, critical components enabling precise recording head positioning and providing electrical

connections. Only a handful of companies manufacture suspension assemblies, with one offering a

dominant technology and enjoying greater market share than its competitors. Hard drive manu-

facturers provide bids to computer producers to be one of two or three suppliers for each computer

model. When they bid, the hard drive manufacturers do not know how much of the buyer’s demand

they will receive; however, they reserve capacity at their preferred suspension assembly supplier,

expecting to start manufacturing hard drives as soon as they are awarded a contract. Each hard

drive manufacturer’s suspension assemblies fit only its hard drives and cannot be used with another

manufacturer’s product.

When the hard drive manufacturers realize their demand, they ask their suspension assembly

supplier to manufacture the needed parts. Some hard drive manufacturers realize demand ex-

ceeding their reserved capacity; others do not need all the capacity they reserved. Making minor

adjustments to equipment, suspension assembly suppliers can make suspensions for any hard drive

manufacturer. Therefore, the supplier can allocate unused reserved capacity from one customer to

another.

Because suspension assembly suppliers can use the same capacity to satisfy excess demand from

any customer, they must consider the best approach to controlling reserved capacity. In settings

where a supplier sells inventory, buyers simply own the manufactured products and have complete

control over it once they pay for it. When making capacity reservations, buyers pay a fee for the
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right to use the capacity in the future. Before signing a contract, the supplier can set the terms of

the arrangement, maintaining ownership of reserved but unused capacity but informing buyers if

and how they can benefit if another buyer can use the capacity. For example, the supplier could

grant buyers the rights to transfer their unused reserved capacity but charge a transfer fee for each

unit of transfer.

In this paper, we characterize whether and when suppliers should keep capacity transfer rights

or grant them to the firm making the reservation. The supplier has full control of its capacity; if a

buyer wants to transfer capacity rights to another, it cannot do so without the supplier’s knowledge.

Thus, the supplier can charge new buyers transfer fees. In inventory sharing, buyers always own

the completed products they purchase and can share them with other buyers without informing

their suppliers.

Various industry suppliers take different approaches to capacity transfer. For example, a hard

drive suspension assembly supplier that we worked with informs buyers they will lose any capac-

ity they do not use in a given time period and retains transfer rights itself (i.e., buyers lose all

value from unused capacity). A different approach to capacity transfer is noted in Plambeck and

Taylor (2007a): Taiwan Semiconductor Manufacturing Corporation, the world’s largest contract

semiconductor producer, is a pioneer in what have become known as “tradable capacity options”

(LaPedus, 1995; Economist, 1996). The options give buyers the right to trade supplier capacity

among themselves. Under the policy, suppliers collect no additional profit from transferred capac-

ity; buyers divide the profit generated. In other words, the suppliers grant the buyers full capacity

transfer rights. A different policy for capacity transfers is common when manufacturers reserve

warehouse capacity from third party logistics providers. If the firm making the reservation does

not need some of the space, it can sell it to another firm, though logistics providers typically charge

execution fees for materials handling. Because the logistics firms typically pick up the warehoused

items, which are differentiated across users, the manufacturers cannot exchange capacity among

themselves without the logistics providers’ knowledge. A similar application occurs in cloud based

computing/web services. Amazon Web Services allow users to reserve computing capacity on its

servers. Users can reserve what Amazon calls “instances,” combinations of computer, memory and

networking capacity, for particular applications. For users reserving instances they do not use,

Amazon has created a marketplace where they can negotiate instance (i.e., capacity) transfers to
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other users. Amazon charges 12% of the trading price to transfer capacity on the marketplace.

While no model can capture the complexity of all real-world capacity transfer situations, this

paper explores the primary trade-off common to the above examples. Specifically, our model

describes when suppliers should or should not charge buyers a fee for transferring capacity among

themselves.

Our work has several takeaways for managers. First, suppliers improve their outcomes if the

buyers releasing their unneeded capacity to others receive most of the reward. Second, suppliers

should not charge fees for capacity transfers from one buyer to another in most reasonable cases.

Third, in other cases where it is optimal for the supplier to charge a fee for transfers, as long as

the buyers with excess capacity accrue most of the profit from transfers, not charging a transfer fee

would still perform close to optimal for suppliers. Fourth, these cases where the suppliers should

charge buyers for transfers and keep capacity ownership happen when the buyers’ profit margins

on sales are very small compared to the suppliers’ and it is relatively inexpensive to build capacity.

Our results seem counterintuitive. By not charging a fee, suppliers might be expected to lose

money. But when suppliers do not charge transfer fees and grant buyers the financial rewards for

giving up unneeded capacity, suppliers can charge a higher capacity reservation fee.

The remainder of this paper is organized as follows. Section 2 reviews the relevant literature.

Section 3 introduces our model. In Section 4.1, we formulate the buyers’ optimal decisions and in

Section 4.2, we derive the optimal results for how the supplier should set the transfer fee to maximize

his profit. In Section 4.3 and Section 4.4, we extend our result to a model with asymmetric buyers

and a model with more than two buyers, respectively. Section 5 contains our numerical study. In

Section 6, we check the robustness of our results by considering different variations of our model.

The paper concludes in Section 7.

2 Literature Review

The rich inventory pooling and transshipment literature is relevant to our research question. Krish-

nan and Rao (1965), Karmarkar and Patel (1977), Tagaras (1989), Robinson (1989), and Archibald

et al. (1997) have studied inventory transshipment models in which a central planner coordinates

orders at various locations. Recent literature on inventory pooling and transshipment in decentral-

ized systems, including Lippman and McCardle (1997), Anupindi et al. (2001), Rudi et al. (2001),
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Hu et al. (2007), Zhao et al. (2005), Zhao and Atkins (2009), is also of interest but does not consider

suppliers’ decisions and transshipment’s impact on them.

Another literature stream studies the impact of inventory transshipment among downstream

buyers on upstream suppliers’ decisions and profits (Dong and Rudi, 2004; Zhang, 2005; Anupindi

and Bassok, 1999; Jiang and Anupindi, 2010; Lee and Whang, 2002; Shao et al., 2009). Whether and

how suppliers benefit from capacity transfer among buyers appears to be similar to the inventory

transshipment problem. But the situations have a few key differences. First, in the inventory

transshipment problem with decentralized buyers, transfer rights are not an issue because the

buyers own the inventory. Suppliers have no control over transshipment, regardless of its benefits

or downsides. In our paper, the question is not only whether buyers should be able to use excess

capacity, but also how suppliers should divide the generated profit among supply chain members.

Suppliers could charge the buyer using the excess capacity a transfer fee, then keep the transfer fee

or use it to reimburse the buyer transferring excess reserved capacity. Because buyers own inventory

outright, the transshipment literature does not address the same issue as our work. Second, the

costs associated with the capacity transfer problem also differ from those in transshipment, where

buyers purchase inventory before demand is realized and suppliers receive the wholesale price for

each unit. Suppliers are not directly making profit when their buyers sell an inventory unit. In our

problem, buyers pay suppliers a capacity reservation fee for each unit before demand realization

but only remit the remaining (i.e., execution) cost for each unit actually demanded. In the model,

suppliers profit both from each capacity unit (analogous to an inventory unit) the buyer sells to

customers by charging an execution fee and each capacity reservation unit. In other words, buyers

reserve capacity in the suppliers’ facilities and later request execution of reserved capacity based

on actual demand.These key differences result in managerial insights different from those of the

previous literature.

Our work is also related to the rich literature on capacity reservation. Wu et al. (2005) provide

an extensive review. Eppen and Iyer (1997), Van Mieghem (1999), Barnes-Schuster et al. (2002),

Tomlin (2003), Erkoc and Wu (2005), and Spinler and Huchzermeier (2006) have studied capacity

reservation contracts between single suppliers and buyers. Our work considers one supplier and

multiple buyers. Furthermore, we focus on different capacity transfer fee strategies and study their

impact on suppliers.
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Similar to our paper, Plambeck and Taylor (2005, 2007a,b) examine a capacity reservation

problem in a supply chain consisting of two buyers purchasing from a single supplier. However,

these studies differ from our paper in their model setup and research questions. Plambeck and

Taylor (2005) asks which member of the supply chain, the buyers or the supplier, should make

capacity and production decisions to coordinate the capacity reservation and product innovation.

