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1 Introduction and summary

The AdSd+1/CFTd correspondence has proven to be an indispensable tool for under-

standing quantum gravity. In particular, it is a strong/weak duality that gives unprece-

dented insights into the microscopic dynamics of black holes. However, the special case

of AdS2/CFT1 is poorly understood, for a variety of reasons. The usual holographic de-

coupling limits fail when d = 1, global AdS2 contains two disconnected boundaries (unlike

its higher-dimensional counterparts), and conformal symmetry precludes any finite-energy
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excitations of a theory living on AdS2 [1, 2]. Resolution of these issues would have funda-

mental implications for near-extremal black holes, as their near-horizon geometry almost

universally contains an AdS2 factor.

Recently, progress has been made by developing a near-AdS2/near-CFT1 duality,

wherein a two-dimensional gravitational theory living on a background that approximates

AdS2 is dual to a one-dimensional quantum theory that is nearly conformal. A concrete

realization of this proposal is the Sachdev-Ye-Kitaev (SYK) model [3, 4], a one-dimensional

theory of Majorana fermions that has an emergent conformal symmetry in the infrared.

This conformal symmetry is both explicitly and spontaneously broken at finite tempera-

ture, and the goldstone bosons of the broken conformal symmetry are described by the

Schwarzian action [5]. At low energies, the dynamics of the SYK model are thought to

be governed to a two-dimensional dilaton gravity theory that exhibits the same pattern

of conformal symmetry breaking [6, 7].1 The Jackiw-Teitelbom (JT) model [9, 10] rep-

resents a particularly simple universality class that is described by near-AdS2/near-CFT1

holography in this manner. Modern analyses of this model include [6, 11–16].

The linchpin of the relation between the SYK and JT models is the classical equivalence

of the models to the Schwarzian. If this duality persists at the quantum level, however, then

their infrared dynamics must be governed by the Schwarzian theory even at the quantum

level. In particular, their one-loop partition functions must agree. Computations in the

SYK model [5] found

logZ|one-loop = −3

2
log βJ , (1.1)

where β is the inverse temperature and J the parameter in the SYK model that controls

the Gaussian distribution of random couplings. This same result can also be derived from

the Schwarzian theory. We review the SYK and Schwarzian derivations in appendix A.

Our goal in this paper is to explicitly quantize the JT model using Euclidean quantum

gravity methods, compute its bulk one-loop partition function, and provide a precision test

of the near-AdS2/near-CFT1 duality by demonstrating that it matches (1.1).

One approach to quantize the JT model is to recast the theory as a one-dimensional

Schwarzian theory and then use the relative simplicity of this boundary theory to compute

the quantum path integral exactly [17–24]. These methods all yield a density of states for

the JT model that is consistent with the one-loop SYK partition function (1.1). However,

these approaches seem to rely heavily on the specifics of the JT model, and in particular on

the dilaton appearing as a Lagrange multiplier that forces the background to have constant

negative curvature. Compactification of gravitational theories down to two dimensions

generically spoils these nice features through the introduction of non-trivial interactions

between the dilaton and the other fields in the theory. This motivates quantizing the JT

model directly in the bulk without resorting to the Schwarzian boundary theory. The

methodology we develop to do so applies also to more realistic theories, and in particular

ones with direct realizations in string theory.

1The bulk gravitational dual to the SYK model must also contain a tower of massive particles [8], but

at sufficiently low energies these massive modes decouple and we are left only with an AdS2 dilaton gravity

theory.
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In our bulk analysis we consider explicit black hole solutions to the JT model and

study quadratic fluctuations of the action around these backgrounds. This yields a theory

of metric and dilaton fluctuations coupled by non-minimal (and fairly complicated) inter-

actions that depend on the background dilaton. Moreover, the dilaton profile blows up at

the AdS2 boundary so we must carefully keep track of divergences when integrating over

the entire spacetime volume. Without a road map to guide us on how to handle these

challenges, explicit computation of the bulk one-loop partition function is a daunting task.

Therefore, in section 3, we analyze a simpler free model consisting of independent met-

ric, dilaton, and ghost fields propagating on a non-dynamical Euclidean AdS2 background,

i.e. the two-dimensional hyperbolic plane H2. In this simplified setting, vector and tensor

fields are precisely equivalent to scalars, up to the addition of certain discrete modes that

have no scalar analogue. This way of organizing the field content not only makes computing

the required functional determinants straightforward but also makes manifest that these

one-loop determinants cancel precisely against each other. This leaves only contributions

from the discrete modes that completely determine the one-loop partition function in the

simplified model.

Having addressed some of the central challenges in the context of a simplified model,

in section 4 we adapt the reasoning to the full JT model. Even with the addition of non-

minimal couplings that depend on the background dilaton, it is useful to represent all fields

as scalars, up to the discrete modes. The dilaton profile, which we interpret as a thermal

background due to the nearby black hole, obstructs the precise cancellations we established

in the simplified model, but only up to terms that are quadratic in temperature. Therefore

the quantum correction will once again be dominated by the discrete modes and their

contributions sum up to a logarithmic term in the one-loop partition function for the full

JT model that precisely matches the SYK result (1.1).

Several distinct types of discrete modes enter our computations but the central ones

are the quadratic holomorphic differentials. These discrete modes are deformations of the

metric that can be formally represented as pure diffeomorphisms, but they are nonetheless

physical because the required diffeomorphisms are non-normalizable. The quadratic holo-

morphic differentials can exist only because AdS2 is noncompact, so they have no analogues

on the conformal disc. Instead, they are close relatives of the Brown-Henneaux deforma-

tions that yield the central charge in the AdS3/CFT2 correspondence. Moreover, they are

dual to the soft reparametrization modes described by the Schwarzian action, so they offer

a satisfying connection with other approaches.

Our computation is similar in spirit to previous evaluations of logarithmic corrections

to extremal black hole entropy [25–29]. Such logarithmic terms arise entirely from quantum

fluctuations of fields in the near-horizon AdS2 geometry of the black holes. Presently, the

background is only “nearly” AdS2, and so conformal symmetry is broken. Our result is

that, despite this difficulty, we retain sufficient control to reliably compute the logarithmic

terms in the one-loop partition function and reproduce (1.1).

The organization of this paper is as follows. In section 2, we review semi-classical

black holes in the JT model and their spontaneously broken conformal symmetry. In

section 3, we study quantization in AdS2 and explicitly detail how to dualize the metric
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and other quantum fields to scalars, up to a particular discrete set of modes that have

no scalar analogue. We contrast quantization in AdS2 with standard worldsheet methods

in string theory and identify discrete modes with quadratic holomorphic differentials that

have no analogues on compact Riemann surfaces. In section 4, we carefully apply these

methods to computing the one-loop partition function of black holes in the JT model.

In particular, we show that the one-loop correction is entirely due to the discrete modes,

the aforementioned quadratic holomorphic differentials, and it precisely matches the SYK

result (1.1). In section 5, we show that the corresponding one-loop quantum corrections to

black hole entropy vanish and we discuss the implications. Finally, we conclude in section 6

by discussing how our methods contrast with the Schwarzian computation and generalize

to other theories of nearly-AdS2 gravity.

2 The Jackiw-Teitelboim Model

In this section we review black hole solutions in the Jackiw-Teitelboim model and define

a precise limit in which they are described semi-classically by effective field theory. We

then study Killing vectors on these black hole backgrounds and show how they fit into the

conformal isometry group that is spontaneously broken at finite temperature.

2.1 Action and equations of motion

The Jackiw-Teitelboim model is the dilaton gravity theory in 1 + 1 dimensions with action

IJT = − 1

16πG2

∫
d2x
√
g

(
ΦR− 2

`2
+

2Φ

`2

)
− 1

8πG2

∫
dt
√
γ ΦK , (2.1)

where G2 is Newton’s gravitational coupling constant in two dimensions, Φ is the dilaton,

and ` is a length scale that will shortly be identified with the AdS2 radius. In the Gibbons-

Hawking-York boundary term γab is the induced metric on the boundary and K is the

extrinsic curvature. This term imposes boundary conditions on the bulk fields and makes

the variational principle well-posed.

The classical equations of motion are

R = − 2

`2
, ∇µ∇νΦ =

gµν
`2

(Φ− 1) , (2.2)

and so the background has constant negative curvature with radius `. The Jackiw-Teitel-

boim model realizes the symmetry breaking pattern of the original SYK model, where the

zero modes in the infrared are Nambu-Goldstone modes of the broken conformal symmetry

and described by an effective Schwarzian action [6].

We interpret the Jackiw-Teitelboim model as a low-energy effective theory of gravity

that arises by compactification of a higher-dimensional one. Then the scale ΛKK of the

internal manifold is related to the length scale ` ∼ Λ−1
KK of the background, i.e. the massive

Kaluza-Klein modes have Compton wavelengths of the order of the AdS2 length scale.

In generic compactifications there will be more matter fields. If the additional matter

is minimally coupled to the gravitational sector, the dilaton equation of motion becomes

∇µ∇νΦ− gµν
`2

(Φ− 1) = −8πG2Tµν , (2.3)
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where Tµν is the energy-momentum tensor of the additional matter. In this and more elab-

orate settings the effective Schwarzian theory [30, 31] and its SYK-like dual [32] must both

be modified. The resulting logarithmic quantum correction (1.1) generally changes as well.

We restrict ourselves to the “pure” Jackiw-Teitelboim model with no additional matter

fields, but we foresee no difficulties in generalizing our computations to other situations.

2.2 Black hole solutions

A metric on a two-dimensional manifold with Lorentzian signature and constant, negative

curvature R = − 2
`2

can be presented in Poincaré coordinates as

ds2 =
`2

x2

(
−dt2 + dx2

)
= −4`2dx+dx−

(x+ − x−)2
, (2.4)

with light-cone coordinates x± = t ± x. We follow the conventions of [11] and define the

coordinates x, t to be dimensionless, in order to keep the AdS2 length scale ` explicit in all

expressions. The spatial coordinate x lies in the range x ∈ (0,∞), with x = 0 corresponding

to the boundary of the manifold. In the absence of matter, the classical dilaton equation

of motion on this background (2.3) can be integrated exactly with the result

Φ = 1 +
a− µx+x−

x+ − x−
, (2.5)

where a, µ are dimensionless constants. The parameter a is interpreted as the gravitational

backreaction even though, in the JT-model, the AdS2 geometry is exact. The background

nearly preserves AdS2 symmetries in the region x � a, where the dilaton profile remains

small |Φ−1| � 1. When x� a, though, the dilaton profile blows up and then the classical

solution entirely invalidates the AdS2 symmetry.

We require that a > 0 and µ ≥ 0 and interpret the solution as a black hole with a

horizon along the null line x+ =
√
a/µ [11]. Moreover, for a > µ, the singularity at the

center of the black hole is time-like. The mass M (above extremality) and temperature T

of the black hole are given by

M =
µ

8πG2`
, T =

1

π`

√
µ

a
. (2.6)

For black holes in general theories of two-dimensional dilaton gravity, the black hole entropy

is given by [33]

S =
Φ|H
4G2

, (2.7)

where Φ|H is the value of the dilaton at the horizon of the black hole. This quantity plays

the role of the horizon area for these two-dimensional black holes. In particular, for black

holes in the Jackiw-Teitelboim model, the entropy is

S = S0 + ∆S =
1

4G2
+

√
µa

4G2
, (2.8)

where we have explicitly separated out the extremal entropy S0 and the additional contri-

bution ∆S at finite temperature.
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2.3 The semi-classical, near-extremal regime

Extremal black holes have vanishing temperature and in the near-extreme regime

∆S = S − S0 � S0 , (2.9)

we can expand the entropy and present it as a linear function of the small temperature.

