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ABSTRACT

Abnormalities of mast cell structure or function may play prominent roles in irritable 

bowel syndrome (IBS) symptom genesis.  Mast cells show close apposition to sensory nerves 

and release bioactive substances in response to varied stimuli including infection, stress, and 

other neuroendocrine factors.  Most studies focus on patients who develop IBS after enteric 

infection or who report diarrhea-predominant symptoms.  Three topics underlying IBS 

pathogenesis have been emphasized in recent investigations.  Visceral hypersensitivity to luminal 

stimulation is found in most IBS patients and may contribute to abdominal pain.  Mast cell 

dysfunction also may disrupt epithelial barrier function which alters mucosal permeability 

potentially leading to altered bowel function and pain.  Mast cell products including histamine, 

proteases, prostaglandins, and cytokines may participate in hypersensitivity and permeability 

defects, especially with diarrhea-predominant IBS.  Recent experimental evidence indicates that 

the pronociceptive effects of histamine and proteases are mediated by the generation of 

prostaglandins in the mast cell. Enteric microbiome interactions including increased mucosal 

bacterial translocation may activate mast cells to elicit inflammatory responses underlying some 

of these pathogenic effects.  Therapies to alter mast cell activity (mast cell stabilizers) or function 

(histamine antagonists) have shown modest benefits in IBS.  Future investigations will seek to 

define patient subsets with greater potential to respond to therapies that address visceral 

hypersensitivity, epithelial permeability defects, and microbiome alterations secondary to mast 

cell dysfunction in IBS.  

KEY POINTS

 Mast cells are increased in many irritable bowel syndrome (IBS) patients, show 

proximity to sensory nerves, and release bioactive substances that may underlie pain and 

altered bowel function.
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 Therapies to alter mast cell activity (mast cell stabilizers) or function (histamine 

antagonists) show modest benefits reducing symptoms in some IBS subsets, especially 

after enteric infection or with diarrhea-predominant symptoms.

 Visceral hypersensitivity to luminal distention may be elicited by mast cell activation and 

release of mediators and may contribute to reports of pain in this condition.

 Pronociceptive effects of histamine and proteases are prevented by COX2 inhibitors and 

cromolyn sodium suggesting mediation by mast cell-deficient prostaglandin synthesis.

 Abnormalities of epithelial barrier integrity resulting from mast cell mediators may lead 

to increased mucosal permeability and development of bowel habit alterations and pain in 

IBS.

 Recent studies have focused on interactions between gastrointestinal mast cells and the 

enteric microbiome which can modulate gut inflammatory processes underlying IBS 

symptom exacerbations.

 Future studies addressing mast cell participation in IBS symptom genesis will define 

patient subsets who respond to treatments that reverse visceral hypersensitivity, 

permeability defects, and microbiome alterations in this condition.  


INTRODUCTION

Irritable bowel syndrome (IBS) is the most prevalent gastrointestinal disorder and 

presents with abdominal pain and altered bowel habits1.  IBS pathophysiology is heterogeneous 

and variable from patient to patient.  Visceral hypersensitivity may underlie symptoms in large 

IBS subsets2, 3 Dysfunction of epithelial barrier function with increases in permeability may 

contribute to altered defecation and pain in IBS4.  Alterations in gut bacterial populations are 

common and may participate in IBS pathophysiology5.  Each of these factors interact with each 

other and other factors including bile acids, enteric and central nervous activity, and the immune 

system to produce IBS symptoms4.  Better understanding of mechanisms underlying 

development of hypersensitivity, epithelial dysfunction, and gut dysbiosis in IBS will provide 

insight into symptom pathogenesis and facilitate drug discovery for improved treatment of this 

condition. 

Mucosal mast cells are increased and show heightened activation in some IBS subsets.  

Mast cells can elicit visceral hypersensitivity, influence epithelial function, and interact with gut 
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microbes providing a possible link between the neuroimmune system and other contributors to 

IBS pathogenesis6.  The aims of this review are to describe gut mast cell biology, characterize 

mast cell abnormalities in IBS, detail roles of mast cell activity in visceral hypersensitivity, 

epithelial barrier function, and enteric microbial activity, and to speculate on the potential for 

future therapies targeting mast cell functions in IBS.  

MAST CELLS IN THE GUT

Structural Considerations:

Mast cells represent up to 5% of gut mononuclear cells and are present in the mucosa, 

lamina propria, submucosa, smooth muscle, and serosa.  On ultrastructural analyses, activated 

mast cells contain cytoplasmic granules with bioactive mediators (Figure 1)7.  Mast cells are 

derived from pluripotent bone marrow progenitors including CD34+/CD117+ cells.  These 

differentiate into tissue mast cells after exposure to growth factors and other agents promoting 

maturation including interleukins (IL-3, IL-4, IL-9, IL-10, IL-33), transforming growth factor-

 TGF-, nerve growth factor (NGF), stem cell factor (SCF), and the chemokine CXCL128.  

Two subtypes of gut mast cells have been identified, mucosal mast cells (MCT) and connective 

tissue mast cells (MCTC)7, 9, 10.  Small intestinal mucosal mast cell density increases from the 

jejunum to the distal ileum; colon mast cells decrease from the cecum to the rectum11.  Mast cell 

numbers increase from the mucosa villous tips to the bases of the crypts.   Forty-seven to 77% of 

mucosal mast cells are closely apposed to sensory nerve fibers in different gut regions12.  Most 

nerve fibers adjacent to mast cells are unmyelinated and stain positive for neurotransmitters 

involved in gut sensation including calcitonin gene-related peptide (CGRP) and substance P13.  

Mast Cell Mediators

Gut mast cells release biologically active substances which can be stratified into 

preformed, neo-synthesized, and neo-formed lipid mediators (Table 1)9.  

