process a and scalable as allowing a peptide droplet to dry onto a surface can
disclose criti€at'structural mismatches of amyloid beta peptides. When analyzed with

pretraine | networks, the peptide deposits predict single amino acid mismatches
and co ional misfolding with 99% accuracy.
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The development of simple and accurate methods to predict mutations and misfolding in proteins
remains one of the unsolved challenges in modern biochemistry. We have discovered that critical
informaMprimary and secondary peptide structures can be inferred from the stains left
behind by droplets. To analyze the complex stain patterns, we challenged deep learning
(DL) neEroH!aneworks with polarized light micrograph (PLM) images derived from the drying

droplet depgsits,@f a range of amyloid beta (1-42) (AB4,) peptides. These peptides differed in a single

amino acidesi and represented hereditary mutants of Alzheimer’s Disease. Stain patterns were
not only highlyrepfoducible, but resulted in comprehensive stratification of eight amyloid beta (AB)
variants w tive accuracies above 99%. Similarly, peptide stains of a range of distinct ABa,
peptide c ions were identified with accuracies above 99%. Our results suggest that a

method asgsimple as drying a droplet of a peptide solution onto a solid surface may serve as an
indicator , yet structurally meaningful differences in peptides’ primary and secondary
structures. Scal@®le and accurate detection schemes for stratification of conformational and
structura in alterations are critically needed to unravel pathological signatures in many human

disease heimer's and Parkinson's disease.

Keywords:O

amyloid beta; protein misfolding; self-assembly; deep learning; coffee ring
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Introduction

Proteins“gical functions from their hierarchical biochemical structure; abundant evidence

exists that @ ute structural or conformational alterations can promote pathogenesis .. For

exampli numerous neurodegenerative diseases have been traced to misfolding of peptides and

proteins 2 hthe best studied examples is the 42-residue amyloid beta (AB4,) peptide, which is

implicated@with heimer's disease (AD) and hereditary cerebral hemorrhage with amyloidosis

C

(HCHWA) . e case of hereditary AD, single amino acid mutations in the amyloid beta (AB)

o

peptide sequenct, such as A21G (Flemish) ™, E22K (Italian) ), E22G (Arctic) ', and E22Q (Dutch) 7,

9

result in the form@tion of aggregation-prone and pathogenic variants . Peptide aggregation is a

precursor owth of insoluble fibrils and plaques that can cause synapse failure and memory

I

weakening *. The stratification of minute alterations in a peptide’s structure, such as single amino

acid substiguti r more transient conformational changes, remains an active area of scientific

d

researc id beta misfolding has been studied by Raman spectroscopy ™, fluorescence-

) [14],[15]

based ass , electron microscopy (EM , huclear magnetic resonance (NMR) [16], and

\Y

circular dichroism (CD) spectroscopy ™" *8. However, these methods require multimodal analytics

) [20], [21]

(e.g., NMRY use of complex amplification schemes (e.g., fluorescence assays , or are

[15, 22]

predicated late-stage formation of fibrils (e.g., cryo-EM) , an event that is typically

OF

associated with later stages of disease progression ¥ (see table SI.1).

Due to thelr experimental simplicity, studies into the staining patterns of drying droplets have been

th

[26]

pursued i fields, such as material science [24], food technology [25], bioscience ', and

U

[27]

medical di . Numerous investigations focusing on the physicochemical dynamics in

droplet and evaporation exist and underscore the importance of solute factors ¥,

A
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[28a, 29] [28b, 30]

atmospheric conditions , and the substrate . Even the most elementary case, the
deposition patterns of simple aqueous droplets on a material’s surface, the so-called “coffee-ring”

stains, are!o ned by a range of physical processes including fluid convection, surface forces at

[31] [32]

both liqui iguid-solid interfaces, pinning of contact lines ©~, and Marangoni flows
Additional rouecomponents, such as the presence of a peptide or protein, characteristically alter
the stains dug togthe multifaceted interplay between transport and dewetting effects and nucleation
and growt}ues (284,331 pyblished stain patterns range from uniform films ®* to dendritic and
soccer-ballw 331 "as well as more complex arrangements **!_|n this paper, we leverage the
power of :d deep learning (DL) algorithms to dissect structural features of pathogenic AB

peptides b stains left behind by their respective drying droplets.

