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Abstract 

Background:  TMPRSS2-ERG gene rearrangement, the most common E26 transformation specific (ETS) gene fusion 
within prostate cancer, is known to contribute to the pathogenesis of this disease and carries diagnostic annotations 
for prostate cancer patients clinically. The ERG rearrangement status in prostatic adenocarcinoma currently cannot 
be reliably identified from histologic features on H&E-stained slides alone and hence requires ancillary studies such 
as immunohistochemistry (IHC), fluorescent in situ hybridization (FISH) or next generation sequencing (NGS) for 
identification.

Methods:  Objective:  We accordingly sought to develop a deep learning-based algorithm to identify ERG rearrange-
ment status in prostatic adenocarcinoma based on digitized slides of H&E morphology alone.

Design:  Setting, and Participants: Whole slide images from 392 in-house and TCGA cases were employed and 
annotated using QuPath. Image patches of 224 × 224 pixel were exported at 10 ×, 20 ×, and 40 × for input into a 
deep learning model based on MobileNetV2 convolutional neural network architecture pre-trained on ImageNet. A 
separate model was trained for each magnification. Training and test datasets consisted of 261 cases and 131 cases, 
respectively. The output of the model included a prediction of ERG-positive (ERG rearranged) or ERG-negative (ERG 
not rearranged) status for each input patch.

Outcome measurements and statistical analysis: Various accuracy measurements including area under the curve (AUC) 
of the receiver operating characteristic (ROC) curves were used to evaluate the deep learning model.

Results and Limitations:  All models showed similar ROC curves with AUC results ranging between 0.82 and 0.85. 
The sensitivity and specificity of these models were 75.0% and 83.1% (20 × model), respectively.

Conclusions:  A deep learning-based model can successfully predict ERG rearrangement status in the majority of 
prostatic adenocarcinomas utilizing only H&E-stained digital slides. Such an artificial intelligence-based model can 
eliminate the need for using extra tumor tissue to perform ancillary studies in order to assess for ERG gene rearrange-
ment in prostatic adenocarcinoma.
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Introduction
In medicine today being driven by cutting-edge cancer 
therapeutics and a personalized approach to delivering 
healthcare, artificial intelligence (AI) has had an addi-
tive impact on the digital transformation in the field. An 
increasing role of AI, including machine and deep learning 
methods, is being applied not only to diverse ‘omics’ fields 
such as genomics, pharmacogenomics, and proteomics, 
but also conventional clinical medicine disciplines such 
as radiology, pathology, immuno-oncology, and others. 
Substantial published data is accruing indicating that AI 
can improve diagnoses, offer predictions (e.g. correlation 
with underlying tumor genomics, theranostic response to 
treatment), and render prognostic information employing 
only image data. In the field of genitourinary medicine, 
deep learning models have been developed to reliably 
subtype renal cell carcinomas [1] and aid pathologists in 
the automation of prostate biopsy interpretation [2].

Prostate cancer continues to be a major global cause 
of morbidity and mortality, with a significant death rate 
within the United States. The current National Com-
prehensive Cancer Network (NCCN) guidelines have 
successfully incorporated genomic tools to guide and 
improve prostate cancer management. In terms of pros-
tate cancer biology, the discovery of recurrent gene 
fusions in a majority of prostate cancers has had impor-
tant clinical and biological implications with a paradigm 
shift in our understanding of the genomics of common 
epithelial tumors. Several years ago, our group identi-
fied genomic rearrangements in prostate cancer result-
ing in the fusion of the 5’ untranslated end of TMPRSS2 
(Transmembrane serine protease 2; a prostate-specific 
gene controlled by androgen) to members of the ETS (E26 
transformation-specific) family of oncogenic transcription 
factors, leading to the over-expression of ETS genes like 
ERG (ETS-related gene), ETV1 (ETS variant transcription 
factor 1), ETV4 (ETS variant transcription factor 4), and 
others, with ERG being the most common gene fusion 
partner [3]. ETS gene fusions are found within a distinct 
class of prostate cancers that are associated with diagno-
sis, prognosis, and targeted therapy [4, 5].

