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Simulation of Li-S cell with rough cathode 

Simplified model 

This section details a simplified mathematical model[26] for the Li-S simulations to substantiate 

the findings for the crosstalk between the Li anode and S cathode. This model can be used to 

analyze Li plating/stripping at the Li anode during cycling. The effect of cathode topography 

on the Li electrodeposition for a uniform Li anode surface is studied.  

The following model deals with the two-dimensional mass and charge transport in the separator 

with a binary electrolyte in the lithium/sulfur cell. The setup can be viewed as shown in Figure 

4 (a) where the separator region being modeled is shown between the rough S cathode and 

pristine Li anode. The electrolyte consists of Li+ ions which get stripped at anode-separator 

interface during discharge and undergo plating at the Li anode on the application of current 

while charging. The cell cycling has been modeled with the help of the following equations for 

the plating at the lithium anode. 

For a binary electrolyte, the flux, Ni of each dissolved species i (i = 1 and 2 for Li+ ion and A- 

anion in the electrolyte, respectively) in terms of diffusion and migration can be written as 

below. The other ionic species for the soluble polysulfides in the electrolyte are not included in 

the present model. 
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Here ci is the species concentration, ϕ2 is the electrostatic potential, zi is the electric charge on 

the ion, Di is the effective diffusion coefficient of species i. F, R and T follow their standard 
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definitions for Faraday’s constant, universal gas constant and absolute temperature, 

respectively. 

For the Li metal anode, the charge transfer equation takes the form, Li Li e+ −+ , thus, the 

ionic charge on the cation and anion, i.e., z1 and z2 are +1 and -1, respectively. The material 

balance of the ionic species can be written using the Nernst-Planck equation as: 
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The rate of production (or consumption) of the precipitation/dissolution of species i given by 

Ri in Equation (2) is not considered due to the absence of any precipitation reactions in the 

domain of interest.  

Also, the electroneutrality assumption is given below for a binary electrolyte: 

 0i i

i

z c =   (3) 

Under the assumption for electroneutrality in Equation (3), the model can be simplified as c1 = 

c2 = c. On further mathematical simplification of these equations and assuming constant 

electrolyte diffusivity for both anion and cation, i.e., (D1 = D2 = D), we arrive at the following 

decoupled equations for the Li+ concentration (c) and potential (ϕ2) within the electrolyte: 
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  (4) 

 ( )20 c =    (5) 

At the electrode-electrolyte interfaces, the anionic flux is zero, i.e., N2 = 0. Thus, the flux 

boundary conditions at the electrode surfaces can be interpreted in the following form: 
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where iBV denotes the local current density due to the electrochemical reactions at the electrode-

electrolyte interface governed by the modified Butler-Volmer kinetics in Equation (7).  

η is the activation overpotential for the reaction, ϕ1 is the solid phase electrode potential, and 

Ueq is the equilibrium potential. The solid phase potential at Li anode, ϕ1,anode, is set to be zero 

as a reference point for the potential and Ueq,anode is assumed to be zero for the Li metal reaction 
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The flux boundary condition at the moving anode interface can be modified with the addition 

of the advective flux term (= ncv D  where vn is the normal velocity at the moving interface) 

for mass conservation.[27] The remaining boundaries of the two-dimensional separator domain 

are considered to be insulated with a zero-flux boundary condition. Under galvanostatic 

operating conditions, a uniform current density, iapp, is applied at the cathode-electrolyte 

interface. This implies that the total applied current remains constant with time but the non-

uniform topography at the rough S cathode will lead to a non-uniform local current density 

distribution along the cathode as well as anode surface. This requires the values for ϕ1,cathode and 

Ueq,cathode in the expression for activation overpotential. These have been calculated in a 

combined manner (ϕ1,cathode - Ueq,cathode ) by imposition of a constraint on the system in the form 

of an integral boundary condition. With the continuity of fluxes in the separator domain, this 

constraint is satisfied at the anode-electrolyte interface as well.[28] 

 local app

cathode cathode

i ds i ds=    (8) 

where s represents a morphology function, s(x,t) along the non-uniform electrode surfaces such 

that it captures the total arc length along any surface. 

Finally, the velocity of the moving boundary at the anode is prescribed by the Faraday’s law 

as[29]: 

 𝑣𝑛 =
𝜕𝑠

𝜕𝑡
=

𝑀𝑤

𝜌

𝑖𝐵𝑉,𝑎𝑛𝑜𝑑𝑒

𝐹   (9) 

where Mw and ρ represent the molar weight and density of Li metal, respectively.  

The initial conditions for the system of equations are given as c(x,y,0) = c0 and s(x,0) for anode 

surface is 53 μm. 

