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Abstract

The Remote Associates Test (RAT) is a word association retrieval task that consists of a series of
problems, each with three seemingly unrelated prompt words. The subject is asked to produce a single
word that is related to all three prompt words. In this paper, we provide support for a theory in which
the RAT assesses a person’s ability to retrieve relevant word associations from long-term memory. We
present a computational model of humans solving the RAT and investigate how prior knowledge and
memory retrieval mechanisms influence the model’s ability to match human behavior. We expand prior
modeling attempts by investigating multiple large knowledge bases and by creating a cognitive process
model that uses long-term memory spreading activation retrieval processes inspired by ACT-R and
implemented in Soar. We evaluate multiple model variants for their ability to model human problem
difficulty, including the incorporation of noise and base-level activation into memory retrieval. We
conclude that the main factors affecting human difficulty are the existence of associations between
prompt words and solutions, the relative strengths and directions of those associations compared to
associations to other words, and the ability to perform multiple retrievals.
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1. Introduction

The Remote Associates Test (RAT) is a series of problems, where each problem consists of
presenting the subject with three prompt words. The subject must determine a fourth solution
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word that is associated with all three prompt words. For example, if “swiss,” “cake,” and
“cottage” are the prompt words, then “cheese” is the sought-after response. The work reported
here, as well as in multiple past research projects (Wu, Huang, Chen, & Chen, 2020), uses 144
compound RAT problems and the associated human performance on those problems (Bowden
& Jung-Beeman, 2003). The original RAT test was developed by Mednick (1962).

In this paper, we provide support for a theory where performance on the RAT is determined
by knowledge in long-term declarative memory and iterative retrieval using well-established
retrieval mechanisms that rely on activation of words in memory and their connections. The
model of activation we use consists of base-level activation (BLA), spreading activation, and
noise (Anderson, 1990).

Activation = BaseLevelActivation + SpreadingActivation + Noise. (1)

To explore this theory, we develop a family of models of RAT performance using different
knowledge bases, differing numbers of attempted retrievals, and declarative memory retrieval
mechanisms inspired by ACT-R as implemented in Soar (Jones, Wandzel, & Laird, 2016).
The base model relies on spreading activation to govern retrievals. However, we also explore
variants that incorporate BLA and different levels of noise.

Prior research has created and evaluated computational models based on retrieval from
long-term memory (described in the Related Work section); however, our work is distin-
guished by our comprehensive explorations and evaluations of a wide range of variants that
allow us to determine the contributions of the underlying knowledge base, word associations,
the directions and strengths of those associations, BLA, noise, and the number of retrieval
attempts. Our explorations allow us to disentangle potential interactions among these factors,
helping us create a detailed model of semantic memory retrieval for this task.

In the remainder of the paper, we first examine the RAT. Next, we discuss five knowledge
bases that fall into two major categories and analyze them as to their suitability for modeling
the RAT. The two categories of knowledge bases include ones built from word co-occurrences
in text (COCA-TG, Google books) and ones built from word associations collected from
humans (HBC, USF Norms, SWOWEN).

We then present a simple computational process model with variants along the dimensions
described earlier. We evaluate the models on how well they match human performance on the
RAT in terms of problem difficulty for two conditions: one where humans have 7 s to generate
an answer and one where they have 15 s. We also compare the computational process models
to distributional semantic models (DSMs).

The best model uses human-generated associations (SWOWEN) and includes spreading
activation attenuated by association strength and noise to retrieve words from long-term mem-
ory, employing multiple attempts until it finds a potential answer or exhausts its number of
attempts. It models human question difficulty on the RAT with an R2 of 0.90 and a mean-
squared error of 0.63 on the 7-s task and with an R2 of 0.98 and a mean-squared error of
0.29 on the 15-s task. The only variation between modeling the 7-s task and the 15-s task is
the number of retrieval attempts allowed to find a solution. In matching human performance,
there is a linear trade-off between the amount of noise and the number of attempts. For a given
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Table 1
Remote associate test example problems

Prompt Word 1 Prompt Word 2 Prompt Word 3 Solution Word

man glue star super
dew comb bee honey
rain test stomach acid

amount of time, the main determiners of difficulty of the RAT problems are directionality and
strength of the associations between words.

2. Remote Associates Test

Bowden and Jung-Beeman (2003) developed the 144 compound RAT problems used in
this work. Three examples are shown in Table 1. The RAT problems are designed to have
only a single valid answer. To minimize any variance from confounding factors, Bowden and
Jung-Beeman (2003) used only compound words or phrase associations when creating the
RAT items. For example, the association between “super” and “man” is valid because those
two words are found next to each other in the English language. The association between
“uncle” and “man” is not valid, even though they are semantically related, because “uncle”
and “man” do not form a compound word or common phrase.

All RAT problems use common words that are intended to be familiar to the participants.
To avoid priming interference effects, solution words are never repeated nor used as prompt
words. The overall test is difficult for humans, who on average correctly answer 32.92 out of
144 compound RAT questions given 7 s and 44.25 given 15 s. Although generating a correct
response is difficult, once the correct response is provided, most subjects recognize it as an
appropriate answer. This suggests that task difficulty is not because the necessary knowledge
is missing, but because it is difficult to access.

The associations between prompt words and the solution word vary in direction. For exam-
ple, with the RAT problem “rain,” “test,” and “stomach,” the direction of some associations
goes from a prompt word to the solution word (such as from “stomach” to “acid”), which we
call forward associations. Others go from the solution word to a prompt word (such as from
“acid” to “rain”), which we call backward associations. After directly inspecting each prob-
lem, we observe that each word pair has a single correct direction that creates a compound
word or common phrase. In 30.3% of all word pairs, the correct association direction is for-
ward, whereas in the remaining the direction is backward. While not discussed by Bowden
and Jung-Beeman (2003) or other related work as being an important aspect of individual
problems, we observe that questions that have more forward associations tend to be easier for
humans to solve than questions that have more backward associations, with a correlation of
0.87.

Bowden and Jung-Beeman (2003) provided data from a human study where participants
solved 144 compound RAT problems. We use these data in our evaluation of the knowledge
bases and models. It provides data on 289 participants who were given either 2, 7, 15, or 30 s
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to produce a solution for each of the 144 compound RAT problems. We do not model the
30-s data because those experiments took significantly longer (up to 4 h per full test) with the
subjects in a fMRI machine. We do not include the 2-s data in our initial development and
evaluation of our models, in part, because on average, humans get so few of those questions
correct (8.0 out of 144). We summarize the models’ performance on those data at the begin-
ning of the Discussion and Analysis section. Thus, we focus the development and evaluation
of our models on the 7- and 15-s data. The correlation for the percentage of participants pro-
ducing solutions within 7 s and 15 s is 0.91, meaning that problems that were difficult in 7 s
also tended to be difficult in 15 s.

3. Knowledge bases

A consistent hypothesis across computational models of the RAT is that performance is
strongly dependent on the contents of its knowledge base, including the associations between
words and the direction and strength of those associations. One of the contributions of this
work is evaluating five different word association knowledge bases that come from two gen-
eral categories: word co-occurrences and collected word associations. In this work, as in
many of the models described in the Related Work section, the knowledge base is a weighted
directed graph. The nodes represent words, while the edges between the words represent
associations between words. Edges are directed, unlabeled, and weighted, where the weight
represents the strength of the association and the direction represents the direction of the
association.

Word co-occurrence knowledge bases derive associations from words that co-occur next to
each other in text. We explored two word co-occurence knowledge bases, one derived from
the Corpus of Contemporary American English (COCA) (Davies, 2008) and one derived from
Google Books (Lin et al., 2012).

Olteţeanu and Falomir (2015) created a word co-occurrence knowledge base from COCA
to solve the RAT called RAT-KB. We attempted to recreate their knowledge base by extract-
ing the top 2-grams from COCA and process them as described in their paper. However,
our replicated knowledge base does not match their knowledge base, even when following
their exact instructions.1 We expanded RAT-KB to increase its coverage of RAT problems
by allowing all parts of speech instead of the limited hand-selected set that RAT-KB used, a
version we call COCA-TG (COCA Two-Grams). All associations in COCA-TG are bidirec-
tional and include strengths based on their frequency in COCA. Since COCA-TG uses only
the top 2-grams in COCA, it does not include semantic or relational associations, such as a
relationship between “man” and “uncle.” COCA-TG has 55,999 unique words, and 852,217
association links, and 100% of the RAT problem words. In 94 out of the 144 RAT problems,
COCA-TG has associations between all three prompt words and the solution word. However,
getting these and other RAT problems correct still depends on the algorithm used with the
knowledge base.

Google Books is a corpus derived from an analysis of over five million books. This knowl-
edge base has been used in previous RAT modeling research (Kajić, Gosmann, Stewart,
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Wennekers, & Eliasmith, 2016, 2017). Similar to COCA-TG, this knowledge base is built
from word co-occurrences and consists of 2-grams and their frequency in English. Word co-
occurrences for Google Books are directional. If word1 appears in the texts before word2,
it is collected as an association from word1 to word2 and not vice versa. It has about
90 times more word associations and 28 times more unique words than COCA-TG. Because
it contains data on the co-occurrence of essentially all English words with each other, it is not
biased toward compound word phrases (such as “cottage cheese”), and many words have their
highest associations with function words (also called “stop” words), such as “and,” “the,” or
“of,” making it problematic as a source for associational retrievals of solution words for the
RAT. To avoid these issues, we removed all stop words from the knowledge base. After pro-
cessing, the knowledge base has 100% of the words related to the 144 RAT items and full
solutions to all 144 RAT problems.2

In contrast to using large corpora of written English, the other databases were built by
collecting word associations directly from human participants through a study and/or game.
These games present a participant with a cue word and then ask for the participant to respond
with the first word they think of that is associated with the given word. For example, if
the given word is “bird,” a participant might respond with “feather,” “brain,” or “fly.” Data
are collected in the form of “word1,” and “word2,” with repeated occurrences summed to give
the number of instances “word2” was entered when a participant saw “word1.” Thus, there
is a one-way association or link created from “word1” to “word2,” and the sum is used as
the association strength. We investigate three large databases that collected word associations
in this way: Human Brain Cloud (HBC) (Gabler, 2013), University of South Florida Free
Association Norms (USF Norms) (Nelson, McEvoy, & Schreiber, 1998), and Small WOrld
of Words in ENglish (SWOWEN) (De Deyne, Navarro, Perfors, Brysbaert, & Storms, 2018).

