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Abstract: In light of the improved sensitivities of cosmological observations, we examine

the status of quasi-degenerate neutrino mass scenarios. Within the simplest extension of

the standard cosmological model with massive neutrinos, we find that quasi-degenerate

neutrinos are severely constrained by present cosmological data and neutrino oscillation

experiments. We find that Planck 2018 observations of cosmic microwave background

(CMB) anisotropies disfavour quasi-degenerate neutrino masses at 2.4 Gaussian σ’s, while

adding baryon acoustic oscillations (BAO) data brings the rejection to 5.9σ’s. The highest

statistical significance with which one would be able to rule out quasi-degeneracy would

arise if the sum of neutrino masses is
∑
mν = 60 meV (the minimum allowed by neutrino

oscillation experiments); indeed a sensitivity of 15 meV, as expected from a combination

of future cosmological probes, would further improve the rejection level up to 17σ. We

discuss the robustness of these projections with respect to assumptions on the underly-

ing cosmological model, and also compare them with bounds from β decay endpoint and

neutrinoless double beta decay studies.
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1 Introduction

In analogy to the unification of the Standard Model gauge couplings [1], it has been sug-

gested that perhaps also the masses of the neutrinos may arise from a common seed at high

energies. For example, a degenerate neutrino mass spectrum [2] could emerge as a result of

some SO(3) family symmetry [3–7] holding at high energies. Alternatively, a simple model

with a discrete non-abelian symmetry A4 allows stacking the three lepton families as a

triplet [8], leading to quasi-degenerate neutrino masses. In this paper, we remain agnostic

as to the underlying theory and consider forms of the mass matrix that could arise from a

variety of models.

The goal of this work is to examine the consistency of such quasi-degenerate neutrino

mass schemes in light of the improved sensitivity of cosmological observations, as well as

improved and upcoming determinations of the neutrino oscillation parameters. We find

that degenerate neutrinos are disfavoured by the combination of existing cosmological and

oscillation data, being essentially ruled out in the case of inverted neutrino mass ordering,

though still allowed within a relatively narrow region of parameters in the case of normal

ordering.

Several theoretical scenarios fit within the framework of the models we consider. One

simple scenario examined in this paper emerges as a result of the imposition of the A4 family

symmetry to the Standard Model [8]. It was originally proposed to provide a symmetry-

based realization of the “neutrino unification” scenario suggested in [2]. Within this picture

the neutrino mass splittings needed in order to account for neutrino oscillation data [9, 10]

emerge as calculable radiative corrections [11]. In its simplest form this scenario also
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predicts maximal atmospheric mixing, θ23 = π/4, and vanishing reactor mixing angle, θ13 =

0. However, reactor experiments [12, 13] have established that the reactor angle θ13 is non

zero (oscillation data such as those from T2K also indicate a growing hint in favor of leptonic

CP violation). This implies that the simplest model needs amendment. Indeed, using the

original picture as a “zero-th order” template, the scheme can be easily revamped in order

to account for the required value of θ13. This makes the CP violating phase δCP physical,

while at the same time providing stringent predictions in the δCP − θ23 plane [14]. These

will be testable within the upcoming generation of oscillation experiments [15]. Our present

dedicated cosmological analysis further constrains the parameters of the mass matrix for

this specific scenario, making the degenerate neutrino scenarios strongly disfavoured.

The paper is organized as follows. We first consider a general framework in which the

small (solar) mass splitting is neglected, and write the neutrino mass matrix in a simple

form that is representative of a wide class of theories. This captures the most relevant

features of degenerate schemes. We then extend our analysis to the more general scenario

in which both atmospheric and solar mass splittings are taken into account. In all cases,

we find that quasi-degenerate neutrinos are severely constrained by present cosmological

data, at least in the simplest extension of the standard cosmological model with massive

neutrinos. We also find that the case of inverted neutrino mass ordering is disfavoured.

Future cosmological data would also rule out the surviving parameter regions still allowed

for the quasi-degenerate normal ordered neutrino spectrum.

2 Preliminaries

Before moving to the detailed description of the theory setup and the subsequent results,

we would like to give some definition and then describe the bottom-line argument of our

findings through some general considerations. Although these may fail in capturing the

full complexity of the theory model to be discussed later, they serve to highlight the main

line of reasoning that eventually will lead us to the results presented in this manuscript.

Strictly speaking, “degenerate neutrino masses” (or, for short, degenerate neutrinos)

refers to the case in which the three masses m1, m2, m3 are exactly equal, m1 = m2 = m3,

a possibility that is of course excluded by flavour oscillation experiments. In the following

we will be concerned about constraining models of quasi-degenerate neutrinos, meaning

that the masses are only approximately equal, m1 ' m2 ' m3. This approximate equality

amounts to the requirement that the mass differences should be much smaller than the

individual masses. In order to make quantitative arguments, like the one that follows, we

need to set a criterion as to what “much smaller” means. For definiteness, we will define

quasi-degenerate neutrino masses through the requirement that the largest mass difference

should be a small fraction ξ (with ξ < 1) of the smallest individual mass.

The squared mass differences ∆m2
ij ≡ m2

i −m2
j are well measured in neutrino oscilla-

tion experiments. Global fits [9, 10] to oscillation data yield ∆m2
21 ' 7.6 × 10−5 eV2 for

the small (solar) squared mass splitting, and |∆m2
31| ' 2.5× 10−3 eV2 for the large (atmo-

spheric) squared mass splitting. Since the sign of |∆m2
13| remains unknown, there are two

possibilities for the ordering of neutrino masses: the so-called normal (m1 < m2 < m3)
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and inverted (m3 < m1 < m2) orderings (NO and IO, respectively). The lowest value of

the sum of neutrino masses
∑
mν ≡ m1 +m2 +m3 allowed by oscillation measurements is∑

mν > 0.059 eV for normal hierarchy and > 0.10 eV for inverted hierarchy. These min-

ima are found by assuming the lightest neutrino is massless, and using the values reported

above for the squared mass differences. However, since we are interested in the case of

(quasi) degenerate neutrino masses, the neutrino masses must be substantially higher, so

that the difference between the heaviest and lightest neutrino is smaller than any of the

neutrino masses.

For the purposes of establishing a quantitative criterion for the definition of “quasi-

degenerate”, we may ignore the mass difference between m1 and m2, which is so much

smaller than the mass difference between m1 and m3. With this approximation m1 = m2,

and a straightforward calculation shows that the criterion introduced above reads, for both

NO and IO:

|m3 −m1|
mlightest

'

√
m2

lightest + |∆m2
31| −mlightest

mlightest
≤ ξ , (2.1)

where mlightest is the mass of the lightest neutrino, i.e. m1 or m3 for NO or IO, respectively.