In contrast, in our paper, only the buyers decide how much capacity to reserve from the supplier.

We ask if a supplier should charge a fee when a buyer with excess reserved capacity transfers it to

another with a reservation shortage. Plambeck and Taylor (2007a,b) are concerned with buyers’

innovation investment. These studies model two different capacity reservation contracts and show a

specific type of capacity contract, sometimes combined with a court ordered re-negotiation setting,

can result in the buyers investing efficiently in innovation. Our study does not examine buyers’

innovation investment decisions, but rather whether and when suppliers benefit from charging

capacity reservation transfer fees.

3 Problem Description

We consider a one-period setting with one risk-neutral supplier and two risk-neutral buyers. The

buyers face stochastic demand and reserve capacity to ensure that the supplier has the capacity to

execute their orders once they realize their demand.

Supplier sets
r, θ, and θs Buyer 1

reserves Q1

Buyer 2
reserves Q2

Supplier builds
capacity

Demand is realized

Capacity transfers

Figure 1: The sequence of events.

Figure 1 shows the sequence of our main model. First, the supplier announces a capacity

reservation fee r to reserve a capacity unit and describes how any capacity transfer will be handled.

Each buyer i ∈ {1, 2} then reserves capacity Qi by paying the total reservation fee rQi. The supplier

then creates required capacity at a cost h per unit. Next, the buyers observe their demands Di

and order the supplier to produce up to it. The supplier must produce up to each buyer’s reserved

capacity Qi. For demand beyond one buyer’s reserved level, the model allocates available capacities
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according to the supplier’s stated transfer policies.

The supplier uses one capacity unit to produce one product unit and pays production cost c

per unit. The buyers must pay an execution fee w per unit when they receive one. The buyers use

the units purchased to create their own products and sell them in the marketplace. Without loss of

generality, we normalize the buyers’ production cost using the supplier’s part to zero. Each buyer

receives v for each unit delivered to a customer.

Capacity building cost h, production cost c, and the price the buyers receive for their product

v are exogenous parameters. To incentivize each supply chain member to participate, we require

that h + c ≤ v, w ≤ v, and r + w ≤ v. In our model, the demands of buyers D1 and D2 can

be correlated. We use Dt = D1 + D2 to denote total demand. Each buyer chooses its capacity

reservation level Qi. The supplier decides the capacity reservation fee r and transfer policy.

Based on the available research, we assume in our work that execution fees are exogenous,

but suppliers can set their capacity reservation fees. As an example, the wholesale price contract,

a common contract between suppliers and buyers, is a special case of our model. In a wholesale

price contract, the supplier charges a wholesale price to reserve and execute each unit of capacity

reserved, whether it is executed or not. Since the wholesale price is charged on each unit of capacity

reserved, whether it is executed or not, it is analogous to the capacity reservation fee in our model

when there is no additional execution fee (w = 0).

For another example, consider the third party logistics warehousing industry, where execution

(e.g., moving material in and out of warehouses) is essentially a commodity and most firms charge

market prices for it. The logistics companies have more control over warehouse reservation pricing

because it is influenced by unique factors like location and available capacity.

Similarly, many OEMs select a tier-two supplier for their tier-one supplier of a particular

component and set the execution fee between them. In these arrangements, the execution fee is

fixed, but the tier-two supplier can charge a capacity reservation fee. In their review of the capacity

management literature, Wu et al. (2005) suggest that exogenous wholesale prices (analogous to

our model’s execution fees)1 are common in the high-tech industry, where manufacturers enter

agreements with suppliers to develop technology (i.e., the design-win phase) before negotiating

1In Wu et al. (2005), the contracts considered are more sophisticated than typical wholesale pricing contracts in
the literature. What Wu et al. (2005) label as wholesale price is charged on each unit of capacity executed, not
reserved, making it analogous to our execution fee.
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capacity reservations. In addition, the researchers point out that charging side fees on each unit of

reserved capacity (analogous to our capacity reservation fees) is usually possible and practical.

When one buyer uses another buyer’s single unit of unused capacity to fulfill its demand, it

expects to earn v from a customer and must pay execution fee w to the supplier. That is, the new

buyer expects to earn net profit v − w for each unit of capacity transferred. Because the supplier

still holds the capacity, it could decide to keep a portion of the retail level profit by charging a

transfer fee. We denote the portion of generated profit v −w that the supplier keeps as θs ∈ [0, 1].

We call θs the Supplier’s Transfer Share. The remaining profit (1 − θs)(v − w) is divided among

the buyers: (i) the buyer who has extra demand and receives the unused capacity realizes θ ∈ [0, 1]

portion of the remaining profit (1− θs)(v −w), and (ii) the buyer transferring its unused capacity

receives (1−θ) portion of the remaining profit (1−θs)(v−w). We define θ as the Receiving Buyer’s

Transfer Share.

In the first part of the paper, we assume the supplier decides θs and θ. In other words, we

assume the supplier decides and informs the buyers whether and how they can benefit if their excess

capacity can be used by the other before they reserve capacity. This situation occurs when suppliers

have significant supply chain leverage. For example, the supplier might be the only firm producing

a particular part. According to The Economist in “Invisible but Indispensable” (Economist, 2009),

supplier Mabuchi makes 90% of the micro-motors used to adjust automobile rear-view mirrors,

and Tokyo Electron LTD makes 80% of the etchers used in LCD panel production. Computer

manufacturers still rely on Intel for a large percentage of their microprocessor chips. In all such

situations, suppliers have leverage due to their near monopoly and can decide what to charge buyers

for capacity received and refund other buyers for capacity transferred.

To check the robustness of our model, we also study (i) the case in which the supplier does

not decide θ, making it a parameter of the model based on market standards, and (ii) the case in

which buyers decide θ. In the next section, we discuss how the reservation quantities Q1 and Q2

depend on the parameters v, w, h, demand distribution, and the variables θ, θs, and r.

4 Model Analysis

In this section, we analytically study our main model.
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4.1 Buyers’ Problem: Equilibrium Order Quantities

Based on our model, buyer i’s expected profit ΠBi is a function of reserved quantity Qi and the

other buyer’s reserved quantity Qj as follows:

ΠBi = −rQi + (v − w)Si(Qi) + (1− θs)θ(v − w)Ti(Qi, Qj) + (1− θs)(1 − θ)(v − w)Tj(Qj, Qi) ,

where Si(Qi) = E
[
min(Qi,Di)

]
is buyer i’s expected sales if it reserves quantity Qi, excluding

transfers. Ti(Qi, Qj) is buyer i’s expected transfer quantity when it has reserved Qi and the other

buyer has reserved Qj. We must therefore have Ti(Qi, Qj) = E
[
min(Qj −Dj,Di −Qi)× 1(Di >

Qi,Dj < Qj)
]
, where 1(·) is the indicator function.

In Lemma A.1 in our Online Supplement, we simplify Ti(Qi, Qj) and Si(Qi) and obtain ex-

pressions for the derivatives of Ti(Qi, Qj) with respect to reservation quantities. The following

proposition specifies the conditions for finding equilibrium reservation quantities.

Proposition 1. We find equilibrium reservation quantities Q1 and Q2 by solving: H1(Q1, Qt) =

r
v−w = H2(Q2, Qt) and Q1 +Q2 = Qt, where,

Hi(Qi, Qt) =Pr(Di > Qi)− (1− θs)θPr(Di > Qi,Dt < Qt) + (1− θs)(1− θ)Pr(Di < Qi,Dt > Qt) .

For symmetric buyers, Q1 = Q2 = Q at equilibrium. Consequently, each buyer’s reserved equilib-

rium quantity Q satisfies H1(Q, 2Q) = r
v−w .

We present all proposition proofs in our Online Supplement.

4.2 Supplier’s Problem: Optimal Capacity Reservation Fees and Transfer Profit

Division

For suppliers, we derive the capacity reservation fee r and fractions θs and θ that maximize expected

profit. Where buyers’ demand distributions are symmetric, the supplier’s profit is

Πs = (r − h)Qt + (w − c)E
[
min(Qt,Dt)

]
+ θs(v − w)

(
Ti(Qi, Qj) + Tj(Qj , Qi)

)
.