HBC is crowd-sourced through an online game of word associations, where a player is pre-
sented with an eligible word chosen at random and then asked to type another word that they
believe to be closely related to the given word. The website started with a single eligible word,
“volcano.” All additional words become eligible to be presented when they have been typed
in at least 20 times as a related word. After removing items with multiple words and non-
alphabetic characters, there are 231,858 unique words and 2,403,813 associations between
those words. This dataset has 100% of the words in the 144 RAT items and full solutions to
109 out of 144 of the RAT problems. This knowledge base has not been used for modeling
the RAT in previous work.

USF Norms is the accumulation of data collected using multiple methodologies. After
removing items with multiple words and non-alphabetic characters, there are 9,883 unique
words and 70,699 associations between those words. This dataset has 97.7% of the words
related to the 144 RAT items and full solutions to 21 out of 144 of the RAT problems. This
knowledge base has been used in previous RAT modeling research (Kajić et al., 2016, 2017).

SWOWEN data were built from a demographically diverse group of participants. Cue
words started as a limited set from previous research on semantic categories. New cue words
were added when they were frequently stated as responses, similar to HBC. After remov-
ing items with multiple words and non-alphabetic characters, there are 38,339 unique words,
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Table 2
Knowledge base summary

COCA-TG Google Books HBC USF SWOWEN

Unique words 55,999 1,678,975 231,858 9,883 38,339
% RAT words 100% 100% 100% 97.7% 100%
Associated links 852,217 72,843,006 2,403,813 70,699 460,938
Solution links 94 144 109 21 51

460,938 associations between those words. This dataset has 100% of the words related to the
144 RAT items and full solutions to 51 out of 144 of the RAT problems. This knowledge base
was used in previous work modeling the RAT (Valba, Gorsky, Nechaev, & Tamm, 2021).

Table 2 summarizes the statistics of the five knowledge bases. Google Books contains the
most unique words, the most associations, all of the related RAT words, and all the solution
links. The next biggest knowledge base is HBC, which is the largest one collected directly as
word associations. Further analysis of the knowledge bases in terms of modeling performance
on the RAT is discussed in the Knowledge Base Baselines section and the Model Experiments
and Evaluation section.

4. Process model of the RAT

Our hypothesis is that the ACT-R model of retrieval from long-term memory (reimple-
mented in Soar) can successfully model human performance on the RAT. Our model focuses
on memory retrieval and internal task processing but does not include initial perception and
comprehension (reading) of the prompt words, eye movements and reperception of words,
or typing a response. Furthermore, our model does not include complex strategies, such as
focusing on a single word or pair of words during retrieval. These strategies could influence
performance; however, our goal here is to develop and evaluate a simple model based on well-
established theories of retrieval from long-term memory. Thus, our model does not attempt
to account for individual differences that arise from variation in these and other strategies nor
does it attempt to accurately model the detailed time course of producing an answer. As fur-
ther described in the Experiments and Evaluation section, the purpose is to model the problem
difficulty averaged across a population of subjects.

In our model, all words and their associations are stored in long-term declarative memory,
which in Soar is called semantic memory. Furthermore, words are retrieved using ACT-R’s
declarative memory mechanisms (described below) as implemented in Soar (Derbinsky &
Laird, 2010; Jones et al., 2016). Given that our model replicates the declarative memory
retrieval mechanisms in ACT-R, we expect that results from an ACT-R model would be simi-
lar. However, given the variability in how a model and the accompanying knowledge base can
be encoded in a cognitive architecture, we refrain from making any definitive claims about
potential ACT-R models.
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Fig. 1. A walk-through of a RAT example using the model.

Our base model is a straightforward implementation of repeated retrievals from long-term
memory biased by spreading activation. In our model, semantic memory is initialized with
the word associations from a knowledge base, where words are represented as nodes and
associations are represented as directed weighted edges. The model receives the spelling of
the three prompt words in working memory. To comprehend each word, the model uses the
word’s spelling to retrieve it from semantic memory into working memory. The presence
of these words in working memory causes the corresponding words in semantic memory to
activate and spread activation along outgoing forward links to other words. The algorithm for
spreading activation uses only forward associations to spread activation, which in turn directly
determines the activation of words in semantic memory. Frame 1 of Fig. 1 shows a sample
semantic memory where connections with larger arrows indicate stronger associations. In
frame 2, the model retrieves the three prompt words, “swiss,” “cottage,” and “cake” into
working memory, which causes the words to activate and spread activation along outgoing
forward links in proportion to the association strength of each link. After the prompt words
have been retrieved, the model attempts to retrieve the solution word from semantic memory,
biased by spreading activation.

The spreading activation equation used by our model is given below:

S j = log

[∑
i

(
ai j

fani

)]
+ offset, (2)

where the sources of spreading are i, a recipient of spreading is j, an association weight from
i to j is ai j , and fani is the outgoing fan for source i. The offset provides a minimum value for
spread. Spreading is limited to a depth of one because the task involves compound words or
phrase associations that are presumably only one link away. Further details on our semantic
memory parameters and spreading activation implementation can be found in Appendix A.
In some models of spread, there is a separate fan term that attenuates the spread based on
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Table 3
Iterative processing of the model with HBC for the RAT problem: “dew,” “comb,” and “bee”

Attempt 1 mountain Attempt 2 hair Attempt 3 brush Attempt 4 sting Attempt 5 honey

dew 0.37 0.00 0.00 0.00 0.01
comb 0.00 0.35 0.29 0.00 0.03
bee 0.00 0.00 0.00 0.15 0.10

Note. For each attempt, the association strength from each prompt word is reported.

the number of outgoing links from a source word. For some knowledge bases, the number
of distinct responses from a source word could be interpreted as fan. However, this apparent
fan depends on how often a source word was presented to users during data collection instead
of the number of associations an average user has from a word. This makes the apparent fan
biased because different source words were presented with different frequencies. Thus, we
normalize the outgoing association strengths from a source word. We use these normalized
association strengths as ai j . This normalization avoids bias from differing word presentation
frequencies and limits the associations to sum to 1. We then set fani to 1 so not to reintroduce
the bias from data collection.

As shown in frame 3, the first attempt retrieves the highest activated word, in this case
“snow.” High activation by itself is no guarantee that the retrieved word is associated with all
three prompt words, as a high activation strength from one or two prompt words can dom-
inate. This is the case in our example, where there are links from “swiss” and “cottage” to
“snow” but no link from “cake.” The model tests to see if a retrieved word is a solution by
testing if it has a link in either direction with every prompt word. Thus, the algorithm for
evaluating potential solutions to RAT problems uses both forward and backward associations
from semantic memory, although retrieval uses only forward links. If the retrieved word has
at least one link with each prompt word, the model uses that word as the solution. If not,
as in this case where “snow” is not linked to “cake,” the model queries semantic memory
again, inhibiting any words it has previously retrieved, which in our example is “snow,” as
shown in red. In Soar, inhibiting a word from being retrieved is a simple specification to the
retrieval link done through procedural memory rules. In ACT-R, inhibition is implemented
through a transient decrease in the activation of a retrieved memory element (Lebiere & Best,
2009). In frame 4, the model retrieves the second highest activated word “cheese,” which is
associated with all three prompt words, so the model returns it as the solution. The maximum
number of retrievals for a solution is a parameter called attempts, which we experimentally
determined to best match human performance, as described in the Model Experiments and
Evaluation section. If the model exhausts the number of attempts, it “guesses” by returning
the retrieved word that has associations with the most prompt words. Ties are broken ran-
domly. To account for the impact of this random behavior, we ran each model 100 times and
averaged the results. An alternative model was tried where ties were broken by choosing the
retrieved word with the highest activation. This model change had little to no impact on the
results.
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To illustrate the iterative processing of the model, Table 3 shows the RAT problem where
“dew,” “comb,” and “bee” are prompt words and where the solution word is “honey.” The
table shows the five attempts of the model, using HBC as its knowledge base, makes as
it retrieves words (“mountain,” “hair,” ...) before reaching the solution. For each attempt,
the table shows the word with the highest activation on that attempt across the top, and the
contribution of activation spread from each prompt word for that word below it. At first,
words are selected where there is a strong forward association from a single prompt word.
(0.000 indicates no association.) At attempt 5, the combined forward association strengths of
all three prompt words provide the highest activation, leading to the retrieval of the correct
answer. As shown, the strength of a strong forward association from a single prompt word
can dominate the contributions of multiple weak forward associations. However, in this case,
it is exactly those weak, but non-zero forward associations that are necessary to retrieve the
correct answer.

Previous work that examined human strategies for solving the RAT concluded that people
do not hone in on a solution to all three words at once but instead look at one word at a time
and search through associated word spaces (Davelaar, 2015; Smith, Huber, & Vul, 2013).
Specifically, Smith et al. (2013) found that people report potential solutions that are associated
with only one of the prompt words before producing the correct solution. While our model
does not explicitly focus on one prompt word at a time, it often follows a pattern of initially
retrieving words that are strongly associated with only one of the prompt words. Individual
response traces were not available as part of the data we analyzed, and further work needs to
be done to create models of individuals and their attempts before we can determine the impact
of strategies that explicitly focus on individual words.