Almost half of all prostatic adenocarcinomas, includ-
ing clinically localized as well as metastatic tumors, are 
associated with TMPRSS2-ERG gene fusion [6]. This 
causes juxtaposition of the ERG gene to androgen-
responsive regulatory elements of TMPRSS2, that leads 
to aberrant androgen receptor driven over-expression 
of ERG protein. Currently, the gold standard for detec-
tion of ERG gene rearrangement is fluorescent in  situ 
hybridization (FISH) or next generation sequenc-
ing (NGS) technology. In routine clinical and surgi-
cal pathology practice, while some histologic features 
associated with prostatic adenocarcinoma such as blue 

mucin production and prominent nucleoli in tumor 
cells have been shown to demonstrate association with 
underlying ERG gene rearrangement [7]. However, 
these morphologic features are not consistently pre-
sent in the tumors with ERG gene rearrangement and 
by themselves they are not reliably predictive, hence 
detection of over-expression of ERG protein by immu-
nohistochemistry (IHC) is often used as a surrogate to 
identify ERG gene rearrangement in prostate cancer.

Recent studies have proven largely successful at lev-
eraging AI-based models to recognize and character-
ize prostate cancer on whole slide imaging (WSI) [8–13]. 
The training strategies for the AI-models fall under one 
of two main categories: supervised learning, or weakly 
supervised learning. The first strategy requires that anno-
tations be made at the pixel-level for each whole slide 
image. While this approach is meticulous and often ardu-
ous for the expert who is annotating the case, it benefits 
from lower computational burden and fewer overall case 
requirements for training compared to the latter strategy. 
However, whenever possible, the weakly supervised deep 
learning strategy is often preferred due to lower burden on 
the expert pathologist annotator since this method only 
requires slide-level annotations i.e. one annotation per 
slide [14]. The most notable example of a successful weakly 
supervised deep learning AI-model was developed by 
Campanella et al. and has gone on to receive the first ever 
FDA approval for an AI product in Digital Pathology [13].

Morphologic characterization is not the only area in 
which AI-based models have been successful. Much 
advancement has been made in predicting genetic 
mutations based on AI-driven histomorphologic analy-
sis. Deep learning has been used to classify and predict 
common mutations in a variety of tumors including 
non-small cell lung carcinomas, bladder urothelial 
carcinomas, renal cell carcinoma and melanomas. All 
these methods are based on AI analysis of histology 
images alone without additional information [15–18]. 
Given the success of these models, it is feasible that 
similar deep learning algorithms could be developed 
to potentially predict underlying genetic aberrations in 
prostate adenocarcinoma from histopathologic images.

In this study, we accordingly utilized Hematoxylin and 
Eosin (H&E)-stained whole slide images (WSIs) of prostate 
adenocarcinoma and sought to develop a deep learning 
algorithm that could distinguish ERG rearranged pros-
tate cancers from those without ERG rearrangement. Our 
results suggest that image features alone can analyze subtle 
morphological differences between ERG gene fusion posi-
tive and negative prostate cancers, which would thereby 
eliminate the need to utilize extra tumor tissue to perform 
ancillary studies such as IHC, FISH or NGS testing in 
order to assess for ERG gene rearrangement.
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Materials and methods
Data acquisition and slide scanning
Patient samples were procured from Michigan Medicine 
and the study was performed under Institutional Review 
Board-approved protocols. A retrospective pathologi-
cal and clinical review of radical prostatectomies per-
formed between November 2019 and August 2021 at the 
University of Michigan Health System was conducted. 
Only patients without prior history of treatment were 
included. A total of 163 patients were randomly selected 
for analysis. Electronic medical records and pathology 
reports were reviewed to analyze clinical parameters (age 
at diagnosis, PSA level at diagnosis and treatment modal-
ity), and pathological variables (Gleason Score/Grade 
Group). The H&E-stained glass slides from all cases were 
re-reviewed by two genitourinary pathologists (VD and 
RoM) to confirm the diagnosis and evaluate morphologic 
features. Gleason Score, where applicable, was assigned 
according to the 2014 modified Gleason grading system 
and Grade Group was assigned according to the estab-
lished criteria endorsed by the World Health Organiza-
tion (WHO). A representative H&E glass slide from each 
radical prostatectomy was scanned using an Aperio AT2 
scanner using 20 × objective (Leica Biosystems Inc., Buf-
falo Grove, IL, USA and 40 × magnification (0.25  μm/
pixel resolution) was achieved using a 2 × optical mag-
nification changer. The scanner generated WSIs as svs 
file format. The microscopic photographs were obtained 
using an Olympus BX43 microscope with attached cam-
era (Olympus DP47) and cellSens software. ERG rear-
rangement status for in-house cases was determined by 
IHC as described below. Out of 163 evaluated cases, 6 
cases showed heterogeneity of ERG staining and were 
hence excluded from further analysis. The remaining 157 
in-house cases were included in the final dataset utilized 
for the purposes of this study.

