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1 Introduction

Scattering amplitudes are boundary observables in flat space, depending only on the kine-
matical data specifying the helicities and momenta of the scattering particles. It is thus
natural to ask whether there is some question that can be posed in kinematic space whose
answer yields the amplitudes directly, without referring to auxiliary notions such as unitary
evolution in the bulk of spacetime or a string worldsheet. The challenge appears daunting
since there are no obvious physical notions of locality or time associated with, say, the space
of n null momenta relevant for the scattering of massless particles. We must instead cast
out more adventurously, looking for new sorts of mathematical structures in this naively
barren space, with the power to generate all of the richness and complexity needed for scat-
tering amplitudes compatible with locality and unitarity. The past several years have seen
significant inroads in this program, associated with deep new combinatorial and geometric
structures in kinematic space connecting various aspects of amplitudes to mathematical
notions of total positivity, cluster algebras and motives in startling new ways.

A prototype of the kind of description we seek is provided for the all-loop integrand
in planar N = 4 super-Yang-Mills (pSYM) theory by the amplituhedron [1], which can be
understood purely in the kinematical momentum-twistor space: the (super)integrand is the
unique canonical form [2] with logarithmic singularities on (and only on) all boundaries of
the amplituhedron. Thus the integrand is fully determined by some geometry in kinematic
space (the amplituhedron) and a question asked of that geometry (the determination of its
canonical form). The amplituhedron provides a geometric origin for all of the singularities
of the integrand as a rational function. But the simplicity gained in dealing with rational
functions comes at a significant cost: the amplituhedron is inexorably tied to perturbation
theory. Indeed, there is a different geometry for every loop order.

For the full amplitude we should instead expect some geometric origin for the much
more intricate pattern of branch cuts, which are present non-perturbatively. Of course
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the question of determining the geometry of branch cuts from first principles, for instance
from an analysis of Landau equations, was an infamously difficult one in the S-matrix
program in the 1960s. But there is hope for planar theories of massless particles, like
pSYM theory, where it is known that for any fixed particle number, the number of branch
points associated with solutions to the Landau equations is finite [3]. We also expect that
perturbation theory for the planar theory has a finite radius of convergence.

Given this encouragement, there is a natural candidate for the non-perturbative ge-
ometry we seek. The kinematic data is provided by n momentum-twistor four-vectors [4]
ZI

1 , . . . , ZI
n, and the action of the conformal group SL(4) tells us we can associate this

with a point in the Grassmannian G(4, n), a 4(n−4)-dimensional space. Restricting for
simplicity to the case of MHV amplitudes, the amplituhedron asks for the external data
to lie in the positive Grassmannian G+(4, n) [5], so the positivity of external data should
clearly be an important ingredient. Even more concretely, there is apparently a fascinating
connection between the positivity of kinematic data and the Landau equations — in all
examples studied to date, the Landau equations admit no solutions when the external data
is taken to be in G+(4, n)! This is a highly nontrivial fact, implying that amplitudes have
no branch points inside the positive domain, again suggesting that this region should play
a starring role in defining the non-perturbative geometry relevant to amplitudes.

MHV amplitudes enjoy an additional little group symmetry under which Zi → tiZi,
and as is familiar, they are therefore functions of cross-ratios, depending only on 3(n−5)
rather than 4(n−4) variables. Thus an obvious guess for the non-perturbative geometry is
“G+(4, n) modulo the little group torus”, denoted G+(4, n)/T .

Indeed, quite apart from this more recent motivation involving positivity, it has long
been appreciated [6] that there is a deep connection between MHV amplitudes and the con-
figuration space Confn(P3) ∼= G(4, n)/T . All evidence available to date from explicit multi-
loop computations [7–9] supports the hypothesis that the symbol alphabets of n = 6, 7
particle amplitudes are the cluster variables of the G(4, n) Grassmannian cluster algebra.
This has long been a source of inspiration for determining the non-perturbative geometry
of pSYM theory, but for n ≥ 8 there are a couple of open questions indicating that the
cluster algebra itself is not the end of the story.