Results m

To inve ature of the stains formed during the drying of peptide-containing droplets, we
anaIyzeEsition patterns using polymerized light microscopy (PLM). Fig. 1A shows a PLM
image of a characteristic drying pattern of the AB,4, peptide. To prepare homogenous, hydrophobic
substrates,s Ererequisite for regular droplet deposition over large areas, chemical vapor deposition
(CVD) poly, n 2% was employed to obtain poly(p-xylylene)-coated glass surfaces with an
average wat ntact angle of 80 = 1°. After 2 ul circular droplets were deposited and allowed to
dry under ‘;idit;- and temperature-controlled conditions for 40 min, consistent and reproducible

dropletgH an average diameter of 2.0 + 0.1 mm were observed. Throughout this study, we

used a solution 050.1 mg/ml peptide in an aqueous bicarbonate buffer (100 mM). Bicarbonate
buffer was sel because it is a kosmotropic salt according to the Hofmeister series 57 and
promot out effects that generally favor protein-protein interactions 2.
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f — Paphde Solution
" Drying \

O

Puoby(para-xyhdana) (PPX)

3 ‘T'-. Fﬂ
R

SN

Fig. 1: Dep ains of peptide-containing droplets are reproducible and reveal complex
informatiof about a peptide’s structure. A) Peptide stains are obtained by depositing 2 pL droplets of an
aqueou uffer solution onto hydrophobic poly(para-xylylene) (PPX) coated glass wafers. Drying

of the dr%ormed under controlled humidity and temperature conditions. A representative
polarized light micrograph (PLM) of the dried stain obtained from AB,, reveals complex deposition patterns.

B) Microsco is based on time-of-flight secondary ion mass spectrometry (ToF-SIMS) and (scanning
electron microscopy)) SEM identifies three distinct regions of interested marked by blue (center), red (a
transition r , and green (rim). C) Chemical analysis of a dried AB,, peptide stain using ToF-SIMS
imaging: salt , marked in green, are identified by CHO,, and CO; fragment ions and the AB,, peptide,

marked j identified by CN’, and CNO" fragments. D) Analysis of microscopic features using SEM
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supports the presence of three regions as proposed in B. Scale bars are 1, 2, and 5 um.

{

Consequen ing droplet stains, such as the one shown in Fig. 1A, constitute compositionally
simple, y ly rich and complex supramolecular systems, governed by locally and
H

[32c]

temporally@icoupled multiscale processes . The drying patterns are the result of a complex

interplay Qseveral physico-chemical factors, such as interfacial properties, heat and mass

transfer (21,

fluid instabilities and heterogenous nucleation Therefore, controlling
parameter s the substrate upon which the droplet is deposited or the atmosphere
surroundmﬂplet, directly influences the nature of deposited stain patterns. During the drying
of the peptide solution, the salt can reach its saturation limit, and promotes peptide association.

Once the p@aches saturation, it precipitates in a process that appears to occur concomitantly

with the c ion of the bicarbonate salt (Supplemental Video 1). These observations suggest

dfl

that deposition patterns, obtained under controlled conditions, are not only complex and

characteristic, Iso highly reproducible.

To further elucidate chemical differences within the drying patterns, we employed time-of-flight
secondarym spectrometry (ToF-SIMS) (Fig. 1C). We attributed the sum of CHO, and CO; ions

to bicarbo tals, whereas the sum of CN” and CNO" ions were used to identify the presence of

peptide. The ToF-SIMS analysis of the top 5 nm of the deposited droplets revealed three
charactegi ions: The core region was predominantly composed of salt, the rim region that
coincideWcontact line of the original droplet and displayed convoluted signals of both, salt
and peptide, andi transition region characterized by alternating areas of salt and peptide. The

existence of ree zones was further confirmed by scanning electron microscopy (SEM) (Fig.