The first law of thermodynamics then relates the mass and entropy above extremality so

that they take the form

M =
T 2

2Mgap
, S − S0 =

T

Mgap
, (2.10)

for some energy scale Mgap.2 For the class of black holes in two dimensions analyzed in

this paper the mass gap is given by

Mgap =
4G2

aπ`
. (2.11)

For black holes with mass below this scale M � Mgap, the energy of the black hole

is smaller than their temperature. That is, below the mass gap, the black hole does not

have sufficient energy to emit a single quantum of Hawking radiation with energy of order

the temperature. Therefore, the usual semi-classical understanding of black hole thermo-

dynamics cannot apply in this regime [36]. In the pure AdS2 limit where the dimensionless

parameter a → 0 the mass gap blows up and there is no regime of applicability for semi-

classical physics. A non-trivial dilaton profile is therefore mandatory.

In addition to keeping the temperature well above the mass gap, the effective field the-

ory of dilaton gravity is valid only in the regime where thermal fluctuations are well below

the compactification scale ΛKK; otherwise, we would have to account for relatively large

probabilities of exciting massive Kaluza-Klein modes. We therefore require the hierarchy

of scales

Mgap � T � ΛKK ∼
1

`
. (2.12)

This hierarchy, when combined with the relationship (2.10) for how mass scales with tem-

perature, implies T � M . Recalling that by mass M we refer to the energy above the

extremal mass, we interpret our background as a large, near-extremal black hole that slowly

emits Hawking radiation. Indeed, this is the regime that is relevant for precision studies

of near-extremal black hole thermodynamics [16, 37, 38].

Our hierarchies are summarized in figure 1. They can be concretely realized in our

model by choosing the parameters a and µ such that

µ� a and G2 �
√
µa� 1 . (2.13)

It is the requirement (2.9) that the ground-state entropy of the black hole is large compared

to the correction arising from finite-temperature effects that demands the parameter
√
µa

2Equivalently, we could also quantify how close we are to extremality through the length scale L =
2
π
∂S
∂T

= 2
π
M−1

gap. The normalization choice of 2
π

guarantees that this length scale coincides with the long

string scale [34]. [31] uses the notation γ = M−1
gap and [35] has L = M−1

gap.
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E

Mgap

T

M,ΛKK

S

S0

S0 + ∆S

Figure 1. A schematic diagram of the hierarchy of different scales in our setup. This choice

in scales ensures that the Jackiw-Teitelboim model is an effective field theory that can describe

semi-classical, near-extremal black holes.

to be small. This condition enforces that the geometry really is nearly AdS2 and offers a

quantitative measure that conformal symmetry is only mildly broken. We will later use the

smallness of
√
µa to justify taking finite-temperature effects into account perturbatively.

In the extreme limit where the small parameter
√
µa = 0, we have µ = 0, a 6= 0 and

the background corresponds to the extremal black hole ground state. It is described by

a dilaton profile that is non-trivial but static in Poincaré coordinates. This is a physical

regime and violates the first inequality in the second equation of (2.13) only because the

thermodynamic description is invalid in the extremal limit.

2.4 Global coordinates, killing vectors, and conformal symmetry

Semi-classical computations in Euclidean quantum gravity are most convenient in global

coordinates, where the black hole solution from subsection 2.2 becomes [12]

ds2 =
4µ`2

a
sinh

(
2

√
µ

a
x

)−2 (
−dt2 + dx2

)
, Φ = 1 +

√
µa coth

(
2

√
µ

a
x

)
. (2.14)

Euclideanization sends t→ iτ , where τ is the (dimensionless) Euclidean time with period

β/` and β = T−1 is the inverse of the temperature given in (2.6). By further changing the

variables to

z = exp

(
−2

√
µ

a
x+ 2i

√
µ

a
τ

)
, (2.15)

we can map the solution onto the disk in holomorphic coordinates:

ds2 =
4`2dzdz̄

(1− zz̄)2
, Φ = 1 +

√
µa

(
1 + zz̄

1− zz̄

)
, (2.16)

where the boundary is at |z| = 1.

We have picked our coordinate frame to bring the dilaton into the form given in (2.16),

but there are actually three linearly independent dilaton profiles X, given by

X−1 =
2z

1− zz̄
, X0 =

1 + zz̄

1− zz̄
, X+1 =

2z̄

1− zz̄
, (2.17)

– 7 –
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such that Φ = 1 + X satisfies the background equations of motion (2.2). These profiles

reflect an underlying symmetry. They generate the three Killing vectors

ζµn = εµν∇νXn =





(z2,−1) n = −1 ,

(z,−z̄) n = 0 ,

(1,−z̄2) n = +1 ,

(2.18)

corresponding to the SL(2,R) isometry group of AdS2. We can see this explicitly by

defining the operators Ln as Lie derivatives with respect to the Killing vector fields:

Ln = `2Lζn = `2(εµν∇νXn)∇µ . (2.19)

These operators satisfy the global SL(2,R) algebra

[Ln, Lm] = (n−m)Ln+m . (2.20)

The three vector fields ζµn with n = −1, 0, 1 are the only Killing vectors on AdS2.

The three dilaton profiles (2.17) not only yield the Killing vectors (2.18) on AdS2, but

the equation of motion (2.2) for the background dilaton also ensures that the vector field

∇µΦ satisfies the conformal Killing vector equation. Thus the vector fields

ξµn = ∇µXn =





(z2, 1) n = −1 ,

(z, z̄) n = 0 ,

(1, z̄2) n = +1 ,

(2.21)

are conformal Killing vectors. Moreover, they are just the first few entries in an infinite

tower of conformal Killing vectors ξµn = (z−n+1, z̄n+1) for any n ∈ Z. This result is not

special to AdS2; any Riemannian manifold is conformally flat in two dimensions so there

is an analogous tower of conformal Killing vectors on the background geometry in any

two-dimensional theory of gravity.

However, there is an important caveat. Conformal Killing vectors necessarily satisfy

the conformal Killing vector equation, but this condition is not sufficient; they must also be

globally well-defined. For example, on the conformal disc the only true conformal Killing

vectors among the entire tower of “local” conformal Killing vectors are the three given

in (2.21). Moreover, in this aspect AdS2 is not conformally equivalent to the disc. There

are no normalizable conformal Killing vectors in AdS2, due to its diverging conformal

factor.

It is natural to extend the global SL(2,R) algebra (2.20) formed from the Killing

vectors by exploiting the conformal Killing vector fields. To do so, we define the operators

Rn as Lie derivatives with respect to the conformal Killing vectors with n = −1, 0,+1:

Rn = `2Lξn = (∇µXn)∇µ . (2.22)

These new conformal operators do not commute with the generators of the isometry alge-

bra. Instead, the algebra (2.20) gets extended as:

[Rn, Rm] = (n−m)Ln+m ,

[Ln, Rm] = (n−m)Rn+m .
(2.23)

– 8 –
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By defining the operators J±n = 1
2 (Ln ±Rn) we see that the full conformal isometry algebra

is two copies of the original SL(2,R) algebra of isometries:

[J±n , J
±
m] = (n−m)J±n+m , [J+

n , J
−
m] = 0 . (2.24)

We define the quadratic Casimir L2 of the isometry algebra as

L2 ≡ L2
0 −

1

2
(L−1L+1 + L+1L−1) , (2.25)

and, by analogy, we introduce an operator that is quadratic in the conformal Killing vec-

tors as

R2 ≡ R2
0 −

1

2
(R−1R+1 +R+1R−1) . (2.26)

Neither of these quadratic operators are Casimirs of the full SL(2,R) × SL(2,R) algebra,

but they are related to one another and to the Laplacian � ≡ ∇µ∇µ by

`2� = L2 = −R2 . (2.27)

This process of extending the isometry algebra into a conformal isometry algebra is

well-known in the context of spin and quantum mechanics. The SU(2) algebra of spin

raising and lowering operators can be extended to an SU(2) × SU(2) ∼= SO(4) algebra by

additionally quantizing components of the Laplace-Runge-Lenz vector [39]. The SL(2,R)×
SL(2,R) algebra we find here can be obtained by analytic continuation of this SO(4), as

shown in appendix B.

It was argued in [2] that for any quantum gravity theory on AdS2, the classical

global SL(2,R) isometry group will be enhanced to the full Virasoro group. This should

be thought of as the two-dimensional analogue of the Brown-Henneaux mechanism that

enhances global conformal symmetry SO(2, 2) to the full local conformal group Vir2 in

AdS3/CFT2 [40]. In our discussion of AdS2, the Killing vectors with n = −1, 0, 1 are en-

hanced to a full tower with any n. In the algebraic language developed in this subsection

it is a diagonal subgroup SL(2,R) ⊂ SL(2,R)× SL(2,R) that is enhanced to Virasoro.

At this point, we can explain precisely how bulk conformal symmetry is spontaneously

broken in the Jackiw-Teitelboim model. For
√
µa = 0 the dilaton is constant Φ = 1 in

global coordinates and the AdS2 spacetime exhibits its full SL(2,R) isometry. In contrast,

at finite temperature
√
µa > 0 the dilaton must be non-trivial and the profiles allowed by

the equations of motion transform according to the spacetime SL(2,R) isometry. Therefore,

picking a particular profile for the dilaton is equivalent to picking a preferred direction

within the global SL(2,R) subgroup of the full conformal group.

The details relating the dilaton profiles to the full SL(2,R)×SL(2,R) conformal isom-

etry algebra developed in this subsection will play a central role in the remainder of the

article. That is because the quantum fluctuations of the graviton and dilaton around the

classical black hole background will naturally organize into representations of this alge-

bra, even though it is broken. In the low-temperature regime, the conformal symmetry

breaking is mild enough that this classification will greatly simplify the accounting for

finite-temperature effects in the one-loop partition function.

– 9 –
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3 Quantizing fields in AdS2

In this section we study the quantum Jackiw-Teitelboim model without taking the dilaton

profile into account. This amounts to a discussion of minimally-coupled fields propagating

on Euclidean AdS2, i.e. the two-dimensional hyperbolic space H2. We detail how vector

and tensor fields are equivalent to scalar fields, up to the crucial addition of very specific

discrete modes. This way of organizing the field content makes many simplifications in

the spectrum manifest and it becomes straightforward to compute functional determinants

over the field fluctuations.

3.1 Metrics and normalizations

In this section we will frequently use standard global coordinates where the H2 metric is

ds2 = `2
(
dη2 + sinh2 η dφ2

)
. (3.1)

By making the change of variables z = tanh(η/2)eiφ, we can also go to the conformal disk

metric in holomorphic coordinates:

ds2 =
4`2dzdz̄

(1− |z|2)2 , (3.2)

where the boundary is at |z| = 1. We will make use of both of these coordinate frames.

