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1 Introduction

Scattering amplitudes are one of the most fundamental observables in modern high-energy
physics. Significant strides have been made in both understanding the underlying structure
of amplitudes and developing new computation methods. Many techniques for computing
amplitudes are under active research, such as the double copy [2–4], positive geometry [5–7],
intersection theory [8–10] and much more [11–18]. In particular, a number of techniques
have emerged that leverage non-perturbative properties of the S-matrix, such as unitarity
and cluster decomposition. For example, cutting rules for integrands that hold at all orders
can be derived from unitarity [19–21], and bounds on couplings can be derived by testing
whether the theory allows for macroscopic superluminal signal transmission [22]. Recently,
significant focus in this program has been placed on studying the analytic structure of
amplitudes, which encode the causal dynamics of the underlying theory. Imposing that the
amplitude has the correct analytic structure imposes many nontrivial properties, such as
bounds on higher dimension operators [23–26] and Steinmann relations [27–29].

In this paper, we study what singularities and branch cuts can appear in integrated
Maximal Helicity Violating (MHV) amplitudes at all loop orders in N = 4 planar super
Yang-Mills (pSYM).1 We restrict ourselves to MHV amplitudes due to their simplicity and
plethora of computational data. Remarkably, all evidence to date suggests that integrated
MHV amplitudes do not have any singularities or branch cuts inside the positive kinematic
region [32]. Furthermore, by studying the boundary structure of the positive kinematic
region, one can make predictions for what branch points can appear at any loop order [33].
However, the boundary structure of the positive kinematic region is very difficult to study
due to the subtleties involved in choosing particular compactifications of the positive kine-
matic region. Cluster algebras provide a precise understanding of the boundary structure
of the positive kinematic region at 6-point and 7-point [33–35]. At 8-point and beyond
though, many new features appear that are still under active investigation and not well
understood from the cluster algebra perspective. Foremost among these features is the
appearance of algebraic letters in the symbol alphabet [36–38].

To approach these questions, we use scattering diagrams2 [39–44], a natural general-
ization of the cluster algebra framework, to study different compactifications of the positive
kinematic region of the 8-point MHV amplitude. We show how the boundary structure of
the positive kinematic region can be systematically studied using scattering diagrams and
find that algebraic letters naturally emerge from the notion of asymptotic chambers in the
scattering diagram. We ultimately found a list of 72 multiplicatively independent letters,
of which at most 52 are algebraic, associated with the asymptotic chambers apparently
relevant for the 8-point MHV amplitude. We argue this alphabet includes all algebraic
letters that could appear in the 8-point MHV symbol alphabet. Furthermore, we also dis-
cuss how scattering diagrams provide a new approach to studying rational letters in the
symbol alphabet.

1“Integrated amplitude” refers to the BDS-like normalized amplitude [30, 31].
2The term “scattering diagrams” in this context has nothing to do with Feynman diagrams.
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1.1 N = 4 super Yang-Mills

Amplitudes in N = 4 pSYM are an ideal testing ground for exploring the analytic struc-
ture of planar scattering amplitudes. For instance, amplitudes in N = 4 pSYM have
a finite number of branch points associated with solutions to the Landau equations and
are expected to have a finite radius of convergence in perturbation theory [45]. Significant
progress has been made in understanding the structure of N = 4 pSYM amplitudes beyond
Feynman diagrams. At weak coupling, deep geometric structures, such as the amplituhe-
dron, have emerged that provide both powerful computational techniques for computing
integrands at any loop order and a radically different perspective on the nature of locality
and unitarity [46–50]. At strong coupling, holographic calculations provide non-trivial pre-
dictions for the behavior of N = 4 pSYM amplitudes in the form of the BDS-ansatz [51–53]
and its generalizations [30, 54]. Other formalisms motivated by the duality between Wilson
loops and scattering amplitudes have also emerged [55–62].

MHV amplitudes in N = 4 pSYM are particularly simple and have been useful litmus
tests for conjectures. MHV n-point amplitudes are transcendental functions of fixed weight
at each loop order that can be expressed in terms of multi-polylogarithms (MPLs) at all
orders calculated to date [33, 49, 63–67].3 These transcendental functions of weight W ,
FW , are the generalizations of logarithms that obey extremely nice properties. Primarily,
the symbol provides a map from the amplitude to a sum of W -fold tensor products:

F →
∑

F
φα1 ,φα2 ,...,φαW
0 [log(φα1)⊗ log(φα2)⊗ . . .⊗ log(φαW )] , (1.1)

where F0 are rational numbers. Each factor in the tensor product behaves similarly to a
logarithm, leading to properties like

[. . .⊗ log(φ1φ2)⊗ . . .] = [. . .⊗ log(φ2)⊗ . . .] + [. . .⊗ log(φ1)⊗ . . .] . (1.2)

The φi in eq. (1.1) are functions of external kinematic data and correspond to branch points
of FW . The set of all φ that can appear in eq. (1.1) is called the symbol alphabet of FW .

The symbol provides a very transparent understanding of the analytic structure of FW .
We will focus on finding a minimal symbol alphabet, a set of multiplicatively independent
letters that all letters in the original symbol alphabet can be written as monomials of.
For example, consider the initial symbol alphabet {φ1, φ2, φ1φ2}. One minimal symbol
alphabet is {φ1, φ2} as φ1φ2 factors into φ1 and φ2. An alternative minimal symbol
alphabet is {φ2, φ1φ2}, as φ1 = (φ1φ2)/φ2. Given a minimal symbol alphabet, one can
use eq. (1.2) to construct a complete basis of possible tensors. Finding a minimal symbol
alphabet of the 8-point MHV amplitude would be a major achievement and open up the
possibility of bootstrapping 8-point MHV higher loop amplitudes. We take an important
step towards this goal by proposing a minimal symbol alphabet for algebraic letters.

3Using the Grassmannian form of N = 4 pSYM loop integrands, one can directly show all integrals in
the MHV (and NMHV) sector can be written as iterated integrals of d log-forms [49]. Unfortunately, this
does not necessarily mean they integrate to a function that can be written in terms of MPLs [68].
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1.2 The positive kinematic region

Scattering amplitudes are functions on kinematic space. The positive kinematic region is a
region of kinematic space where planar gauge theory amplitudes are conjectured to have no
poles or branch cuts. More precisely, in all examples studied to date, the Landau equations
admit no solutions when the external data is taken to be in the positive kinematic region.
The positive kinematic region for a given ordering of externals, α ∈ Perm[1, 2, . . . , n], is
associated with the region where all planar variables are positive definite,

Xi,j =

j−1∑
a=i

pα(a)

2

> 0 , (1.3)

along with additional constraints [32, 33, 47]. Although not well understood, the positive
kinematic region implicitly appears in many computations. For example, the integrands
that appear in open superstring scattering amplitudes are generically divergent unless
evaluated in the positive kinematic region [7, 69]. Therefore, when evaluating superstring
integrands without using string field theory techniques or taking sophisticated Pochhammer
contours in the string moduli space [70], one must implicitly work in the positive kinematic
region, only taking an analytic continuation to generic momentum configurations at the
end of the calculation. Again, we emphasize that the physical significance of the positive
kinematic region remains mysterious and its importance has been found through direct
computation.

Since we are studying the positive kinematic region of massless planar gauge theory
amplitudes in 4 dimensions, we parameterize our external kinematic data using momentum
twistors [33]; ZAi is the momentum twistor of state i and the A index transforms in the
fundamental representation of the dual conformal algebra, SU(2, 2). Individual momentum
twistors are projective:

ZAi ∼ tiZAi . (1.4)

Therefore, the kinematic space of the n-point amplitude can be interpreted as a quotient
of the Grassmannian, Gr(4, n)/T , where T acts on columns by a re-scaling. The positive
kinematic region is then a quotient of the positive Grassmannian, Gr+(4, n)/T , cut out by
the inequalities

0 < 〈i, j, k, l〉 when i < j < k < l , (1.5)

where 〈. . .〉 corresponds to a minor of columns “. . .”.4
We are particularly interested in the boundary structure of the positive kinematic

region since the boundary is where planar gauge theory amplitudes can have singulari-
ties [32, 45]. This is most easily seen at tree level, where poles of the form Xi,j → 0
manifestly correspond to boundaries of the region defined by eq. (1.3). Remarkably, not
only singularities, but also possible branch cuts are encoded in the boundary structure
of the positive kinematic region. However, the problem of finding distinct boundaries is
more subtle than one might naively expect. Instead of investigating Gr+(4, n)/T , let us

4This is only true in the MHV sector. Beyond MHV, the kinematic region is most naturally interpreted
as bundles over Gr(4, n)/T [32, 47].
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Figure 1. Different parameterizations of Gr+(2, 5)/T . In the z-variable parameterization, only
three boundaries are manifest. However, the u-variable parameterization makes all five boundaries
manifest.

consider a simpler version of the problem by studying the boundaries of Gr+(2, 5)/T . A
naive parameterization of this space is

Cαi ∼
(

1 1 1 1 0
0 z1 z2 1 1

)
, (1.6)

where 0 < z1 < z2 < 1 defines the positive region. We graph the positive region explicitly
in figure 1, where 3 boundaries are clearly manifest. However, let us now consider an
alternative parameterization of the space with u-variables [5, 71, 72]

ui,j = 〈i, j − 1〉〈i− 1, j〉
〈i, j〉〈i− 1, j − 1〉 , (1.7)

where 〈a, b〉 denotes a minor of Cαi . These ui,j variables obey the non-linear relations:

u1,3 = 1− u2,4u2,5, (Cyclic permutations), (1.8)

and the bounds, 0 < ui,j < 1, in the positive region. The second plot of the positive region
in figure 1 using u-variables shows that there are 5 boundaries, not 3. The underlying
problem with eq. (1.6) is that a single set of coordinates, unless chosen very carefully, will
not manifest all possible boundaries of the positive region. In other words, to study the
boundary structure of the positive kinematic region, we need to study the compactified
positive kinematic region, Gr(4, n)/T .

1.3 Critically positive coordinates and cluster algebras

Previous research into the connection between the positive kinematic region and N = 4
pSYM amplitudes has generally focused on the cluster algebra structure of the positive
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kinematic region [33–35, 73–83].5 More concretely, the positive kinematic region of MHV
N = 4 pSYM amplitudes corresponds to a X -type cluster algebra6 which associates to the
positive kinematic region a set of critically positive coordinates called ŷ-variables. A coor-
dinate that is critically positive vanishes on at least one boundary of the positive region.
Although each cluster parameterization makes only a sub-set of boundaries manifest, con-
sidering all cluster parameterizations together allows one to study all the possible bound-
aries. At 6-point and 7-point, the symbol alphabet, the φi in eq. (1.1), consists solely of the
ŷ-variables, implying that ŷ-variables correspond to logarithmic branch cuts! Calculations
are further simplified by considering a minimal multiplicative basis of ŷ-variables instead of
the set of ŷ-variables themselves. Given an initial cluster, one minimal multiplicative basis
consists of the ŷ-variables of an initial cluster, ŷi, along with some non-factorable Laurent
polynomials of ŷi. We denote this set of non-factorable Laurent polynomials as O(X ).

Starting at 8-point, two problematic features appear in the cluster algebra approach:

• There are an infinite number of ŷ-variables in the cluster algebra.

• Algebraic letters start to appear in the symbol alphabet.

Several approaches to tackling these problems have appeared in the literature and signifi-
cant progress has been made.

The first problem is troublesome because a key restriction for calculations at 6-point
and 7-point is that the symbol alphabet is finite. Upon finding that the cluster algebra is
infinite at 8-point, one might be tempted to assume that the symbol alphabet at 8-point is
also infinite. However, it has been proven that the n-point amplitude in N = 4 pSYM has
a finite number of branch points associated with solutions to the Landau equations [45],
implying that the symbol alphabet could also be finite. Following this train of thought, sev-
eral truncation procedures have been proposed, motivated by connections between stringy
canonical forms and compactifications of configuration spaces [32, 72, 90, 91].

The second problem has proven a major obstacle for interpreting letters as cluster
variables because cluster variables are rational by construction. Multiple methods have
been developed to extract algebraic functions from cluster algebras and then match these
functions with algebraic letters that appear in direct calculations [1, 32, 86, 87, 92]. We
use the term cluster algebraic letters as an umbrella term for all such cluster-like variables
that are algebraic.7 However, no unified picture has emerged that provides a systematic
understanding of these cluster algebraic functions.

5Note that alternate approaches have also been very successful without directly referencing the cluster
algebra structure of the positive kinematic region. The Q̄ approach in particular has been extremely useful
in probing n ≥ 8 higher loop amplitudes [36, 84, 85]. Computations with irrational Yangian invariants
provide a very clever probe of the algebraic letters [86–88]. Finally, studying branch points using Landau-
equations and the amplitudhedron have allowed direct computations of the singularity structure at high
loop order [37, 38, 89].

6A quick introduction to cluster algebras is provided in appendix A.
7Notably, the initial definition of cluster algebraic functions in ref. [32] only included 2 algebraic letters

for each limiting ray in the Gr(4, 8)/T g-vector fan. However, at least 18 algebraic letters seem to appear
in the NMHV 2-loop amplitude at 8-point [36].
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Figure 2. Pictures of the scattering diagrams corresponding to Gr(2, 5)/T (left) and Gr(2, 6)/T
(right).

1.4 Scattering diagrams and asymptotic chambers

In this paper, we propose wall crossing, and scattering diagrams more specifically, as a
useful framework to address these issues [39–44]. Wall crossing has found applications in a
number of research areas, such as the moduli spaces of N = 2 gauge theories and black hole
entropy formulas [93–98]. However, we are not studying any kind of entropy formula or
moduli space, but instead compactifications of the positive kinematic region, Gr(4, n)/T .
The application of wall crossing and scattering diagrams to partial compactifications is
best understood in the context of mirror symmetry [39, 44, 99], but such a discussion is
unfortunately beyond the scope of this paper.8 Instead, we take a more practical approach,
giving a computational definition of a scattering diagram with examples and then making
the connection to cluster algebras. We argue that scattering diagrams, which represent a
more general mathematical framework than cluster algebras, are useful for studying cluster
algebraic functions that appear in the symbol alphabet of N = 4 pSYM.

The scattering diagram of a rank N cluster algebra corresponds to a fan in ZN , where
each cone in the fan corresponds to a different coordinate system for X . Cones of the
scattering diagram correspond to clusters of the cluster algebra. In the case of finite cluster
algebras, crossing between adjacent cones in the scattering diagram always corresponds to
a cluster mutation. For example, the scattering diagrams of Gr(2, 5)/T and Gr(2, 6)/T are
provided in figure 2. Crucially, the scattering diagram perspective motivates an alternate
set of coordinates for X , denoted as ŷγ-variables. For a given cone/cluster, the ŷγ-variables

8The schematic connection between mirror symmetry and cluster algebras is as follows. We can interpret
X as the blow-up of an associated toric geometry. Cluster transformations correspond to changing the blow
up description by an elementary transformation. Scattering diagrams provide a framework to systematically
“sew” these different parameterizations together using a fan defined by tropical points of the dual mirror
manifold, A∨. This framework is famous for giving a geometric interpretation of the connection between
tropical points of A∨ and regular functions on X using mirror symmetry.
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can be written as monomials of the ŷ-variables and vice-versa. Therefore, the ŷγ-variables
and ŷ-variables have the same multiplicative basis.