1B&D). er is mainly characterized by crystalline structures corroborating the dominance of

This article is protected by copyright. All rights reserved.
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salt, the rim region has a film-like morphology, whereas the transition region is characterized by

dendritic growth structures indicating the coexistence of separate salt and peptide domains.

£

P

Consequentl e deposition patterns may thus be best characterized as heterogenous co-deposits
of a biolog nt (AB4, peptide) and salt (NaHCOs), where the protein appeared to template

the salt"Under defined experimental conditions, the deposition patterns were highly conserved and

reproducibleg(Figs, SI.2). These complex stain patterns displayed a high level of information content

[39]

Cl3

as indicate verage Shannon’s entropy ' of 5.14 + 0.13, which approaches the range of 5.55

to 7.17 obfain€d 3 the average Shannon’s entropy of the most famous paintings of mankind %

S

(Table Sl.4 er, discerning systematic differences between PLM images with the naked eye

U

has been enging due to their similar appearance (Fig. 2A). We thus hypothesized that the

stain pattens could be exploited for categorizing structural elements of peptides (Fig. 2B). To test

[

this hypot deposited a library of drying droplet stains derived from eight structurally similar

d

variants of the B3, peptide and recorded approximately 400 PLM images per peptide. For pattern
analysis ted a deep learning (DL) approach that builds upon previous machine learning

studies inimizes extensive image processing and cumbersome feature extraction.

Author M
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left: E22Q; outside right: wtA42beta). B) Using an established transfer learning approach, a pretrained deep
convolutional neuron networks (CNN) is first trained with a medium sized number of PLM images of peptide
stains with distinct primary and secondary structures. Because of the simplicity of the deposition process,
about 200 ilaﬁes c? be obtained within 60 min. In a second step, the CNN is challenged with never-seen
images in ssess its ability to categorize amyloid beta variants with single protein mutations and

conformatio olds. C) Performance of various deep learning networks with respect to network
accuracy, s, when trained and challenged with PLM images of 8 different AB,, with different
mutations. uded in this study are (1) NASNet-Large, (2) DenseNet-201, (3) Inception-ResNet-
v2, (4) RgsNgialOl{S) ResNet-18, (6) DarkNet-53, (7) GoogleNet, (8) ResNet-50, (9) MobileNet-v2, (10)

Xception, (1&) Inception-v3, (12) Vgg-19, (13) NASNet-Mobile, (14) ShuffleNet, (15) VGG-16, and (16)
AlexNet. Th Large, a medium-to-small sized DL network had the highest accuracy and is hence used

in this study.: :

Transfer Iewproaches using commercially available DL neural networks *? ¥ can reduce the
burden of creatingyoverly large training datasets and should thus be well-suited for the analysis of

the stain ima::: ::tained in this study Y. To identify a manageable DL network that offered high

accuracy with a sufficiently small network size (Fig. 2C), we compared 16 different

algorithmsmme of which had been previously employed in medical image analysis “**** and

biological research . As shown in Fig. 2B, NasNet-Large, a medium-to-small sized DL network has

the highest accEv and was thus used in all subsequent experiments.

In Fig. 3, the NasNet-Large was employed for stratifying eight AB,4, peptides that differed by a single

amino acitm It is well known that subtle changes in the primary structure of a peptide can

affect a pe econdary structure and alter its physical properties ! The positions in which
the amino acid residues were exchanged were thus distributed throughout the primary peptide
structur, eing a part of the disordered N-terminal region (Ala’), two in the central region
(Ala* amat has been critically implicated with self-aggregation and neuropathogenesis of
AB., peptides %) i’\d one in a B-sheet region closer to the C-terminus (Gly*’, Fig. 3A). Four of the

eight peptid mutants of Ala** or Glu®® because they are located in a critical transition region

between t (GIn"-Ala’") and a short turn (Glu**-Asp®) that continues into a second B-sheet

