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Abstract

Background: Many popular disease transmission models have helped nations respond to the COVID-19
pandemic by informing decisions about pandemic planning, resource allocation, implementation of social
distancing measures, lockdowns, and other non-pharmaceutical interventions. We study how five
epidemiological models forecast and assess the course of the pandemic in India: a baseline curve-fitting
model, an extended SIR (eSIR) model, two extended SEIR (SAPHIRE and SEIR-fansy) models, and a semi-
mechanistic Bayesian hierarchical model (ICM).

Methods: Using COVID-19 case-recovery-death count data reported in India from March 15 to October 15 to
train the models, we generate predictions from each of the five models from October 16 to December 31. To
compare prediction accuracy with respect to reported cumulative and active case counts and reported
cumulative death counts, we compute the symmetric mean absolute prediction error (SMAPE) for each of the
five models. For reported cumulative cases and deaths, we compute Pearson’s and Lin's correlation
coefficients to investigate how well the projected and observed reported counts agree. We also present
underreporting factors when available, and comment on uncertainty of projections from each model.
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available R-package and desired flexibility plus accuracy.

Results: For active case counts, SMAPE values are 35.14% (SEIR-fansy) and 37.96% (eSIR). For cumulative case
counts, SMAPE values are 6.89% (baseline), 6.59% (eSIR), 2.25% (SAPHIRE) and 2.29% (SEIR-fansy). For
cumulative death counts, the SMAPE values are 4.74% (SEIR-fansy), 8.94% (eSIR) and 0.77% (ICM). Three
models (SAPHIRE, SEIR-fansy and ICM) return total (sum of reported and unreported) cumulative case counts
as well. We compute underreporting factors as of October 31 and note that for cumulative cases, the SEIR-
fansy model yields an underreporting factor of 7.25 and ICM model yields 4.54 for the same quantity. For
total (sum of reported and unreported) cumulative deaths the SEIR-fansy model reports an underreporting
factor of 2.97. On October 31, we observe 8.18 million cumulative reported cases, while the projections (in
millions) from the baseline model are 8.71 (95% credible interval: 8.63-8.80), while eSIR yields 8.35 (7.19-9.60),
SAPHIRE returns 8.17 (7.90-8.52) and SEIR-fansy projects 851 (8.18-8.85) million cases. Cumulative case
projections from the eSIR model have the highest uncertainty in terms of width of 95% credible intervals,
followed by those from SAPHIRE, the baseline model and finally SEIR-fansy.

Conclusions: In this comparative paper, we describe five different models used to study the transmission dynamics of
the SARS-Cov-2 virus in India. While simulation studies are the only gold standard way to compare the accuracy of the
models, here we were uniquely poised to compare the projected case-counts against observed data on a test period.
The largest variability across models is observed in predicting the “total” number of infections including reported and
unreported cases (on which we have no validation data). The degree of under-reporting has been a major concern in
India and is characterized in this report. Overall, the SEIR-fansy model appeared to be a good choice with publicly

Keywords: Compartmental models, Low and middle income countries, Prediction uncertainty, Statistical models

Background

Coronavirus disease 2019 (COVID-19) is an infectious
disease caused by severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) [1]. At the time of revising
this paper (March 24, 2021), roughly 124 million cases
have been reported worldwide. The disease was first
identified in Wuhan, Hubei Province, China in December
2019 [2]. Since then, more than 2.74 million lives have
been lost as a direct consequence of the disease. Notable
outbreaks were recorded in the United States of America,
Brazil and India -- which remains a crucial battleground
against the outbreak. The Indian government imposed
very strict lockdown measures early in the course of the
pandemic in order to reduce the spread of the virus. Said
measures have not been as effective as was intended [3],
with India now reporting the largest number of confirmed
cases in Asia, and the third highest number of confirmed
cases in the world after the United States and Brazil [4],
with the number of confirmed cases crossing the 10
million mark on December 18, 2020. On March 24, 2020,
the Government of India ordered a 21-day nationwide
lockdown, later extending it until May 3. This was
followed by two-week extensions starting May 3 and 17
with substantial relaxations. From June 1, the government
started ‘unlocking’ most regions of the country in five un-
lock phases. In order to formulate and implement policy
geared toward containment and mitigation, it is important
to recognize the presence of highly variable contagion
patterns across different Indian states [5]. India saw a
decay in the virus curve in September, 2020 with daily

number of cases going below 10,000. At the time of revis-
ing the paper, the daily incidence curve is sharply rising
again, as India faces its second wave. There is a rising
interest in studying potential trajectories that the infection
can take in India to improve policy decisions.

A spectrum of models for projecting infectious disease
spread have become widely popular in wake of the pan-
demic. Some popular models include the ones developed
at the Institute of Health Metrics (IHME) [6] (University
of Washington, Seattle) and at the Imperial College
London [7]. The IHME COVID-19 project initially relied
on an extendable nonlinear mixed effects model for
fitting parametrized curves to COVID-19 data, before
moving to a compartmental model to analyze the pan-
demic and generate projections. The Imperial College
model (henceforth referred to as ICM) works backwards
from observed death counts to estimate transmission
that occurred several weeks ago, allowing for the time
lag between infection and death. A Bayesian mechanistic
model is introduced - linking the infection cycle to
observed deaths, inferring the total population infected
(attack rates) as well as the time-varying reproduction
number R(f). With the onset of the pandemic, there has
been renewed interest in multi-compartment models,
which have played a central role in modeling infectious
disease dynamics since the twentieth century [8]. The
simplest of compartmental models include the standard
SIR [9] model, which has been extended [10] to incorp-
orate various types of time-varying quarantine protocols,
including government-level macro isolation policies and
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community-level micro inspection measures. Further
extensions include one which adds a spatial component
to this temporal model by making use of a cellular
automata structure [11]. Larger compartmental models
include those which incorporate different states of
transition between susceptible, exposed, infected and
removed (SEIR) compartments, which have been used in
the early days of the pandemic in the Wuhan province
of China [12]. The SEIR compartmental model has been
further extended to the SAPHIRE model [13], which
accounts for the infectiousness of asymptomatic [14]
and pre-symptomatic [15] individuals in the population
(both of which are crucial transmission features of
COVID-19), time varying ascertainment rates, transmis-
sion rates and population movement.

Researchers and policymakers are relying on these
models to plan and implement public health policies at
the national and local levels. New models are emerging
rapidly. Models often have conflicting messages, and it is
hard to distinguish a good model from an unreliable
one. Different models operate under different assump-
tions and provide different deliverables. In light of this,
it is important to investigate and compare the findings
of various models on a given test dataset. While some
work has been done in terms of trying to reconcile re-
sults from different models of disease transmission that
can be fit to emerging data [16], more comparisons need
to be done to investigate how differences between com-
peting models might lead to differing projections on the
same dataset. In the context of India, such head-to-head
comparison across models are largely unavailable.

We consider five different models of different genre,
starting from the simplest baseline model. The baseline
model we investigate relies on curve-fitting methods, with
cumulative number of infected cases modeled as an expo-
nential process [17]. Next, we consider the extended SIR
(eSIR) model [10], which uses a Bayesian hierarchical
model to generate projections of proportions of infected
and removed people at future time points. The SAPHIRE
[13] model has been demonstrated to reconstruct the full-
spectrum dynamics of COVID-19 in Wuhan between
January and March 2020 across five periods defined by
events and interventions. Using this, we study the evolu-
tion of the pandemic in India over nine well-defined lock-
down and unlock periods, each with distinct transmission
and ascertainment features. Another model, SEIR-fansy
[18] modifies the SEIR model to account for high false
negative rate and symptom-based administration of
COVID-19 tests. Finally, we study the ICM model, which
utilizes a semi-mechanistic Bayesian hierarchical model
based on renewal equations that model infections as a la-
tent process and links deaths to infections with the help of
survival analysis. Each of the models mentioned above
have had appreciable success in being able to satisfactorily
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analyze and project the trajectory of the pandemic in dif-
ferent countries [19-21].