First, as we have stressed, we expect that the number of branch points for all pSYM
amplitudes, and hence the number of symbol letters, should be finite for any n. However,
the G(k, n) cluster algebra has infinitely many cluster variables if (k−2)(n−k−2) > 3,
including the cases k = 4, n ≥ 8 of interest to amplitudes. Is there a mathematically
natural way to extract some “finite subset” of variables relevant to scattering amplitudes?

Second, cluster variables for G(k, n) are always polynomials in minors of the Z matrix.
But beginning with n = 8, even for MHV amplitudes that should be polylogarithmic,
we expect (specifically, starting at three loops [10, 11]) symbol letters that are algebraic
functions of these minors. The most familiar and famous of these is the square root
associated with the four-mass box integral [12, 13], but a variety of algebraic letters appear
in various contexts (see for example [14–18], and [19, 20] for some tools for dealing with
them). How can we see them arise in a mathematically natural way?
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One might think that defining G+(k, n)/T is completely straightforward, and indeed
there is no subtlety associated with thinking of what the interior of this space. But
in the S-matrix program it is precisely the boundaries of kinematic space that are of
particular interest, since these are where amplitudes can have singularities. So from the
perspective of determining a non-perturbative geometry for amplitudes, it is imperative
to understand the boundary structure of G+(k, n)/T , and this involves making a choice
of compactification. In this letter we propose natural compactifications of G+(k, n)/T

that address both of the above questions, providing us (when k = 4) with candidate non-
perturbative geometries for the amplitudes of pSYM theory. We provide explicit polytopal
realizations of these compactifications using the “stringy canonical forms” of [21]. This
construction has a number of connections to other ideas, such hypersimplex decompositions
and tropical Grassmannians, and we defer a systematic exposition to a longer companion
paper [22]. Our purpose in this letter is instead to summarize some of the essential ideas
and results relevant to pSYM theory.

In section 2 we introduce certain compactifications of G+(k, n)/T that manifestly have
a finite number of facets for any k, n. In cases when the corresponding cluster algebra is
finite each facet is naturally associated with a cluster variable, but in infinite cases there
are additional facets. In section 3 we describe a natural way of associating cluster algebraic
functions, that generalize the notion of cluster variables, to such facets. In section 4 we
study the case (k, n) = (4, 8) in detail. We find that the “extra” facets are associated
with the famous square root associated to the four-mass box. Ancillary files contain data
pertaining to several of the polytopes we study.

2 Kinematic space polytopes

Scattering amplitudes of n particles in pSYM theory are functions on Confn(P3), the
configuration space of n points in P3. (Strictly speaking this is true only for MHV am-
plitudes; non-MHV amplitudes are most naturally thought of as differential forms [23] on
a (C∗)n−1 bundle over Confn(P3).) There is a birational isomorphism [6] Confn(Pk−1) '
G(k, n)/(C∗)n−1 because generic points in this configuration space can be represented by
maximal rank k × n matrices Z, with the columns representing the homogeneous coordi-
nates of n points in Pk−1, modulo SL(k) and modulo independent rescaling of each column.

The (open) positive domain of Confn(Pk−1) (with respect to the ordering 1, . . . , n)
is defined as the positive Grassmannian G+(k, n) modulo the torus action T = Rn

+ that
rescales columns. The problem before us is that of understanding the boundary structure
of this domain under a suitable compactification. There exist many inequivalent compact-
ifications, with the choice appropriate for any particular application determined by, indeed
one should say defined by, the class of functions under consideration. Ultimately it is the
scattering amplitudes themselves that dictate the compactification of G+(4, n)/T that is
relevant to pSYM theory.