Equivalently,

1
v−cΠs = slQt −mr

(
1− r

v−w

)
Qt − (1−mr)

(∫ Qt

−∞ Pr(Dt < y) dy
)
+ θsmr

(
Ti(Qi, Qj) + Tj(Qj, Qi)

)
,

where sl =
v−c−h
v−c and mr =

v−w
v−c .

In our analysis, we use sl =
v−c−h
v−c to denote Supply Chain Service Level and mr = v−w

v−c for

9
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Fraction Retail Sales Margin. The two parameters can take values only between zero and one and

have an intuitive meaning as follows:

• Supply Chain Service Level sl: When a supply chain is centralized, we can obtain optimal

capacity Qt = Q1 +Q2 using a newsvendor model with capacity overage cost h and capacity

shortage cost v − c− h. The service level under optimal capacity is sl = (v − c− h)/(v − c),

a number between zero and one depending on v, c, and h. Supply Chain Service level

therefore represents the probability that the supply chain would have enough capacity to

satisfy all demand under optimal capacity. For example, if the supply chain’s service level

is sl = 0.9, agents should reserve enough capacity to give themselves a 90% probability of

satisfying all demand. Supply Chain Service Level sl is large when suppliers can build capacity

inexpensively (i.e., h is small) and the supply chain’s marginal profit on sales is high (i.e.,

v − c is large).

• Fraction Retail Sales Margin mr = (v−w)/(v − c): In our model, (v−w) represents buyers’

marginal profit from each sales unit, and (v− c) represents the supply chain’s marginal profit

from each sales unit. Thus, mr = (v − w)/(v − c) represents the buyers’ profit margin as a

percentage of the supply chain’s margin and is a number between zero and one. When mr is

more than 0.5, buyers make more profit per sale than suppliers. When mr is less than 0.5,

buyers make less profit per sale than suppliers.

By fixing the value of sl = 1 − h
v−c , we determine the cost of reserving a unit of capacity relative

to the supply chain’s marginal profit on a sale v− c. By fixing the value of mr, we determine what

percentage of the supply chain’s marginal profit on a sale v − c the buyer collects.

The two metrics help us recognize realistic cases. For example, a supply chain with a service

level of sl ≤ 0.5 or mr ≤ 0.1 is unrealistic. The parameters have intuitive meanings, allowing us to

better explain our results and summarize our cost parameters v, w, c, and h.

4.2.1 Symmetric Demand Distributions

In Theorem 1, we show that θ = 0 maximizes supplier profit. In Theorem 2, we specify the optimal

value of θs for the supplier.

Theorem 1. For two buyers with symmetric demand distribution, supplier’s profit is maximized

when the buyer with excess demand receives no profit from a capacity transfer (i.e., θ = 0).
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The supplier’s profit increases as θ decreases. Since (1− θ) determines the portion of the profit

a buyer with excess capacity retains, the buyers’ marginal profit of reserving an additional capacity

unit is higher when θ is smaller. Consequently, the supplier can charge a higher reservation fee r

to induce each buyer to reserve the same capacity quantity Q. As a result, the supplier’s profit

increases as θ decreases, suggesting the supplier’s profit is maximized when the buyer with excess

demand receives no profit from a capacity transfer.

To characterize the supplier’s optimal θs, we first assume the buyers’ demandsD1 andD2 follow

a symmetric bivariate normal distribution with mean µ, standard deviation σ, and correlation ρ.

That is

(D1,D2) ∼ N






µ

µ


 ,




σ2 ρσ2

ρσ2 σ2





 . (1)

We assume µ/σ is large enough to make the probability of negative demand negligible.

Theorem 2. For two buyers with symmetric demand distributions, supplier profit is maximized

either when

(i) the supplier does not charge for capacity transfer, and the buyer with excess capacity receives

all transfer-generated profit (i.e., θs = 0 and θ = 0), or

(ii) the supplier receives all transfer-generated profit (i.e., θs = 1).

Furthermore, θs = 0 is optimal for small sl values, and θs = 1 is optimal for large sl values and

small mr values.

Theorem 2 suggests suppliers should never try to obtain only a portion of the retail level value

generated by a capacity transfer by charging a fee. The supplier should seek all of the value (θs = 1)

or none of it (θs = 0). Also of note, θs = 1 is optimal only when both Supply Chain Service Level

sl is relatively large and the retailer’s profit margin on sales mr is relatively small. We explain the

intuition of our results in Section 4.2.2.

In Proposition 2, we provide expressions for optimal capacity reservation fee r and the condi-

tions under which θs = 1 and θs = 0 are optimal. We let Φ(z) be CDF and φ(z) be PDF of standard

normal distribution. Φα(z) represents CDF of bivariate standard normal distribution, with corre-

lation α calculated at z and z/α, where α
def
=

√
1+ρ
2 < 1. Note that Φ(x) = Pr(Di < µ + σx),

Φ( xα) = Pr(Dt < 2(µ + σx)), and Φα(x) = Pr(Di < µ + σx,Dt < 2(µ + σx)). As defined by

α =
√

(1 + ρ)/2 = σt/(2σ), α is (i) a simple transformation of ρ taking positive values between 0

11
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and 1 and (ii) the fraction of total demand σt’s standard deviation over the sum of the standard

deviations of each buyer’s demand distribution σ + σ = 2σ.

Proposition 2. The optimal θs and capacity reservation fee r can be represented by the following:

• If Π0
s(z

0) ≥ Π1
s(z

1), then θ∗s = 0, and r∗ =
(
1− Φα(z

0)
)
(v − w) and

• If Π0
s(z

0) < Π1
s(z

1), then θ∗s = 1, and r∗ =
(
1− Φ(z1)

)
(v − w),

where z0 is the solution to mr(z +
µ
σ )Φ

′
α(z) +mrΦα(z) + (1−mr)Φ(

z
α)− sl = 0, z1 is the solution

to mr(z + µ
σ )φ(z) + Φ( zα ) − sl = 0, Π0

s(z) = (sl −mrΦα(z))(z + µ
σ ) − (1 −mr)

∫ z
−∞Φ( xα) dx, and

Π1
s(z) = (sl −mrΦ(z))(z +

µ
σ )−

∫ z
−∞Φ( xα) dx+mr

∫ z
−∞Φ(x) dx.

Proposition 2 specifies that suppliers must determine what capacity quantity they want buyers

to reserve when setting θs = 0 (Q0 = σz0 + µ) or θs = 1 (Q1 = σz1 + µ) to find their optimal

capacity reservation fee r. They then compare profit when setting θ = 0 versus θ = 1 to determine

optimal θs and r values. Generally, if capacity building cost h is large, suppliers want buyers to

reserve less capacity and should set higher capacity reservation fees r. When capacity building cost

h is small and suppliers’ profit margins on sales are large, they should encourage higher capacity

reservation rates using lower fees r.

4.2.2 Intuition for Results

In Theorem 2, we characterize how suppliers should structure capacity transfer rights for buyers.

We conclude they should either take all the transfer benefit (i.e., optimal θs = 1) or give all retail

level profits generated by the transfer to the buyer with excess capacity (i.e., optimal θ = 0 and

optimal θs = 0).

Why is the optimal θs always at the boundary?

Figure 2 shows the supplier can incentivize the buyers to reserve a specific capacity Q with many

different values of the pair (θs, r). For example, if the supplier reduces transfer fee θs, it can charge

a higher capacity reservation fee r and keep Q fixed. Next, we explain among all the (θs, r) pairs

resulting in a specific Q (e.g., equilibrium Q, the red line in the figure), the pair with θs set to zero

or 1 generates the most supplier profit; hence, the optimal θs is always at the boundary.

For any specific Q in Figure 2, the supplier compares whether (i) increasing θs and collecting

fees on transfers or (ii) reducing θs and charging higher capacity reservation fees yields a higher

profit. For a given Q (denoted by the figure’s isolines), the comparison favors one direction, meaning
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Figure 2: The contour plot of capacity Q reserved by each buyer for different (θs, r) values is shown. In the
example, a red star indicates the optimal supplier decision, θ∗s = 0 and r∗ = 0.5738× (v −w), which results
in each buyer reserving Q∗ = 30.76. The supplier can induce each buyer to reserve Q∗ = 30.76 with many
sub-optimal (θs, r) values, represented by the red line. The figure also shows that a decrease of ∆θs in θs
and appropriate increase of ∆r in r does not impact capacity reservation quantities (Q∗ = 30.76). On each
of the isolines (e.g., the red line), the supplier’s profit increases only in the direction specified by the arrows.
The parameters used are sl = 0.8, mr = 0.05, µ = 30, σ = 5, ρ = −0.5. The X axis is scaled down by a
factor of (v − w).

supplier profit increases in only one way. Hence, the best pair (θs, r) will have θs equal to zero or

1.