As described in Equation (1), a second contributor to activation is the BLA of words in
semantic memory. BLA is determined by the recency and frequency of access to an item. The
following is the BLA equation that was used for our models:

BLA = log

[
n∑

i=1

t−d
i

]
, (3)

where n is the number of activation boosts, ti is the time since the ith boost, and d is the decay
factor. In this task, we expect that BLA plays a minor role if any because RAT problems are
explicitly designed to avoid repetition of words and the associated priming effects provided
by BLA. For these reasons, our initial model does not include BLA, but we explore it as a
variant in the Model Variant Experiments and Evaluation section.

The final contributor to activation is noise. Soar and ACT-R differ in how they compute
noise. The noise term in ACT-R is logistic, whereas in Soar it is Gaussian. A standard value
for ACT-R’s noise parameter is 0.4 (Taatgen, Lebiere, & Anderson, 2006), although it varies
across models. While not exactly the same, we consider this value similar to setting Soar’s
noise magnitude to 0.73, which refers to the standard deviation of the Gaussian from which
Soar draws its random noise term during activation computation. As with BLA, we introduce
noise as a variant of our original model in the Model Variant Experiments and Evaluation
section.
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Fig. 2. The number of questions people are expected to get correct on average for each of the 12 bins, ordered
from most difficult to least difficult.

5. Experiments and evaluation

In this section, we first describe the metric we use to evaluate alternative knowledge bases
and models. We apply that metric to the knowledge bases independent of the process model.
We briefly examine semantic distributional models and how they perform when directly solv-
ing the RAT. We then evaluate our model on all five knowledge bases. After determining
that HBC and SWOWEN perform the best in terms of our evaluation, we use HBC and
SWOWEN as the knowledge bases to explore model variants incorporating changes to asso-
ciation strength, BLA, and noise.

5.1. Evaluation metric

To evaluate our model’s performance in comparison to the human data from Bowden and
Jung-Beeman (2003), we focus on the question difficulty. Specifically, we ask whether ques-
tions that are difficult for humans to get correct are also difficult for the model to get correct.
This was the most straightforward analysis given that the human data from Bowden and Jung-
Beeman (2003) provide only aggregate human data for comparison. We evaluate the coeffi-
cient of determination (R2) and the mean-squared error (MSE) between the difficulty of RAT
questions for humans and the difficulty of RAT questions for the models. As the measure of
human difficulty, we use the percentage of subjects who got the correct answer. For a model’s
difficulty, we use whether the model produces the correct answer for a given problem. In
order to easily compare these two metrics, we binned the 144 compound RAT problems into
12 groups of 12 RAT questions based on the human correctness percentage for either 2, 7,
or 15 s depending on the analysis used. For the 12 questions in each bin, we calculated the
mean percentage of subjects who got the questions correct and then used that to determine
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Table 4
Analysis of HBC for RAT in terms of directional links

7 s 15 s

# Correct R2 MSE R2 MSE

HBC any direction 109 0.68 41.83 0.57 32.10
HBC correct direction 82 0.44 19.52 0.30 14.76
HBC forward direction 55 0.84 4.51 0.74 2.78
HBC backward direction 58 0.26 8.34 0.13 9.23

the expected number of questions correct in each bin, as shown in Fig. 2. The first bin has
the 12 most challenging questions for humans (people are expected to get an average of 0.14
of those questions correct out of 12), while the last bin has the easiest questions (people are
expected to get an average of 8.24 of those questions correct out of 12). In our evaluation,
we compare the expected number of questions correct in a bin to the number of questions our
models got correct for that bin for each of the 12 bins.

Using this approach, we attempt to provide a simple comparison between the human data
and model data. We conceive of the human data as a sample mean that estimates the prob-
ability that a human answers a given question correctly, that is, “difficulty.” But instead of
comparing model performance on each question directly to such an estimate, we treat each
bin of human data as representing the average of sample means from similar distributions.
This permits linear fitting, which is easy to interpret and still sufficient for highlighting the
major trends that appear in our investigation.

5.2. Baselines

5.2.1. Knowledge base baselines
Before evaluating the performance of our model, we evaluate the theoretical adequacy of

the five knowledge bases for representing knowledge for modeling the RAT. This evaluation
does not include any retrieval mechanisms but examines whether solutions exist in a knowl-
edge base and evaluates them on RAT problem difficulty as described above.

In developing HBC, USF Norms, and SWOWEN, the number of times that a word was
presented was arbitrary, so it is possible that the number of associations from one word to
its children is much greater than those of other words. Thus, we normalized the association
weights between words based on the number of times the word was presented. Therefore, the
association weights do not reflect the frequency at which these word pairs occur in English.

Many of the knowledge bases, including HBC, have directional links between words. Most
retrieval algorithms (including ours) are sensitive to those directions, so to evaluate the diffi-
culty of a problem, we need to include separate analyses for the possible interactions between
link directions and potential retrieval algorithms. We consider four possible methods for deter-
mining if a knowledge base contains the knowledge needed to correctly answer a RAT prob-
lem. Table 4 summarizes the results of our analysis for HBC.
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The most inclusive method is to test whether an association exists in either direction
between all prompt words and the solution word in each problem. With this criterion, as
mentioned earlier, HBC has knowledge for 109 out of the 144 compound RAT problems, so
that there are 35 problems for which the HBC is missing at least one association between a
prompt word and the answer. A hypothetical model that answers all those problems correctly
accounts for human difficulty on the RAT when humans are given 7 s with an R2 of 0.68 and
an MSE of 41.83. When humans are given 15 s, the results are an R2 of 0.57 and an MSE of
32.10.

A stricter test of the knowledge base examines whether associations exist in the correct
direction between every prompt word and the solution word in a problem. Different prompt–
solution pairs may require an association in different directions. For example, if the prompt
word is “acid” and the solution word is “rain,” this method tests if there is an edge in the
direction of “acid” to “rain” since “acid rain” is the association given by the solution. For
the same RAT problem, this method also tests whether the solution word “rain” has an edge
in the direction of the prompt word “coat” since “rain coat” is the association given by the
solution. With this criterion, HBC has correct associations for 82 out of the 144 compound
RAT problems. A hypothetical model that gets exactly these 82 problems correct accounts for
human difficulty on the RAT when humans are given 7 s with an R2 of 0.44 and an MSE of
19.52. When humans are given 15 s, the results are an R2 of 0.30 and an MSE of 14.76.

A third method is to test whether an association exists in the forward direction from every
prompt word to the solution word in a problem. This is the direction spreading activation
utilizes with associations. With this criterion, HBC has these associations for 55 out of the
144 RAT problems. A hypothetical model that answers all those problems correctly accounts
for human difficulty on the RAT when humans are given 7 s with an R2 of 0.84 and an MSE
of 4.51. When humans are given 15 s, the result is an R2 of 0.74 and an MSE of 2.78.

The last method is to test if an association exists in the backward direction from the solution
word to every prompt word in a problem. With this criterion, HBC has these associations
for 58 out of the 144 RAT problems. A hypothetical model that answers all those problems
correctly accounts for human difficulty on the RAT when humans are given 7 s with an R2

of 0.26 and an MSE of 8.34. When humans are given 15 s, the result is an R2 of 0.13 and an
MSE of 9.23. Although the number of correct answers is similar, the backward direction has
a much lower R2 because it is not getting the same problems correct as humans. It is more
likely to get the difficult problems correct, and less likely to get the easy problems correct.

HBC forward has both the highest R2 and lowest MSE for both 7- and 15-s conditions by
large margins. These results suggest that the existence of links in the forward direction is more
predictive of problem difficulty than links in the backward direction. This is also consistent
with our model, which relies exclusively on forward links, modulated by association strength,
to retrieve answers.

If we assume that the availability of links in HBC reflects a subset of human word associ-
ation knowledge, any retrieval method that uses forward associations has solutions available
to at least 55 RAT problems. With the retrieval algorithm, the model can get problems correct
even if they are not fully in the knowledge base through the guessing mechanism. Even with-
out the guessing mechanism, one question is why do humans get only 32.92 problems correct
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Table 5
The best results of each knowledge base

7 s 15 s

Knowledge Base Best Direction # Correct R2 MSE R2 MSE

COCA-TG Both 94 0.20 31.25 0.19 22.84
Google Books Forward 84 0.01 24.22 0.00 20.90
HBC Forward 55 0.84 4.51 0.74 2.78
USF Norms Correct 12 0.57 5.80 0.50 11.32
SWOWEN Forward 26 0.65 2.11 0.49 5.85

on average when given 7 s and 44.25 when given 15 s? What other factors hamper human
performance? Our hypothesis is that other associated words with higher strengths interfere
with the retrieval of the correct words.

In Table 5, we evaluate all knowledge bases (COCA-TG, Google Books, HBC, USF
Norms, and SWOWEN) using the same metrics we used to analyze HBC. For each knowledge
base, we include the results from their best direction with the corresponding number correct,
R2, and MSE for both 7- and 15-s human data. COCA-TG has bidirectional links so there is
only one way of analyzing if solutions to RAT problems exist, which we call “Both.” With
this method, COCA-TG has solutions to 94 RAT problems. When compared to human data
on the RAT, COCA-TG’s highest R2 is 0.20 and the lowest MSE is 22.84. Google Books is a
larger 2-gram word frequency knowledge base than COCA-TG and when using the forward
direction it has solutions to 84 RAT problems. Google Books’ highest R2 is 0.01 and the low-
est MSE is 20.90. The poor correlations for COCA-TG and Google Books arise because they
have almost even distributions of correct questions across the RAT difficulty problem bins,
in contrast to the human results as shown in Fig. 2. Compared to other knowledge bases, the
main difference is that COCA-TG and Google Books have many solutions to RAT problems
that people find difficult compared to only having many solutions to RAT problems that peo-
ple find easy. In the Model Experiments and Evaluation section, we further explore whether
performance for COCA-TG and Google Books improves when used with our process model.