Note that neglecting the solar mass splitting is appropriate for the purpose of verifying that

the criterion for quasi-degeneracy is satisfied, since the value of the large mass difference

|m3 −m1,2| (where one should pick eigenstate 1 or 2 depending on the ordering) mainly

depends on |∆m2
31|. Moreover, in order to satisfy eq. (2.1) with ξ � 1, the quantity

|∆m2
31|/m2

lightest should be much smaller than unity as well. Expanding the square root in

this limit, eq. (2.1) becomes

|∆m2
31|

2m2
lightest

≤ ξ , (2.2)

Given the measured value of |∆m2
31|, for a particular choice for the value of ξ, we can

compute the smallest value of mlightest that satisfies the criterion as the value for which the

equality in eq. (2.1) or (2.2) holds. Taking ξ = 0.1 yields the condition mlightest > 0.11 eV.

In terms of the sum of neutrino masses, a quantity well probed by cosmological observations,

this corresponds to
∑
mν & 0.33 eV.

As a result, an upper bound or a detection from cosmological arguments excluding∑
mν > 0.33 eV at high statistical significance, significantly reduces the parameter region

where the neutrino mass spectrum can be degenerate. The latest bounds from the Planck

satellite observations of the CMB anisotropies in temperature and polarisation, combined

with measurements of the baryon acoustic oscillations (BAO), already corner the degenerate

spectrum, providing
∑
mν < 0.12 eV at 95% c.l. .1 Further improvements are expected

from the next generation of cosmological surveys, that will be able to reach a sensitivity of

σ (
∑
mν) ∼ 15 meV. In what follows, we will expand on this basic argument with a more

articulated and thorough analysis.

1Constraints obtained assuming a minimal one-parameter extension of the standard cosmological model,

i.e. ΛCDM +
∑

mν . A different cosmological model choice may result in a different bound on
∑

mν from

what is reported here. Further discussions on the choice of the cosmological model is given in section 4.
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3 Theory setup

In this section, we describe a theoretical setup that might be responsible for quasi-degen-

erate neutrino mass spectrum. To better illustrate the model, we start in section 3.1 from

a simple scenario in which the smallest (solar) neutrino mass splitting ∆m2
12 is neglected,

reminiscent of the analysis of ref. [6]. We then move to section 3.2, where we analyse the

full-fledged scenario, with both the solar and atmospheric splittings taken into account.

3.1 Simplest mass matrix

In this section, we begin by neglecting the smallest (solar) mass difference, i.e. we set

m1 = m2. We assume that the light neutrino mass matrixMν , possibly resulting from the

seesaw mechanism, has the following form

Mν = m0

 1 + 2δ 0 0

0 δ 1 + δ

0 1 + δ δ

 , (3.1)

where we use the weak eigenstate basis (νe, νµ, ντ ), m0 > 0 is the overall neutrino mass

scale and |δ| � 1 is a small real quantity responsible for the mass difference. This is one

of the mixing patterns (specifically, the one called “texture C”) appearing in ref. [6] (see

eq. (7) of that paper), once we identify

matm → m0δ , M → (1 + 2δ)m0 , (3.2)

where matm and M � matm introduced in ref. [6] are the scale of atmospheric oscillations,

and some higher mass scale, respectively. Notice that, to first order, δ = matm/M .

A pattern like the one in the mass matrix (3.1) might emerge, for example, in the

presence of a non-Abelian family symmetry, either the small discrete A4 symmetry, or

the continuous SO(3) symmetry. These could naturally lead to degenerate neutrinos, with

small mass splittings induced as symmetry breaking effects. As an example, ref. [8] employs

an A4 flavour symmetry, with calculable mass differences generated by radiative corrections

(arising, for instance, in the context of softly broken supersymmetry). However, for the

moment we will be agnostic and just assume that eq. (3.1) with δ � 1 correctly describes

the neutrino mixing pattern. We will, in any case, borrow some useful results from ref. [8].

Diagonalization of Mν yields the following exact positive eigenvalues:

m1 = m0 |1 + 2δ| ≡ m0 |η| , (3.3a)

m2 = m0 |1 + 2δ| ≡ m0 |η| , (3.3b)

m3 = m0 , (3.3c)

where we have introduced the parameter η ≡ 1 + 2δ, especially in view of the full-fledged

scenario that will be discussed in the next section. Note that normal ordering (m3 >

m1, m2) is realized for |η| < 1, while inverted ordering (m3 < m1, m2) is realized for

|η| > 1. Since the mass eigenstates in eqs. (3.3) are independent of the sign of η, in our
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studies of cosmological bounds we can restrict just to the case η ≥ 0. We can obtain a

relation between m0 and η:

m2
0 =

∆m2
31

1− η2
, (3.4)

where ∆m2
31 = m2

3 − m2
1 is well measured in oscillation experiments. The sum of the

individual masses reads
∑
mν = m1 + m2 + m3 = m0(1 + 2η), a quantity well probed by

cosmological observations.

From this one can derive a relation between
∑
mν and η:

∑
mν =

[
∆m2

31

1− η2

]1/2
(1 + 2η) . (3.5)

Note that all results derived so far are exact and do not assume δ � 1, i.e., η close to unity.

The quasi-degenerate case corresponds to δ � 1 i.e. η ∼ 1. Given the measured value of

|∆m2
31| from oscillations experiments, we have a relation between η and

∑
mν , that allows

one to translate cosmological constraints on
∑
mν into constraints on η, and therefore on

δ. In other words, using this relation we can use cosmological bounds on neutrino mass to

strongly constrain the case of quasi-degenerate neutrinos. The results of this analysis are

reported below in section 5.1.

3.2 The full mass matrix

So far we have neglected the mass difference between the states ν1 and ν2 characterizing

solar neutrino conversions. However, in the realistic case, one needs both mass splitting

parameters ∆m2
21 and ∆m2

31 to be non-zero, in order to successfully describe the solar and

atmospheric neutrino oscillation data. The generalization of the mass matrix in eq. (3.1)

is given by [8]:

Mν = m0

 1 + 2δ + 2δ′ δ′′ δ′′

δ′′ δ 1 + δ

δ′′ 1 + δ δ

 . (3.6)

This mass matrix reduces to the one discussed in the previous section in the limit in which

δ′ and δ′′ are much smaller than δ. For the moment we take all the parameters to be

real. This simplifying approximation amounts to assuming that CP symmetry is conserved

in neutrino oscillations, which is sufficient for our purposes.2 Moreover, without loss of

generality we can again take m0 > 0. The matrix Mν has positive eigenvalues given as

m1 = m0

∣∣∣1 + 2δ + δ′ −
√
δ′2 + 2δ′′2

∣∣∣ , (3.7a)

m2 = m0

∣∣∣1 + 2δ + δ′ +
√
δ′2 + 2δ′′2

∣∣∣ , (3.7b)

m3 = m0. (3.7c)

One can see that quasi degenerate neutrino models correspond to the case where all three

quantities are small: δ, δ′, δ′′ � 1.