To further understand the figure, let V = v − w be the buyers’ marginal profit of selling a

product. The supplier has three profit sources: (i) buyers reserving capacity, denoted by reservation-

profit, (ii) fees for capacity transfers among buyers, denoted by transfer-profit, and (iii) reserved

capacity execution, denoted by execution-profit. We denote T as expected transfer quantity and g

as the chance of buyers being able to transfer an additional capacity unit and consider the following:

• A decrease of ∆θs in transfer fee θs results in an increase in the buyers’ marginal benefit of

reserving capacity by ∆θsgV .2

• If the supplier increases the buyers’ marginal cost of reserving capacity r by the same amount

that the marginal benefit increases (i.e., by ∆r = −∆θsgV in Figure 2), their reserved capacity

Q∗ does not change.

With these changes in θs and r, the equilibrium capacity reserved Q∗ does not change, and the

supplier’s profit sources react as follows: (i) Reservation-profit increases by ∆rQ
∗ = −∆θsg Q∗V ,

2Buyers reserve an additional capacity unit only if (i) they have a high probability of using it and making profit
V (which does not depend on θs) or (ii) they have a high probability of transferring it (i.e., g) and making a profit
of (1 − θs)V . Therefore, a buyer’s marginal benefit of reserving an additional capacity unit is related to θs by the
term (1− θs)gV .
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(ii) transfer-profit decreases by ∆θsTV , and (iii) execution-profit does not change. Therefore, if

g Q∗ ≥ T , the process of coordinated change (∆θs ,∆r = −∆θsgV ) in (θs, r) weakly generates profit

for the supplier. In this inequality, (i) g determines the impact of a change in θs on the buyers’

marginal benefit of reserving capacity and how much r must change to fix Q, (ii) Q determines the

impact of a change in r on supplier profit, and (iii) T determines the impact of a change in θs on

supplier profit. Notice that if the equilibrium capacity reserved Q∗ does not change, the inequality

does not change. This implies the direction of the inequality stays the same on each of the isolines

in Figure 2, meaning supplier profit increases in only one direction.

In short, θs is optimal at the boundary because: (i) the transfer fee and the capacity reservation

fee r is charged per unit; more generally, the supplier’s and the buyers’ profit functions are the sum

of functions of the form r×f1(Q) and θs×f2(Q), where f1, f2 can be non-linear functions of Q; and

(ii) the supplier decides the capacity reservation fee r. We emphasize that the supplier’s profit is

nonlinear in θs, because the equilibrium Q depends on θs. However, the supplier’s profit is linear in

θs in certain directions where the pair (θs, r) changes simultaneously to keep Q fixed. As a result,

the optimal θs is at the boundary.

Under what specific conditions is θs = 0 or θs = 1 optimal?

When it is relatively inexpensive for the supplier to build capacity (i.e., sl = 1− h
v−c is large)

and its profit margin on sales is large (i.e., mr = 1 − w−c
v−c is small), the supplier would want each

buyer to reserve a large capacity quantity Q, and consistent with Theorem 2, θs = 1 would be

optimal.

By setting a small reservation fee r, the supplier can induce the buyers to reserve a large capacity

Q. The supplier can encourage the buyers to reserve even more capacity by further decreasing r

and/or charging a smaller transfer fee θs. A reduction in r would also decrease the supplier’s

reservation-profit, and a reduction in θs would decrease the supplier’s transfer-profit. We argue

reducing θs would be a weak incentive to reserve capacity when Q is large, as both buyers would

likely have excess capacity and be unable to transfer it to the other. Hence, when Q is large (i.e.,

the suppliers’ profit margin on sales is large and it is relatively inexpensive to build capacity), the

supplier should focus on reducing reservation fee r to encourage buyers to reserve more capacity.

When it is relatively expensive for the supplier to build capacity (i.e., sl is small), the supplier
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would like the buyers to reserve less (Q will be smaller) and instead encourage the buyers to trade

their excess capacity among them. Hence, they set θs = 0. With relatively small Q, it is likely

each buyer would need excess capacity and their incentives would be sensitive to θs. As a result,

the supplier would want to give transfer rights to the buyers (i.e., set θs = 0) and charge a greater

reservation fee r.

4.3 Asymmetric Demand Distributions

With symmetric demand distributions, the supplier’s profit is maximized either when θs = 0 and

θ = 0, or when θs = 1 and the value of θ is irrelevant. When demand distributions are asymmetric,

θ can be optimal at either boundary or its value is irrelevant.

Using Proposition 1, with asymmetric demand distributions, the equilibrium capacity quantities

Qi, Qj, and Qt satisfy the following two equations: (i) r
v−w = Hi(Qi, Qt) = Hj(Qj , Qt) and (ii)

Qi + Qj = Qt, where Hi(Qi, Qt) = 1 − Φi − (1 − θs)θ(Φt − Φit) + (1 − θs)(1 − θ)(Φi − Φit),

Φi = Pr(Di < Qi), Φt = Pr(Dt < Qt), and Φit = Pr(Di < Qi,Dt < Qt) for i = {1, 2}. The

supplier maximizes profit Πs by choosing θ, θs, and r with the constraint that Qi, Qj, and Qt must

satisfy the equilibrium conditions.

Theorem 3. If Di and Dj are bivariate normal distributions

(Di,Dj) ∼ N






µi

µj


 ,




σ2
i ρσiσj

ρσiσj σ2
j





 ,

then θs = 1 is optimal and θ is irrelevant, or optimal θ is zero or 1.

While Theorem 3 narrows down the optimal θ and θs, in Section 5.1, we further characterize

the optimal decisions θ and θs.

4.4 Three Symmetric Buyers

We now extend our model to a supply chain with three symmetric buyers, Buyer x, Buyer 1, and

Buyer 2.3 Similar to our main model, if one buyer has reserved excess capacity and another needs

it, the supplier allows a transfer. The supplier charges the buyers θs(v − w) for each capacity unit

transfer, the buyer with excess capacity profits (1− θs)(1− θ)(v−w) from each unit, and the buyer

with excess demand profits (1 − θs)θ(v − w). Unlike in our two buyer model, we specify (i) how

3If the average of the buyers’ demands is different but their standard deviations are the same, we can use the same
analysis with slight modification.
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excess buyer capacity is allocated when two buyers are in need and (ii) which of two buyers with

excess capacity can transfer first.

In both cases, we assume the buyers are equally likely to have the priority to receive or transfer

excess capacity at the appropriate fee. We make Dx, D1, and D2 the demands of Buyer x, Buyer 1,

and Buyer 2. We let the expected transfer to Buyer x be denoted Tx+(Qx, Q), where it has reserved

capacity Qx and Buyer 1 and Buyer 2 each have reserved capacity Q.4 Also, we let the expected

transfer from Buyer x with reserved capacity Qx to Buyer 1 and Buyer 2 with reserved capacity Q

be Tx−(Qx, Q). The derivation of Tx+(Qx, Q), Tx−(Qx, Q), and their derivatives are presented as

reduced forms in our Online Supplement, Lemma A.6.

When Buyer x has reserved capacity Qx and the other buyers each have reserved capacity Q,

Buyer x’s profit function is

ΠBx = −rQx + (v − w)E[Qx,Dx] + (1− θs)θ(v − w)Tx+(Qx, Q) + (1− θs)(1− θ)(v − w)Tx−(Qx, Q) .

Proposition 3. At equilibrium, each of three symmetric buyers reserves capacity Q to satisfy

r
v−w = Pr(Dx > Q) + (1− θs)θdTx+(Q) + (1− θs)(1− θ)dTx−(Q), where

dTx+(Q) = −Pr(Dx > Q,D1 > Q,Dx +D2 < 2Q)− Pr(Dx > Q,D1 < Q,Dx +D1 +D2 < 3Q) < 0

dTx−(Q) = Pr(Dx < Q)− Pr(Dx < Q,Dx +D1 < 2Q,Dx +D1 +D2 < 3Q) > 0 .