From the cancer genome atlas (TCGA) database 
(https://​portal.​gdc.​cancer.​gov), we downloaded a total of 
300 formalin fixed paraffin embedded H&E WSIs of pros-
tate cancer. The images without any discernible cancer 
morphologically were excluded, and for final analysis 242 
images from 235 patients were included. These TCGA 

prostate cancer cases were included because they have a 
known ERG rearrangement status, confirmed from previ-
ously reported genomic studies [19].

Immunohistochemistry
IHC was performed on sections that are selected for 
scanning for all in-house cases using anti-ERG rab-
bit monoclonal antibodies (EPR3864, Ventana, predi-
luted). Appropriate positive and negative controls were 
included. ERG immunohistochemical expression was 
performed based on clinically used evaluation crite-
rion where expression of ERG protein within a tumor 
focus was considered to be positive and such a tumor 
focus was designated as ERG-positive. Tumor foci which 
do not expression ERG protein were designated as 
ERG-negative.

Deep learning model architecture and evaluation
Regions of tumor from WSIs were manually annotated 
using QuPath v0.2.3 [20]. The regions annotated as 
either ERG-positive or ERG-negative were exported as 
224 × 224 pixel sized JPEG image patches at 10 ×, 20 ×, 
and 40 × magnifications, for input into the deep learning 
model. For all magnifications image patches were taken 
from same area. All 235 TCGA cases and 26 in-house 
cases (n = 261, 67%) were used for training purposes. A 
separate hold out test dataset, that included the remain-
ing in-house cases (n = 131, 33%), were used for per-
formance evaluation of the model (Table  1). A total of 
763,945 patches were generated from regions of inter-
est for the training set and 264,688 patches were gener-
ated for the hold-out test set. Patches from the training 
sets were further randomly subdivided into training, 
validation, and test subsets with a split ratio of 80:16:4, 
respectively. Using the Python Keras Application Pro-
gramming Interface (API), we developed a deep learning 
algorithm for distinguishing between ERG rearranged 
and ERG non-rearranged prostate cancer. Development 
and testing was performed using a computer equipped 
with an NVIDIA RTX 2070 Super graphics process-
ing unit (GPU) and 16  GB of RAM at 3200  MHz. The 
algorithm is based on the MobileNetV2 convolutional 

Table 1  Distribution of training and hold-out test datasets utilized for algorithm development

Training subset includes initial training, cross-validation and testing sets. Hold-out test set refers to a separate subset of cases not included as part of the training 
subset. TCGA​ The Cancer Genome Atlas