In the finite case, the walls corresponding to cluster mutations define a complete scat-
tering diagram. In some sense, the finite scattering diagram is simply a rewriting of the
cluster algebra and contains no new information. In the infinite case, where there are an
infinite number of cones, scattering diagrams are a genuine generalization of the cluster
algebra framework. In particular, infinite sequences of cones appear in the scattering dia-
grams that asymptotically approach limiting rays, as schematically drawn in figure 3. We
use these infinite sequences of cones to define the notion of asymptotic chambers: cones
that are asymptotically close to the limiting ray. Although there are always an infinite
number of walls as you approach the limiting ray, we argue that walls not intersecting
the limiting ray can be ignored when calculating relations between the ŷγ-variables in this
asymptotic limit. For example, there are 6 asymptotic chambers in figure 3 as only three
walls intersect the limiting ray. We can calculate relations between the ŷγ-variables of
distinct asymptotic chambers using the wall crossing framework.

The initial motivation for asymptotic chambers actually came from N = 2 super-
symmetric gauge theories. For specific N = 2 gauge theories on R3×S1, the moduli space
corresponds to a X -type cluster algebra [93]. This connection between cluster algebras
and N = 2 gauge theories led to a number of interesting results, such as a connection
between canonical bases of the cluster algebra and the set of simple line defects in the
theory [96]. The concept of an asymptotic chamber was proposed in ref. [93], although
initial calculations were first performed in section 5.9 of ref. [94] using different terminology.
Later generalizations made connections between asymptotic chambers and Fenchel-Nielsen
coordinates of (higher) Teichmuller spaces [100–102]. However, to our knowledge, the
notion of asymptotic chambers in the context of higher dimension scattering diagrams has
been largely unstudied for general X spaces.

Crucially, although the ŷ-variables often diverge in the asymptotic limit, the ŷγ-
variables themselves remain finite. These “asymptotic” ŷγ-variables correspond to the
algebraic letters that appear in the 8-point symbol alphabet! Using scattering diagrams
and the notion of asymptotic chambers, we conjecture a complete multiplicative basis for
all algebraic letters that could appear in the N = 4 pSYM symbol alphabet at 8-point.
Remarkably, we found at most 52 multiplicatively independent algebraic letters associated
with the asymptotic chambers. This result systematizes the techniques in refs. [1, 92],
which effectively analyzed a particular subset of asymptotic chambers and did not study
the relations between the algebraic letters of different asymptotic chambers.

The scattering diagram approach also offers a new perspective on proposed truncation
procedures for ŷ-variables. We take a similar philosophy to refs. [1, 32, 92], arguing that
the positive kinematic region is not maximally compactified, so not all boundaries appear.
However, in contrast to refs. [1, 32, 92], which argue for a truncation of the x-variables,
we instead argue for a truncation of clusters in the cluster algebra, or equivalently cones
in the scattering diagram. We further argue that such a truncation naturally leads to the
notion of asymptotic chambers and algebraic critical coordinates.

– 7 –
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Figure 3. A schematic representation of the cone structure near the limiting ray in some 3-
dimensional scattering diagram. We are looking down on the limiting ray, which corresponds to the
green dot.

1.5 Outline of this paper

The paper is structured as follows:

• Section 2: we first introduce the notion of scattering diagrams and wall crossing for
finite cluster algebras before defining the notion of an asymptotic chamber. We show
that the cluster algebraic functions follow naturally from the notion of asymptotic
chambers. The core result of this section is the conjectured bound in eq. (2.35), which
is a necessary condition for asymptotic chambers to be well defined.

• Section 3: we study asymptotic chambers in several examples, eventually studying
the asymptotic chambers associated with Gr(4, 8)/T . The core results of this section
are eqs. (3.17), (3.19), (3.21) and (3.25), which together give an explicit alphabet for
the algebraic letters at 8-point in terms of momentum twistors. We conclude with
some comments about possible obstructions to applying the same techniques beyond
8-point.

• Section 4: we introduce the notion of degenerate scattering diagrams, motivating their
construction using tropicalization and the dual cluster algebra. We then motivate
asymptotic chambers using degenerate scattering diagrams.

• Section 5: we conclude the paper with a summary and a list of future directions.

A short introduction to cluster algebras is provided in appendix A. We restrict our-
selves to cluster algebras whose exchange matrices are skew-symmetric, not just skew-
symmetrizable. The techniques in this paper can be generalized to cluster algebras with
non-skew-symmetric exchange matrices, but the formulas in this paper would require ad-
ditional tweaking.

Notation. We denote the cluster variables associated with A and X as x and ŷ respec-
tively. This notation differs from refs. [32, 92], which denote cluster variables associated
with A and X as a and x respectively. Furthermore, we denote mutations of the kth node
as µk. For example, xi = µkxi if i 6= k. Finally, we often denote cluster algebras using the
notation Ap1,p2,...,pn , because these cluster algebras correspond to the Teichmuller space of

– 8 –



J
H
E
P
0
7
(
2
0
2
1
)
0
4
9

bordered Riemann surfaces. The cluster algebra Ap1,p2,...,pn corresponds to the Teichmuller
space of a Riemann surface with n borders and pi punctures on border i. For those unfamil-
iar with the connection between cluster algebra and surfaces, this notation is unimportant
for our applications to N = 4 pSYM but is nice for organizational purposes.

2 Wall crossing, cluster algebras, and asymptotic chambers

In this section, we develop the notion of scattering diagrams and asymptotic chambers.
We begin with a short introduction to g-vectors before giving a relation between the scat-
tering diagram and the g-vector fan of the cluster algebra. We then develop the notion of
asymptotic chambers, using the A1,1 cluster algebra as our guide.

2.1 Principal quivers and the g-vector fan

Our goal is to find a minimal multiplicative basis of the ŷ-variables that parameterize the
positive region of X . Unfortunately, the set of ŷ-variables is very difficult to study for a
cluster algebra with generic frozen variables. For example, ŷ-variables will not always be
independent. To see the problem, consider the initial quiver,

x1 x2 x3

so
ŷ1 = 1

x2
, ŷ2 = x1x3, ŷ3 = 1

x2
. (2.1)

Without any frozen nodes, we trivially see that ŷ1 = ŷ3. However, suppose we include the
frozen node

y1

x1 x2 x3 ,

so ŷ1 = y1/x2 and ŷ1 6= ŷ3. From this example, it is clear that the frozen nodes play
a crucial role in distinguishing ŷ-variables. One approach to this problem is to simply
add frozen nodes until the ŷ-variables are maximally disambiguated [103, 104]. Only a
finite, albeit large, number of frozen nodes are necessary to maximally disambiguate the
ŷ-variables.

However, we are not interested in the set of all ŷ-variables but instead finding a multi-
plicatively independent basis. Given that any ŷ-variable can be written as a monomial of
x-variables, we only need to maximally disambiguate x-variables of the cluster algebra, not
the ŷ-variables. We are therefore motivated to consider a cluster algebra with a principal
quiver [103]. To construct a principal quiver, consider an initial quiver without any frozen
nodes. Then add a frozen node, yi, to each non-frozen node, xi, with an edge pointing
from the frozen node to the mutable node. For example, the quiver

y1 y2

x1 x2

(2.2)

– 9 –



J
H
E
P
0
7
(
2
0
2
1
)
0
4
9

xi Fi gi

x1 1 (1, 0)
x2 1 (0, 1)
x3 1 + ŷ1 (−1, 1)
x4 1+ ŷ1 + ŷ1ŷ2 (−1, 0)
x5 1 + ŷ2 (0,−1)

Table 1. The F (ŷi) polynomials and g-vectors of the A2 cluster algebra.

is a principle quiver of the A2 cluster algebra. Remarkably, the frozen nodes of a principal
quiver are enough to maximally disambiguate all x-variables! Details of this statement are
provided in appendix B. We subsequently study cluster algebras with principle quivers to
study the multiplicative basis of ŷ-variables of cluster algebras with arbitrary frozen nodes.
Furthermore, we can choose any quiver of our cluster algebra to be the principal quiver.

We now turn to the problem of understanding the relation between ŷ-variables and
x-variables for a cluster algebra with a principal quiver. Although we cannot write a direct
map from ŷ to x, attempting to do so allows us to associate a canonical vector to each x-
variable. Suppose we start with the principal quiver. Any x-variable in the cluster algebra
can be written as a Laurent polynomial of the x-variables and y-variables of the principle
quiver. It is not generally possible to re-write this Laurent polynomial entirely in terms
of ŷ-variables. However, it can be written as a polynomial of ŷ-variables of the principle
quiver up to a monomial of x-variables of the principle quiver:

x = x~gF (ŷi), x~g =
∏
i

xgii , (2.3)

where F (ŷi) is a Laurent polynomial in ŷ-variables of the principal quiver, which we denote
as ŷi. No two x-variables share the same g-vector, allowing us to associate a canonical g-
vector to each element of the cluster algebra. As an illustrative example, again consider
the A2 cluster algebra. The ŷ-variables of (2.2) are

ŷ1 = y1x
−1
2 , ŷ2 = y2x1 . (2.4)

Upon mutating x1, we find

x3 = y1 + x2
x1

= x2
x1

(1 + ŷ1)

→ ~g = (−1, 1), F (ŷi) = 1 + ŷ1 .
(2.5)

Mutating through all clusters yields all F (ŷi) polynomials and g-vectors of the A2 cluster
algebra, which are provided in table 1. Each cluster defines a cone bounded by the g-vectors
of the x-variables in the cluster. Remarkably, the cones associated with distinct clusters
are nonoverlapping, which is not at all obvious from the above definition. The collection
of these cones defines a (sometimes incomplete) fan.

– 10 –
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In summary, we reduced the problem of finding a multiplicative basis of the ŷ-variables
of a cluster algebra with generic frozen variables to finding a multiplicative basis of the
ŷ-variables of a cluster algebra with a principal quiver. We then used the ŷ-variables of
the principle quiver to find a map from x-variables to g-vectors.

2.2 Scattering diagrams and wall crossing

In this section, we introduce the notion of scattering diagrams and wall crossing, following
the review in ref. [105]. We then show how cluster algebras fit into the wall crossing
framework, using the A2 cluster algebra as our primary example.

A scattering diagram is defined on a lattice, ZN . We denote vectors as γ and basis
vectors as γi.9 A scattering diagram requires three pieces of input data:

• A collection of cones bounded by co-dimension 1 walls. Each wall in the scattering
diagram is associated with a scalar function, f(y).

• N coordinates on X , denoted as ŷγi . Each coordinate corresponds to a basis vector.10

• A skew-symmetric matrix, B0
i,j , that defines a skew-symmetric11 product for the γ,

〈γi, γj〉 = γi ·B0 · γj . (2.6)

Each cone in the fan is associated with a particular parameterization of X similar to how
the ŷ-variables of a cluster correspond to a particular parameterization of X . Crossing a
wall between two cones corresponds to a coordinate transformation.

We now describe the coordinate transformation. Each co-dimension one wall is asso-
ciated with a vector, γ⊥, perpendicular to the wall,

γ⊥ = aiγi . (2.7)

The sign of γ⊥ is chosen so γ⊥ points opposite the direction one is mutating across the
wall. Furthermore, the magnitude of γ⊥ is chosen so that all of its components, the ai in
eq. (2.7), are integers whose least common denominator is 1. Finally, we associate a unique
monomial, ŷγ⊥ , to each γ⊥:

ŷγ⊥ =
(∏

ŷaiγi

)Sign(γ⊥· ~N)
, (2.8)

~N = (1, 1, . . . , 1) . (2.9)

For example, for a wall with the perpendicular vector γ⊥ = (0, 1, 1), the associated
monomial is

ŷ(0, 1, 1) = ŷγ2 ŷγ3 . (2.10)
9For example, if N = 3, then γ1 = (1, 0, 0), γ2 = (0, 1, 0) and γ3 = (0, 0, 1).

10We use the notation ŷγi , instead of ŷi, to distinguish them from ŷ-variables.
11The scattering diagram framework can also be applied when the product is skew-symmetrizable instead

of just skew-symmetric, but the following formulas requires modifications. See ref. [93].
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1 + ŷγ21 + ŷγ2

1 + ŷγ1

1 + ŷγ1

C1

C2C3

C4

(a) Inconsistent scattering diagram.

1 + ŷγ1 ŷγ2

1 + ŷγ21 + ŷγ2

1 + ŷγ1

1 + ŷγ1

C1

C2C3

C4

C5

(b) Self-consistent scattering diagram.

Figure 4. Two examples of scattering diagrams. The scattering diagram on the left is inconsistent
if B0

i,j equals eq. (2.13). The relations between ŷγ is not path independent, as shown in eq. (2.15).
The scattering diagram on the right is path-independent and can be identified with the A2 clus-
ter algebra.

Due to the Sign(γ⊥ · ~N) exponent, the perpendicular vector γ⊥ = (0, −1, −1) is associated
with the same monomial,

ŷ(0, −1, −1) = ŷγ2 ŷγ3 . (2.11)

This makes sense as (0, −1, −1) and (0, 1, 1) correspond to the same wall and should
therefore be associated with the same monomial. Although γ⊥ flips sign depending on
the direction you are mutating across the wall, ŷγ⊥ is the same due to the Sign(γ⊥ · ~N)
exponent. The mutation relation for ŷγi across a wall is

ŷγi → ŷγif(ŷγ⊥)〈γi,γ⊥〉 , (2.12)

which gives the ŷγi of the new cone in terms of ŷγi of the initial cone. To see eq. (2.12) in
an explicit example, suppose we are crossing from cone C1 to cone C2 in figure 4a, where
we fix,

B0
i,j =

[
0 1
−1 0

]
, (2.13)

and f(y) = 1+y for all walls. The perpendicular vector for the relevant wall is γ⊥ = (0, 1),
so ŷγ⊥ = ŷγ2 . Applying eq. (2.12), the ŷγi of chamber C2 are then

ŷγ1 = ŷI
γ1(1 + ŷI

γ2)(1,0)·B0·(0,1) = ŷI
γ1(1 + ŷI

γ2) ,

ŷγ2 = ŷI
γ2(1 + ŷI

γ2)(0,1)·B0·(0,1) = ŷI
γ2 ,

(2.14)

where ŷI
γi corresponds to the ŷγi of cone C1.

For a scattering diagram to be self-consistent, the relations between the ŷγi of any two
cones should be path independent. To see why self-consistency is non-trivial, again consider
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the scattering diagram in figure 4a with the same B0
i,j and f(y). Applying eq. (2.12) to

each path in figure 4a, we find

(
ŷI
γ1

ŷI
γ2

)
→

 ŷI
γ1
ŷI
γ2

ŷI
γ1 +1

→
ŷI

γ1

(
ŷI
γ2

ŷI
γ1 +1 + 1

)
ŷI
γ2

ŷI
γ1 +1

 ,

(
ŷI
γ1

ŷI
γ2

)
→
(
ŷI
γ1

(
ŷI
γ2 + 1

)
ŷI
γ2

)
→

ŷI
γ1

(
ŷI
γ2 + 1

)
ŷI
γ2

ŷI
γ1(ŷI

γ2 +1)+1

 , (2.15)

where ŷI
γi again corresponds to the ŷγi of the initial cone, C1. The scattering diagram in

figure 4a is inconsistent as the ŷγi associated with C3 are not path independent. To make
the scattering diagram self-consistent, we must include the additional wall γ⊥ = (1, 1),
leading to the scattering diagram in figure 4b. Including this second wall, the first line in
eq. (2.15) becomes

(
ŷI
γ1

ŷI
γ2

)
→

 ŷI
γ1
ŷI
γ2

ŷI
γ1 +1

→
ŷ

I
γ1

(
ŷI
γ1 ŷ

I
γ2

ŷI
γ1 +1 + 1

)
ŷI
γ2

ŷI
γ1(ŷI

γ2 +1)+1

→
ŷI

γ1

(
ŷI
γ2 + 1

)
ŷI
γ2

ŷI
γ1(ŷI

γ2 +1)+1

 , (2.16)

which now matches the second line of eq. (2.15).
We now describe the connection between cluster algebras and scattering diagrams. The

relation between scattering diagrams and cluster algebras is that the g-vector fan defines a
scattering diagram where each cluster is dual to a cone in the scattering diagram. The B0

i,j

matrix that defines the skew-symmetric product in eq. (2.6) corresponds to the exchange
matrix of the principal quiver. For a cluster algebra with a finite number of cones, each
wall corresponds to a cluster mutation and we fix

f(y) = 1 + y (2.17)

for all walls. We call the walls that correspond to cluster mutations, cluster walls. The
ŷ-variables of a given cone are the ŷγ⊥ associated with each wall that bounds the cone:

ŷj =
∏

ŷ
aji
γi , γ⊥j = ajiγi , (2.18)

where γ⊥i is the γ⊥ associated with ŷi. Note that γ⊥j points inward from the cone in this
convention. Furthermore, the exchange matrix of the quiver associated with a cone is

Bi,j = 〈γ⊥i , γ⊥j 〉 . (2.19)

For example, for the cone associated with the principle quiver, the principle cone, we have

γ⊥i |Principle Cone = γi (2.20)

so
ŷγi |Principle Cone = ŷi, Bi,j |Principle Cone = γi ·B0 · γj = B0

i,j . (2.21)
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The cluster mutation in eq. (A.11) corresponds to both a wall crossing transform, eq. (2.12),
and a mutation in the γ⊥i . To see this, again consider the cluster algebra associated with
the quiver

y1 y2

x1 x2 .