USF Norms’ best direction was using the correct direction and with that method it has solu-
tions for 12 RAT problems. Using those associations, USF Norms’ R2 is 0.57 and the lowest
MSE is 5.80. SWOWEN’s best direction is forward and with that method it has solutions to
26 RAT problems. Using that direction, SWOWEN’s R2 compared to human data is 0.65 and
its MSE is 2.11.

HBC is larger and more comprehensive than both SWOWEN and USF Norms, and this
analysis of the knowledge bases suggests that HBC has the best potential for modeling
humans on the RAT. However, this analysis does not include a retrieval algorithm nor the
rest of the model. In the Model Experiments and Evaluation Section, we explore how each
of these knowledge bases performs with Soar retrieval mechanisms and the algorithm for
solving the RAT.
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5.2.2. Language model baselines
In addition to the cognitive process model we created, we also investigated distributional

semantic models (DSMs) for the RAT. Specifically we examined how word2vec and GloVe
performed on the RAT with an n-nearest neighbor algorithm. Word2vec “provides an efficient
implementation of the continuous bag-of-words and skip-gram architectures for computing
vector representations of words” (Mikolov, Chen, Corrado, & Dean, 2013). For this work, we
used a model that was pre-trained on Google News. The model consists of 3 million 300-
dimensional vectors. In contrast, “GloVe is an unsupervised learning algorithm for obtaining
vector representations for words. Training is performed on aggregated global word-word co-
occurrence statistics from a corpus, and the resulting representations showcase interesting
linear substructures of the word vector space” (Pennington, Socher, & Manning, 2014). For
this work, we used a model that was pre-trained on Wikipedia 2014 and Gigaword 5. The
model consists of 400K 300-dimensional vectors.

The standalone models for both word2vec and GloVe do not use Soar to solve the RAT
problems. Instead, for each RAT item, the model sums or averages together the vectors of the
three prompt words. The model then finds the closest X words, using Euclidean distance, to
that summed or averaged vector. For X = 1, the number of correct answers to the 144 RAT
problem using word2vec and GloVe is 0. That is, neither model finds any correct answers to
the RAT problems for its best answers. Beyond the best answers, a model can look at more
than just the closest word by exploring X > 1. However, once there are multiple options, the
model can only differentiate them by choosing the word that is closest to the original sum
or average, which still leads the models to get no questions correct (same as X = 1). We
implemented an additional mechanism that searches through the X options for the sought-
after solution to each specific RAT item. If the search is successful, we count that as getting
the RAT question correct. Note that this requires knowledge of the solutions, which is not
available to the models. This knowledge is included to evaluate whether the solutions are
potentially available. The Soar models do not require a search mechanism such as this because
they already assess if a possible solution is connected with the three prompt words. Such a
mechanism is not possible for the word2vec and GloVe models.

We explored a series of X’s as well as summing versus averaging the vectors. For word2vec,
the best results get six RAT problems correct when expanding X out to 50, indicating that
word2vec does not contain the information required for modeling the RAT. For GloVe, when
compared to 7-s human data, the best model sums the vectors and checks the closest eight
words. This combination has an R2 of 0.83 and an MSE of 1.19 with a total of 26 problems
correct. When compared to 15-s human data, the best model sums the vectors and checks
the closest 10 words. This combination has an R2 of 0.64 and an MSE of 4.23 with a total
of 29 problems correct. As we shall see in the next section, the results for these incomplete
standalone models do not compare favorably with those of the Soar models and will not be
investigated further.

5.3. Model experiments and evaluation

In this section, we evaluate our Soar process model using the five knowledge bases. An
important aspect of our model is that it makes multiple attempts until it retrieves a result
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Fig. 3. The model with HBC using 1–20 attempts on the RAT presented in terms of the total number of problems
correct, R2, and MSE for 7-s (top) and 15-s (bottom) human data.

that has associations with all prompt words or hits a limit on the number of attempts. The
parameter that determines the number of attempts needs to be determined for the two different
amounts of time the humans were given (either 7 or 15 s). As stated earlier, we do not model
all the detailed processing required in this task (such as reading prompt words and writing
answers), so we avoid making a priori predictions as to the number of attempts a subject
can make in 7 or 15 s, although we predict that more attempts are possible in 15 s than 7 s.
Instead, we take an empirical approach to determine the number of attempts that best model
the human data.

For all knowledge bases, we ran experiments to find the best attempt number given 7 and
15 s. As an example of what we found, Fig. 3 shows the results of the model with the HBC
knowledge base using spreading activation with association strengths (without BLA or noise).
The number of attempts is varied from 1 to 20. The left-most graphs show the total num-
ber of problems that the model gets correct, which increases as more attempts are made (as
expected). The middle graphs show R2 (higher is better), which varies between 0.63 and 0.91.
The graphs on the right show MSE (lower is better), which initially dips and then increases
as the model gets more questions correct than humans do.

We use MSE to choose the best attempt number. Thus, for 7 s the best attempt is two
attempts (circled on the graph for each metric). For 15 s, the best attempt for the number of
problems is three attempts (circled on the graph for each metric), with four attempts being
a close second. Our goal is for the model to match human behavior and not get the most
RAT questions correct. Therefore the best attempt achieves a low MSE, indicating that the
questions people struggled with are the same our model had difficulty with.
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Table 6
Results of the five knowledge bases with spreading and association strengths for the best number of attempts

7 s 15 s

Attempts # Correct R2 MSE Attempts # Correct R2 MSE

COCA-TG 1 16.0 0.78 3.15 3 41.0 0.68 2.90
Google Books 2 13.0 0.65 4.69 4 17.0 0.65 9.22
HBC 2 35.5 0.83 0.93 3 46.4 0.88 0.88
USF Norms 5 27.7 0.86 0.92 5 27.7 0.78 3.42
SWOWEN 5 34.5 0.97 0.29 8 48.6 0.91 1.33

Table 7
Results for the five knowledge bases in terms of number of guesses and false positives for the best number of
attempts (see Table 6 for best attempt)

7 s 15 s

# Correct Guesses False Positives # Correct Guesses False Positives

COCA-TG 16.0 6.0 1 41.0 18.0 7
Google Books 13.0 3.0 69 17.0 3.0 79
HBC 35.5 2.5 4 46.4 3.4 5
USF Norms 27.7 18.7 1 27.7 18.7 1
SWOWEN 34.5 14.5 2 48.6 19.6 4

If the model does not find a possible solution, it makes a guess, selecting from words that
are connected to two prompt words. These guesses are sometimes correct, even if the model
does not recognize that. Additionally, the model can believe it found the correct answer, that
is, it found a word with links to all three prompt words, but in reality that word is not the
sought-after response. This is true of knowledge bases, such as Google Books, that have a
large number of associations that are not the kind used in the RAT. Such a result is reported
as a false positive. Note that if the model believes it got the correct answer, it will not make
additional attempts. Guesses and false positives have not been previously explored in RAT
models. Unfortunately, the information needed to assess whether a person reported a guess or
false positive is not included in the RAT data we use for these experiments, so it is not possible
to determine if a correct answer resulted from a confirmed answer or a guess. Therefore, they
are interesting metrics of the model to consider but currently they do not provide evidence of
more or less human-like behavior.

Table 6 shows the results of the five knowledge bases with spreading activation and associ-
ation strengths using the best number of attempts for that knowledge base. Table 7 shows the
number of RAT questions correct, the number of guesses, and the number of false positives
for the best attempt for each knowledge base. The best model uses SWOWEN as its knowl-
edge base with an R2 of 0.97 and MSE of 0.29 compared to 7-s human data and an R2 of 0.91
and MSE of 1.33 compared to 15-s human data. However, the model using SWOWEN has a
high number of guesses with 14.5 for 7 s and 19.6 for 15 s. In other words, of the 34.5 RAT
problems the model got correct given five attempts, 14.5 of which were guessed. This is in
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strong contrast to the model using HBC, which only guesses 2.5 times for 7 s and 3.4 times
for 15 s. The model with HBC has an R2 of 0.83 and MSE of 0.93 compared to the 7-s human
data and an R2 of 0.88 and MSE of 0.88 compared to the 15-s human data. USF Norms does
well compared to 7-s human data with an R2 of 0.86 and MSE of 0.92 and has 18.7 guesses.
However, compared to the 15-s human data, this model has an R2 of 0.78 and MSE of 3.42
and has 18.7 guesses.

Neither of the knowledge bases built from word co-occurrences, Google Books, and
COCA-TG, do as well as HBC, SWOWEN, or USF Norms in terms of R2 and MSE. Google
Books gets only 13 questions correct given two attempts but it has 69 false positives (and
two guesses). In other words, this model thinks it is getting 79 questions correct (total −
guesses + false positives) while it is actually getting only 13 correct. COCA-TG does better,
but its performance is far below the other knowledge bases. The problem is that these knowl-
edge bases have a large number of links between words that are not related to compound
words or phrase associations and those links lead to incorrect answers. For example, given
the RAT item “show,” “life,” and “row,” the model using Google Books finds “cycle” on its
first attempt. Within Google Books, this word has associations with all the prompt words, so
it reports it as an answer, whereas the sought-after response is “boat.”

