
ARTICLE

Distributed Simulation Platforms and Data Passing Tools
for Natural Hazards Engineering: Reviews, Limitations,
and Recommendations

Lichao Xu1 • Szu-Yun Lin1 • Andrew W. Hlynka1 • Hao Lu2 • Vineet R. Kamat1 •

Carol C. Menassa1 • Sherif El-Tawil1 • Atul Prakash2 • Seymour M. J. Spence1 •

Jason McCormick1

Accepted: 7 June 2021 / Published online: 5 July 2021

� The Author(s) 2021

Abstract There has been a strong need for simulation

environments that are capable of modeling deep interde-

pendencies between complex systems encountered during

natural hazards, such as the interactions and coupled effects

between civil infrastructure systems response, human

behavior, and social policies, for improved community

resilience. Coupling such complex components with an

integrated simulation requires continuous data exchange

between different simulators simulating separate models

during the entire simulation process. This can be imple-

mented by means of distributed simulation platforms or

data passing tools. In order to provide a systematic refer-

ence for simulation tool choice and facilitating the devel-

opment of compatible distributed simulators for deep

interdependent study in the context of natural hazards, this

article focuses on generic tools suitable for integration of

simulators from different fields but not the platforms that

are mainly used in some specific fields. With this aim, the

article provides a comprehensive review of the most

commonly used generic distributed simulation platforms

(Distributed Interactive Simulation (DIS), High Level

Architecture (HLA), Test and Training Enabling Archi-

tecture (TENA), and Distributed Data Services (DDS)) and

data passing tools (Robot Operation System (ROS) and

Lightweight Communication and Marshalling (LCM)) and

compares their advantages and disadvantages. Three

specific limitations in existing platforms are identified from

the perspective of natural hazard simulation. For mitigating

the identified limitations, two platform design recommen-

dations are provided, namely message exchange wrappers

and hybrid communication, to help improve data passing

capabilities in existing solutions and provide some guid-

ance for the design of a new domain-specific distributed

simulation framework.

Keywords Civil infrastructure � Data passing

tools � Distributed simulation platforms � Hybrid
communication � Message exchange wrapper � Natural
hazards

1 Introduction

As in many other fields, numerical simulation models in

the natural hazards research area have primarily evolved

along separate disciplines. For example, in earthquake

engineering, several models have been developed to sim-

ulate various effects of an earthquake on civil infrastructure

(Xiong et al. 2016). An example in the fire propagation

area is National Institute of Standards and Technology

(NIST)’s Fire Dynamics Simulator (FDS) and Smokeview

(Kerber and Milke 2007). In hurricane research, there exist

some public models such as the Florida Public Hurricane

Loss Model (FPHLM) (Chen et al. 2009) and commercial

models from AIR Worldwide (AIR) (AIR Worldwide

2020), Applied Research Associates (ARA) (ARA 2021),

and Risk Management Solutions (RMS) (Risk Manage-

ment Solutions 2007). Similarly, several models exist in

hazard-related areas such as wind (Lin et al. 2018), tsunami

(Zobel et al. 2006), flood (Ginting and Mundani 2019),

power system (Wang et al. 2015), transportation (Barrett

et al. 2010), human response under disasters (Jain and

& Vineet R. Kamat

vkamat@umich.edu

1 Department of Civil and Environmental Engineering,

University of Michigan, Ann Arbor, MI 48109, USA

2 Department of Electrical Engineering and Computer Science,

University of Michigan, Ann Arbor, MI 48109, USA

123

Int J Disaster Risk Sci (2021) 12:617–634 www.ijdrs.com

https://doi.org/10.1007/s13753-021-00361-7 www.springer.com/13753

http://crossmark.crossref.org/dialog/?doi=10.1007/s13753-021-00361-7&domain=pdf
www.ijdrs.com
https://doi.org/10.1007/s13753-021-00361-7
www.springer.com/13753

McLean 2003; Bunea et al. 2016), and to a lesser extent,

evacuation plans (Xie et al. 2016), emergency response

training (Liu et al. 2007), and post-disaster recovery (Fie-

drich 2006).