The explicit computation of the g-vectors in table 1 reveals that it is the same as figure 4b.
Consider a mutation from cone C1 to C2. The ŷγi mutation is given by eq. (2.14) and the
γ⊥i mutate as

γ⊥1 = (1, 0)→ γ⊥1 = (1, 0) ,
γ⊥2 = (0, 1)→ γ⊥2 = (0,−1) .

(2.22)

Combining eqs. (2.14) and (2.22), the mutation relation for ŷi is(
ŷ1
ŷ2

)
→
(
ŷ1(1 + ŷ2)

1
ŷ2

)
, (2.23)

which exactly matches the mutation relation for ŷ-variables. Again, note that it was
a combination of mutating γ⊥i and ŷγi that gave the cluster mutation relation for the
ŷ-variables.

We can also consider the scattering diagrams of more complex cluster algebras, such
as the A3 cluster algebra

y1 y2 y3

x1 x2 x3 ,

which is associated with Gr(2, 6)/T . Since the cluster algebra is rank 3, the associated
scattering diagram is 3 dimensional. From direct calculation, we found the scattering
diagram given in figure 2 in the Introduction. The walls are now 2 dimensional and defined
by the span of two g-vectors. To find the wall associated with the ŷ-variable of a specific
quiver, consider all the g-vectors bounding the dual cone except the g-vector of the x
variable associated with the same node as the ŷ-variable. The span of these two g-vectors
defines the wall associated with the ŷ-variable.

In summary, scattering diagrams are a useful framework that provide a nice way to
study canonical coordinate transformations on X . Finding self-consistent scattering dia-
grams is naively quite hard since you need to check that the relations between the ŷγi of
any two cones are path independent. The g-vector fans of finite cluster algebras provide
a class of self-consistent scattering diagrams where cluster mutations correspond to a very
specific type of wall crossing.

2.3 Asymptotic chambers and limiting walls

We now turn to infinite cluster algebras. We will show how the scattering diagram frame-
work provides a systematic way to study the multiplicative basis of ŷi even when the ŷi
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x−1x−3

x0

x−2

. . .

x1

x2

x3

. . .

x−4

x−5

x−6

Figure 5. g-vector fan associated with the A1,1 cluster algebra. There are an infinite number of
cluster variables whose g-vectors approach a limiting ray, ~glim = (−1, 1). The explicit form of the
g-vectors is provided in eq. (2.26).

themselves go to infinity. Although |γ⊥i | → ∞ in certain limits, so ŷi → {∞, 0}, the
ŷγ-variables remain finite.

We first show that the g-vector fans of infinite cluster algebras need to include addi-
tional walls that do not correspond to cluster mutations. Furthermore, we will find the
functions attached to these walls are not elements of the cluster algebra and can be iden-
tified with the mysterious cluster algebraic functions of ref. [32]. We will study the cluster
algebra defined by the principal quiver

y−1 y0

x−1 x0 ,

as our motivating example. A review of relevant derivations and formulas for this cluster
algebra are provided in appendix C. The key results are a closed form solution for xi
with i > 0,

xi = 1
2i+2

[
(x−1 +B+

√
4)(P +

√
4)i+1 + (x−1 −B+

√
4)(P −

√
4)i+1

]
,

P = y−1
x−1x0

+ x0
x−1

+ x−1y−1y0
x0

,

B+ = 2x0 − x−1P
4

,

4 = P2 − 4y−1y0 ,

(2.24)

and an equation for ŷ2n−1 and ŷ2n in terms of x-variables after 2n mutations,

ŷ2n−1 = yn0 y
2n+1
−1 x−2

2n , ŷ2n = y1−2n
0 y−2n

−1 x2
2n−1 . (2.25)

The g-vectors, denoted by black arrows in figure 5, are

~gi =
{

(−i, i+ 1) i ≥ −1
(2 + i,−i− 3) i ≤ −2 . (2.26)
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We will now show that the self-consistency of the scattering diagram requires the existence
of a new wall associated with the limiting ray that does not correspond to a standard
cluster mutation.

Consider cones that are asymptotically close to the limiting ray. Importantly, the ŷi
variables go to 0 or ∞ as we approach the limiting ray, which can be seen from eqs. (2.24)
and (2.25). To calculate ŷγi in this limit, we first express ŷγi in terms of monomials of
ŷ-variables. From the scattering diagram in figure 5, the γ⊥i associated with the ŷi in
eq. (2.25) are

[γ⊥−1]2n = (1 + 2n, 2n), [γ⊥0 ]2n = (−2n, 1− 2n) , (2.27)
where [γ⊥i ]2n is the perpendicular vector to the wall associated with node xi after 2n
mutations. We subsequently found that

γ1 = (1− 2n)[γ⊥−1]2n − 2n[γ⊥0 ]2n ,
γ2 = 2n[γ⊥−1]2n + (2n+ 1)[γ⊥0 ]2n .

(2.28)

Combining eqs. (2.18) and (2.28) gives a formula for ŷγi in the asymptotic limit, denoted
as ŷ+

γi ,

ŷ+
γ1 = lim

n→∞
(ŷ2n−1)1−2n(ŷ2n)−2n = 16y−1(x−1 +B+

√
4)−2(P +

√
4)−2 ,

ŷ+
γ2 = lim

n→∞
(ŷ2n−1)2n(ŷ2n)2n+1 = y0

4 (x−1 +B+
√
4)2 .

(2.29)

We used the explicit formulas for ŷi in eqs. (2.24) and (2.25) to write the final expressions
for ŷ+

γ1 and ŷ+
γ2 in terms of our initial cluster variables: y−1, y0, x−1 and x0. The final

expressions in eq. (2.29) are finite and provide a multiplicative basis for the ŷ-variables
asymptotically close to the limiting wall if one approaches from the right. A visualization
of the path is given by the green line in figure 6. We then repeated the same calculation,
but following the blue line in figure 6. If one approaches from the left, the asymptotic
limits of ŷγi , denoted as ŷ−γi , are

ŷ−γ1 = ŷ+
γ1

(
1− P −

√
P2 − 4y−1y0

P +
√
P2 − 4y−1y0

)−4

,

ŷ−γ2 = ŷ+
γ2

(
1− P −

√
P2 − 4y−1y0

P +
√
P2 − 4y−1y0

)4

.

(2.30)

The fact that eqs. (2.29) and (2.30) are not equal indicates that the scattering diagram
must include another wall to be self-consistent. However, eq. (2.30) can be re-written into
the suggestive form

ŷ−γi = ŷ+
γi(1− ŷγ⊥)−2〈γi,γ⊥〉, ŷγ⊥ = ŷ+

γ1 ŷ
+
γ2 = ŷ−γ1 ŷ

−
γ2 , γ⊥ = (1, 1) , (2.31)

which can be matched to eq. (2.12) by requiring f(ŷ) = (1 − ŷ)−2. Eq. (2.31) shows
that we must include a limiting wall with γ⊥ = (1, 1) for the scattering diagram to be
self-consistent. The ŷγ⊥ associated with the limiting wall,

ŷγ⊥ = ŷ+
γ1 ŷ

+
γ2 ,

= P −
√
P2 − 4y−1y0

P +
√
P2 − 4y−1y0

,
(2.32)
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x−1x−3

x0

x−2

. . .

x1

x2

x3

. . .

x−4

x−5

x−6

ŷ+
γi

ŷ−γi

Figure 6. g-vector fan associated with the A1,1 cluster algebra. There are two paths to cones
asymptotically close to the limiting ray (red), which are green and blue respectively. The green
path leads to the ŷ+

γi
expressions while taking the blue path leads to the ŷ−

γi
expressions.

takes exactly the right form for eq. (2.31) to be matched with eq. (2.12). The limiting wall
corresponds to the red line in figures 5 and 6. Performing a mutation across this limiting
wall cannot be identified with a cluster mutation in the A1,1 scattering diagram. From
the perspective of the cluster algebra, these cones are separated by an infinite number of
cluster mutations. Finally, the ŷγ⊥ of the limiting wall obeys the bound 0 < ŷγ⊥ < 1 in
contrast to normal ŷ-variables which are just positive definite.

We now briefly compare our result to previous computations in the literature. Notably,
one multiplicative basis of ŷ±γi is the three algebraic functions identified in ref. [1] for a given
A1,1 cluster algebra. Furthermore, due to the bound 0 < ŷγ⊥ < 1, the cluster algebraic
function attached to the limiting walls seem more like the u-variables identified in refs. [71,
72], which obey similar bounds, than standard ŷ-variables. Finally, note that the ŷγ⊥
attached to the limiting wall is a ratio of the cluster algebraic functions defined in ref. [32].

Moving beyond A1,1, we now turn to a more general discussion. We define asymptotic
chambers as cones asymptotically close to the limiting ray that are separated by walls
intersecting the limiting ray. For higher dimension scattering diagrams, both limiting
walls and cluster walls intersect the limiting ray. Furthermore, there are always cluster
walls asymptotically close to the limiting ray which do not intersect the limiting ray and
become more parallel to the limiting walls as one approaches the limiting ray. These
walls are asymptotic walls. An example is sketched in figure 7 [106]. For our definition of
asymptotic chambers to be self-consistent, we must be able to ignore asymptotic walls if we
are infinitesimally close to the limiting ray. If the ŷγi associated with asymptotic chambers
transformed non-trivially when crossing an asymptotic wall, the ŷγi of asymptotic chambers
would not be well defined. For example, consider the asymptotic chambers C2 and C5 in
figure 7. If ŷγi transformed non-trivially across the asymptotic walls, it would be ambiguous
which ŷγi was associated with the asymptotic chamber.
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C1

C2

C3

C4

C5

C6

Figure 7. A schematic representation of the cone structure near the limiting ray of A2,1, a rank
3 cluster algebra. The full scattering diagram is 3 dimensional and we are looking down on the
limiting ray, which is indicated by the green dot. The red line corresponds to the limiting wall. The
black lines correspond to cluster walls that intersect the limiting ray. The blue lines correspond
to asymptotic walls, cluster walls that do not intersect the limiting wall and become more parallel
with a limiting wall as one approaches the limiting ray. There are 6 asymptotic chambers, each
labeled by Ci.

To see whether asymptotic walls are relevant when infinitesimally close to the limiting
ray, let us consider crossing one of these asymptotic walls. From the definition of asymptotic
walls, the γ⊥ of the asymptotic wall asymptotes to

γ⊥ → lim
n→∞

n× γ⊥lim , (2.33)

where γ⊥lim is the γ⊥ of the limiting wall that the asymptotic wall approaches. Therefore,
the wall crossing formula for the asymptotic wall reduces to

ŷγi → lim
n→∞

ŷγi

(
1 + ŷn

γ⊥lim

)n〈γi,γ⊥lim〉
, (2.34)

which naively diverges. However, in the previous example, we found that 0 < ŷγ⊥lim
< 1 for

A1,1. If this bound holds for general ŷγ⊥lim , then eq. (2.34) becomes trivial and the asymptotic
walls can be ignored when asymptotically close to the limiting ray. We therefore conjecture
the bound

0 < ŷγ⊥lim
< 1 , (2.35)

in X for all asymptotic chambers, not just those adjacent to the limiting wall. Eq. (2.35)
is a very remarkable bound and a key conjecture of this paper. We explicitly checked that
eq. (2.35) held for all examples studied in section 3.
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In summary, the key insight is that the ŷγi associated with asymptotic chambers are
finite and can be algebraic functions of our initial coordinates. Furthermore, these ŷγi
obey the wall crossing formula as we mutate around the limiting ray. To find all the ŷγi
associated with a limiting ray, we simply need to find all the walls in the g-vector fan that
intersect the limiting ray and then use the wall crossing formula in eq. (2.12). The primary
difficulty is finding all the walls that intersect the limiting ray.

3 Explicit calculations of asymptotic chambers

Our goal is to compute a minimal multiplicative basis for ŷγi asymptotically close to lim-
iting rays, the asymptotic symbol alphabet. We now describe an algorithm for finding the
asymptotic symbol alphabet associated with a limiting ray. A brute force search algorithm
for finding asymptotic chambers is given in appendix D. Once we found all the asymptotic
chambers associated with a given limiting ray, the calculation for finding the associated
symbol alphabet proceeded as follows:

1. Starting from the initial quiver, we performed mutations until we found a quiver with
an A1,1 subalgebra. We chose the quiver with the A1,1 subalgebra as the principal
quiver for the purposes of defining the scattering diagram and g-vectors.

2. Repeating the computation in section 2.3 for the A1,1 subalgebra, we computed the
ŷγi of an initial asymptotic chamber in terms of the ŷi of the principal quiver. We
denote the ŷγi of the initial asymptotic chamber as ŷ0

γi .

3. We computed the ŷγi of all other asymptotic chambers in terms of the ŷ0
γi using wall

crossing.

4. We found a complete multiplicative basis of the asymptotic chambers’ ŷγi in terms
of ŷ0

γi .

The multiplicative basis calculated in the final step is the asymptotic symbol alphabet
associated with the limiting ray. Although each element of the multiplicative basis will be
a rational function of ŷ0

γi , the ŷ
0
γi will themselves often be algebraic functions of ŷi.

For the remainder of this section, we study a variety of cluster algebras using the
above algorithm. We first dissect some lower rank cluster algebras, discussing a variety of
phenomena that appear. We then move onto Gr(4, 8)/T , conjecturing a complete algebraic
symbol alphabet for the 8-point MHV amplitude. We conclude this section by commenting
on how we may need to modify the above algorithm when faced with more general types
of limiting rays.

3.1 Lower rank cluster algebras

We now consider the asymptotic chambers of some lower rank cluster algebras, finding
several interesting phenomena:

• A2,1: both cluster walls and limiting walls can intersect the limiting ray, leading to
more non-trivial cluster algebraic functions.
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• A2,2: the scattering diagram associated with the limiting ray is not simple. A simple
fan is an N -dimensional fan for which all cones are bound by N walls.12

• A1,1,1: there can be multiple limiting rays and each limiting ray is associated with
its own discriminant.