In order to fairly compare and contrast the models men-
tioned above, we study their respective treatment of the
different lockdown and unlock periods declared by the
Government of India. Additionally, we compare their pro-
jections based on reported data, with special emphasis on
how the models deal with (if they do, at all) under-
reporting and under-detection of COVID-cases, which
has been a major point of discussion in the scientific com-
munity, particularly for India [22]. We also compare the
uncertainty associated with the projections across the
models which is often overlooked in the literature.

The rest of the paper is organized as follows. In Section
2 we provide an overview of the various models consid-
ered in our analysis. The supplement has detailed discus-
sion on the formulation, assumptions and estimation
methods utilized by each of the models. We present the
numerical findings of our comparative investigation of the
models in Section 3 by comparing projected COVID-
counts (ie., case and death counts associated with
COVID-19) and (wherever possible) parameter estimates
which help understand transmission dynamics of the pan-
demic. Next, in Section 4 we discuss sensitivity analyses
and note applications of the models studied in the context
of data from countries other than India. Finally, we discuss
the implications of our findings in Section 5.

Methods

Overview of models

In this section, we discuss the assumptions and formula-
tion of each of the five classes of models described
above. Table 1 provides an overview of the models com-
pared in this article.

Baseline model

Overview The baseline model we investigate aims to
predict the evolution of the COVID-19 pandemic by
means of a regression-based predictive model [17]. More
specifically, the model relies on a regression analysis of the
daily cumulative count of infected cases based on the
least-squares fitting. In particular, the growth rate of the
infection is modeled as an exponentially decaying process.
Figure 1 provides a schematic overview of this model.

Formulation The baseline model assumes that the
following simple differential equation governs the evolu-

tion of a disease in a fixed population:

) _
—r =M@ (1)

where [(¢) is defined as the number of infected people at
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Table 1 Overview of models studied
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Name of Comments Input(s) and output(s) Parameter(s) and estimation

model

Baseline Curve-fitting model. Daily time series of number of infected Time varying growth rate of infection is

(Bhardwaj, R. Cumulative number of infected cases individuals from Ty till 75" (as input) and estimated from input and modeled using

2020) [17] modeled as exponential process, with from T, to T5° (as output). least-squares regression. Estimation in-
growth rate A. volves implementing MCMC® methods for

a Bayesian framework.

eSIR (Wang, L. Extension of the standard SIR? Daily time series data on proportion of B and y control transmission and removal

et al, 2020) compartmental model. infected and recovered individuals from T, rates respectively. A and k control variability

[23-25] till 7" (as input) and from T, to T»2 along  of observed and latent processes

SAPHIRE (Hao,
X. et al, 2020)
[13]

SEIR-fansy
(Bhaduri, R,
Kundu, R.
et al, 2020)
[18, 26]

ICM (Flaxman
etal, 2020) [7]

Extension of the standard SEIR?
compartmental model.

Another extension of standard SEIR?,
accounting for the possible effect of

misclassifications due to imperfect testing.

Renewal equation used to model
infections as a latent process. Deaths are
linked to infections via a survival
distribution. Accounts for changes in
behavior and various governmental
policies enacted.

with posterior distribution of parameters
and prevalence values of the three
compartments in the model (as output).

Daily time series data from Ty till T;' on
count of infected individuals (as input) and
count of infected and removed individuals
from T, to 7> along with posterior
distributions of parameters (as output).
Unreported cases are also presented.

Daily time series data from Ty till ;" on
proportion of dead, infected and
recovered individuals (as input) and from
T, to T,> along with posterior distributions
of parameters and prevalence values of
compartments in the model (as output).
Unreported cases and deaths are also
projected.

Daily time series data from Tg till ;" on
count of dead individuals (as input) and
from T, to T, (as output). Posterior over
infections, deaths and various parameters.
Infections include both symptomatic and
asymptomatic ones.

respectively. Estimation involves
implementing MCMC® methods for a
hierarchical Bayesian framework.

See Section 2.1.c for details on parameters.
Estimation involves implementing MCMC?
methods for a Bayesian framework.

See Supplementary Table S1 for details on
parameters. Estimation involves
implementing MCMC® methods for a
hierarchical Bayesian framework.

See Section 2.1.e for details on parameters.
Estimation is done via HMC* using STAN.

! To: time of crossing 50 confirmed cases — March 12, 2020. T;: October 15, 2020. T,: December 31, 2020
2 S(E)IR susceptible-(exposed)-infected-removed
3 MCMC Markov chain-Monte Carlo

4 Hamiltonian Monte Carlo

time ¢ and A is the growth rate of infection. Unlike the ~
other models described in subsequent sections, the base-

Ii-1,

X:
YT,

line model analyses and projects only the cumulative

number of infections, and not counts/proportions asso-
ciated with other compartments like deaths and recover-
ies. The model uses reported field data of the infections
in India over a specific time period. The growth rate can
be numerically approximated from Eq. (1) above as

(2)

Having estimated the growth rate, the model uses a
least-squares method to fit an exponential time-varying

curve to );, obtained from Eq. (2) above. Since all the

other methods involve Bayesian estimation methods and
use posterior distributions to obtain estimates and

Input

Fit
exponential
curve to

A

[SUETIEIC)
future values
of

2

Fig. 1 Schematic overview of the baseline model

Output
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associated credible intervals, we place a non-informative
prior on the random error in the above curve fitting
method [27] to ensure comparable results. Specifically,
we consider a uniform prior for the log of error variance.

Using projected values of /1:, we extrapolate the number
of infections which will occur in future. The baseline
model described above has been implemented in R [28]
using standard packages for exponential curve fitting.

Extended SIR (eSIR) model

Overview We use an extension of the standard
susceptible-infected-removed (SIR) compartmental model
known as the extended SIR (eSIR) model [10]. To imple-
ment the eSIR model, a Bayesian hierarchical framework
is used to model time series data on the proportion of in-
dividuals in the infected and removed compartments.
Markov chain Monte Carlo (MCMC) methods are used to
implement this model, which provides not only posterior
estimation of parameters and prevalence values associated
with all three compartments of the SIR model, but also
predicted proportions of the infected and the removed
people at future time points. Figure 2 is a diagrammatic
representation of the eSIR model.

Formulation The eSIR model assumes the true under-
lying probabilities of the three compartments follow a
latent Markov transition process and require observed
daily proportions of infected and removed cases as input.
The observed proportions of infected and removed
cases on day ¢ are denoted by Y/ and Y%, respectively.
Further, we denote the true underlying probabilities of
the S, I, and R compartments on day ¢ by 67, 8/, and 6%,

respectively, and assume that for any ¢, 6 + 6/ + 6% = 1.
Assuming a usual SIR model on the true proportions we
have the following set of differential equations

d_ef = _ﬁefei7

p (3a)
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dao!
= BOrOL (3b)
oy
d—tt = )/ei, (BC)

where >0 denotes the disease transmission rate, and
y >0 denotes the removal rate. The basic reproduction
number Ry =f3/y indicates the expected number of cases
generated by one infected case in the absence of any
intervention and assuming that the whole population is
susceptible. We assume a Beta-Dirichlet state space
model for the observed infected and removed propor-
tions, which are conditionally independently distributed
as

Y| 0,,7~Beta (Ajeﬁ,/ll(l—ﬂi)) (4a)

Y¥ | 0,,x~Beta (165, A% (1-65)). (4b)

Further, the Markov process associated with the latent
proportions is built as:

0; | 0;_1,t~Dirichlet(kf (0;-1,p, 7)) (5)

where 6, denotes the vector of the underlying population
probabilities of the three compartments, whose mean is
modeled as an unknown function of the probability vector
from the previous time point, along with the transition
parameters. 7=(8, y, 0% , A, k) denotes the whole set of pa-
rameters where A, A¥ and « are parameters controlling
variability of the observation and latent process, respect-
ively. The function f{-) is then solved as the mean transi-
tion probability determined by the SIR dynamic system,
using a fourth order Runge-Kutta approximation [29].

Priors and MCMC algorithm The prior on the initial
vector of latent probabilities is set as @y ~ Dirichlet(1-
Yi-yR v ¥Ry, 05 = 1-6)-05. The prior distribution of
the basic reproduction number is lognormal such that
E(R) = 3.28 [30] (this value was also confirmed by calcu-
lating the average time-varying R(t) by from January 30
till March 24, 2020, using the package developed by

YR

Latent
SIR model

Past m——)

Observed time series

[—

Quarantine

R
Y

Latent
SIR model mm===) Future???