The case k = 2 is well-known to both mathematicians and physicists: G+(2, n)/T is
the moduli space of n ordered points on the real line, and its Deligne-Mumford compacti-
fication [24] has long been known [25] to underlie the structure of open string amplitudes.
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The most natural generalization to k > 2 is the positive Chow quotient of the Grassman-
nian [22], which we will refer to as the totally nonnegative configuration space G+(k, n)/T .
Geometrically, it is the closure of G+(k, n)/T inside the Chow quotient of the Grassmannian
G(k, n)//T [26]. In [21] it has recently been shown that Koba-Nielsen-like string worldsheet
integrals can be used to construct polytopal realizations of various positive spaces, including
G+(k, n)/T , generalizing the well-known realization of the compactification of G+(2, n)/T

as the An−3 associahedron. The space G+(k, n)/T comes with a stratification that will
be discussed elsewhere [22], with strata labeled by several combinatorially interesting data
including positroid decompositions of the k, n hypersimplex, faces of the tropical positive
Grassmannian, positive tropical Plücker vectors, etc. In this note we content ourselves with
presenting the simplest data about its polytopal realization, which we denote by C(k, n).

Here we briefly review the key steps of [21]. A positive parameterization is a
d = (k−1)(n−k−1)-parameter family of k × n matrices Z(x1, . . . , xd) that covers all of
G+(k, n)/T as the parameters range over the positive orthant (x1, . . . , xd) ∈ Rd

+. In the
following it will be important that we always use a cluster parameterization, which means
that the parameters are Fock-Goncharov coordinates in the initial cluster of the G(k, n)
cluster algebra (for which we use the conventions of figure 2 of [27]). For example,

Z =
(

0 1 1 1 1
−1 0 1 1 + x1 1 + x1 + x1x2

)
(2.1)

is a cluster parameterization of G+(2, 5)/T because
〈12〉〈34〉
〈14〉〈23〉 = x1 ,

〈13〉〈45〉
〈15〉〈34〉 = x2 . (2.2)

We use 〈i1i2 . . . ik〉 = det(Zi1 · · ·Zik
) to denote Plücker coordinates on G(k, n), where Zi is

the ith column of Z. The canonical form [2] on G+(k, n)/T is Ω =
∧

d log xi.
If P is a homogeneous polynomial in Plücker coordinates we let Newt(P ) denote the

Newton polytope of P in Rd respect to the variables (x1, . . . , xd). The string integral
construction associates to any sufficiently large (defined in [21]) collection P = {P1, . . . , P`}
of such polynomials a polytopal realization of a compactification of G+(k, n)/T obtained
by taking the convex hull of the Minkowski sum of the corresponding Newt(Pi).

We define C(k, n) to be the polytope obtained by taking P to be the set of all
(n

k

)
Plücker

coordinates. If k = 2 this gives the familiar realization [28] of the An−3 associahedron.
However for k > 2, C(k, n) is different than the corresponding cluster polytope [29], and is
in particular a manifestly finite polytope for any k and n, even when (k−2)(n−k−2) > 3 in
which case the cluster algebra is infinite and it is not clear that there even exists a cluster
polytope. Using [30, 31] we have computed the vertices, found the bounding hyperplanes,
and analyzed the polyhedral combinatorics of C(k, n) for various (k, n). Here for brevity
we summarize just the f -vectors

(3, 6) : (1, 48, 98, 66, 16, 1) ,

(4, 7) : (1, 693, 2163, 2583, 1463, 392, 42, 1) ,

(3, 8) : (1, 13612, 57768, 100852, 93104, 48544, 14088, 2072, 120, 1) ,

(4, 8) : (1, 90608, 444930, 922314, 1047200, 706042, 285948, 66740, 7984, 360, 1) .

(2.3)
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The first two of these have appeared as the duals of the fans associated to the tropical
positive Grassmannian Trop+ G(k, n) [32], and some applications to physics for all four
have recently been discussed in [33–35]. Note that these polytopes are neither simple nor
simplicial.