2Although there is evidence for CP violation in neutrino oscillations, e.g. from T2K data, cosmological

observables are insensitive to it.
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For convenience, let us define the following:

η = 1 + 2δ + δ′ (3.8)

η′ =
√
δ′2 + 2δ′′2 (3.9)

so that the eigenvalues take the simpler form:

m1 = m0

∣∣η − η′∣∣ , (3.10a)

m2 = m0

∣∣η + η′
∣∣ , (3.10b)

m3 = m0 . (3.10c)

Changing sign of either η or η′ is equivalent to exchanging m1 and m2. Thus we restrict

ourselves to the (η > 0, η′ > 0) quadrant, where m1 < m2. Moreover, exchanging η and

η′ has no effect on the mass eigenvalues, so that in the rest of this section we can further

restrict our attention to either of two octants; for definiteness, we take η > η′.

Quasi-degeneracy corresponds to |η − η′| ∼ |η + η′| ∼ 1, which, in the first octant,

requires η ∼ 1 and η′ ∼ 0.

Cosmological observations bound the sum of the individual masses, thereby placing

stringent restrictions on these three parameters∑
mν = m0

( ∣∣η − η′∣∣+
∣∣η + η′

∣∣+ 1
)

= m0 (2η + 1) , (3.11)

where the last equality holds when η > η′.

As in the two-parameter approximation described in the previous section, one can use

the results of neutrino oscillation experiments in order to express
∑
mν as a function of

η only. To this aim, we first find the region of the (η, η′) plane that is consistent with

current oscillation measurements. The requirement m2 > m1, from the positive sign of the

solar mass splitting, is always satisfied in the first quadrant. As explained above, in the

following we consider the η > η′ region; the results can be easily extended to the rest of

the parameter space from the symmetry arguments made above.

It is easy to verify that, when η > η′, normal ordering (∆m2
13, ∆m2

23 > 0) is realized

for η′ < 1− η. Inverted ordering (∆m2
13, ∆m2

23 < 0) is instead realized for η′ < η− 1. The

remaining region of parameter space should be excluded since there m1 < m3 < m2 holds,

inconsistent with oscillation experiments. These regions are shown in figure 1, where we

have used symmetry arguments to reconstruct also the η < η′ part of the parameter space.

We can further impose that

m2
2 −m2

1

|m2
3 −m2

1|
=

∆m2
12,obs

|∆m2
13,obs|

(3.12)

where ∆m2
1x,obs for x = 2, 3 are the best fit values of the neutrino oscillation global fit

analysis [9]. Solving eq. (3.12) with eqs. (3.10) provides a data-driven relation of the form

η′ = η′(η). The relation is one-to-one separately in each of the two regions NO and IO

in the first octant. When the two regions are considered together, one finds that, for a

given value of η′, there are two values of η that satisfy the oscillation constraints, one for
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3 m2
1|
= m2

12, obs
| m2

13, obs|

Figure 1. Regions in the η−η′ plane, with η > η′, where normal or inverted ordering is realized, i.e.

where the conditions m1 < m2 < m3 (NO) or m3 < m1 < m2 (IO) hold. There is one region for NO

and two disconnected regions for IO. The central dark-shaded region is inconsistent with oscillation

data as it corresponds to m1 < m3 < m2. The solid curves are the loci of points that satisfy the

constraint from neutrino oscillation measurements on the ratio ∆m2
12/|∆m2

13|. The whole (η, η′)

parameter space is symmetric for reflection around the bisector, i.e. η ↔ η′, so that one can focus

only on the η > η′ region (see text for details).

each ordering. The curves that satisfy the constraint on ∆m2
12/|∆m2

13| are shown as solid

thick lines in figure 1, again after having been extended to the upper octant. Note that

the minimum value of η in the first octant that satisfies the oscillation constraint (3.12) is

η ' 0.088.

We have not yet fully exploited the information coming from neutrino oscillation exper-

iments: given two measured mass differences, we have only required the theory to provide

the observed ratio ∆m2
12/|∆m2

13|. We can use the remaining information to express m0 in

terms of |m2
3 −m2

1| = |∆m2
31|. This finally allows us to express the three mass eigenvalues

as functions of η only. Thus we can write for the sum of the masses a generalization of

eq. (3.5): ∑
mν =

[
∆m2

31

1− [η − η′(η)]2

]1/2
(2η + 1), (η > η′) (3.13)

where it is understood that we have used the constraints (3.12) to express η′ as a function

of η. The corresponding expression in the η′ > η part of the first quadrant can be ob-

tained from eq. (3.13) by the exchange η ↔ η′. Constraints on the mass parameters from

cosmological data are presented in section 5.2.

4 Cosmological data

Here we describe in detail the cosmological data samples used to constrain the quasi-

degenerate neutrino scenario. We employ the latest results published by the Planck collab-
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oration on the sum of the neutrino masses
∑
mν [16]. These results were obtained assuming

a ΛCDM+
∑
mν cosmological model. Such model was tested against the full suite of Planck

satellite measurements of the CMB anisotropies in temperature and polarisation, and of

the power spectrum of the gravitational lensing potential (a dataset combination labeled as

“TTTEEE+lowE+lensing” in the Planck collaboration papers [16]), combined with mea-

surements of the BAO angular scale from 6dF [17], SDSS-MGS [18] and SDSS-DR12 [19]

collaborations. We refer to this combination of data as “Planck 2018 + BAO” throughout

the manuscript. In some cases, we will also present results for the Planck 2018 dataset

alone. For the purposes of this work, we did not run the MCMC analysis. Instead, we have

downloaded the MCMC chains provided by the Planck collaboration at the Planck Legacy

Archive3 and reconstructed from them the posterior probability distribution of
∑
mν . Note

that this means that we are implicitly assumimng a flat prior on
∑
mν . We make use of

the posterior to derive the allowed regions for the parameters in the neutrino mass matrix,

using standard statistical techniques.

