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Abstract

Background: Bone accrual impacts lifelong skeletal health, but genetic discovery has
been primarily limited to cross-sectional study designs and hampered by uncertainty
about target effector genes. Here, we capture this dynamic phenotype by modeling
longitudinal bone accrual across 11,000 bone scans in a cohort of healthy children
and adolescents, followed by genome-wide association studies (GWAS) and variant-
to-gene mapping with functional follow-up.

Results: We identify 40 loci, 35 not previously reported, with various degrees of
supportive evidence, half residing in topological associated domains harboring
known bone genes. Of several loci potentially associated with later-life fracture risk, a
candidate SNP lookup provides the most compelling evidence for rs11195210
(SMC3). Variant-to-gene mapping combining ATAC-seq to assay open chromatin
with high-resolution promoter-focused Capture C identifies contacts between GWAS
loci and nearby gene promoters. siRNA knockdown of gene expression supports the
putative effector gene at three specific loci in two osteoblast cell models. Finally,
using CRISPR-Cas9 genome editing, we confirm that the immediate genomic region
harboring the putative causal SNP influences PRPF38A expression, a location which is
predicted to coincide with a set of binding sites for relevant transcription factors.

Conclusions: Using a new longitudinal approach, we expand the number of genetic
loci putatively associated with pediatric bone gain. Functional follow-up in
appropriate cell models finds novel candidate genes impacting bone accrual. Our
data also raise the possibility that the cell fate decision between osteogenic and
adipogenic lineages is important in normal bone accrual.
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Introduction
Osteoporosis is a chronic disease characterized by low bone mineral density (BMD) and

strength, which subsequently increase risk of fracture. Bone acquisition during growth is

critical for achieving optimal peak bone mass in early adulthood and influences how bone

density tracks throughout life [1]; individuals with higher peak bone mass ultimately have

lower risk of later-life fracture [2]. Thus, understanding the factors that contribute to bone

accrual has fundamental implications for optimizing skeletal health throughout life [3, 4].

Skeletal growth is a dynamic process involving bone formation driven by osteoblasts

and resorption by osteoclasts. During growth, the accrual rate of areal BMD (aBMD), a

measure often used to assess bone development clinically, varies by skeletal site and

maturational stage [5]. BMD is highly heritable, and while > 1000 genetic variants are

associated with aBMD or estimated BMD (eBMD) in adults [6–8], much less progress

has been made in identifying genetic determinants of BMD during growth [9–11]. Al-

though many adult-identified loci also associate with pediatric aBMD [12], the influ-

ences of some genetic factors are principally limited to periods of high bone-turnover,

such as during bone accrual in childhood [13]. However, given that pediatric genetic

studies of bone accrual to date have mainly employed cross-sectional study designs, in-

trinsic limits are placed on the discovery of genetic variants that influence dynamic

changes in bone accrual during development.

Furthermore, because the causal effector genes at many loci identified by GWAS have

not yet been identified, these signals have offered limited insight without extensive

follow-up. Typically, GWAS signals have been assigned to the nearest gene, but given

improvements in our understanding of the spatial organization of the human genome

[14], proximity may not imply causality. As a result, variant-to-gene mapping has be-

come an increasingly popular, evidence-based approach across a range of complex

traits to link association signals to target gene(s). Chromatin conformation-based tech-

niques that detect contacts between distant regions of the genome provide one piece of

evidence connecting non-coding putative regulatory sequences harboring phenotypic-

ally associated variants to a nearby gene of interest; indeed, such data are particularly

powerful when there is a paucity of eQTL data for trait-relevant cell types.

Recognizing the importance of understanding the factors influencing bone accrual to

maximize lifelong bone health, we leveraged ~ 11,000 bone density measurements in

the Bone Mineral Density in Childhood Study (BMDCS). By longitudinally modeling

bone accrual in this cohort, we were subsequently well-placed to perform a series of

genetic discovery analyses. Our approach implicated both putative causal variants and

corresponding effector genes through the use of our variant-to-gene mapping pipeline

[15]. We then further investigated specific loci to characterize their impact on osteo-

blast function in two relevant human cell models. Throughout the text, we describe loci

based on the typical nearest gene nomenclature in order to orientate the reader, but we
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do not intend to imply that this gene is necessarily causal unless experimental evidence

is found for that gene.

Results
Longitudinal modeling of aBMD and bone mineral content (BMC)

We modeled aBMD (g/cm2) and BMC (g/cm) from age 5 to 20 years in the BMDCS, a

mixed longitudinal, multiethnic cohort of healthy children and adolescents with up to

seven annual measurements (n = 1885). Participants were recruited to create national

reference curves [16] from five sites across the USA (Fig. 1a; Additional file 1: Table S1).

We modeled sex- and ancestry-specific bone accrual with “Super Imposition by Transla-

tion and Rotation” (SITAR) [17], a shape invariant model that generates a population mean

curve based on all measurements. The resulting individual growth curves were then

defined relative to the population mean curve by shifting in three dimensions, resulting in

three random effects for each individual: a-size: up-down on the y-axis, representing differ-

ences in mean aBMD or BMC; b-timing: left-right on the x-axis, measuring differences in

age when the accrual rate increases; and c-velocity: stretched-compressed on the age scale

to measure differences in the bone accrual rate (Fig. 1b). We accessed previously derived

SITAR models of BMC at the lumbar spine, total hip, femoral neck, and distal 1
.
3
radius

Fig. 1 Longitudinal modeling of aBMD and BMC. a Bone Mineral Density in Childhood Study (BMDCS) was
a multi-ethnic longitudinal prospective study of healthy children and adolescents collected over 7 years at 5
clinical sites across the USA to establish national reference curves for bone density (study visit details are
given in Additional file 1: Table S1). b The three SITAR model parameters are a-size, representing an up-
down shift on the y-axis for an individual compared to the population mean; b-timing, representing an
earlier-later shift on the x-axis compared to the population mean; and c-velocity, corresponding to
differences in the rate of bone accrual. c Six skeletal sites were assessed (total body less head, 1/3 distal
radius, lumbar spine, femoral neck, total hip, and skull) for bone mineral density (g/cm2) and content (g).
Mean SITAR curves for aBMD and BMC by sex and ancestry are shown in Additional file 2: Fig. S1
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[18] and performed additional modeling for aBMD at these sites. We also modeled BMC

and aBMD at the total body less head (TBLH) and skull (Fig. 1c). Mean curves by sex and

ancestry for aBMD and BMC at the six skeletal sites are shown in Additional file 2: Fig. S1.

Heritability of longitudinal pediatric bone density varies by skeletal site

To improve and extend heritability estimates of bone traits, we leveraged both directly

genotyped and imputed variants to calculate SNP-heritability (h2SNP) for aBMD and

BMC at the six skeletal sites (see Additional file 1: Table S2 for heritability power cal-

culations). In both cross-sectional and longitudinal analyses for the a-size parameter,

h2SNP was highest for the skull and lowest for the 1/3 distal radius (Fig. 2; Add-

itional file 1: Table S3 & S5), and the results remained largely unchanged when model-

ing Black or African American (AA) and non-AA participants together or separately

(Additional file 1: Table S4). Therefore, for subsequent genetic analyses, we used ances-

try- and sex-specific modeling results. aBMD and BMC estimates for b-timing varied,

sometimes being substantially lower (as for the skull) or higher (as for total hip BMC)

than their a-size counterparts. Finally, heritability estimates were overall lowest for c-

velocity, but had a larger range, from h2SNP (SE) = 0.092 (0.089), P = 0.15 for distal ra-

dius aBMD to h2SNP (SE) = 0.69 (0.088), P = 2.51 × 10−13 for skull BMC. These results

show that h2SNP was robust across ancestry groups, encouraging us to consider AA and

non-AA participants jointly for genetic discovery efforts, and that each of the three

SITAR parameters displayed a significant genetic component across skeletal sites.