Except for the special case n = 6, the C(4, n) polytopes are not invariant under the
parity transformation Zi 7→ ∗(Zi−1ZiZi+1) that is a symmetry of MHV amplitudes. There
are several ways of constructing parity-invariant polytopes, for example by taking a larger
set P that includes the parity conjugates of all Plücker coordinates, or by taking a smaller
set P of Plücker coordinates that is closed under parity. We find that the second option
gives a particularly interesting polytope we call C†(4, n), obtained by taking P to be the
subset of Plücker coordinates having the form 〈i i+1 j j+1〉 or 〈i j−1 j j+1〉. This is the
largest subset of Plücker coordinates that is closed under parity, and for n = 7, 8 gives
parity-invariant polytopes with f -vectors

(4, 7) : (1, 595, 1918, 2373, 1393, 385, 42, 1) ,

(4, 8) : (1, 49000, 249306, 536960, 635176, 447284, 189564, 46312, 5782, 274, 1) .
(2.4)

Interestingly the number 595 appeared in [32], where it was noted to be the number of
facets of (the dual of) C(4, 7) that are simplicial. However this seems to be a coincidence:
we find that 50356 (not 49000) facets of (the dual of) C(4, 8) are simplicial.

The virtue of using a cluster parameterization in the string integral construction is
that it ties the geometry of the resulting polytope to the combinatorics of cluster algebras.
Specifically, we find that the (outward) normal rays to all facets of C(k, n) are generated by
g-vectors [36] of the G(k, n) cluster algebra in all of the cases listed above where the latter
is finite. We remind the reader that the g-vectors associated to the cluster variables in any
one cluster generate a cone, the cones associated to different clusters are non-overlapping,
and the union of all cones (called the “cluster fan”) covers all of Rd in finite cases. One of
the salient features of infinite cluster algebras is the last of these is no longer true: there are
directions in Rd that are outside the cluster fan, and so are not associated to any cluster.

On the other hand the cones associated to the outward pointing normal rays to any
polytope (the “normal fan”) manifestly cover all of space. In infinite cases some normal rays
to our polytopes point in directions outside the cluster fan, and it is interesting to identify
their cluster-algebraic significance. Specifically, in the infinite case (4, 8) we find that the
normal rays to 356 of the facets of C(4, 8) lie along g-vectors of the G(4, 8) cluster algebra,
consistent with the results reported in [33, 37, 38] for the fan associated to Trop+ G(4, 8).
However, the remaining 4 normal rays are not even inside the cluster fan, according to the
criterion given in Theorem 3.25 of [27]. The normal rays to the 274 facets of C†(4, 8) are
a proper subset of those of the facets of C(4, 8); 272 of them lie along g-vectors and 2 of
them are outside the cluster fan.

The cluster variables associated to the 272 g-vector facets of C†(4, 8) include the 108
symbol letters of the two-loop MHV amplitude [39] and the 64 additional rational letters
of the two-loop NMHV amplitude [18]. It would be interesting to see if this 272-letter
alphabet exhausts the rational letters of (at least the MHV) 8-particle amplitudes to all
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loop order. (All evidence available to date suggests that the corresponding statement is
true for the 9- and 42-letter symbol alphabets for the cases n = 6, 7 respectively [7, 9].)

In the following two sections we turn our attention to the remaining 2 (4) normal rays
of C†(4, 8) (C(4, 8)), which lie outside the cluster fan and so are not naturally associated
to any cluster variables. We will see that the canonical basis element associated to the
first integer point along each of these rays is overpositive, and we conjecture that the
basis elements associated to points further along the rays are encapsulated in quadratic
generating functions with positive roots. In the case of C†(4, 8), these turn out to be
precisely the roots associated to the four-mass box integral [12, 13].

3 Cluster canonical bases

Cluster variables in a rank d cluster algebra are naturally associated with various lattice
points in Zd, defined with respect to some initial seed cluster. One rather intuitive one
is the notion of a “denominator vector”. The Laurent phenomenon tells us that every
cluster variable can be expressed as a ratio polynomial/monomial in the initial seed cluster
variables, and the denominator vector of a cluster variable is the exponent vector of the
monomial appearing in this expression. A more canonical object is the g-vector we have
already alluded to; one can think of the g-vector as the denominator vector with respect to
an ordering defined by the B-matrix of the initial cluster. More precisely, one can define
a partial ordering on the space of n-dimensional vectors g by saying that g′ � g iff g′ − g
is in the cone spanned by the columns of the initial B-matrix. If we expand any cluster
variable x as a sum of Laurent monomials in initial cluster variables, the g-vector of x is
defined to be that of the term whose g-vector is smallest with respect to �.