We define the inner products for scalar fields φ, vector fields Aµ, and tensor fields Hµν

on the disk as:

〈φ|φ′〉 =

∫
d2x
√
g φφ′ ,

〈A|A′〉 =

∫
d2x
√
g gµνAµA

′
ν ,

〈H|H ′〉 =

∫
d2x
√
g gµνgρσHµρH

′
νσ .

(3.3)

It is significant that for fields with higher spin these normalization measures include more

factors of the inverse metric. Since the metric diverges at the boundary of AdS2 such fields

face weaker fall-off conditions near the boundary.

3.2 Scalar fields in AdS2

Consider a minimally coupled scalar field φ in AdS2. It has kinetic operator ∆(0) = −� ≡
−∇µ∇µ with the eigenvalue equation

∆(0)φ = λ2φ . (3.4)

The spectrum of the Laplacian on Euclidean AdS2 is continuous with eigenvalues

λ2 =
1

`2

(
p2 +

1

4

)
, (3.5)
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for any real number p. The eigenfunctions in global coordinates are given by [41]

upm(η, φ) =
1√
2π

1

2|m||m|!

∣∣∣∣∣
Γ
(
ip+ 1

2 + |m|
)

Γ(ip)

∣∣∣∣∣ e
imφ sinh|m| η

× 2F1

(
ip+

1

2
+ |m|,−ip+

1

2
+ |m|, 1 + |m|,− sinh2 η

2

)
,

(3.6)

with m taking integer values. The normalization of these functions is chosen such that

〈upm|up′m′〉 = `2δ(p−p′)δm,m′ . The spectral density (also known as the Plancherel measure)

of these modes is

µ(p) =
p tanh(πp)

2π
. (3.7)

In the proceeding work, we will refer to these scalar configurations as continuous modes,

in order to emphasize the continuous nature of their spectrum.

The continuous modes comprise an irreducible representation of the SL(2,R) isometry

group of the background. Following [42], they form the principal unitary series and thus

transform under SL(2,R) generators (detailed in subsection 2.4) as:

L2|upm〉 = −
(
p2 +

1

4

)
|upm〉 ,

L0|upm〉 = −m|upm〉 ,

L±1|upm〉 = −
∣∣∣∣ip±

1

2
+m

∣∣∣∣ |upm±1〉 .

(3.8)

The fact that the modes fall into such a representation is required purely by symmetry con-

siderations, since the background SL(2,R) symmetry is unbroken in this zero-temperature

limit.

There are additional solutions to the eigenvalue equation (3.4), but the corresponding

eigenfunctions are not normalizable. For example, any holomorphic (or anti-holomorphic)

function will be a zero mode of the scalar Laplacian and thus satisfy (3.4) with λ2 = 0

because the scalar Laplacian on the conformal disk is given by

−� = − 1

`2
(
1− |z|2

)
∂z∂z̄ . (3.9)

The canonical modes un = zn (and their anti-holomorphic conjugates) form a complete set

of zero modes but they are non-normalizable for any n since |un|2 → 1 as |z| → 1 and the

AdS2 volume diverges.

Although holomorphic modes are not normalizable on Euclidean AdS2 it is worth

stressing that the modes un = zn are normalizable on the disc. This is possible even though

these two geometries are conformally equivalent, because the conformal transformation

relating them is singular on the boundary and the normalization condition (3.3) is not

conformally invariant for a scalar field.
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3.3 Dualization of vectors and tensors to scalars

The Euclidean eigenvalue equation for a vector field Aµ in AdS2 is

∆(1)Aµ ≡
(
−�− 1

`2

)
Aµ = λ2Aµ . (3.10)

It is significant that the Laplacian ∆(1) differs from −� ≡ −∇µ∇µ by a term − 1
`2

due to

the curvature of AdS2.

In two Euclidean dimensions there is a canonical correspondence between the spectrum

of the vector field and the spectrum of two scalars. However, the subtlety known as

quantum inequivalence obstructs complete dualization of a vector into two scalars [43–46].

To explain, consider the Hodge decomposition stating that we can uniquely write the vector

field as

Aµ = ∇µφ‖ + εµν∇νφ⊥ +Aµ , (3.11)

where φ‖ and φ⊥ are scalar fields while Aµ is a harmonic vector field. Disregarding the

latter momentarily, the eigenvalue equation (3.10) becomes

∇µ
(
−�− λ2

)
φ‖ + εµν∇ν

(
−�− λ2

)
φ⊥ = 0 . (3.12)

Orthogonality then requires that both φ‖ and φ⊥ satisfy the scalar eigenvalue equation (3.4)

with the same value of λ2 as the vector field Aµ.

If this was the complete story, then a vector field in two dimensions would be ex-

actly equivalent to two scalar fields. However, the harmonic mode Aµ requires special

consideration. By definition, it is a zero mode of the vector field kinetic operator

∆(1)Aµ = 0 . (3.13)

The harmonic vector is a field configuration that can be dualized to either of the two

scalar modes so we should be careful to not over-count such modes. More importantly,

the required dual scalar must satisfy the harmonic condition �φ = 0. We discussed the

candidate harmonic scalars in the end of the preceding subsection and stressed that such

scalar zero modes are non-normalizable, and so they are not truly zero modes. However,

the vector field Aµ = ∇µφ‖ (or Aµ = εµν∇νφ⊥) is normalizable. Thus the spectrum of the

vector field on H2 is equivalent to two scalar fields and in addition includes physical zero

modes with no analogue in the scalar spectrum. Explicitly, the holomorphic scalars

un =
1√
2πn

zn , (3.14)

with n = 1, 2, . . . generate properly normalized harmonic modes for the vector field:

A(n)
z = `∇zun , 〈A(m)|A(n)〉 = `2δm,n . (3.15)

We can analyze a symmetric traceless tensor Hµν on AdS2 similarly. It has eigenvalue

equation

∆(2)Hµν ≡
(
−�− 4

`2

)
Hµν = λ2Hµν . (3.16)
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It is again significant that the Laplacian ∆(2) differs from −� ≡ −∇µ∇µ by a term − 4
`2

due to the curvature AdS2.

In this case there is a correspondence between the spectrum for the symmetric traceless

tensor and the spectrum of a vector, including a simple map between the corresponding

eigenfunctions. This correspondence is one-to-one on all non-harmonic modes as well as

harmonic modes with λ2 = 0 that appear in both cases. However, the tensor also has

“higher” harmonic modes with eigenvalue λ2 = − 2
`2

that have no analogue in the vector

spectrum.

The idea that establishes these claims is that essentially all symmetric traceless ten-

sors in two dimensions can be presented formally as pure diffeomorphisms. Accordingly,

consider a vector ξµ that solves the vector eigenvalue equation (3.10) with eigenvalue λ2.

This vector generates a symmetric traceless tensor of the form

Hµν = ∇{µξν} ≡ ∇µξν +∇νξµ − gµν∇ρξρ . (3.17)

It is then straightforward to apply the Laplacian to this expression and show that Hµν

satisfies its own eigenvalue equation (3.16) with the same value of λ2. This proves the

claim in one direction, i.e. that the spectrum of a normalizable vector field maps onto the

spectrum of a symmetric traceless tensor.

To prove the opposite direction and explain the exceptions, we first need to ask whether

all symmetric tensors can be presented as diffeomorphisms. Let’s assume the contrary, that

there is a normalizable mode Hµν that cannot be written as in (3.17) for any normaliz-

able vector ξµ. Then its contraction with the expression on the right-hand side of (3.17)

must vanish for any ξµ. We can then integrate this contraction over the entire geometry.

Because the vector and tensor fields must both be normalizable the integral only van-

ishes if (∇µHµν)ξν = 0 for all vectors ξν . This is only possible if the tensor is transverse

∇µHµν = 0.

The upshot of this discussion is that the eigenvalue equation for a tensor field on

AdS2 (3.16) can be solved exactly by a Hodge decomposition of the form

Hµν = ∇{µξν} +Hµν , (3.18)

where ξµ satisfies the vector eigenvalue equation (3.10) with the same value of λ2 and Hµν
is transverse. This transversality condition places two conditions on the component fields

of Hµν and is quite restrictive. In holomorphic coordinates, these conditions take the form

∇z̄Hzz = ∂z̄Hzz = 0, plus the holomorphic conjugate. The solutions to this are

H(n)
zz = `2

√
n(n2 − 1)

2π
zn−2 , (3.19)

where n is an integer that takes the values 2, 3, . . . . These field configurations are quadratic

holomorphic differentials. Importantly, they are normalizable modes, with the overall nor-

malization above chosen such that 〈H(m)|H(n)〉 = `2δm,n. Additionally, it is straightforward

to show that the quadratic holomorphic differentials satisfy the eigenvalue equation

∆(2)H(n)
µν = − 2

`2
H(n)
µν . (3.20)
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In other words, these modes are eigenfunctions of the tensor kinetic operator with eigen-

values λ2 = − 2
`2

.

Physically, the quadratic holomorphic differentials are manifestations of the symmetries

of AdS2. There are an infinite number of conformal Killing vectors on AdS2, as discussed in

subsection 2.4, enumerated by n ∈ Z. These vector fields satisfy the Euclidean eigenvalue

equation (3.10) with eigenvalue λ2 = − 2
`2

. They are not normalizable, though, and so

they are not physical vector modes. However, when we dualize these conformal Killing

vectors to tensor fields, some of the corresponding tensor modes are normalizable. These

normalizable tensor modes are precisely the quadratic holomorphic differentials (3.19). The

conformal Killing vectors on AdS2 therefore generate physical tensor modes that must be

summed over when we quantize a gravitational theory living on AdS2.

In summary, we have established that any vector field can be dualized to two scalars

plus a harmonic vector field. Similarly, a symmetric traceless tensor field can be dual-

ized to a vector plus a transverse tensor, with the latter corresponding to the quadratic

holomorphic differentials. Therefore, the tensor can be further dualized to two scalars, a

harmonic vector, and the quadratic holomorphic differentials. All the scalar fields will have

a continuous spectrum, while the harmonic vectors and transverse tensors have a discrete

spectrum. These discrete modes decouple from the continuous modes, but they must be

included in the full one-loop partition function.

3.4 AdS2 as a worldsheet

The arguments and results presented in the preceding subsection are similar to standard

ones in critical bosonic string theory, but they are not identical. For example, in our

spacetime context we analyze a symmetric tensor Hµν that we take to be traceless, but

there is no underlying Weyl symmetry that forces it to be traceless. It is instructive to

compare the two situations in the formalism that is familiar from bosonic string theory.

In the textbook version of gauge-fixed worldsheet string theory we must pay special

attention to residual diffeomorphisms that can be exploited to fix some of the vertex

operators. Their number is counted by the conformal Killing vectors which in turn are the

normalizable zero modes of the operator P1 defined by

(P1ξ)µν = ∇µξν +∇νξµ − gµν∇ρξρ . (3.21)

On the other hand, gauge-fixing of worldsheet diffeomorphisms also leaves unfixed moduli

that must be integrated over explicitly. Their number is counted by the quadratic holo-

morphic differentials which in turn are the normalizable zero modes of the adjoint operator

P T1 . An important constraint on these numbers is the Riemann-Roch theorem that yields

their difference

KerP1 −KerP T1 = 3χ , (3.22)

where the Euler characteristic χ is given by the Gauss-Bonnet theorem

χ =
1

4π

(∫
d2x
√
g R+ 2

∫
dt
√
γ K

)
. (3.23)

– 14 –



J
H
E
P
0
7
(
2
0
2
0
)
1
8
6

The sphere S2 has χ = 2 and satisfies the Riemann-Roch theorem with KerP1 = 6 real

conformal Killing vectors and KerP T1 = 0 quadratic holomorphic differentials. The disk D2

has χ = 1 and we can think of it as the sphere S2 with holomorphic and anti-holomorphic

coordinates identified such that the Riemann-Roch theorem holds with Ker P1 = 3 real

conformal Killing vectors and KerP T1 = 0.