Phenotypic and genetic correlation among skeletal sites

Phenotypically, we noted that aBMD and BMC were highly correlated with each other

at each of the skeletal sites, with the TBLH, femoral neck, total hip, and spine being

highest across sites (Additional file 2: Fig. S2A). In contrast, the 1/3 distal radius and

skull were less correlated with the other skeletal sites, a difference which became even

clearer when we performed genetic correlation analyses on the baseline and longitu-

dinal data (Additional file 1: Table S6 & S7; Additional file 2: Fig. S2B-C). In the genetic

correlation analyses, the 1/3 distal radius only showed a high correlation with TBLH.

Clustering analysis of the longitudinal genetic correlations grouped most a-size, b-tim-

ing, and c-velocity parameters together regardless of skeletal site, with the notable ex-

ception of radius aBMD a-size and c-velocity, and skull aBMD and BMC a-size and c-

velocity, which clustered into two distinct groups by skeletal site.

GWAS reveals novel loci associated with pediatric bone accrual

Next, to identify loci associated with bone accrual, we performed 36 parallel GWAS on

the three SITAR parameters (a-size, b-timing, c-velocity) for aBMD and BMC at the six

skeletal sites (Additional file 2: Fig. S3) (n = 1399, 51% female, 25% Black or African

American). Twenty-seven association signals achieved the traditional genome-wide sig-

nificance threshold of P < 5 × 10−8, with many associated with more than one skeletal

site or parameter (designated as signals 1–27, ordered by chromosome and position;

Table 1). Acknowledging the large number of statistical tests performed, we used sev-

eral strategies to prioritize loci for further analyses. First, given the high correlation be-

tween aBMD and BMC and among different skeletal sites (Additional file 2: Fig. S2;
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Additional file 1: Table S6 & S7), we used PhenoSpD [19, 20] to calculate the number of

independent tests. This revealed an equivalent of 16 independent tests, resulting in a

corrected significance threshold of P < 3.1 × 10−9, which yielded one locus (signal 26,

rs201392388, nearest gene FGF16) surpassing the corrected genome-wide significance

threshold accounting for multiple testing. Second, ten loci achieved a suggestive significance

level (P = 5 × 10−8–1 × 10−6) and were supported by more than one of our phenotypes (des-

ignated signals S1-S10). Finally, we set aside three loci that reached suggestive significance

in one phenotype but also gained support (P < 10−4) from a recent GWAS of adult heel

eBMD in the UK Biobank [6] (designated signals S11-S13). This brought the total number

of prioritized loci for follow-up assessment to 40. Overall, most loci yielded similar effect

Fig. 2 Heritability of pediatric bone density varies by skeletal site. a Estimates of heritability for cross-
sectional baseline data. b Heritability estimates derived from longitudinal growth modeling with SITAR.
Heritability estimates, standard errors, and P values are given in Additional file 1: Tables S3 & S5
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sizes in males and females and in both ancestry groups (Additional file 1: Table

S8). Only one of these loci was previously associated with pediatric aBMD (signal

16, rs17140801 [9], nearest gene RBFOX1). In addition to the suggestive signals

S11-S13, three other signals were associated with adult heel eBMD (Additional file 1:

Table S10), and one signal was previously associated with adult lumbar spine

aBMD [7]. In total, 35/40 (87.5%) of our signals were novel.

In line with expectations based on the phenotypic and genetic correlation results, we

observed the highest number of associated loci for the total hip, femoral neck, and

TBLH (Additional file 2: Fig. S4A), followed by the spine. Additionally, the majority of

shared associations were observed across more than one of these four traits. Also in

line with expectations based on the clustering of genetic correlation results within a-

size, b-timing, and c-velocity for different skeletal sites, the majority of loci were associ-

ated with only one of these longitudinal parameters (Additional file 2: Fig. S4B).

Follow-up in ALSPAC

We attempted replication of loci in the ALSPAC cohort (n = 6382), but were limited by

the skeletal sites available. TBLH and skull BMC were modeled with SITAR, after

which the a-size, b-timing, and c-velocity random effects were subjected to GWAS

using a linear mixed model. Given the differences between the BMDCS and ALSPAC

data (including different DXA machines used, populations (mixed ancestry US vs. Brit-

ish white), ages (beginning at age 5 years in BMDCS and 10 years in ALSPAC), cohort-

specific covariates applied, and genotyping arrays employed), we opted to take a broad

approach and extracted all SNPs in LD with our 40 lead signals (r2 > 0.8 in Europeans).

Five of our loci replicated at a nominal significance level (Additional file 1: Table S9),

one of which also showed suggestive support in the heel eBMD lookup (signal S11,

rs2564086, nearest gene SOX11).

Association with later-life fracture in adults

Recently, we found that the postmenopausal bone loss and fracture-associated Sp1 variant

within the COLIA1 gene1,2 was implicated in delayed bone gain across puberty in girls

[13]. Given that both bone gain and loss are periods of relatively high bone turnover, we

assessed the converse possibility: that bone accrual-associated variants might also influ-

ence later-life fracture risk. We queried our signals in a published UK Biobank GWAS of

adult fracture [6], a GWAS meta-analysis of fracture [21], and a range of fracture pheno-

types in the PheWEB browser. These three approaches converged on one of our suggest-

ive signals for total hip BMC a-size, associated with both heel eBMD and fracture in

Morris et al (signal S13, rs11195210, nearest gene SMC3; heel eBMD beta = − 0.02, P =

2.3 × 10−8; fracture OR = 1.04, P = 0.0024; Additional file 1: Table S10). In Trajanoska et al,

this same signal showed suggestive association with fracture (P = 0.0099), and the

PheWEB lookup showed associations with fracture in the last 5 years (P = 1.4 × 10−3) and

leg fracture (P = 3.6 × 10−3). The PheWEB lookup also provided support for signal 22

(rs8130725, nearest gene NRIP1), which was associated with self-reported fracture of the

radius (P = 8.9 × 10−5). Thus, we identified loci putatively active in bone metabolism both

early and later in life.
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Functionally relevant candidate genes and pathways at associated loci

We next sought to identify credible candidate effector genes near the 40 prioritized

loci. Given that the nearest gene to a GWAS signal is often not the causal gene, we

considered all genes within the signals’ surrounding topological associated domains

(TADs), regions of the genome previously defined as most likely to set the bounds

where the causal effector gene resides [22]. This resulted in 319 protein-coding genes