R
61

s 1
6741 Orv1

Day t

Time in days

Fig. 2 The eSIR model with a latent SIR model on the unobserved proportions. Reproduced from Wang et al,, 2020 [10]

Day t+1
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[31]). The prior distribution of the removal rate is
also lognormal such that E(y) =0.5436. We use the
proportion of death within the removed compartment
as 0.0184 so that the initial infection fatality ratio is
0.01 [32]. For the variability parameters, the default
choice is to set large variances in both observed and
latent processes, which may be adjusted over the
course of epidemic with more data becoming avail-
able: x, A/, A% ™ Gamma(2,107%).

Denoting £, as the last date of data availability, and as-
suming that the forecast spans over the period [to + 1, T],
the eSIR algorithm is as follows.

Step 0. Take M draws from the posterior [Oy.¢,, T|Y 1., ]-
Step 1. For each solution path m € {1, ..., M}, iterate
between the following two steps via MCMC.

i. Draw 0§m> from [0t|0§i"{1), ), te{ty +1,..., T}
ii. Draw Yim) from [Yt|0ﬁm), ] te{ty +1,...,T}.

Implementation We implement the proposed algorithm
in R package rjags [33] and the differential equations were
solved via the fourth-order Runge—Kutta approximation.
To ensure the quality of the MCMC procedure, we fix the
adaptation number (which denotes the number of MCMC
samples discarded by JAGS in order to tune parameters
which in turn improves speed or de-correlation of sam-
pling) at 10% thin the chain by keeping one draw from
every 10 random draws to further reduce autocorrelation,
set a burn-in period of 10° draws under 2 x 10 iterations
for four parallel chains. This implementation provides not
only posterior estimation of parameters and prevalence of
all the three compartments in the SIR model, but also pre-
dicts proportions of the infected and the removed people
at future time point(s). The R package for implementing
this general model for understanding disease dynamics is
publicly available at https://github.com/lilywang1988/eSIR.
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SAPHIRE model

Overview This model [13] extends the classic SEIR
model to estimate COVID-related transmission parame-
ters, in addition to projecting COVID-19 case counts,
while accounting for pre-symptomatic infectiousness,
time-varying ascertainment rates (ie. reporting rates),
transmission rates and population movements. Figure 3
provides a schematic diagram of the compartments and
transitions conceptualized in this model. The model in-
cludes seven compartments: susceptible (S), exposed (E),
pre-symptomatic infectious (P), reported infectious (I),
unreported infectious (A), isolation in hospital (H) and
removed (R). Compared with the classic SEIR model,
SAPHIRE explicitly models population movement and
introduce two additional compartments (A and H) to ac-
count for the fact that only reported cases would seek
medical care and thus be quarantined by hospitalization.
The model described and implemented here relies on
the same methodology and arguments as presented by
[13]. The only difference is that while the original model
analyzed data from China over a time period of Decem-
ber 2019 to March 2020 (which constituted the initial
days of the pandemic in China), we analyze data from
India. Additionally, the original manuscript adjusted the
model to account for population movement. Data on
population movement not being available consistently
over time and regions in India, we make no such modifi-
cations. We further note that the SAPHIRE model
returns reported and unreported cumulative COVID-
case counts, in addition to cumulative counts of the re-
moved compartment. As such, for the purpose of com-
parisons, the SAPHIRE model is used only to study
cumulative COVID-case counts (reported and unre-
ported). The R package for implementing this general
model for understanding disease dynamics is publicly
available at https://github.com/chaolongwang/SAPHIRE.

Outflow

Inflow

unreported infectious (A), isolation in hospital (H) and removed (R)

Outflow

Fig. 3 The SAPHIRE model includes seven compartments: susceptible (S), exposed (E), pre-symptomatic infectious (P), reported infectious (1),

Outflow

Outflow
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Formulation The dynamics of the 7 compartments de-
scribed above at time ¢ are described by the set of ordin-
ary differential equations

ds  bS(aP+aA+1) nS

E—l’l N ﬁ’ (63)
dE _bS(aP+aA+1I) E nE (6b)
dt N D. N’

dP E P wnP

dt D, Dp N’ (6¢)
dA _ (1-r)P A nA

dt  Dp D; N’ (6d)
P I I

a_D_p_Bi_D_{/ (6e)
dH I H

il f
dt D, D,’ (6f)
dR A+I1 H nR

= 2 (6g)

dt D +17h N’
in which b is the transmission rate for reported cases
(defined as the number of individuals that an reported
case can infect per day), «a is the ratio of the transmis-
sion rate of unreported cases to that of reported cases, r
is the ascertainment rate, D, is the latent period, D, is
the pre-symptomatic infectious period, D; is the symp-
tomatic infectiousness period, D, is the duration from
illness onset to isolation and Dy, is the isolation period in
the hospital. Further, we set N =1.34 x 10° as the popu-
lation size for India and set n =0 to indicate no incom-
ing or outgoing travelers.

Under this setup, the reproductive number R (as pre-
sented in the original manuscript) may be expressed as
n

_ -1
R_sz(DP +5

)+ enab(prt 4 5) (0 + D)
(7)

in which the three terms represent infections contributed
by pre-symptomatic individuals, unreported cases and re-
ported cases, respectively. The model adjusts the infec-
tious periods of each type of case by taking isolation of
patients who test positive (by means of D;l) into account.

Initial states and parameter settings We set a = 0.55,
assuming lower transmissibility for unreported cases
[34]. Compartment P contains both reported and unre-
ported cases in the pre-symptomatic phase. We set the
transmissibility of P to be the same as unreported cases,
because it has previously been reported that the majority
of cases are unreported [34]. We assume an incubation
period of 52days and a pre-symptomatic infectious
period D, = 2.3 days [35, 36]. The latent period was D, =
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2.9 days. Since pre-symptomatic infectiousness was
estimated to account for 44% of the total infections from
reported cases [35], we set the mean of total infectious
period as (D, +D;) = D,/0.44 =52 days, assuming con-
stant infectiousness across the pre-symptomatic and
symptomatic phases of reported cases [37] — thus the
mean symptomatic infectious period was D;=2.9 days.
We set a long isolation period of D;, =17 days, based on
a study investigating hospitalisation of COVID-19 pa-
tients in the state of Karnataka [38]. The duration from
the onset of symptoms to isolation was estimated to be
D, =7 [23, 39] as the median time length from onset to
confirmed diagnosis. On the basis of the parameter set-
tings above, the initial state of the model is specified on
March 15. The initial number of reported symptomatic
cases I(0) is specified as the number of reported cases
who experienced symptom onset during 12—14 March.
The initial ascertainment rate is assumed to be ry,=0.10
[40], and thus the initial number of unreported cases is
A(0) = ry*(1-r9)1(0). P1(0) and E;(0) denote the num-
bers of reported cases in which individuals experienced
symptom onset during 15-16 March and 17-19 March,
respectively. Then, the initial numbers of exposed and
pre-symptomatic individuals are set as E(0) = r;'E;(0)
and P(0) = ry'P1(0), respectively. The initial number of
the hospitalized cases H(0) is set as half of the cumula-
tive reported cases on 8 March since D,=7 and there
would be more severe cases among the reported cases in
the early phase of the epidemic.

Likelihood and MCMC algorithm Considering the
time-varying strength of control measures implemented
in India over the trajectory of the pandemic, we chose to
break the training period into ten sequential blocks: pre-
lockdown (March 15-24), lockdown phases 1, 2, 3, and
4 (March 25 — April 14, April 15 - May 3, May 4-17,
and May 18-31 respectively) followed by unlock phases
1, 2, 3, 4 and 5 (June 1-30, July 1-31, August 1-31,
September 1-30 and October 1-15 respectively). In
other words, the model assumes that the value of
b (and r) corresponding to the i lockdown period to
vary as band r;) for i=1, 2, 3, ..., 10. The observed
number of reported cases in which individuals experi-
ence symptom onset on day ¢ — denoted by x, — is
assumed to follow a Poisson distribution with rate \; = r

PHD;I, with P, denoting the expected number of pre-

symptomatic individuals on day ¢. The following likeli-
hood equation is used to fit the model using observed
data from March 15 (T,) to October 15 (7).