3.1.1 Example: A2,1

We will examine the A2,1 cluster algebra in detail, so the algorithm is clear. The A2,1
cluster algebra corresponds to the initial quiver,

b

z−1 z0 ,

where b, z−1 and z0 are x-variables and frozen variables have been suppressed. To find the
limiting ray, we performed a mutation on b, finding the new quiver

x1 : b′

x2 : z−1 x3 : z0 ,

which we chose to be the principal quiver. The “xi :” denotes which basis vector each
x-variable of the principle quiver corresponds to. The corresponding exchange matrix is

B0
i,j =

 0 1 −1
−1 0 2
1 −2 0

 . (3.1)

Identifying the A1,1 subalgebra, we performed repeated mutations on the x2 and x3 nodes,
just as in section 2.3, to approach the limiting ray. After repeatedly mutating the x2
and x3 nodes, the g-vectors of the x-variables associated with these nodes asymptotically
approached

glim = (0,−1, 1) , (3.2)

which we identified as the limiting ray. Using the algorithm in appendix D, we found all
the walls that intersect the limiting ray:

γ⊥a = (1, 0, 0) ,
γ⊥b = (1, 1, 1) ,
γ⊥c = (0, 1, 1) ,

(3.3)

where γc corresponds to a limiting wall. A visualization of these walls is provided in figure 8,
where we have taken a projection of the scattering diagram onto the plane perpendicular
to the limiting ray. This projection of the scattering diagram is the asymptotic scattering
diagram.

12Alternatively, a simple fan is a fan whose dual polytope is simple.
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γ⊥c

γ⊥a

γ⊥b

C1

C2

C3
C4

C5

C6

Figure 8. The scattering diagram of asymptotic chambers near the limiting ray in the A2,1 cluster
algebra. We projected down onto the plane perpendicular to the limiting ray, glim = (0,−1, 0), and
labeled the walls.

The ŷγi of the initial asymptotic chamber, ŷ0
γi , were then calculated using the same

techniques as those in section 2.3. The γ⊥i of the cone associated with the 2n-th quiver in
the sequence,

b′ b′ b′ b′

z−1 z0 , z1 z0 , z1 z2 , z3 z2 , . . . ,

are

[γ⊥1 ]2n = (1, 0, 0) ,
[γ⊥2 ]2n = (0, 2n+ 1, 2n) ,
[γ⊥3 ]2n = (0,−2n, 1− 2n) .

(3.4)

[γ⊥i ]2n is the perpendicular vector of the wall associated with the node xi after 2nmutations
and the limit n→∞ corresponds to our initial asymptotic chamber. Eq. (3.4) implies

γ1 = [γ⊥1 ]2n ,
γ2 = (1− 2n)[γ⊥2 ]2n − 2n[γ⊥3 ]2n ,
γ3 = (2n)[γ⊥2 ]2n + (2n+ 1)[γ⊥3 ]2n ,

(3.5)

so

ŷ0
γ1 = lim

n→∞
[ŷ1]2n = ŷ1

1
2
(
1 + ŷ3ŷ2 + ŷ2 +

√
4′
)
,

ŷ0
γ2 = lim

n→∞
([ŷ2]2n)1−2n([ŷ3]2n)−2n = 4ŷ24′(

1− ŷ3ŷ2 + ŷ2 +
√
4′
) 2 ,

ŷ0
γ3 = lim

n→∞
([ŷ2]2n)2n([ŷ3]2n)2n+1 = 1

4 ŷ3

(
1 + 1− ŷ2 (ŷ3 + 1)√

4′

)
2 ,

4′ = (ŷ3ŷ2 + ŷ2 + 1) 2 − 4ŷ2ŷ3 ,

(3.6)

where [ŷi]2n is the ŷ-variable associated with the xi node after 2n mutations. Eq. (3.6)
relates the ŷγi of our initial asymptotic chamber to the ŷi of our principal quiver. The
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formulas for ŷ0
γ2 and ŷ0

γ3 are exactly the same as eq. (2.29), except that we wrote the
expression in terms of ŷ-variables of the principle quiver instead of x-variables. The formula
for ŷ0

γ1 was derived using the closed form solution for the x-variables of the A1,1 subalgebra
in appendix C and noting that b′ never mutates.

With the asymptotic chambers and eq. (3.6), we can mutate around the asymptotic
scattering diagram to find all cluster algebraic functions associated with the limiting ray.
For example, going along the path given in figure 8, the ŷγi mutate as

ŷ
0
γ1

ŷ0
γ2

ŷ0
γ3

→


ŷ0
γ1
ŷ0
γ2

ŷ0
γ1 +1(

ŷ0
γ1 + 1

)
ŷ0
γ3

→


ŷ0
γ1

ŷ0
γ2(ŷ0

γ1 ŷ
0
γ2 ŷ

0
γ3 +1)

ŷ0
γ1 +1

(ŷ0
γ1 +1)ŷ0

γ3
ŷ0
γ1 ŷ

0
γ2 ŷ

0
γ3 +1

→


ŷ0
γ1

ŷ0
γ2(ŷ0

γ1 ŷ
0
γ2 ŷ

0
γ3 +1)

(1−ŷ0
γ2 ŷ

0
γ3)4(ŷ0

γ1 +1)
(ŷ0
γ1 +1)(1−ŷ0

γ2 ŷ
0
γ3)4

ŷ0
γ3

(ŷ0
γ1 ŷ

0
γ2 ŷ

0
γ3 +1)

 . (3.7)

Again, the jump across the limiting wall corresponds to a generalized cluster mutation.
Calculating the ŷγi of all asymptotic chambers, we found the multiplicative basis

ŷ0
γ1 , ŷ

0
γ2 , ŷ

0
γ3 , (1 + ŷ0

γ1), (1− ŷ0
γ2 ŷ

0
γ3), (1 + ŷ0

γ1 ŷ
0
γ2 ŷ

0
γ3) . (3.8)

Eq. (3.8) corresponds to all the algebraic functions associated with the limiting ray in the
A2,1 cluster algebra. Although the expressions in eq. (3.8) look rational, remember that the
ŷ0
γi are algebraic functions of ŷi. They are all algebraic in terms of ŷi due to the presence
of the quadratic root,

√
4′.

3.1.2 Example: A2,2

We now continue to the A2,2 cluster algebra. The A2,2 cluster algebra includes a cluster
with the quiver

x2

x3 x1 x4 ,

which was chosen as our principal quiver. The asymptotic scattering diagram is slightly
more complex than the A2,1 cluster algebra, but the algorithm is the same. The limiting
ray is

glim = (−1, 1, 0, 0) . (3.9)

The scattering walls are

γ⊥ ∈ {(0, 0, 1, 0), (0, 0, 0, 1), (1, 1, 1, 0),
(1, 1, 0, 1), (1, 1, 0, 0)} ,

(3.10)

where the last element corresponds to the limiting wall. To visualize this scattering dia-
gram, we project down to 3 dimensions using the basis,

ê′1 = (1, 1, 0, 0) ,
ê′2 = (0, 0, 1, 0) ,
ê′3 = (0, 0, 0, 1) ,

(3.11)
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Figure 9. The scattering diagram associated with the asymptotic chambers of the A2,2 cluster
algebra.

giving the asymptotic scattering diagram in figure 9. Note that the asymptotic scatter-
ing diagram associated with A2,2 is not simple as there are cones bounded by 4 walls
instead of 3.

We then calculated the ŷ0
γi variables of the initial asymptotic chamber in terms of the

ŷ-variables of the principle quiver. The derivation is almost exactly as in section 3.1.1, so
we will not write it out here. The final result is,

i ∈ {3, 4} : ŷ0
γi = ŷi

2
(
1 + ŷ2ŷ1 + ŷ1 +

√
4′
)
,

ŷ0
γ1 = ŷ1

44′(
1− ŷ2ŷ1 + ŷ1 +

√
4′
) 2 ,

ŷ0
γ2 = ŷ2

4

(
1 + 1− ŷ1 (ŷ2 + 1)√

4′

)
2 ,

4′ = (ŷ2ŷ1 + ŷ1 + 1) 2 − 4ŷ1ŷ2 .

(3.12)

Due to the number of cones, we will not show the ŷγi of each cone. A complete multiplicative
basis in terms of the ŷ0

γi is

ŷ0
γ1 , ŷ

0
γ2 , ŷ

0
γ3 , ŷ

0
γ4 ,

(
ŷ0
γ1 ŷ

0
γ2 ŷ

0
γ3 +1

)
,
(
ŷ0
γ1 ŷ

0
γ2 ŷ

0
γ4 +1

)
,
(
ŷ0
γ3 +1

)
,
(
ŷ0
γ4 +1

)
,
(
1−ŷ0

γ1 ŷ
0
γ2

)
.

(3.13)
Again, ŷ0

γi are the ŷγi associated with the initial asymptotic chamber approached by re-
peated mutations on the x1 and x2 nodes in the initial quiver.

3.1.3 Example: A1,1,1

Our final example before moving onto Gr(4, 8)/T is A1,1,1. The A1,1,1 cluster algebra
includes a cluster with the quiver

x2 x6

x1 x3 x4 x5
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which was chosen as our principle quiver. Unlike the previous examples, there are actually
two limiting rays:

g1
lim = (−1, 1, 0, 0, 0, 0) ,
g2

lim = (0, 0, 0, 0,−1, 1) .
(3.14)

First consider the limiting ray g1
lim, which is approached by performing repeated mu-

tations on the x1 and x2 nodes. The formulas for ŷ0
γi are then:

i ∈ {4, 5, 6} : ŷ0
γi = ŷi,

ŷ0
γ3 = ŷ3

2
(
1 + ŷ2ŷ1 + ŷ1 +

√
4′
)
,

ŷ0
γ1 = ŷ1

44′(
1− ŷ2ŷ1 + ŷ1 +

√
4′
) 2 , (3.15)

ŷ0
γ2 = ŷ2

4

(
1 + 1− ŷ1 (ŷ2 + 1)√

4′

)
2 ,

4′ = (ŷ2ŷ1 + ŷ1 + 1) 2 − 4ŷ1ŷ2 .

However, upon applying the algorithm in appendix D, we found that there are actually
an infinite number of asymptotic chambers. Rather, an infinite number of cluster walls
intersect the limiting ray. It is unsurprising that this phenomenon eventually occurs as an
infinite number of walls intersect a single ray even in the A2,1 cluster algebra. We ignored
this phenomenon in section 3.1.1 because none of the rays in A2,1 with infinitely many
intersecting walls are limiting rays.

Now consider the second limiting ray in eq. (3.14), which we approached by performing
repeated mutations on the x5 and x6 nodes. As we approach the second limiting ray, the
limits of ŷγi , denoted as ŷ0′

γi , are

i ∈ {1, 2, 3} : ŷ0′
γi = ŷi,

ŷ0′
γ4 = ŷ4

2
(
1 + ŷ6ŷ5 + ŷ5 +

√
4′
)
,

ŷ0′
γ5 = ŷ5

44′(
1− ŷ6ŷ5 + ŷ5 +

√
4′
) 2 , (3.16)

ŷ0′
γ6 = ŷ6

4

(
1 + 1− ŷ5 (ŷ6 + 1)√

4′

)
2 ,

4′ = (ŷ6ŷ5 + ŷ5 + 1) 2 − 4ŷ5ŷ6 .

We again found an infinite number of asymptotic chambers. Note that the discriminant,
4′, of the ŷ0′

γi variables is different than that of the ŷ0
γi variables. Rather, the discriminant

of the algebraic letters associated with a given set of asymptotic chambers seems to be
determined by the associated limiting ray.

It is not particularly interesting for us to further study the cluster algebraic functions
associated with A1,1,1 as the asymptotic scattering diagrams contain an infinite number
of asymptotic chambers. However, one could take a doubly asymptotic limit to find a 4
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dimensional scattering diagram that could be finite. More concretely, one could first find
the 5 dimensional asymptotic scattering diagram associated with the limiting ray g1

lim and
then find the 4 dimensional asymptotic scattering diagram associated with the limiting
ray of this 5 dimensional asymptotic scattering diagram. The resulting 4 dimensional
asymptotic scattering diagram could be finite. We leave studying such doubly asymptotic
limits to future work.

3.2 Gr(4, 8)/T and algebraic letters

We now consider the algebraic letters associated with the 8-point MHV amplitude in N = 4
pSYM. Two classes of known algebraic letters are known to emerge in the N = 4 pSYM
symbol alphabet at 8-point and they are related by a cyclic shift: 〈i, j, k, l〉 → 〈i + 1, j +
1, k + 1, l + 1〉 [36, 85]. Notably, each class of algebraic letters is associated with a unique
discriminant. Since each limiting ray seems to be associated with a unique discriminant,
4′, a reasonable conjecture is that the asymptotic chambers of only two limiting rays
are relevant for the 8-point MHV amplitude. Furthermore, we only need to analyze the
asymptotic chambers of one of these limiting rays since we can derive the algebraic letters
associated with the other limiting ray by applying a cyclic shift.13

We first briefly review the positive kinematic region before summarizing the computa-
tion of the algebraic letters. We parameterize kinematic space using momentum twistors,
ZAi . Due to dual conformal symmetry, we can identify ZAi ∈ Gr(4, n). Furthermore,
since the ZAi are projective under a “little group” transform, ZAi → tiZ

A
i , we can identify

ZAi ∈ Gr(4, n)/T . The positive kinematic region corresponds to a compactification of the
positive Grassmannian, Gr(4, n)/T . The cluster algebra structure of Gr(k, n)/T is well
known. In particular, there is a famous initial parameterization that corresponds to the
quiver in figure 10 at 8-point, where boxed elements in the quiver correspond to frozen
variables. The ŷ-variables associated with the quiver are

ŷI
1 = 〈1234〉〈1256〉
〈1236〉〈1245〉 ŷI

2 = 〈1235〉〈1267〉
〈1237〉〈1256〉 ŷI

3 = 〈1236〉〈1278〉
〈1238〉〈1267〉

ŷI
4 = 〈1235〉〈1456〉
〈1256〉〈1345〉 ŷI

5 = 〈1236〉〈1245〉〈1567〉
〈1235〉〈1456〉〈1267〉 ŷI

6 = 〈1237〉〈1256〉〈1678〉
〈1236〉〈1567〉〈1278〉

ŷI
7 = 〈1245〉〈3456〉
〈1456〉〈2345〉 ŷI

8 = 〈1256〉〈1345〉〈4567〉
〈1245〉〈3456〉〈1567〉 ŷI

9 = 〈1267〉〈1456〉〈5678〉
〈1256〉〈4567〉〈1678〉 , (3.17)

where the “I” super-script denotes how these ŷ-variables are associated with the initial
quiver. Note that the quiver in figure 10 was not chosen as the principal quiver for our

13Refs. [1, 32, 92] have pointed out that additional types of limiting rays might be relevant for studying
the symbol alphabet at higher loop. However, ref. [32] also pointed out at least some of these additional
limiting rays are related by a braid group [107] to the limiting rays we study in this section. Therefore,
even if the algebraic letters associated with these other limiting rays appear in the 8-point MHV symbol
alphabet, it seems plausible they could be derived through braid transformations of the symbol alphabet
derived in this section.
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scattering diagram. Instead, we mutated to the quiver

ŷ9

ŷ3 ŷ2 ŷ8 ŷ5 ŷ6 ŷ4 ŷ7 ,

ŷ1

(3.18)

which was chosen to be the principal quiver, by mutating the nodes {1, 2, 4, 1, 6, 8} of the
initial quiver from left to right. As argued in section 2.1, no information is lost or gained
by choosing different principle quivers. An explicit map from the ŷ-variables of our initial
quiver to those of the chosen principal quiver is

ŷ1 =

(
ŷI

6 + ŷI
1

(
ŷI

4 + 1
) ((

ŷI
2 + 1

)
ŷI

6 + 1
)

+ 1
)

ŷI
1ŷ

I
2ŷ

I
4

×
(
ŷI

8 + ŷI
1

(
ŷI

2 + 1
) ((

ŷI
4 + 1

)
ŷI

8 + 1
)

+ 1
)
,

ŷ2 = ŷI
4ŷ

I
8

ŷI
8 + ŷI

1
(
ŷI

2 + 1
) ((

ŷI
4 + 1

)
ŷI

8 + 1
)

+ 1
,

ŷ3 = ŷI
1ŷ

I
2ŷ

I
3

ŷI
1
(
ŷI

2 + 1
)

+ 1
,

ŷ4 = ŷI
2ŷ

I
6

ŷI
6 + ŷI

1
(
ŷI

4 + 1
) ((

ŷI
2 + 1

)
ŷI

6 + 1
)

+ 1
,

ŷ5 = ŷI
1ŷ

I
2ŷ

I
4ŷ

I
5

ŷI
1
(
ŷI

2 + 1
) (
ŷI

4 + 1
)

+ 1
, (3.19)

ŷ6 =
ŷI

1

(
ŷI

4 + 1
)

+ 1(
ŷI

1
(
ŷI

2 + 1
) (
ŷI

4 + 1
)

+ 1
)
ŷI

6
,

ŷ7 = ŷI
1ŷ

I
4ŷ

I
7

ŷI
1
(
ŷI

4 + 1
)

+ 1
,

ŷ8 =
ŷI

1

(
ŷI

2 + 1
)

+ 1(
ŷI

1
(
ŷI

2 + 1
) (
ŷI

4 + 1
)

+ 1
)
ŷI

8
,

ŷ9 =

(
ŷI

1

(
ŷI

2 + 1
) (
ŷI

4 + 1
)

+ 1
)

2ŷI
6ŷ

I
8ŷ

I
9(

ŷI
6 + ŷI

1
(
ŷI

4 + 1
) ((

ŷI
2 + 1

)
ŷI

6 + 1
)

+ 1
)

× 1(
ŷI

8 + ŷI
1
(
ŷI

2 + 1
) ((

ŷI
4 + 1

)
ŷI

8 + 1
)

+ 1
) .