(all TAD genes are listed in Additional file 1: Table S12). We then assessed the extent

of evidence supporting that this set of genes is involved in skeletal development. At 21

loci (with two harboring two distinct signals each), we observed genes known to be in-

volved in bone biology (Table 2; Additional file 1: Table S13). Many of these genes are

well-established as key players in osteogenesis or skeletal development, such as FOSL2,

which controls osteoclast size and survival [23]; WWTR1 (TAZ), encoding a key mem-

ber of the Hippo pathway that interacts with RUNX2 to induce osteogenesis [24];

SLC9A3R1 (NHERF), a member of the Wnt signaling pathway associated with hypo-

phosphatemic nephrolithiasis/osteoporosis-2 (OMIM 612287) as well as low bone min-

eral density [25]; and TGFB1, mutations in which lead to Camurati-Engelmann disease

(OMIM 131300) and bone density alterations [26]. We also observed important skeletal

biology-related genes at suggestive loci, with these genes including TWIST2 (Able-

pharon-macrostomia syndrome and Barber-Say syndrome [OMIM 200110 and 209885,

respectively], which show premature osteoblast differentiation and growth retardation

[27–29]), HDAC4 (“osteoblast differentiation and development”) [30, 31], PRKD1

(“positive regulation of osteoclast development”) [32], HMG20B (“osteoblast differenti-

ation and development”), and SOX11 (Coffin-Siris syndrome 9 [OMIM 615866] in

which there is abnormal skeletal morphology) [33]. Although these are known genes,

we note that genetic associations have not been previously implicated nearby these

genes in GWAS of aBMD and BMC (with the exception of the TGFB1 locus [6]). This

analysis revealed plausible candidate effector genes at half of the association signals, al-

though direct evidence linking our signals to these genes remains to be established.

Next, we performed pathway analysis for all transcripts in the TADs corresponding

to the 40 prioritized signals [34], which revealed several pathways of interest, including

“long-chain fatty acid metabolic process,” “negative regulation of toll-like receptor sig-

naling pathway,” “calcium signaling pathway,” “FoxO signaling pathway,” and “Hippo

signaling pathway” (Additional file 1: Tables S14 & S15).

Variant-to-gene mapping identifies high-confidence SNP-to-gene promoter contacts

We then performed variant-to-gene mapping to physically connect our signals with

their putative target effector genes (overview of analytical pipeline provided in Fig. 3a).

In order to implicate effector genes in an appropriate tissue context, we leveraged data

from human mesenchymal stem cell (hMSC)-derived osteoblasts [15]. We first ex-

tracted all proxy SNPs in LD with our lead SNPs (liberal r2 ≥ 0.5) that resided in access-

ible chromatin [15]. Next, we queried accessible SNP-to-gene interactions in high-

resolution promoter-focused Capture C data from the same cell line. Six loci (15% of

the 40 loci identified) exhibited cis interactions with gene promoters (Additional file 1:

Table S16), with a total of 22 genes targeted by these interactions. These target genes

included several prioritized by our functional candidate search, such as GRB2 (signal

Cousminer et al. Genome Biology            (2021) 22:1 Page 11 of 32
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19), involved in osteoclast differentiation [35] and TULP3 (signal S6), associated with

abnormal vertebrae morphology and development [36].

Our promoter-focused Capture C data also pointed to the nearest gene at signal S3,

TET2, a known promoter of osteogenesis [37] (Additional file 2: Fig. S5A). Interest-

ingly, we observed two association signals at this locus, which despite being in moder-

ate LD (r2 = 0.43) showed opposite directional effects (Table 1). These two signals were

Fig. 3 Genome-wide association and variant-to-gene mapping highlight three loci associated with pediatric
bone accrual. a Overview of variant-to-gene mapping pipeline. We first identify all SNPs in high LD with our
sentinel associated variant. These are then filtered by residing in open chromatin as assessed by ATAC-seq
in hMSC-derived osteoblasts. The open chromatin variants are subsequently filtered by being in direct
physical contact with gene promoter baits. Finally, siRNA knockdown experiments are performed for a
subset of these contacted genes to assess the impact on osteogenesis. b Locus plot for signal 1, near
CC2D1B, showing the association landscape with key SNPs marked, chromatin accessibility as assessed by
ATAC-seq and Promoter CaptureC interaction loops, the locations of all proxy SNPs in the region, and the
locations of genes at this locus, with the four genes followed up with in vitro functional analysis
highlighted in yellow. c Forest plots showing the association results in each subsample (Black and Non-
Black males and females). d Representative mean SITAR curves by genotype for rs2762826. Complete
variant-to-gene mapping results are given in Additional file 1: Table S16
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both genome-wide significant in the published heel eBMD GWAS [6] with opposite ef-

fect directions (Additional file 1: Table S10). One of our signals, rs56883672-C (FN

BMC c-velocity, beta (SE) = 0.21 (0.038), P = 7.1 × 10−8) was in LD with an accessible

proxy SNP (a SNP falling in an open ATAC-seq peak in high LD with the sentinel vari-

ant), rs2301718, which showed a cis interaction with TET2 and falls in a binding site

for RBPj, a primary nuclear mediator of Notch and an osteogenic driver [38] (Add-

itional file 2: Fig. S5B). Thus, rs2301718 is a putative causal variant falling in a potential

novel distal enhancer for TET2. Additionally, a conserved binding site for FOXO3 (de-

termined by the Transfac Matrix Database (v7.0) in the UCSC Genome Browser), a

transcription factor regulated by RBPj [39] and a member of the FOXO family which

play critical roles in skeletal homeostasis [40], lies immediately upstream (Additional

file 2: Fig. S5C). Thus, this may be a regulatory region for osteogenesis with dynamic

effects at different skeletal sites.

Although GTEx data was not generated for bone, we searched for pan-tissue eQTLs

that would provide another line of evidence linking our loci to effector genes. We iden-

tified SNPs in high LD (r2 > 0.8) with the 40 sentinel SNPs, queried significant eQTLs

in all available GTEx tissues [41], and observed LD-eQTLs for 28 genes (Add-

itional file 1: Table S17). None of the genes highlighted by our functional search over-

lapped with LD-eQTL genes, suggesting tissue-specific or temporal-specific regulation

that is not reflected in this broad pan-tissue context. However, our promoter Capture

C approach did support several genes with LD-eQTL evidence, namely ADAT1, GPX7,

ORC1, PRPF38A, and ZCCHC11. Colocalization evidence would be needed to defini-

tively link our GWAS signals with these genes in the developing skeleton, but due to

the lack of relevant eQTL datasets in growing bone, we instead used this LD-eQTL

pan-tissue evidence to help prioritize loci for functional in vitro follow-up.

Functional assays in bone cell lines implicates one novel gene each at three loci

About half of our prioritized loci lacked clear functional candidate effector genes, with

three signals showing evidence of target gene promoter interactions in our hMSC-

derived osteoblasts (Additional file 2: Fig. S6). Two of these loci (signals 1 and 17, near

CC2D1B and TERF2IP, respectively) proved more challenging to resolve given they

both had multiple gene contacts in our hMSC-derived osteoblast atlas (Fig. 3b–d; Add-

itional file 2: Fig. S7A) as well as pan-tissue LD-eQTL support. To identify novel genes

involved in bone mineralization, we followed up putative candidate effector genes iden-

tified by variant-to-gene mapping at these two loci. Another locus had promoter inter-

action and LD-eQTL support for more than one plausible candidate effector gene, so

we also aimed to clarify this observation (signal S6; Additional file 2: Fig. S7B). We per-

formed siRNA knockdown of four genes at each locus (for a total of 12 genes) in pri-

mary hMSCs and assessed osteoblast differentiation. qPCR analysis revealed that each

siRNA resulted in specific, significant knockdown of its corresponding target under un-

stimulated conditions (Additional file 2: Fig. S8).