The final observation is that the best models for 7-s data use fewer attempts than the best
models for 15-s data. This is true for all model knowledge base combinations except for USF
Norms, whose best results are for five attempts for both 7- and 15-s data.

To summarize, we examined two different types of knowledge bases, word frequencies
(COCA-TG and Google Books) and recorded word associations (HBC, USF Norms, and
SWOWEN). The best models used recorded word associations. Specifically, the best were
HBC and SWOWEN when matching both 7- and 15-s human data. SWOWEN had the best
R2 and MSE but also used many guesses, which makes up for the fact that it is missing some
links between prompt and solution words. HBC did almost as well as SWOWEN and used
fewer guesses. A direct visual comparison of the knowledge bases in terms of R2 and MSE
can be seen in Fig. 4. In the next section, we explore variations of these top two models to
better understand what aspects are important for matching human behavior.

5.4. Model variant experiments and evaluation

In this section, we investigate variations of the models relative to the different aspects of the
activation formula as originally shown in Equation (1), including association strength, BLA,
and noise.

To test the influence of association strength, we created model variants where all asso-
ciation strengths are equal. To test the influence of BLA, we created models where items in
semantic memory have an initial activation derived from word frequency. To test the influence
of noise, we created models with varying levels of noise in computing activation. Our goal is
to further understand what aspects of activation influence the performance of our models on
the RAT.

While we explored variants with all the knowledge bases, we only present variants with our
top two performing knowledge bases, HBC and SWOWEN. In no cases did variants using the
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Fig. 4. Best model performance for each knowledge base, plotted according to R2 and MSE.

Table 8
Each knowledge base is presented with the base model given its best attempt, with no association strength given
the base model’s best attempt, and with no association strength with that best attempt (indicated with an *)

7 s 15 s

Attempts # Correct R2 MSE Attempts # Correct R2 MSE

HBC 2 35.5 0.83 0.93 3 46.4 0.88 0.88
HBC no association 2 54.9 0.88 5.34 3 68.9 0.78 6.63
HBC no association* 1 47.0 0.91 3.37 1 47.0 0.86 2.77
SWOWEN 5 34.5 0.97 0.29 8 48.6 0.91 1.33
SWOWEN no association 5 52.0 0.66 4.77 8 54.9 0.68 3.38
SWOWEN no association* 2 49.8 0.71 3.66 2 49.8 0.77 2.14

other knowledge bases perform better than (or even close to) the performance achieved with
HBC or SWOWEN.

5.4.1. Activation spread without association strength
To determine the impact of association strength on retrieval, we developed a variant where

all association strengths are the same. Effectively, this reduces the spreading activation com-
putation to performing a count for each recipient for how many sources of spread have asso-
ciations with that recipient. This is similar to the approach Kajić et al. (2017) used with their
neuron spiking model in that they did not incorporate association strength when retrieving
potential solutions.

As shown in Table 8, removing the effects of association strength influences the number of
questions answered correctly, R2, and MSE for both HBC and SWOWEN. The table shows
the results without association strength using the same number of attempts used earlier, as
well as the number of attempts that were best given no variation in association strength.
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R2 improves in only one case (HBC 7 s) when association strength is removed. However,
removing association strength increases the number of items correct and increases MSE.

This suggests that the strength of the associations contributes to the difficulty of the RAT
problems because for many of the problems, the correct answer is not the one most highly
associated with the prompt words. Instead, other (incorrect) words have sufficiently high asso-
ciation strengths from one or two of the prompt words so that they are retrieved first, even if
they are not associated with all the prompt words. In contrast, the correct answers have low
associations with all prompt words, as was the case in the example in Table 3, and require
additional attempts to be retrieved. We conclude that association strength is an important
component in modeling human performance.

5.4.2. Base-level activation
In the models described so far, the initial activation of all words in long-term memory is

the same. They do not include any BLA, which is computed from the frequency and recency
of access from long-term declarative memory as originally described in Equation (3). The
RAT is explicitly designed to avoid short-term base-level effects by not repeating any of the
solution words. So when we created a model that includes short-term base-level effects, we
did not expect to see significant changes in the results. However, there is the potential for
long-term effects where common words (with high frequency) are more likely to be retrieved
and thus can affect the difficulty of problems.

In an attempt to determine whether BLA influences the results, we initialized the BLA val-
ues for words in semantic memory using word frequency data from COCA (Davies, 2008).
Note that BLA depends on a pattern or history of usage and not just frequency. However,
rather than attempting to implement a full model of word usage history, we instead created an
approximation. All words were initialized with BLA as if they had a number of accesses equal
to their word frequency data. These accesses were modeled by setting the time of access for
all elements to the same time step in the past for the agent. This is not a psychologically real-
istic implementation but is functional because it allows BLA from before the task to depend
on word usage without having large short-term transient decays. A free parameter was the
amount of time into the past that this initial access data was set to. Variations in the value
of this parameter had little impact on results. We used word frequency initialized 1,000 time
steps in the past for our models. In most cases, responses did not change because the boost
from receiving spread from prompt words dominated differences in base level from word
frequency, and any changes did not have a significant impact on the performance measures.

The results for our top two knowledge bases, HBC and SWOWEN, are presented in Table 9.
Adding BLA had minor changes to the results for both HBC and SWOWEN. We also added
BLA to the model that uses Google Books (not shown) to ensure that it did not significantly
improve its performance. In fact, it went from 13 RAT problems correct without BLA to
one correct, allowing up to 10 attempts. Its number of false positives also increased from
69 with the base model using two attempts to 115 with the BLA model using two attempts.
We conclude that BLA is not an important component of human difficulty in this version of
the RAT.



20 of 34 J. Schatz, S. J. Jones, J. E. Laird / Cognitive Science 46 (2022)

Table 9
Each knowledge base is presented with the base model and with BLA. For both HBC and SWOWEN, the number
of best attempts (two and five) did not change when BLA was included

7 s 15 s

Attempts # Correct R2 MSE Attempts # Correct R2 MSE

HBC 2 35.5 0.83 0.93 3 46.4 0.88 0.88
HBC w/BLA 2 31.5 0.89 0.59 3 41.1 0.87 0.99
SWOWEN 5 34.5 0.97 0.29 8 48.6 0.91 1.33
SWOWEN w/BLA 5 34.1 0.89 0.76 8 47.4 0.87 1.56

Table 10
Total RAT problems correct given varying levels of noise with HBC

One Attempt Two Attempts Three Attempts Four Attempts Five Attempts

0.0 Noise 19.0 35.5 46.4 49.0 63.03
0.5 Noise 17.5 31.3 42.4 51.0 57.8
1.0 Noise 13.7 24.9 34.6 42.4 49.0
1.5 Noise 10.0 19.0 26.6 33.0 38.4

To further investigate this claim, we examined how well word frequency alone predicts
solutions to the RAT problems without a model. For HBC and SWOWEN, for each prompt
word, we examined the outgoing links and found the rank of the solution word in terms of
word frequency in relation to all other linked words. We then ordered all words by their rank
and binned them into 12 bins. We then averaged the ranks across each of the 12 bins as a
potential model of problem difficulty. We then compared those ranks to the human data for
each bin. For SWOWEN, given 7 and 15 s, it had an R2 of 0.03 for both. For HBC, given 7 and
15 s, it had an R2 of 0.09 and 0.10, respectively. This is further evidence that word frequency
does not play a major role in determining the difficulty of RAT problems.

5.4.3. Activation calculation with noise
The final variant involves adding noise to the calculation of activation in the initial model.

We examined four noise magnitudes: 0.0, 0.5, 1.0, and 1.5. One major observation is that as
noise is added, the total number of RAT problems answered correctly decreases linearly. For
example, given two attempts with the HBC knowledge base, as shown in Table 10, the total
number of correct responses decreases from 35.5 with no noise to 31.3, 24.9, and 19.0 as we
increment by 0.5 noise. This has a strong negative correlation of −0.99. The same trend can
be seen with SWOWEN in Table 11.

Thus, as the noise increases, so does the likelihood of retrieving other words that are not
solutions. This is especially true for RAT solutions that have weak connections with the cue
words, which in general are the more difficult problems. This means that the model is getting
fewer difficult questions correct which in turn increases the R2 and decreases the MSE. This
can be seen with the model using HBC and noise 0.0 to noise 0.5 with two attempts (see
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Table 11
Total RAT problems correct given varying levels of noise with SWOWEN

One Attempt Two Attempts Three Attempts Four Attempts Five Attempts

0.0 Noise 11.0 16.9 23.7 30.2 34.5
0.5 Noise 9.5 16.5 21.5 31.5 34.0
1.0 Noise 8.1 14.3 19.9 25.3 29.3
1.5 Noise 6.3 11.1 15.2 20.0 23.8

Table 12
Result summary from the initial model with noise using HBC

7s 15s

Attempts # Correct R2 MSE Attempts # Correct R2 MSE

Human – 32.9 – – – 44.3 – –
0.0 Noise 2 35.5 0.83 0.93 3 46.4 0.88 0.88
0.5 Noise 2 31.3 0.94 0.37 3 42.4 0.94 0.49
1.0 Noise 3 34.6 0.92 0.44 4 42.4 0.94 0.43
1.5 Noise 4 33.0 0.93 0.49 6 44.1 0.93 0.50

Table 12). The R2 ranges from 0.83 to 0.94, and the MSE ranges from 0.93 to 0.37. However,
as even more noise is added, the model starts to also get more easy questions wrong as well,
and the R2 drops as the MSE rises. Not shown in a table, but as noise increases from 1.0 to
1.5 with two attempts, R2 goes from 0.94 to 0.88 and the MSE goes from 1.11 to 2.93.