Preformed Mediators

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



Page 5 of 36

This article is protected by copyright. All rights reserved

Preformed mediators are stored in cytoplasmic granules and include histamine, proteases, 

and heparin which can be rapidly replenished after mast cell activation9.  Contents of restored 

mast cell granules may be markedly different from the original mediator profile prior to 

degranulation14.  Histamine is synthesized by histidine decarboxylase and influences gut motor 

function, fluid transport, and inflammation by action on submucosal and primary afferent 

neurons15, 16.  Activated mucosal MCT mast cells release relatively less histamine than cysteinyl 

leukotrienes, while connective tissue MCTC mast cells release higher levels of histamine and 

prostaglandin D2 (PGD2)17.  Proteases produced by MCTC cells include tryptase, chymase and 

carboxypeptidase; the main protease produced by MCT cells is tryptase7, 9, 10.  In addition to 

proteolytic activity; tryptase and other proteases cleave protease-activated receptors (PARs), 

which regulate motility, pain perception, epithelial permeability and secretion, and 

inflammation18, 19, 20.   PARs are expressed by neurons in dorsal root ganglia (DRG) and the 

myenteric plexus.  Tryptase specifically activates PAR2
21.  Upon activation of PAR1 and PAR2 

receptors, sensory neurons release CGRP and substance P which then elicit neurogenic pain.  

Neo-Synthesized Mediators

Neo-synthesized mediators, including cytokines, chemokines, and growth factors, are 

produced by transcriptional activation after exposure to a mast cell stimulus.  Cytokines 

synthesized by gut mast cells include those which are pro-inflammatory (IL-1, IL-3, IL-4, IL-5, 

IL-6, IL-12, IL-13, IL-16, IL-18, tumor necrosis factor- [TNF-α], interferon- [IFN-γ]) and 

anti-inflammatory (IL-10) and are produced within hours of activation22.  Gut mast cell 

chemokines include CXCL8, MCP-1 (CCL2), MIP-1α (CCL3), MIP-1β (CCL4), and CCL523.  

In addition to participating in inflammation, cytokines (IL-3, IL-4, IL-6, IL-9, IL-10) and NGF 

participate in mast cell differentiation in rodents9.  Growth factors secreted by gastrointestinal 

mast cells include fibroblast growth factor-2 (FGF2), basic FGF, TGF-β1, SCF, granulocyte-

macrophage colony-stimulating factor (GM-CSF), vascular endothelial growth factor (VEGF), 

vascular permeability factor (VPF), and NGF23.  NGF regulates maturation, growth, and 

maintenance of central and peripheral neurons.

Neo-Formed Lipid Mediators
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Neo-formed lipid mediators synthesized after mast cell activation include eicosanoid 

compounds.  Prostaglandin G2 is an arachidonic acid product converted by cyclooxygenases 

(COX) into an intermediary molecule, prostaglandin H2 (PGH2).  There are three COX isoforms.  

COX1 is a constitutive form expressed in mast cells and is responsible for basal prostanoid 

synthesis.  COX3 is a splice variant of COX1 mostly expressed in the brain and heart.  COX2 is 

induced in several cell types by cytokines, hormones, and mitogens and elicits prostaglandin 

production in inflammation.  Rapid increases in COX2 gene expression in inflamed tissues are 

followed by PGD2, PGE2, PGF2, PGI2 and thromboxane (TX) biosynthesis.  In a rigorous study, 

immunoreactivities for mast cell COX2 and tryptase extensively overlapped in human and 

animal colonic tissues confirming a mast cell origin for mucosal prostaglandins24.  Prostaglandin 

D synthase is responsible for PGD2 generation, which is abundantly released by mast cells and 

fibroblasts and regulates central and peripheral nerve function25.  Many symptoms of IBS can be 

mimicked by exogenous prostaglandin administration which are ameliorated by prostaglandin 

synthase inhibition26.

Prostaglandin pathways overlap with nitric oxide (NO) processes.  Activated mast cells 

express inducible nitric oxide synthase (iNOS); mast cell iNOS expression is increased after 

cytokine exposure27.  In iNOS knockout mice, PGE2 formation after proinflammatory 

stimulation decreased by ~80% although COX2 protein expression was not impaired, confirming 

the importance of NO generation for prostaglandin synthesis28.  NO increases COX2 activity by 

reacting with the heme-component of the enzyme to increase prostaglandin synthesis and acts at 

transcriptional and translational levels to augment COX2 expression.  

Mast Cell Activation

Stimuli including allergens, infections, stress, and neurotransmitters promote mast cell 

activation.  For example, substance P increases mast cell histamine content and causes 

degranulation29.  Alternatively, transmitters like somatostatin blunt mast cell function30.  Mast 

cells are activated when antigens crosslink immunoglobulin E (IgE) to high affinity Fc epsilon 

receptors with subsequent degranulation and release of stored mediators (histamine, tryptase, 

proteoglycans) and subsequent leukotriene and PGD2 synthesis.  Non-IgE-mediated mast cell 

activation occurs after exposure to neuropeptides, complement, physical stimuli, and infection.    
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Activated Mast Cell Involvement in Inflammation

Mast cells participate in inflammation by virtue of their proximity to nerve fibers, 

epithelial cells, and blood vessels.  Sensorimotor dysfunction induced by inflammation may be 

mediated by proinflammatory cytokines and persists after resolution of the acute inflammatory 

response31.  Mast cell mediators also contribute to recruiting neutrophils, macrophages, and T-

lymphocytes which then release additional pro-nociceptive mediators.  In a study of pleurisy in 

rats, injection of isologous serum promoted neutrophil infiltration which peaked at 4 hours and 

was followed by eosinophilic influx lasting 24-48 hours32.  Mast cell deficient (Ws/Ws) rats 

exhibited reduced neutrophil recruitment and myeloperoxidase activity in pleural lavage extracts 

which increased after local reconstitution with mast cells from wild type rat peritoneum.  Mast 

cells support polarization of T-lymphocyte responses through secretion of IL-12, IFN-γ, Th-1, 