As we have mentioned, in finite-type cluster algebras, the g-vectors associated to
the cluster variables of any cluster define a cone, and these cones are remarkably non-
overlapping and cover all of Rd. This is related to another beautiful fact in finite type: the
collection of monomials associated with all the clusters provides a basis for the entire clus-
ter algebra. This is not obvious. The Laurent phenomenon guarantees that any product of
cluster variables can be represented as a Laurent polynomial in terms of some initial seed
cluster variables, but the claim is that any product of cluster variables from arbitrarily
distant clusters can be written as a polynomial made of sums of monomials of variables in
the same cluster.

Beyond finite type, while the cluster cones are still non-overlapping, they do not cover
all of space. Related to this, cluster monomials no longer provide a basis for the full cluster
algebra, as there are directions in g-vector space that can not be spanned by products of
cluster variables. There is a large literature on the construction of various “canonical bases”
of cluster algebras in infinite type. For G(k, n) every integer point in g-vector space can be
assigned [27] (partly conjecturally) a polynomial in cluster variables, Lusztig’s canonical
basis element [40]. When the integer point lies inside a g-vector cone of some cluster, the
corresponding function is simply the obvious associated monomial in cluster variables, but
when the integer point is on a ray not pointing in the direction of a cluster variable, the
corresponding basis element is not a cluster variable, but something else.
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We will encounter precisely this situation in our study of C(k, n), and explicitly for the
(k, n) = (4, 8) case of interest for amplitudes. The facets of C(4, 8) have some normal rays
that point in non-cluster directions, and it is natural to ask for the generating function for
the canonical basis elements associated to all points along each such ray. This will motivate
an association between the poles of this generating function and symbol letters, revealing
a remarkable connection between C(4, 8), the canonical basis, and the quadratic equation
associated with the four-mass box symbol letters.

3.1 A rank-2 example

Before jumping into the intricacies of G(4, 8) let us warm up by illustrating many of the
salient points with the simplest example of an infinite-type cluster algebra. Largely follow-
ing [41], consider the rank-2 cluster algebra with initial exchange matrix

B =
(

0 −2
2 0

)
(3.1)

whose cluster variables xn are determined in terms of those of the initial cluster (x1, x2) by

xn+1 = 1 + x2
n

xn−1
. (3.2)

For a, b ∈ Z, the g-vector of a monomial xa
1xb

2 in the initial variables is defined to be (a, b).
As mentioned above, for general cluster variables, the g-vector is given by the exponent
vector in the Laurent expansion which is smallest by the partial ordering specified by B.
For example, two cluster variables are

x4 = 1
x2

+ 1
x2

1x2
+ 2x2

x2
1

+ x3
2

x2
1

(3.3)

and

x0 = x2
1

x2
+ 1

x2
, (3.4)

where in each case the terms are written in increasing order with respect to �. We see
that the g-vector of x4 is (0,−1). In general, it is easy to work out that the g-vector
associated to xn is (n−4, 3−n) for n ≥ 3 and (2−n, n−1) for n ≤ 2. The union of g-vector
cones almost covers all of R2, but they accumulate along a single missing ray generated
by (1,−1). It is thus clear that cluster monomials don’t provide a basis for the full cluster
algebra. For instance, the smallest monomial in the product x1x4 has g-vector equal to
(1,−1), and so can’t be written as a sum of cluster monomials. What is needed to complete
a basis for the cluster algebra?