Next, we examine the supplier’s optimal decisions regarding θ and θs. The supplier’s profit is

Πs = (r − h)(3Q) + (w − c)E
[
min(D1 +D2 +Qx, 3Q)

]
+ 3θs(v −w)

(
Tx+(Q,Q) + Tx−(Q,Q)

)
,

where Q satisfies the equilibrium condition specified in Proposition 3.

Theorem 4. With three symmetric buyers, the supplier’s profit is maximized when either θ = 0

and θs = 0 or θs = 1.

Theorem 4 confirms that the supplier benefits most either keeping all retail-level transfer bene-

fits or giving them all to buyers (i.e., v−w). The same intuition provided in Section 4.2.2 explains

Theorem 4.

4We must show Buyer x cannot unilaterally deviate from the equilibrium in which each buyer orders the same
specified quantity Q and make a profit; hence, we find the expected transfers when Buyer x has reserved a random
quantity Qx and the other two buyers each have reserved quantity Q.
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5 Numerical Study

We know that when the buyers’ demand distributions are symmetric, the supplier maximizes its

profit by either (i) charging a fee capturing all transfer-related profits (and leaving buyers just their

participation profit) or (ii) charging no fee and letting buyers transferring capacity away capture

all retail-level profits. Now, we further characterize the supplier’s optimal policy for transfer fees.

First, is it still optimal to keep buyers with excess demand from profiting from a transfer (i.e.,

is θ = 0 optimal) with asymmetric buyers? Second, can we numerically extend the analytical

result of Theorem 2 regarding the impact of sl and mr on optimal θs to our asymmetric or three

symmetric buyer models? Third, how do demand parameter values (i.e., correlation ρ and coefficient

of variation cv) impact suppliers’ optimal decisions?

We explore two more issues related to our findings: (i) How likely is not charging a transfer

fee (θs = 0) optimal? and (ii) if θs = 0 is not optimal, how does it compare to the optimal policy?

In our numerical study, we change our parameter values as follows:

• Supply Chain Service Level sl ∈ {0.51, 0.52, 0.53, . . . , 0.99} (49 instances).

• Fraction Retail Sales Margin mr ∈ {0.01, 0.02, 0.03, . . . , 0.99} (99 instances).

In our analysis, v, w, h, and c appear only as sl =
v−c−h
v−c and mr =

v−w
v−c ; hence, we set only

sl and mr instead of individual values.

• demand correlation ρ ∈ {−0.95,−0.90,−0.85, . . . ,+0.95} (39 instances);

• coefficient of variations cv = σ
µ ∈ {0.05, 0.10, 0.15, . . . , 0.3} (6 instances).

With normal distribution, we require the coefficient of variation to be less than 0.333 to make

the probability of negative demand negligible. With asymmetric buyers, we choose the largest

coefficient of variation.

To study the asymmetric buyer model, we also choose µ1

µ1+µ2
∈ {0.25, 0.5, 0.75} and σ1

σ2
∈

{0.25, 0.5, 0.75}. Our analytical results show that the supplier’s decisions depend only on the

fractions µ1

µ1+µ2
and σ1

σ2
; thus, we do not set each σ1, σ2, µ1, and µ2 value. The parameter design

accounts for 1,135,134 cases with symmetric buyers and 10,216,206 cases with asymmetric buyers.

For the model with two symmetric buyers and two asymmetric buyers, we also study the impact

of demand parameters on optimal decisions. For this study, we analyze an additional 600,000 cases

for the two symmetric buyer model and 5,400,000 more cases for the two asymmetric buyer model
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by expanding our demand parameter set and limiting our cost parameters as follows:

• Supply Chain Service Level sl ∈ {0.51, 0.56, 0.61, . . . , 0.96} (10 instances).

• Fraction Retail Sales Margin mr ∈ {0.01, 0.06, 0.11, . . . , 0.96} (20 instances).

• Demand correlation ρ ∈ {−0.99,−0.97,−0.95, . . . ,+0.99} (100 instances).

• Coefficient of variation cv = σ
µ ∈ {0.01, 0.02, 0.03, . . . , 0.3} (30 instances).

With three symmetric buyers, we assume their demand consists of market specific term Γ and

buyer specific term ǫj for j ∈ {i, 1, 2}. Specifically, we assumeDj = Γ+ǫj for j ∈ {i, 1, 2} and ǫj and

Γ are independent random variables. Γ specifies market conditions and dictates buyer demand. If Γ

has no variability, each buyers’ demand is independent; otherwise, the demands are positively corre-

lated.5 Furthermore, we assume that ǫj and Γ are normally distributed. Specifically, ǫj ∼ N (0, σǫ)

and Γ ∼ N (µ, σγ). Therefore, each buyer’s demand is Dj ∼ N (µ, σ), where σ = σǫ

√
1 +

(
σγ

σǫ

)2
.

For our parameter values, we consider
σγ

σǫ
∈ {0, 0.1, 0.2}; sl ∈ {0.51, 0.52, 0.53, . . . , 0.99} (49 in-

stances); mr ∈ {0.01, 0.02, 0.03, . . . , 0.99} (99 instances); and cv = σ
µ varies from 0.05 to 0.3 in

increments of 0.05 (6 instances). The three symmetric buyer model therefore has 87,318 cases.

Overall, the parameter design accounts for 17,438,658 cases.

5.1 Optimal θ and θs With Asymmetric Demand

In Theorem 3, we partially characterize how suppliers can optimally ration capacity transfer-

generated profit in the presence of buyers with asymmetric demand. We now further characterize

the supplier’s optimal θ and θs values for the asymmetric buyer model.

We numerically solve 15, 616, 206 asymmetric buyer model instances with our specified param-

eters. Similar to the symmetric buyer model, the study shows it is optimal for the supplier to (i)

not allow the buyer with excess demand to profit from the transfer (i.e., θ = 0) and (ii) either

collect all transfer-generated profit or give it all to the buyer with excess capacity (i.e., θs is either

zero or 1).

5.2 Impact of Parameters on Supplier’s Decisions

Impact of Cost Parameters: In Theorem 2, we analytically show that optimal θs is 1 for a

model with two symmetric buyers when sl is relatively large and mr is relatively small. In this

section, we test whether the result holds for our models with two asymmetric and three symmetric

5Three symmetric buyers cannot have negative demand correlations.
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Figure 3: The figure, in which cv = 0.3, demonstrates optimal θs depends on cost parameters sl and mr

when the supplier sets θ to zero. The X-axis features mr; the Y-axis shows sl. The left plot corresponds to
the two asymmetric buyer model; the right plot shows the three symmetric buyer model.

buyers. We generate 2,124 plots similar to those shown in Figure 3. Among them, 2,106 correspond

to our model with two asymmetric buyers and 18 correspond to our model with three symmetric

buyers. In all plots generated, θs = 1 occurs in the top left corner; that is, θs = 1 when Supply

Chain Service Level sl is large and Fraction Retail Sales Margin mr is small. We confirm that when

mr ≥ 0.08 or sl ≤ 0.82, optimal θs cannot be 1. For the model with two asymmetric buyers, our

numerical studies suggest that smaller µ1

µ1+µ2
and larger σ1

σ2
contribute to larger regions of θs = 1 in

the mr × sl space. In other words, when the variance of demand of the two buyers are similar but

average demand of one buyer is substantially smaller than the other buyer, the region with θs = 1

is larger.

For our model with three symmetric buyers, θs = 0 is optimal for all our described parameters.

We can observe optimal θs = 1 only by focusing on very large sl and very small mr, i.e., with

sl ∈ [0.95, 0.999] in increments of 0.001 and mr ∈ [0.001, 0.05] in increments of 0.001.

Impact of Demand Parameters: Theorem 2 does not address the impact of demand parameters

ρ and cv on optimal θs. To numerically study the demand parameters’ impact on both θs and

optimal capacity reservation fee r, we focus on our models with two symmetric and two asymmetric

buyers. We generate plots showing the supplier’s optimal θs for each pair of demand parameters ρ

and cv. Figures 4 and 5 show examples in which we observe the following:

• The right panel of Figure 5 suggests that the supplier charges a relatively high capacity

reservation fee r when the correlation of demand ρ, or coefficient of variation cv is small.