Future experiments will probe neutrino masses with higher sensitivity. We consider

different combinations of future experiments as benchmarks for our projections. CMB

observations from the Simons Observatory, combined with the large-scale CMB polarization

data from Planck and measurements of the large-scale structure of the Universe, such as

those from LSST [20], DESI [21], Euclid [22] are expected to provide a sensitivity on
∑
mν ,

σ (
∑
mν) ' 30 meV. This sensitivity can be improved to σ (

∑
mν) ' 20 meV by a cosmic-

variance-limited measurement of the reionization optical depth τ , such as that expected

from the LiteBIRD satellite [23]. Finally, a sensitivity σ (
∑
mν) ' 15 meV is expected

from the combination of ultimate CMB experiments, such as CMB-S4 [24], with LiteBIRD

and the aforementioned large-scale structure surveys.

To simulate the expected constraints from future cosmology, we interpret the sensitivity

on
∑
mν as the square-root of the variance of a Gaussian probability distribution centered

in a given fiducial value of
∑
mν . We consider two different fiducial values of

∑
mν ,

which correspond to two detection scenarios:
∑
mν = 0.06 eV and

∑
mν = 0.1 eV. These

correspond to the case in which the “true” value of
∑
mν is the minimal value allowed by

measurements of the neutrino mass splittings from oscillation experiments in the normal

and inverted ordering, respectively. The highest statistical significance with which one

would be able to rule out quasi-degeneracy would be for these cases of minimal allowed

neutrino mass. We make use of the Gaussian probability distributions so obtained to

derive the expected allowed regions for the parameters in the neutrino mass matrix. The

assumption of Gaussianity is expected to provide a good representation of the results from

future cosmology, given the expected sensitivity of future surveys.

A final remark concerns the choice of the underlying cosmological model. A well known

limitation of the constraints from cosmological probes is the model-dependency issue, i.e.

the fact that constraints on cosmological parameters may vary depending on the assump-

tions on the cosmological model. This happens because there is a certain level of correlation

between different cosmological parameters. In other words, the physical effects of one pa-

3Chains available at this url: http://pla.esac.esa.int/pla.
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rameter may be compensated by tuning other parameters. Such intrinsic uncertainty of

the cosmological analysis can be cured in several ways providing confidence in cosmological

results. First of all, one can break the parameter correlation by combining observations

of various cosmological probes (CMB and large-scale-structure) that depend differently

on the same cosmological parameters. This is the reason why we adopt constraints from

combined cosmological probes. Moreover, one can quantify statistically the preference for

alternative cosmological models with respect to ΛCDM +
∑
mν . To the best of our knowl-

edge, there is no statistically significant preference reported for extended and/or exotic

cosmological models that urges us to consider a different underlying parametrization than

the one adopted in this manuscript [25]. Furthermore, the exquisite sensitivity and redun-

dancy of future surveys will help further reduce the impact of model dependency [26]. See

e.g. ref. [27] for a summary concerning the optimal combinations of future cosmological

missions. This is the reason why, for the sake of simplicity, we choose to limit our analysis

to the ΛCDM +
∑
mν scenario. However, in the conclusions we comment on the impact

of considering different cosmological scenarios.

5 Results of cosmological analysis

In this section, we report the main findings of our analysis. We use existing and upcoming

bounds on the sum of neutrino masses from cosmology to examine the viability of the quasi-

degenerate neutrino mass scenario. We continue to study two cases: first, the “simplest

mass matrix” presented in eq. (3.1), corresponding to negligibly small solar mass splitting

and, later, the more general mass matrix presented in eq. (3.6).

The basic approach is the following: taking advantage of relations we have previously

found between
∑
mν and parameters η and η′ in eqs. (3.5) and (3.13) above, we will convert

cosmological bounds on
∑
mν , into bounds on η and η′. As a reminder, quasi-degenerate

neutrino models (with small mass differences between species) require η ∼ 1 for all the

models we consider as well as η′ ∼ 0 for the more general mass matrix of eq. (3.6). In the

latter case, predictions for neutrino masses are unchanged if η and η′ are exchanged, so

that having η ∼ 0 and η′ ∼ 1 also yields quasi-degenerate neutrino masses. We will show

that the combination of oscillations and cosmological bounds is essentially incompatible

with such values of η and η′.

In addition to studying how well quasi-degenerate neutrino mass can be ruled out from

existing data, we also make projections for future data. The highest statistical significance

with which one would be able to rule out quasi-degeneracy would be for the case of min-

imal neutrino mass allowed by oscillations data, i.e.
∑
mν = 0.06(0.1) eV for NO (IO).

Specifically, we examine the bounds on quasi-degeneracy with sensitivity of upcoming ex-

periments ranging from σ (
∑
mν) = 0.030 eV to σ (

∑
mν) = 0.015 eV, assuming the sum

of neutrino masses is this minimal allowed value.4

4If the actual sum of neutrino masses is higher than these minimal values, while still being consistent

with bounds from cosmology, then the quasi-degenerate scenario would still be ruled out albeit at a slightly

lower statistical significance.
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5.1 Results in the simplest mass matrix model

Current cosmological data from Planck place limits on the parameters describing the quasi-

degenerate neutrino scenario. Within the approximation where the solar neutrino mass

splitting is neglected (see section 3.1), the neutrino mass matrix is given in eq. (3.1), with

the parameters δ and η as defined in eq. (3.3). In this simplest case, we have only two

parameters,
∑
mν and η, related by eq. (3.5); the relation between them depends on ∆m2

31,

a quantity measured by oscillation experiments,

Figure 2 shows our results for the simplest mass matrix model in the
∑
mν − η plane.

Here the dotted curves show the sum of the neutrino masses as a function of the parameter

η through eq. (3.5), where the value of ∆m2
13 is fixed at the best-fit value from global fits

of neutrino oscillation experiments. The dotted blue curve corresponds to normal ordering

while the dotted orange curve corresponds to the inverted ordering. We recall that in the

simplest mass matrix model, η > 1 yields inverted ordering, while η < 1 gives normal

ordering.

Cosmological bounds are indicated in figure 2 by horizontal bands of various colors.

The gray-hatched region is excluded by the current cosmological data (Planck 2018 +BAO).

Note that the upper bound on
∑
mν < 0.12 eV quoted in the Planck 2018 parameters

paper has been derived assuming a prior
∑
mν > 0. In the present analysis, we are using

information from oscillation experiments that require
∑
mν > 0.06 eV, so we should use

a prior that reflects this knowledge. Taking this into account yields
∑
mν < 0.15 eV at

95% c.l., which is the value used to produce the gray-hatched exclusion region in figure 2.