The AdS2 geometry is the hyperbolic plane H2 and is related to the disk D2 via a

Weyl transformation that diverges on the boundary of the disk. In holographic applica-

tions we usually interpret the AdS2 geometry as the limit of regularized AdS2, where the

regulating boundary is removed by a cut-off surface which is subsequently taken towards

the asymptotic boundary. The Euler characteristic remains χ = 1 for each regularized disk

and so χ = 1 holds also for the AdS2 limit.

This result is realized in the Gauss-Bonnet theorem (3.23) as follows. The curvature

is constant, R = − 2
`2

, and gets multiplied by the overall divergent volume. However, the

boundary term cancels the divergent bulk volume while also adding a finite, negative term

to the on-shell action. This is precisely the well-known mechanism that renormalizes the

AdS2 volume to −2π`2. The Euler characteristic χ = 1 of H2 follows from multiplication

of the curvature R = − 2
`2

by this renormalized, negative volume.

Importantly, though, while AdS2 has the same genus as a disk, they realize the

Riemann-Roch theorem differently. As stressed in subsection 2.4, there are no normal-

izable conformal Killing vectors in AdS2. But, as we established in subsection 3.3, there

is an infinite tower of normalizable quadratic holomorphic differentials. At any point in

AdS2, we can sum over this tower to find a constant local density of modes:

∞∑

n=2

(
|H(n)

zz |2 + h.c.
)

=

∞∑

n=2

n(n2 − 1)

4π`2
|z|2(n−2)

(
1− |z|2

)4
=

3

2π`2
. (3.24)

The regularized AdS2 volume is −2π`2, and so (after regularization) the number of quad-

ratic holomorphic differentials comes out to be

KerP T1 = −2π`2 × 3

2π`2
= −3 . (3.25)

We therefore find that the Riemann-Roch theorem is satisfied in AdS2 spacetimes with

KerP1 = 0 real conformal Killing vectors and KerP T1 = −3 quadratic holomorphic differ-

entials.

The fundamental difference between these two perspectives comes from considerations

of Weyl symmetry. In worldsheet string theory the Weyl symmetry is exact and must

be gauge-fixed to eliminate redundancies. Gravitational theories on nearly-AdS2 space-

times, on the other hand, have a classical Weyl symmetry that is broken by the vacuum.

The Goldstone bosons reflecting this symmetry breaking are the quadratic holomorphic

differentials which are therefore physical degrees of freedom.

3.5 Free field partition function

In preparation for computing the partition function of the JT model in the next section,

we now address the closely-related problem where each field in the model is replaced by its

minimally-coupled analogue and propagates on a fixed AdS2 background.
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The graviton can be decomposed into its scalar trace plus a symmetric traceless tensor,

while the dilaton is simply a real scalar field. Furthermore, diffeomorphism-invariance of

the theory acts as a gauge symmetry on these fields that requires the addition of two

real vector Fadeev-Popov ghosts,3 in order to pick out a particular gauge orbit. We thus

consider a symmetric traceless tensor, two scalars, and two vector ghosts. In this subsection

we further endow all fields with common mass m. The one-loop partition function will then

be given by

Z =

√
det (∆(1) +m2)2

det (∆(0) +m2)2 det (∆(2) +m2)
, (3.26)

where ∆(0), ∆(1), and ∆(2) are the kinetic operators for massless scalars, vectors, and ten-

sors that were introduced in subsections 3.2 and 3.3. The ghost fields have anti-commuting

statistics, and so their contribution to the partition function (3.26) is in the numerator

rather than in the denominator.

Each of these functional determinants can be evaluated explicitly on their own. For ex-

ample, the functional determinant for a single scalar kinetic operator will involve explicitly

summing over all eigenvalues of the continuous modes upm:

logZ = −1

2
log det

(
∆(0) +m2

)
= −1

2

∫ +∞

−∞
dpµ(p)

(
p2 +

1

4
+m2`2

)
, (3.27)

with the spectral density µ(p) given in (3.7). As is standard in one-loop calculations in

quantum field theory, this expression is formally divergent and requires careful regulariza-

tion. However, in our current setup, we do not actually need to evaluate this quantity. As

far as the continuous sector is concerned, each of the real vector ghosts can be dualized to

two scalar fields, while the symmetric traceless tensor can be dualized to a vector (which

is then further dualized to two scalars). Therefore the net spectrum consists of four scalar

fields and four ghost scalars, all with exactly the same spectrum of eigenvalues. We there-

fore have a precise cancellation between the physical and ghost modes in the continuous

sector, leaving us with

Zcont = 1 . (3.28)

However, as emphasized in subsection 3.3, it is not possible to dualize vectors and

tensors entirely to scalars; we must also carefully consider the discrete mode sector. We

first consider the harmonic vectors given in (3.15) as A(n)
z with n = 1, 2, . . . (as well as their

Hermitian conjugates). They appear in the Hodge decompositions of the two vector ghosts

and also in the symmetric traceless tensor, effectively yielding a single tower of discrete

modes from one real ghost. The kinetic operator ∆(1) vanishes on the harmonic vectors so

the operators ∆(1) + m2 in the determinant (3.26) have eigenvalue m2. The contribution

to the partition function from harmonic vectors is therefore given by

Zharmonic =
∞∏

n=1

(
m2`2

)
. (3.29)

3We discuss the gauge-fixing procedure in subsection 4.2. Two vector ghosts are needed in harmonic

gauge.
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We also need to consider the quadratic holomorphic differentials given in (3.19) as H(n)
zz

with n = 2, 3, . . . (as well as their Hermitian conjugates). They appear in the decomposition

of the symmetric traceless tensor and have eigenvalue m2`2 − 2. Their contribution to the

partition function is

ZQHD =

∞∏

n=2

(
m2`2 − 2

)
. (3.30)

There is no mixing between the continuous modes, the discrete vector modes, and the

discrete QHDs in the path integral. Therefore, the full one-loop partition function (3.26)

becomes
logZ = logZcont + logZharmonic + logZQHD

=

∞∑

n=1

logm2`2 −
∞∑

n=2

log
(
m2`2 − 2

)
.

(3.31)

Of course, this simpler expression is still obviously UV-divergent. There are many ways to

regularize it, such as Pauli-Villars regularization or heat kernel regularization. The simplest

way to do so in this free-field example is through zeta-function regularization which easily

gives

logZ = ζ(0) log m2`2 − (ζ(0)− 1) log
(
m2`2 − 2

)

= −1

2
log m2`2 +

3

2
log
(
m2`2 − 2

)
.

(3.32)

The removal of the UV-divergence leaves ambiguous the finite coefficients of power-law

corrections, but (3.32) comprises all terms in Z that depend logarithmically on m.

The result (3.32) is finite only when m2 > 2
`2

. In the next section we will see that the

JT model is similar to the free model where all fields have an on-shell mass of m2 = 2
`2

due to their coupling to the cosmological constant. Then the first term in (3.32) is a finite

constant while the second is logarithmically divergent. After also taking the coupling to the

background dilaton properly into account, the latter will essentially become the logarithm

of the small dilaton slope.

4 Quantum corrections to the Jackiw-Teitelboim Model

In this section we compute the logarithmic corrections to the one-loop partition function

in the Jackiw-Teitelboim Model. We first determine the gauged-fixed form of the action

for quadratic fluctuations around the black hole background and then compute the corre-

sponding functional determinant perturbatively away from the free theory discussed in the

previous section. We exhibit several distinct cancellations before concluding that the quan-

tum corrections are dominated by quadratic holomorphic differentials (QHDs) perturbed

by the dilaton.

4.1 Effective field theory expectations

The free field modes considered in section 3 diagonalize their canonical Laplacians with the

requisite spin. The true gauged-fixed quadratic action that we determine in this section will
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be different in detail so the free modes will not be eigenfunctions but they will nonetheless

form a complete basis for all quantum fluctuations.

The non-minimal couplings will present several challenges but ultimately we will find

that the exact cancellations in the free field partition function will carry over to the com-

plete Jackiw-Teitelboim model, albeit approximately, due to the mild conformal symmetry

breaking. These approximate cancellations will be enough to show that the logarithmic

terms in the partition function are entirely due to the quadratic holomorphic differentials.

Before getting into technical details, it is worth outlining why this result is expected

from effective field theory, as depicted in figure 2. Intuitively, we will interpret all fields

in the JT model as scalars with on-shell mass m2 = 2
`2

, which arises from their coupling

to the background cosmological constant. In AdS2 their continuous off-shell (Euclidean)

spectrum is strictly larger with λ2 ≥ 9
4`2

. In this terminology zero-modes (a.k.a. harmonic

modes) have λ2 = 2
`2

and the “true” zero-modes with λ2 = 0 are the QHDs.

Thermal effects due to the black hole background modify all these values but, in the

near-extremal regime we consider, the energy scale ∼ 1
`2

is parametrically larger than

the scale set by the black hole temperature, and so the finite-temperature effects will

generally be subleading. However, the partition function of the QHDs will be dominated

by the thermal effects. We interpret them as near-zero modes that are lifted above zero

by the conformal symmetry breaking and give correspondingly large contributions to the

Euclidean partition function of the theory.

4.2 One-loop quadratic action

We expand the dilaton and the metric to quadratic order around their classical background

values via the variations

δgµν = hµν , δΦ = φ . (4.1)

It is useful to decompose the metric fluctuations into its trace and its traceless components,

given respectively by

h = h µ
µ , h̄µν = hµν −

1

2
gµνh . (4.2)

Using the background equations of motion, the second variation of the action (2.1) can

then be put in the form

δ2IJT = − 1

16πG2

∫
d2x
√
g

[
1

2
h̄µν

(
� +

2

`2

)
h̄µν + (∇µh̄µν)(∇ρh̄ρν)

+ 2φ∇µ∇ν h̄µν − φ
(
�− 2

`2

)
h+ (∇µΦ)

(
2h̄µν∇ρh̄ρν + h∇ν h̄µν

)

+ (Φ− 1)

(
1

2
h̄µν

(
� +

1

`2

)
h̄µν + (∇µh̄µν)(∇ρh̄ρν) +

h2

2`2

)]
.

(4.3)

We chose Dirichlet boundary conditions for the field variations that force hµν and φ to

vanish on the boundary, and so boundary terms in the action (4.3) are absent.