However, extreme natural hazards, such as earthquakes,

tornadoes, floods, and hurricanes, often induce complicated

interdependencies between the built environment (for

example, buildings and bridges), critical infrastructure

systems (for example, roadways and communications), and

social and non-physical systems (for example, politics and

economics). As such, hazards simulation and disaster sci-

ence, more broadly, are highly multi-disciplinary research

areas. Many U.S. government documents (NRC

2011a, 2011b; NIST 2016a, 2016b) and researchers (Ko-

liou et al. 2017; Mitsova 2018) have called for the devel-

opment of comprehensive frameworks that can integrate

the efforts from different sub-fields and enhance interdis-

ciplinary collaborations between natural hazard

researchers.

In order to deal with this lack of compatibility, one

promising and practical strategy is to modularize each

discipline-specific computational model and then integrate

them with distributed simulation platforms such as Dis-

tributed Interactive Simulation (DIS) (D.S. Committee

2012), High Level Architecture (HLA) (HLA Working

Group 2010), Test and Training Enabling Architecture

(TENA) (Powell and Noseworthy 2012), and Distributed

Data Services (DDS) (OMG 2015), or data passing tools

such as Robot Operation System (ROS) (ROS.org 2018)

and Lightweight Communication and Marshalling (LCM)

(Huang et al. 2010). Addressing this problem using such an

approach is commonly referred to as distributed simulation.

The current state of affairs in this field is that since each

domain has been evolving separately, most of the existing

integrated simulations are developed upon and limited to

domain-specific simulation environments and lack the

benefits of interoperability, reusability, and scalability

provided by the generic simulation platforms listed above.

For example, in earthquake engineering, Integrated Earth-

quake Simulator (IES) (Hori and Ichimura 2008; Hori

2011) was originally developed to seamlessly integrate

analysis models and simultaneously analyze almost all

processes involved in earthquake disasters in Japan.

However, even for a similar simulation, a new version of

IES had to be developed separately for the Istanbul, Turkey

earthquake due to differences in numerical analysis meth-

ods and available urban information (Sahin et al. 2016).

Moreover, IES is sequential and thus inconvenient to be

integrated with other simulators with different simulation

resolutions such as dynamic debris and transportation

systems for timestep-wise coupling simulation (Sahin et al.

2016). Similarly, Miles and Chang conducted simulations

to study the interactions that occur between various entities

during disasters (Miles and Chang 2006). However, the

proposed approaches do not support cascading or parallel

disaster events. In addition, without using distributed

simulation, these simulators need to run on a single

machine with limited processing power, which usually

limits the scale of the problem that can be simulated.

Some researchers have realized the necessities and

benefits of the distributed simulation platforms or tools and

started to use them in the hazards engineering field. For

example, Mandiak et al. developed a disaster monitoring

interface and integrated it into an HLA-based earthquake

simulation for post-disaster data fusion (Mandiak et al.

2005). Fiedrich proposed a distributed simulation system

based on HLA that focused on resource management issues

during disasters (Fiedrich 2006). To improve people’s

emergency response, Liu et al. demonstrated an emergency

training simulation achieved by HLA (Liu et al. 2007). Nan

and Eusgeld developed an HLA-compliant simulation

testbed and demonstrated that HLA is a viable option to

simulate and capture interdependencies among simulators

(Nan and Eusgeld 2011). More recently, Lin et al. proposed

to model interdependent effects in natural hazards and

implemented an example application in wind engineering

(Lin et al. 2018).

Due to the limitations in distributed simulation plat-

forms, the nontrivial gaps between the simulation tools and

domain knowledge, as well as the difficulty of handling

multiple disciplines, most models of disaster scenarios

have focused on the interactions that occur between two or,

at most, three related systems. During disasters, there are

usually more factors that interact with each other. In order

to facilitate the development of compatible domain simu-

lators and the large-scale simulation incorporating deep

interdependencies between multiple simulators, this article

surveys the main existing generic distributed simulation

platforms (DIS, HLA, TENA, and DDS) and data passing

tools (ROS and LCM) that are critical for interdependent

study in natural hazards engineering.

More broadly, these simulation tools can also benefit

various simulations in civil engineering (Kamat and Mar-

tinez 2002; Azar and Menassa 2010; Dong and Kamat

2010) by expanding the simulation scale and increasing

simulation resolution. By jointly using different sources of

models from researchers, model vendors, or individual

developers, they can also provide more detailed and addi-

tional types of information compared to the loss modeling

framework from the OASIS team (Team Oasis 2021) or the

Karen Clark & Company (2020) that is largely driven from

loss estimation requirements for insurance businesses.