T, e—)\(AXt

t

L(bl7b27"'7b10arlar2>“'7710): H X! ’
t=Ty [

and the model is used to predict COVID-counts from
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October 16 to December 31. A non-informative prior of
U0, 2) is used for by, by, ..., byg. For ry, an informative
prior of Beta(10,90) is used based on the findings of
[40]. We reparameterise 75, ..., r1o as

logit(r;) = logit(r;-1) + &; fori = 2,3,...,10

where logit(¢) = log(¢/(1 - ¢)) is the standard logit func-
tion. In the MCMC, §;~N(0,1) for i=2, 3, ..., 10. A
burn-in period of 100,000 iterations is fixed, with a total
of 200,000 iterations being run.

SEIR-fansy model

Overview One of the problems with applying a standard
SIR model in the context of the COVID-19 pandemic is
the presence of a long incubation period. As a result,
extensions of SIR model like the SEIR model are more
applicable. In the previous subsection, we have seen an
extension which includes the ‘pre-symptomatic infec-
tious’ compartment (people who are infected at time t
and contributing to the spread of the virus, but do not
show any symptom yet). In the SEIR-fansy model, we
use an alternate formulation by defining an ‘untested
infectious’ compartment for infected people who are
spreading infection but are not tested after the incuba-
tion period. This compartment is necessary because
there is a large proportion of infected people who are
not being tested (a part of them are asymptomatic or
mildly symptomatic but for a country like India there
are other reasons like access to care and stigma that can
prevent someone from getting tested/diagnosed). We
have assumed that after the ‘exposed’ compartment, a
person enters either the ‘untested infectious’ compart-
ment or the ‘tested infectious’ compartment. To incorp-
orate the possible effect of misclassifications due to
imperfect testing, we include a compartment for false
negatives (infected people who are tested but reported
as negative). As a result, after being tested, an infected
person enters either into the ‘false negative’ compart-
ment or the ‘tested positive’ compartment (infected
people who are tested and reported to be positive). We
keep separate compartments for the recovered and
deceased persons coming from the untested and false
negatives compartments which are ‘recovered unreported’
and ‘deceased unreported’ respectively. For the ‘tested
positive’ compartment, the recovered and the death com-
partments are denoted by ‘recovered reported’ and ‘de-
ceased reported’ respectively. Thus, we divide the entire
population into ten main compartments: S (Susceptible),
E (Exposed), T (Tested), U (Untested), P (Tested positive),
F (Tested False Negative), RR (Reported Recovered), RU
(Unreported Recovered), DR (Reported Deaths) and DU
(Unreported Deaths). This model is implemented using
the R package SEIRfansy [26].
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Formulation Like most compartmental models, this
model assumes exponential times for the duration of an
individual staying in a compartment. For simplicity, we
approximate this continuous-time process by a discrete-
time modeling process. The main parameters of this
model are § (rate of transmission of infection by false
negative individuals), @, (scaling factor that measures
the rate of spread of infection by patients who test
positive for COVID-19 relative to infected patients who
return false negative test results), a, (scaling factor for
the rate of spread of infection by untested individuals),
D, (incubation period in days), D, (mean days till recov-
ery for positive individuals), D, (mean number of days
for the test result to come after a person is being tested),
U, (death rate due to COVID-19 which is the inverse of
the average number of days for death due to COVID-19
starting from the onset of disease multiplied by the
probability death of an infected individual due to
COVID), A and p (natural birth and death rates respect-
ively, assumed to be equal for the sake of simplicity), r
(probability of being tested for infectious individuals), f
(false negative probability of RT-PCR test), 8, and ;"
(scaling factors for rate of recovery for undetected and
false negative individuals respectively), §;and &, (scaling
factors for death rate for undetected and false negative
individuals respectively). The number of individuals at
the time point ¢ in each compartment is governed by the
system of differential equations given by Eqgs. (8a) — (8i).
To simplify this model, we assume that testing is in-
stantaneous. In other words, we assume there is no time
difference from the onset of the disease after the incuba-
tion period to getting test results. This is a reasonable
assumption to make as the time for testing is about 1-2
days which is much less than the mean duration of stay
for the other compartments. Further, once a person
shows symptoms for COVID-19 like diseases, they are
sent to get tested almost immediately. Figure 4 provides
a schematic overview of the model.

The following differential equations summarize the
transmission dynamics being modeled.

%f - % (apP(t) + ayl(t) + F(t)) + AN-uS(t), (8a)
P 5% (a0 + awtt() + FO)-ED (0, (8b)
s ey RO L
o = 1= BTy pte)-supte (84)
OF _fEO _BEY #FO) ) (8¢)

ot D, D, 02
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Fig. 4 Schematic diagram for the SEIR-fansy model with imperfect testing and misclassification. The model has ten compartments: S
(Susceptible), E (Exposed), T (Tested), U (Untested), P (Tested positive), F (Tested False Negative), RR (Reported Recovered), RU (Unreported
Recovered), DR (Reported Deaths) and DU (Unreported Deaths). Reproduced from Bhaduri, Kundu et al,, 2020 [18]

oRU  U(t) +/3’2F(t)

o =gt p, HRU), (8f)
B k(o). (5
ggfzamu@yﬁ%gﬂ, (8h)
PR — 1Pl0) (81)

Using the Next Generation Matrix Method [41], we
calculate the basic reproduction number

S ay(1-r apr(1l- 7
RO:,le—OFl . u(1-r) +1p( f) s i
e 4Ot —Fptp 24
D, "ot H Tt H s
%)

where Sop=Mp=1 since we assume that natural birth
and death rates are equal within this short period of
time. Supplementary Table S1 describes the parameters
in greater detail.

Likelihood assumptions and estimation Parameters
are estimated using Bayesian estimation techniques and
MCMC methods (namely, Metropolis-Hastings method
[42] with Gaussian proposal distribution). First, we
approximated the above set of differential equations by a
discrete time approximation using daily differences.
After we start with an initial value for each of the
compartments on the day 1, using the discrete time
recurrence relations we obtain the counts for each of the

compartments at the next days. To proceed with the
MCMC-based estimation, we specify the likelihood ex-
plicitly. We assume (conditional on the parameters) the
number of new confirmed cases on day ¢ depend only
on the number of exposed individuals on the previous
day. Specifically, we use multinomial modeling to in-
corporate the data on recovered and deceased cases as
well. The joint conditional distribution is

P[Pnew(t)vRRnew(t)ﬂDRneW(t)‘E(t_l)vP(t_l)]
= P[Pnew(t)|E(t_1)aP(t_l)]‘P[RRnew(t)vDRnew(t)|E(t_1)7P(t_l)]
= P[Pyew(t)|E(t-1)].P[ RRyen(t), DRy (¢)|P(£-1)].

A multinomial distribution-like structure is then
defined
Pew(t) | E(¢-1)~Bin(E(¢t-1),r(1-f)/D,) (10a)

RRyye(t), DRyer(t) | P(t-1)~Mult(P(¢-1), (D, pt,, 1-D; ~p1.))
(10b)

Note: the expected values of E(t-1) and P(¢-1) are
obtained by solving the discrete time differential equa-
tions specified by Eqs. (8a) — (8i).

Prior assumptions and MCMC For the parameter r,
we assume a U(0, 1) prior, while for 5, we assume an
improper non-informative flat prior with the set of
positive real numbers as support. After specifying the
likelihood and the prior distributions of the parame-
ters, we draw samples from the posterior distribution
of the parameters using the Metropolis-Hastings
algorithm with a Gaussian proposal distribution. We
run the algorithm for 200,000 iterations with a burn-
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in period of 100,000. Finally, the mean of the parame-
ters in each of the iterations are obtained as the final
estimates of 5 and r for the different time periods. As
in the case of the SAPHIRE model, we again break
the training period into ten sequential blocks: pre-
lockdown (March 15-24), lockdown phases 1, 2, 3,
and 4 (March 25 — April 14, April 15 — May 3, May
4-17, and May 18-31 respectively) followed by un-
lock phases 1, 2, 3, 4 and 5 (June 1-30, July 1-31,
August 1-31, September 1-30 and October 1-15
respectively).