It is easy to give an elementary answer to this question in this very simple example.
We begin by noting that the mutation relation (3.2) may be recast into the form of a
recurrence relation

xn+1 = Axn − xn−1 with A = x1
x2

+ 1
x1x2

+ x2
x1

. (3.5)
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In fact x1, x2 can be replaced by any xn, xn+1 in the expression for A; it is an invariant
across all clusters. We can use this generating function to give an explicit expression for
all cluster variables. If we define the generating function X(t) =

∑
k≥0 xktk, then the

recurrence relation implies that (1−At + t2)X(t) = x0 + t(x1 −Ax0), and hence

X(t) = x0(1−At) + x1t

1−At + t2 . (3.6)

By factoring the quadratic equation in terms of its roots R±, we can also express xn as

xn =
x0(Rn+1

− −Rn+1
+ ) + (x1 −Ax0)(Rn

− −Rn
+)

R− −R+
(3.7)

where

R± = A±
√

A2 − 4
2 . (3.8)

Here we see the first occurrence of an interesting quadratic equation and its associated
roots in the generating function X(t) for the cluster variables themselves.

The variable A has a deeper significance. Note that while e.g. x1x4 can’t be expressed
as a sum of cluster monomials, we can write x1x4 = A + x2x3, suggesting that A should
be considered an element of the basis. Its g-vector is (1,−1), which lies along the missing
ray, so it is a basis element that is not a cluster variable.

What basis elements should we associate with the other integer points (p,−p) along
this ray? Most naively, in analogy with the case of cluster variables, we might think that
these should just be the powers Ap. But the variable A has a very interesting and peculiar
property that suggests this is the wrong answer. Cluster variables are “critically positive”,
in the sense that they approach zero on some boundaries of the positive part of the cluster
variety. But this is not true of A! Note that A = r + 1/r + 1/(x1x2) where r = x1/x2, and
thus A ≥ 2. A is thus “overpositive”, and can’t reach zero on any boundary of the positive
part. Relatedly, we can’t understand the positivity of A− 2 in the way that one familiarly
understands positivity of polynomials in cluster variables. Usually, an expression can be
determined to be positive simply by expanding in the cluster variables of an initial seed
and seeing that all terms in the Laurent expansion are positive. But that is not the case for
A − 2; this expression is positive despite the appearance of a negative sign in its Laurent
expansion simply because A2 − 4 > (r + 1/r)2 − 4 = (r − 1/r)2 > 0.

Motivated by this observation, we say that an element x of the algebra is positive if it
is positive-valued when x1, x2 > 0 and that a positive x is Laurent positive (with respect
to the initial cluster) if it is a linear combination of initial cluster monomials with positive
coefficients; otherwise x is nontrivially positive. Finally we say that x is overpositive if
there exists a positive y such that x/y is non-constant and min(x/y) > 0. Note that

A2 = 2
x2

1
+ 2

x2
2

+ 1
x2

1x2
2

+ x2
1

x2
2

+ x2
2

x1
+ 2 (3.9)

so we see that A2 − z is Laurent positive only for z ≤ 2 (this is another way to see that A

is overpositive). It is still positive for 2 < z ≤ 4 since we have already seen that A ≥ 2,
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and an important consequence of this nontrivial positivity is that R± are both real and
positive-valued in the positive part of the cluster varitey. Finally, it is easy to see that
A2 − z is not positive for z > 4.

Moving to higher powers, it is natural to ask for some basis Tp(A) of polynomials
in A, beginning with T0(A) = 1, T1(A) = A and T2(A) = A2 − 2, such that Tp(A) is
maximally Laurent positive (that means, with no further subtractions possible). Using
A = r + 1/r + 1/(x1x2), such polynomials can be determined by requiring Gp(z + 1/z) =
zp + 1/zp. The generating function for basis elements of this form along the missing ray,
g(t) =

∑
p≥0 Gp(A)tp, is given by g(t) = (1− t2)/(1−At+ t2). Note the second appearance

of the same quadratic polynomial in A we saw earlier, this time not in computing cluster
variables, but more fundamentally as generating the basis elements for this “critically
Laurent positive” basis along the missing (1,−1) ray.