The strengths and weaknesses of each representative

simulation tool are identified to guide researchers or sim-

ulation engineers to choose the appropriate tools for their

specific applications while being aware of the limitations.

123

618 Xu et al. Distributed Simulation Platforms for Natural Hazards Engineering

After the systematic review of the distributed simulation

tools, the key limitations to the current existing distributed

simulation tools are summarized to highlight the specific

needs in natural hazards engineering. Finally, based on a

synthesis of the gathered information, two platform design

recommendations are provided, namely message exchange

wrappers and hybrid communication, to help further

improve data passing capabilities in existing solutions and

provide some guidance for the design of a new simulation

framework.

2 Existing Distributed Simulation Platforms

Distributed computing emerged about 40 years ago when

the U.S. Department of Defense (DoD) started developing

communication protocols to enable interactive simulations

involving various types of weapon systems. Among the

distributed simulation platforms developed were DIS (D.S.

Committee 2012), HLA (HLA Working Group 2010), and

TENA (Powell and Noseworthy 2012). Besides military

training and simulation, they have also been utilized in

marine simulators (Yong and Jin 2000), space projects

(Arguello and Miró 2000), infrastructure system simulation

(Grogan and De Weck 2015), and virtual testing (Dai et al.

2011). Independently driven by the challenges of con-

ducting real-time sensing, information fusion, and control

in robots, researchers in robotics engineering developed

low-latency data passing solutions. For example, ROS

(ROS.org 2018) and LCM (Huang et al. 2010) have been

developed and widely used in real-time robotics applica-

tions. Due to their ease of use and high efficiency,

researchers have started exploring their applications in

distributed simulations for modeling coupling interactions

between building energy consumption and human comfort

(Thomas et al. 2017) and interdependent effects in natural

hazards (Lin et al. 2018; Lin et al. 2019).

In recent years, due to the rising interest in the extension

of Internet connectivity, many solutions have been pro-

posed to address the emerging need for Internet-of-Things

(IoT) applications. Among such work, IoTivity (IoTivity

2018), which uses a constrained application protocol

(CoAP) as its software protocol, is mainly focused on

device-to-device connection. DDS (OMG 2015) is a more

general data communication protocol and standard devel-

oped by the Object Management Group (OMG), which is

suitable for all kinds of connections in IoT applications.

Even though DDS was developed for real-time operations,

it provides features such as API Standard, Data Modeling

Standard, Quality of Service, and Time Management,

which are comparable to HLA, and thus also suitable for

simulations. The remainder of this section reviews the two

categories of data passing tools for distributed simulation:

standards and standard-based solutions and standalone

tools.

2.1 Standards and Standard-Based Solutions

This section reviews the standards and standard-based

solutions, including DIS, HLA, TENA, and DDS.

2.1.1 Distributed Interactive Simulation (DIS)

The early efforts of the U.S. defense community to address

the need for networked multi-user simulation led to the

SIMNET (Simulation Networking) project (Miller and

Thorpe 1995). For about a decade, SIMNET formed the

technological foundation for many of its descendants and

was the origin of a sequence of IEEE standards. One of

SIMNET’s derivatives, the DIS protocol, was published as

an industry standard from 1993 to 1998 by IEEE (DIS

Steering Committee 1998). The standard was considered

dominant until a new standard (IEEE std 1278.1-2012

(D.S. Committee 2012)) was released. As related research

in hazards engineering, it was planned to be used in a

future version of evacuation simulation in fire disasters

(Ren et al. 2007). For legacy reasons, DIS is still used

today in some modern simulations.

The DIS protocol is designed to be a message passing

standard (not an existing software or package) that speci-

fies message types and the procedures to transmit the

messages across a network of different simulators. If it is

followed correctly, compliant simulations are capable of

sending and receiving messages to and from any other

compliant simulation, even if the local DIS implementa-

tions that run on different hosts are diverse. More specifi-

cally, DIS adopts a communication pattern for message

exchange with point-to-point communication via User

Datagram Protocol (UDP) as shown in Fig. 1. The message

format is well specified and referred to as protocol data unit

Fig. 1 Point-to-point message exchange via user datagram protocol

(UDP) in distributed interactive simulation (DIS)

123

Int J Disaster Risk Sci 619

(PDU), which consists of an entity ID, entity type, and any

expected values a simulation requires to function, repre-

sented in binary format. The standard defines exactly what

variables can be present. Values like ‘‘position,’’ ‘‘orien-

tation,’’ and ‘‘collision’’ all take a certain number of bits

and have pre-defined limits to the range of values they can

contain.