We fix the gauge of the metric fluctuations to the harmonic gauge

Gµ ≡ ∇ν h̄µν = 0 , (4.4)
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λ2

0

QHD
modes

2
`2

Harmonic
modes

1
`2

(
p2 + 9

4

)

Continuous
modes

T 2

Figure 2. The spectrum of various types of Euclidean AdS2 field modes with an on-shell mass of

m2 = 2
`2 . The quadratic holomorphic differentials are zero modes in the extremal limit, so they

dominate finite-temperature effects.

by adding the gauge-fixing action

Ig.f. =
1

16πG2

∫
d2x
√
g ξ−1GµG

µ , (4.5)

where ξ is an arbitrary numerical gauge parameter. Under an infinitesimal diffeomorphism

xµ → xµ + ξµ, the field fluctuations transform as δhµν = 2∇(µξν). The corresponding

functional derivative of the gauge-fixing function Gµ is then given by

δGµ
δξν

= gµν

(
�− 1

`2

)
. (4.6)

The functional determinant of this variation appears in the path-integral when using the

Faddeev-Popov procedure to impose the harmonic gauge condition (4.4) at the quantum

level. We include it by introducing anti-commuting vector ghosts bµ, cµ with action

Ighost = − 1

16πG2

∫
d2x
√
g bµ

(
�− 1

`2

)
cµ . (4.7)

That the ghosts are vectors with a second order action is due to the harmonic gauge condi-

tion and follows algorithmically from the steps above. Moreover, we devised the particular

gauge function so that these two vector ghosts are free. Other choices could introduce

couplings between the ghosts and the background dilaton which would be technically more

complicated without changing any physical observables.

We now add the gauge-fixing term (4.5) and the ghost action (4.7) to the quadratic

variation (4.3) of the original JT action and find the total one-loop quadratic action

I = − 1

16πG2

∫
d2x
√
g

[
1

2
h̄µν

(
� +

2

`2

)
h̄µν +

ξ − 1

ξ
(∇µh̄µν)(∇ρh̄ρν)

+ 2φ∇µ∇ν h̄µν − φ
(
�− 2

`2

)
h+ (∇µΦ)

(
2h̄µν∇ρh̄ρν + h∇ν h̄µν

)

+ (Φ− 1)

(
1

2
h̄µν

(
� +

1

`2

)
h̄µν + (∇µh̄µν)(∇ρh̄ρν) +

h2

2`2

)

+ bµ

(
�− 1

`2

)
cµ
]
.

(4.8)
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The corresponding eigenvalue equations for the field fluctuations are

(
−�− 2

`2
− λ2

)
h̄µν =

2(1− ξ)
ξ

∇{µ∇ρh̄ν}ρ + 2∇{µ∇ν}φ

+ (Φ− 1)
(
�h̄µν − 2∇{µ∇ρh̄ν}ρ

)

+ (∇ρΦ)
(
∇ρh̄µν − 2∇{µh̄ν}ρ − gρ{µ∇ν}h

)
,

(
−� +

2

`2
− λ2

)
h = −2∇µ∇ν h̄µν ,

(
−� +

2

`2
− λ2

)
φ = −(Φ− 1)

h

`2
− (∇µΦ)∇ν h̄µν ,

(
−� +

1

`2
− λ2

)
cµ =

(
−� +

1

`2
− λ2

)
bµ = 0 ,

(4.9)

where we have defined O{µν} ≡ 1
2 (Oµν +Oνµ − gµνgρσOρσ) as the symmetrized, traceless

part of any tensor Oµν .

The kinetic terms on the left-hand side of the eigenvalue equations correspond for

all fields to an on-shell mass m = 2
`2

(where by “mass” we refer to the scalar mass after

appropriate dualizations), equivalent to conformal dimension h = 2. Therefore these kinetic

terms by themselves define the free model we analyzed in section 3, with this specific value

of the mass.

The right-hand sides of the eigenvalue equations simplify considerably in the extremal

limit where the background dilaton has no slope and we can simply set Φ = 1. Even

in this limit, though, they represent non-trivial kinetic terms beyond those of the free

model in section 3. Moreover, once the dilaton slope gets turned on, the problem becomes

much harder because the coupling to the background dilaton is fairly complicated. In

the following subsections we compute the one-loop action by first expanding on the free

field basis and then computing perturbatively in powers of
√
µa, the small parameter that

controls the dilaton profile.

4.3 Continuous modes

In this subsection we address the contributions from continuous modes to the partition

function. They come from dualizing all fields to scalars, and then expanding these scalars

on the complete basis of functions {upm} that we introduced in subsection 3.2. Recall

that these functions are defined for all radial momenta p ∈ R and all azimuthal quantum

numbers m ∈ Z, and that they are normalized such that

〈upm|up′m′〉 =

∫
d2x
√
g up′m′upm = `2δ(p− p′)δm,m′ . (4.10)

When we dualize a vector to scalars, we get two distinct sets of continuous modes given by

(v‖pm)µ =
`√

p2 + 1
4

∇µupm , (v⊥pm)µ =
`√

p2 + 1
4

εµν∇νupm . (4.11)
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Similarly, when we dualize the traceless symmetric tensor to scalars, we get two more

distinct sets of continuous modes:

(w‖pm)µν =
`2√

2
(
p2 + 1

4

) (
p2 + 9

4

)∇{µ∇ν}upm ,

(w⊥pm)µν =
`2√

2
(
p2 + 1

4

) (
p2 + 9

4

)∇{µεν}ρ∇ρupm .
(4.12)

The prefactors in (4.11) and (4.12) for the vector and tensor modes are chosen such that

they satisfy the normalization conditions

〈v‖p′m′ |v
‖
pm〉 = 〈v⊥p′m′ |v⊥pm〉 = `2δ(p− p′)δm,m′ , 〈v‖p′m′ |v

⊥
pm〉 = 0 ,

〈w‖p′m′ |w
‖
pm〉 = 〈w⊥p′m′ |w⊥pm〉 = `2δ(p− p′)δm,m′ , 〈w‖p′m′ |w

⊥
pm〉 = 0 .

(4.13)

We expand all fluctuating fields in our quadratic action on these bases:

h̄µν =
∑

m

∫
dp (c1pmw

‖
pm + c2pmw

⊥
pm)µν ,

h =
∑

m

∫
dp c3pmupm , φ =

∑

m

∫
dp c4pmupm ,

bµ =
∑

m

∫
dp (c5pmv

‖
pm + c6pmv

⊥
pm)µ ,

cµ =
∑

m

∫
dp (c7pmv

‖
pm + c8pmv

⊥
pm)µ ,

(4.14)

with arbitrary constants cipm parametrizing the configuration space of all fields.

We now need to evaluate the (Euclideanized) quadratic action (4.8) over these expan-

sions of our fields in order to compute the continuous mode contribution to the one-loop

partition function.4 The physical fields decouple from the ghost fields so we can decompose

the action as

I = Ib + Ighost , (4.15)

where Ib is the action for the physical bosonic fields and Ighost the action for the ghost

fields. Upon expansion on our basis modes these contributions become

Ib =
∑

m,m′

∫
dp dp′

(
c1pm . . . c4pm

)
Mpm,p′m′



c1p′m′

...

c4p′m′


 ,

Ighost =
∑

m,m′

∫
dp dp′

(
c5pm . . . c8pm

)
Npm,p′m′



c5p′m′

...

c8p′m′


 ,

(4.16)

4When we Euclideanize the one-loop quadratic action, we also need to Wick-rotate the scalar metric

fluctuation h → ih such that its kinetic term becomes positive-definite. This is the standard resolution

to the well-known conformal factor problem in Euclidean quantum gravity [47–49]. This procedure is the

origin of explicit factors of i in the matrices.
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where M , N are 4×4 matrices with indices ranging over all quantum numbers. We further

decompose the matrix M as

Mpm,p′m′ = M
(0)
pm,p′m′ +M

(1)
pm,p′m′ , (4.17)

where M (0) is the zero-temperature piece that comes from setting the dilaton to the con-

stant Φ = 1, while M (1) is the additional finite-temperature contribution that depends on

the full dilaton profile. Explicit computation of these matrices gives

M
(0)
pm,p′m′ =

p2 + 9
4

32πG2
δ(p− p′)δm,m′




ξ−1 0 0 −
√

2p2+ 1
2

p2+ 9
4

0 ξ−1 0 0

0 0 0 −i

−
√

2p2+ 1
2

p2+ 9
4

0 −i 0



, (4.18)

M
(1)
pm,p′m′ =

1

32πG2




0 0 i

√
p2+ 9

4

p2+ 1
4

Rp′m′,pm 0

0 0 i

√
p2+ 9

4

p2+ 1
4

Lp′m′,pm 0

i

√
p′2+ 9

4

p′2+ 1
4

Rpm,p′m′ i
√

p′2+ 9
4

p′2+ 1
4

Lpm,p′m′ −R(pm,p′m′) 0

0 0 0 0




, (4.19)

where the functions L and R are defined as the integrals over the dilaton profile and the

scalar wavefunctions:

Lpm,p′m′ ≡
∫
d2x
√
g εµν (∇νΦ)upm∇µup′m′ ,

Rpm,p′m′ ≡
∫
d2x
√
g (∇µΦ)upm∇µup′m′ .

(4.20)

The matrix M (0) is relatively simple because it does not mix different values of p nor m.

The only mild complication is the off-diagonal terms due to the kinetic term φ∇µ∇ν h̄µν
that appears in the action for quadratic fluctuations in the Jackiw-Teitelboim model but

not in our free benchmark model.

On the other hand, the matrix M (1) is complicated because it mixes different values

of p and m and depends on the dilaton profile. Crucially, though, most of its entries are

zero. This is not obvious; it is the result of an intricate cancellation among the various

terms in the action (4.8) when we evaluate its matrix elements on the basis of continuous

field modes.

The final matrix is the ghost matrix N . It is nearly trivial, because we intentionally

chose a gauge-fixing condition that simply gave two free vector ghosts. Explicitly, N is
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given by

Npm,p′m′ =
p2 + 9

4

32πG2
δ(p− p′)δm,m′




0 −1 0 0

−1 0 0 0

0 0 0 −1

0 0 −1 0


 . (4.21)

As expected, this matrix does not mix different values of (p,m) because the ghost fields

are minimally-coupled to the background metric and do not interact with the background

dilaton.

The path integral in the continuous mode sector at this point has reduced to an

ordinary Gaussian integral over the coefficients cipm. We find

Zcont = ZbZghost , (4.22)

where

Zb =

∏
p,m π

2

√
detM

, Z−1
ghost =

∏
p,m π

2

√
detN

. (4.23)

Each determinant is over the quantum numbers (p,m) as well as the 4× 4 matrices them-

selves. The ghosts contribute as an inverse due to their Fermi statistics.

The requisite functional determinants are difficult to compute in general but they are

simple in the extremal limit
√
µa → 0. Accordingly, we temporarily ignore the finite-

temperature piece M (1) and then find the partition functions

Zb(T = 0) =
∏

p,m

(
32π2G2

p2 + 9
4

)2

ξ ,

Z−1
ghost(T = 0) =

∏

p,m

(
32π2G2

p2 + 9
4

)2

.

(4.24)

Despite the couplings between the metric and dilaton fluctuations in the one-loop quadratic

action, encoded in the real off-diagonal terms of M (0) displayed in (4.18), the results (4.24)

are precisely what we would obtain for entirely free fields. Moreover, all physical results are

independent of the gauge-fixing parameter so we can take ξ = 1 without loss of generality.