Dataset Subset Patients ERG status Gleason grade group

Positive Negative 1 2 3 4 5

TCGA cohort Training set 235 123(52%) 112(48%) 41 68 60 32 34

Internal cohort Training set 26 11(42%) 15(58%) 1 17 6 0 2

Hold-out test set 131 60(46%) 71(54%) 0 67 31 4 29

https://portal.gdc.cancer.gov
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neural network (CNN) architecture pre-trained on Ima-
geNet. The pre-trained MobileNetV2 network was used 
as the base model. It is preceded by a pre-processing 
layer which scales input pixel values between -1 and 1 for 
MobileNetV2. Subsequent to the base model, an addi-
tional global average layer, dropout layer, and prediction 
layer were added. Given the binary nature of this clas-
sification task, the prediction layer consisted of a dense 
layer with a sigmoid activation function. Three different 
models were trained for each of the different image mag-
nifications (10 ×, 20 ×, and 40 ×). Model weights were 
fine-tuned using ERG-positive and ERG-negative labeled 
H&E patches. Data augmentation techniques consisting 
of horizontal flips, vertical flips, rotations, and contrast 
variations were applied to the input patches during the 
training process. After initial training, the hyperparam-
eters were further adjusted using validation set. Finally, 
models were evaluated using hold-out test set cases, 
which were independent of training and validation sets, 
with unlabeled patches as inputs. The output of the mod-
els consisted of a prediction of ERG-positive or ERG-
negative for each input patches. The workflow used in 
developing our algorithm is summarized in Fig. 1.

Results
In this study we developed an AI-based algorithm to 
establish whether ERG gene arrangement can be deter-
mined solely from H&E-based histologic images of 
patients with prostate adenocarcinoma. A total of 26 
in-house prostatectomy cases and 235 cases obtained 
from the TCGA prostate cancer cohort were used for 
initial training of the model and a separate hold-out test 
cohort of 131 in-house cases was used for model evalu-
ation (Table  1). The analysis was performed employing 
10 ×, 20 × and 40 × image magnifications. An overall 
diagnosis for each WSI was assigned based on percent-
age of labelled patches favoring an ERG-positive or ERG-
negative diagnosis. For each magnification, a cut-off of 
proportion of ERG positive patches were determined that 
gives best accuracy. A WSI was labeled as ERG-positive 
if a proportion of the ERG positive patches were greater 
than the cut-off determined at a particular magnification. 
For performance metrics, each WSI was defined as fol-
lows: true positive is defined as the correct prediction of 
ERG-positive cases, false negative as incorrect prediction 
of ERG-positive cases, true negative as correct predic-
tion of ERG-negative cases, and false positive as incorrect 
prediction of ERG-negative cases. Representative patches 
as identified by the algorithm are provided in Fig. 2.

ROC curves were generated for all three models. The 
best accuracy of 79.4% and an area under the ROC curve 
of 0.85 were achieved at 20 × and 40 × magnification, 
respectively (Fig. 3 and Table 2). A total of 104 out of 131 

cases (79.4%) were identified correctly by the AI-based 
algorithm, with a sensitivity of 75.0%, specificity of 83.1%, 
positive predictive value (PPV) of 78.9%, and negative 
predictive value (NPV) of 79.7%. The performance of the 
algorithm at all magnifications was almost equivalent, 
yielding an accuracy in the range of 78.6% and 79.4% as 
well as area under the ROC curve in the range of 0.82 and 
0.85. The cut-off for ERG-positive patches was 0.5, where 
best accuracy was achieved for 20 × magnification.

The morphologic features of prostatic adenocarcinoma 
vary greatly according to the grade of the tumor. Hence, 
we sought to evaluate performance of our model accord-
ing to different Gleason grades. In order to assess the 
performance of our model according to different Gleason 
grades, we evaluated our algorithm separately for sub-
groups based on their assigned Grade Groups within this 
cohort. Hold-out cases were categorized into low-grade 
and high-grade tumors; the lower-grade tumors included 
Grade Groups 1 and 2, of which these tumors were pre-
dominantly comprised of a Gleason grade 3 component; 
in contrast, the higher-grade tumors were comprised of 
Grade Groups 3 and higher with the majority of these 
tumors comprised of Gleason grade 4 and 5 components. 
With Gleason grades taken into consideration, equiva-
lent accuracy were obtained at all magnifications. For 
lower-grade tumors the accuracy achieved was 86.6% at 
10 × and 20 × magnifications, while accuracy for higher-
grade tumors was 73.4% at 40 × magnification. These 
results are summarized in Table 3.