This article is protected by copyright. All rights reserved.
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48] Specifically, the Ala* residue was replaced with a glycine residue (A21G), while the Glu®* residue
of the E22K, E22Q, and E22G peptide was replaced with amino acid residues characterized by a
higher (Hcical (GIn??) and lower (Gly*) hydropathy index ®%. In addition, the Ala® residue
was excha ither the more hydrophilic tyrosine (hydropathy index: -3.5, A2T), or the more
hydroph-ob—gvalne residue (hydropathy index: 4.2, A2V), and the Gly*’ residue was exchanged with
asparagine (Aspm. G37D). Except for Val’, the exchanged amino acid residues had a higher tendency
to be buri

of the peptide core compared to the wild type peptide. Accordingly, the A2V

variant wagl ch@radterized by a lower number of buried side chains, whereas the buried side chains

SC

increased i T variant. In the case of E22K, this effect is further magnified by Lys’s ability to

u

engage in i ecular hydrogen bonding. Steric effects can also impact the physical properties of

the peptid B While the molar volumes of the exchanged amino acid residues were generally

)

increased r, the wild type peptide, the Ala** and Glu* residues had significantly larger molar

d

volumes. In , the hydropathy indices of the exchanged amino acid residues were comparable.

An excepti the exchange of Glu®®> with Gly*>, which lowered the overall hydropathy of the

M

E22G v e to the wild type peptide. Several of these peptide structures corresponded to

familial mutations of the AB,, peptide including the Flemish (A21G) ', Arctic (E22G) '®, Dutch (E22Q)

) [5]

7] and Italian variants. In addition, an AB,4, peptide structure was included where the GIy37

patterns o or the eight peptide variants are presented. Initial attempts to categorize the

residue wa d with asparagine (G37D). In Fig. 3A characteristic PLM images of deposition

PLM imag y the naked eye resulted in low accuracies, which can be attributed to similar

physicochegmi operties of the AB variants including molecular weight, isoelectric point and
average h ity (Table SI.2). In contrast, the DL network NasNet-Large was able to stratify the
PLM i h an accuracy of 99% across the eight AB variants as summarized in the confusion

This article is protected by copyright. All rights reserved.
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matrix shown in Fig. 3B. This analysis was based on a training set of about 3200 images (i.e., about
400 images per peptide variant) and a test set of 720 randomized images of the eight different

peptides; a' i es were new to the DL network, i.e., not included in the original training cohort.

To identif discriminatory regions of the PLM images, we used gradient-weighted class
I I

activation Wapping (Grad-CAM) % to generate activation maps of the final convolutional layer of

£

the DL ne rk 3 Heat map layers of the PLM images are presented in Fig. SI3 and highlight a

SC

particular focus_of the DL network on both, the center and the transition regions within the stain
patterns ( C, and D). Further insights about the clustering of the peptide stains can be

derived by applying a t-distributed stochastic neighbor embedding (t-SNE) [54] algorithm. After non-

b

linear dim ity reduction of NasNet-Large’s “depth concatenation” layer, pronounced

N

clustering t set of PLM images corresponding to eight different amyloid-beta variants was

observed po further support that the stain patterns are highly reproducible and characteristic

d

of the v, id-beta peptides.

Author M
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Large, which uses the ImageNet 551 gataset (1.28 million images over 1,000 generic object classes) for
pretraining. The training dataset contained 3200 PLM images derived from the eight peptides shown in A.
The test dataset contained 720 never-seen images. The trained NasNet-large network classified all peptides
according tggthe muiticlass confusion matrix with a total top-1 accuracy above 99%. C) The t-SNE plot of the
“depth CM" layer of the trained CNN indicates excellent clustering of all peptides in spite of the

fact that thdvaried only by a single amino acid mutation.

In additl-or!ﬁmge amino acid mutations, conformational alterations are known to play a critical
role in AP aggregation and subsequent fibril formation, but are particularly difficult to predict 18 In
its native f AB,, peptide is comprised of two helical regions encompassing residues 8-25 and
28-38 that%ected by a regular type | beta-turn ®®. However, misfolded AR peptide typically
has a cros ure in which the individual B-strands are oriented perpendicular to the fibril axis.
To model ed alterations in the secondary structure of AB peptides 5*°”, AB,, peptide was
incubated !ith different concentrations of an aqueous hexafluoroisopropanol (HFIP) solution (Fig.
4). The res, nformational alterations were quantitatively assessed by circular dichroism (CD)
spectroscopy (FIg¥4A, B). These data confirmed predictive changes in the ratio of alpha-helix and
beta-sl§with increasing HFIP concentration (Fig. 4A) that were sufficiently long-lasting to
be pre after removal of the HFIP and transfer into the bicarbonate buffer prior to CD

analysis and droplet deposition. As shown in Fig. 4B, exposure of the AB,, peptide to 0.1% v/v HFIP

lowered the helix content by 2%. Further increase of the HFIP concentration corresponded to a