To identify which contacted genes have roles in osteoblast function, we examined

osteoblast activity with histochemical alkaline phosphatase (ALP) and mineralization

with Alizarin red S staining. We found that disruption of just one gene per locus

among each group of four candidates showed a significant reduction in terminal

Cousminer et al. Genome Biology            (2021) 22:1 Page 15 of 32



osteoblast differentiation. Although additional candidate genes are present at the signal

1 locus, including three with nonsynonymous variants in LD (r2 > 0.8) with the sentinel

SNP (the nearest gene CC2D1B, ZFYVE9, and KTI12), we opted to target genes with

Capture C and LD-eQTL evidence. While targeting GPX7, PRPF38A, ORC1, or

ZCCHC11 at signal 1 produced somewhat variable ALP staining across donor lines, the

staining levels (Fig. 4a, b) and corresponding ALPL gene expression levels (Fig. 4c) were

not significantly different from non-targeted cells. On the other hand, there was a

marked reduction in Alizarin red S staining after PRPF38A knockdown (Fig. 4a, d).

At the signal 17 locus (targeting ADAT1, TERF2IP, KARS, and CNTNAP4), downreg-

ulation of KARS produced a significant reduction in ALP staining and extracellular cal-

cium deposition, but we did not observe a significant reduction in ALPL gene

expression itself (Fig. 4e–h). To further understand the discrepancy between ALP stain-

ing and gene expression patterns, we individually examined the ALP expression and

staining pattern for each donor line. A consistent reduction in ALPL gene expression

and ALP staining was clearly evident in two out of the three donor lines, but despite a

reduction of ALP staining in the third line, ALPL gene expression was increased (data

not shown). Despite the donor variability seen in our experiments, male mice with a

heterozygous KARS knockout have a significant increase in BMD excluding skull (male

Fig. 4 Functional assays in human mesenchymal stem cell-induced osteoblasts following siRNA knockdown
of four genes each at three loci implicated by GWAS and variant-to-gene mapping. a, e, i Representative
alkaline phosphatase (blue) and Alizarin Red S (red) stains for osteoblastic activity and calcium deposition,
respectively, for the three tested loci. Experiments were performed twice in three unique donor lines. b, f, j
Quantification of alkaline phosphatase staining using quantitative image analysis was repeated twice with
three different independent hMSC donor cell lines. c, g, k ALPL gene expression. d, h, l Quantification of
Alizarin Red S staining. *p < 0.05 comparing no treatment to BMP treatment for each siRNA, #p < 0.05
comparing control siRNA to siRNA for gene of interest, n.s = not significant. Error bars represent standard
deviation. hMSC donor line, siRNA, and qPCR details are given in Additional file 1: Tables S19-S21
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P = 6.61 × 10−5; significance threshold 1 × 10−4; https://www.mousephenotype.org/),

providing orthogonal evidence for the importance of this gene in osteogenesis.

At signal S6 (targeting FOXM1, C12ORF22, TULP3, and TEAD4), although there are sev-

eral plausible functional candidate genes (Table 2), targeting TEAD4 significantly reduced

both ALP staining and ALPL gene expression as well as extracellular calcium deposition

(Fig. 4i–l). In contrast, gene knockdowns for the other candidates had no impact on these

readouts. These results were subsequently replicated in siRNA knockdown experiments in

an immortalized human fetal osteoblast (hFOB) cell line (Additional file 2: Fig. S9).

Activation of canonical BMP signaling leads to the phosphorylation of SMAD pro-

teins and upregulation of the ID1 family of genes. Thus, we assessed BMP2 signaling

by measuring ID1 gene expression and assessed expression of pro-osteoblastic tran-

scription factors RUNX2 and SP7. After PRPF38A and KARS knockdown, BMP2 signal-

ing was intact and the expression of RUNX2 and SP7 were preserved (Additional file 2:

Fig. S10A-F). For cells lacking TEAD4, ID1 expression was unchanged, although

RUNX2 and SP7 expression levels were lower than observed in controls (Additional

file 2: Fig. S10G-I). These results suggest that these three genes impact osteogenesis via

distinct molecular mechanisms.

PRPF38A knockdown induces morphological changes

At signal 1, PRPF38A silencing resulted in a morphological change and reduction of extra-

cellular calcium deposition that was evident in both hMSC-derived osteoblasts (Fig. 5a)

and hFOBs (Fig. 5b). Thus, we examined whether PRPF38A silencing affected the expres-

sion of chondrocyte specific genes ACAN, COMP, and SOX9 or the expression levels of

later osteoblastic genes IBSP and OMD in hMSCs. Despite some variability in our obser-

vations, our results largely showed that neither chondrocyte lineage genes nor later osteo-

blast specific genes were greatly altered in PRPF38A silenced cells (Fig. 5c–e; Additional

file 2: Fig. S11A-C). In contrast, our results for PRPF38A silencing in the context of the

expression of adipogenic-specific genes were more striking. PRPF38A silencing was suffi-

cient to increase expression of PPARG, a critical transcription factor for adipocyte differ-

entiation, and its expression increased further upon stimulation with BMP2 in hMSC-

derived osteoblasts and recapitulated in hFOBs (Fig. 5f, g). Likewise, FABP4 significantly

increased in PRPF38A silenced cells (Fig. 5h). However, C/EBPA expression did not

change dramatically (Additional file 2: Fig. S11D). We did not observe morphological dif-

ferences in the KARS or TEAD4 silenced donor lines (data not shown).

CRISPR-Cas9 deletion of putative enhancer element for PRPF38A expression

Given the evidence for PRPF38A as a novel factor influencing osteogenesis in the two

bone cell models, we next performed CRISPR-Cas9 deletions in hFOBs to confirm the ac-

cessible proxy SNP (rs34455069) resides within an enhancer impacting the expression of

PRPF38A. Despite only having ~ 60% transduction efficiency in the proxy SNP-deleted

cells (7–37% wild type cells; Additional file 2: Fig. S12A-B), deletion of 123-533 bp encom-

passing rs34455069 resulted in a 38% decrease in ALP staining (P = 0.005, compared to

empty vector control; Fig. 6a, b) and a 45% decrease in PRPF38A expression (P = 0.0009,

compared to empty vector control; Fig. 6c) as measured by qPCR. No morphological

changes were observed in the proxy-SNP edited cells. We also deleted a 733-1823 bp
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region around the sentinel GWAS SNP (rs2762826); as expected, perturbing the immedi-

ate region harboring the sentinel GWAS SNP had no effect on ALP staining (Fig. 6a, b) or

cell morphology. Intriguingly, rs34455069 is predicted as “likely to affect binding” (Regu-

lomeDB; regulomedb.org) of two transcription factors with known regulatory effects in

osteogenesis, KROX [42], and SP1:SP3 [43, 44] (position weight matrices for these binding

sites highlighting this SNP are given in Additional file 2: Fig. S13). Further work is war-

ranted to confirm that this genetic variant, a single base-pair indel, results in differential

binding of these transcription factors and altered gene expression of PRPF38A.