Imperial College London model (ICM)

Overview We examine a Bayesian semi-mechanistic
model for estimating the transmission intensity of
SARS-CoV-2 [7]. The model defines a renewal equa-
tion using the time-varying reproduction number R, to
generate new infections. As a lot of cases in SARS-
CoV-2 are asymptomatic and reported case data is un-
reliable especially in early part of the epidemic in
India, the model relies on observed deaths data and
calculates backwards to infer the true number of
infections. The latent daily infections are modeled as
the product of R, with a discrete convolution of the
previous infections, weighted using an infection-to-
transmission distribution specific to SARS-CoV-2. We
implement this Bayesian semi-mechanistic model in
the context of COVID-19 data arising from India in
order to estimate the reproduction number over time,
along with plausible upper and lower bounds (95%

Page 10 of 23

Bayesian credible intervals (Crl)) of the daily infec-
tions and the daily number of infectious people. We
parametrize R, with a fixed effect and a random effect
for each week over the course of the epidemic for each
state. The fixed effect accounts for the variations in R,
across India as a whole whereas the random effect al-
lows for variations among different states. The weekly
effects are encoded as a random walk, where at each
successive step the random effect has an equal chance
of moving upwards or downwards from its current
value. The model is implemented using epidemia [43],
a general purpose R package for semi-mechanistic
Bayesian modelling of epidemics. Figure 5 represents a
schematic overview of the model.

Formulation The true number of infected individuals,
i, is modelled using a discrete renewal process. We
specify a generation distribution [44] g with density
g(1t) as g~Gamma(6.5,0.62). Given the generation
distribution, the number of infections i, ,, on a given
day t, and state m is given by the discrete. Convolu-
tion function:

t-1
it,m - St,mRt,m Z i‘r,mgt_ra (lla)
=0
S i
S, —1-==" 11b
t,m Nm ) ( )

where the generation distribution is discretized by g,
s+0.5

05 &)d for s=2, 3, ..,and g = fol'sg(r)dr. The

C

_-

- =
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State specific
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Fig. 5 Schematic overview of ICM
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population of state m is denoted by N,,,. We include the
adjustment factor S, ,, to account for the number of
susceptible individuals left in the population.

We define daily deaths, D, ,,, for days t€ {1, ..., n} and
states me{l,..., M}. These daily deaths are modelled
using a positive real-valued function d, ,, = E[D;, ,,] that
represents the expected number of deaths attributed to
COVID-19. The daily deaths D, ,, are assumed to follow
a negative binomial distribution with mean d; ,, and
variance d; , +d>, /y,, where y; follows a positive half
normal distribution, i.e.,

Dt,mNNB (dt,rm dt.m + d?,m/Wl)’ t= 1, ey 1, (12a)

YN (0,5). (12b)

We link our observed deaths mechanistically to trans-
mission [7]. We use a previously estimated COVID-19
infection fatality ratio (IFR, probability of death given
infection) of 0.1% [45, 46] together with a distribution of
times from infection to death m. To incorporate the
uncertainty inherent in this estimate we modify the ifr for
every state to have additional noise around the mean,
denoted by ifr},. Specifically, we assume.

ifr; ~ifr - N(1,0.1), (13)

where ifr} represents the noise-added analog of ifr.
Using estimated epidemiological information from previ-
ous studies, we assume the distribution of times from in-
fection to death 1 (infection-to-death) to be the
convolution of an infection-to-onset distribution (1)
[47] and an onset-to-death distribution [32].

n~Gamma(5.1, 0.86) + Gamma(17.8,0.45). (14)

The expected number of deaths d,, ,,, on a given day ¢,
for state m is given by the following discrete sum

t-1
dt.m = lfr;kn Z ir,mnt—n (15)
=0

where i, ,, is the number of new infections on day r in
state m and where, similar to the generation distribution,
7 is discretized via 1y = f;f(f: n(t)drt for s=2, 3, ..., and
m = fol ® 51(1)dt, where (1) is the density of .
We parametrize R, ,, with a random effect for each
week of the epidemic as follows
Rt,m = RO 'f(_ew(t,m) _ei;i?‘i/e(t,m))7 (16)
where flx) =2exp (x)/(1+ exp (x)) is twice the inverse
logit function, and €, and €7, follow a weekly ran-
dom walk process, that captures variation between R; ,,
in each subsequent week. ¢, is a fixed effect estimated

across all the states and eiffﬁf(tm is the random effect
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specific to each state in India. The prior distribution for
R, [30] was chosen to be

Ry~N(3.28,0.5). (17)

We assume that seeding of new infections begins 30
days before the day after a state has cumulatively observed
10 deaths. From this date, we seed our model with 6
sequential days of an equal number of infections: i; = ... =
ie ~ Exponential(t™!), where T~ Exponential(0.03). These
seed infections are inferred in our Bayesian posterior dis-
tribution. Fitting was done with the R package epidemia
[43] which uses STAN [48], a probabilistic programming
language, using an adaptive Hamiltonian Monte Carlo
(HMC) sampler.

Comparing models and evaluating performance

Having established differences in the formulation of the
different models, we compare their respective projec-
tions and inferences. In order to do so, we use the same
data sources [49, 50] for all five models. Well-defined
time points are used to denote training (March 15 to
October 15) and test (October 16 to December 31)
periods.

Using the parameter values specified above along with
data from the training period as inputs, we compare the
projections of the five models with observed data from
the test period. In order to do so, we use the symmetric
mean absolute prediction error (SMAPE) and mean
squared relative prediction error (MSRPE) metrics as
measures of accuracy. Given observed time-varying data

{Ot}tT:1 and an analogous time-series dataset of projec-
tions {P;}/_,, the SMAPE metric is defined as

100 SX |P-0y

SMAPE(T) = —- _
=7 2 B0z

(18)

where |x| denotes the absolute value of x. The metric
MSRPE is defined as

MSRPE(T) = (19)

It can be seen that 0<SMAPE <100, with smaller
values of both MSRPE and SMAPE indicating a more
accurate fit. For active reported cases (cases that are ac-
tive on a given day which is the difference of cumulative
reported cases and cumulative reported counts of recov-
eries and deaths), we compute and compare the metrics
defined above for projections from eSIR and SEIR-fansy
models as no other model returns relevant projections.
For cumulative reported cases we obtain projections
from all models apart from ICM (which yields total, i.e.,
sum of reported and unreported, cumulative cases). For
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cumulative reported deaths we compare projections
from eSIR, SEIR-fansy and ICM, since the baseline and
SAPHIRE models do not yield relevant projections. Sup-
plementary Table S2 gives an overview of output from
each of the models we consider and Table 2 reports the
values of accuracy metrics described above.

Further, we compare (when possible) the estimated
time-varying reproduction number R(t) over the differ-
ent lockdown and unlock stages in India. Specifically, for
each lockdown stage, we report the median R(f) value
along with the associated 95% credible interval (CrI).
The values are presented in Table 2.

Since we are interested in comparing relative perfor-
mances of the models (specifically, their projections), we
define another metric — the relative mean squared pre-
diction error (Rel-MSPE). Given time series data on ob-
served cumulative cases (or deaths) {Ot}thl, projections
from a model A {Pf}thl, and projections from some

other model B, {P? }tT:l, the Rel-MSPE of model B with
respect to model A is defined as

=65

t=1

1/2

Rel-MSPE(B : A) = (20)

Higher values of Rel-MSPE(B:A) indicate better per-
formance of model B over model A. Since the baseline
model yields projections of cumulative reported cases,
we compute Rel-MSPE for the other models with re-
spect to the baseline model for reported cumulative
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cases. Projections from ICM represent total (i.e., sum of
reported and unreported) cumulative cases and are left
out of this comparison of reported counts. For cumula-
tive reported deaths, we compute Rel-MSPE of the
SEIR-fansy and ICM models relative to the eSIR model.
In addition to comparing the accuracy of fits that arise
from the different models, we also investigate if projec-
tions from the different models are correlated with ob-
served data. We use the standard Pearson’s correlation
coefficient and Lin’s concordance correlation coefficient
[51] as summary measures to study said correlation.
Higher values of these correlation metrics indicate better
concordance of model projections and the observed data
from the test period. Rel-MSPE and correlation metrics
are presented in Table 3. Since we have projections for
total (sum of reported and unreported cases) for active
cases from SEIR-fansy, for cumulative cases from SAPH
IRE, SEIR-fansy and ICM, and for cumulative deaths
from SEIR-fansy, we present the projected totals along
with 95% credible intervals and associated underreporting
factors on three specific dates — October 31, November 30
and December 31 in Table 4. The table also includes pro-
jected cumulative reported counts (which are available
from all models under investigation apart from ICM) with
95% credible intervals for the three dates mentioned
above.