IL-4, and IL-6 and internalize and process antigens presented to T-lymphocytes by MHC class II 

pathways33.  Activated mast cells release TNF-α, which binds T-cell TNF receptor I (TNFRI) 

and TNFRII to regulate T-lymphocyte activation34.  Mast cells also contribute to B-lymphocyte 

proliferation and differentiation into IgA-secreting plasma cells by direct interaction with 

costimulatory proteins (CD40, CD40L) and secretion of IL-5, IL-6, and TGF-β35.  

Activated Mast Cell Involvement in Gut Neural Function

Activated mast cells elicit nerve-mediated sensorimotor responses that increase 

perception.  Mast cell histamine and proteases extracted from supernatants of colon biopsy 

specimens from IBS patients activate enteric and primary afferent neurons in experimental 

models36.  Using calcium imaging, mast cell degranulation activates DRG neurons in co-

culture37.  Cell adhesion molecule 1 (CADM1) couples mast cells to sensory neurons.  CADM1 

blocking peptide or knockdown prevents mast cell degranulation and IL-6 secretion38.  

Self-Amplification of Mast Cell Activation and Response

Mast cell activation can be stimulated by other mediators, reflecting self-amplification of 

mast cell-regulated processes that sustain inflammatory responses7, 39.  Chymase, tryptase, 

histamine, and IL-29 promote inflammatory cell accumulation40.  Chymase also is a potent 

chemoattractant for eosinophils, monocytes, and neutrophils by extracellular signal-regulated 
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kinase (ERK) and p38 mitogen-activated protein kinase (MAPK) pathways41.  These reciprocal 

interactions activate nerve-mediated responses that modulate subsequent mast cell functions42.  

ROLE OF MAST CELLS IN IBS PATHOGENESIS

 

Mast Cell Abnormalities in IBS

Mast cell alterations are prominent in IBS, including changes in mast cell number, 

mediator release during stimulation, and proximity to nerve tissue.  Studies show benefits of 

treating mast cell dysfunction in IBS subsets.  Mutations in the tyrosine kinase Kit gene are 

described in IBS, suggesting a possible genetic basis for mast cell dysregulation.  In one study, 

13 of 19 IBS patients showed one or multiple Kit mutations including D 419 H and D 816V43. 

Some studies report mast cell increases in IBS, but cell counts overlap with healthy 

values44.  Meta-analyses report increased mast cell counts in the small intestine and colon of IBS 

patients with greater overall lamina propria area occupied by mast cells36, 44- 46.  Mast cell 

numbers were similar in IBS and ulcerative colitis in remission in one study47.  Regional colon 

mast cell differences are found, being higher in the cecum in one report48.  Small intestinal mast 

cells were higher in 10 of 11 studies from one meta-analysis and two systematic reviews44, 45.  

There also are regional differences in small bowel distributions in IBS, being higher in the ileum 

than the duodenum and jejunum in one meta-analysis45.   Mast cell numbers correlated with 

bloating and dysmotility-like dyspepsia in another study49.  

Mast cell increases have been related to specific IBS subsets.  Female patients had higher 

mast cell numbers versus males in one report49.  Increased lamina propria mast cells are 

described in those with chronic symptoms after Campylobacter-induced gastroenteritis50.  Some 

researchers propose that patients with postinfectious IBS selectively develop low grade mast cell 

responses, while others observe no mast cell elevations in IBS patients without prior infection51.  

In a recent review, no overall differences in mast cells were seen in postinfectious- versus non-

postinfectious-IBS52.  Some groups report higher cell counts in diarrhea-predominant IBS (IBS-

D), while others also note prominent mast cells in constipation-predominant IBS (IBS-C)52-55.   

In a meta-analysis of 22 studies, mast cells were increased to similar degrees in both IBS-C and 

IBS-D patients in the descending (standardized mean difference 1.69, 95% CI 0.65-2.73, 

P=0.001) and rectosigmoid (SMD 0.38, 95% CI 0.06-0.71, P=0.02) colon44.  A study of IBS-D 
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patients noted higher mast cell counts in those with lactose intolerance and symptoms versus 

asymptomatic patients who were lactose intolerant56.  

Mast cells show important morphologic differences in IBS.  The proximity of mast cells 

to nerve endings is closer (within 5-10 microns) in IBS patients versus healthy controls, which 

correlates with abdominal pain severity36, 51, 55, 57, 58.  Substance P containing nerve fibers and 

nerve endings that express TRPV1 show close proximity to ileal and colonic mast cells in 

postinfectious IBS6, 51, 59.  These findings correlate with abdominal pain severity and frequency.  

Alterations in Mast Cell Mediator Release and Responses in IBS

Electron microscopic evidence of colonic mast cell activation is often observed in IBS, 

including increases in degranulation with labyrinthic arrays and clearing of individual granules36, 

55.  In one study, 77% of IBS patients showed higher mast cell density including 150% increases 

in degranulating mast cells55.  