For SWOWEN, getting fewer RAT solutions that have weak connections with the cue
words does not mean only getting fewer difficult questions correct. It also means getting
fewer easy questions correct. When looking at the SWOWEN model with noise 0.0 to noise
1.0 with five attempts, the R2 barely changes from 0.97 to 0.95 and the MSE also barely
changes from 0.29 to 0.33. This is even though the total RAT questions correct drops from
34.5 to 29.3 which means that the change in each bin is small. This can be seen in Table 13.
However, as even more noise is added, the R2 remains similar but the MSE increases. Not
shown in a table but for the SWOWEN model given five attempts for noise 1.0 to 1.5, the

Table 13
Result summary from the initial model with noise using SWOWEN

7 s 15 s

Attempts # Correct R2 MSE Attempts # Correct R2 MSE

Human – 32.9 – – – 44.3 – –
0.0 Noise 5 34.5 0.97 0.29 8 48.6 0.91 1.32
0.5 Noise 4 31.5 0.90 0.63 6 42.0 0.98 0.29
1.0 Noise 5 29.3 0.96 0.33 9 42.0 0.95 0.47
1.5 Noise 8 32.1 0.94 0.32 12 40.2 0.95 0.44
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Table 14
Result summary from the BLA model and the no association strength model and 0.5 noise using HBC. All models
are presented with their best attempt

7 s 15 s

Attempts #Correct R2 MSE Attempts # Correct R2 MSE

BLA noise 0.5 2 30.6 0.90 0.61 3 42.0 0.93 0.52
BLA 2 31.5 0.89 0.59 3 41.1 0.87 0.99
No association noise 0.5 4 40.1 0.90 1.07 5 46.5 0.87 1.05
No association 1 47.0 0.91 3.37 1 47.0 0.86 2.77

R2 goes from 0.95 to 0.96 and the MSE goes from 0.33 to 1.07. This shows that as noise
increases the model is getting fewer easy and difficult questions correct keeping the same
relation to human difficulty in terms of R2 but eventually increasing the MSE as the total
questions correct for each bin decreases below what people get correct.

One way to combat the decreasing number of correct answers that occurs because of noise
is to increase the number of attempts. This gives the model more chances of retrieving the
solution and empirically increases the number of correct answers for both easy and hard prob-
lems. Going from one attempt to five attempts with no noise, the model using HBC increases
from 19.0 questions correct to 62.7 questions correct, forming a positive linear relationship
with a correlation of 0.98. Achieving the best model performance requires balancing noise
with the number of attempts, both of which affect the R2 and MSE.

As shown in Table 12, adding 0.5 noise to the model using HBC does lead to improved
performance for both the 7- and 15-s data. The differences in performance for 0.5, 1.0, and
1.5 noise are minimal.

The impact for SWOWEN (Table 13) is even less clear with 0.0 noise being the best for 7
s, but only marginally, whereas 0.5 is best for 15 s. The performance of the models in most
cases is so good (R2 above 0.93 and an MSE below 0.50) that attempting to find the absolute
best model in terms of combinations of noise and attempts is a bit of an academic exercise.
The most important lesson is not that noise improves or does not improve the ability of the
model to match human data, but that by increasing the number of attempts, the model can
compensate for noise if it exists.

As shown in Tables 14 and 15, we also created a set of models that incorporated combi-
nations of all the variants for HBC and SWOWEN to determine if there are any important
interactions among model variants. The models vary by including 0.0 or 0.5 noise, BLA or
not, and association strengths or not. All results are shown with the best number of attempts
for that specific model. The results here are consistent with those reported above. Adding 0.5
noise to these models mostly improved their performance compared to the versions without
noise, usually decreasing MSE while having little to no impact on R2, with the number of best
attempts either staying the same or increasing. Also, none of these combinations end up dom-
inating the base models described above where noise and association strength are included
but BLA is not.
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Table 15
Result summary from base-level initialized model and no association strength model and 0.5 noise using
SWOWEN. All models are presented with their best attempt

7 s 15 s

Attempts #Correct R2 MSE Attempts # Correct R2 MSE

BLA noise 0.5 5 33.1 0.95 0.33 8 44.6 0.93 0.80
BLA 5 34.1 0.89 0.76 8 47.4 0.87 1.56
No association noise 0.5 3 29.6 0.72 1.64 6 42.1 0.72 1.98
No association 2 49.8 0.71 3.66 2 49.8 0.77 2.14

5.5. Statistical significance

We found statistical significance regarding the choice of knowledge base, the use of asso-
ciation strengths, and the relationship between noise magnitude and the best number of
attempts. But given the high R2 and low MSE values among the best models, it is not surpris-
ing that some of the differences between the model variants are not statistically significant,
especially for models that include noise.

The models using HBC or SWOWEN have lower MSE than other models with a probability
that this result occurs by chance (p-value) of p < .01 for both 7-s and 15-s data. Among the
models that do not use either HBC or SWOWEN, it was difficult to find any significant trends.

Among the model variants using either HBC or SWOWEN, we find three significant
results. First, models with association strength are better than models without (p < .01). The
second result is more nuanced. Adding increasing amounts of noise reduces the number of
problems a model gets correct. Also, increasing the number of attempts increases the number
of problems a model gets correct. We hypothesized that doing both could potentially change
how well a model corresponds to human performance while achieving the same total number
correct. Instead, we often found no statistically significant difference between a model with
a small amount of noise and a model with more noise and compensatory additional attempts.
These results hold across a range of model parameter choices, but the third significant result
was sensitive to parameter choices. When using the best model parameters for HBC and for
SWOWEN, the best model using SWOWEN is significantly (p < .01) better than the best
model using HBC. Appendix B describes our method for determining statistical significance.

6. Related work

There has been extensive research on the RAT (Wu et al., 2020); however it can be difficult
to directly compare our results to much of the prior research because of differences in datasets,
metrics for comparing human data, and modeling approaches. Below we review the most
relevant previous research on how people solve the RAT, with emphasis on the unique aspects
of our work.

In our work, we focus on matching aggregate human performance to computational mod-
els in terms of problem difficulty. Along similar lines, but through the analysis of individual



24 of 34 J. Schatz, S. J. Jones, J. E. Laird / Cognitive Science 46 (2022)

differences, Marko, Michalko, and Riecansky (2019) found that difficulty is related to the
remoteness of the associations. Other work on individual differences in the RAT study
the potential connections between individual performance on the RAT and other cognitive
skills or characteristics, including convergent versus divergence thinking tests of creativity
(Lee Bae, Huggins-Manley, & Therriault, 2014) and speed of retrieval and creativity (Benedek
& Neubauer, 2013).

Kajić and Wennekers (2015) created a neural network model of the RAT that solves the
problems using spreading activation and a winner-take-all mechanism. Their model, like ours,
was examined using multiple attempts to solve RAT problems. They showed that for their
method using six attempts led to a similar total correct as people given 15 s to solve a subset
of the 144 RAT problems by Bowden and Jung-Beeman, 28.8% versus 28.2% correct. Their
work split the RAT problems into three bins based on difficulty and showed that more attempts
are needed for questions in the harder bin. They also showed that association strengths affect
problem difficulty for the model by using a threshold for connections in the knowledge base
and showing a change in the number of problems correct for each difficulty bin. Our work
differs by providing a finer-grained analysis of factors influencing retrieval, such as BLA
and noise, and a finer-grained analysis of problem difficulty (12 bins vs. three). Our work
also examines five different potential knowledge bases while theirs only considered one, USF
Norms. We also differ in that we use a different modeling methodology and utilize existing
memory retrieval mechanisms available with cognitive architectures.

Kajić et al. (2017) created a spiking neuron model of word associations to solve the RAT
using iterative retrievals. Their work showed how you can represent task knowledge with bio-
logically realistic spiking neurons. Based on previous research, they found that USF Norms
provided the best word association data for modeling the RAT when compared to Google
Books (Lin et al., 2012; Kajić et al., 2016; Nelson et al., 1998). This led them to create a
model that uses USF Norms when retrieving potential RAT solutions. Their work used a set
of 25 RAT problems previously studied by Smith et al. (2013). They compared their retrievals
to human data on the 25 RAT problems where people were given 2 min to solve each problem,
whereas in the experiments we model, people have either 7 or 15 s. They modeled individual
participants by varying the knowledge base used in runs of their model. They found that aver-
age problem accuracy correlates with human data with an r = .49. However they also found
that for 14 out of the 25 RAT problems, their model differed significantly from the human
responses. For those problems, the model had either a significantly easier or harder time
answering than people. Our results show a close relation for difficulty between our model and
the human results. They also did not evaluate the impact of association strength on retrieval,
which we found is an important component, nor did they explore the impact of different levels
of noise. Similar to our model, their model filtered retrieved words to give only viable poten-
tial solutions to each RAT problem. Their best model used USF Norms for retrieving potential
solutions and Google Books for filtering. In contrast to using two different knowledge bases,
our model uses a single knowledge base for both retrieval and filtering.

Moss (2006) used RAT problems to analyze how “open goals” influence performance. In
their work, a previously seen but unsolved RAT problem was considered an open goal (Moss,
2006). They performed multiple human studies as well as created a model for solving the RAT
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in the cognitive architecture ACT-R. Unlike our approach, they focused on how the difficulty
of problems varied after a subject had been given a hint or had previously failed to solve
the problem (leading to an open goal) as opposed to attempting to model problem difficulty
across RAT problems. They found that giving a hint for RAT problems helped people with
both unseen and unsolved problems. Their work also differs from ours in that they used a
hand-crafted database of words and their connections for their model.