Data source
The data on confirmed cases, recovered cases and deaths
for India and the 20 states of interest are taken from

Table 2 Comparison of estimated time-varying R; and prediction accuracy of the models under consideration

Model
Baseline® eSIR SAPHIRE® SEIR-fansy ICM©
Estimated mean reproduction number R [95% Crl]

Lockdown 1.0 (March 25 - April 14) - 2.12 [1.44,2.16] 254 [241,2.74] 5.03 [5.01, 5.04] 1.77 [1.58, 1.96]
Lockdown 2.0 (April 15 - May 3) 148 [1.00, 1.51] 1.60 [1.36, 2.17] 1.90 [1.89, 1.91] 1.22 [1.18,1.27]
Lockdown 3.0 (May 4 - May 17) 0.87 [0.59, 0.89] 1.69 [1.46, 1.97] 2.71[267,2.73] 1.33[1.28, 1.38]
Lockdown 4.0 (May 18 — May 31) 0.89 (061, 0.91] 1.54 [1.29, 2.00] 233 (230, 2.36] 141 [1.35,147]
Unlock 1.0 (June 1 - June 30) 0.85 [0.58, 0.87] 1.27 [1.19,1.32] 1.74 [1.73,1.75] 1.05 [0.99, 1.10]
Unlock 2.0 (July 1 - July 31) 0.77 [0.52, 0.78] 1.31[1.22,1.36] 1.80 [1.79, 1.81] 1.11[1.08, 1.14]
Unlock 3.0 (August 1 - August 31) 0.79 [0.54, 0.81] 1.16 [1.06, 1.31] 1.25[1.24, 1.26] 1.05 [1.04, 1.07]
Unlock 4.0 (September 1 — September 30) 0.69 [047,0.7] 1.12 [0.98, 1.49] 1.06 [1.05, 1.07] 0.89 [0.86, 0.91]
Unlock 5.0 (October 1 - October 15) 0.67 [0.45, 0.68] 1.09 [0.91, 1.69] 0.86 [0.85, 0.87] 0.83 [0.82, 0.84]

Prediction accuracy using %-SMAPE (MSRPE)d
Active reported cases -
6.889 (0.173)

Cumulative reported deaths -

Cumulative reported cases

37.955 (2.283) -
6.593 (0.198)
8943 (0.253) -

35.141 (1.114) -
2285 (0.048)
4.737 (0.115)

2.250 (0.056)
0.771 (0.020)

*The baseline model does not return estimates of time-varying R(t) or projections of active reported cases or cumulative reported deaths
PThe SAPHIRE model does not return projections of active reported cases or cumulative reported deaths

“The ICM model does not return projections of active or cumulative reported cases

4We compare model projections with observed reported data from October 16 till December 31, 2020
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Table 3 Comparison of relative performance and correlation with observed data of projections of the models under consideration
from October 16 till December 31, 2020

Observed data Metric Model

(confirmed) Baseline eSIR SAPHIRE SEIR-fansy Icm®

Cumulative cases Rel-MSPE? 1 1.724 3013 3.270 -
Pearson’s correlation coefficient® 0.996 0.969 0.984 0.999
Lin's concordance coefficient® 0.507 0476 0.738 0.891

Cumulative deaths Rel-MSPE€ - 1 - 6.962 364
Pearson’s correlation coefficient 1 1 0.996
Lin’s concordance coefficient® 0.339 0616 0.956

#For cumulative reported cases, Rel-MSPE is defined relative to projections from the baseline model

bFor cumulative reported cases, the correlation coefficients of the projections are compared with respect to observed data
“For cumulative reported deaths, Rel-MSPE is defined relative to projections from the eSIR model

9For cumulative reported deaths, the correlation coefficients of the projections are compared with respect to observed data
€The ICM model returns total (reported + unreported) cumulative case counts, so we leave it out of our comparisons

Results

Estimation of the reproduction number

From Table 2, we compare the mean of the time-varying
effective reproduction number R(f) over the four phases
of lockdown and subsequent unlock phased in India.
The eSIR model returns a mean value of 2.08 (95%
credible interval: 1.41-2.12) over the entire training
period. Factoring in different levels of government inter-
ventions which modified transmission dynamics during
lockdown, we get period specific estimates ranging from

COVID-19 India [49] and the JHU CSSE COVID-19
GitHub repository [50]. In addition to this and other
similar articles concerning the spread of this disease in
India, we have created an interactive dashboard [52]
summarizing COVID-19 data and forecasts for India
and its states (generated with the eSIR model discussed
in this paper). While the models are trained using data
from March 15 to October 15, 2020, their performances
are compared by examining their respective projections
from October 16 to December 31, 2020.

Table 4 Projected counts of reported cumulative cases and total (sum of reported and unreported) counts of cases and deaths
(cumulative) from the models under comparison

Model October 31, 2020

Projected cumulative reported counts (95% Crl) for specific dates in test period®

Counts November 30, 2020 December 31, 2020

Cumulative cases (in millions) Observed 8.18 9.46 10.29
Baseline 1 (8.63-8.80) 11.12 (10.83-11.43) 1334 (12.81-13.93)
eSIR 8.35 (7.19-9.60) 1091 (8.38-13.93) 14.85 (9.88-21.81)
SAPHIRE 7 (7.90-852) 893 (8.17-9.67) 9.26 (8.19-10.35)
SEIR-fansy .18-8.85) 991 (9.54-10.30) 1097 (10.57-11.4)
Projected total counts® (95% Crl) [under-reporting factor®] for specific dates in test period®
Active cases (in millions) Observed 0.57 044 0.26
SEIR-fansy 532 (5.12-5.52) [9.3] 3.99 (3.85-4.14) [9.13] 296 (2.85-3.06) [11.53]
Cumulative cases (in millions) Observed 8.18 946 10.29
SAPHIREY 57821 (4641-1134.20) [70.7] 612.79 (52.253-1161.26) [64.8] 622.32 (55.79-1163.17) [60.5]
SEIR-fansy 59.32 (56.8-61.72) [7.25] 68.71 (65.95-71.47) [7.26] 75.89 (72.89-78.86) [7.38]
Icme 37.17 (24.78-58.68) [4.54] 39.54 (25.63-63.12) [4.18] 41.38 (26.02-67.88) [4.02]
Cumulative deaths (thousands) Observed 121.56 137.07 14843
SEIR-fansy 361.52 (347.23-375.85) [2.97] 442.25 (425.05-459.64) [3.23] 504.76 (485.50-524.07) [34]

Projected total count includes both reported as well as unreported values

PDefined as projected total/observed reported counts, where total is the sum of reported and unreported cases

“The test period extends from October 16 till December 31, 2020. We examine projections of cumulative cases and counts on three specific dates within that
period, namely, October 31, November 30 and December 31, 2020