Mast cell mediators are increased in IBS.  Mucosal biopsies in IBS exhibit higher stored 

mediators like histamine and tryptase and neo-formed lipid mediators like PGE2 with associated 

increases in COX2 mRNA and protein expression (Figure 2)24, 36.   Histamine, protease, and 

PGE2 release is increased in colon biopsy and fecal supernatants from IBS patients16, 19, 36, 55, 60- 

62.   These findings have been related to increased tryptase and PAR2 mRNA and tryptase 

protein63.  Tryptase expression is increased in IBS-D versus IBS-C and levels correlate with stool 

frequency and consistency in IBS-D64-66.  Serum cytokines including IL-6, -8 and TNF-α are 

increased in some studies in IBS67.  In one report, elevated mast cell NGF correlated with higher 

mast cell numbers68.  In another IBS study, mucosal NGF, neurotrophic receptor tyrosine kinase 

1 (NTRK1), and tropomyosin receptor kinase A (TrkA) expression were increased69.  Mast cell 

NGF release can increase neuronal sprouting and neuroplastic changes in colon mucosa in IBS69.  

In colon mucosa from IBS-D patients, mast cell numbers increase in association with 

upregulated tryptase, iNOS, and IL-1 expression showing involvement of NO pathways in mast 

cell function27.  Mast cell counts correlated with mucosal substance P and vasoactive intestinal 

polypeptide (VIP) content in female IBS patients in one report54.  In another study, mucosal 

serotonin release and abdominal pain intensity correlated with higher mast cell numbers70.  

Activation of Mast Cells in IBS
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Triggers for mast cell activation in animal models include gastrointestinal infection, food 

intolerance, and stress7.  After remission of experimental colitis in C57BL/6 mice, increases in 

tryptase-positive mast cells were associated with prolonged gastrointestinal transit71.  In another 

report in guinea pigs, ileal and colon mast cells remained increased after Trichinella spiralis 

infection72.  Supernatants from these regions increased mesenteric afferent nerve firing, an effect 

blunted by cromolyn disodium.  Dietary fructooligosaccharide increases ileal mast cells and 

stimulates interleukin production in water avoidance-stressed mice73.  Modulators of stress 

effects on gut sensorimotor and immune function include glucocorticoids, VIP, substance P, 

corticotropin releasing hormone (CRH), neurotensin, adrenomedullin, and catecholamines74.  

Stress alters mast cell degranulation, increases PGE2 production, activates histamine and tryptase 

release, stimulates COX2 mRNA expressions and impairs epithelial barrier function; together, 

these actions accelerate colon transit and increase fecal expulsion75.  

Stress pathways play prominent roles in mast cell activation in humans.  Cold pain stress 

induces jejunal release of mast cell mediators in patients with food allergy76.  CRH mediates 

stress-induced disruption of human gut motor, epithelial barrier, and perceptual activity77, 78. 

High numbers of CRH1 and CRH2 receptors are expressed by human colon mast cells77, 79.   CRH 

receptor stimulation elicits mast cell degranulation and releases cytokines and growth factors79.  

Stress- and CRH-induced changes in intestinal motor and epithelial function are absent in mast 

cell deficient-rodents and are abolished by mast cell stabilizers80.  A recent review emphasized 

the ability of CRH1 and CRH1/CRH2 receptor antagonists to reduce stress-induced mast cell 

activation in experimental models, but clinical studies of such therapies have been limited by 

unfavorable pharmacokinetics and formation of reactive metabolites75.

Treatments That Target Mast Cell Pathways in IBS

Treatments to control mast cell activation or reduce actions of mast cell mediators have 

been studied in IBS.  Disodium cromoglycate, a mast cell stabilizer that inhibits histamine and 

leukotriene release, decreased tryptase release and TLR2 and TLR4 expression in preliminary 

studies in IBS-D81.  In double-blind trials, cromoglycate was superior to placebo in reducing 

symptoms in IBS patients with food intolerance82-84.   A placebo-controlled trial found that 

ketotifen, a mast cell stabilizer with histamine H1 antagonist properties, decreased IBS symptoms 

and improved quality of life but did not reduce mast cells85, 86.  
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Other studies suggest benefits of H1 antagonists in IBS.  In a placebo-controlled trial in 

28 IBS patients, the H1 antagonist ebastine reduced abdominal pain and overall symptoms and 

improved quality of life87.  A retrospective analysis from 307 children with functional 

gastrointestinal disorders reported symptom improvement with cyproheptadine—an 

antihistamine with anticholinergic and antiserotonergic properties88.  Some propose that benefits 

of tricyclic antidepressants in IBS may result from histamine antagonism89.  

Other drugs which influence mast cell function have been proposed as IBS treatment.  

Mesalamine, an anti-inflammatory agent which acts by COX and prostaglandin inhibition, 

reduced symptoms in some early studies in IBS-D90, 91.  However, two more recent controlled 

trials in IBS failed to show benefit of mesalamine over placebo92, 93.  Corticosteroids were 

ineffective in one report, possibly due to an inability to affect mast cell appearance and 

degranulation94.

PROPOSED MECHANISMS OF MAST CELL-MEDIATED IBS SYMPTOM 

PATHOGENESIS

Mast Cells and Gut Hypersensitivity

Depending on geography and symptom characteristics, heightened gut perception is 

reported by 20-94% of IBS patients in different investigations2, 3.  Hypersensitivity likely is 

influenced by mast cell activation and mediators as detailed in the following sections.  Much of 

this data originates from animal and in vitro investigations which provide plausibility for mast 

cell-induced visceral hypersensitivity in IBS.

Characterization of Mast Cell Involvement in Hypersensitivity Development

Support for mast cell mediation of visceral hypersensitivity is offered by rodent models.  

Mast cell hyperplasia and increased granulation are found in hypersensitive rodents95.  Mast cell-

deficient mice do not exhibit hypersensitivity to 2,4,6-trinitrobenzene sulfonic acid (TNBS).  