However, in the left panel of the same figure, we observe some disturbance of this general
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Figure 4: The figure shows optimal θs depends on the demand parameters ρ and cv when the supplier sets
θ to zero. The X-axis features ρ; the Y-axis shows cv. The left plot corresponds to the two symmetric buyer
model; the right plot shows the two asymmetric buyer model.
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Figure 5: The figure shows optimal r depends on the demand parameters ρ and cv when the supplier sets
θ to zero. The X-axis features ρ; the Y-axis shows cv. The left plot corresponds to the model with two
symmetric buyers; the right plot shows the model with two asymmetric buyers.

observation. By comparing this panel with the left panel of Figure 4, we can conclude, the

disturbance is due to the change in policy regarding θs. Specifically, with a smaller θs, the

supplier charges a relatively high capacity reservation fee r.

• Figure 4 suggests the supplier should be more confident choosing θs = 0 as the coefficient of

variation becomes smaller.

• The left panel of Figure 4 suggests the impact of ρ on optimal θs is not monotonic. As ρ

increases, optimal θs can switch from zero to one and back.

The first observation is intuitive. When ρ becomes smaller or more negative, it is more likely

a buyer can transfer excess capacity to another and generate profit. In other words, the buyer’s

marginal benefit of reserving capacity increases. Hence, the supplier could increase the marginal
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cost of reserving capacity, charging a higher fee r. When the coefficient of variation cv is relatively

small, demand variability is also low, creating little risk in reserving capacity. Here, the supplier

can charge the buyers an amount approaching their sales profit margin v − w. Furthermore, when

θs is relatively small, the buyers can profit from their excess capacity and the supplier can charge

a higher capacity reservation fee r.

Addressing the second and third observations, we first define the z-value of reserved quantity Q

as z = Q−µ
σ . The value indicates how many standard deviations above or below expected demand

each buyer’s reserved capacity is. Recall that when deciding θs, the supplier compares expected

transfer T with g ×Q, where g is additional transfer probability and Q is capacity quantity. The

supplier compares whether increasing θs and collecting fees on expected transfers T or reducing θs

and charging a higher reservation fee (i.e., adding g × (v − w) to the capacity reservation fee) is

more beneficial. We can argue that because z-value determines expected transfer probabilities in

normal distributions, T
σ (expected transfers in standard deviation units) and g (additional transfer

probability) depend on z-value and demand correlation, and Q
σ = z + 1/cv depends on z-value and

coefficient of variation cv.

For a fixed z-value, Q
σ decreases as cv increases, but T

σ and g remain the same. As a result, it is

more likely that T
σ > g× Q

σ , implying θs = 1 is optimal. As demand correlation increases for a fixed

z-value, both expected transfer T
σ and additional transfer probability g decrease while Q

σ remains

fixed. Therefore, a higher demand correlation can result in optimal θs switching from 1 to zero or

vice-versa. Changing cv or ρ also impacts z-value at the optimal solution, which complicates the

comparisons.

5.3 A Simple Policy for Transfer Fees

The optimal value of θs, which determines whether a supplier should charge a transfer fee, can be

zero or 1 and depends on several model parameters. Next, we explain θs = 1 is optimal for only a

small parameter set, and even in those cases, θs = 0 performs well. Always choosing θs = 0 and

collecting no transfer fee is therefore a simple policy that is not far from optimal. On the other

hand, we show choosing θs = 1 by mistake can result in great profit loss.

We define an optimality gap of θ = τ , denoted Gapτ for τ ∈ {0, 1}, as the supplier’s percentage

profit loss if the firm sets θs as τ instead of optimal. Specifically, Gapτ = Πτ
s−Π∗

s
Π∗

s
× 100%, where Π∗

s
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Optimality gap
(if not optimal)

Model Policy Count optimal Mean Median Max

Symmetric buyers
θs = 0 99.93% 0.02% 0.02% 0.17%
θs = 1 0.07% 6.67% 5.05% 42.82%

Asymmetric buyers
θs = 0 99.99% 0.01% 0.01% 0.11%
θs = 1 0.01% 4.63% 3.33% 46.4%

Table 1: Shown is the optimality gap for the symmetric and asymmetric two buyer models in which the
supplier sets θ and r optimally after deciding θs. The “Count optimal” column specifies the percentage of
1,735,134 symmetric buyer model instances and 15,616,206 asymmetric buyer model instances considered,
depending on whether θs = 0 or θs = 1 is optimal.

is the supplier’s profit when optimizing θs, as well as r and θ, and Πτ
s is the supplier’s profit when

setting θs sub-optimally but optimizing r and θ.

In the two symmetric buyer model, θs = 0 is optimal in 99.93% of 1, 735, 134 cases (see Table

1). In cases where θs = 0 is not optimal (0.07%), the average optimality gap is 0.02% and the

maximum gap is 0.17%. θs = 1 is optimal in only 0.07% of the cases. When θs = 1 is not optimal

(99.93% of cases), the average optimality gap is 6.67%. The gap can be as high as 42.82%. We

observe similar numbers for our two asymmetric buyer model.

We conclude that a simple policy that performs well for the supplier is to never charge the

buyers any transfer fee (and instead charge a higher capacity reservation fee). The reason for this

observation is as follows: θs = 1 is optimal only when sl is relatively large and mr is relatively

small, equivalently, when capacity Q reserved by each buyer is relatively large. With a large Q,

buyers are unlikely to require transfers; therefore, transfer-generated profits are insubstantial when

θs = 1 is optimal. As a result, θs = 0 would perform close to θs = 1.

6 Robustness Checks

We find suppliers perform best by either keeping all capacity transfer-generated benefits or charging

buyers transfer fees but letting those with excess capacity keep all the profit generated. We now

consider our primary result’s robustness with respect to model changes.

6.1 Nonlinear Cost Structure

To confirm our primary result is not due to linear costs, we study two new models with nonlinear

cost structures based on our two symmetric buyer model.
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6.1.1 Capacity Building Cost as a Step Function

Building capacity often involves adding new machines to a production facility. The supplier spends

a fixed amount on each machine to increase capacity by a certain quantity. We can model the

situation by assuming the capacity building cost is an increasing step function expressed as follows:

h(Q) =





0 if Q = 0

hi if qi−1 ≤ Q < qi for i ∈ {1, 2, 3, . . . },

where hi is non-decreasing in i and capacity building cost jumps at thresholds qi. Similar to our

original model, the supplier charges r per unit of capacity reserved. Theorem 5 confirms our primary

result.

Theorem 5. When capacity building cost is a step function, the supplier’s optimal θ = 0 and θs

is either zero or 1.

Optimal θs is more likely to be zero with larger jumps in the capacity building cost function

(i.e., hi−hi−1), as the supply chain would resist investing in capacity. That is, Q would be relatively

smaller with larger jumps in the capacity building cost function. When Q is small, buyers are likely

to be able to transfer their excess capacity; therefore, the buyers would be sensitive to the value of

transfer fee θs. As explained earlier, this implies θs is more likely to be zero.

6.1.2 Convex Capacity Building Costs and Reservation Fees

We also check our primary result’s robustness by allowing capacity building cost to be a nonlinear

function of Q. Similar to Erkoc and Wu (2005) and Huang et al. (2018), we let capacity building cost

be a convex function. According to Erkoc and Wu (2005), “the capacity expansion in the context

of high-tech industry demonstrates diseconomy of scale”, which the convex function captures.

We give the capacity reservation fee function a similar convex shape. Specifically, we assume

capacity building cost is β×h(Q) for some convex increasing function h(Q) and β > 0, and capacity

reservation fee is r×R(Q) for some convex increasing function R(Q), where the supplier decides r.

Note that h(·) and R(·) can also be linear. For example, we can construct the model in Erkoc and

Wu (2005) by allowing h(·) to be convex and R(·) to be linear. Theorem 6 summarizes our new

model’s results, which are consistent with those of our main model.

Theorem 6. At equilibrium, each buyer’s reservation Q satisfies Pr(Di > Q)− (1− θs)θPr(Di >
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Q,Dt < 2Q) + (1 − θs)(1 − θ)Pr(Di < Q,Dt > 2Q) = r
(v−w)

R(Q)
R′(Q) . For the supplier, the optimal θ

is zero and θs is either zero or 1.