Combining eqs. (3.17) and (3.19) gives explicit expressions of the principal quivers’ ŷ-
variables in terms of external kinematic data.

We now analyze the initial asymptotic chamber using the A1,1 subalgebra of the prin-
cipal quiver. After performing an infinite number of mutations on the x1 and x9 nodes,
the g-vectors of the x1 and x9 nodes approached

glim = (−1, 0, 0, 0, 0, 0, 0, 0, 1) , (3.20)
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〈1234〉

x1 : 〈1235〉 x2 : 〈1236〉 x3 :, 〈1237〉 〈1235〉

x4 : 〈1245〉 x5 : 〈1256〉 x6 : 〈1267〉 〈1278〉

x7 : 〈1345〉 x8 : 〈1456〉 x9 : 〈1567〉 〈1678〉

〈2345〉 〈3456〉 〈4567〉 〈5678〉 ,

Figure 10. The initial quiver for the Gr(4, 8) cluster algebra [108].

which we identified as the limiting ray. We then found expressions for the ŷ0
γi in terms of

the ŷi:

i ∈ {2, 3, 4, 7} : ŷ0
γi = ŷi ,

i ∈ {5, 6, 8} : ŷ0
γi = ŷif(ŷ1, ŷ9) ,

ŷ0
γ1 = 4ŷ14′(

1− ŷ9ŷ1 + ŷ1 +
√
4′
) 2 ,

ŷ0
γ9 = ŷ9

4

(
1 + 1− ŷ1 (ŷ9 + 1)√

4′

)
2 ,

(3.21)

where

f(ŷ1, ŷ9) = 1
2
(
1 + ŷ9ŷ1 + ŷ1 +

√
4′
)
,

4′ = (ŷ9ŷ1 + ŷ1 + 1) 2 − 4ŷ1ŷ9 .
(3.22)

Unlike the A2,1 and A2,2 cluster algebras, not all the ŷ0
γi are algebraic function of the

ŷi. Although difficult to see immediately, one can show that the discriminant, 4′, is
proportional to √

4′ ∝
√
A2 − 4B ,

A = 〈1256〉〈3478〉 − 〈1278〉〈3456〉 − 〈1234〉〈5678〉 , (3.23)
B = 〈1234〉〈3456〉〈5678〉〈1278〉 ,

which corresponds to the limiting ray g1 in ref. [32]. The limiting ray in eq. (3.20) looks
different than the limiting ray in ref. [32] because we chose a different principal quiver to
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define the g-vector fan. While we chose the quiver in (3.18) as our principal quiver, the
authors of ref. [32] chose the initial quiver in figure 10 as their principal quiver.

We employed the algorithm in appendix D to find all the walls that intersect the
limiting ray. Performing a large number of mutations asymptotically close to the limiting
ray, we eventually found 26 cluster walls and a single limiting wall:

γ⊥ ∈ {(0, 1, 0, 0, 0, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0, 0, 0, 0),
(0, 0, 0, 1, 0, 0, 0, 0, 0), (0, 0, 0, 0, 1, 0, 0, 0, 0),
(0, 0, 0, 0, 0, 1, 0, 0, 0), (0, 0, 0, 0, 0, 0, 1, 0, 0),
(0, 1, 0, 0, 0, 0, 0, 1, 0), (0, 1, 1, 0, 0, 0, 0, 0, 0),
(0, 0, 0, 0, 0, 0, 0, 1, 0), (0, 0, 0, 1, 0, 1, 0, 0, 0),
(0, 0, 0, 1, 0, 0, 1, 0, 0), (0, 1, 1, 0, 0, 0, 0, 1, 0), (3.24)
(0, 0, 0, 1, 0, 1, 1, 0, 0), (1, 0, 0, 0, 1, 0, 0, 0, 1),
(1, 0, 0, 0, 0, 1, 0, 0, 1), (1, 0, 0, 0, 0, 0, 0, 1, 1),
(1, 1, 0, 0, 0, 0, 0, 1, 1), (1, 0, 0, 1, 0, 1, 0, 0, 1),
(1, 1, 1, 0, 0, 0, 0, 1, 1), (1, 1, 0, 0, 0, 0, 0, 2, 1),
(1, 0, 0, 1, 0, 1, 1, 0, 1), (1, 0, 0, 1, 0, 2, 0, 0, 1),
(1, 2, 1, 0, 0, 0, 0, 2, 1), (1, 1, 1, 0, 0, 0, 0, 2, 1),
(1, 0, 0, 1, 0, 2, 1, 0, 1), (1, 0, 0, 2, 0, 2, 1, 0, 1),
(1, 0, 0, 0, 0, 0, 0, 0, 1)} ,

where the last element corresponds to the limiting wall. An extensive computer search
found a complete multiplicative basis of the ŷγi consists of 27 non-trivial polynomials of ŷ0

γi ,

f1 = ŷ0
γ2 + 1 ,

f2 = ŷ0
γ3 + 1 ,

f3 = ŷ0
γ4 + 1 ,

f4 = ŷ0
γ5 + 1 ,

f5 = ŷ0
γ6 + 1 ,

f6 = ŷ0
γ7 + 1 ,

f7 = ŷ0
γ8 + 1 ,

f8 = ŷ0
γ2 ŷ

0
γ3 + ŷ0

γ3 + 1 ,
f9 = ŷ0

γ8 ŷ
0
γ2 + ŷ0

γ2 + 1 ,
f10 = ŷ0

γ6 ŷ
0
γ4 + ŷ0

γ4 + 1 ,
f11 = ŷ0

γ4 ŷ
0
γ7 + ŷ0

γ7 + 1 ,
f12 = ŷ0

γ2 ŷ
0
γ3 + ŷ0

γ2 ŷ
0
γ8 ŷ

0
γ3 + ŷ0

γ3 + 1 ,
f13 = ŷ0

γ4 ŷ
0
γ7 + ŷ0

γ4 ŷ
0
γ6 ŷ

0
γ7 + ŷ0

γ7 + 1 ,
f14 = ŷ0

γ1 ŷ
0
γ5 ŷ

0
γ9 + 1 ,

f15 = ŷ0
γ1 ŷ

0
γ6 ŷ

0
γ9 + 1 , (3.25)
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f16 = ŷ0
γ1 ŷ

0
γ8 ŷ

0
γ9 + 1 ,

f17 = ŷ0
γ1 ŷ

0
γ8 ŷ

0
γ9 ŷ

0
γ2 + ŷ0

γ2 + 1 ,
f18 = ŷ0

γ1 ŷ
0
γ6 ŷ

0
γ9 ŷ

0
γ4 + ŷ0

γ4 + 1 ,

f19 = ŷ0
γ1 ŷ

0
γ4 ŷ

0
γ9

(
ŷ0
γ6

)2
+ ŷ0

γ4 ŷ
0
γ6 + ŷ0

γ1 ŷ
0
γ4 ŷ

0
γ9 ŷ

0
γ6 + ŷ0

γ4 + 1,

f20 = ŷ0
γ1 ŷ

0
γ2 ŷ

0
γ9

(
ŷ0
γ8

)2
+ ŷ0

γ2 ŷ
0
γ8 + ŷ0

γ1 ŷ
0
γ2 ŷ

0
γ9 ŷ

0
γ8 + ŷ0

γ2 + 1,

f21 = ŷ0
γ2 ŷ

0
γ3 + ŷ0

γ1 ŷ
0
γ2 ŷ

0
γ8 ŷ

0
γ9 ŷ

0
γ3 + ŷ0

γ3 + 1,

f22 = ŷ0
γ3

(
ŷ0
γ2

)2
+ ŷ0

γ3 ŷ
0
γ8

(
ŷ0
γ2

)2
+ ŷ0

γ1 ŷ
0
γ3

(
ŷ0
γ8

)2
ŷ0
γ9

(
ŷ0
γ2

)2

+ ŷ0
γ1 ŷ

0
γ3 ŷ

0
γ8 ŷ

0
γ9

(
ŷ0
γ2

)2
+ 2ŷ0

γ3 ŷ
0
γ2 + ŷ0

γ3 ŷ
0
γ8 ŷ

0
γ2 + ŷ0

γ1 ŷ
0
γ3 ŷ

0
γ8 ŷ

0
γ9 ŷ

0
γ2 + ŷ0

γ2 + ŷ0
γ3 + 1,

f23 = ŷ0
γ1 ŷ

0
γ2 ŷ

0
γ3 ŷ

0
γ9

(
ŷ0
γ8

)2
+ ŷ0

γ2 ŷ
0
γ3 ŷ

0
γ8 + ŷ0

γ1 ŷ
0
γ2 ŷ

0
γ3 ŷ

0
γ9 ŷ

0
γ8 + ŷ0

γ2 ŷ
0
γ3 + ŷ0

γ3 + 1,

f24 = ŷ0
γ6 ŷ

0
γ7

(
ŷ0
γ4

)2
+ ŷ0

γ7

(
ŷ0
γ4

)2
+ ŷ0

γ1

(
ŷ0
)2

γ6
ŷ0
γ7 ŷ

0
γ9

(
ŷ0
γ4

)2

+ ŷ0
γ1 ŷ

0
γ6 ŷ

0
γ7 ŷ

0
γ9

(
ŷ0
γ4

)2
+ ŷ0

γ6 ŷ
0
γ7 ŷ

0
γ4 + 2ŷ0

γ7 ŷ
0
γ4 + ŷ0

γ1 ŷ
0
γ6 ŷ

0
γ7 ŷ

0
γ9 ŷ

0
γ4 + ŷ0

γ4 + ŷ0
γ7 + 1,

f25 = ŷ0
γ4 ŷ

0
γ7 + ŷ0

γ1 ŷ
0
γ4 ŷ

0
γ6 ŷ

0
γ9 ŷ

0
γ7 + ŷ0

γ7 + 1,

f26 = ŷ0
γ1 ŷ

0
γ4 ŷ

0
γ7 ŷ

0
γ9

(
ŷ0
γ6

)2
+ ŷ0

γ4 ŷ
0
γ7 ŷ

0
γ6 + ŷ0

γ1 ŷ
0
γ4 ŷ

0
γ7 ŷ

0
γ9 ŷ

0
γ6 + ŷ0

γ4 ŷ
0
γ7 + ŷ0

γ7 + 1 ,

f27 = 1− ŷ0
γ1 ŷ

0
γ9 ,

and the 9 ŷ0
γi , giving a symbol alphabet of 36 independent letters. When computing

eqs. (3.24) and (3.25), we found 7348 asymptotic chambers, in comparison to the 64 asymp-
totic chambers studied in ref. [1] using slightly different methods.14 Although we are con-
fident we found all asymptotic chambers, we were not able to rigorously prove it as we
did for A2,1 and A2,2. A complete search of all asymptotic chambers is very computation-
ally challenging for Gr(4, 8)/T for reasons beyond its high rank.15 However, any missing
asymptotic chambers should not change eqs. (3.24) or (3.25). Interestingly, only a subset
of less than 1000 asymptotic chambers was required to find both a complete multiplicative
basis for the ŷγi and all the relevant walls in the asymptotic scattering diagrams.

Combining eqs. (3.17), (3.19), (3.21) and (3.25) gives explicit expressions for the alge-
braic letters in terms of momentum twistors. We have explicitly checked that the algebraic
letters of ref. [85] are monomials of ŷ0

γi and fi. Interestingly, note that many of the letters
are obviously not algebraic. From eq. (3.21), ŷ0

γ2 , ŷ
0
γ3 , ŷ

0
γ4 , and ŷ

0
γ7 are rational, so any fi

that is solely a function of these variables will also be rational. From this criterion alone,
the algebraic alphabet is reduced from 36 to 26 letters. Additional numerical checks show
that some of these algebraic letters can further simplify to rational functions for certain
momentum configurations.

These results are remarkable. There is no reason to expect that there are a finite
number of asymptotic chambers associated with any limiting ray of the Gr(4, 8)/T cluster

14Each origin cluster corresponds to two asymptotic chambers. Further discussion on the techniques in
ref. [1] is given in appendix E.

15See appendix D for a detailed discussion.
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algebra. In section 3.1.3, we saw an explicit example of a limiting ray with an infinite num-
ber of asymptotic chambers. Furthermore, although the number of asymptotic chambers
is extremely large, the multiplicative basis has rank 36 for the relevant limiting rays! We
can further discard letters that are clearly not algebraic, reducing the rank of the algebraic
alphabet from 72 to 52. We can now conjecture that we have found ALL algebraic let-
ters that could appear in the N = 4 pSYM 8-point amplitude. Our ŷ0

γi coordinates show
how the relations between the algebraic letters associated with the same limiting ray are
inherently rational, even though the ŷ0

γi are generically algebraic functions of our initial
coordinates, ŷI

i . Finally, in all examples studied in this paper, the rank of the asymptotic
symbol alphabet has been equal to the number of cluster walls plus the rank of the cluster
algebra. More precisely, there seems to be a correspondence between walls in the asymp-
totic scattering diagram, γ⊥ in eq. (3.24), and polynomial letters in the asymptotic symbol
alphabet, fi in eq. (3.25). At present, it is unclear to us whether this relation holds for
more general cluster algebras or is a red herring.

3.3 Beyond A1,1 subalgebras

Although this paper focuses on limiting rays associated with quadratic cluster algebraic
functions, we expect that cubic cluster algebraic functions will also be relevant for studying
the symbol alphabet ofN = 4 pSYM beyond 8-point. Quadratic (cubic) algebraic functions
are algebraic functions that are products of roots of quadratic (cubic) polynomials. To see
why cubic letters should appear, note that algebraic letters can at least partially be derived
from irrational Yangian invariants, as shown in refs. [86, 87]. Using the duality between
on-shell super-space variables and differentials on kinematic space,

ηAi ↔ dZAi , (3.26)

where ηAi are the on-shell superspace variable associated with state i [17, 47], Yangian
invariants in N = 4 pSYM can be written in a manifestly dlog form:

Yangian Invariant→
∏
i

d log(αi) , (3.27)

where αi correspond to functions of external data, ZAi , that are not necessarily ratio-
nal. The αi can be interpreted as “letters” of the Yangian invariant and correspond to
singularities. Since we expect the branch points of NkMHV amplitudes to match onto
branch points of MHV amplitudes, we can therefore probe the symbol alphabet of MHV
amplitudes by studying the αi that appear in Yangian invariants associated with NkMHV
amplitudes. Starting at 11-point, we start to see irrational Yangian invariants that include
cubic algebraic letters. Therefore, we expect to find cluster algebraic functions that are
cubic at 11-point.