Since quasi-degenerate neutrino masses require δ � 1 (η ∼ 1), one can see already by eye

that this scenario is ruled out. Roughly, one can see that η & 1.8 is required to satisfy the

cosmological bounds for inverted ordering, and η . 0.7 for normal ordering. This range

will be further reduced once data from future cosmological surveys become available. The

expected sensitivities of future cosmology are shown as colored horizontal bands for the two

fiducial values of
∑
mν introduced in section 4. These have been chosen as the minimal

masses allowed by neutrino oscillations, and correspond, for each ordering, to the strongest

rejection for quasi-degeneracy. The viable region of the quasi-degenerate model reduces to

the ranges in which the lines overlap with the colored bands.

5.2 Cosmological bounds on neutrino mass in the full mass matrix approach

We now move to the full theory setup described in section 3.2. There, we have shown how

we can use neutrino oscillation data to express the three mass eigenvalues, and their sum,

as functions of η only, see eqs. (3.10) and (3.13). In the rest of this section we will further

assume, unless otherwise stated, that η ≥ η′, which implies η ≥ 0.088 once oscillation data

are taken into account. From the discussion in section 3.2, it is clear that one can make

this choice without loss of generality. Similarly to what we have done in section 5.1 for

the simplest model, we show in figure 2 the sum of neutrino masses
∑
mν as a function

of η. The
∑
mν(η) relation can be used to translate cosmological constraints on

∑
mν

into constraints on η. This operation requires some care given the two-valued nature of

the
∑
mν − η relation and the multimodality of the posterior. In this section we only
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Figure 2. Bounds from existing and upcoming cosmological observations on the sum of the neutrino

masses
∑
mν as a function of the parameter η for the “simplest mass matrix” (eq. (3.5), dashed

curves) and “full mass matrix” (eq. (3.13), solid curves), given the constraints from oscillation

experiments, for NO (blue curves) and IO (orange and green curves). The color code matches the

one used in figure 1. For the simplest mass matrix, there are two curves, one for each ordering. In the

full mass matrix case, we assumed η > η′, always possible without loss of generality, see discussion

in the text. With this choice, we have two branches for each ordering also in the full mass matrix

case. Note that oscillation experiments require that η ≥ 0.088, corresponding to
∑
mν = 0.06 eV,

the minimum mass still allowed for NO given the best-fit of current oscillation data. This is shown

in the small inset on the top right. The minimal mass IO scenario
∑
mν = 0.10 eV is instead

realized for η → ∞. Quasi-degenerate masses are obtained for η ' 1, which requires
∑
mν to

be large (
∑
mν → ∞ as η → 1). The grey hatched region

∑
mν > 0.15 eV is excluded by

present cosmological (Planck 2018 + BAO) and oscillation data at 95% level. The two horizontal

bands show the 68% credible interval for
∑
mν from future experiments given

∑
mν = 0.06 eV or∑

mν = 0.10 eV, corresponding to the minimal possible masses for NO and IO, and a sensitivity

σ (
∑
mν) = 0.015 eV (see text). The grey region and the colored bands serve as rough guides to the

constraining power of present and future data. See text and tables for information about credible

intervals for η.

report our results; the interested reader is referred to the appendix for technical details on

how probabilities and exclusion levels are computed. We only report results in terms of

η. Credible intervals for η′ can be obtained using the η′(η) relation built as explained in

section 3.2.

We show the posterior for η from Planck2018 and Planck 2018+BAO in figure 3,

highlighting the multimodality of the probability distribution. The 95% credible intervals

on the parameter η (with η ≥ η′) are reported in table 1, for different combinations
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Figure 3. Posterior probability density for η given current cosmological and oscillation data. Note

the logarithmic scale on the horizontal axis. The solid curve uses the Planck 2018+BAO as the

cosmological dataset, while the dashed curve is for Planck 2018 only. The inset shows a blow-up

of the region η > 1. Note also the different scale in the vertical axes between the main panel and

the inset. The region η < 1 (η > 1) corresponds to normal (inverted) ordering. Quasi-degenerate

neutrino masses are realized for η ' 1.

of current and future cosmological datasets. It is clear that the quasi-degenerate case,

corresponding to η ' 1 is strongly disfavoured by the data. It is useful to quantify the

preference of the data for non-degenerate neutrinos. To this purpose, we define the quasi-

degenerate scenario as the one in which the large mass splitting is smaller than 10% of the

overall mass scale. From Planck 2018+BAO data, we get Pdeg = 4× 10−9, corresponding

to 5.9 Gaussian σ’s in favour of nondegenerate neutrinos. See the appendix for more details

on how Pdeg is defined and computed. The preference is relaxed to 2.4σ’s (odds of 64 : 1)

if only Planck data are considered. In the last column of table 1, we also report values of

the Bayes factor B between the quasi-degenerate and non-degenerate scenarios, defined as

B ≡ Pdeg/(1− Pdeg) (see appendix for more details).

Since any given pair (η, η′) allowed by oscillation experiments uniquely corresponds

to either NO or IO (see figure 1), the posterior for η can be used to assess preference for

one ordering or the other. We find that Planck 2018 + BAO prefers normal over inverted

ordering with odds 3.3 : 1 (1.2σ’s).

Endpoint measurements of the Kurie plot of tritium beta decays, explored at the

KATRIN experiment [28], provide an independent probe on the absolute scale of neutrino

mass, in terms of the effective mass me of the electron neutrino. This is complementary

to what can be achieved through the cosmological observations considered here. KATRIN

currently constrains me < 1.1 eV at 90% CL [29], and is expected, in case of a nondetection

after 5 years of operation, to establish an upper limit me < 0.2 eV (90% CL). It is instructive

to compare the numbers derived above from current cosmological data, to what would be

obtained from KATRIN in the latter case. Assuming the KATRIN nominal 90% sensitivity,
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Dataset η (95% C.I.) log10B