6.2 θ as an Exogenous Parameter

In Theorem 2, we show the optimal θs is either zero or 1 when θ is set optimally at zero. While

the supplier can easily set θs, it may not be able to impose a particular θ value. Here, we study

the optimal value of θs and capacity reservation fee r when θ is an exogenous parameter based on

market standards. The sequence of events is shown in Figure 6.

θ is a given parameter

Supplier builds
capacity

Supplier sets
r, and θs Buyer 1

reserves Q1

Buyer 2
reserves Q2

Demand is realized

Capacity transfers

Figure 6: The model’s event sequence when θ is an exogenous parameter.

Theorem 7. For two buyers with symmetric demand distributions where Di and Dj follow bivariate

normal distribution as specified in (1), optimal θs is zero or 1 even if θ is a non-zero parameter

(i.e., 0 < θ ≤ 1).

Theorem 7 shows that the supplier should set θs as zero or 1 even when it has no control over

θ, which can be any arbitrary value.

In Table 1, where θ is optimally set to zero, the supplier should almost always grant capacity

transfer rights and charge no fee. But should the supplier grant buyers capacity transfer rights and

not charge a fee even when θ is a non-zero parameter? We numerically investigate the effect of

non-zero θ on the optimal θs value using the same set of parameters used previously to study the

impact of cost parameters. In addition, we consider θ ∈ {0.1, 0.2, 0.3, 0.4, 0.6, 0.8}. The parameter

design accounts for 6,810,804 cases.

Table 2 shows, in our numerical study, as long as θ ≤ 0.4, θs = 0 is optimal in most cases, with

an optimality gap of at most 1.73% when it is not. Furthermore, θs = 1 is not optimal in most

cases and has a relatively large optimality gap. Hence, we conclude, in our numerical study, for

cases where θ ≤ 0.4, not charging for the transfers is either optimal or it is a simple policy that

performs close to optimal for the supplier.
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Optimality gap
(if not optimal)

Exogenous θ Policy Count optimal Mean Median Max

θ = 0.1
θs = 0 99.63% 0.06 0.04 0.38
θs = 1 0.37% 5.78 4.37 34.89

θ = 0.2
θs = 0 98.75% 0.11 0.07 0.70
θs = 1 1.25% 4.75 3.50 29.55

θ = 0.3
θs = 0 96.63% 0.18 0.11 1.14
θs = 1 3.37% 3.77 2.70 23.63

θ = 0.4
θs = 0 91.83% 0.28 0.17 1.73
θs = 1 8.17% 2.88 1.99 17.52

θ = 0.6
θs = 0 58.38% 0.68 0.51 3.44
θs = 1 41.62% 1.69 1.18 7.38

θ = 0.8
θs = 0 26.96% 1.67 1.32 5.91
θs = 1 73.04% 0.60 0.49 1.58

Table 2: Shown is the optimality gap for the model with two symmetric buyers when θ is exogenous and
the supplier sets r optimally after θs is decided. The “Count optimal” column specifies the percentage of
1,135,134 instances considered for each θ, θs = 0, or θs = 1.

Comparing Tables 1 and 2, we conclude the parameter set for which θs = 0 is optimal shrinks

when θ is an exogenous parameter. The reason is that with large θ, the buyers prefer to receive

capacity transfers; hence, they reserve less up front. As a result, with large θ, the supplier requires

a reduced reservation fee r to induce the buyers to reserve a certain capacity quantity Q. However,

the supplier can cease this adverse effect of θ being large by setting θs = 1, i.e., by leaving no transfer

profit to the buyers. Indeed, when θ is relatively large, the supplier has even more incentive to keep

θs = 1.

6.3 When Buyers Decide θ

To further check our primary result’s robustness, we investigate our model when buyers decide θ.

We consider three models:

1. The buyers agree on θ before demand is realized, i.e., before they know if they have a capacity

shortage or excess.

2. The buyer with excess capacity sets θ after realizing demand.

3. The buyer with a capacity shortage sets θ after realizing demand.

We detail the latter two models in Section A.4 of our Online Supplement. In Theorem A.1,

we show that allowing the buyer with excess capacity to set θ yields a model equivalent to that

in which the supplier sets θ. In both models, θ, θs, and r are the same at equilibrium, and the

supplier’s and buyers’ expected profits are the same. In Theorem A.2, we show that optimal θ is

1 for the buyer and optimal θs is 1 for the supplier (i.e., the supplier receives all transfer benefits)
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if the buyer with a shortage of capacity sets θ. The result of this last model is different from our

recommended policy θs = 0. However, it is not very realistic to assume the buyer with a shortage

of capacity sets the value of θ.

Supplier sets
r, and θs

Buyers
agree on θ

Buyer 1
reserves Q1

Buyer 2
reserves Q2

Supplier builds
capacity

Demand is realized

Capacity transfers

Figure 7: The model’s event sequence when the buyers determine θ.

Next, we focus on the first model in which the buyers collectively decide and agree on the θ value

that maximizes their profits. We assume symmetric buyers so there is no disagreement among them.

Figure 7 details the sequence of events: First, the supplier sets the optimal capacity reservation

fee r and θs and announces them to the buyers. Then, each buyer finds the θ value maximizing its

own profit. Since the buyers are symmetric, they agree on the optimal value. Based on the values

of r, θs, and θ, Buyer 1 and Buyer 2 simultaneously reserve quantities Q1 and Q2. The buyers

then realize their demand and make initial sales based on their reserved capacity. Any capacity

transfers then occur, and the buyer receiving excess capacity makes additional sales. Proposition

4 provides expressions for the optimal θ value for buyers, as well as equilibrium quantities.

Proposition 4. For a given θs < 1 and r, the buyers choose θ = Pr(Di>Q∗,Dt<2Q∗)
Pr(Di<Q∗,Dt>2Q∗)+Pr(Di>Q∗,Dt<2Q∗) ,

where Q∗ is the solution to 1 − r
v−w = θsPr(Di < Q∗) + (1 − θs)Pr(Dt < 2Q∗). At equilibrium,

each buyer reserves capacity Q = Q∗.

Pr(Di > Q∗,Dt < 2Q∗) is the probability that a buyer has a capacity shortage the other

buyer’s excess can satisfy. Equivalently, it is the probability that the buyer could reserve one less

unit of capacity and receive one more transfer from the other buyer and profit proportional to θ.

Similarly, Pr(Di < Q∗,Dt > 2Q∗) is the probability that the buyer could reserve one more unit

of capacity to transfer to the other and profit proportional to 1 − θ. Theorem 8 characterizes the

supplier’s optimal θs and optimal reservation fee r.

Theorem 8. The supplier’s optimal θs is either zero or 1. When sl is relatively large and mr

is relatively small, θs = 1 is optimal; when sl is small, θs = 0 is optimal. The optimal capacity

reservation fee r and optimal θs can be obtained as follows:
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• If Π0θ∗(z
0θ∗) ≥ Π1θ∗(z

1θ∗), then θ∗s = 0, and r∗ =
(
1− Φ(z

0θ∗

α )
)
(v − w), and

• If Π0θ∗(z
0θ∗) < Π1θ∗(z

1θ∗), then θ∗s = 1 and r∗ =
(
1− Φ(z1θ

∗
)
)
(v − w),

where z0θ
∗
is the solution to mr

1
αφ(

z
α )(z+

µ
σ )+Φ( zα)−sl = 0 and z1θ

∗
is the solution to mrφ(z)(z+

µ
σ ) + Φ( zα)− sl = 0. Also, Π0θ∗(z) = (sl −mrΦ(

z
α ))(z +

µ
σ )− (1−mr)

∫ z
−∞Φ( xα ) dx and Π1θ∗(z) =

Π0θ∗(z) +mr

(∫ z
−∞(Φ(x)− Φ( xα)) dx− (Φ(z)− Φ( zα))(z +

µ
σ )
)
.

Here, the intuition for θs is similar to that of our original model. The supplier compares

whether increasing θs and collecting fees on expected transfers T or reducing θs while charging a

higher reservation fee r is more beneficial. In the new model, lowering θs has a different impact

on the buyers’ profit because they can receive a portion even with a capacity shortage. Hence, the

value by which the supplier can increase r when decreasing θs is related not only to the probability

the buyers can transfer an additional unit of capacity (denoted g = Pr(Di < Q,Dt > 2Q)), but also

on the probability one buyer can make a profit from the transfers by reserving one less marginal

capacity unit and receiving the other’s excess capacity (denoted g̃ = Pr(Di > Q,Dt < 2Q)). Here,

the supplier compares expected transfers T with (g − g̃)×Q and decides whether θs = 1 or θs = 0

is optimal for each Q. The supplier can then choose the optimal Q and set θs and r to achieve

the desired Q. We numerically investigate the optimal values of θ, θs, and r using the same set of

parameters discussed previously.