It is presumed that each simulation is capable of

encoding and translating these values to binary format,

knowing in advance the exact location and number of bits

in which each value exists (as defined by the standard).

Therefore, a set of PDUs used in different fields for dif-

ferent purposes are predefined in the standard and only

these PDUs are available to simulation engineers. Such an

approach is very inflexible. If a custom type of PDU is

required, it has to be included in the standard first and only

then can it be used in simulations. For example, in order to

simulate the effect of wind on multiple buildings, a sce-

nario simulator needs to be set up first to send scenario

information to other simulators such as wind generator

simulator, structure analysis simulator, and damage simu-

lator. The scenario information needs to include building

location, geometry, and material types, and thus needs a

more complex data structure than what DIS provides in its

PDUs. Therefore, it is a significant challenge to create such

a simulation with DIS.

In point-to-point communication (Fig. 1), there is no

middleware or center server maintaining message

exchange. Instead, each message sender would manually

connect to its receivers using their network Internet Pro-

tocol (IP) addresses. This makes it only suitable for its

original focus, that is, individual weapon simulation for

military training and real-time wargaming but not scale

well for the aggregate level simulation of a battlefield.

Another problem is that although the standard describes in

great detail the format of data being sent over a network, it

does not specify how exactly network communication

should be implemented and is open to any implementation

(typically hidden to an end user). This further leads to the

following two disadvantages: (1) it is up to users to create

their own communication tools by following the standard;

and (2) users must be capable of creating the tool them-

selves or must be able to obtain a premade solution (open-

source or commercial) such as Open DIS (McGregor et al.

2008) and VR-Link (VT MAK 2018).

Knowledge of the data format in advance is the simplest

manner to maintain consistency across simulations. How-

ever, DIS puts full responsibility on the user to correctly

implement its standard. Inflexibility in the data format and

consequences for peer-to-peer network connections make it

scale poorly for different use cases and difficult to imple-

ment in the case scenarios involving multiple simultaneous

simulations that are quite common in a disaster scenario.

Distributed Interactive Simulation also does not encompass

other important features, such as time management and

network management that would be desirable when mul-

tiple simulators are involved in a simulation. Newer stan-

dards attempted to address these drawbacks. Among them

are Common Training Instrumentation Architecture

(CTIA), Aggregate Level Simulation Protocol (ALSP),

HLA, and TENA. Among these, HLA and TENA are the

most widely known.

2.1.2 High Level Architecture (HLA)

HLA was developed by the U.S. DoD and the Defense

Modeling and Simulation Office (DMSO) in 1995 (Hol-

lenbach 2009) based on experience with DIS and the desire

to develop a high-level simulation architecture that would

facilitate interoperability and reusability of distributed

simulation components. It became a DoD standard in 1998

(The U.S. DoD HLA 1.3 specification) (Dahmann et al.

1998) and an IEEE standard in 2000 (HLA Working Group

2000), and then evolved again to its latest version in 2010

(HLA Working Group 2010), and continues to be an active

standard as of 2019. High Level Architecture was once

widely used in distributed simulations, including some

natural hazard simulations where it was utilized to model

interdependencies between critical infrastructure systems

(Fiedrich 2006; Eusgeld and Nan 2009; Eusgeld et al.

2011) and disaster responses (Liu et al. 2007; Hwang et al.

2016).

High Level Architecture has some advantages over DIS.

First, HLA-compliant software uses an application pro-

gramming interface (API), which in turn can be used by a

simulation member, called a federate application in HLA.

This facilitates connections between federates. The API

includes functionality to control time management and

syncing data exchange between different simulations.