The system of partial-differential-algebraic equations (pDAEs), Eqs. (4-9), can be solved 

numerically by prescribing the appropriate boundary conditions and system constraints using 

the finite-element based solver, COMSOL Multiphysics. Careful numerical analysis has been 

performed for the mesh size and time stepping for a relative and absolute tolerances of 10-6 and 

10-8, respectively. The baseline model parameters used in the present simulations are enlisted 

in Table S2. 

Detailed model 

A numerical model was proposed by Kumaresan K. et al.[26a] to describe the electrochemistry 

process of Li-S battery cell, which considers the transport of multiple electrolyte species, and 

the cascade sulfur reactions. Zhang T. et al. [30] later retuned this model by reducing the bulk 

diffusivity from magnitude of 1×10-10 m2 s-1 to 1×10-12 m2 s-1 so the simulated discharge curve 

can agree with measurement using a 3.4 Ah Li-S pouch cell (OXIS Energy Ltd). In this present 
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work, the retuned model by Zhang T. et al. is adopted but the porosity of separator (0.45) and 

cathode (0.67) are replaced with our measurement.  

Governing Equations: 

The simulation domain consists of a porous separator, a liquid electrolyte region, and a porous 

cathode. The following Faradic reactions are considered in this simulation:  

 

 
1

2
𝑆8 + 𝑒− ⇆

1

2
𝑆8

2−                                                       (10) 

3

2
𝑆8

2− + 𝑒− ⇆ 2𝑆6
2−                                                        (11) 

𝑆6
2− + 𝑒− ⇆

3

2
𝑆4

2−                                                        (12) 

1

2
𝑆4

2− + 𝑒− ⇆ 𝑆2
2−                                                          (13) 

1

2
𝑆2

2− + 𝑒− ⇆ 𝑆2−                                                          (14) 

 

In addition, the dissolution of S is represented by Eqs. (15): 

 

𝑆8(𝑠) ⇌ 𝑆8                                                                (15) 

Only the precipitation of Li2S is considered in this study: 

 

2𝐿𝑖+ + 𝑆2− ⇆ 𝐿𝑖2𝑆(𝑠)                                                  (16) 

 

It was assumed reactions (10) to (16) occur in the porous cathode. The transport of a total of 7 

species are calculated by the Nernst-Plank equation: 

 

𝜕𝜀𝐶𝑖

𝜕𝑡
− ∇ ⋅ (𝐷𝑖

𝑒𝑓𝑓
∇𝐶𝑖 + 𝑧𝑖

𝐷𝑖
𝑒𝑓𝑓

𝑅𝑇
𝐹𝐶𝑖∇𝜙2)                      

                                                 = 𝑎𝑣 ∑  

𝑗

𝑠𝑖,𝑗𝑖𝑗

𝑛𝑗𝐹
− ∑  

𝑘

𝛾𝑖,𝑘𝑘𝑘𝛼𝑘 [∏  

𝑖

(𝐶𝑖)
𝛾𝑖,𝑘 − 𝐾𝑠𝑝,𝑘]            (17A)

 

The second term in left hand side (LHS) of Equation (17A) represents the diffusion and 

migration of the i-th ionic species. The two terms in right hand side (RHS) describe the 

Faradic reaction and non-Faradic (dissolution or precipitation) respectively in order. The 

variables in Equation (17A) are summarized below: 

𝜀 porosity 
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𝐶𝑖 concentration of i-th ionic species 

 𝑡 time 

𝐷𝑖
𝑒𝑓𝑓

 effective diffusivity, equal to 𝜖1.5𝐷𝑖 (Bruggeman assumption) 

𝑧𝑖 charge number of i-th ionic species 

𝑅 specific ideal gas constant 

𝑇 temperature 

𝐹 Faraday constant 

𝜙2 electrolyte phase potential 

𝑎𝑣 specific area of porous cathode 

𝑠𝑖,𝑗 stoichiometric coefficient of species i in reaction j 

𝑖𝑗 superficial current density due to reaction j 

𝑛 number of electrons participating in reaction j 

𝛾𝑖,𝑘 number of moles of ionic species i in solid species k (𝑆8(𝑠) or 𝐿𝑖2𝑆(𝑠)) 

𝑘𝑘 precipitation rate 

𝛼𝑘 volume fraction of precipitate k in porous cathode or separator 

𝐾𝑠𝑝,𝑘 Solubility product 

 

The current density 𝑖𝑗 in Equation (17A) is computed using the Butler-Volmer equation: 

 

𝑖𝑗 = 𝑖0,𝑗 [∏  

𝑖

(
𝐶𝑖

𝐶𝑖,𝑟𝑒𝑓
)