Mast cell deficiency does not affect normal nociception to colon distention, but abolishes 

hypersensitivity evoked by IBS-D colon biopsy supernatants24, 96.  Reconstitution of mast cell-

deficient mice with bone marrow-derived mast cells from wild type mice restores the ability of 
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IBS colon supernatants to elicit hypersensitivity, verifying mast cell participation for this 

potential mechanism for IBS symptoms24. 

Based on these animal studies, mast cell pathways have been proposed to modulate 

visceral hypersensitivity in IBS24, 55, 57.  One study noted lower ileal and colonic mast cells in IBS 

patients with rectal hypersensitivity, while another noted no difference in cell counts in relation 

to sensation57, 97.  

Mast Cell Mediators as Potential Triggers of Hypersensitivity

Preformed mast cell mediators contribute to hypersensitivity in animal models.  

Histamine activation of afferent neurons adjacent to mast cells promotes sensitization to painful 

stimuli.  Abdominal pain in IBS is proposed to result from TRPV1 sensitization after H1 receptor 

activation from findings of a study employing IBS rectal supernatants87.  Intracolonic PAR2 

agonist infusion promotes hypersensitivity to distention in rats and PAR2-dependent mechanisms 

underlie hyperalgesia and increased sensory neuron calcium signaling in mice after exposure to 

IBS colon supernatants18, 19.  PAR2-deficient mice do not develop hypersensitivity to supernatant 

exposure.  Histamine, PAR2 agonists, and IBS colon supernatants fail to induce hypersensitivity 

in mast cell-deficient mice (Figure 3)24.

Neo-synthesized mediators and associated pathways also participate in hypersensitivity.  

IL-1β and TNF- sensitize nociceptive neurons via p38 MAPK phosphorylation of Nav1.8, 

TRPV1, and transient receptor potential ankyrine-1 (TRPA1) channels which then induces 

hyperalgesia to mechanical and thermal stimuli98, 99.  Estrogen and an agonist of G-protein 

coupled estrogen receptor (GPER) increase mast cell degranulation, tryptase and histamine 

release, and hypersensitivity in a rat stress model while ovariectomy decreases these activities100.

Prostaglandin involvement in gut hypersensitivity is incompletely understood.  PGE2 

signaling directly sensitizes peripheral nociceptors in inflamed tissues by activating TRPV1, 

hyperpolarization-activated cyclic nucleotide-2 (HCN2), and tetrodotoxin-resistant sodium 

channels on sensory neurons and induces hyperalgesia via protein kinase A- and C-mediated 

activation of nuclear factor B (NF-kB) in DRG neurons.  PGE2 production and COX2 

expression are upregulated in IBS-D colon supernatants24, 55, 61.  This response is absent in mast 

cell-deficient rats but is restored after reconstitution with bone marrow-derived mast cells from 

wild type mice but not bone marrow mast cells from COX2-(Ptgs2Y385F) mutant mice24.  Mast 
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cell PGE2 sensitizes gut afferent fibers to other mediators and participates in hypersensitivity in 

inflammation.  PGE2 facilitates substance P and CGRP release, promotes IL-6 and brain-derived 

neurotrophic factor (BDNF) synthesis by DRG neurons, and enhances neuronal sensitivity to 

serotonin, bradykinin, and cytokines101, 102.   PGE2 alone enhances serotonin-evoked currents in 

stomach- and ileum-innervating afferent neurons103.  

Support for prostaglandins as final mediators of nociception come from studies showing 

that intracolonic histamine or tryptase causes delayed colon PGE2 increases which coincide with 

hypersensitivity development.  Mast cell-deficient and PtgS2Y38SF mutant mice develop 

hypersensitivity after PGE2 but not histamine or tryptase administration, confirming intermediary 

roles of histamine and proteases and final mediation by prostaglandins in rat models (Figure 3)24.  

Similarly, prostaglandins may mediate hypersensitivity induced by cytokines as shown by the 

ability of COX2 inhibitors to block TNF-α and IL-1 induced nociceptor sensitization104.

Reversal of Mast Cell-Mediated Visceral Hypersensitivity

Mast cell stabilizers and agents which target preformed mast cell mediators blunt 

hypersensitivity in animal studies.  Stress-induced hypersensitivity is prevented by the mast cell 

stabilizer doxantrazole in rats105.  Mast cell stabilizer reductions in hypersensitivity are 

associated with lower mast cell degranulation and TLR4 mRNA and protein expression106.  In 

rats, cromolyn sodium prevents hypersensitivity induced by supernatants from IBS-D colon 

biopsies, histamine, and PAR2 agonism24.   Hypersensitivity in stressed rats is prevented by the 

H1 antagonists, fexofenadine and ebastine107.  Likewise, the H1 antagonist olopatadine blunts 

hypersensitivity elicited by IBS-D colon supernatants24.  

COX2 inhibition and other agents have impact on mast cell-mediated hypersensitivity.  In 

rats, the COX2 inhibitor celecoxib prevented hypersensitivity induced by IBS colon 

supernatants24.  Bradykinin actions on serosal afferent nerves were blunted by the COX inhibitor 

naproxen but were restored by adding PGE2 in another report108.  Hypersensitivity elicited by 

colonic PAR2 agonist infusion was prevented by a neurokinin-1 antagonist in a different report18.  

Electroacupuncture reduced hypersensitivity in rats which was associated with decreased TLR4 

mRNA and protein and mast cell degranulation106.

These animal models offer plausible support for clinical observations in IBS.  Ketotifen 

was shown in one investigation to reduce perception of distention in IBS patients with defined 
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hypersensitivity (Figure 4)85.  In another controlled trial in IBS-D, ketotifen reduced 

hypersensitivity to noxious distention versus placebo86.  