The problem with cubic cluster algebraic functions is that it may not be possible to
probe their associated asymptotic chambers using an A1,1 subalgebra as in section 3.1. If at
least one asymptotic chamber of a limiting ray can be approached by repeated mutations
on an A1,1 subalgebra, then the asymptotic symbol alphabet must consist of quadratic
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cluster algebraic letters. To see this, note that the generating function for cluster variables
in an A1,1 subalgebra always takes the form

Gn>0(t) = x0 − x−1Ft
1− Pt+ Ft2 =

∞∑
n=0

xnt
n , (3.28)

where F is some product of cluster variables outside the A1,1 subalgebra. Taking limits of
xi generated by the above relation, such as

lim
i→∞

xi/xi−1, (3.29)

will always generate a function that is either rational or quadratic, but not cubic. Since wall
crossing mutations around limiting rays are always rational transformations, this means
all ŷγi must be either rational or quadratic.16 Therefore, we must identify more general
mutation sequences in order to approach asymptotic chambers associated with cubic alge-
braic functions. Such mutation sequences could correspond to generating functions with
higher-order polynomials in their denominators, such that specific limits of xi generate
cubic cluster algebraic functions. We expect the methods and results in ref. [109] may be
useful for pursuing this direction.

4 Degenerate scattering diagrams and tropicalization

We now study speculative truncations of ŷ-variables from the perspective of scattering
diagrams. We will first motivate and define the notion of a degenerate scattering diagram,
commenting on the specific connection to N = 4 pSYM. Although we did not find a
definite algorithm for truncating ŷ-variables, we did find that the notion of asymptotic
chambers naturally emerges from degenerate scattering diagrams.

4.1 Scattering diagrams from tropicalization of the dual cluster algebra

In this section, we relate the g-vector fan to tropicalization of the dual cluster algebra. We
then motivate degenerate fans using tropicalization arguments.

We now give a brief review of tropicalization. Since all elements of O(X ) are positive
Laurent polynomials where the minus operation never appears, we can consider the tropi-
calization of such functions. Tropicalization naturally emerges from studying the behavior
of geometric spaces at small (or large) values of their coordinates. For example, given a
function f(a1, a2,, . . . , an), the tropical function is defined as

Trop[f(a1, a2,, . . . , an)] = lim
ε→∞

−1
ε

log[f(e−εa1 , e−εa2 , . . . , e−εan)] . (4.1)

The tropicalization of a function effectively amounts to the replacements

a× b→ a+ b ,

a+ b→ min(a, b) ,
1→ 0 ,

(4.2)

16There is a small loophole in this argument. If the asymptotic scattering diagram itself contains a
limiting ray, one could take a doubly asymptotic limit as suggested at the end of section 3.1.3. However, it
seems unlikely to us that such doubly asymptotic limits could generate cubic algebraic letters.
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where a and b now take values on a semifield. For example,

Trop[1 + x] = min(0, x) ,
Trop[1 + x+ xy] = min(0, x, x+ y) .

(4.3)

Tropicalization has many applications, ranging from mirror symmetry to intersection the-
ory. We will now review one aspect of the connection with cluster algebras.

In our tropicalization arguments, we do not consider the O(X ) associated with our
initial principal quiver. Instead, we consider the dual principal quiver and the associated
dual cluster algebra, X∨. The dual principal quiver is given by the initial quiver except
that we flip all arrows between mutable nodes. As an example, given the initial quiver

y1 y2

x1 x2 ,

the dual quiver is
y∨1 y∨2

x∨1 x∨2 .

We now study O(X∨). For example, in the case of the A2 cluster algebra, O(X∨) consists of

f1 = 1 + ŷ∨1 ,

f2 = 1 + ŷ∨2 ,

f3 = 1 + ŷ∨2 + ŷ∨2 ŷ
∨
1 .

(4.4)

Any ŷ-variable in X∨ can be written as a product of functions in eq. (4.4) and ŷ∨i .
The tropicalization of each f ∈ O(X∨) defines a fan that splits ZN into regions where

Trop[f(ŷ)] is constant. We simply state without proof that all such fans together give the
scattering diagram in the finite case [42, 43, 72]. For example, again consider the A2 cluster
algebra and the tropicalization of functions in eq. (4.4):

f1 = 1 + ŷ∨1 → Trop[f1] = min(0, ŷ∨1 ) ,
f2 = 1 + ŷ∨2 → Trop[f2] = min(0, ŷ∨2 ) ,
f3 = 1 + ŷ∨2 + ŷ∨1 ŷ

∨
2 → Trop[f3] = min(0, ŷ∨2 , ŷ∨1 + ŷ∨2 ) .

(4.5)

The tropicalization of each fi defines a fan in Z2, which are given in figure 11. In this
example, one can immediately see that the combination of all fans defined by tropicalization
of fi ∈ O(X∨) is equivalent to the scattering diagram for X .17

We now motivate degenerate scattering diagrams. Suppose we do not tropicalize all
regular functions in O(X∨), but only a subset. For example, suppose we only considered

17The relation between the scattering diagram of X and O(X∨) is easier to understand from a mirror
symmetry perspective. A∨ is dual to X under mirror symmetry [44].
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0ŷ∨1

(a) Trop[1 + ŷ∨1 ]

0

ŷ∨2

(b) Trop[1 + ŷ∨2 ]

0

ŷ∨2ŷ∨γ1 + ŷ∨2

(c) Trop[1 + ŷ∨2 + ŷ∨1 ŷ
∨
2 ]

Figure 11. The fan associated with the tropicalization of functions in eq. (4.5).

w1w4

w2

w5

w3

(a) Non-degenerate scattering diagram
corresponding to A2.

w1w4

w5

w3 + w2

(b) A degenerate scattering diagram

Figure 12. A demonstration of how to derive a degenerate scattering diagram from the non-
degenerate scattering diagram for the A2 cluster algebra.

the tropicalization of f2 and f3 in eq. (4.5). We would find only 4 walls in the scattering
diagram. Naively, this does not correspond to a well-defined scattering diagram if we
assume the walls are single cluster walls. However, one might conjecture that it corresponds
to a degenerate scattering diagram, where certain walls are combined so certain chambers
are inaccessible.

4.2 Degenerate scattering diagrams

We now introduce the notion of degenerate scattering diagrams to motivate this truncation.
Suppose that we want to truncate some cones from the scattering diagram while keeping
others. Rather we want to enforce certain conditions of the form: “If you cross wall A, you
must also cross wall B and vice-versa.” This is a well-defined procedure if we combine walls
in the scattering diagram. For example, again consider the scattering diagram associated
with A2. Suppose we consider the fan derived by only tropicalizing f3 and f2 in eq. (4.5),
leading to the degenerate fan in figure 12b. We can derive this fan from a wall combination
procedure by combining walls w2 and w3 in the full scattering diagram in figure 12a. We
can view this procedure as a “wall combination procedure” or “cone truncation” procedure.
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However, by combining walls, we lose several nice properties associated with the original
scattering diagram. First, multiple functions are associated with a single degenerate wall,
so wall crossing across a degenerate wall takes the form:

µγ⊥ ŷγi = ŷγi
∏
a

fa(ŷγ⊥a )〈γi,γ⊥a 〉 . (4.6)

Second, the functions fa in eq. (4.6) change depending on whether you are mutating forward
or backward across a degenerate wall. For instance, the functions associated with the
degenerate wall in figure 12b take the form:

µ+
γ⊥=(1,1)ŷγi = ŷγi

(
1 + ŷγ1 ŷγ2

1 + ŷγ1

)〈γi,γ2〉

(1 + ŷγ1 + ŷγ1 ŷγ2)〈γi,γ1〉 ,

µ−
γ⊥=(1,1)ŷγi = ŷγi (1 + ŷγ1 ŷγ2)−〈γi,γ2〉 (1 + ŷγ1 + ŷγ1 ŷγ2)−〈γi,γ1〉 ,

(4.7)

where the +(−) indicates if you going counter-clockwise (clockwise) around the scattering
diagram.

Although the degenerate walls are useful for motivating asymptotic chambers, there
is significant ambiguity in their construction. Primarily, given an arbitrary fan, we do not
have a procedure for associating a unique degenerate scattering diagram to this fan. For
example, again consider the fan in figure 12. We could construct this fan by combining
wall w2 with walls w3 or w1. Given only the fan, there is no canonical choice without
additional input.

4.3 Asymptotic chambers from degenerate scattering diagrams

We now consider the above procedure when the number of cones is infinite. We work
with the degenerate cluster polytope instead of the degenerate scattering diagram.18 Note
that if one only tropicalizes a finite subset of O(X∨), one often finds that the associated
degenerate cluster polytope includes a facet corresponding to a limiting ray.19 For example,
consider the following principle quiver:

y1 x1

y2 x2 x3 y3 ,

which corresponds to the A2,1 cluster algebra, and its dual quiver,

y∨1 x∨1

y∨2 x∨2 x∨3 y∨3 .

18Working with the degenerate cluster polytope is purely for visualization purposes and contains equiv-
alent combinatorial information to the degenerate scattering diagram. A review of the map is provided in
appendix F.

19In some sense, this facet would not appear if we tropicalized all functions in O(X∨) as the facet would
be pushed to infinity.
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Figure 13. A degenerate cluster polytope of A2,1 corresponding to the tropicalization of polyno-
mials in eq. (4.8). The red facet corresponds to the limiting ray.

Figure 14. The dual polytope of the asymptotic scattering diagram in figure 8. Each asymptotic
chamber corresponds to a vertex and walls between asymptotic chambers correspond to 1-dim edges.

Now consider the tropicalization of the following subset of regular functions of A∨2,1:

f1 = ŷ∨1 + 1 ,
f2 = ŷ∨2 + 1 ,
f3 = ŷ∨3 + 1 ,
f4 = ŷ∨3 ŷ

∨
1 + ŷ∨3 + 1 ,

f5 = ŷ∨2 ŷ
∨
1 + ŷ∨1 + 1 ,

f6 = ŷ∨3 ŷ
∨
2 + ŷ∨3 + 1 .

(4.8)

The corresponding polytope is given in figure 13, where the facet corresponding to the
limiting ray is highlighted in red. We argue that the vertices containing this facet corre-
spond to asymptotic chambers in the degenerate scattering diagram. Such a conjecture
naturally explains the appearance of algebraic letters found at 8-point. Note that the facet
associated with the limiting ray is not dual to the asymptotic scattering diagram given in
section 3.1.1, whose associated cluster polytope is given in figure 14. This is because even
the asymptotic scattering diagram is degenerate.20

There have been several proposals for deriving degenerate scattering diagrams. Such
proposals amount to choosing finite subsets of O(X∨) to tropicalize. For example, the
authors of ref. [32] proposed that the desirable subset of O(X∨) corresponds to the smallest

20It seems that the facet associated with the limiting ray will always be degenerate unless you include
F -polynomials associated with points on the limiting ray. These polynomials are not elements of O(X∨) as
they are not critically positive [32]. In our example, you need to include the F -polynomial associated with
the generalization of P in appendix C, even though P is not an x-variable of the dual cluster algebra.
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subset of minors closed under parity: 〈i, i+1, j, j+1〉 and 〈i, j−1, j, j+1〉. These functions
can be identified with some subset of O(X∨) using the “web-variables” originally given in
ref. [110]. Several alternate subsets have been proposed [1, 32, 92, 111]. However, in
contrast to our conjecture, which motivates a truncation of the clusters, these proposals
argue for a truncation of the x-variables. In the finite case, the authors identify a subset of
x-variables whose g-vectors are in bijection with facets of the degenerate cluster polytope
and conjecture that this subset acts as a complete multiplicative basis for the desired ŷ-
variables. In the infinite case, where facets corresponding to limiting rays appear, they
conjecture the limiting rays correspond to cluster algebraic functions. It may turn out
these conjectures are equivalent to our proposal. To make any definite conclusion, one
would have to find a more precise procedure for isolating the correct degenerate scattering
diagram, as the procedure provided here is still ambiguous.

5 Conclusion

The structure of scattering amplitudes beyond Feynman diagrams has undergone intense
study in several contexts over the past 60 years. This program has been very successful at
tree level, where numerous bottom-up approaches have almost completely circumvented the
Lagrangian approach [12, 13, 15, 112–117]. However, a systematic understanding of how
locality, causality and unitarity are precisely encoded at all orders in scattering amplitudes
remains surprisingly elusive. Many approaches, ranging from topological strings on twistor
space [118] to flat space holography [119–121], have given partial answers to this problem.
For example, the infrared structure of scattering amplitudes is famously connected to the
vacuum structure of the theory and asymptotic symmetries [122–125]. Recent research
suggests that the underlying structure of scattering amplitudes is deeply connected to
geometric and combinatorial notions such as total positivity and motives [5, 7, 33, 47, 49,
73]. The amplituhedron provides a precise geometric description of integrands in N = 4
pSYM at all-loop orders. However, although the amplituhedron has led to many interesting
results in the study of scattering amplitudes, it is a fundamentally perturbative description
of the underlying physics. The ultimate goal of this program is a geometric description
of the integrated all-loop amplitude independent of the chosen perturbation method, a
“non-perturbative geometry” [32].

One possible manifestation of this non-perturbative geometry is the connection between
boundaries of the positive kinematic region and logarithmic branch points of integrated
MHV amplitudes in N = 4 pSYM. This conjecture is more subtle than it initially appears
due to ambiguities in the precise definition of the positive kinematic region, such as the
chosen compactification. In this paper, we focused on studying the positive kinematic
region of the MHV sector and proposed that scattering diagrams are a useful mathematical
framework to study the boundary structure of the positive kinematic region. Furthermore,
we developed the notion of asymptotic chambers to explain the appearance of algebraic
letters in the symbol alphabet of MHV amplitudes. Interestingly, the asymptotic diagram
approach provides manifestly rational relations for the asymptotic ŷγ-variables associated
with the same limiting ray.

– 36 –



J
H
E
P
0
7
(
2
0
2
1
)
0
4
9

As a proof of concept, we used scattering diagrams to study the branch point structure
of the 8-point MHV amplitude. Using the scattering diagram framework, we made a con-
jecture for all possible algebraic letters that could appear in the 8-point symbol alphabet.
We confirmed that the algebraic letters found in explicit computations could be written as
monomials of letters in our alphabet. We also developed the notion of degenerate scatter-
ing diagrams and commented on a possible truncation procedure for ŷ-variables, following
the philosophy of refs. [1, 32, 92].

Our results are especially interesting in the context of the Landau equations [126, 127].
The Landau equations provide a direct link between the structure of the integrand and the
branch points of the integrated amplitude. In particular, the branch points of amplitudes
at high multiplicity and loop order have been calculated by applying the Landau equations
to the amplituhedron [37, 38, 89]. However, although the Landau equations provide a non-
trivial probe of the integrated amplitudes’ branch points, knowledge of the branch points
is not enough to uniquely determine the symbol alphabet (see section 7 of ref. [37]). For
example, although some letters in the alphabet may take the schematic form

φ ∼ f −
√
4′

f +
√
4′

(5.1)

where f and 4′ are rational functions of external kinematic data, the Landau equations
only predict branch points of the form 4′ = 0. This mismatch results from how the
solution to the Landau equations corresponds to the algebraic branch cut from the square-
root in φi instead of the full logarithmic branch point. A related mismatch also occurs for
rational branch points. Similar to how cluster algebras provide the missing link between
Landau singularities and the symbol alphabet at 6-point and 7-point, asymptotic chambers
provide the missing link between the algebraic symbol alphabet and specific solutions to
the Landau equations at 8-point. It has been argued that the branch points of N = 4
pSYM associated with solutions to Landau equations are universal to all gauge theories. It
would be interesting to understand whether the logarithmic branch points studied in this
paper, which contain more information than the solutions to the Landau equations, retain
any degree of universality.