Second, unlike DIS where the data structure has to be

predefined in the standard, by invoking the HLA Object

Model Template (OMT), a user is allowed to model data as

an object instance or an interaction (also called HLA

objects) that includes the data (attributes and parameters,

separately) to be exchanged among the federates in a fed-

eration execution at design time. This is clearly more

flexible than the DIS alternative for a disaster simulation

where an interaction instance can be conveniently used to

model an earthquake event, an evacuation event, or a

recovery event, and its effect can be reflected in some

object instances used to model buildings or lifelines. Third,

in terms of how data are exchanged, instead of using the

point-to-point communication in DIS (Fig. 1), HLA routes

data as HLA objects via a middleware (called runtime

infrastructure (RTI)) using a Publish/Subscribe (P/S) pat-

tern (Fig. 2). In this way, the sender and receiver federates

123

620 Xu et al. Distributed Simulation Platforms for Natural Hazards Engineering

just need to declare what data they need and what data they

provide, without the requirement of knowing about other

federates. This feature further improves the reuse of each

federate by decreasing the coupling among different fed-

erates in a federation, and makes it scale better for systems

with a large number of simulations. In other words, the

federates each connects to a single point, rather than to

each other.

Although HLA is more general than DIS, it still suffers

from multiple flaws. It is defined as a simulation systems

architecture framework (HLA Working Group 2010), not a

software or an implementation. Therefore, HLA software

must be able to ‘‘connect’’ to the RTI. However, it does not

specify how the connection works, leaving the implemen-

tation up to the creator of the HLA compliant software.

Similarly, time-management is described as a function that

must exist, but how it functions can be unique in many

implementations. Indeed, its very existence is all that is

needed to be compliant. For example, if the wind-building

simulation mentioned in Sect. 2.1.1 is created in HLA with

different RTIs, the simulation’s efficiency can be quite

different depending on detailed RTI implementations. In

practice, users usually have to try different RTIs to get

satisfactory efficiency performance. Moreover, having to

compile a data format allows efficiency to be maintained as

to the number of bytes in each message but requiring

compilation on a user’s local machine every time that the

data format and content changes is onerous.

Commercial HLA software packages available for use

are CERTI (ONERA 2018), Portico (Calytrix Technologies

2018), MAK (MÄK Technologies 2018), and Pitch (Pitch

Technologies 2018). While there are multiple open-source

solutions, as of 2019, many of them have been discontin-

ued or are unobtainable, or they are not 100% compliant

with HLA standards. It is not trivial to program HLA

software from scratch, as there are six separate manage-

ment systems (federation, declaration, object, ownership,

time, data distribution) (HLA Working Group 2010) that

have their own specification section, each lengthy, but

lacking in the detail required for systematic implementa-

tion. The benefit of the standard is that a prepared

simulation can be compatible with any compliant HLA

software. However, generally, only one vendor’s HLA

software can be used in a federation to allow compatibility

with the RTI and local federate’s API. In order to help

ensure compliance and encourage adoption, the U.S. DoD

offered a public service to check if a new implementation

met the HLA standard, but this service was later abandoned

when the original website shifted domains (Behner and

Lofstrand 2017).

High Level Architecture is still in use, but interest in it

has decreased since its inception. The standard’s ambiguity

and a lack of easily available implementations have made it

difficult for newcomers to utilize HLA in practice.

2.1.3 Test and Training Enabling Architecture (TENA)

Test and Training Enabling Architecture was introduced by

the U.S. DoD. Designed after HLA, TENA’s development

traces as far back as 1998 (Cozby 1998) and continues to

be maintained as of 2018. Similar to HLA, TENA allows

for the development of individual simulations interoperable

with each other for distributed systems, saving time and

money in the development process. As a tool, its func-

tionality is revised based on early user feedback, but its

core intentions drive its development.

The architecture of TENA consists of TENA-compliant

applications and simulations, TENA Middleware, and

TENA Utilities, including a gateway accessible by non-

TENA systems. The middleware acts as a communication

channel, where data must be formatted according to a

TENA Object Model. One advantage of TENA over HLA

is that it allows data to be exchanged between custom

object models as long as they are used by two or more

simulators. However, custom object models in HLA usu-

ally risk being incompatible with other simulators that can

only recognize models from HLA’s predefined model set.

Different from HLA and other standards, TENA is not

intended to act as a professional standard document

(Powell and Noseworthy 2012), but as a standard tool.