𝑝𝑖,𝑗

exp (
0.5𝐹

𝑅𝑇
𝜂𝑗) − ∏  

𝑖

(
𝐶𝑖

𝐶𝑖,𝑟𝑒𝑓
)

𝑞𝑖,𝑗

exp (−
0.5𝐹

𝑅𝑇
𝜂𝑗)]    (18) 

where  

𝑖0,𝑗 exchange current density for reaction j 

𝐶𝑖,𝑟𝑒𝑓 referenceconcentration of species i (assumed to be initial) 

𝜂𝑗 activation overpotential of reaction j 

𝑝𝑖,𝑗 equals to 𝑠𝑖,𝑗 for anodic species 

𝑞𝑖,𝑗 equals to −𝑠𝑖,𝑗 for cathodic species 

 

The summation of 𝑖𝑗 constitutes the electrolyte phase current density:  

 

∇ ⋅ 𝐢𝑒 = 𝑎𝑣 ∑  

𝑗

𝑖𝑗                                                             (19) 

where 𝑎𝑣 indicates the specific area of porous cathode.  
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The overpotential 𝜂𝑗 in Equation (18) is calculated by  

𝜂𝑗 = 𝜙1 − 𝜙2 − [𝑈𝑗
𝜃 −

𝑅𝑇

𝑛𝑗𝐹
ln ∑ 𝑠𝑖,𝑗 (

𝐶𝑖, ref 

103
)]                                 (20) 

where: 

𝜙1 solid phase potential 

𝑈𝑗
𝜃 standard equilibrium potential at 1000 mol/m3 

 

The current in the battery cell satisfies continuity equation: 

∇ ⋅ 𝐢𝑒 + ∇ ⋅ 𝐢𝑠 = 0                                                                 (21A) 

where 𝐢𝑒 and 𝐢𝑠 are the liquid and solid phase current density, respectively.  For the electrolyte 

domain 𝐢𝑠 = 0. The solid phase current density in the cathode satisfies Equation (22): 

 

𝐢𝑠 = −𝜎∇𝜙1                                                                     (22) 

 

The precipitation of Li2S and dissolving of S will change the porosity of the cathode, which 

can be described by Equations (23) and (24): 

𝜕𝜀

𝜕𝑡
= − ∑ 𝑉𝑘

𝑘

𝑅𝑘                                                                                       
′ (23) 

𝜕𝛼𝑘

𝜕𝑡
= −𝑉𝑘𝑅𝑘                                                                                         

′    (24) 

where 𝑉𝑘 indicates the molar volume of solid species 𝑘. Accordingly, it was assumed the 

specific area of the porous cathode changes with porosity:  

𝑎𝑣 = (
𝜀

𝜀0
)

1.5

                                                                  (25) 

 

It was assumed there are no reactions in the electrolyte domain. Therefore, Equation (17A) 

can be used to describe the ionic transport by replacing the effective diffusivity with bulk 

diffusivity and removing the RHS terms:  

𝜕𝐶𝑖

𝜕𝑡
− ∇ ⋅ (𝐷𝑖∇𝐶𝑖 + 𝑧𝑖

𝐷𝑖

𝑅𝑇
𝐹𝐶𝑖∇𝜙2) = 0                               (17B) 

The current in liquid electrolyte domain is attributed only to the ionic flux 𝑱: 

𝐢𝑒 = 𝐹 ∑ 𝑧𝑖𝑱𝑖 = −

𝑖

𝐹 ∑ 𝑧𝑖

𝑖

(𝐷𝑖∇𝐶𝑖 + 𝑧𝑖

𝐷𝑖

𝑅𝑇
𝐹𝐶𝑖∇𝜙2)  ,                          (26) 

and Equation (21A) reduces to 
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∇ ⋅ 𝐢𝑒 = 0                                                                 (21B) 

In addition, the electric neutrality should be satisfied: 

∑ 𝑧𝑖𝐶𝑖 = 0

𝑖

                                                              (27) 

 

Only the two non-Faradic reactions are considered in the porous separator. Accordingly, the 

ionic transport Equation (17A) can be reduced to Equation (17C): 

 
                      

 
𝜕𝜀𝐶𝑖

𝜕𝑡
− ∇ ⋅ (𝐷𝑖

𝑒𝑓𝑓
∇𝐶𝑖 + 𝑧𝑖

𝐷𝑖
𝑒𝑓𝑓

𝑅𝑇
𝐹𝐶𝑖∇𝜙2)   = − ∑  

𝑘

𝛾𝑖,𝑘𝑘𝑘𝛼𝑘 [∏  

𝑖

(𝐶𝑖)
𝛾𝑖,𝑘 − 𝐾𝑠𝑝,𝑘]     (17C) 

In addition, the porous separator shares the same Equations (21B), (26) and (27) with the 

liquid electrolyte domain.  