Mast Cells and Gut Epithelial Function

Increased gut permeability is observed in some IBS subgroups (IBS-D, post-infectious 

IBS), and is associated with altered bowel habits and increased abdominal pain4.  Positive 

correlations of mast cell numbers with intestinal permeability defects have been reported mostly 

in animal studies as detailed in the following sections109.  These findings support roles for mast 

cells in modulating epithelial dysfunction clinically observed in IBS.  

Characterization of Mast Cell Involvement in Epithelial Barrier Dysfunction

Mast cell influences on the epithelial barrier have been demonstrated in rodent models.  

Increased mast cell mediators and gut permeability are noted after parasitic infection in rats110.  

Models of stress including water avoidance provide evidence for mast cell participation in 

epithelial barrier function80, 111, 112, 113.  Mast cell-deficient mice models verify dependence of 

nerve-mediated chloride secretion on mucosal mast cells114.  Intestinal barrier alterations in mast 

cell-deficient (Wsh) mice lead to reduced epithelial migration and permeability115.  Claudin-3 

expression is linked to regulation of barrier function by mast cell protease-4 (Mcpt-4).  Mcpt-4 

deficient mice exhibit similar permeability alterations as Wsh mice, but reconstitution 

of Wsh mice with bone marrow mast cells from wild type mice but not Mcpt-4 deficient mice 

restores epithelial architecture and permeability.  Water avoidance stress effects on epithelial 

function are seen in wild type but not mast cell-deficient mice.  

Epithelial barrier alterations with increased transcellular and paracellular mucosal 

permeability may underlie symptoms in some IBS subsets, especially relating to bowel habits60, 

111, 116, 117.  Transcellular permeability across the rectal mucosa of IBS-D patients measured with 

horseradish peroxidase correlates with mast cell numbers and increased tryptase activity, offering 

a clinical correlate to observations from animal studies111, 116, 117.  

Mast Cell Mediators as Potential Triggers of Epithelial Barrier Dysfunction
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Mast cell histamine, chymase, and PGD2 increase epithelial secretion and other mast cell 

products also impair epithelial function115.  Proteases disrupt paracellular permeability by direct 

proteolysis and action on epithelial PAR receptors.  Tryptase and chymase also cleave tight 

junction proteins including claudin-1, claudin-3, claudin-5, and junctional adhesion molecule-A 

(JAM-A)115, 117, 118.  Elevated colon paracellular permeability in IBS-D results from tryptase 

action on PAR2 receptors.  PAR2 receptor-mediated effects may involve calmodulin-dependent 

activation of myosin light chain kinase (MLCK) or β-arrestin-dependent activation of cofilin, a 

regulatory protein that severs actin119, 120.  In knock out mice, microRNAs (MIR29) may regulate 

expression of tight junction proteins (cingulin, claudin-1) and NFRF to increase intestinal 

permeability121.  Mast cell-dependent pathways involving substance P contribute to Clostridium 

difficile induced secretion in mice122. 

Human studies provide support for mast cell mediation of gut barrier function.  In IBS-D, 

tryptase levels correlate with epithelial tight junction ultrastructural changes including increases 

in dilated junctions and intercellular distance plus enhanced myosin phosphorylation, 

redistribution of tight junction zonula occludens-1 (ZO-1) and occludin from the membrane to 

the cytoplasmin, decreased ZO-1 protein expression, and increased claudin-2 expression 66, 123.  

Reductions in JAM-A in IBS are associated with worse abdominal pain and longer symptom 

durations117.  Tight junctions are disrupted by cytokines like TNF-α that act by MLCK-mediated 

myosin light chain phosphorylation and ZO-1 and occludin reorganization124. A recent study 

demonstrated that intestinal tissues from patients with IBS-D had increased levels of MIR29A121.  

Clinical studies in IBS indicate that the magnitude of barrier loss and mast cell activation 

correlate with pain severity125, 126.  Of 54 IBS-D patients, 39% were found to have increased 

membrane permeability as measured by the lactulose/mannitol ratio127. Interestingly the same 

group of patients also demonstrated increased visceral and thermal sensitivity.  It is conceivable 

that increased permeability might allow access of luminal bacterial products into lamina proper 

which in turn stimulate sensory neurons to induce visceral hypersensitivity.  

Reversal of Mast Cell-Mediated Epithelial Barrier Dysfunction

Treatments targeting mast cell function can reverse epithelial abnormalities in animal and 

human models.  The mast cell stabilizer doxantrazole reversed increased secretion and 

permeability in stressed rodents and reduced secretion elicited by substance P112, 128.  In a rat 
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model of postinfectious IBS, Trichinella spiralis increased mast cells, altered cytokine 

production, enhanced permeability, and elicited hypersensitivity129.  Barrier and perceptual 

effects of Trichinella spiralis were normalized by a PAR2 antagonist.  In maternally separated 

rats, the sulfonylurea antidiabetic agent metformin inhibited loss of tight junction proteins and 

improved permeability and hypersensitivity130.  Cromoglycate blocked increases in small 

intestinal permeability evoked by stress and CRH in healthy humans80.  

Mast Cell Interactions with Microbiome

IBS patients exhibit gut microbiota alterations including increases in Firmicutes and 

reductions in Bacteroides species, but findings are inconsistent between studies and geographic 

regions5.  Changes in bacterial populations may cause symptoms by altering cytokine levels131.  

Organisms like Enterococcus faecalis reduce in vitro mast cell degranulation132.

Characterization of Mast Cell Interactions with Enteric Flora

Interactions between mast cells and gut microbes may underlie some manifestations of 

IBS.  Enteric bacteria promote mast cell histamine and protease release and activate 

inflammation through production of bile acids, organic acids, amino acids, phenols, 

polyunsaturated fatty acids, and short chain fatty acids133.  Increased cellular translocation of 

bacteria promotes up-regulation of mast cell signaling in IBS-D60.  Physical contact is not 

required for bacteria to activate mast cells; rather, bacterial toxins, metabolites such as histamine, 

and cell wall constituents accomplish this function after breaching the epithelial barrier134.  