Discussion
To complement cross-sectional genetic studies of bone trait measurements and our

previous work implementing linear mixed models to integrate longitudinal measures

[12], as well as to target the most dynamic changes in bone density, i.e., during

Fig. 5 PRPF38A knockdown induced a morphological change in two osteoblast cell models. a Cell
morphology in hMSCs before (top) and after BMP2 treatment (bottom) with control siRNA (left) and
PRPF38A knockdown (right). Representative color bright-field images of a typical alkaline phosphatase
stained plate from PRPF38A silenced cells is shown. Similar morphological changes were observed for all
three donor lines used in the study. Scale bar, 1000 μm. b PRPF38A knockdown-induced morphological
changes were recapitulated in human fetal osteoblasts under permissive growth (33.5 °C; top) and
differentiation (39.5 °C; bottom) conditions. Scale bar, 200 μm. c–e Quantitative gene expression of
chondrocytic genes SOX9 and ACAN and f–h adipocyte-specific genes PPARG and FABP4. For hMSCs, data is
from two technical replicates from three unique donor lines were averaged. For hFOBs, three technical
replicates were averaged. Levels of ACAN and FABP4 were undetectable in hFOBs, even in reactions with up
to 600 ng of cDNA (twice the amount used for qPCR of other targets). *p < 0.05 comparing non-treated to
treated cells (BMP2 or 39.5 °C for hMSCs and hFOBs, respectively) for each siRNA, #p < 0.05 comparing
control siRNA to siRNA for gene of interest. Error bars represent standard deviation
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Fig. 6 (See legend on next page.)
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childhood, we performed longitudinal modeling. To assess the genetic contribution to

these traits, we performed heritability analyses and GWAS, identifying 40 loci, which

triples the number of identified pediatric aBMD and BMC-associated loci. Our efforts

to map target genes via Capture-C data implicated leads for several putative effector

genes at associated loci, and we functionally characterized selected genes in two osteo-

blast cell models, revealing three key candidate effector genes for further study. Thus,

our longitudinal approach not only revealed novel associations with pediatric bone ac-

crual, but also the most likely functional target genes.

We noted differences in heritability among skeletal sites, and both phenotypic and

genetic correlation estimates were in line with expectations based on bone composition,

degree of load bearing, and timing of development. For instance, the total hip and fem-

oral neck, followed by the spine, were the most correlated with each other and resulted

in the most shared genetic associations, together with the TBLH. Indeed, these three

skeletal sites are weight-bearing and are made up of a mix of trabecular and cortical

bone [45]. Additionally, they collectively make up a large proportion of the TBLH

measure, and the total hip includes the femoral neck. In contrast, the 1/3 distal radius

is less load-bearing and is composed nearly entirely of cortical bone, and the skull is

distinct both in its bone structure and timing of growth; the majority of skull growth is

completed by age 5 and is relatively stable until puberty [46].

Focusing on bioinformatic characterization of the 40 prioritized loci, at half of these, we

identified known bone-related genes residing within the corresponding TADs. Among

these, WWTR1/TAZ, HDAC4, TWIST2, and PRKD1 are known to interact with RUNX2,

an essential osteoblastic differentiation factor. Several genes harbor Mendelian mutations

resulting in abnormal bone density or skeletal phenotypes [23–27, 35, 36, 47–62], and

many also show abnormal mouse skeletal phenotypes (Table 2). Although further work is

needed to concretely link many of these GWAS-implicated variants to their correspond-

ing target effector genes, our promoter Capture-C approach did corroborate some of

these genes as putative functional effector genes acting in bone accrual.

In previous work, we noted a genetic variant principally active during periods of high

turnover at COLIA1, with implications for both delayed bone accrual in girls during pu-

berty [13] and post-menopausal bone loss and fracture [63, 64]. Three of our signals

showed evidence of association in a GWAS of adult fracture [6], four with a GWAS

meta-analysis of fracture, and eight with other fracture traits on the PheWEB browser.

At signals S13 and 22, we also noted candidate genes with literature support: the near-

est gene at signal S13 (notably supported by all three fracture look-ups) is SMC3,

underlying Cornelia de Lange syndrome 3 (OMIM 610759) [65] and decreased BMC in

mice, and the nearest gene to signal 22 is NRIP1, which is differentially expressed in

(See figure on previous page.)
Fig. 6 CRISPR-Cas9 deletion of sentinel and proxy SNPs at PRPF38A locus in hFOB cells. Only modulation of
the proxy SNP impacts alkaline phosphatase level and expression of the gene. a Alkaline phosphatase
staining was performed in triplicate after excision of the sentinel GWAS SNP (rs2762826; left) and the proxy
SNP (rs34455069; right). b Quantification of alkaline phosphatase staining using quantitative image analysis
showed that staining was reduced after excision of the region surrounding the proxy SNP, but not the
sentinel SNP. c Gene expression of PRPF38A was reduced after excision of the proxy SNP. *p < 0.01, #p <
0.001, comparing empty vector to CRISPR cells (averaged across three technical replicates). Error bars
represent standard deviation. Transduction efficiency and sequencing results of the CRISPR cells are shown
in Additional file 2: Fig. S11
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patients with low vs. high BMD [52]. Thus, the COLIA1 locus is unlikely to be the only

factor influencing both bone gain and loss, and further investigation of the gene targets

at these loci may provide leads to maximizing lifelong bone health.

Including genes at signals associated with various skeletal sites and parameters, path-

way analysis pointed toward pathways known to be involved in bone metabolism. Sev-

eral pathways were involved in long-chain fatty acid metabolism, largely driven by a

cluster of cytochrome P450 (CYP) genes at a single locus (signal 21), which also har-

bors TGFB1. Although TGFB1 is a plausible candidate gene, CYP genes metabolize ei-

cosanoids (long-chain fatty acids) including arachidonic acid and affect metabolite

levels [66], and genetic variation in related genes (CYP-17 and 19) was associated with

serum sex steroid concentrations and BMD, osteoporosis, and fracture in post-

menopausal women [67]. Studies have shown that osteoblasts take up and metabolize

fatty acids for matrix production and mineralization [68], and long-chain fatty acids

were associated with peak aBMD and bone accrual in late-adolescent males [69].

Three loci harboring five genes (PTPRS, CD300A, CACTIN, CD300LF, TICAM1),

were annotated with the GO term “negative regulation of toll-like receptor signaling

pathway.” The toll-like receptor pathway has multifaceted roles in osteoblast function,

including mediating bone inflammatory responses and regulating cell viability, prolifer-

ation, and osteoblast-mediated osteoclastogenesis [70]. Finally, the “calcium signaling

pathway,” the “FoxO signaling pathway” [71, 72], and the “Hippo signaling pathway”

[73] are fundamental in normal skeletal development.

Notably, several candidate genes are involved in TH17 cell differentiation (IL17F,

IL17A, RXRA, and TGFB1). IL17A is a T cell derived growth factor for MSCs [74, 75],

and we observed an open proxy variant contact with the IL17A promoter in TH17 cells

but not in osteoblasts (Additional file 1: Table S18), supporting IL17A as the effector

gene at this locus. Expression of IL17A inhibits the osteogenic differentiation of MSCs

[76, 77], and T cell-derived IL17A is involved in bone loss and postmenopausal osteo-

porosis [78, 79]. Our data shows that the well-established osteo-immune link [80, 81]

could play a role in normal variation of skeletal mineralization.