@

continuous pn in helical content until a plateau of about 3% in helix content was reached at
HFIP conc s above 40% v/v. Fig. 4C compares the PLM images of the droplet stains from
eight ABsy pepti conformations sampling the conformational range defined in Fig. 4B.

Conforma:j similar secondary structures, such as Hc6, Hc3a, and Hc3b, gave raise to stain

patterns t red undistinguishable to the human eye. In contrast, Hc9, a conformer with 9%

helical gave rise to a stain pattern that was very distinct from that of Hc6, which had a 3%

This article is protected by copyright. All rights reserved.
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lower helical content. Using the NasNet-Large neural network with a training set of about 400
images per class, conformational alterations relative to the native AB conformer were stratified with

a 99% accuracy (Fig. 4D). Within a test cohort of 720 randomized PLM images that had never been

pi

presented etwork before, NasNet-Large reported six misclassifications. It is helpful to

understan ese misclassifications in further details: Four misclassifications came from the alpha

[

helix content below 3%, i.e., Hc6, Hc3a, and Hc3b. The remaining two misclassifications were Hc27

C

and Hc10, sclassified as Hc7. For samples with more significant differences in their alpha

helix conteft, Sfratification of peptide conformers was 100% accurate. This is further underscored by

S

the t-SNE n in Figure 4E that unambiguously confirms the utility of drying droplet stains for

U

stratificati n minute alterations in peptides’ secondary structures. While the data associated

with the different peptide conformations generally clustered tightly together, different degrees of

)

spreading erved for the different peptides, potentially indicating different levels of

d

polymorphi

Author M
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hexafluoroisopropanol (HFIP)[57]. After 15 min, the conformational variants were lyophilized to remove the
HFIP and reconstituted in a carbonate buffer. B) Analysis of the content of helix, B-strand (including parallel
and antipar‘lel), tu', and irregular (other) structures for all conformational variants of the AB,, peptide
based on their respective CD spectra that were analyzed using the BeStSel algorithm =81, C) PLM images of the

of Hc27 has a helicity o
obtained er 720 PLM images as classified by the trained NasNet-Large (2880 training images). The total

correspond e stains labeled based on the degree of their helical content. For example, the structure

7%. D) Confusion matrix of the test set of 8 different secondary structures of AR,

accuracy is . E) t-SNE graph of one of the last hidden layers of NasNet-Large, namely “depth

concatenati@h layer§) when classifying the PLM images test sets (720 images) of 8 different AB4, conformation

indicating ac ustering of all misfolded peptide variants.

Conclusio
Simple protei ins deposited on a material’s surface can be complex, characteristic, and

reproducims paper, we demonstrate that stain patterns of amyloid beta peptides serve as

accurate fingerprints revealing a peptide’s structural and conformational identity. In our hands, well-

established, o -shelf DL neuronal networks trained on a limited number of stain images

stratifi mutations within A4, variants with exceptional accuracies (> 99%) within
minutes. ISe to their unprecedented simplicity, deposition patterns hold ample potential as
indicators ofgmaiaute differences in primary and secondary proteins structures, and will likely be
broadly ap to questions of protein aggregation and interactions, far beyond amyloid beta

peptides. gr findings thus establish a major scientific advance with respect to both, fundamental

research iio the ')Ie of protein misfolding as well as the quest for simpler and potentially earlier

diagnostic Sneurodegenerative diseases.