Olteţeanu and Falomir (2015) created a model of human performance, called comRAT-C,
within the CreaCogs architecture. It was inspired by their account of creative problem solv-
ing which posits two extremes of behavior: “creative search” and “productive representation
construction processes.” The “creative search” extreme is implemented in comRAT-C using
associational links to search a knowledge base for a solution to a RAT problem. Their knowl-
edge base, called RAT-KB, uses the most frequent 2-grams from COCA (Davies, 2008).
In a separate analysis, Olteţeanu and Schultheis (2017) state that the difficulty of the RAT
depends on “(i) the frequency of a query-answer association, as a form of associative strength
and (ii) the ratio between such an associative strength and the number of answer associa-
tions.” We interpret these factors as being analogous to how association strength (Anderson
& Pirolli, 1984) and fan (Anderson, 1974) are theorized to govern retrieval difficulty. Their
comRAT-C model calculates the probability that a word is the answer, given a prompt word:
p(wans|wq) = f r(wq→wans )

n∑
k=1

f r(wq→wk )
. They then calculate the probability that a word is the answer with

the expression: p(wans) = 1
3 · [p(wans|wa) + p(wans|wb) + p(wans|wc)].3 They measure how

predictive p(wans) is for the percentage of human participants that solve the task given 7, 15,
and 30 s. They report finding correlation R values of .45, .41, and .49 respectively. Instead
of comparing the raw frequency of word association pairs to human data for each problem,
as described above, we compare question difficulty for our computational process models
against question difficulty for humans. We contend that this is a better measure of the per-
formance of each model as it takes into account the competition of retrieval in addition to
the frequency of word association pairs. We expand on their model in three ways: by using
a more extensive knowledge base, by creating a computational process model implemented
in a cognitive architecture, and by expanding the evaluation of the results on model variants,
including the influence of multiple retrievals and noise.

Other work has taken a network science approach to solving the RAT (Valba et al., 2021)
that does not include a running cognitive process model. In this work, they calculated the
probabilities of selecting words and then ran a simulation a number of times. Similar to how
we and previous work use spreading activation, they use a random walk with attraction to
stimuli algorithm. They found that their results match human difficulty with an R of .74.
However, they only used SWOWEN as a knowledge base, while our work looks at five differ-
ent knowledge bases. Their work found that the hardness of RAT problems relates to where
the solution is in the semantic network compared to the prompt words and the strengths of
the connections.

Davelaar (2015) explored what makes RAT problems difficult and what leads to good
strategies for solving RAT problems from a data science perspective. They found that the
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best strategies examine all three prompt words and their surrounding words. This is similar
to how our model uses spreading from the prompt words to produce potential solutions to
the RAT. However, they did not create a computational model and compare its predictions to
human data.

Our efforts build on these previous works to model the RAT. Across all the related work,
our work differs in four major ways. First we look at five different knowledge bases and
evaluate them as potential fits for modeling the RAT. Second, we use default cognitive archi-
tecture mechanisms to create our model. Third, we investigate and systematically explore how
variants, such as noise, number of attempts, association strength, and BLA influence behav-
ior. Fourth, we compare the relative difficulty of RAT problems based on human data to our
modeling results, achieving very good fits to human performance.

7. Discussion and analysis

A major challenge in modeling human performance on the RAT is not just correctly answer-
ing many problems, nor even correctly answering the same number of problems that humans
correctly answer, but correctly answering the same problems that humans correctly answer,
while also not correctly answering the problems humans have difficulty with. We developed
a base model that has three components: a knowledge base, a retrieval algorithm, and a pro-
cessing model for iteratively retrieving and testing possible answers. We explored variants
of all three components and found that changes to each of these components influenced the
difficulty of problems and the model’s ability to match human behavior. Those results were
consistent across the 7- and 15-s datasets. When the model is applied to the 2-s data, using one
attempt, the SWOWEN database, and noise of 1.0, it gets 8.12 correct (compared to 8.0 for
humans). It has an R2 of 0.88, and an MSE of 0.26, making it comparable to the performance
of the other data (better MSE but worse R2).

In the remainder of this section, we review each of those three components in turn, sum-
marizing the lessons learned from our explorations of the baselines and their variants.

7.1. Knowledge bases

We explored two methods for creating a knowledge base, resulting in five knowledge bases.
The first method used word co-occurrences in English text, which was used to create Google
Books and COCA-TG. Neither of these performed well in comparison to the best knowledge
bases HBC and SWOWEN. Our explanation is that the co-occurrence associations do not cap-
ture the type of associations humans use in retrieving possible solutions. As a result, they have
difficulty retrieving the correct answers. Instead, they often retrieve words that have associa-
tions with all three prompt words, but not the type of compound word associations tested in
the RAT. Google Books is by far the largest knowledge base we considered, and our results
show that just having more words and more associations does not lead to a better model.

The second and best method for creating a knowledge base involved gathering word asso-
ciations directly from people using free form generation of directional associations from
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specific words. The three knowledge bases (HBC, USF Norms, and SWOWEN) created using
this method differed in the number of words and associations, and the exact values for R2 and
MSE when compared to human performance, with SWOWEN edging out HBC. Association
strength was critical to matching human performance. Without it, these models got many
more problems correct than humans, suggesting that association strength makes the problems
harder by making it difficult to retrieve the correct answers. That is, the RAT problems often
require retrieval of lower-valued associations.

The performance of the models based on this final class of knowledge bases dominated
those developed using the alternative methods suggesting that when solving RAT problems,
people draw on the same associations as they do when asked to freely recall associations
(HBC, USF Norms, and SWOWEN) and do not draw on associations purely from word fre-
quency (COCA-TG, Google Books). The simple conclusion is that people use the same asso-
ciations in generating possible answers to the RAT as they do when asked to generate associ-
ations using free recall. Not only are the associations the same, but our results suggest that the
distributions of association strengths are similar so that taking the frequency of associations
of a word to other words is comparable to the probability of retrieving an associated word.

We also created standalone models from the distributional language model baselines to
determine if they include the appropriate associations required to perform the RAT. These are
not complete models as they generate only potential solutions and have no means to determine
which of those is the correct answer. If we assume that there is an additional mechanism for
choosing the correct answer from the potential results, the results from using word2vec are
poor, whereas using GloVe produces moderate results.

Word association knowledge bases have been compared to DSMs before (Kumar, Steyvers,
& Balota, 2022). Similar results are found that for many tasks word association knowledge
bases perform better than DSMs. Kumar et al. identified two possible reasons for this dif-
ference. First, that word associations gathered from people capture different modalities than
just looking at text. For example, visually, the word “yellow” is highly related to the word
“banana.” However, a text-based model may instead find “apple” or “orange” highly related
to “banana.” Second, collecting word associations is a semantic retrieval task on its own
which makes it suitable for modeling other semantic retrieval tasks.

From our own work, we conclude three things are necessary for having a good knowledge
base for modeling the RAT. First, it needs the content and connections of the RAT problems.
For example, USF Norms has the fewest number of RAT problems of all the gathered word
association knowledge bases and out of the three gathered word association knowledge bases
it performs the worst. Second, the knowledge base needs other content that competes and
interferes with the correct content. When removing association strength, the models got more
RAT problems correct but their ability to match human data decreased. Third, the association
strengths and variation in connections need to correspond to what we see in human difficulty.
For example, Google Books has many RAT problems in its knowledge base but fails to get as
many problems correct as people because the words that have strong connections to potential
solutions do not correspond to what humans recall.

Although the models using word association knowledge bases perform surprisingly well
on the RAT, these knowledge bases contain only a small subset of the knowledge that we
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assume is encoded in human long-term memories. It is more likely that humans have much
more extensive knowledge bases, closer in magnitude to Google Books (which did have the
necessary associations for all RAT problems, but was unable to effectively retrieve them).
This raises the question as to how humans restrict themselves to searching the associations
that are relevant to the RAT and ignore the additional irrelevant ones. Does activation spread
only through these types of links or do humans have additional mechanisms to focus spread
to only the relevant associations? These are open questions beyond the scope of this paper
and worthy of future research.

7.2. Retrieval algorithm

The basic model relies on the Soar implementation of ACT-R’s declarative memory
retrieval mechanism, which uses a form of spreading activation from prompt words along
forward links to determine possible responses. This type of retrieval does not guarantee that
a retrieved word has associations with all prompt words. Instead, it returns an answer with
the highest total activation, which is often a word that is strongly associated with a single
prompt word. This research provides evidence that the ACT-R retrieval algorithm is consis-
tent with the mechanisms used by humans, but it does raise the issue identified above as to
how spreading is limited to the associations relevant to the RAT.

In addition to spread, we investigated the two other components of the retrieval algorithm,
namely BLA and noise. BLA in our experiments had minimal impact, which was expected
given that the problems were designed to avoid repetition. We investigated noise by creating
variants with four different levels. The first observation was that noise decreases performance
on individual retrievals, such that additional attempts are required to achieve the same number
of successful retrievals. The second observation is that as noise increases, the number of
attempts required to achieve comparable performance to human difficulty also increases. This
is expected, but what is surprising is that the quality of the fits as noise and number attempts
increase together are comparable (or sometimes better) to the results without noise. Thus, this
provides us with two parameters that appear to trade off: noise and attempts.

7.3. Process model

A knowledge base and retrieval algorithms are two parts of our overall model implemented
in Soar. That model first retrieves each of the prompt words into working memory, and those
words become sources of activation spread in long-term semantic memory. The best model
then attempts to retrieve a word, and that retrieval is biased by the spread activation and
noise. Once a word is retrieved, it is tested to ensure that there exist association links to all the
prompt words. If all of those links do not exist, the model inhibits the retrieved word and tries
again, repeating this process until it finds an answer or runs out of attempts. If it runs out of
attempts, it selects the retrieved word with the most associations to prompt words, breaking
ties randomly.