With this choice the physical and ghost contributions to the continuous sector partition

function Zcont in the extremal limit are manifestly inverses of one another and therefore

cancel. We are left with

Zcont(T = 0) = 1 , (4.25)

with no regularization required. This is consistent with prior results [50] finding that, for a

constant dilaton, there are no perturbative quantum corrections to the classical partition

function.

We now need to address the finite-temperature case. In the low-temperature regime

we can make progress in perturbation theory, expanding the determinant of M as:

detM = detM (0)

(
1 + trM (1) +

1

2

[
tr2M (1) − tr (M (1))2

]
+ . . .

)
, (4.26)
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while the determinant of N is left unchanged. The cancellation already established for

T = 0 then gives the finite-temperature continuous sector partition function

Zcont = 1 + trM (1) +
1

2

[
tr2M (1) − tr (M (1))2

]
+ . . . . (4.27)

The matrix M (1) given in (4.19) depends linearly on the dilaton profile through L and

R defined in (4.20). These functions are somewhat delicate because the dilaton profile

diverges at the boundary. However, we can get a handle on them by using the connection to

the conformal isometry algebra of the Jackiw-Teitelboim model discussed in subsection 2.4.

Specifically, they can be recast as matrix elements of the operators L0, R0 in the SL(2,R)×
SL(2,R) algebra defined in (2.23):

Lpm,p′m′ ≡
∫
d2x
√
g εµν (∇νΦ)upm∇µup′m′ =

√
µa〈upm|L0|up′m′〉 ,

Rpm,p′m′ ≡
∫
d2x
√
g (∇µΦ)upm∇µup′m′ =

√
µa〈upm|R0|up′m′〉 .

(4.28)

The leading temperature-dependent piece in the continuous mode partition function (4.27)

is then given by

trM (1) = −√µa
∑

m

∫
dp 〈upm|R0|upm〉 . (4.29)

This matrix element can be evaluated directly via an integral of complex hypergeo-

metric functions over the entire divergent volume of the hyperbolic plane. However, such

an evaluation is in general difficult and requires a careful consideration of how to go to

the disk boundary. We will not do such a computation; instead, there is a simple way to

see that the expression (4.29) must vanish. First, recall that (as established in (3.8)) the

continuous mode wavefunctions fall into representations of the SL(2,R) such that

L2|upm〉 = −
(
p2 +

1

4

)
|upm〉 . (4.30)

Then, we can see from the SL(2,R)×SL(2,R) algebra (2.23) that the operator R0 does not

commute with the operator L2, as defined in (2.27). Since |upm〉 is an eigenfunction of L2

with an eigenvalue −
(
p2 + 1

4

)
, this implies that R0 cannot preserve the quantum number

p when acting on the states |upm〉. That is, R0 must take |upm〉 into a combination of other

states with different values of p. Then, orthogonality of the wavefunctions immediately

gives

〈upm|R0|upm〉 = 0 . (4.31)

We can reach the same conclusion via analytic continuation of spherical harmonic matrix

elements, as discussed in appendix B. Either way, we find that

trM (1) = 0 . (4.32)

Summarizing this subsection, we have Zcont = 1 + O(µa), where the higher-order

terms require a more complete evaluation of the dilaton matrix elements. Thus two nice
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cancellations have occured; namely, the zero-temperature pieces from the physical fields

and the ghosts cancel exactly, and the O(
√
µa) terms from the physical fields also cancel.

The parameters µ and a are related to the background black hole quantities such that

µa ∝ T 2 so we are left with

logZcont = O(T 2) . (4.33)

In particular, this means that the continuous modes contribute no logarithmic terms to the

one-loop free energy. Furthermore, they cannot affect the leading-order O(T ) contributions

to the black hole entropy from thermal fluctuations.

4.4 Discrete modes

In this subsection we tackle the contribution of the discrete modes to the one-loop partition

function. These modes are orthogonal to the continuous modes considered in the previous

subsection and this decoupling persists when a dilaton profile which, as we argued there

(and in appendix B), is equivalent to a small change in the continuous quantum number. We

therefore focus on the discrete modes by themselves, arising from quantum inequivalence

when dualizing either vector or tensor fields entirely to scalars. There are two types:

harmonic modes (vectorial) and quadratic holomorphic differential forms (tensorial). We

consider them in turn.

The vector harmonic modes are

A(n)
z = `

√
n

2π
zn−1 , (4.34)

plus the Hermitian conjugates, where n = 1, 2, . . . , and the normalization has been chosen

such that 〈A(n)|A(m)〉 = `2δn,m. The configuration space of the ghost sector includes

these discrete modes because the ghosts are vector fields. However, we chose a gauge in

which the ghosts do not couple to the background dilaton. Therefore, the ghost fields do

not contribute to the logarithmic dependence of the one-loop partition function on the

temperature and so we do not need to consider them in detail for our purposes.

It is also important to take the harmonic modes into account when considering the

configuration space of the traceless symmetric tensor. They give rise to the tensor modes

B(n)
zz = `∇zA(n)

z = `2
√

n

2π
zn−2n(1− |z|2)− 1− |z|2

1− |z|2
, (4.35)

plus their Hermitian conjugates. These modes are “pure gauge” by construction because

they arise from the diffeomorphism vector A(n)
z . Moreover, A(n)

z is not a large diffeomor-

phism because it is normalizable. In simpler circumstances these field configurations would

be discarded as unphysical, or they would be cancelled by ghosts. However, they couple

non-trivially to the dilaton background, and so (unlike the ghosts discussed in the previous

paragraph) we must retain these discrete modes and analyze them in detail.

The quadratic holomorphic differentials (QHDs) also give discrete tensor modes

H(n)
zz = `2

√
n(n2 − 1)

2π
zn−2 , (4.36)
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with n = 2, 3, . . . . These QHD modes and the tensor modes (4.35) constructed from

harmonic vectors together form an orthonormal basis

〈B(n)|B(m)〉 = `2δn,m , 〈H(n)|H(m)〉 = `2δn,m , 〈B(n)|H(m)〉 = 0 , (4.37)

for the discrete tensor modes. The discrete part of the traceless, symmetric part of the

graviton h̄µν can therefore be expanded as

h̄zz =
∞∑

n=1

b1nB(n)
zz +

∞∑

n=2

b2nH(n)
zz , (4.38)

for some arbitrary complex constants bin.

Our next step is to insert this expansion into the (Euclideanized) quadratic action (4.8).

The orthonormality relations (4.37) between discrete tensor modes decouple the harmonic

modes and the QHDs on pure AdS2. Conveniently, this decoupling remains even after the

dilaton profile is taken into account because integrals of the form
∫
dz dz̄

√
g (Φ− 1)H(n)

zz B(m)zz ,

∫
dz dz̄

√
g∇µΦ∇µH(n)

zz B(m)zz , (4.39)

vanish. This means we can split up the one-loop quadratic action (4.8) as

I = Iharmonic + IQHD . (4.40)

After explicitly inserting the discrete mode decomposition (4.38) into the quadratic action

we now find

Iharmonic =
∞∑

n=1

|b1n|2
(

1

8πG2ξ
−

5n
√
µa

16πG2

)
,

IQHD =

∞∑

n=2

|b2n|2n
√
µa

16πG2
.

(4.41)

Note that the term due to the QHDs vanishes in the limit of vanishing dilaton slope
√
µa → 0. This is because these modes are true zero-modes from the perspective of

Euclidean AdS2.

The one-loop partition functions are now easily computed as Gaussian integrals over

the expansion coefficients b1n and b2n:

Zharmonic =
∞∏

n=1

∫
db1ndb̄1n exp

(
−|b1n|2

2− 5nξ
√
µa

16πG2ξ

)
=
∞∏

n=1

32π2G2ξ

2− 5nξ
√
µa

,

ZQHD =

∞∏

n=2

∫
db2n db̄2n exp

(
−|b2n|2

n
√
µa

16πG2

)
=

∞∏

n=2

32π2G2

n
√
µa

.

(4.42)

Using our classical dictionary (2.6) to relate the parameters µ, a to the physical scales in

the theory we then find

logZharmonic = −
∞∑

n=1

log

(
1

16π2G2ξ
− 5nT

8π2Mgap

)
,

logZQHD = −
∞∑

n=2

log

(
nT

8π2Mgap

)
.

(4.43)
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As is typical in one-loop computations, our results for the partition functions are

divergent so we must carefully regulate these expressions and extract the finite, physical

terms. It is only the logarithmic term in the free energy that come entirely from one-loop

fluctuations, and this is what we want to compute. Moreover, we focus on the temperature-

dependence of this logarithmic piece in order to make connection with the SYK model. One

can argue by dimensional analysis that the regularized one-loop partition function must

take the form

logZ = α log
T

Λ
+ c0 + c1

T

Λ
+ c2

T 2

Λ2
+ . . . , (4.44)

where Λ is some renormalization scale and α, ci are some Wilsonian numerical parameters.

The O(1) terms are scheme-dependent and depend on precisely how we regularize our

one-loop divergences. However, the coefficient α is unambiguous and can be extracted by

computing

lim
T→0

T
∂ logZ

∂T
= α . (4.45)

We can use this relation to extract the coefficient of the logarithmic term for the harmonic

and QHD contributions to the partition function (4.43). The result of this is

lim
T→0

T
∂ logZharmonic

∂T
= 0 ,

lim
T→0

T
∂ logZQHD

∂T
= −

∞∑

n=2

1 = 1− ζ(0) ∼=
3

2
,

(4.46)

where in the last line we used zeta function regularization to make the sum over QHD

modes finite. The technical reason that the harmonic modes do not contribute is that

the temperature T ∼ √µa appears as a shift of the nonvanishing eigenvalues in (4.41),

in contrast to the QHDs that acquire their entire “mass” from the breaking of conformal

symmetry. This is a precise version of the physical reasoning based on effective quantum

field theory that was advanced in subsection 4.1 and especially in figure 2.

Therefore, we find that the logarithmic corrections to the partition function arise

entirely from the quadratic holomorphic differentials:

logZQHD =
3

2
log

T

Λ
+ . . . , (4.47)

where the dots indicate terms that are independent of T or subleading in T . Since the size

of the dilaton profile (and thus the conformal symmetry breaking scale) is controlled by

the parameter
√
µa = 4G2T/Mgap we identify the renormalization scale Λ as

Λ =
Mgap

G2
. (4.48)

We have required G2 � 1 (for many reasons, including in (2.13)) and thus Λ�Mgap. This

condition allows a regime of temperatures Λ� T �Mgap where it is justified to treat the

Jackiw-Teitelboim model as an effective field theory, as indicated in (2.13).
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The QHDs determine the entire logarithmic term in our partition function since the

continuous modes and the harmonic modes do not contribute. Therefore, our final result

for the one-loop partition function of the Jackiw-Teitelboim model is

logZ|one-loop =
3

2
log

G2T

Mgap
= −3

2
log

βMgap

G2
. (4.49)

This one-loop partition function, computed entirely using bulk methods, is the main result

of our paper. It matches the one-loop SYK partition function (1.1) and serves as a precision

test for the near-AdS2/near-CFT1 correspondence.

5 Black hole entropy

Having the one-loop correction to the partition function, we can determine the correspond-

ing one-loop correction to the entropy of black holes in the Jackiw-Teitelboim model. The

partition function is computed in the canonical ensemble, where the temperature of the

system is fixed, while the entropy is computed in the microcanonical ensemble, where each

state has a fixed energy. In this section, we will perform the Legendre transform from

the canonical ensemble to the microcanonical ensemble in order to determine the one-loop

correction to the Bekenstein-Hawking law (2.7). This result has been derived before [5],

but we find it instructive to go through the details and discuss implications of the result.