Monitored closely by its development group, access to

TENA and its documentation requires applying for a free

account through an online portal. While this process is

open to all applicants, the existence of a screening process

that asks for contact information, project intentions, and

grant usage makes it difficult for researchers to test

TENA’s functionality to confirm it meets their require-

ments. In addition, since TENA places more emphasis on

real-time applications, it has only provided partial time

management ability compared with HLA, which makes it

less convenient for simulations that need complex time

synchronization. Therefore, even though TENA was made

explicitly to overcome some limitations in HLA, its inac-

cessibility and the fact that some of its functionality and

Fig. 2 Mediator-based object exchange via user datagram proto-

col/transmission control protocol (UDP/TCP) in high level architec-

ture (HLA). RTI: runtime infrastructure.

123

Int J Disaster Risk Sci 621

design are still in development, make TENA a difficult

choice for practical use cases in the near future.

2.1.4 Data Distribution Service (DDS)

The DDS is a standard for data communication between

distributed machines and software for real-time systems

(OMG 2015). Unlike the previous solutions in this section

that are oriented for distributed simulation and created by

government entities, DDS was originally designed for real-

time distributed operational systems and developed by a

professional non-profit collective called Object Manage-

ment Group since 2004 (OMG 2004). The DDS is not a

single tool or software solution, so users must utilize

accessible documentation on the standard to prepare their

own, or must use existing solutions, including RTI Connext

(Real-time Innovations 2018) or OpenDDS (OMG 2018).

The intention is that all DDS solutions follow the specifi-

cation carefully, such that each user can use any vendor’s

DDS solution and be interoperable with each other on the

network. Professional demonstrations have been given to

show this interoperability to be possible with DDS software

from different vendors. It has been used for disaster man-

agement in natural hazards engineering (Lazarov et al.

2015; Ray et al. 2017).

Best suited for Internet-of-Things (IoT) applications,

DDS is flexible for use across a variety of domains jointly

with HLA or as a replacement. In DDS, data are pre-de-

fined as a message format in a struct-like file suffixed with

.idl and compiled with the DDS software to make it rec-

ognizable when it is written to or retrieved from the DDS

global data space with a DataWriter or a DataReader.

Using a specially designed topic-based P/S mechanism to

share data within a domain participant, DDS does not

depend on any global knowledge and supports fully

dynamic discovery and matching of different DataWriters

and Data Readers, which is more flexible than HLA that

still requires static declaration in Federation Object Model

(FOM) even though different publishers and subscribers

can be matched dynamically. It also provides richer (22

versus 2 in HLA) quality of service (QoS) policies that help

to control local and end-to-end properties of DDS entities.

Conversely, since it was originally designed for real-time

application in distributed operational systems, the main

disadvantage of DDS is that it does not explicitly provide

time management mechanisms for different types of time

advancement controls as HLA does.

While DDS is not as feature-complete as HLA, its

simplified standard makes it more accessible for users. Not

requiring a single access point (like HLA’s RTI) makes it

less prone to slow-down from the RTI’s perspective when

adding more simulations, and the complexity of connec-

tions is handled internally without the user’s concern.

Compiling a data format ahead of time is still a limitation

that TENA sought to overcome but doing so enables DDS

to maintain optimal speed in data communication.

With each of these solutions, the need to study lengthy

standards and rules together with the need to deal with the

compatibility of legacy standards, often make them diffi-

cult to use. However, these solutions provide instructions

that others can follow, putting the responsibility on indi-

vidual users to ensure that their own local simulation is

built correctly to be compliant without worrying about how

other simulations might function.

2.2 Standalone Tools

This section reviews two standalone data passing tools,

ROS and LCM.

2.2.1 Robot Operation System (ROS)

Unlike the approaches listed above, which are either

designed for distributed simulation or distributed opera-

tional systems, ROS is a robotics middleware that provides

services including hardware abstraction, low-level device

control, package management, message passing, and so on

(ROS.org 2018). Such a design makes it possible for

robotic engineers to quickly and conveniently build up a

robot by taking advantage of many existing hardware dri-

vers and implemented algorithms distributed as ROS

packages (Xu et al. 2018; Xu et al. 2019).

While ROS is best suited for applications in robotics, its

message passing design based on a Publish/Subscribe

communication can be applied to simulation applications in

natural hazards scenarios with some benefits. More

specifically, the three different patterns of data exchange

supported by ROS all have their corresponding applications

in distributed simulations. In most cases, the output of one

node needs to take as input the runtime outputs of some

other nodes and in turn, its output can be used as part of the

input for other nodes. Such input and output information

generally needs to be exchanged continuously at a small

timestamp and can be modeled as messages in ROS.