Present
Planck 2018 η < 0.87 or η > 1.2 −1.8

Planck 2018+BAO η < 0.66 or η > 1.8 −8.4

Future,
∑
mν = 60 meV

SO+Planck 2018+DESI/LSST (σ (
∑
mν) = 30 meV) η < 0.55 or η > 3.0 −16.9

SO+LiteBIRD+DESI/LSST (σ (
∑
mν) = 20 meV) η < 0.44 or η > 17 −36.9

CMB-S4+LiteBIRD+DESI (σ (
∑
mν) = 15 meV) η < 0.35 −64.7

Future,
∑
mν = 100 meV

SO+Planck 2018+DESI/LSST (σ (
∑
mν) = 30 meV) η < 0.67 or η > 1.8 −12.6

SO+LiteBIRD+DESI/LSST (σ (
∑
mν) = 20 meV) 0.13 < η < 0.61 or η > 2.2 −26.7

CMB-S4+LiteBIRD+DESI (σ (
∑
mν) = 15 meV) 0.20 < η < 0.57 or η > 2.6 −46.3

Table 1. 95% credible intervals for the parameter η from current cosmological data, and projections

for future experiments, combined with data from oscillation experiments, in the (η > 0, η′ > 0, η ≥
η′) region of parameters. Note that oscillation data require that η ≥ 0.088 in this region of the

parameter space, so this constraint should be always understood. Constraints in the full parameter

space can be reconstructed from symmetry arguments in the (η−η′) plane, see text for details. The

constraints in the first row are computed from a combination of the most up-to-date cosmological

data available, namely the full Planck 2018 data release, possibly combined with measurements of

the baryon acoustic oscillations from BOSS/SDSS. In the following rows we also report forecast

results for different combinations of future cosmological surveys, in order of increasing sensitivities:

Simons Observatory and CMB-S4 combined with either Planck or LiteBIRD and BAO data from

DESI/LSST, see text for details. In case of future surveys, we forecast results assuming that

the true value of the summed neutrino masses is either
∑
mν = 60 meV or

∑
mν = 100 meV,

corresponding to the minimal possible masses for normal and inverted ordering. The constraints

are computed according to the prescription discussed in the appendix. In the last column we also

show the logarithm of the Bayes factor between the quasi-degenerate and non-degenerate scenarios

B ≡ Pdeg/(1 − Pdeg). Negative values in that column indicates a preference for non-degenerate

neutrinos. The preference gets exponentially larger as the absolute value of log10B increases.

we approximate the posterior P (
∑
mν) from KATRIN data as a semi-Gaussian peaked in

0 and with standard deviation σ (
∑
mν) = 0.36 eV. In this case, odds of 2 : 1 are obtained

in favour of nondegenerate masses (log10B = −0.3).

Future cosmological data would rule out quasi-degenerate neutrinos at the 17σ level if∑
mν = 0.06 eV, assuming a sensitivity σ (

∑
mν) = 0.015 eV. If, instead,

∑
mν = 0.10 eV,

a possibility already in mild tension with current data, the same sensitivity would yield an

exclusion at the ∼ 14σ level, still basically ruling out the quasi-degenerate hypothesis. In

figure 4 we compare the sensitivity of future cosmological data to
∑
mν to the theoretical

expectation
∑
mν(η), assuming either

∑
mν = 0.06 eV or

∑
mν = 0.10 eV.

Finally, in figure 5, we show the level at which quasi-degenerate neutrinos can be

excluded, as a function of the sensitivity σ (
∑
mν), assuming

∑
mν = 0.06 eV.

5.3 Neutrinoless double beta decay

The neutrinoless nuclear double beta decay (A,Z) → (A,Z + 2) + 2e− (denoted 0νββ)

provides another independent and complementary probe of absolute neutrino mass scale,

especially important as it constitutes a unique model-independent test of the Majorana

nature of neutrinos [30].
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Figure 4. Left: sum of neutrino masses as a function of the parameter η (solid curves) in eqs. (3.10),

given constraints from oscillation experiments, for normal (blue curve) and inverted (orange curve).

The three increasingly darker red bands show the 68% credible interval for
∑
mν from future

experiments given
∑
mν = 0.06 eV, corresponding to the minimal possible mass for NO, given

the results from oscillation experiments. In particular, from the outermost band proceeding to

the innermost, we show the expected sensitivity from: Simons Observatory combined with the

Planck estimate of τ and either DESI-BAO or cluster masses calibrated with LSST weak lens-

ing (σ (
∑
mν) = 0.030 eV), Simons Observatory combined with the LiteBIRD cosmic-variance-

limited estimate of τ and either DESI-BAO or cluster masses calibrated with LSST weak lensing

(σ (
∑
mν) = 0.020 eV), CMB-S4 combined with the LiteBIRD cosmic-variance-limited estimate

of τ and DESI-BAO (σ (
∑
mν) = 0.015 eV). Right: same as left panel, but now the three in-

creasingly darker yellow bands show the 68% credible interval for
∑
mν from future experiments

given
∑
mν = 0.10 eV, corresponding to the minimal possible mass for IO, given the results from

oscillation experiments.

The effective Majorana mass mββ characterizing 0νββ decay is given as

mββ =

∣∣∣∣∣∣
∑
j

U2
ejmj

∣∣∣∣∣∣ =
∣∣∣c212c213m1 + s212c

2
13m2e

2iφ12 + s213m3e
2iφ13

∣∣∣ , (5.1)

where mi are the neutrino masses, c12 and s13 correspond to the angles measured from

oscillations and φ12, φ13 are the Majorana phases. Note that the amplitude is expressed

using the original, symmetrical parametrization of the lepton mixing matrix introduced in

ref. [31]. The bounds we have derived above from neutrino oscillation experiments as well

as cosmology can be compared also with those that follow from the negative searches for

neutrinoless double beta decay [32–40]. Current sensitivity should improve significantly in

the future, with good prospects for covering the whole region of parameters associated with

the inverted ordering spectrum. The caveat, though, is that all these 0νββ decay bounds

rely on nuclear physics calculations of the relevant nuclear matrix elements [41, 42], which

suffer from non-negligible theoretical uncertainties. For this reason, current bounds on mββ

from 0νββ searches are usually expressed as a range of upper limits.

In our study of neutrinoless double beta-decay, we use the full mass matrix of section 3.2

with the same η as before in eqs. (3.10). We compute the effective Majorana mass mββ as

a function of η, following a similar procedure to the one used for
∑
mν . The individual
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Figure 5. Preference for hierarchical over quasi-degenerate neutrinos, expressed in terms of Gaus-

sian σ’s, versus the sensitivity σ (
∑
mν) to the sum of neutrino masses. The dashed lines correspond

to the combinations of current and future experiments discussed in the text. The plot assumes the

minimal value
∑
mν = 60 meV allowed by neutrino oscillation experiments for NO. This value

yields the highest statistical significance with which one would be able to rule out quasi-degeneracy.

masses are computed as described in section 3.2. Note that mββ depends also on the

neutrino mixing angles and on the Majorana phases. As mentioned in the introduction,

the scheme we have considered so far, through the mass matrix (3.6), implies θ13 = 0, a

value now excluded by oscillation measurements [12, 13]. However, this can be generalized

in order to agree with current oscillation data, as shown in refs. [14, 15], without altering

significantly the predictions for neutrino masses. For this reason, we fix the mixing angles

to their best-fit values when computing mββ , as we do for the mass splittings. As far as

Majorana phases are concerned, these are treated as free parameters and varied in [0, 2π].