Next, we performed physical variant-to-gene mapping in hMSC-derived osteoblasts,

particularly important in the context of bone given that publically available genomic re-

sources typically lack bone data. Using a previously successful approach for identifying

target genes at known aBMD-associated loci [15], we identified three loci for functional

follow-up that each had several potential target effector genes. After siRNA knockdown

of 12 genes (4 at each locus), we observed reduced osteoblastic activity and/or reduced

mineralization for one gene at each locus (PRPF38A, KARS and TEAD4, each among

the top 70% of expressed genes in hMSC-derived osteoblasts). Two of these genes,

PRPF38A and KARS, are novel in the context of bone. KARS encodes the multifunc-

tional protein lysyl-tRNA synthetase, which catalyzes the attachment of amino acids to

their cognate tRNAs, but also acts as a signaling molecule when secreted and induces

dendritic cell maturation via the MAPK and NFkB pathways [82, 83]. On the other

hand, TEAD4 interacts with WWTR1/TAZ transcription co-activators that allow cells

to escape negative regulation by the Hippo signaling pathway and undergo increased

cell proliferation, the epithelial-mesenchymal transition, and expression of proteins that

directly regulate cell adhesion [84]. Osteoblast differentiation is a multi-step process in-

volving the integration of multiple signaling factors, each with its own critical role, and
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future studies are warranted to dissect which signals are affected by PRPF38A, KARS,

and TEAD4 silencing.

Knockdown of PRPF38A induced a dramatic morphological change in both hMSC-

derived osteoblasts and hFOBs, concurrent with increased expression of adipogenic tran-

scription factors PPARG and FABP4, suggesting that gene-targeted cells may favor adipo-

genic differentiation. Little is known about PRPF38A or its encoded protein, likely a

member of the spliceosome complex that contains a multi-interface protein-protein inter-

action domain [85]. We recently reported that knockdown of two pediatric aBMD-

associated genes, ING3 and EPDR1, resulted in reduced mineralization and also favored adi-

pogenesis [15]. The tightly controlled MSC lineage commitment to adipocytes or osteoblasts

is critical for maintaining bone homeostasis [86] and has been implicated in conditions with

abnormal bone remodeling (with increased bone marrow adiposity in osteoporosis [87, 88]

and bone loss conditions [89]). In addition to PRPF38A, ING3, and EPDR1, previous studies

suggested that TEAD4 may promote adipogenesis [90] in conjunction with WWTR1/TAZ

(signal 5) and that TGFB (signal 21) induces a switch from adipogenic to osteogenic differ-

entiation in hMSCs [91]. Further studies are warranted to fully explore the hypothesis that

adipogenic vs. osteogenic differentiation is a key feature of pediatric bone accrual.

Overall, we used several strategies to prioritize loci for further analysis, which in turn

led to a number of validated leads. In previous studies, we did not correct for testing of

multiple skeletal sites, given the high correlation between aBMD and BMC and among

these different skeletal sites (Additional file 2: Fig. S2; Additional file 1: Table S6 & S7).

Had we used an extremely strict correction (PhenoSpD [19, 20] was used to determine

that the corrected significance threshold would be P < 3.1 × 10−9), only one locus (signal

26, rs201392388, nearest gene FGF16) would have surpassed this bar, and we would have

missed many of our key leads. Indeed, given that subsequent bioinformatic and in vitro

follow-up further supported at least half of these loci as true positives, using a more stand-

ard significance threshold initially allowed us to “rule in” novel candidate loci that ultim-

ately led to novel candidate genes. This approach thus advocates for a more inclusive

initial approach followed by multiple lines of orthogonal evidence to build functional sup-

port for specific loci [92], especially for phenotypes where it is difficult to collect large

numbers of samples to have adequate statistical power to meet the traditional genome-

wide significance threshold. Still, there is potential for false positives among our results,

and there is the possibility that variants in moderate pairwise LD do not reflect the same

underlying signal. Additionally, we have tested selected candidate genes to “rule in” their

effects on bone biology; this does not exclude other potential target genes as functionally

relevant. Therefore, additional replication by other studies is required.

In conclusion, we leveraged a longitudinal modeling approach to both maximize the

data available in our cohort and to investigate the genetic determinants of pediatric bone

accrual. Our findings suggest that differences in bone accrual attributable to genetic vari-

ation are a mechanism linking several of our loci with established associations with later-

life fracture risk [6]. Finally, we identified two novel candidate effector genes at two associ-

ated loci with no obvious leads and resolved a functional candidate gene among several

possible genes at a third locus. At PRPF38A, our data strongly supports a putative causal

candidate variant, which falls into binding motifs for two relevant transcription factors.

Our findings implicate multiple biological pathways involved in variation in bone accrual,

and highlight the switch between osteogenesis and adipogenesis as potentially critical in
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pediatric bone accrual. In conclusion, in-depth longitudinal phenotyping plus appropriate

functional follow-up of GWAS loci can yield greater insight into dynamic, complex traits

such as bone accrual.

Methods
Study cohorts

The BMDCS was a longitudinal, multiethnic cohort of healthy children and adolescents

who were recruited from five clinical sites across the USA (Philadelphia, PA; Cincin-

nati, OH; Omaha, NB; Los Angeles, CA; and New York, NY) to establish aBMD and

BMC reference curves [16]. Briefly, the participants were aged 6–16 years at baseline

(2002–2003) and were followed for up to 6 additional annual visits (for a maximum

total of 7 visits). Older (age 19 years) and younger (age 5 years) participants were subse-

quently recruited in 2006–2007 and were followed annually for 2 years (maximum 3

visits). One thousand eight hundred eighty-five participants (52% female) had both phe-

notypes and genetic data and were thus eligible for inclusion in the present study. Par-

ticipants 18 years and older gave written informed consent. Parental or guardian

consent plus participant assent were obtained for subjects younger than 18 years old.

The study was approved by the Institutional Review Board of each respective clinical

center. This study was performed in compliance with the Helsinki Declaration.

ALSPAC [93, 94] is a prospective birth cohort study that recruited all pregnant women

residing within the catchment area of 3 National Health Service authorities in southwest

England with an expected date of delivery between April 1991 and December 1992. In total,

15,454 eligible pregnancies were enrolled in ALSPAC (75% response), with 14,901 live births

alive at age 1 year. Detailed information has been collected from offspring and parents using

questionnaires, data extraction from medical records, linkage to health records, and dedi-

cated clinic assessments up to the last completed contact in 2018. Details of all available

data can be found in the ALSPAC study website (http://www.bristol.ac.uk/alspac/re-

searchers/our-data/), which includes a fully searchable data dictionary and variable search

tool. Ethics approval was obtained from the ALSPAC law and ethics committee and local

research ethics committees. Written informed consent was obtained from all participants.