Discussion
IHC has become the workhorse of molecular phenotyp-
ing for  tissues and currently serves as a reliable surro-
gate to actually performing expensive molecular testing. 
However, IHC is time-consuming, can be expensive, and 
dependent on appropriate tissue handling procedures, 
reagents, and expert laboratory technicians. Further-
more, immunostain findings require visual inspection 
using a microscope and thus depend on the subjective 
interpretation of pathologists [21, 22]. Recent technologi-
cal progress in digital pathology and AI has shown that 
these new modalities can be used to not only improve 
efficiency of pathologists, but also provide compara-
ble diagnostic accuracy to pathologists employing tra-
ditional light microscopy [12]. Within the domain of 
surgical pathology, AI-based algorithms can analyze 
digitized histomorphologic features to effectively dis-
tinguish neoplastic and non-neoplastic lesions [23, 24], 
detect metastasis in lymph nodes [25], predict genomic 
fusion status within renal neoplasms [26], subtype renal 
tumors [1], detect prostate cancer in biopsy material 
[27], as well as grade aggressiveness of certain tumors [4]. 
To date, AI-based studies have been applied to prostate 
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cancer pathology to assist with diagnosis, Gleason grad-
ing, prognosis, as as well as predict underlying molecu-
lar aberrations such as phosphatase and tensin homology 
(PTEN) loss [2, 28, 29]. In the present study, we devel-
oped a deep learning model to predict ERG rearrange-
ment status in patients with prostatic adenocarcinoma. 

To the best of our knowledge, this is the first study to 
identify this genomic status directly from scanned H&E-
stained slides in surgically resected prostate cancer cases.
TMPRSS2-ERG rearrangement, the most common ETS 

gene fusion in prostate cancer, brings ERG expression 
under androgen control via androgen receptor-mediated 

Fig. 1  Workflow schematic summarizing our algorithm development. a (Top panel) Whole slide images of H&E-stained prostate adenocarcinoma 
resections were spilt using QuPath into many 224 × 224 pixel patches for input into a convolutional neural network (CNN). Unknown yellow box 
indicates a separate subset of cases not included as part of the training subset. (Bottom panel) Patches labeled with ERG status were used for CNN 
training utilizing MobileNetV2. Final prediction of patches into ERG-negative or ERG-positive was based on highest probability. b MobileNetV2 
convolutional block structure (adapted from Sandler et al.)
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TMPRSS2 regulation and results in over-expression of 
ERG protein [3]. Microscopically, while some ERG rear-
ranged prostate cancers are enriched with features such 
as intraluminal blue mucin and prominent nucleoli, the 
spectrum of morphology is quite variable and inconsist-
ently predictive of the presence of an ERG rearrangement 
at the genomic level [7]. Hence, it remains challenging 
to faithfully distinguish prostate cancer with ERG rear-
rangement from those with wild type ERG and other 
molecular subtypes based only on the microscopic eval-
uation of H&E-stained pathological tissues. As a result, 
ERG gene rearrangement status is usually confirmed by 
immunohistochemical identification of the overexpres-
sion of ERG protein or by dual-color break-apart FISH. 
However, these ancillary tests require additional time and 
resources, and they consume precious tissue.