The main variation in the model is the number of attempts used to find a potential solution.
We performed a sweep to find the number of attempts that led to the best match to human
data. That best attempt number for 2 s is one, which is always less than the number for 7 s,
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Fig. 5. Performance of the best model variant (SWOWEN, 0.5 noise, 15 seconds) plotted versus human perfor-
mance in terms of problem difficulty.

which is also always less than the number for 15 s, except in one case where they were equal.
Across the two best knowledge bases (SWOWEN and HBC) without noise, there was a spread
from two (HBC) to five (SWOWEN) retrievals for 7 s and three (HBC) to eight (SWOWEN)
retrievals for 15 s. With noise, as mentioned earlier, the number of attempts grew, raising
the number of attempts to four and six for HBC and eight and 12 for SWOWEN. Given the
overall high quality of the fits across the range of noise and attempts, it is prudent to avoid
speculation on exact levels of noise and attempts from these data alone. It is also difficult
to determine these values using the temporal dynamics available when modeling tasks in
cognitive architectures such as Soar and ACT-R for a simple model such as ours that does
not include reading, eye movements, motor actions, etc. However, the main result is that our
model predicts that as time increases, more retrievals are possible, which increases the number
of correct responses, which is in accordance with human performance.

7.4. Best model summary

Fig. 5 provides a more detailed plot of the best model variant, which uses the SWOWEN
knowledge base and 0.5 noise, modeling 15-s human behavior. It has an extremely high R2

of 0.98 and a low MSE of 0.29. Each data point is one of the 12 groupings of 12 questions,
with the y-axis being the number of RAT questions that were answered correctly by the model
(averaged over 100 runs) and the x-axis being the number of questions correctly answered by
humans (averaged over 289 subjects).

8. Conclusions and future work

We derive three major conclusions from this work. First, the many variations explored in
this work, including BLA, noise, and knowledge sources, show the value of comprehensive
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modeling. It leads the way for future modeling work, outside of the RAT, to include results
from adjusting various parameters that are normally preset and fixed. For example, our work
found a trade-off between attempts given to the model and noise added. In other work, noise
is usually a fixed parameter. Exploring these parameters gives new insight into the robustness
of our results by showing that small variations in parameters such as the number of attempts
and noise do not lead to a large change in the results.

Our second conclusion is that this work provides confirmatory evidence of the most impor-
tant factors influencing retrieval from long-term semantic memory. The performance of the
best models is striking, with high R2 and low MSE. The results suggest that people iteratively
retrieve information from long-term semantic memory using spreading activation biased by
directional association strengths. This result is robust even with variations in noise and BLA
and provides evidence in favor of the current theory but with additional detail.

Our final conclusion relates to how people store and/or retrieve word association knowl-
edge. This work examined five potential sources of word association knowledge that the
model could draw from. We found that the models that best matched human behavior use
a large knowledge base of free associations collected directly from people. This is in contrast
to using knowledge from a large English corpora such as direct word co-occurrence frequency
or a distributional language model such as word2vec or GloVe. Thus, we conclude that peo-
ple’s semantic word association knowledge, or at least what they use in this task, differs from
word frequency data extracted from written text. This work raises the question as to how
people differentially spread activation through only those associations relevant to the RAT.

To expand on the current work it would be informative to adapt and evaluate this model to
RAT problems that require different types of associations. The problems used in this paper,
while popular, only examine compound associations. Other RAT problems require func-
tional associations such as between “man” and “uncle” (Worthen & Clark, 1971). Examining
this could help evaluate the robustness of the model and further determine what knowledge
humans store in their memory that they recall for word association tasks.

A second direction for future work would be to attempt to model individual behavior
instead of the summary behavior of groups of individuals. We assume that there is varia-
tion between participants on a task such as the RAT, but it is not clear whether variances in
the factors we have identified explain those differences. Individual task performance data,
especially if it is augmented with intermediate answers would make possible a more detailed
evaluation of our model than was possible using the data modeled here. The addition of bio-
metric data, such as eye movements, would allow us to develop more complete and detailed
process models that predict the number of attempts directly from the timing predictions of the
model instead of treating them as parameters. Moreover, these data would allow us to explore
whether more complex strategies are better fits for human performance than our simple itera-
tive model.

The final direction for future work we see is applying this model or parts of this model to
other semantic retrieval tasks, such as word-sense disambiguation in natural language pro-
cesses. This could lead to further insights into the retrieval mechanisms at play in tasks such
as the RAT.
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Notes

1 We contacted the authors, but they were unable to provide insight into this difference.
2 By full solutions, we mean that there exist connections in at least one direction between

all three prompt words and the solution word for every RAT problem.
3 The formula reported in their paper: p(wans) = 1

3 · p(wans|wa) + p(wans|wb) +
p(wans|wc), appears to be in error.
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Kajić, I., Gosmann, J., Stewart, T. C., Wennekers, T., & Eliasmith, C. (2016). Towards a cognitively realistic
representation of word associations. In Proceedings of the 38th Annual Meeting of the Cognitive Science Society
(pp. 2183–2188). Austin, TX: Cognitive Science Society,
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Appendix A: Model parameters
In Soar, there are several parameters to control semantic memory. These parameters control
both BLA and spreading activation calculations. For brevity, only the parameters that have
been set to non-default values are listed. They are all set using Soar’s command line interface
using commands of the form “smem --set [parameter-name] [parameter-value].”

http://w3.usf.edu/FreeAssociation/
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Table A1
Semantic memory activation parameters used in most models

Parameter Value

Activation-mode Base-level
Base-update-policy Incremental
Base-incremental-threshes 1 2 4 8 20
Base-inhibition On
Spreading-depth-limit 1
Spreading-limit 9999999

The commands are described here, and then the specific values for the parameters used in each
model are listed. Activation noise is not part of the official Soar release, but was adjusted sim-
ilarly.

The following list of parameters controls the BLA calculation: activation-mode,
base-update-policy, base-incremental-threshes, and base-inhibition. activa-
tion-mode is used to turn on BLA and the parameter value for this is simply base-level.
base-update-policy determines the timing by which BLA values are updated. Because
it is expensive to recompute BLA values for the entire database of stored elements, an
approximation is used. This approximation is used by setting the base-update-policy

parameter to incremental. incremental updates only a portion of the BLA values
depending on when they were last boosted. The parameter that controls the update times
is base-incremental-threshes. Because BLA features short-term transient change fol-
lowed by a long-term decay, we select values for the base-incremental-threshes param-
eter that update elements more frequently when they have recently been accessed, but then
recompute less often as the decay becomes the dominant behavior for the value. The val-
ues we use for base-incremental-threshes to do this are “1, 2, 4, 8, 20.” We also
tested by updating the entire database at every query to ensure results did not significantly dif-
fer by setting the parameter base-update-policy to naive. base-inhibition is used to
toggle usage of additional dynamics to BLA beyond the default of a transient peak, followed
by a decay. Instead, there is a short-term inhibition in a recently boosted element consistent
with the implementation specified by Lebiere and Best (2009). This is used by setting the
base-inhibition parameter to on.

The parameters that control the spreading activation calculation are spreading,
spreading-depth-limit, and spreading-limit. spreading is set to on to enable
spreading activation calculations. The spreading-depth-limit specifies the limit to the
depth of spread in the semantic memory network (see Table A1). For all models, this value
was set to 1 because of the nature of the HBC data. Aspreading-limit is used to limit the
total number of elements that a given source element can spread to. It is primarily used as a
parameter to limit computational cost. Because these models ran quickly at 64.278 ms, we
set this value to 9999999, which was never reached with depth 1 spread. (The highest fan
prompt word in the network spread to 765 elements).
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While we tested several variants, the versions of the model used for most of our analysis
used the same settings for activation calculation.

Appendix B: Statistical analysis
We make several simplifying assumptions to support statistical analysis. In much of the liter-
ature on human RAT performance, there is a notion that independent of considering specific
humans’ situations, you can conceive of a RAT problem as having an “inherent” difficulty.
We formalize this approximation of diverse individual humans’ aggregate performance as the
foundation of our analysis. Consider each of the 144 RAT problems as each having a distinct
and independent probability pi (where 1 ≤ i ≤ 144) of being answered correctly. For a given
question, that question’s probability of being answered correctly is the same for each human
and independent from other questions. Obviously, this is not precisely true but it allows a
simple statistical analysis.

Using this assumption, we can treat the probability distribution for how many people will
answer a given question i correctly as a binomial distribution that depends on the underlying
probability pi and the number of people, 85 (in the 7-s condition). We do not know what pi

is. But, using a beta distribution as a conjugate prior, we can predict how similar experiments
would proceed using a beta-binomial distribution. We use Jeffrey’s prior (α = β = 1

2 ). (A
uniform prior gives similar results.) Thus, for question 1 in which 71/85 people answered cor-
rectly, we believe the probability that n people would answer question 1 correctly in another
experiment as P(n) = BetaBin(n|α = 71 + 1

2 , β = 85 − 71 + 1
2 ).

Sampling from that distribution provides additional simulated results on that question. We
can do this for each of the 144 questions to create a complete simulated experiment.

The purpose of doing this sampling is to generate a statistic by which we can claim that
there is a significant difference between our models. Given these simulated experiment data,
we can record a new MSE for our models. Thus, to provide a claim that one model is signif-
icantly better than another, we sample from all 144 questions’ inferred beta-binomial distri-
butions 10,000 times to create 10,000 simulated experiments for the 144 problems. Then, we
order each model by MSE 10,000 times. We use the proportion of the experiments in which
a relative ranking by MSE changed between two models as the likelihood that ordering by
MSE could occur by chance. We interpret that likelihood as a p-value.