We show in figure 6 the effective Majorana mass mββ as a function of η. Without loss

of generality, we restrict our attention to the η > η′ region of the parameter space, as we

did when discussing constraints from cosmological data. Note that, due to the variation

of the Majorana phases, a range of theoretical values of mββ corresponds to a single value

of η. We also show the upper limits from KamLAND-Zen, that currently provides the

most stringent constraints on mββ , i.e., mββ < 0.061–0.165 eV (90% confidence level) [33].

We see that the quasi-degenerate region η ' 1 is disfavoured also by current 0νββ data,

at a level depending on the value assumed for the nuclear matrix elements entering the

calculation of the decay amplitude. For comparison, we also report, in the same figure, the

excluded regions for η derived in section 5 from current cosmological data.

6 Conclusions and discussion

Degenerate neutrino masses can arise via a high-energy symmetry, that is subsequently

broken yielding smaller mass splittings. We have considered a mass matrix of the form in
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Figure 6. Effective Majorana mass mββ as a function of η, for normal (blue region) and inverted

(orange region) ordering. The plot assumes η > η′, which implies η ≥ 0.088 to satisfy constraints

from oscillation experiments. The color code matches the one used in figures 2 and 1. The plot

assumes the best-fit values for the mixing angles and mass splittings. The width of the bands arises

from varying the Majorana phases in [0, 2π]. The brown hatched horizontal region corresponds to

the 95% exclusion on mββ from KamLAND-Zen [33], assuming optimistic nuclear matrix elements.

The solid line inside the brown region shows the relaxed upper limit obtained for pessimistic nuclear

matrix elements. The grey hatched vertical band show the 95% excluded region for η from our

analysis of Planck 2018 + BAO data in this paper.

eq. (3.6) as a template for this class of models (revamping as in refs. [14, 15] is implicit),

and derived constraints on the parameters of the matrix using cosmological data together

with information from flavour oscillation experiments. A combination of Planck 2018 and

BAO data strongly constrains the model parameters, ruling out quasi-degenerate masses

at 5.9 Gaussian σ’s (2.4σ’s if only Planck 2018 CMB data are included). We define the

quasi-degenerate scenario as the one in which the large mass splitting is smaller than 10%

of the overall mass scale.

Laboratory experiments also allow us to probe the absolute neutrino mass scale and

the elements of the mixing matrix. We have also compared the constraining power of

cosmological data to that of laboratory experiments, in particular KATRIN for β decay,

and KamLAND-ZEN for 0νββ decay. The former only provides a weak preference in

favour of nondegenerate neutrino masses. On the other hand, the capability of the latter

to provide constraints comparable to those from cosmology is currently hindered by our

ignorance of both the matrix elements entering the calculation of the decay amplitude for

0νββ as well as the Majorana phases.

The strongest statistical significance with which one could rule out quasi-degeneracy

with upcoming experiments is reached if
∑
mν = 0.06 eV (the minimum allowed by os-
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cillation experiments) and assuming a sensitivity σ (
∑
mν) = 0.015 eV. One finds that

the exclusion of quasi-degenerate neutrinos from cosmological data would improve to 17

Gaussian σ’s. If, instead,
∑
mν = 0.10 eV (the minimum allowed for inverted ordering),

a possibility already in mild tension with current data, the same sensitivity will yield a

14σ-level exclusion, still strongly disfavouring the quasi-degenerate hypothesis. If the ac-

tual sum of neutrino masses is higher than these minimal values, then the quasi-degenerate

scenario would still be ruled out, albeit at a slightly lower statistical significance.

We now discuss how robust are our cosmological bounds, commenting briefly on how

our conclusions would change by considering a different cosmological model. In most ex-

tended models, parameter degeneracies act to degrade constraints on neutrino masses.

This is typically the case for models in which the curvature density parameter Ωk, or the

equation of state parameter w of dark energy are allowed to vary. For example, using

a combination of Planck 2015 temperature and low-` polarization data and BAO obser-

vations, the 95% constraints on
∑
mν degrade from 0.19 eV (ΛCDM+

∑
mν) to 0.30 eV

(ΛCDM+
∑
mν+Ωk) or 0.31 eV (ΛCDM+

∑
mν+w) [43] (see also ref. [44] for an analysis

using Planck 2018 data and using extended models with up to 6 additional parameters).

For such models, the conclusions of this paper — that basically rely on the cosmological

upper limit on
∑
mν — would be weakened, allowing a larger portion of the parameter

space for quasi-degenerate neutrinos with respect to ΛCDM. In particular, from the upper

bounds quoted above one has that quasi-degenerate neutrinos would be disfavoured at the

3.2σ level in the minimal extension ΛCDM+
∑
mν . This rejection would further weaken to

the 2.0σ level if w or Ωk are also allowed to vary. Note that these numbers should not be

directly compared with the results presented in the main text, since they use different data

combinations. They should, however, illustrate how the level at which quasi-degenerate

neutrinos are disfavoured changes when the limits on
∑
mν are relaxed. Figure 5 can be

used to translate upper bounds on
∑
mν obtained in an extended model, into an exclusion

level for quasi-degenerate neutrinos. We conclude by stressing that enlarging the parame-

ter space beyond ΛCDM +
∑
mν does not always lead to weaker bounds. As a noticeable

example we have models of nonphantom dynamical dark energy (that have w(z) ≥ −1

at all redshifts z), in which the constraints on
∑
mν are actually slightly tighter than in

ΛCDM [45]. Thus our conclusions would still hold, and get slightly stronger, in such dark

energy models.