<
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Methods

AmyloHeptide solutions

Wild type peptide and all peptide variants were purchased from Bachem (Bubendorf,

Switzerlandmilialeles$1). To prepare the AP peptide solutions, the lyophilized peptide was dissolved in
100 mM ch buffer to a concentration of 0.1 mg/ml. The buffer had a pH of 9.2 and was

prepared Using ulffapure water from a Milli-Q Plus system (Millipore, Schwalbach, Germany) and

C

contained aHCO; (Merck Chemicals GmbH) and 9 mM Na,CO; (Merck Chemicals GmbH).

S

The peptide solution was mixed using an SB3 tube rotator (Stuart, Stone, UK) at 40 rpm for 15 min at

room tem and then stored in aliquots at -20 °C. The AB., peptide stock solution (Bachem,

U

BubendorfffSwitzerland) was prepared by dissolving 2 mg/ml lyophilized peptide in 100 mM

£

carbonate buffer. After mixing for 15 min at 40 rpm at room temperature, the peptide solution was

a

diluted wi uoroisopropanol (HFIP) (Sigma Aldrich) and MQ water to the desired HFIP
concen s with a final carbonate buffer concentration of 20 mM and peptide concentration of
0.2 mg/ selected concentrations of HFIP were 0, 0.1, 1, 2, 5, 10, 20, 40, 60, and 80% (v/v).

Surface preparation via chemical vapor deposition polymerization

I

Glass wafer: he specification of extra white float, clear, and uncoated were custom made with

O

a dimensio mm x 80 mm and thickness of 1.0 + 0.05 mm (Optrovision, Miinchen, Germany).

Before thef€oating process, the glass wafers were washed first with Piranha solution (4 min floating

I

in Piran d then several times with extra MQ water until a pH of 6.0 was reached. The

t

clean glas were coated with poly(p-xylylene) (PPX) via CVD polymerization following a

U

previously reported procedure B¢ The starting material [2.2]paracyclophane (Curtiss-Wright Surface

Techno alway, Ireland)) was sublimed under vacuum and converted by pyrolysis into the

Al
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quinomethane, which spontaneously polymerized upon condensation to the glass surface. A

constant argon flow of 20 sccm was used as the carrier gas. The sublimation temperature was 100-

t

110 °Cfoll pyrolysis at 650 °C. The coating pressure was 0.5 mbar.

Droplet tion

All peptid i@ns had a peptide concentration of 0.1 mg/ml in 100 mM carbonate buffer. An

automated¥ 9 microplate pipetting system (epMotion 5070, Eppendorf AG, Hamburg,

$C

Germany), with a 1-channel-dispenser (TS10, Eppendorf AG, Hamburg, Germany) was used

U

for contro osition of defined arrays of droplets onto the glass slide. To control the

environmefital conditions, the pipetting system was placed inside a climate chamber (ICH 750,

f

Memmert 0. KG, Schwabach, Germany) and the environmental conditions were controlled

a

at a tempevat f 23°C+ 0.5°C and humidity of 40% + 3%. Each droplet was deposited with a

dispensi d of 3 mm/s and had a volume of 2 pl. The pipetting system was programmed to

M

dispens ts per glass plate, in the form of 12 columns by 8 rows. In each experiment, 8

different solutions were dispensed in random arrangement, where 16 droplets of each solution were

I

placed on slide (Figure SI.1). After the droplets were allowed to dry for 40 min = 5 min,

images of osition patterns were captured using a polarized light microscope (Olympus

Polarizing icroscope BX-53F, Tokyo, Japan) equipped with an automated stage. PLM images

N

were s light micrographs, because the machine learning algorithms categorized them

{

with higher racy. All the images were acquired at a consistent light intensity, using a 10x

U

objective itfhed together using the Multi Image Alignment (MIA) algorithm included in

A
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CellSens software (Olympus, Tokyo, Japan), with a 15% overlap. The acquired image of each dried

droplet had a size of 2344x1878 pixels in the format of JPG.