Boundary Conditions: 

The ionic flux and the electrolyte phase current at the cathode collector is 0. Therefore, the 

solid phase current density equals to the applied current. The boundary conditions can be 

described by 𝑱 = 0, 𝐢𝑒 = 0, and 𝐢𝑠 = 𝐼𝑎𝑝𝑝.  

At the interface between porous cathode and liquid electrolyte, the solid phase current density 

becomes 0, and the electrolyte current density and ionic flux is continuous. These boundary 

conditions are described as 𝑱+ = 𝑱−, 𝒊𝒆
+ = 𝒊𝒆

− and 𝐢𝑠 = 0 . These boundary conditions also 

apply to the separator-to-electrolyte interface.  

For the anode-to-separator interface, the solid phase current density 𝐢𝑠 and solid potential 𝜙1 

are 0. The ionic flux is 0 except for Li+. The Li+ flux is given by:𝑱𝐿𝑖+ =
𝑖𝐿𝑖

𝐹
  And the 

corresponding electrolyte phase current density is given by:𝒊𝒆 = F𝑱𝐿𝑖+. 

The application of above governing equations and boundary conditions to the battery cell can 

be illustrated by Figure S9. The values of modeling coefficients and constants can be found in 

Zhang T. et al.[30], except that the porosities of separator and cathode are changed to 0.45 and 

0.68, respectively per measurement.  

 

 

Table S1 The average electrode roughness of PSC, BSC, CSC with a S loading (Ls) of 6 mg 

cm-2, and CSC with a Ls of 4 mg cm-2. 

  Electrode PSC BSC CSC_Ls 6 CSC_Ls 4 

Average roughness (Rq, µm) 30 24 19 12 
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Table S2 Parameters for the simplified model simulation. 

Symbols Parameters Values Units 

Lx Domain length in x 551 μm 

,0.1app Ci  Applied current density 6 A/m2 

0,anodei  Exchange current density 20 A/m2 

0,cathodei  Exchange current density 1.972 A/m2 

0c  Initial concentration 1300 mol/m3 

0,anodec  Reference anode concentration 1001 mol/m3 

0,cathodec  Reference cathode concentration 5e-6 mol/m3 

D  Diffusion coefficient 1e-10 m2/s 

wM   Molar mass of Lithium 6.941 g/mol 

   Density of Lithium 0.534 g/cm3 

T   Operating temperature 298 K 

R   Gas Constant 8.314 J/mol.K 

F   Faraday’s Constant 96487 C/mol 

 

 

 

 

Figure S1 Discharge and charge profiles for the last cycles of the BSC under different 

conditions: (a) at E/S 10 mL g-1 and with 250 µm Li and (b) at E/S 10 mL g-1 and with 50 µm 

Li. (c) IR evolution of BSC upon cell cycling at E/S 4 mL g-1. 
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Figure S2 (a) BSE image of a T1 particle (green circle) in Figure 2b. (b) Higher-resolution 

SEM image of the T1 particle in the green circle of (a). (c-d) EDX mapping of (b). Red is O, 

blue is S, yellow is C. (b)-(e) are combined in (f). (g) EDX spectrum of (b). Only O, S, and C 

are detected.  
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Figure S3 (a) Y line-scan profiles of PSC and BSC. The discharge and charge profiles of PSC 

(b and d) and BSC (c and e) at different electrolyte amounts: E/S 6 mL g-1 (b and c) and E/S 

10 mL g-1 (d and e). 

 

 

Figure S4 XPS C 1s (a), O 1s (b), and S 2p (c) spectra of the cycled Li surface with PSC. The 

orange spectra are from PR. The black spectra are from VR. 

 

 

Figure S5 Simulated local current density distributions on the cathode (a) and anode (b) 

surface using detailed model. 
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Figure S6 Discharge and charge profiles of BSC at different current densities: (a) at a S 

loading of 4 mg cm-2, 0.05 C; (b) at a S loading of 4 mg cm-2, 0.3 C. 

 

 

Figure S7 Zoomed-in charging profiles of BSC in the last cycles in Figure 6: (a) at a S loading 

of 6 mg cm-2, (b) at a S loading of 4 mg cm-2. 
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Figure S8 Cycle performance of BSC and CSC in Figure 6, (a) Ls = 6 mg cm-2, (b) Ls = 4 mg 

cm-2. 

 

 

Figure S9 Geometry and equations of the detailed model. 

 