The left panels of Figure 8 show an example of how optimal θs, r, and θ values depend on cost

parameters mr and sl. Similar to our main model, we observe that θs = 1 is optimal only when mr

is relatively small and sl is relatively large (see top left panel of Figure 8) and the optimal capacity

reservation fee r is small when mr is small and sl is large (see middle left panel of Figure 8).

From plots similar to the bottom left panel of Figure 8, we observe that θ is relatively large

when mr is small and sl is large 6 (i.e., the cost of building capacity is small and the supplier’s

sales profit margin is large compared to the buyers’) because, in that case, the supplier wants

the buyers to reserve large capacity quantities. When they do so, it is more likely that they will

profit by reserving one fewer capacity unit and receiving excess capacity from the other buyer (i.e.,

Pr(Di > Q,Dt < 2Q)) than by reserving one more capacity unit and transferring excess capacity

(i.e., Pr(Di < Q,Dt > 2Q)). Hence, the buyers are incentivized to increase θ.

We also investigate how optimal decisions regarding θs, r, and θ depend on the demand pa-

6When θs = 1, the value of θ is irrelevant.
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Figure 8: Shown is how the optimal θs, θ, and r values depend on the cost parameters sl and mr or demand
parameters cv and sl. In the model, symmetric buyers decide θ. In the left panels, mr is represented on
the X-axis and sl is on the Y-axis. In the right panels, ρ is on the X-axis and cv is on the Y-axis. The
upper plots show optimal θs, the center plots show the corresponding optimal r, and the lower plots show
the corresponding optimal θ. In the region where θs = 1, the θ value is irrelevant.

rameters cv and ρ. The right panels of Figure 8 show an example of how optimal θs, r, and θ values

depend on demand parameters cv and ρ. Similar to our main model, optimal r is relatively small

when cv and ρ are relatively large (see middle right panel of Figure 8), and θs = 1 is optimal when

28



A
u
th
or

M
an
u
sc
ri
p
t

This article is protected by copyright. All rights reserved.

Optimality gap
(if not optimal)

Policy Count optimal Mean Median Max

θs = 0 87.92% 0.4% 0.23% 2.69%
θs = 1 12.08% 5.36% 3.45% 42.52%

Table 3: Shown is the optimality gap for the two symmetric buyer model when the buyers decide θ and
the supplier sets r optimally after θs is decided. The “Count optimal” column specifies the percentage of
1,735,134 instances considered, depending on whether θs = 0 or θs = 1 is optimal.

the coefficient of variation cv is relatively large (see top right panel of Figure 8). Contrary to our

main model, the impact of ρ on optimal θs is monotone in all cases considered (see middle right

panel of Figure 8); specifically, with a relatively large ρ, it is more likely that θs = 1 is optimal. As

discussed, lowering θs has a different impact on profit when the buyers determine θ, leading to a

different impact of ρ on optimal θs.

Next, we show that when optimal θs = 1, setting θs = 0 is still close to optimal. We examine

the optimality gap between setting θs = 0 and θs = 1 when buyers determine θ (see Table 3) using

the same parameters set described for our main model. We find θs = 0 is optimal in 87.92% of

1, 735, 134 cases. In the 12.08% of cases in which θs = 0 is not optimal, the average optimality gap

is 0.4%, with a maximum of 2.69%. When θs = 1 is not optimal, we find an average optimality

gap of 5.36%, with a maximum of 42.52%. As in our main model, setting θs = 1 and charging

buyers transfer fees can hurt supplier profits more than simply never charging transfer fees. This

is because whenever the supplier’s optimal θs = 1, the likelihood of capacity transfers is small,

making profit division less impactful.

How does a change in the decision maker of θ influence the supplier’s θs policy? To examine

the situation, we generate plots to simultaneously find the lines separating optimal θs = 1 and

θs = 0 regions when θ is decided by the supplier versus the buyers. Figure 9 shows an example.

We generate figures for all parameter sets used in the numerical study. In all figures, the region in

which θs = 1 is optimal when the supplier chooses θ is smaller and contained in the region in which

θs = 1 is optimal when the buyers choose θ. That is, the parameter set for which θs = 1 is optimal

expands when the buyers decide θ. As this parameter set grows, suppliers should be less willing to

grant capacity transfer rights to buyers if they control how the benefits are divided.

Suppliers are likely to set θ to zero. Buyers are likely to make it larger than zero. Previously,

on Page 25, we explained that with large θ, the supplier has more incentive to set θs to 1. As a

result, the parameter set in which θs = 1 is optimal is larger when buyers decide it than when the
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Optimal θs; ρ = −0.85, cv = 0.3
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Figure 9: The line separating optimal θs = 1 and θs = 0 regions depends on the decision maker of θ. The
solid red line separates the region in which θs = 1 is optimal from that in which θs = 0 is optimal when the
supplier decides θ. The dashed orange line separates the regions for the model in which the buyers agree on
θ. In region 1©, θs = 1 is optimal regardless of which party decides θ. In region 3©, θs = 0 is also optimal
regardless of decision maker. However, in region 2©, θs = 1 is optimal when the buyers decide θ, while
θs = 0 is optimal when the supplier makes the decision.

supplier decides it.

7 Conclusions

Researchers have studied inventory transshipment and its impact on the supply chain extensively.

However, much less is known about capacity reservation and whether its transfer among buyers

benefits suppliers. Unlike inventory problems, where buyers own the manufactured product after

purchase, capacity reservation gives buyers and suppliers multiple contractual options regarding

unused reserved capacity.

Our capacity reservation examination consistently shows that supplier profit is maximized when

either (i) the supplier collects all transfer benefits via a fee (i.e., θs = 1) or (ii) the supplier charges

no capacity transfer fee (i.e., θs = 0) and all retail-level benefits accrue to the buyer releasing excess

capacity. Not charging buyers for transfers allows the supplier to set a higher capacity reservation

fee r. The drivers of this result are the assumptions that: (i) the transfer fee and the capacity

reservation fee r is charged per unit; and (ii) the supplier decides the capacity reservation fee r.

We demonstrate that the supplier can perform close to optimal by not charging a transfer fee in

all cases, even when θs = 1 is optimal. However, the reverse statement is not true: If not charging

a transfer fee is optimal, the supplier’s profit can substantially decrease when charging a transfer

fee in error.

In our hard drive suspension assembly example, the supplier informed buyers they would lose
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any unused capacity after a given time, allowing the supplier to regain control. In our model, the

decision corresponds to θs = 1, in which the supplier, not the buyers, benefits from excess reserved

capacity. We find θs = 1 can be optimal in some cases; however, the hard drive suspension assembly

supplier was not exactly sure they actually should be following this policy, and asked us what in

fact the optimal policy should be.

Taiwan Semiconductor Manufacturing Corporation grants its buyers capacity transfer rights

and does not charge fees. In our model, the decision corresponds to θs = 0. Our results suggest

that θs = 0 is a simple policy that is either optimal or close to optimal in all situations, and Taiwan

Semiconductor has become a pioneer in ”tradable capacity options” (LaPedus, 1995; Economist,

1996) as a result of its approach.

Amazon Web Services allow its users to transfer capacity but charges a fee of 12% of the

trading price. The approach is fairly consistent with θs = 0 in our model. Amazon charges only

a small capacity transfer fee and also incurs direct costs to set up an excess capacity marketplace

and collect and transfer payments among parties. We do not model such transactional costs in our

paper but can assume the 12% fee is an attempt to recoup them.

We believe our results both explain why we see liberal capacity transfer policies in the field

and provide guidance to managers making decisions about capacity transfer fees. Specifically, we

suggest a simple policy of not charging capacity transfer fees is either optimal or performs close

to optimal in all cases. Although our model is stylized using two or three buyers, we believe the

insights generalize to other situations. However, further research verifying our results and intuitions

in cases with more buyers would be of interest.
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