For this study, analysis was performed in white participants (> 98% of the sample).

aBMD and BMC measurement

In the BMDCS, DXA scans of the whole body, lumbar spine, hip, and 1/3 distal radius

were obtained using bone densitometers (Hologic, Bedford, MA, USA) following the

manufacturer’s guidelines by trained research technicians. The scans were analyzed by

the DXA Core Laboratory (University of San Francisco, San Francisco, CA, USA) using

Hologic software (v.12.3) for baseline scans and Apex 2.1 for follow-up scans using the

“compare” feature. Scans were adjusted for calibration differences among clinical cen-

ters and longitudinal drift. aBMD and BMC Z-scores for age, sex, and population an-

cestry were calculated and adjusted for height Z-scores [95]. For growth modeling,

unadjusted aBMD or BMC values were used.

In ALSPAC, all participants were invited to undergo up to 6 whole-body DXA scans

as part of research clinic assessments at mean ages 9.8, 11.7, 13.8, 15.4, 17.8, and 24.5

years. Scans were performed using a Lunar Prodigy scanner (Lunar Radiation Corp)
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and were analyzed according to the manufacturer’s standard scanning software and posi-

tioning protocols. Scans were reanalyzed as necessary to ensure optimal placement of bor-

ders between adjacent subregions, and scans with anomalies were excluded. From these

whole-body DXA scans, we extracted BMD and BMC at each age for TBLH and skull.

Longitudinal modeling of bone accretion

SITAR was used to model individual growth curves separately by sex and ancestry [17].

SITAR is a shape invariant model that generates a mean curve for all included mea-

surements. Individual curves are then described relative to the mean curve by shifting

in three dimensions: up-down on the y-axis (differences in mean size, i.e., bone density

or content, between subjects relative to the population mean, a-size), left-right on the

x-axis (differences in age when the rate of growth increases, b-timing), and stretched-

compressed on the age scale to represent distance over time (how quickly growth oc-

curs, or differences in the rate of bone mineralization in the context of the current

study, c-velocity). These are estimated as random effects that summarize the difference

of each individual growth curve relative to the population mean.

In BMDCS, we performed growth modeling on height and aBMD and BMC measured

at the spine, total hip, femoral neck, distal 1/3 radius, skull, and total body less head

(TBLH), as previously described [18]. Modeling was performed on up to 2014 children

and adolescents (50.7% female and 23.8% self-reported as Black or African American)

with a mean of 5 annual study visits each, representing ~ 11,000 scans in total (Add-

itional file 1: Table S1; Additional file 2: Fig. S1). Only participants with genetic data and

phenotypes were taken forward for heritability and GWAS analyses (max N = 1399, 51%

female, 25% Black or African American).

In ALSPAC, SITAR models were fitted for individuals with at least 1 measurement and

were fitted in males and females separately. Initially, the models were fitted to the ALSP

AC data alone, and then again with the BMDCS data added. For the combined analyses,

fixed effects were included in the model to distinguish between the two cohorts. We were

only able to achieve converged models for both sexes for TBLH BMC and skull BMC

while modeling both cohorts together. The random-effects (a, b and c) from the fitted

models for TBLH and skull BMC (both sexes) were extracted for the ALSPAC partici-

pants, converted to sex-specific z-scores, and taken forward for GWAS replication. We in-

cluded data from 6382 participants (50% female) (Additional file 2: Fig. S14).

Genotyping and imputation

In BMDCS, genome-wide genotyping was carried out on the Illumina Infinium Omni

Express plus Exome BeadChip (Illumina, San Diego, CA) at the Children’s Hospital of

Philadelphia Center for Applied Genomics [96]. Quality control was subsequently per-

formed to exclude samples with incorrect or ambiguous gender and with missingness

per person > 5%, and to exclude variants with call rate < 95% and minor allele fre-

quency (MAF) < 0.5%. Imputation was performed against the 1000 Genomes Phase 1

v.3 reference panel as previously described [9]. After imputation, variants with MAF <

5% or quality score (INFO) < 0.4 were excluded, yielding 7,238,679 SNPs.

ALSPAC children were genotyped using the Illumina HumanHap550 quad chip

genotyping platform (Illumina) by 23andme subcontracting the Wellcome Trust Sanger
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Institute (Cambridge, UK) and the Laboratory Corporation of America (Burlington, NC,

USA). The resulting raw genome-wide data were subjected to standard quality control

methods. Individuals were excluded on the basis of gender mismatches, minimal or exces-

sive heterozygosity, disproportionate levels of individual missingness (> 3%), and insuffi-

cient sample replication (IBD < 0.8). All individuals with non-European ancestry were

removed. SNPs with a minor allele frequency of < 1%, a call rate of < 95%, or evidence for

violations of Hardy-Weinberg equilibrium (P < 5 × 10−7) were removed. Cryptic related-

ness was measured as proportion of identity by descent (IBD > 0.1). Related subjects that

passed all other quality control thresholds were retained during subsequent phasing and

imputation. Nine thousand one hundred fifteen subjects and 500,527 SNPs passed these

quality control filters. Of these, we combined 477,482 SNP genotypes in common between

the sample of ALSPAC children and ALSPAC mothers. We removed SNPs with genotype

missingness above 1% due to poor quality (11,396 SNPs removed) and removed a further

321 subjects due to potential ID mismatches. We estimated haplotypes using ShapeIT

(v2.r644) which utilizes relatedness during phasing. The phased haplotypes were then im-

puted to the Haplotype Reference Consortium (HRCr1.1, 2016) panel. The HRC panel

was phased using ShapeIt v2, and the imputation was performed using the Michigan im-

putation server. This gave 8237 eligible children with available genotype data after exclu-

sion of related subjects using cryptic relatedness measures described previously.

Heritability analyses

For the SNP heritability analyses, imputed genotypes were converted to “best-guess” genotypes,

meaning the genotype call most likely to be true given the imputation dosages, using PLINK

with a “hard-call” threshold of 0.499. In PLINK, duplicate SNPs were removed, as well as SNPs

with Hardy-Weinberg Equilibrium (HWE) P< 1× 10−6 and MAF< 2.5 × 10−5. Additionally,

PLINK was used to perform a second round of filtering of SNPs with a missingness rate > 5%

and individuals missing genotypes at > 5% of SNPs. One of each pair of individuals with an es-

timated genetic relationship of > 0.025 was removed to reduce bias from cryptic relatedness.

Genetic restricted maximum likelihood (GREML) [97] was used to calculate the amount

of trait variance explained by genotyped and imputed SNPs. For the cross-sectional ana-

lyses, Z-scores for all phenotypes were adjusted for height-for-age Z-score, with the ex-

ception of height and skull, which were not adjusted for height Z-scores. Z-scores were

further adjusted for age, sex, cohort (longitudinal set or cross-sectional set), collection site

(one of five clinical sites), dietary calcium intake, physical activity [98], and the first 10

genetic PCs to adjust for population substructure. For the SITAR parameters a-size, b-

timing, and c-velocity, GCTA analysis was performed while adjusting for study site and

the first 10 genetic PCs, the only covariates that did not change over time. Sensitivity ana-

lyses to examine the effect of ancestry were performed modeling ancestral groups to-

gether, as well as with the addition and removal of 10 PCs as covariates.