The notion of degenerate scattering diagrams has applications beyond planar gauge
theories, specifically higher loop integrands of φ3. However, it is instead the cluster poly-
tope picture that is more interesting for studying higher loop integrands of φ3 [128, 129]
and generalized scattering amplitudes [130–136]. Both the higher loop integrands of φ3

and generalized scattering amplitudes can be identified with the canonical rational func-
tion of the (degenerate) cluster polytopes discussed in section 4 [111]. Each vertex in
the cluster polytope can be mapped to a specific Feynman diagram. However, multiple
vertices correspond to the same Feynman diagram, and considering all vertices in the full
cluster polytope generically overcounts certain Feynman diagrams. Therefore, it is instead
more natural to consider degenerate cluster polytopes, where redundant vertices have been
truncated. For example, the degenerate cluster polytope associated with A2,1, figure 15, is
associated with the multi-trace, 1-loop 3-point integrand of φ3 theory [129]. This degen-
erate polytope can be derived from the tropicalization of f5 and f6 in eq. (4.8) along with
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Figure 15. A degenerate cluster polytope of A2,1 corresponding to the tropicalization of f4 and
f5 in eq. (4.8) along with eq. (5.2).

the polynomial
fP = 1 + ŷ∨3 + ŷ∨1 ŷ

∨
2 ŷ
∨
3 , (5.2)

which is the F -polynomial of the generalization of P in appendix C to A2,1. Although the
motivation for truncating the unwanted vertices is very different, the notion of truncating
undesirable vertices (cones) from the degenerate cluster polytope (scattering diagram) is
the same as section 4.

Finally, the notion of asymptotic chambers has applications outside of scattering am-
plitudes, such as studying coordinate systems of (higher) Teichmuller spaces. Specifically,
when the cluster algebra corresponds to the (higher) Teichmuller space of a Riemann
surface, one can identify cluster algebraic functions with Fenchel-Nielsen coordinates [100].
Non-trivial relations obeyed by Fenchel-Nielsen coordinates, and their generalizations, have
been studied in the context of spectral networks [101, 102]. However, to our knowledge, no
one has systematically studied relations between Fenchel-Nielsen coordinates in the context
of scattering diagrams and cluster mutations.

Since our core result is a general framework for approaching these questions rather
than individual results, there are several future directions.

5.1 Future directions

Gaining a more systematic understanding of limiting walls. The most obvious
direction for future work is developing a more systematic understanding of limiting walls
and their connection to algebraic letters. For example, proving the bound

0 < ŷγ⊥lim
< 1 , (5.3)

holds in any asymptotic chamber would certainly be very interesting. However, even with
eq. (5.3), it is unclear the notion of asymptotic chambers is always well defined. Alter-
natively, another interesting problem could be proving, or disproving, that the number of
multiplicatively independent asymptotic letters associated with a limiting ray always is the
number of intersecting walls plus the rank of the cluster algebra.
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Algorithm for finding all asymptotic chambers. A very practical direction for future
work is the development of new algorithms for finding the ŷγi of more general asymptotic
chambers. For instance, if one cannot identify an A1,1 subalgebra, one would instead need
to generalize the generating function method of appendix C to more general sequences
of quivers. In addition to finding explicit expressions for ŷ0

γi , one also needs to find all
the walls that intersect the limiting ray. The algorithm in appendix D becomes highly
inefficient for limiting rays in higher rank cluster algebras. Some possible approaches are:
(1) calculating the walls using the tropicalization procedure in section 4.1, (2) developing
some generalization of eq. (D.1) for asymptotic chambers, or (3) generalizing the causal
diamond picture of refs. [128, 129].

Degenerate scattering diagrams. The discussion regarding degenerate scattering dia-
grams and truncated cones in section 4.3 was largely qualitative. Although the construction
naturally motivated the notion of asymptotic chambers, it did not provide a concrete pro-
cedure for identifying the exact degenerate scattering diagram given the corresponding
fan. A primary goal of future work would be developing the notion of canonical degenerate
scattering diagrams, perhaps modifying the somewhat ad-hoc construction in section 4.2.
Motivated by related results in refs. [130, 137], we note that understanding fi ∈ O(X∨),
and not just their tropicalization, could be important for developing such a notion. One
path is investigating the explicit calculations in ref. [90] that connect boundary points of
Gr(k, n)/T to fi using generalized scattering equations.

Finding critically positive coordinates for Grk(4, n)/T . We focus on the positive
kinematic region defined by Gr+(4, n)/T due to its connection to logarithmic branch cuts
of MHV amplitudes. However, the amplituhedron story naturally suggests the existence
of alternate positive kinematic regions, Grk(4, n), that are relevant for NkMHV ampli-
tudes [47]. These positive spaces are much more non-trivial than Gr+(4, n) and could be
tied to the appearance of more general functions beyond the MHV sector, such as ellip-
tic polylogarithms [49, 138–142]. It seems highly plausible that some notion of critically
positive coordinates does generalize to these positive kinematic regions.

Positive kinematic region of more general theories. One could also attempt to un-
derstand the significance of the positive kinematic region for more general theories. A prime
target would be understanding the positive kinematic region associated with N = 4 pSYM
amplitudes on the Coulomb branch [143, 144], or more general massive theories [15, 145].
The kinematic space of these theories does not correspond to Gr(4, n)/T since external
states are massive. Alternatively, one could try to understand the positive kinematic re-
gion of more general scalar theories, such as bi-fundamental φ3 theory [146, 147] and φp

theory [148–150].

The positive kinematic region and (2, 2) signature. Although the positive kine-
matic region exhibits remarkable properties and is intimately connected with the analytic
structure of amplitudes, there is currently no physical explanation of its importance. How-
ever, instead of directly addressing the importance of the positive kinematic region, perhaps
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an easier preliminary question is the importance of (2, 2) signature. Using (2, 2) signature
has often been viewed as a trick for removing ambiguities in certain computations due to the
plethora of subtleties that emerge from trying to actually understand field theory dynamics
in (2, 2) signature. However, there has been a recent revival in trying to systematically
understand the behavior of theories in (3, 1) signature, most notably the development of
light ray operators, which has led to several non-trivial results [151–157]. It would be
interesting if such an analysis in (2, 2) signature could lead to similarly novel results.
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A Introduction to cluster algebras

In this appendix, we give a brief introduction to cluster algebras [103, 158–160]. Thorough
introductions are refs. [161–164], while those looking for a review that focuses on the con-
nection with scattering amplitudes are referred to ref. [33]. Cluster algebras were initially
motivated by the notion of total positivity. For example, one major motivating question
was how much information is generically needed to prove that minors of a given matrix are
positive. Due to non-linear relations between minors, this question quickly becomes very
hard from a brute force approach of writing out all relations between minors and solving
these polynomials directly. The advent of cluster algebras gave a different approach.

Suppose you are given a 2 × n matrix and asked to find the minimal information
needed to determine whether all 2× 2 minors are positive. The problem is non-trivial due
to quadratic relations between minors called plucker relations:

1
〈i, k〉

(〈i, j〉〈k, l〉+ 〈i, l〉〈j, k〉) = 〈j, l〉 i < j < k < l . (A.1)

A brute force approach would be to calculate all quadratic relations of the form eq. (A.1)
at once and find some minimal subset directly. This computation would be problematic for
even the best computers. We instead take a cluster algebra approach and find a preferred
set of coordinates on the space of minors. To do so, we note that eq. (A.1) can be visually
interpreted as a mutation on the triangulation of a 4-gon with edges, i, j, k, l, as visualized
in figure 16. Therefore, at n = 4, a natural set of preferred minors is

〈1, 2〉, 〈2, 3〉, 〈3, 4〉, 〈1, 4〉, 〈1, 3〉 . (A.2)

We can calculate the remaining coordinate, 〈2, 4〉, using eq. (A.1), interpreting eq. (A.1) as
a mutation on the 4-gon. Going beyond n = 4, it is natural to start with coordinates that
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Figure 16. A visual representation of the plucker relations for Gr(2, n).
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Figure 17. The first triangulation of the 5-gon corresponds to the parameterization in eq. (A.3).
Each minor in eq. (A.3) corresponds to an edge. The remaining triangulated 5-gons correspond to
the mutation pattern that leads to 〈2, 5〉.

can be associated with the triangulation of an n-gon and interpret eq. (A.1) as a mutation
on this triangulated n-gon, just as we did for the triangulated 4-gon. For example, consider
n = 5 and the initial coordinates:

〈1, 2〉, 〈2, 3〉, 〈3, 4〉, 〈4, 5〉, 〈1, 5〉, 〈1, 3〉, 〈1, 4〉 (A.3)

which are associated with the first triangulation in figure 17. Suppose we want to write
〈2, 5〉 in terms of our initial coordinates. We first perform a “mutation” on 〈1, 4〉, finding

〈3, 5〉 = 1
〈1, 4〉(〈1, 3〉〈4, 5〉+ 〈3, 4〉〈1, 5〉) (A.4)

and a new triangulation where 〈1, 4〉 is replaced with 〈3, 5〉. We then perform a mutation
on 〈1, 3〉, finding

〈2, 5〉 = 1
〈1, 3〉(〈3, 5〉〈1, 2〉+ 〈2, 3〉〈1, 5〉) (A.5)

Therefore, assuming that all our initial minors in eq. (A.3) are positive, then 〈2, 5〉 must
be positive as well. One can repeat the above calculation for any minor not in eq. (A.3),
showing that all minors are positive if our initial minors in eq. (A.3) are positive. Note
that we never mutate the edges that define the boundary of the n-gon. These are called
frozen variables as they appear in the Plucker relations but do not themselves mutate.
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The above discussion focuses on the positivity of a Gr(2, n) matrix. However, we will
ultimately be interested in Gr(4, n)/T , where T acts on individual columns by a re-scaling:

ZAi → tiZ
A
i , (A.6)

where i and A index the columns and rows respectively. Therefore, it is natural to con-
sider the same question as above, except now for Gr(2, n)/T . Our minors, 〈i, j〉, are no
longer suitable coordinates as they are not invariant under T . Instead, we must develop
a new set of coordinates, ŷ-variables, for a given triangulation that are invariant under T
transformations. Again consider the coordinates in eq. (A.3). Two natural combinations
of minors invariant under T are

ŷ1 = 〈2, 3〉〈1, 4〉
〈1, 2〉〈3, 4〉 , ŷ2 = 〈3, 4〉〈1, 5〉

〈1, 3〉〈4, 5〉 . (A.7)

These variables form a natural set of coordinates on the compactified space Gr(2, n)/T .
To see their importance, lets interpret Gr(2, n)/T as the positive region of some mani-
fold. Each triangulation, with its own ŷi variables, corresponds to a different “corner” of
Gr(2, n)/T , as visualized for n = 5 in figure 1.

The above strategy of finding an initial “cluster” of coordinates and developing a
sequence of coordinate transforms turns out to be very versatile. Generalizing beyond
Gr(2, n), one can systematically develop the notion of a cluster algebra. Instead of a
triangulation, we associate to each cluster a quiver with exchange matrix Bi,j :

Bi,j =


n if there are n arrows from i to j
−n if there are n arrows from j to i
0 if there are no arrows between j and i

. (A.8)

Each triangulation of an n-gon for Gr(2, n) maps onto a triangulation in the following way

• Each edge in the n-gon triangulation corresponds to a node in the quiver. The edges
corresponding to the boundary of the n-gon are frozen nodes that never mutate

• For each triangle in the n-gon triangulation, we draw a clock-wise orientated cycle in
Q connecting the vertices associated with the bounding edges.

For example, a visualization of the quiver associated with the first triangulation in figure 17
is given in figure 18. Given a mutation, the minors generalizes to cluster variables that
mutate as

µkxi =
{

1
xi

(∏j→i xj +∏
j←i xj) i = k

xi i 6= k
(A.9)

If we perform a mutation on node k, the quiver, and corresponding exchange matrix,
mutate according to the rules

• Reverse all arrows going in or out of k,

• For each sub-path of the form i→ k → j, add the arrow i→ j,

• Remove any two cycles that have formed.
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1

2

3

4

5

〈2, 3〉 〈3, 4〉 〈4, 5〉

〈1, 2〉 〈1, 3〉 〈1, 4〉 〈1, 5〉

Figure 18. A triangulation of a 5-gon and its dual quiver representation. The boxed elements in
the quiver correspond to frozen nodes.

One can explicitly check that eq. (A.9) and the preceding quiver mutation rules are a self
consistent generalization of those given for Gr(2, n). Finally, the ŷ coordinates also have a
natural generalization as

ŷi =
∏
j

x
−Bi,j
j , (A.10)

and mutate as

µj ŷi =
{ 1

ŷi
i = j

ŷi(1 + ŷ
Sign(Bi,j)
j )Bi,j i 6= j

. (A.11)

We will denote the positive space parameterized by xi coordinates as A and the space
parameterized by ŷi coordinates as X . The relation between A and X is still under active
research and not completely understood.

Cluster algebras have many remarkable properties, such as the Laurent phenomenon.
The cluster variable of any quiver can be written as a Laurent polynomial of xi of some
initial cluster. For example, consider the cluster algebra associated with Gr(2, 5). One can
show that any 〈i′, j′〉 can be written as a Laurent polynomial of 〈i, j〉 in eq. (A.3). To learn
about other amazing properties of cluster algebras, the reader is referred to refs. [161, 162].

B Differentiating x-variables with frozen nodes

Like ŷ-variables, x-variables will also obey additional relations when there are fewer frozen
nodes. To see this, again consider the A3 cluster algebra with initial quiver:

x1 x2 x3 .
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Without any frozen nodes, all x-variables in the cluster algebra are{
x1, x2, x3

x2 + 1
x1

,
x1x3 + x2

2 + 2x2 + 1
x1x2x3

x2 + 1
x3

,
x1x3 + x2 + 1

x1x2
x1x3 + x2 + 1

x2x3
,

x1x3 + 1
x2

}
.

(B.1)

The minimal multiplicative basis of the x-variables is rank 7:

{x1, x2, x3

x2 + 1, x1x3 + x2
2 + 2x2 + 1,

x1x3 + 1, x1x3 + x2 + 1} .
(B.2)

However, suppose we include the additional frozen node, z, so the initial quiver is now:
z

x1 x2 x3 .

(B.3)

All x-variables in the cluster algebra are now{
z, x1, x2, x3

x2 + z

x1
,

x1x3z + zx2
2 + (1 + z2)x2 + z

x1x2x3
x2z + 1
x3

,
x1x3z + x2 + z

x1x2
x1x3 + x2z + 1

x2x3
,

x1x3 + 1
x2

}
,

(B.4)

so the multiplicative basis for x-variables is now rank 10:

{z, x1, x2, x3,

x2 + z, x1x3z + zx2
2 + (1 + z2)x2 + z, (B.5)

x1x3 + 1, x1x3z + x2 + z,

x2z + 1, x1x3 + x2z + 1} .

Comparing eqs. (B.1) and (B.4), one can clearly see that adding the frozen node, z, removes
relations between the x-variables. Therefore, adding more frozen nodes disentangles the
x-variables.