Enteric flora modulate gut functions other than inflammation.  Hypersensitivity to colonic 

distention of IBS patients can be transferred to rats through their fecal bacteria, demonstrating 

contributions of gut microbiota to sensorimotor dysfunction135. 

Mast Cell Mediators Involved in Interactions with Enteric Bacteria

Mast cell recognition of bacterial products involves activation of: (i) TLR4 receptors by 

lipopolysaccharide (LPS), (ii) TLR5 receptors by flagellin, and (iii) TLR2 receptors by the gram-

positive bacterial component peptidoglycan60.  Receptors for Clostridium difficile, Bordetella 

pertussis, and Vibrio cholerae toxins are expressed by mast cells136.  Responses differ depending 
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on the bacterial constituent.  Microbial peptidoglycan triggers mast cell degranulation and 

cytokine release while LPS elicits cytokine release without degranulation137.  Clostridium 

difficile toxin A binds to mast cell neurokinin-1 receptors to cause gut secretion.  

Reversal of Mast Cell-Associated Gut Microbiota Interactions

Animal and in vitro studies of therapies with dual action on mast cells and enteric 

bacteria illustrate possible roles of mast cell-microbiome interactions in gut illness.  Ketotifen 

reduces enteritis in rodents exposed to Clostridium difficile toxin, blunts effects of Vibrio 

cholerae toxin in rat ileum, decreases epithelial passage of Escherichia coli and Salmonella 

typhimurium, and reverses effects of Salmonella to decrease occludin levels60, 138, 139.  

Miltefosine, a treatment of leishmaniasis, reverses hypersensitivity in maternally-separated rats 

in association with microbiome alterations and reduced mast cell degranulation140.  Also in this 

model, fungicides including fluconazole and nystatin reversed gut sensitivity141.  The human 

mast cell line HMC-1 released histamine in response to fungal antigens in this study.  

Roles of mast cells in responding to therapies that modulate microbiome populations in 

IBS (probiotics, antibiotics, prebiotics, fecal transplant) are poorly understood.  However, foods 

which are high in fermentable oligosaccharides, disaccharides, monosachrides and polyols 

(FODMAPs) increase visceral nociception by inducing gut dysbiosis and elevated fecal LPS 

level which mediate intestinal inflammation and barrier dysfunction, providing a potential 

mechanism for clinically observed IBS symptom exacerbation with FODMAP intake142. These 

abnormalities were reversed by low FODMAP diet.  Subsequent studies in IBS-D patients 

showed that low FODMAP diets normalize fecal LPS levels and improve IBS symptoms,  

accompanied by improved colon barrier functions and reduced mast cell activation143.

CONCLUSIONS AND CLINICAL IMPLICATIONS

Prominent abnormalities in mast cell numbers, connectivity, and mediator release have 

been identified in IBS.  Small intestine and colon mast cells show close apposition to sensory 

nerves which modulate sensorimotor and secretory activities.  Mast cells release preformed, neo-

synthesized, and neo-formed lipid bioactive substances in response to stimuli including infection, 

stress, allergens, and neuroendocrine factors.  Studies of mast cells in different IBS subsets have 
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yielded inconsistent results, but research suggests that IBS that develops after an enteric infection 

or is diarrhea-predominant most often has mast cell dysfunction.  

Research has focused on three factors as contributors to IBS symptom development.  

Visceral hypersensitivity is detectable in many patients and may influence abdominal pain 

pathogenesis.  Important recent investigations have defined prominent abnormalities of mast cell 

prostaglandin E2 synthesis which show interactions with histamine and tryptase release and 

which induce hypersensitivity in IBS-D.  Mast cell dysfunction with abnormal protease and 

cytokine release also produces epithelial barrier dysfunction in IBS, which alters mucosal 

permeability and may disrupt defecation patterns.  Epithelial abnormalities frequently coexist 

with hypersensitivity in IBS, worsening abdominal pain in this disorder.  Lastly, enteric microbe 

interactions with mast cells may affect symptom reports in some patients. This is evidenced by 

the observation that low FODMAP diet corrects gut dysbiosis and improves IBS symptoms. This 

is accompanied by reduction of mast cell activation and normalization of colonic barrier 

function143.  

Validating the importance of any purported pathogenic factor in IBS should include 

characterizing effective treatments which target underlying mechanistic defects.  To date, 

treatments that alter mast cell activity (mast cell stabilizers) or function (histamine antagonists) 

have shown only modest benefits in IBS and are not widely adopted in clinical practice.  

Limitations of published studies include recruitment of small samples and poor experimental 

designs.  Currently, no biomarkers are available to define mast cell causation of symptoms in 

specific IBS subsets.  A blood panel that measures interleukins released by mast cells has shown 

88% sensitivity and 86% specificity in distinguishing IBS patients from healthy controls, but 

these findings have not been specifically ascribed to mast cell abnormalities144.  Studies in IBS 

and animal models suggest potential treatments to reverse visceral hypersensitivity, epithelial 

dysfunction, or microbial abnormalities.  Novel pharmaceuticals have been proposed which 

reduce IBS symptoms by modifying mast cell activity include next generation histamine 

antagonists, anti-Th2 cytokine antibodies, PAR antagonists, anti-IgE antibodies, tyrosine kinase 

inhibitors, miRNA inhibitors or precursors, and dietary therapies127, 145, 146.    Omalizumab, a 

medication that blocks IgE, elicited responses in a small study in IBS-D147.  A recent 12-week 

controlled trial of palmitoylethanolamide and polydatin, two dietary compounds which 

synergistically reduce mast cell activation, reported reductions in abdominal pain in IBS patients 
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without decreasing mast cell numbers148.  Randomized trials of these and other therapies will 

define roles of mast cell dysfunction in well-defined IBS subsets.