It is also natural to consider another basis Fp with generating function f(t) = (1−At+
t2)−1 =

∑
p≥0 Fp(A)tp, which is expected to be the analogue of Lusztig’s canonical basis for

this rank 2 cluster algebra. We will not attempt to explain the deep significance of this basis
here; for now, we simply wish to emphasize that the nontriviality of the generating function
for both the bases we have highlighted is associated with the surprising overpositivity of
the non-cluster variable A associated with the first integer point on the non-cluster ray.
We also emphasize that while the generating functions f(t) and g(t) clearly differ, they
have the same poles in t; we expect this will be true of any suitably reasonable basis.

3.2 A definition of cluster algebraic functions

Let A be a cluster algebra of rank d, let X ' Zd be a lattice that parameterizes bases of
A, and let B(g) be a basis element associated to the lattice point g ∈ X. For a ray in X
with integer points 1 · g, 2 · g, . . . (note that we always take g to be the first integer point
along its ray) we define the generating function

fg(t) =
∑
k≥0
B(kg)tk . (3.10)

In general fg(t) depends on the choice of basis, but if g lies in the cluster fan of A then
B(kg) = B(g)k, where B(g) is the cluster monomial associated to g, and hence

fg(t) = 1
1− tB(g) . (3.11)

Motivated by (3.11), in cases where fg(t) is a rational function of t we denote the roots
of 1/fg(1/t) by R(g). We conjecture that these are always positive on A>0, the positive
part of A. We call R(g) the cluster algebraic function associated to the ray generated by
g. If g ∈ X is a g-vector of the cluster algebra A then R(g) contains a unique element,
the cluster variable associated to g, but if g lies outside the cluster fan of A then R(g) is a
finite collection of algebraic functions of cluster variables. Further aspects of such functions
will be discussed in [22].
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4 G(4, 8) and the four-mass box

Here we apply the proposal just introduced to the polytopes constructed in section 2. As
reported there, we find that the normal rays to 356 facets of C(4, 8) are generated by g-
vectors of the G(4, 8) cluster algebra, and therefore are naturally associated to 356 of its
cluster variables. The other 4 facets have normal rays generated by

g1 = (−1, 1, 0, 1, 0,−1, 0,−1, 1) ,

g2 = (0,−1, 0,−1, 0, 1, 0, 1, 0) ,

g3 = (−1,−1, 1,−1, 2, 0, 1, 0,−1) ,

g4 = (1, 0,−1, 0,−2, 1,−1, 1, 1) .

(4.1)

The first two of these are also normal rays to C†(4, 8). We adopt Corollary 7.3 of [27] as a
(conjectural) way to assign a canonical basis element to any lattice point in Rd, regardless
of whether it is in the cluster fan. In the notation defined in that paper, the semistandard
Young tableaux T1, . . . , T4 associated to (4.1) are respectively

1 3
2 5
4 7
6 8

,

1 2
3 4
5 6
7 8

,

1 1 2 4
2 3 3 6
4 5 5 7
6 7 8 8

,

1 1 2 3
2 4 4 5
3 6 6 7
5 7 8 8

. (4.2)

Let us first consider T1, which is the same as the T4 considered in Example 8.1 of [27],
where the variables associated to the first two points along the ray generated by g1 were
computed as

B(1 · g1) = ch(T1) = A ,

B(2 · g1) = ch(T1 ∪ T1) = A2 −B
(4.3)

in terms of the quantities

A = 〈1256〉〈3478〉 − 〈1278〉〈3456〉 − 〈1234〉〈5678〉 ,
B = 〈1234〉〈3456〉〈5678〉〈1278〉 .