Remarkably, the frozen nodes of a principle quiver are enough to ensure that all the
x-variables are maximally disentangled. To see this, note that the x-variables of a cluster
algebra with completely arbitrary frozen nodes can be always be written in the form,

x = x~gF (ŷi)× (monomial of frozen variables) , (B.6)
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where ~g and F (ŷi) are defined in eq. (2.3). The exact formula for computing the mono-
mial of frozen x-variables is unimportant for our purposes and the reader is referred to
appendix B of ref. [92] for details. From eq. (B.6), we see that the x-variable of a cluster
algebra with arbitrary frozen nodes is the same as the x-variable of cluster algebra with
a principal quiver up to a monomial of frozen x-variables. Therefore, one multiplicative
basis of the ŷ-variables of a cluster algebra with arbitrary frozen nodes is the multiplicative
basis of ŷ-variables of a cluster algebra with a principal quiver in addition to all the frozen
x-variables.

To see this result explicitly, again consider the A3 cluster algebra. We now consider a
cluster algebra with the principal quiver:

y1 y2 y3

x1 x2 x3 .

A complete basis of all F -polynomials is

f1 = 1 + ŷ1 ,

f2 = 1 + ŷ2 ,

f3 = 1 + ŷ3 ,

f4 = 1 + ŷ1 + ŷ1ŷ2 , (B.7)
f5 = 1 + ŷ3 + ŷ3ŷ2 ,

f6 = 1 + ŷ1 + ŷ3 + ŷ3ŷ1 + ŷ3ŷ2ŷ1 .

We can now apply the basis in eq. (B.7) to the quiver in (B.3), where

ŷ1 = z

x2
, ŷ2 = x1x3, ŷ3 = 1

zx2
. (B.8)

Substituting eq. (B.8) into eq. (B.7) and including the x-variables of the initial quiver
in (B.3) yields the multiplicative basis{

z, x1, x2, x3 ,

f1 = x2 + z

x2
,

f2 = x1x3 + 1 ,

f3 = zx2 + 1
zx2

,

f4 = x1x3z + x2 + z

x2
,

f5 = x1x3 + x2z + 1
zx2

,

f6 = zx1x3 + zx2
2 + (1 + z2)x2 + z

zx2
2

}
.

(B.9)
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Eq. (B.9) corresponds to a complete multiplicative basis for the x-variables in eq. (B.4).
A complete multiplicative basis for the ŷ-variables consists of the fi in eq. (B.9), the ŷi in
eq. (B.8) and z.

C Review: A1,1 cluster algebra

In this appendix, we consider the cluster algebra and scattering diagram associated with
the principal quiver,

y−1 y0

x−1 x0 ,

reviewing the results in refs. [1, 32, 92]. We perform repeated mutations on the nodes
associated with x−1 and x0, starting with the x−1 node,

y0 y0 y0 y0

x−1 x0 x1 x0 x1 x2 x3 x2

y−1 y−1 y−1 y−1 . . . .

2 3

2 2 2

2

2

3

2

2 3 4

After a sequence of 2n mutations where n > 0, the quiver takes the form

y0

x2n−1 x2n

y−1 .

2n

2

2n−1

2n2n+1

Using cluster mutations and the above representation of the quiver after 2n mutations, we
defined a recursive solution for xi in this model, finding:

x2n−1x2n−3 =
(
y2n−1
−1 y2n−2

0 + x2
2n−2

)
,

x2nx2n−2 =
(
y2n
−1y

2n−1
0 + x2

2n−1

)
.

(C.1)

This form of the mutation relations is still too complicated to solve analytically due to
being inherently nonlinear. Instead, we identify a new variable,

P = y−1
x−1x0

+ x0
x−1

+ x−1y−1y0
x0

, (C.2)

such that
x2n−1 = x2n−2P − x2n−3F , F = y−1y0 . (C.3)

P is not an element of the cluster algebra, but a cluster-like variable associated with the
limiting ray. For further discussion of P, the reader is referred to ref. [32]. Only eq. (C.3)
is important for our purposes, which one can explicitly check.
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We can solve eq. (C.3) by first writing down the associated generating function:

Gi>0(t) = x0 − x−1Ft
1− Pt+ Ft2 =

∞∑
n=0

xit
i , (C.4)

and then finding a closed-form expression for the derivatives of Gn>0(t):

xi = 1
2i+2

[
(x−1 +B+

√
4)(P +

√
4)i+1 + (x−1 −B+

√
4)(P −

√
4)i+1

]
,

B+ = 2x0 − x−1P
4

, (C.5)

4 = P2 − 4F .

Using our closed form expressions for xi in eq. (C.5), it is trivial to calculate closed form
expressions for ŷi after 2n mutations:

ŷ2n−1 = y2n
0 y2n+1
−1 x−2

2n , ŷ2n = y1−2n
0 y−2n

−1 x2
2n−1 . (C.6)

D Algorithm for finding asymptotic chambers from A1,1 subalgebra

We now outline a search algorithm we used to find the asymptotic chambers associated
with a limiting ray. In normal search algorithms for finite cluster algebras, one performs
sequences of mutations until one finds all the cones in the fan, defining a cone by its
associated g-vectors. This method does not work well for infinite cluster algebras where
there are an infinite number of cones, even asymptotically close to the limiting ray. We
partially circumvented this issue by defining a new equivalence class of cones arbitrarily
close to the limiting ray called pre-asymptotic chambers.

We first mutate the initial quiver until we find a quiver containing an A1,1 subalgebra:

xi xj ,

which we define as the principal quiver. To calculate the g-vectors and walls of adjacent
cones, we use the g-vector mutation formula originally derived in ref. [103]:

µk~gi =
{

~gi if i 6= k

−~gi +∑N
m=1[Bm,k]+~gm −

∑N
m=1[BN+m,k]+~bm if i = k

, (D.1)

where [x]+ = max(x, 0) and ~bm is column m of the initial Bi,j matrix. This formula can
be derived by combining eq. (A.9) in appendix A,

µkxi =
{

1
xi

(∏j→i xj +∏
j←i xj) i = k

xi i 6= k
, (D.2)

with eq. (2.3) in section 2.1:

x = x~gF (ŷi), x~g =
∏
i

xgii . (D.3)
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This allowed us to compute the g-vectors of adjacent cones in the g-vector fan very ef-
ficiently. Using eq. (D.1), we calculated the g-vectors of cones associated with repeated
mutations on nodes xi and xj . The g-vectors of the xi and xj nodes asymptotically ap-
proached a limiting ray, ~glim. In principle, we could now perform a brute force search,
performing random mutations asymptotically close to the limiting ray until we found no
new walls intersecting the limiting ray. However, this approach would be highly inefficient
as there are always an infinite number of cones asymptotically close to the limiting ray.
Although we did perform a brute-force search, we partially streamlined the algorithm by
defining a new equivalence class of cones: pre-asymptotic chambers.

Consider the schematic scattering diagram in figure 7, which corresponds to the A2,1
cluster algebra. Suppose we mutate to one of the cones in the sequence that approaches
the asymptotic chamber C1. Mutating across an asymptotic wall toward or away from the
limiting ray does not give us any new information. In some sense, the sequence of cones
approaching C1 are equivalent, and therefore redundant, for the purposes of trying to find
walls intersecting the limiting ray. We wish to find some criterion that allows us to avoid
mutating into these redundant cones. To see what this criterion should be, we first note
that the sequence of g-vectors along the black cluster wall generically obey the relation

~g(xn)− ~g(xn−1) = ~glim . (D.4)

Therefore, it is natural to consider the projection of the g-vectors onto the hyperplane
perpendicular to the limiting ray, such that

P⊥(~g(xn)− ~g(xn−1)) = P⊥~glim = ~0 . (D.5)

If we define equivalence classes of cones by considering the projection of their g-vectors,
not the g-vectors themselves, the sequence of cones approaching C1 correspond to the same
cone under this projection. This is true for the sequences of cones approaching C3, C4,
and C6 as well. For C2 and C5, we find two classes of cone upon taking the projection. To
see why, let us focus on C2. Denoting the projection of the g-vectors on the two bordering
cluster walls as ga and gb, the two classes of cones are defined by the sets {ga, ga, gb} and
{ga, gb, gb}. Turning to more general cluster algebras, we define pre-asymptotic chambers as
the equivalence classes of cones defined by the projection of g-vectors onto the hyperplane
perpendicular to the limiting ray. Certain infinite sequences of cones approaching the same
asymptotic chamber correspond to the same equivalence class under this projection.

Using pre-asymptotic chambers does not completely remove undesirable redundancies,
because a single asymptotic chamber can correspond to multiple pre-asymptotic chambers.
This redundancy is not a problem for lower rank cluster algebras where the number of pre-
asymptotic chambers is small and finite. For the asymptotic scattering diagrams of A2,1 and
A2,2, one can prove that the number of asymptotic chambers is finite simply by showing that
the number of pre-asymptotic chambers is finite. However, for Gr(4, 8)/T , we found that
the number of pre-asymptotic chambers is infinite, or so large it is effectively infinite, while
the number of asymptotic chambers is finite. If the number of pre-asymptotic chambers is
infinite, brute force mutation procedures cannot prove that you have found all asymptotic
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Figure 19. Number of accessible asymptotic and pre-asymptotic chambers after a maximum of
X mutations from the initial pre-asymptotic chamber. Note that we are only considering (pre-
)asymptotic chambers on one side on the limiting wall.

chambers. Instead, one must perform mutations on pre-asymptotic chambers until no new
asymptotic chambers appear after a large number of mutations. Specifically, we found
that all the discovered asymptotic chambers were within 18 mutations of our initial pre-
asymptotic chamber and checked all pre-asymptotic chambers within 23 mutations of our
initial pre-asymptotic chamber. Figure 19 is a plot of the number of asymptotic and
pre-asymptotic chambers, Y , accessible after a maximum of X mutations on the initial
pre-asymptotic chamber given in section 3.2.

The final subtlety to consider is that we found only a subset of the asymptotic chambers
when we performed our initial search of pre-asymptotic chambers asymptotically close to
the limiting ray. We could not find all pre-asymptotic chambers from a single search because
we cannot use the mutation rule in eq. (D.1) to mutate across limiting walls. Fortunately,
the asymptotic scattering diagram studied in section 3.2 has only one limiting wall. We
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can check how many limiting walls appear by studying the asymptotic walls that appear
in our brute force search. For a limiting wall to appear, asymptotic walls almost parallel
the limiting wall should appear during the brute force search of cones asymptotically close
to the limiting ray. However, all asymptotic walls that appeared in the Gr(4, 8)/T search
were asymptotically parallel to the same limiting wall,

γ⊥lim = (1, 0, 0, 0, 0, 0, 0, 0, 1) . (D.6)

We subsequently assumed that only one limiting wall appears in the asymptotic scatter-
ing diagram. Furthermore, we found that the limiting wall fully divides the asymptotic
scattering diagram. In other words, there is no “short-cut” around the limiting wall. There-
fore, we performed two searches of the pre-asymptotic chambers, one on each side of the
limiting wall.

E Comparison to the origin clusters of ref. [1]

In this appendix, we compare our techniques and results to those of ref. [1]. The general
computation strategy of ref. [1] revolved around studying clusters with quivers of the form

fz z0

a2 a1 b1 b2 b3 a3 a4 ,

fw w0

where we have suppressed all frozen variables disconnected from the A1,1 subalgebra. Such
clusters were called origin clusters. The authors then used the generating function of the
A1,1 subalgebra in eq. (C.5) to motivate three algebraic functions:

w0 −Bw
√
4

w0 +Bw
√
4
,

z0 −Bz
√
4

z0 +Bz
√
4
,
P −
√
4

P +
√
4
, (E.1)

where

z1 = b1b2b3 − fwz2
0

w0
, w1 = b1b2b3 − fzw2

0
z0

,

Bw = 2w1 − w0P
4

, Bz = 2z1 − z0P
4

, (E.2)

P = fzw0 + z1
z0

, 4 = P2 − 4fwfz .

The multiplicative functions in eq. (E.1) are simply an alternative multiplicative basis for
the ŷ±γi of the A1,1 subalgebra found in section 2.3. The authors ultimately studied 32
origin clusters for each limiting ray apparently relevant for N = 4 pSYM.
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Including the rational x-variables associated with the origin cluster, this method ulti-
mately yields a multiplicative basis for the ŷ0

γi of the two asymptotic chambers associated
with each origin cluster. Mutating w0 (z0) first leads to the first (second) asymptotic cham-
ber after an infinite number of mutations on the A1,1 subalgebra. Notably, this technique
only allows one to probe the ŷ0

γi of asymptotic chambers adjacent to a limiting wall. To
see this, note that the generalized mutation identified in section 2.3 applies to the A1,1
subalgebra when asymptotically close to the limiting ray. Since a generalized mutation
corresponds to a limiting wall, the asymptotic chamber must be adjacent to a limiting
wall. However, many asymptotic chambers are not adjacent to a limiting wall. For exam-
ple, consider the asymptotic scattering diagram in figure 8, which is associated with the
limiting ray of the A2,1 cluster algebra. There are two asymptotic chambers, C2 and C5,
that are not adjacent to the limiting wall. To probe the ŷ0

γi of such asymptotic chambers,
one must either find a generating function for the sequences of cones that do not explicitly
contain an A1,1 subalgebra or use the wall-crossing techniques developed in this paper. Ex-
cluding these asymptotic chambers when calculating the multiplicative basis for ŷγi leads
to a truncated asymptotic symbol alphabet. For example, excluding asymptotic chambers
C2 and C5 of A2,1 leads to the truncated alphabet,

ŷ0
γ1 , ŷ

0
γ2 ,

1 + ŷ0
γ1 ŷ

0
γ2 ŷ

0
γ3

1 + ŷ0
γ1

, 1− ŷ0
γ2 ŷ

0
γ3 , (E.3)

in comparison to the full alphabet in eq. (3.8).
Interestingly, the ŷγi of asymptotic chambers adjacent to the limiting wall are enough to

derive the algebraic letters that have appeared in explicit computations. Rather, the known
18 algebraic letters that appear in the 8-point 2-loop NHMV amplitude are monomials of
algebraic variables in the form of eq. (E.1). However, there is no obvious reason why
additional algebraic letters could not appear at higher loop orders.

F Review: cluster polytopes

Instead of investigating the scattering diagram, much research has focused on a closely
related object, the cluster polytope. Every scattering diagram is dual to a polytope where
vertices correspond to cones, facets to g-vectors, and edges to walls. More concretely, one
can define a polytope using facet vectors:

{Y ∈ PN |Y ·Wi ≥ 0 for all i} . (F.1)

For a cluster polytope, the facet vectors, Wi, match onto the g-vectors

Wi = (ci, ~gi) (F.2)

where the constants, ci, are chosen such that 4 has the correct vertex and facet structure.
As an example, figure 20 shows the cluster polytopes associated with A2 and A3 [111].
The fan and polytope interpretation are equivalent and simply correspond to different
visualizations of the same combinatorial data.
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Figure 20. Cluster polytopes corresponding to A2 (left) and A3 (right).

Given a set of tropical functions, fi, an obvious question is how to derive the cluster
polytope associated with the corresponding fan without calculating all the ci in eq. (F.2).
The answer is remarkably simple. For each fi, we associate a corresponding polytope, Pi,
by taking the convex hull of exponent vectors for each term. As an example, consider the
following Laurent polynomials,

f1 = 1 + x → {(0, 0), (0, 1)}
f2 = 1 + x+ xy → {(0, 0), (0, 1), (1, 1)} ,

(F.3)

where we have listed the vertices of the corresponding polytopes. We then consider the
Minkowski sum of all such polytopes. Alternatively, we simply take the product of all such
fi and find the associated P using the same procedure

f1f2 = (1 + x)(1 + x+ xy)→ {(0, 0), (1, 0), (1, 1), (2, 0), (2, 1)} . (F.4)

A proof of this procedure is provided in ref. [7].

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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