ABBREVIATIONS

CCL, cytokine

CGRP, calcitonin gene-related peptide

COX1/2, cyclooxygenase1/2

CRH, corticotropin-releasing hormone

CXCL, cytokine of CXC chemokine family

DRG, dorsal root ganglia

MAPK, extracellular signal-regulated kinase

GI, gastrointestinal 

FGF, fibroblast growth factor 

IBS, irritable bowel syndrome 

IgE, immunoglobulin E 

IL-1β, interleukin-1β 

NGF, nerve growth factor 

NO, nitric oxide

NK, neurokinin

PAR, protease-activated receptor

PGE2, prostaglandin E2

PGH2, prostaglandin H2

PLA2, phospholipase A2

SCF, stem cell factor 

TGF-β, transforming growth factor β

TLR (1-9), tool-like receptor 

TNF-α, tumor necrosis factor-α

TNFR, tumor necrosis factor receptor 

TRPA1, transient receptor potential ankyrine 1

TRPV1, transient receptor potential vanilloid 1

VEGF, vascular endothelial growth factor

VIP, vasoactive intestinal polypeptide
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VPF, vascular permeability factor
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TABLES

Table 1:  MAST CELL MEDIATORS

Preformed Mediators Neo-Synthesized Mediators Neo-Formed Lipid Mediators

Histamine

Tryptases (  )

Chymase

Carboxypeptidase-A

Heparin

Chondroitin sulfates

Cathepsin

Major basic protein

Cytokines (IL-1, IL-1R antagonist, IL-3, 

IL-4, IL-5, IL-6, IL-8, IL-9, IL-10, IL-11, 

IL-12, IL-13, IL-14, IL-15, IL-16, IL-18, 

TNF-, TNF-, INF-)

Growth factors (basic FGF, FGF2, TGF-

1, SCF, GM-CSF, M-CSF, VGEF, VPF, 

NGF, NT-3, LIF, LT-, MIF, EGF, PDGF-

AA, PDGF-BB)

Chemokines (CCL1, CCl2, CCL3, 

CCL3L1, CCL4, CCL5, CCL7, CCL8, 

CCL11, CCL13, CCL16, CCL17, CCL20, 

CCL22, CXCL1, CXCL2, CXCL3, 

CXCL8, CXCL10, XCL1)

Other neo-synthesized mediators (NO, 

superoxide, CRH, urocortin)

PGD2

PGE2

PGF2

PGI2

TX

LTB4

LTC4

LTD4

PAF

Adapted from reference 30A
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FIGURE LEGENDS:

Figure 1:  The ultrastructure of a mucosal mast cell is shown.  Activated mast cells exhibit 

irregular plasma membranes and lipid bodies (arrow) and cytoplastic granules (A).  Intact (white 

arrowhead) and degranulated (black arrowhead) granules are seen.  On high magnification, 

mucosal mast cell cytoplasmic granules can show either crystalloid stricture (B) or scroll patterns 

(black arrow)(C).  Enlarged empty and partly empty granules (black arrowhead) reflect 

piecemeal degranulation.  Bars: 1 μm (A) and 0.5 μm (B, C).  From reference 7.

Figure 2:  Proinflammatory mediators released by colonic mucosa of IBS-D patients and healthy 

controls (HC) are shown.  Some IBS-D patients exhibit increased release of histamine, mast cell 

(MC) tryptase, and PGE2 (A).  IBS-D patients but not healthy controls (HCs) show increased 

COX2 mRNA (B) and COX2//GAPDH protein (C) expression.  Immunofluorescence staining 

for COX2 (red) and MC tryptase (green) is shown for HCs and IBS-D patients (D).  

Superimposed staining shows significant overlap of COX2 and MC tryptase immunoreactivity 

(yellow).  Scale bar:  200 mm.  From reference 24.

Figure 3:  The role of PGE2 produced by mucosal mast cells in generating visceral 

hypersensitivity in IBS is shown.  Proinflammatory mediators such as histamine, tryptase, and 

LPS are increased in IBS.  These activate mast cell GPCRs (H1, PAR2, TLR4, etc.) which lead to 

degranulation of vesicular mediators (histamine, tryptas3, PGE2, etc.) and induce transcription 

activation of COX2 which increases synthesis of prostaglandins.  Mast cells in close proximity to 

submucosal sensory nerve fibers release PGE2 which acts on sensory fiber EP2 receptors and 

potentiates action of pronociceptive mediators released by mechanical or chemical stimulation, 

leading to hypersensitivity.  Histamine and tryptase are critical mediators released by mast cells 

to activate COX2 synthesis as blockade of either molecule prevents hypersensitivity 

development.  However, histamine and tryptase are not the final mediators; rather their actions 

are dependent on PGE2 synthesized and released by mast cells.  Histamine, tryptase, TNF-, and 

other mediators also may activate receptors on epithelial cells and enteric neurons causing 

dysmotility and epithelial barrier dysfunction via modulation of tight junction proteins.  From 

reference 24.
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Figure 4:  Thresholds for discomfort/pain during rectal distention before and after 8 weeks of 

treatment with placebo or ketotifen are shown for individual subjects with IBS with 

hypersensitivity (A) and without hypersensitivity (B).  The horizontal lines represent mean 

thresholds for discomfort.  * P=0.015, **P=0.024 versus before treatment.  From reference 85.  
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