Let H denote the Hilbert space of black hole microstates |i〉, each with an associated

energy Ei. The canonical partition function can then be presented as

Z(β) =
∑

i∈H
〈i|e−βEi |i〉 . (5.1)

When the black hole is large, the interactions between the black hole and any fields in

the system are negligible compared to the black hole’s mass energy, and so we can ap-

proximate each microstate’s energy as Ei ≈M . The canonical partition function can then

be expressed as a sum over all black hole microstates, weighted by the microcanonical

degeneracy of microstates Ω(M) = eS(M), such that

Z(β) =

∫
dM eS(M)−βM . (5.2)

The integrand in (5.2) is strongly peaked around the classical value of M corresponding

to a given inverse temperature β. We can therefore perform a Laplace transformation to

invert this expression and solve for the microcanonical entropy, which yields

eS(M) =

∫
dβ Z(β) eβM . (5.3)

We consider sufficiently large black holes such that the logarithmic quantum correction

to the entropy dominates over all other corrections. Then the saddle-point approximation

is justified when computing the integral in (5.3). It gives

eS(M) ≈ Z(βcl)e
βclM
√

2π

(
∂2 logZ(βcl)

∂β2

)−1/2

, (5.4)

– 28 –



J
H
E
P
0
7
(
2
0
2
0
)
1
8
6

where βcl is the classical value of the inverse temperature β that corresponds to a black

hole of mass M . Inserting partition function logZ(β) = −Icl + logZ(β)
∣∣
one-loop

including

the one-loop correction (4.49) we find that

S(M) ≈ −Icl + βclM + logZ(βcl)
∣∣
one-loop

− 1

2
log

(
∂2 logZ(βcl)

∂β2

)
+O(1) . (5.5)

The first two terms in this expression are the classical contributions which combine to

the Bekenstein-Hawking entropy SBH. The next two terms are the logarithmic quantum

corrections. The classical partition function logZ(βcl) is linear in the temperature T =

β−1 so
∂2 logZ(βcl)

∂β2
∼ β−3 . (5.6)

However, the one-loop partition function logZ(βcl)
∣∣
one-loop

∼ −3
2 log β so we find that

the logarithmic contributions to the entropy coming from one-loop corrections to the free

energy (4.49) cancel precisely with the logarithmic terms we obtain from performing the

Legendre transform (5.5). We are simply left with

S(M) = SBH =
Φ|H
4G2

, (5.7)

with no logarithmic corrections to the microcanonical entropy.

This cancellation is somewhat surprising. The coefficient of the logarithmic correction

sets a dynamical scale in quantum gravity that runs along the RG flow [51–53]. When the

background preserves supersymmetry, this coefficient can be related via index theorems to

certain topological invariants on the background manifold and thus it becomes protected

along the RG flow [25, 54–56]. Recent results show that there are situations in which this co-

efficient is topological even on non-BPS backgrounds [57, 58], but this non-renormalization

still relies on supersymmetry at the level of the action itself [53]. The Jackiw-Teitelboim

model is not supersymmetric, though, yet it appears that the logarithmic corrections aris-

ing from the gravitational sector of the near-horizon geometry are protected. This merits

further exploration.

6 Discussion

In this paper we have computed the logarithmic temperature dependence −3
2 log β in the

partition function of the JT model. This is a test of near-AdS2/near-CFT1 holography

because it agrees precisely with the one found in the SYK model.

Our result is far from new at the purely numerical level, as the same answer has been

reported many times over the last few years. However, previous computations exploited

the classical equivalence of the JT model with the Schwarzian boundary theory at low

temperature and then analyzed quantum corrections in the latter theory. In contrast, we

use traditional methods in Euclidean quantum gravity. Our different perspective highlights

several points that were not emphasized in recent literature and would be worth developing

further.
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Quantum corrections to extremal black hole entropy. The full logarithmic term

in the partition function (4.49) can be written as

logZ|one-loop =
3

2
log

(
T

MgapS0

)
.

The entropy above extremality ∆S = S − S0 = TM−1
gap is the classical entropy described

by the Schwarzian at finite temperature, and quantum fluctuations around this saddle

point give the correct temperature dependence 3
2 log(TM−1

gap). However, the additional

term −3
2 logS0 that we find can not be extracted from the Schwarzian because it involves

an entirely different dimensionless parameter.

This additional contribution −3
2 logS0 to the partition function is important for the

precision comparison between microscopic and macroscopic entropy for BPS black holes

with AdS2 × S2 near-horizon geometry. For such extremal black holes T = 0 and so the

Schwarzian modes must be integrated out as we lower the effective cut-off scale Λ below

Mgap. The −3
2 logS0 term is the threshold correction from integrating out these modes.

It joins contributions of the form # log S0 that come from Kaluza-Klein modes (including

Killing vectors on the S2) that were integrated out already when lowering the effective

scale Λ below ΛKK ∼ `−1 and, together, they give the logarithmic quantum correction to

the ground state entropy [28, 56].

Thus our computation clarifies the connection between recent SYK and JT results to

previous work on quantum corrections to extremal black hole entropy.

Quadratic holomorphic differentials. According to our method, the only modes that

ultimately contribute to the logarithmic term in the one-loop partition function are the

QHDs H(n)
µν , where n = 2, 3, . . . . These are exact zero-energy modes in the true infrared

that acquire a small mass by finite temperature effects, which in turn yields a large loga-

rithm in the partition function. The analogous computation in the SYK model organizes

field configurations by their weight h under the conformal Casimir under which the modes

with weight h = 2 have vanishing eigenvalue at zero temperature, but finite temperature

effects shift it slightly above zero. These modes, and their relatives in the Schwarzian, are

also enumerated by n = 2, 3, . . . and sum up to give the −3
2 log β term in the partition

function, just like the QHDs in bulk.

Importantly, despite the obvious similarity between these computations, the modes

that contribute are not the same; they are instead dual to one another. The reparameter-

ization symmetry that is emergent in the SYK model and described by the Schwarzian is

Diff(S1)/SL(2) which is generated by smooth vector fields on S1. The adjoints of these

vector fields are precisely the quadratic holomorphic differentials and should be thought of

as smooth tensors on S1 that describe deformations of the bulk geometry [59, 60]. This

duality is akin to the relation between the loop-space approach to string theory and the

Polyakov path integral.

Our perspective may be particularly appropriate for the recent and exciting develop-

ments relating random matrix theory on disconnected boundaries to baby universes with

complicated topology in bulk [22, 24]. There, the perturbative contributions to the bulk
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theory involve integrating over the Weil-Petersson measure on the Teichmüller space of Rie-

mann surfaces with any genus. The all-important novelty is the coupling to boundaries via

the introduction of “trumpets” endowed with a Schwarzian theory on their outer bound-

ary. Representing the space of trumpet deformations in terms of quadratic holomorphic

differentials, as we do, puts the outer boundary on equal footing with the handles and the

inner boundaries due to D-branes. This geometric interpretation of the entire gravitational

theory, including the trumpets, may confer some advantages. It would be interesting to

test this construction by computing correlation functions in this formalism.

Quantum universality. Many authors have argued that the JT model captures univer-

sal aspects of near-extremal black holes but most evidence we are aware of involves classical

field theory, and in particular the classical equivalence of various 2D dilaton gravity theo-

ries. Our computation does not use special features of JT gravity and after quantization the

couplings to the background are quite complicated, as one expects generically. Nonethe-

less, the logarithmic correction −3
2 log β from the dilaton gravity sector will generalize to

all other near-extreme black holes.

This expectation is based on effective quantum field theory and illustrated in figure 2.

For gravitational theories on AdS2, couplings to the background curvature introduce a mass

shift of 2`−2 for the quadratic holomorphic differential modes. We showed this explicitly

in subsection 4.2, but this has also been noted in previous work [16, 28, 61]. This shifts

the effective mass of the QHDs to be precisely zero. Breitenlohner-Freedman’s stability

criterion requires non-negative effective mass, and so the quadratic holomorphic differen-

tials precisely saturate this bound. The QHD contribution to the partition function will

therefore always dominate at sufficiently low energy. Moreover, their number is topological,

because it is counted by the Riemann-Roch theorem. Their contribution −3
2 log β to the

partition function is thus universal for any near-AdS2 theory of gravity.
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A Other approaches

In this appendix, we review previous computations of the one-loop partition function, first

in the SYK model and then in the one-dimensional Schwarzian theory.
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A.1 The SYK model analysis

The analysis of [5] identified the approximate zero modes in the SYK model as those

coming from the h = 2 modes (where h is their weight under the conformal Casimir) and

determined their thermal mass as |n|βJ with n = ±2,±3, . . . . The path integral therefore

acquires the contribution

logZ = −
∞∑

n=2

log

(
n

βJ

)
, (A.1)

up to constants that are independent of the coupling βJ . The dependence on n amounts

to a contribution that is divergent but independent of βJ , and thus does not constitute a

physical contribution to the partition function. We can then extract the βJ-dependence

using zeta function regularization, as in previous computations. This gives

logZ = log βJ

(
−1 +

∞∑

n=1

1

)
= log βJ (ζ(0)− 1) = −3

2
log βJ . (A.2)

The final manipulation yielding the quantum corrections in the SYK model is essen-

tially the same that we do in (4.46). However, the origin of the h = 2 modes in the SYK

model is reparametrization invariance of time in a quantum mechanical model while for

us the starting point is quantum gravity. In contrast, we gauge-fix a path integral over all

metrics and ultimately identify the quadratic holomorphic modes as the contributors to

the logarithmic quantum correction.

A.2 The Schwarzian analysis

The finite-temperature Schwarzian action, following the conventions of [5], is

I[ε] =
αSN

2J

∫ β

0
dτ

[
(ε′′)2 −

(
2π

β

)2

(ε′)2

]
, (A.3)

where αS is a numerical factor related to the spectrum of the SYK model, N is the number

of Majorana fermions in the SYK model, and J ∝ J . This action has an SL(2,R) repa-

rameterization symmetry that acts as a gauge symmetry on the allowed ε configurations.

The partition function of the theory is thus given by

Z =

∫
Dε

Vol(SL(2,R))
e−I[ε] , (A.4)

where we have modded out by the volume of the SL(2,R) symmetry in order to have a

well-defined gauge orbit for the path integral. SL(2,R) is a three-dimensional group, and

so we can fix the gauge completely by specifying what values ε, ε′, and ε′′ take at τ = 0.

We therefore can express the path integral as

Z =

∫
Dε δ(ε(0))δ(ε′(0))δ(ε′′(0))e−I[ε] . (A.5)

We now define the rescaled fields and parameters

τ̃ =
τ

β
, ε̃(τ̃) =

ε(τ)

β
, (A.6)
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such that τ̃ and ε̃ are dimensionless. The action becomes

I[ε̃] =
αSN

2βJ

∫ 1

0
dτ̃

[
(ε̃′′)2 − (2πε̃′)2

]
. (A.7)

The product of delta functions in the path integral is invariant under this change of vari-

ables, and so the partition function can therefore be rewritten as

Z =

∫
Dε̃ δ(ε̃(0))δ(ε̃′(0))δ(ε̃′′(0))e−I[ε̃] . (A.8)

The strategy now is to rescale the fields such that the action has no dependence on βJ .