A Statistical analysis

In this appendix we discuss in more detail how the constraints on η presented in the main

text have been derived. The starting point is the relation between (η, η′, m0) and the sum

of neutrino masses
∑
mν discussed in section 3.2. As explained there we can, without loss

of generality, study this relation only in the (η > 0, η′ > 0) region of parameter space, since

changing the sign of either η or η′ would leave
∑
mν unchanged. Moreover, exchanging η

and η′ also does not change the mass eigenstates, so we can further restrict the analysis

to one half of the first quadrant; for definiteness, let us take it to be η ≥ η′. We have

used the information from neutrino oscillation experiments to write
∑
mν (η, η′, m0) as
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a function of η only, i.e.
∑
mν (η, η′(η),m0(η)) ≡ F (η). In the first octant of the (η, η′)

plane, this relation is one-valued, so that the value of η uniquely determines
∑
mν . The

opposite is not true, since all values of
∑
mν larger than 0.10 eV can be obtained from two

distinct values of η in the first octant. Note that oscillation data constrain η ≥ 0.088 in

the first octant, since a smaller value would yield
∑
mν < 0.06 eV, which is the minimum

value allowed by oscillation experiments. The range η ∈ [0.088, ∞) can be further split in

two regions, corresponding to NO (η < 1) and IO (η > 1). The case η = 1 corresponds

to exact mass degeneracy, which in turn means
∑
mν → ∞, while η = 0.088 and η → ∞

yield the minimum masses allowed in NO (
∑
mν = 0.06 eV) and IO (

∑
mν = 0.10 eV),

respectively. F (η) is always increasing (decreasing) in the NO (IO) region. Then F (η)

maps η ∈ [0.088, 1] to
∑
mν ∈ [0.06, ∞) eV and η ∈ [1, ∞) to

∑
mν ∈ [0.10, ∞) eV. Note

also that the function F (η) can be inverted over each of the two sub-ranges separately.

Referring to figure 1, we are looking at the half of the blue curve lying in the lower octant,

and at the orange curve.

The probability density for η is thus obtained from the posterior P∑
mν

(
∑
mν) of the

sum of neutrino masses, provided by cosmological data, as

Pη(η) ∝ P∑
mν

(∑
mν = F (η)

)
× dF (η)

dη
, (A.1)

up to a proportionality constant that can be obtained a posteriori by requiring that∫∞
0 P (η)dη = 1. Note that the latter requirement amounts to the following normalization

for the
∑
mν posterior (in the following, it should be understood that

∑
mν is measured

in eV): ∫ ∞
0.06

P∑
mν

(∑
mν

)
d
∑

mν +

∫ ∞
0.10

P∑
mν

(∑
mν

)
d
∑

mν = 1 . (A.2)

This is a consequence of the fact that when η varies from 0.088 to ∞, we are traversing

the posterior for
∑
mν from 0.06 to ∞ and then again from ∞ to 0.10.

The posterior for η can be used to compute credible intervals for this parameter. In

particular, in the main text we quote 95% credible intervals. Such an interval Iη is defined

as an interval containing 95% of the total probability:∫
Iη
Pη(η)dη = 0.95 , (A.3)

and is possibly composed by different disconnected regions. The above requirement does

not uniquely defines Iη, since there are infinitely many intervals covering 95% of the total

probability. Different prescriptions exist for singling out one of these intervals. We choose

to quote for η the 95% interval with the property that the probability for
∑
mν(η) in every

point outside the interval is smaller or equal than the probability inside the interval, i.e.:

P∑
mν

(F (η1)) ≥ P∑
mν

(F (η2)) for every η1 ∈ Iη, η2 /∈ Iη . (A.4)

This basically amounts to compute the so-called minimum credible interval for
∑
mν and

map it to the η parameter space to get Iη. Note that this is not the same as computing the
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minimum credible interval for η, since the reparametrization η →
∑
mν = F (η) conserves

probability mass but not probability density. In other words, while a 95% credible interval

remains a 95% credible interval after reparametrization, the condition that probability

outside the interval is lower that the probability inside does not necessarily hold in the new

parametrization. We choose to compute the minimum credible interval in
∑
mν instead

than η because the former is the parameter that is more directly constrained by cosmological

observations and that gets a flat prior in our analysis, so we regard it (observation-wise)

as a “primary” parameter as opposed to η, that we regard as a derived parameter.

As noted above, this procedure for constructing the credible interval can result in an

interval composed by several disconnected regions, and, in fact, this is nearly always the

case in the case under study. The reason is that, in general, there are two regions of large

probability, one for each ordering, corresponding to the values of η that yield values of the

mass close to the minimum values allowed by oscillation experiments for NO and IO. Since

these regions are separated in η space, corresponding to η → 0.088 (NO) and η →∞ (IO),

the resulting credible interval is the union of two disconnected regions. This explains the

intervals quoted in table 1. The only case in which only one integral appears is for future

experiments with sensitivity σ (
∑
mν) = 0.015 eV and fiducial value

∑
mν = 0.06 eV. In

that case IO is excluded by the data and only the interval corresponding to NO survives.

The fact that the two regions η < 1 and η > 1 correspond to NO and IO also provides

a neat way to quantify the preference for one or the other ordering. In particular, one can

compute the probabilities for the two orderings, PNO and PIO, as:

PNO = Pη(0.088 ≤ η < 1) =

∫ 1

0.088
Pη(η)dη ; (A.5)

PIO = 1− PNO = Pη(η ≥ 1) =

∫ ∞
1

Pη(η)dη . (A.6)

We can similarly quantify preference for, or against, degenerate neutrinos from current

and future data. In order to do this we need to set a threshold that defines “quasi-

degenerate”. This is somewhat arbitrary; we choose the criterion |1− η| < 0.1. Note that

the oscillation constraints ensure that η′ � η when this criterion is satisfied. Then, from

eqs. (3.10) it is easy to see that |1 − η| is the ratio between the large mass splitting and

the overall mass scale m0. We then measure the preference for nondegenerate neutrinos

by comparing the probabilities enclosed inside and outside the |1 − η| < 0.1 region. In

particular we define the probabilty Pdeg for quasi-degenerate neutrinos as:

Pdeg ≡ Pη(0.9 ≤ η ≤ 1.1)

∫ 1.1

0.9
P (η)dη , (A.7)

and Pnon-deg = 1− Pnon-deg.

Given two mutually excluding scenarios (hypotheses) like NO vs. IO, or quasi-de-

generate vs. non-degenerate, the information about the preference for one scenario over

the other can be conveyed in different ways. Let us call the two scenarios 1 and 2, with

P1 > P2, so that P1 is favoured by the data. A possibility is to directly quote one of the

probabilities P1 and P2. Another possibility is to quote the ratio of P1 to P2 in terms
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of odds, like in “scenario 1 is favoured with odds 3 : 2”, meaning that P1/P2 = 3/2, or

P1 = 0.6 and P2 = 0.4. One can similarly quote the so-called Bayes factor B ≡ P1/P2,

so that in the example above B = 1.5. Finally, in the main text we also translate these

probabilities to an equivalent number x of Gaussian standard deviations. This is defined

as the value x such that, considering a normal probability distribution with zero mean

and unit variance, the probability in the region −x and +x equals P1. This leads to the

relation P1 = 1− erf(x/
√

2), where erf is the error function. Note that our use of Gaussian

standard deviations should not be meant to imply that we employ frequentist statistics.

The statistical analysis presented in this paper is perfomed in the framework of Bayesian

statistics.
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