Genetic correlation across skeletal sites

We performed GCTA bivariate GREML analysis [97] for cross-sectional phenotypes to

estimate the amount of genetic covariance (the genome-wide effect of causal variants

that affect multiple traits) between skeletal sites and aBMD and BMC at each individual

skeletal site. PhenoSpD [19] was used to run LD Score Regression genetic correlation
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analysis [99] of longitudinal phenotypes. Power calculations for the cross-sectional, lon-

gitudinal, and genetic correlation estimates can be found in Additional file 1: Table S2.

Most cross-sectional genetic correlation comparisons resulted in high SE estimates,

reflecting a large variation surrounding the point estimates and thus low degree of con-

fidence in their accuracy; however, taking only estimates with relatively small SE (<

0.10), i.e., those that were most precise, all genetic correlations were high (> 0.7) and

passed a Bonferroni significance threshold adjusting for the number of comparisons

(0.05/78 = 0.00064).

Genome-wide association analysis

In the BMDCS, GWAS was performed for a total of 36 models: the 6 skeletal sites

noted above, for each of the 3 SITAR parameters (a-size, b-timing, c-velocity), for both

aBMD and BMC. GEMMA [100] was used to create centered relationship matrices,

and mixed effects models (Wald test) were run on sex- and ancestry-standardized

SITAR parameters adjusted for collection site (max N with phenotypes, genotypes, and

covariates = 1362). The results were subsequently filtered for MAF < 0.05, HWE P < 1 ×

10−6, and imputation quality (INFO) > 0.4.

Replication

In ALSPAC, we performed GWAS using a linear mixed model in BOLT-LMM v.2.3

[101]. This model estimates heritability parameters and the infinitesimal mixed model

association statistics. We also included the first 2 principal components. Genotype data

were inputted in PLINK binary format. We used a reference map from BOLT-LMM

(build hg19) to interpolate genetic map coordinates from SNP physical (base pair) posi-

tions. Reference LD scores supplied by BOLT-LMM and appropriate for analyses of

European-ancestry samples were used to calibrate the BOLT-LMM statistic. LD scores

were matched to SNPs by base pair coordinate.

We extracted all lead SNPs at our 40 prioritized loci and their proxies (r2 > 0.8 based

on a European reference using SNiPA, https://snipa.helmholtz-muenchen.de/snipa3/)

from the ALSPAC GWAS results and looked for broad support at P < 0.05.

Functional candidate gene annotation

We extracted all genes and transcripts in the TADs surrounding each sentinel SNP

using the TAD pathways pipeline [34]. The protein-coding genes were then function-

ally annotated for GO terms, KEGG pathways, and OMIM disease association using

the Database for Annotation, Visualization and Integrated Discovery (DAVID) v. 6.8

(https://david.ncifcrf.gov/). To search for pan-tissue eQTLs, we extracted all SNPs in

LD (r2 > 0.8) with our sentinel SNPs. These SNPs were then queried for significant

variant-gene eQTLs in all tissues in GTEx v.7 [41]. We refer to these as “LD-eQTLs”

since no colocalization analysis was performed. To search for enriched pathways, all

genes and transcripts were subjected to TAD pathway analysis [34].

ATAC-seq and high-resolution promoter-focused capture C

The ATAC-seq and capture C methods have been previously published [15]. Briefly, we

first identified all proxy SNPs in LD (r2 = 0.5) with the sentinel GWAS SNPs using
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raggr (www.raggr.usc.edu) with the following parameters: populations: CEU + FIN+

GBR + IBS + TSI; min MAF = 0.001; min r2 = 0.5; max r2 = 1.0; max distance = 500 kb;

max Mendelian errors = 1; HWP cutoff = 0; min genotype % = 75; genotype database =

1000 Genomes Phase 3; genome build hg19. We then assessed which of these proxy

SNPs and which of the gene promoters baited in our capture C library resided in an

open chromatin region in hMSC-derived osteoblasts, by intersecting their genomic po-

sitions with those of the ATAC-seq peaks (using the BEDTools function intersectBed

with 1 bp overlap). Next, we extracted the chromatin loops linking open proxy SNPs

and open gene promoters in the hMSC-derived osteoblast capture C dataset (bait-to-

bait interactions were excluded). The results were visualized using the UCSC Genome

Browser.

Functional assays in hMSCs

Primary bone-marrow derived hMSCs isolated from healthy donors (age range 22–29

years) were characterized for cell surface expression (CD166 + CD90 + CD105+/CD36-

CD34-CD10-CD11b-CD45-) and tri-lineage differentiation (osteoblastic, adipogenic,

and chondrogenic) potential at the Institute of Regenerative Medicine, Texas A&M

University. Expansion and maintenance of the cells were carried out using alpha-MEM

supplemented with 16.5% fetal bovine serum (FBS) in standard culture conditions by

plating cells at a density of 3000 cells/cm2.

Experimental knockdown of candidate genes was achieved using DharmaFECT1 trans-

fection reagent (Dharmacon Inc., Lafayette, CO) using sets of 4 ON-TARGETplus siRNAs

in three temporally separated independent hMSC donor lines. Following siRNA transfec-

tion, the cells were allowed to recover for 2 days in maintenance media and stimulated

with BMP2 for additional 3 days in serum-free osteogenic media as previously described

[15]. To assess the influence of knockdown on gene expression (RT-qPCR) and early

osteoblast differentiation (histochemical ALP staining), cells were harvested at 3 days post

BMP2 stimulation. For extracellular matrix calcium deposition, cells were stained with

0.1% Alizarin Red S after 8–10 days post-BMP2 stimulation. Details of the siRNA and

RT-qPCR primers are provided in Additional file 1: Tables S19-S21.

For quantification of histochemical ALP stain and Alizarin Red staining, multi-well

plates were allowed to air-dry and each well was scanned using high-resolution color

bright field objective (1.25X) of the Lionheart FX automated microscope (BioTek). For

each scanned well, image analysis was performed using Image J software according to the

guidelines provided by the National Institute of Health. For histochemical assays, two in-

dependent experiments per siRNA per donor line were performed. P values for differences

between groups were calculated using two-way homoscedastic Student’s t tests.

Functional assays in hFOBs

hFOB1.19 cells were purchased from ATCC (CRL-11372) and grown in a 1:1 mixture

of Ham’s F12 Medium and Dulbecco’s Modified Eagle’s Medium containing no phenol

red and supplemented with 10% FBS and 0.3 mg/mL G418. Cells were maintained at

33.5 °C using standard culture conditions and differentiated into mature osteoblasts at

39.5 °C for all experiments. Knockdown of candidate genes using siRNA and histo-

chemical ALP staining were performed using the same conditions used for the hMSC
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donor lines. CRISPR-Cas9 mediated deletion of the PRPF38A proxy SNP (rs34455069)

and sentinel GWAS SNP (rs2762826) were achieved using a pooled lentiviral mCherry

construct (Addgene, 99154) containing three sgRNAs on each side of the target. Lenti-

viral infection was confirmed using mCherry/Texas Red microscopy and efficiency was

calculated using the Countess II FL (Thermo). SNP deletions were confirmed using

multiplexed sequencing of PCR products generated from hFOB1.19 DNA across the

CRISPR region for both SNPs (Additional file 2: Fig. S12). Quantification of ALP stain-

ing in hFOB1.19 cells was similar to that used for hMSC donor lines; however, three

technical replicates were used. The plates were photographed, images converted to

grayscale, and analyzed using Image J software.
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