In this study, we demonstrated that a digitized H&E-
stained slide analyzed using a deep learning-based model 
can successfully predict ERG fusion status in the major-
ity of prostate cancer cases. We believe that this algo-
rithm can eliminate the need for using extra tumor tissue 

Fig. 2  Patches as classified by AI algorithm. a ERG-negative low 
grade (100 ×). b ERG-positive low grade (100 ×). c ERG-negative high 
grade (100 ×). d ERG-positive high grade (100 ×)

Fig. 3  Receiver operator characteristics (ROC) and area under curve for models at different magnifications (10x, 20 × and 40x)

Table 2  Performance metrics of AI-based models at different magnifications

AUC​ Area under curve in receiver operator characteristics curve, TP True positive (correctly classified as ERG-positive), FP False positive (incorrectly classified as ERG-
positive), TN True negative (correctly classified as ERG-negative), FN False negative (incorrectly classified as ERG-negative), PPV Positive predictive value, NPV Negative 
predictive value, Cut-off indicates cut-off value of proportion of positive patches that gives best accuracy

Magnification AUC​ TP FP TN FN Sensitivity Specificity PPV NPV Accuracy F1 score Cut-off

10 × 0.82 45 13 58 15 75.0% 81.7% 77.6% 79.5% 78.6% 0.78 0.4

20 × 0.84 45 12 59 15 75.0% 83.1% 78.9% 79.7% 79.4% 0.79 0.5

40 × 0.85 45 13 58 15 75.0% 81.7% 77.6% 79.5% 78.6% 0.78 0.35
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to perform lengthy and expensive ancillary studies to 
assess for ERG gene rearrangement in prostatic adeno-
carcinoma. Our AI model was able to accurately predict 
the presence of an ERG gene rearrangement in a large 
number of cases with varying morphologic patterns and 
Grade groups, including tumors with low-grade (Grade 
Group 2 or less) and high-grade features (Grade Group 
3 or higher). Higher accuracy was seen in lower-grade 
tumors. One possibility for this observation may be 
that higher-grade tumors typically exhibit more diverse 
morphology.
ERG gene rearrangement is known to contribute to the 

pathogenesis of prostate cancer and provides important 
clues about the multifocality and metastatic dissemi-
nation of this disease. The specificity of this gene rear-
rangement in prostate cancer allows ERG evaluation by 
IHC to be of diagnostic value in both primary and met-
astatic tumors originating from the prostate [6, 30, 31]. 
TMPRSS2-ERG fusions are also prime candidates for the 
development of new diagnostic assays, including urine-
based noninvasive assays [32]. There have been conflict-
ing reports regarding the prognostic value of ERG gene 
rearrangement and its overexpression in prostatic cancer. 
Hägglöf et al. have demonstrated that high expression of 
ERG is associated with higher Gleason score, aggressive 
disease and poor survival rates [33]. Similarly, Nam et al. 
demonstrated that the TMPRSS2-ERG fusion gene pre-
dicts cancer recurrence after surgical treatment and that 
this prediction is independent of grade, stage and pros-
tate specific antigen (PSA) levels in blood [34]. Mehra 
et al. demonstrated ERG rearrangement to be associated 
with a higher stage in prostate cancer [35]. A subsequent 
study by Fine et  al. demonstrated a subset of prostate 
cancers with TMPRSS2-ERG copy number increase, with 
or without rearrangement, to be associated with higher 
Gleason score [36]. Nevertheless, other studies have 
found no association between TMPRSS2-ERG fusion and 
stage, grade, recurrence, or progression [37, 38]. Addi-
tionally, in the TCGA dataset, in our limited analyses, 

we did not see any other particular genetic mutation that 
is significantly different between ERG rearranged and 
non-ERG rearranged cases. Currently, there is no ERG-
targeted therapy approved for treatment of prostate can-
cer. However, peptidomimetic targeting of transcription 
factor fusion products has been demonstrated to provide 
a promising therapeutic strategy for prostate cancer [39]. 
Previous ERG fusion driven biomarker clinical trials uti-
lized interrogation of ERG rearrangement status employ-
ing IHC or FISH tests [40]. Our study provides a viable 
and inexpensive alternative to ancillary tissue-based test-
ing methods to detect ERG rearrangement status in pros-
tate cancer.