%The SAPHIRE model does not yield projections of active cases or cumulative deaths while the ICM model does not yield projections of cumulative reported cases,
total active cases or total cumulative deaths
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2.12 (1.44-2.16) in lockdown phase 1, which drops to
1.48 (1.00-1.51) in lockdown phase 2 and then reports a
steady decline over the subsequent lockdown and unlock
phases. The mean values returned by the SAPHIRE
model varied from 2.54 (2.41-2.74) during phase 1 of
the lockdown, 1.60 (1.36-2.17) for phase 2, 1.69 (1.46—
1.97) for phase 3 and 1.54 (1.29-2.00) for the fourth and
final lockdown phase. The estimated values for
subsequent unlock phases are quite close to each other,
starting from 1.27 (1.19-1.32) in unlock phase 1 and
dropping to 1.09 (0.91-1.69) in the fifth unlock phase.
The SEIR-fansy notes that the mean R(f) drops from
5.03 (5.01-5.04) during the first phase of lockdown, to
1.90 (1.89-1.91) during the second lockdown phase, be-
fore rising again to 2.33 (2.30-2.36) during lockdown
phase 4. The estimated mean drops steadily from 1.80
(1.79-1.81) during unlock phase 2 to 0.86 (0.85-0.87)
during unlock phase 5. The ICM-based mean values
fluctuate, from 1.77 (1.58-1.96) during the first lock-
down phase, followed by 1.22 (1.18-1.27), then dropping
to 1.33 (1.28-1.38) and finally rising to 1.41 again (1.35—
1.47) for the fourth phase of lockdown. Estimates from
ICM during unlock phases behave like those from the
SEIR-fansy model — in unlock phase 2 the estimated
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mean is 1.11 (1.08-1.14) and in unlock phase 5, the
mean is 0.83 (0.82-0.84). In terms of agreement of re-
ported values, SAPHIRE, SEIR-fansy and ICM report the
highest mean R for phase one of the lockdown. Values
reported by SAPHIRE, SEIR-fansy and ICM report a
drop in intermediate lockdown phases, followed by a
rise. Values during unlock period increase from phase 1
to phase 2, followed by a steady decline. SAPHIRE,
SEIR-fansy and ICM report the lowest value of R for un-
lock phase 5.

Estimation of reported case counts

From Figs. 6, 7, 8 and 9, we note that the eSIR model
overestimates the count of active cases — a behavior
which gets worse with time. While the observed counts
decrease steadily in the test period, the eSIR model fails
to capture this behaviour and returns projections which
rise over time. In comparison, the SEIR-fansy model is
able to replicate the decreasing behaviour but yields pro-
jections which are higher than observed counts. In terms
of prediction accuracy, the SEIR-fansy model has an
SMAPE value of 35.14% and an MSRPE value of 1.11.
For eSIR model, those values are at 37.96% (SMAPE)
and 2.28 (MSRPE).

Time series plot of projected and observed active reported cases from October 16 to December 31, 2020.

Projections are based on training data for India from March 15 to October 15, 2020.
Supplementary Table S1 describes parameter values used to generate these projections in detail.
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Time series plot of projected and observed cumulative reported cases from October 16 to December 31, 2020.

Projections are based on training data for India from March 15 to October 15, 2020.
Supplementary Table S1 describes parameter values used to generate these projections in detail.
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Fig. 7 Comparison of projected and observed reported cumulative cases from October 16 to December 31 for India, using training data from

March 15 to October 15, 2020

\

From Figs. 7, 8, 9 and 10 we note that while the SAPH
IRE model underestimates the count of cumulative
cases, the baseline, eSIR and SEIR-fansy models overesti-
mate the count. Table 2 reveals that SAPHIRE performs
the best in terms of SMAPE metric with a value of
2.25%, followed closely by SEIR-fansy (2.29%). The eSIR
and baseline models perform poorly in comparison,
yielding 6.59 and 6.89% respectively. The SEIR-fansy
model performs best in terms of MSRPE with a value of
0.05, followed closely by SAPHIRE (0.06). Table 3 further
reveals a similar relative performance through Rel-MSPE
values (all Rel-MSPE figures reported here are relative to
the baseline model). The SEIR-fansy model performs the
best with Rel-MSPE value of 3.27, followed by SAPHIRE
(3.01), and finally, the eSIR model (1.72). All four sets of
projections are highly correlated with the observed time
series — with all model projections having a Pearson’s
correlation coefficient of nearly 1 with the observed data.
Lin’s concordance coefficient yields an ordering (from
worst to best) of the eSIR model (0.48), followed by the
baseline model (0.51), the SAPHIRE model (0.74) and
finally, the SEIR-fansy model (0.89).

Estimation of reported death counts

From Figs. 8, 9, 10 and 11, we note that the eSIR and
SEIR-fansy models almost always overestimate, whereas
the ICM model slightly underestimates the confirmed
cumulative death counts. From Table 2 and Table 3, the
SMAPE and MSRPE values, along with comparison of
projections with observed data reveal that the ICM
model is most accurate (SMAPE: 0.77%, MSRPE: 0.020),
followed by SEIR-fansy (SMAPE: 4.74%, MSRPE: 0.12)
followed by the eSIR model (SMAPE: 8.94%, MSRPE:
0.25). Relative to the eSIR model, the Rel-MSPE values
of the models reveal that the SEIR-fansy model performs
better (Rel-MSPE: 6.96), followed by ICM (Rel-MSPE:
3.64). Judging by values of Pearson’s correlation coeffi-
cient, all three sets of projections are highly correlated
with the observed data. Lin’s concordance coefficient
yields an ordering (from best to worst) of ICM (0.96),
followed by SEIR-fansy (0.62) and finally eSIR (0.34).

Estimation of unreported case and death counts
From Table 4, we note that the SEIR-fansy model yields
underreporting factors of about 10 for active cases on
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Time series plot of projected and observed cumulative reported deaths from October 16 to December 31, 2020.
Projections are based on training data for India from March 15 to October 15, 2020.

Supplementary Table S1 describes parameter values used to generate these projections in detail.
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October 31, November 30 and December 31. Further,
we observe that the SAPHIRE model projects the max-
imum count of total cumulative cases on the above three
dates, followed by the SEIR-fansy and then ICM. SAPH
IRE returns under-reporting factors of the order of
approximately 65, while SEIR-fansy and ICM return
under-reporting factors which are approximately 7 and 4
respectively. For cumulative deaths, SEIR-fansy estimates
underreporting factors approximately equal 3.

Uncertainty quantification of estimates and predictions

From Fig. 12 we observe that the width of 95% credible
intervals associated with projections from each of the
models vary significantly. While the eSIR model consist-
ently returns the widest intervals, SEIR-fansy has the
narrowest intervals. In case of cumulative counts, the or-
dering (best to worst) starts with SEIR-fansy, followed by
the baseline, followed by SAPHIRE and finally the eSIR
model. For cumulative deaths, the ordering (best to
worst) starts with SEIR-fansy, followed by ICM and
finally eSIR. From Table 4, we compare projections of
reported cumulative cases for each model (apart from
ICM which returns projections of cumulative total cases
and not cumulative reported cases) and their associated

prediction intervals on October 31, November 30 and
December 31, 2020. On October 31, we observe 8.18
million cumulative reported cases, while the projections
(in millions) from the baseline model are 8.71 (95%
credible interval: 8.63-8.80), while eSIR vyields 8.35
(7.19-9.60), SAPHIRE returns 8.17 (7.90-8.52) and
SEIR-fansy projects 8.51 (8.18—8.85) million cases. We
do not present our projections for November 30 and De-
cember 31, 2020 here in the interest of conciseness.

Sensitivity analyses and performance in other
countries

Sensitivity analyses for some of the discussed models
have been carried out in several other publications. In
the interest of conciseness, we refer to said publications
and comment on what parameters are central to estima-
tion and generating projections for the models examined
here. We also include information on how these models
have performed in the context of data from other
countries.

eSIR
Evaluation of the model results in terms of their sensitiv-
ity to initial parameter choices and under-reporting and
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Projections are based on training data for India from March 15 to October 15, 2020.

Densities (L) and scatterplot (R) of projected and observed active reported cases from October 16 to December 31, 2020.

Supplementary Table S1 describes parameter values used to generate these projections in detail.
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Fig. 9 Scatter plot and marginal densities of projected and observed reported active cases from October 16 to December 31 for India, using

clustering issues within the data have been discussed in
the context of India in prior literature [53]. The range of
scenarios considered earlier include 10-fold underreport-
ing of cases, clustering of cases in metropolitan areas,
and prior mean of Ry ranging from 2 to 4 (See Supple-
mentary Table S3). Even though the posterior estimates
and predictions changed in scale to some extent across
these scenarios, they did not significantly change the
broad conclusions. It is undeniable that the exact pre-
dicted case counts are sensitive to the choice of priors,
but with new data coming in over a longer time frame,
as seen in the results from this work, the model is cap-
able of washing out the prior effects in the posterior
outcomes.