(4.4)

We have computed the next variable along this ray,

B(3 · g1) = ch(T1 ∪ T1 ∪ T1) = A3 − 2AB . (4.5)

Based on (4.3) and (4.5) we conjecture that

fg1(t) =
∑
k≥0

ch(T∪k
1 )tk = 1

1− tA + t2B
. (4.6)

Note that this encapsulates an infinite number of predictions about the behavior of the
canonical basis along the direction g1. According to the proposal outlined in the previous
section, the variables associated to this ray are therefore

R(g1) = A±
√

A2 − 4B

2 . (4.7)
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Exactly as in the rank two toy example we studied in the previous section, using the
representation of A, B in terms of initial cluster variables it is straightforward to check that
A is overpositive and ∆ ≡ A2 − 4B is positive, even though A2 − rB is Laurent positive
only for r ≤ 2 and not positive if r > 4. This can be seen by noting that expanding in
terms of initial cluster variables, we have A = x + y + · · · , where x, y are monomials such
that B = xy. This shows that A2 − 4B is positive and that A2 − 2B is Laurent positive.
Furthermore, it can be checked that the exponent vectors of x, y are separated from the
exponent vectors of all the other monomials in A by a hyperplane. This means that we
can scale the cluster variables in such a way that x, y dominate by arbitrarily large factors
relative to the other monomials in A, and shows that we can make A2 − rB negative for
r > 4, so r = 4 is the critical case.

Even more exciting is the fact that
√

∆ is precisely one of the two cyclic incarnations of
the square root that appears in the four-mass box integral [12, 13]; its cyclic partner comes
from the ray generated by g2. These are known to be the only square roots that appear in
the symbol alphabets of the one-loop N2MHV [42] and two-loop NMHV amplitudes [18];
they are also expected to appear in MHV amplitudes at three loops and beyond [11].

Finally we turn to g3 and its cyclic partner g4. It is straightforward to compute the
variable G = B(1 ·g3) = ch(T3) associated to the lattice point g3. Remarkably we find that
G, which has torus weight 2 in each of the eight Zi, is related to A by a braid element [43]
of the G(4, 8) cluster modular group. Under the same braid transformation we find that
B 7→ B′ where

B′ = B 〈2345〉〈4567〉〈1678〉〈1238〉 . (4.8)

Therefore ∆ maps to ∆′ = G2 − 4B′, which again is nontrivially positive. While the
presence of the additional root

√
∆′ (and its cyclic partner) associated to C(4, 8) has a

simple and beautiful mathematical origin, it is unclear whether these roots play any role
in physics; for example, whether they correspond to the Landau singularities. This may
be another sign (beyond the consideration of parity discussed above) that C†(4, 8) (which
lacks these extra roots) is more relevant to the physics of MHV amplitudes than C(4, 8).

5 Outlook

Our work raises a number of related questions. On the mathematical side, it would be
interesting to verify the conjecture (4.6) and to explore the corresponding generating func-
tions at higher n and k. More generally, it would be interesting to understand under what
circumstances the generating function defined in (3.10) is rational (for example, is this
true in G+(k, n) for all g?) and to prove our conjecture that in such cases the roots of its
denominator are always positive.

On the physics side it would be interesting to determine if the 272 cluster variables
associated to C†(4, 8), together with the algebraic letters of four-mass-box type, indeed
constitute the all-loop symbol alphabet of the 8-particle MHV amplitude. Evidence in
support of this suggestion could be provided either by explicit computation or by using
them as a bootstrap ansatz. Also, we have so far only discussed the crudest relation between
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polytopes and cluster algebras, according to which symbol letters of the latter are related to
facets of the former. For finite algebras this connection was first observed in [6] but in recent
years much finer connections have been explored, for example the observation [44] that two
cluster variables can appear next to each other in a symbol only if the corresponding facets
intersect. From (2.4) we see that C†(4, 7) has 385 codimension-2 faces, suggesting that only
385 distinct pairs of adjacent symbol entries (all of the ones tabulated in [44] except for
those described in equation (12b)) appear in 7-particle MHV amplitudes. This is consistent
with all evidence available to date [37]. It would be interesting to explore this type of finer
structure for n > 7, and especially to understand the “cluster adjacency” properties of
algebraic symbol letters.

We leave the most ambitious question for last. Supposing that an appropriate non-
perturbative geometry for pSYM theory is indeed provided by a construction of the type
that we have described, what is the non-perturbative question we should ask of this space,
whose answer gives a scattering amplitude?
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