T

Trainin sting of the CNN

All raw images acquired from polarized light microscopy were imported into the MATLAB (Release
images 2cq polarized lig Py were i (

202043, Maw Inc.) for further processing and training the CNN. The images were first cropped

to a size o@% pixels by cutting 233 pixels from the left and 233 pixels from the right side of

the image m resized to the proper size compatible with the input layer of the CNN. For deep
eVeralpre

learning, s -trained CNN networks were used for training and testing purposes to evaluate

the performance @f different CNNs and selecting the most accurate one for our purpose in this
paper. The we selected for further examination was NasNet-Large developed by google (59
The NasNet® etwork structure contains two main modules, i.e. normal cells and reduction
cells, in tofal @ layers, being part of automated machine learning. The NasNet-Large has been
pre-trai % top-5 accuracy on the 1,000 object classes (1.28 million images) of the

ImageNet °>22 erefore, it has learned rich feature representations for a wide range of images.

The network has an image input size of 331x331 pixels.

Following % learning approach, ““ a network that was pre-trained with a large set of image

features, uned with a relative small set of new images. During transfer learning, the final

classificati as removed from the network and retrained with the dataset. Fine-tuning of the
param d across all layers using the same global learning rate of 0.001, a minimum batch
size of 32_im and maximum epochs of 20. To prevent the network from overfitting and
memorizin act details of the training set, the images were augmented using a random
reflectio ion, in which each image is reflected horizontally and vertically with a 50%
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probability. About 360 images per class were used for training, about 40 images per class for

validation during training, and 90 images per class for testing the network after the training. There

t

was no overlap between training, validation, and test sets.

The t-distri astic Neighbor Embedding (t-SNE) algorithm ®*, a method for visualizing high-
|

dimensional data, was applied to one of the last hidden layers of the trained CNN ,namely the

“depth cogd€atenagion layer”, to show how well the network clusters the peptides. We used a
MATLAB machine learning package to perform the t-SNE with the perplexity of 30 and the learning

rate of 500 Ge

52]

The visuali orithm gradient-weighted class activation mapping (Grad-CAM) 52 was used to

U

understan ich regions of the image have the maximum influence on the classification decisions

N

of the DL network.

d

Mass Spectrometry

Time-of-flight ndary ion mass spectrometry (ToF-SIMS) was performed using a ToF-SIMS

\

instru F GmbH, Miinster, Germany) equipped with a Bi cluster liquid metal primary ion

source andga non-linear time-of-flight analyzer. For spectrometry, short primary ion pulses (<1 ns) of

f

the Bi sourc operated in the “bunched” mode providing Bi," or Bis" ion pulses at 25 keV energy

O

and a late tion of approximately 4 um. Since the droplets were larger than the maximum

deflection fange of the primary ion gun of 500x500 pm?, the images were obtained using the

g

manipulatar sta can mode. Negative polarity spectra were calibrated on the C, CH,, CH* peaks.

{

Spectromegerformed in static SIMS mode by limiting the primary ion dose to <10 ions/cm®.

High later ution images were acquired in a primary ion source mode providing a lateral

resoluti@h bout 200 nm with nominal mass resolution in “burst alignment” mode. Charge
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compensation was necessary because of the glass substrate so that an electron flood gun providing

electrons of 21 eV was applied and the secondary ion reflectron tuned accordingly.

L

Scannin on Microscopy

The mowhologx of the deposited peptide and salt in dried droplets were analyzed using scanning
electron My (SEM) (LEO 1530 Gemini, Zeiss, Germany). A thin layer of gold was sputtered
onto the samples pFior to SEM imaging to minimize surface charging. All SEM images were measured

at an electr erating voltage of 10 kV and a working distance of 2.4 mm.

Circula:ism (CD) spectroscopy
The far-U ectra of the peptide solutions were recorded using a J-810 spectropolarimeter

(JASCO, Gr!E-Umstadt, Germany) at 20°C, in quartz glass cuvettes of 500 um optical path length
(Suprasil, mtik GmbH, Jena, Germany) between 260 and 180 nm, at 0.5 nm intervals. Three
repeat scansS'at an rate of 10 nm/min, 8 s response time, and 1 nm bandwidth were averaged for
each samp§'ts respective baseline of the protein-free sample. The peptide concentration was
0.15m i M carbonate buffer (pH 9.2). To predict the content of secondary structures of

the peptides and calculate the percentage of each specific conformation, the CD spectra were

analyzed usin tHe lSeStSeI webserver 8,
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