The eSIR model has been successfully implemented
and utilized in the context of COVID-19 across different
geographical locations, including China [24, 25, 54],
Poland [55], Italy [24], Bangladesh and Pakistan [56].
These countries cover a broad range in terms of socio-
economic status, health infrastructure and pandemic
management strategies. In each of these cases the eSIR
model was seen to be successfully capturing the patterns
of growth of the pandemic via estimated parameters, as

well as efficiently forecasting future case counts via pre-
dictive modeling.

SAPHIRE

We conducted the sensitivity analysis (results not
shown) by changing the initial parameters as 20% lower
or higher than the specified values in the SAPHIRE
model. The estimated R and ascertainment rates were
robust to misspecification of the duration from the onset
of symptoms to isolation and of the relative transmissi-
bility of unreported versus reported cases. R estimates
were positively correlated with the specified latent and
infectious periods, and the estimated ascertainment rates
were positively correlated with the specified ascertain-
ment rate in the initial state. This finding is consistent
with sensitivity analyses of the SAPHIRE model imple-
mented in Wuhan [13]. The estimated ascertainment
rates were positively correlated with the specified ascer-
tainment rate in the initial state while the under-
reported factors were negatively associated with initial
ascertainment. The estimated under-reported factor on
October 31 (see Table 4) decreases dramatically from
117 to 0.07 with the initial ascertainment rate increasing
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Densities (L) and scatterplot (R) of projected and observed cumulative reported cases from October 16 to December 31, 2020.
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Fig. 10 Scatter plot and marginal densities of projected and observed cumulative cases from October 16 to December 31 for India, using training

Projections are based on training data for India from March 18 to October 18, 2020.
Supplementary Table S1 describes parameter values used to generate these projections in detail.
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from 0.07 to 0.14, with an initial ascertainment rate of
0.10 providing the best fit, which is presented in this
article.

The SAPHIRE model was originally developed in the
context of data from China and was successfully able to
delineate the transmission dynamics of COVID-19 in
Wuhan [13] and in South Africa [57].

SEIR-fansy

In the paper, we fix most parameters in our model and
examine transmission dynamics only through S and r. It
is necessary to design and implement a sensitivity ana-
lysis focusing on various combinations of the parameters
that were previously fixed. The details of the sensitivity
analyses are described in detail in [18]. The basic find-
ings from the sensitivity analyses are summarized as fol-
lows. We observe that the predictions for the reported
active cases (P) remains same for all parameter choices.
The estimates for Ry mainly differ in the first period, al-
though some variation is noted for the second period as
well. However, the estimated R are almost the same for
the later stages of the pandemic in the different models.
For the untested cases, in some of the settings of our

analysis, there are substantial deviations from the true
numbers. The total number of active cases (which in-
clude both the unreported and the reported cases) also
varies substantially with different parameter values. Con-
sequently, we note how the estimation of unreported
cases is sensitive to different choices for the parameter
values. In particular, we see different values of E, have
the most impact on our sensitivity analysis, while differ-
ent choices of Dg have the least impact.

The SEIR-fansy model has not been run for different
countries, but it has been implemented for most Indian
states separately [18] which showed that the model was
able to capture the transmission dynamics of COVID-19
in most states of India quite efficiently. For instance, this
model was able to match the sero-survey results of Delhi
quite well [45]. For other states, the predicted reported
cases came out to be quite close to the observed re-
ported cases (with observed cases lying within the cred-
ible interval of projections).

ICM
The parameters critical to the estimation and projection
methods include the infection-to-death distribution [32],
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Projections are based on training data for India from March 18 to October 18, 2020.

Densities (L) and scatterplot (R) of projected and observed cumulative reported deaths from October 16 to December 31, 2020.

Supplementary Table S1 describes parameter values used to generate these projections in detail.
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Fig. 11 Scatter plot and marginal densities of projected and observed cumulative death from October 16 to December 31 for India, using

infection fatality ratio [45, 46], generation distribution
[44], prior for Ry [7, 30] and seeding [7]. Researchers
have performed sensitivity analysis for various choices of
infection-to-death distribution and found the resultant
projections to be robust under changes [7]. We used a
range of values for our prior of IFR, with mean 1, 0.4
and 0.1%. We found that the model fits and estimated R,
are more or less the same for all three choices but cer-
tainly our estimates for total infections changes. This
implies the ascertainment of cases (positive results) will
be affected. Sensitivity analyses towards the choice of the
generation distribution was performed by other re-
searchers [7] who found the models to be robust against
various choices. It has a very minimal effect on the esti-
mation of time varying reproduction number and total
infections by the model. We used the R, prior suggested
in both [7, 30]. We did run sensitivity on a few other
choices and found that our prior choice affected the in-
ferred R, values for only the first few days and subse-
quent dynamics are the same irrespective of the choice.
Finally, as discussed in [7] we validated our seeding
scheme through an importance sampling leave-one-out
cross validation scheme [58, 59].

Different versions of ICM model has been applied to
11 European countries in [7]. On a subregional basis the
model is used in the USA [60], Brazil [20, 61] and Italy
[21]. At a local level work the model is used for produ-
cing daily estimates for all local and regions in the UK
[62, 63]. It is also used by Scotland government [64] and
New York State government [65].

Discussion

In this comparative paper we have described five differ-
ent models of various stochastic structures that have
been used for modeling SARS-Cov-2 disease transmis-
sion in various countries across the world. We applied
them to a case-study in modeling the full disease trans-
mission of the coronavirus in India. While simulation
studies are the only gold standard way to compare the
accuracy of the models, here we were uniquely poised to
compare the projected case-counts and death-counts
against observed data on a test period. We learned sev-
eral things from these models. While the estimation of
the reproduction number is relatively robust across the
models, the prediction of active and cumulative number
of cases and cumulative deaths show variation across
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Boxplots of width of 95% credible intervals associated with projected active cases (L), cumulative cases (C) and cumulative deaths (R).
Projections are from October 16 to December 31, 2020, based on training data for India from March 18 to October 18, 2020.
Supplementary Table S1 describes parameter values used to generate these projections in detail.
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Fig. 12 Boxplots showing width of 95% credible interval associated with projected active cases, cumulative cases and cumulative deaths from
October 16 to December 31 for India, using training data from March 15 to October 15, 2020

models. Our findings in terms of estimates of R(t) are re-
flective of the national and state-level implementations
of four lockdown phases [66] which are summarized in
Supplementary Table S4. The largest variability across
models is observed in predicting the “total” number of
infections including reported and unreported cases. The
degree of underreporting has been a major concern in
India and other countries [67]. We note from Table 4
that the underreporting factor from SAPHIRE is much
higher than those reported by SEIR-fansy and ICM.
This may be attributed to the fact that SEIR-fansy and
ICM both fit daily reported deaths with a pre-specified
death rate (which is higher than that for unreported
cases), SAPHIRE does not include daily reported death
counts in the likelihood function. Additionally, SEIR-
fansy also considered the false positive/negative rates of
tests and the selection bias in testing, which also
contribute to more accurate unreported case projec-
tions along with untested infectious case counts. With
a comprehensive exposition and a single beta-testing
case-study we hope this paper will be useful to under-
stand the mathematical nuance and the differences in
terms of deliverables for the models.

There are several limitations to this work. First and
foremost, all model estimates are based on a scenario
where we assumed no change in either interventions or
behavior of people in the forecast period. This is not
true as there is tremendous variation in policies across
Indian states in the post lockdown phase. We did ob-
serve regional lockdowns that were enacted in the fore-
cast period. None of our models tried to capture this
variability. Second, the five models we compare are a
subset of a vast amount of work that has been done in
this area, including models that incorporate age-specific
contact network and spatiotemporal variation [11, 68].
Third, we have not tested the models for predicting the
oscillatory growth and decay behavior of the virus inci-
dence curve, in particular, predicting the second wave.
Finally, an extensive simulation study would be the best
way to assess the models under different scenarios, but
we have restricted our attention to India.
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