This will ensure that all of the βJ -dependence will appear in the gauge-fixing part of the

path integral, which we can then easily extract. If we define the field

φ(τ̃) =
ε̃(τ̃)√
βJ

, (A.9)

then the action for φ is entirely independent of βJ and the product of delta functions now

becomes

δ(ε̃(0))δ(ε̃′(0))δ(ε̃′′(0)) = (βJ )−3/2δ(φ(0))δ(φ′(0))δ(φ′′(0)) . (A.10)

The partition function is then given by

Z = (βJ )−3/2

∫
Dφ δ(φ(0))δ(φ′(0))δ(φ′′(0))e−I[φ] , (A.11)

where the path integral is now independent of βJ . And, since J ∝ J , we can take the

logarithm of both sides to find that

logZ = −3

2
log βJ , (A.12)

up to constant terms that are independent of βJ .

Interestingly, the −3 in the final answer is due, in this computation, to 3 “missing” con-

figurations that would be equivalent under SL(2,R). In contrast, our approach focuses on

the “present” configurations that are due to large diffeomorphisms realized by the quadratic

holomorphic differentials. They are infinite in number in a manner that renormalizes to

−3 net configurations.

The Schwarzian is a one-loop exact theory, so this result captures the quantum cor-

rections to the partition function to all orders. However, this does not mean that the JT

model and the SYK model are one-loop exact; rather, the Schwarzian is meant to capture

the low-temperature dynamics of these theories that arise from their conformal symmetry

breaking patterns.

B Analytic continuation from S2 to H2

In this appendix, we analytically continue results from the sphere S2 onto the hyperbolic

space H2 in order to leverage elementary results from the study of the rotation group
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and illustrate conceptual and practical aspects of SL(2) symmetry, including conformal

symmetry, continuous mode wavefunctions, and dilaton matrix elements.

Consider the line element on S2:

ds2
S2 = `2

(
dθ2 + sin2 θ dφ2

)
. (B.1)

Under the identification η = iθ, this metric becomes the negative of the line element for

two-dimensional hyperbolic space H2:

ds2
H2 = `2

(
dη2 + sinh2 η dφ2

)
. (B.2)

The metric on hyperbolic space can be further transformed to the disk metric in holo-

morphic coordinates (2.16) by the change of variables z = tanh (η/2) eiφ. Moreover, we

can choose coordinates such that the geometry for the black holes in the Jackiw-Teitelboim

model takes precisely this form. This indicates that there must be a way to analytically con-

tinue quantities on S2 onto related quantities on the Jackiw-Teitelboim background (2.16).

As an example, we can generate the background dilaton profiles in the Jackiw-Teit-

elboim model by this procedure. The starting point is to place the action (2.1) on S2 by

flipping the sign of the cosmological constant term. The corresponding equations of motion

are then

R =
2

`2
, ∇µ∇νΦ = −gµν

`2
(Φ− 1) . (B.3)

The dilaton equation of motion can be integrated exactly to yield solutions Φ = 1 + Y

for some profiles Y . There are precisely three linearly independent solutions which can be

identified with the usual spherical harmonics Y 1
m where m = −1, 0, 1. We choose the basis

Y−1 = i sin θ eiφ , Y0 = i cos θ , Y+1 = i sin θ e−iφ . (B.4)

If we perform the analytic continuation η = iθ, go to holomorphic coordinates, and then

compare the results to the Jackiw-Teitelboim dilaton profiles (2.17), we find the identifica-

tions
Y−1 → X−1 ,

Y0 → iX0 ,

Y+1 → X+1 .

(B.5)

Thus analytic continuation gives a precise map between the dilaton profiles in the Jackiw-

Teitelboim model and familiar functions on S2.

In subsection 2.4 we showed that the dilaton profiles in the Jackiw-Teitelboim model

are central to understanding the symmetry of the theory because they generate Killing

vectors ζµn and conformal Killing vectors ξµn on H2. The Killing vectors form the SL(2,R)

isometry algebra of the background H2 metric which can be extended to SL(2,R)×SL(2,R)

by adding the conformal Killing vectors.

In the analogous procedure on S2 we first define the vector fields:

ζµz = εµν∇νY0 , ζµ± = εµν∇νY± ,
ξµz = ∇µY0 , ξµ± = ∇µY± .

(B.6)
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The ζµn are the three Killing vectors on S2 while the ξµn are the three globally defined

conformal Killing vectors on S2. The Lie derivatives with respect to these vectors define

the operators

Lz = `2Lζ0 = `2(εµν∇νY0)∇µ ,
Rz = `2Lξ0 = `2(∇µY0)∇µ ,

L± = `2Lζ± = `2(εµν∇νY±)∇µ ,
R± = `2Lξ± = `2(∇µY±)∇µ .

(B.7)

Their explicit forms are

L+ = e−iφ (∂θ − i cot θ ∂φ) ,

Lz = i∂φ ,

L− = eiφ (−∂θ − i cot θ ∂φ) ,

R+ = e−iφ (i cos θ ∂θ + i csc θ ∂φ) ,

Rz = −i sin θ ∂θ ,

R− = eiφ (i cos θ ∂θ − csc θ ∂φ) .

(B.8)

These operators satisfy the commutation relations:

[Lz, L±] = ±L± ,
[Lz, R±] = ±R± ,
[Rz, L±] = ±R± ,
[Rz, R±] = ±L± ,

[L+, L−] = 2Lz ,

[L+, R−] = 2Rz ,

[R+, L−] = 2Rz ,

[R+, R−] = 2Lz .

(B.9)

The first line identifies the operators Ln originating from the Killing vectors as the familiar

SU(2) algebra which expresses rotational symmetry of the background S2 metric. The

next two lines show that the operators Rn due to the conformal Killing vectors are in fact

vectors under the rotation group, as expected. The final line closes the algebra in a manner

such that, as a whole, it can be recast as two copies of SU(2). This can be seen by forming

the linear combinations J±n = 1
2 (Ln ±Rn) and checking that the J+

n and J−n operators

each obey SU(2) commutation relations and commute with each other.

This enhancement of symmetry has an instructive analogue in classical mechanics. In

three dimensions, when an object is subject to a central force, the system has rotational

symmetry and the angular momentum L is conserved. When the force is the scale free

inverse-square force F = −kr/r3, we can define the Laplace-Runge-Lenz vector [39]

R = p× L− mkr

r
, (B.10)

where p is the momentum, L is the angular momentum, and m is the mass of the object.

This vector is important because, along with the energy and angular momentum of the

object, R is also conserved. When we account for a constraint relating these six conserved

quantities we find five constants of motion, which is precisely the amount required to

completely determine a trajectory in three dimensions.

Upon quantization, the components of the angular momentum L become operators that

form an SU(2) algebra. When we additionally quantize the components of the Laplace-

Runge-Lenz vector R, though, the full algebra is SO(4) ∼= SU(2) × SU(2) [62]; this is

precisely the algebra shown in (B.9). This enhancement of symmetry is well-known for any

three-dimensional quantum-mechanical system with a 1/r potential in the Hamiltonian,
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and is commonly referred to as the “hidden” SO(4) symmetry of the Hydrogen atom. It is

the reason that all states with the same principal quantum number n = 1, 2, . . . have the

same energy, independent of the value of the angular momentum l = 0, . . . , n− 1.

The Laplacian on S2 is related to the operators L2, R2, defined as follows:

`2� = −L2 ≡ −L2
z −

1

2
(L−L+ + L+L−)

= −R2 ≡ −R2
z −

1

2
(R−R+ +R+R−) .

(B.11)

The corresponding eigenfunctions of this Laplacian are the spherical harmonics Y m
l , which

in our conventions are given by

Y m
l (θ, φ) = NlmP

m
l (cos θ)eimφ , Nlm =

√
(2l + 1)

4π

(l −m)!

(l +m)!
. (B.12)

Specifically, these are eigenfunctions of the operators L2 and Lz:

L2|Y m
l 〉 = l(l + 1)|Y m

l 〉 ,
Lz|Y m

l 〉 = −m|Y m
l 〉 .

(B.13)

As shown in [41], we can continue these states into eigenfunctions |upm〉 of the Laplacian

on H2, as written in (3.6), by letting η = iθ and taking l → ip− 1/2 for an arbitrary real

number p. The analytic continuation is

|Y m
l 〉 → cpm|upm〉 , (B.14)

with some overall constants cpm. The regularity condition at the poles θ = 0, π is the

reason eigenvalues are discrete on S2 and on the non-compact hyperbolic plane H2 their

is no analogous condition.

To summarize, the map (B.5) identifies the dilaton profiles on S2 and H2 by analytic

continuation. These profiles in turn generate the SU(2)× SU(2) conformal Killing algebra

on S2 (B.9) and the SL(2,R)× SL(2,R) conformal Killing algebra on H2 (2.23). Explicit

comparison of the respective generators map them onto one another as:

L(S2)
z → −iL(H2)

0 ,

R(S2)
z → −iR(H2)

0 ,

L
(S2)
± → −L(H2)

±1 ,

R
(S2)
± → −R(H2)

±1 .
(B.15)

In other words, the well-known enhancement of symmetry for the Hydrogen atom analyti-

cally continues into the emergence of conformal isometry that we found in subsection 2.4

for the Jackiw-Teitelboim model.

As an application, we now use analytic continuation as a tool to compute dilaton

matrix elements on H2 via analytic continuation from S2. In particular, we want to prove

the claim (4.31) that the matrix element 〈upm|R0|upm〉 = 0 on H2. This amounts to
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〈Y m
l |Rz|Y m

l 〉 on S2, up to overall constants. Our explicit expression for Rz gives

〈Y m
l |Rz|Y m′

l′ 〉 =

∫
d2x
√
g Y m∗

l (− sin θ ∂θ)Y
m′
l′

= (l + 2)

√
(l −m+ 1)(l +m+ 1)

(2l + 1)(2l + 3)
δl,l′−1δm,m′

− (l − 1)

√
(l −m)(l +m)

(2l − 1)(2l + 1)
δl,l′+1δm,m′ ,

(B.16)

where we used the Legendre polynomial identity

∫ +1

−1
dx (1− x2)Pml (x)∂xP

m
l′ (x) =

2(l + 2)(l +m+ 1)!

(2l + 1)(2l + 3)(l −m)!
δl,l′−1

− 2(l − 1)(l +m)!

(2l − 1)(2l + 1)(l −m− 1)!
δl,l′+1 .

(B.17)

In particular, we find that the matrix element is non-zero only when l and l′ are not equal,

and so 〈Y m
l |Rz|Y m

l 〉 = 0. The analytic continuation back to H2 then immediately gives

〈upm|R0|upm〉 = 0 , (B.18)

confirming that the dilaton matrix elements that show up in the one-loop continuous mode

partition function of the Jackiw-Teitelboim model vanish.

The interpretation of this result, in analogy with the Hydrogen atom, is that within

a level specified by a given principal quantum number n, the angular momentum operator

L relates states with the same orbital quantum number l, while the “hidden” symmetry

operator R relates those with different values of l.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
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