Our study has several strengths and potential limita-
tions. Notable strengths include the use of H&E stained 
slides only (without the need for concurrent genomic 
investigation) to predict ERG gene fusion status in 
prostate cancer, utilization of WSI, and employment 
of diverse datasets including in-house and TCGA data-
sets with different H&E staining qualities to improve 
the robustness of our algorithm. This application carries 
strength in eliminating the need for complex molecular 
testing utilizing FISH, next-generation sequencing, or 
molecular surrogate assays like immunohistochemistry; 
utilizing of H&E slides only allows an easy, economical 
and efficient methodology to detect ERG gene rearrange-
ment utilizing AI developed model. Importantly, our 
study paves a foundation for utilizing basic laboratory 
tools in assessing genomic rearrangements in diverse set 
of human malignancies (of prostate and other genitouri-
nary tumors).

Computational limitations for both training and 
test set evaluation were considered when deciding 
which neural network architecture to utilize. Com-
monly used architectures for image classification tasks 
include Inception, VGG16, ResNet50, and MobileNet, 
among others. Each architecture comes with its own 
strengths and limitations and each one is designed to 
be optimal under specific circumstances. For example, 

Table 3  Algorithm performance metrics based on tumor grade

TP True positive (correctly classified as ERG-positive), FP False positive (incorrectly classified as ERG-positive), TN True negative (correctly classified as ERG-negative), 
FN False negative (incorrectly classified as ERG-negative), PPV Positive predictive value, NPV: Negative predictive value, Cut-off indicates cut-off value of proportion of 
positive patches that gives best accuracy

Magnification Grade Group TP FP TN FN Sensitivity Specificity PPV NPV Accuracy F1 score Cut-off

10 × 1–2 33 8 25 1 97.1% 75.8% 80.5% 96.2% 86.6% 0.88 0.4

3–5 12 5 33 14 46.2% 86.8% 70.6% 70.2% 70.3% 0.56 0.4

20 × 1–2 28 3 30 6 82.4% 90.9% 90.3% 83.3% 86.6% 0.86 0.5

3–5 17 9 29 9 65.4% 76.3% 65.4% 76.3% 71.9% 0.65 0.5

40 × 1–2 28 5 28 6 82.4% 84.8% 84.8% 82.4% 83.6% 0.84 0.35

3–5 17 8 30 9 65.4% 78.9% 68.0% 76.9% 73.4% 0.67 0.35
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the Inception architecture serves the purpose of reduc-
ing computational cost by implementing a shallower 
network compared to ResNet50 which may negatively 
impact computational accuracy. MobileNetV2, part of 
the MobileNet family, further addresses issues of size 
and speed and is optimally designed for mobile device 
applications which often require computationally lim-
ited platforms. This is accomplished by utilizing 19 
inverted residual bottleneck layers following the initial 
fully convolutional layer, The 19 bottleneck layers are 
subsequently followed by a point convolutional layer, 
pooling average layer, and a final convolutional layer. 
Taking into consideration that these AI-applications 
are ultimately intended for clinical laboratory settings 
which may not have access to high-end computational 
hardware, we ultimately chose a MobileNetV2 archi-
tecture pre-trained on ImageNet as our base model 
due to its balance between accuracy and computational 
cost [41, 42].

Hardware limitations necessitating relatively small 
input tiles may contribute to our model’s performance. 
Our training set was relatively enriched in lower-grade 
tumors as high-grade cancers are less common in daily 
clinical urological practice. Follow-up studies incorpo-
rating more higher-grade tumors will be needed to bet-
ter assess the performance of our AI-based tool in such 
scenario. Our algorithm was developed using resection 
specimens, and further studies would be needed to inter-
rogate findings in biopsy specimens that display smaller 
volumes of tumor; as a consequence, cut-offs used in 
this study may need to be adjusted. For the purposes of 
this study, we did not address disease heterogeneity and 
multifocality; future studies are likely to address these 
phenomena.

Conclusion
We demonstrated that ERG rearrangement status in 
prostate adenocarcinoma can be reliably predicted 
directly from H&E-stained digital slides utilizing a deep 
learning algorithm with high accuracy. This approach has 
great potential to automate digital workflows and avoid 
using tissue-based ancillary studies to assess for ERG 
gene rearrangement.
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