A message in ROS is a data structure that can be defined

flexibly in a .msg file by following a syntax similar to C

structs. Most messages have a header field that is filled with

a simulation timestamp by ROS and is used for time

management. Once a message is compiled with ROS, by

importing or including its bindings, a node can encode and

retrieve information into and from the corresponding

message automatically with ROS. Another type of data

exchange is conducted in the Request/Response way where

the data structures in a request and a response are formatted

together as service in ROS and are defined in a .srv file by

following similar syntax to ROS messages. In this pattern,

123

622 Xu et al. Distributed Simulation Platforms for Natural Hazards Engineering

by agreeing upon the same srv, a client provides the

required input for the request and requests a server to give a

response based on the request. The returned response

depends on the implementation on the server side.

For a distributed disaster simulation, this is suitable for

acquiring the global configuration (such as the scenario

information in the wind-building example in Sect. 2.1.1)

from the server or for commanding some other nodes to

behave in a specific way. However, for the latter use, if the

server takes a significant amount of time to perform the

requested action or does not respond to the request, the

client would not receive any feedback and thus know

nothing about the status of the server. This lack of

knowledge of the status of the server can be solved by

using the actionlib pattern. This pattern specifies the for-

mats of the goal (the result and the feedback message) in an

action file in a similar way to ROS msg and ROS srv. In

this way, after a client sends out an action request to a

server, it can keep listening to the feedback from the server

and make further decisions based on the feedback. This

approach is extremely useful for distributed disaster sim-

ulations whose nodes are simulating reality at different

time scales (such as an earthquake node and a recovery

node). Those nodes that run faster can request the others to

catch up via an action request.

For its wide use in the robotics community, ROS is well

documented, and it is easy to access help from different

technological forums. Despite the above advantages it also

has some drawbacks. Since it was not specially designed

for simulation purposes, it lacks implementation of time

management and quality of service (QoS) policies com-

pared to other simulation-oriented approaches. Besides, it

does not provide a convenient way to set up connections

among different nodes. Each node needs to explicitly

specify the topics the node subscribes to and the way the

node wants to receive the messages on these topics.

Therefore, when a node is used together with a simulator,

the code for message communication is usually inter-

spersed with the code for simulator functions. This lack of

convenient communication interface makes it scale poorly

as the number of nodes increases, limiting its suitability for

large-scale simulations.

2.2.2 Lightweight Communication and Marshaling (LCM)

Lightweight Communication and Marshaling is another

data passing tool oriented for real-time robotics applica-

tions (Huang et al. 2010). It has been applied to disaster

simulations (Lin et al. 2018; Lin et al. 2019) recently owing

to its beneficial features including low-latency, platform

and language independence, and publish/subscribe data

transmitting scheme. As a lightweight solution, it is mainly

comprised of three functionalities—message type

specification, message marshaling, and message commu-

nication—and, despite what its name suggests, some

analysis tools. In LCM, the data to be transmitted over a

network need to be first structured as a message type, by

following its specific type specification language whose

syntax is very similar to C structs.

After the message type is well defined, the provided

lcm-gen tool is invoked to generate its language-specific

bindings that can be further included or imported in custom

simulators to use the corresponding message. Such bind-

ings can be generated to support multiple languages (C,

C??, C#/.NET, Java, Lua, and Python) on different plat-

forms (Linux, OS X, Windows, and any POSIX-1.2001

system), which is very convenient for simulator developers

with different preferences. In the actual communication, a

message is marshaled by attaching to it a fingerprint

derived from its channel name and message type and

routed from its sender to its receivers with a Publish/Sub-

scribe pattern. LCM uses multicast UDP based peer-to-peer

communication, in which there is no mediator and each

simulator is both a sender and a receiver.

In LCM, messages are routed to all the LCM subscribers

that are in the same multicast group and each subscriber

further selects the messages it is expecting based on the

channels to which it has subscribed. As shown in Fig. 3, for

any simulator #i in the multicast UDP group, its LCM

subscribers receive all the messages published within the

same group. After receiving these messages, its subscribers

automatically select the messages published to the channels

that they have subscribed to by dropping all the other

messages, such that the simulator #i can work with the

messages it is interested in by just subscribing to the

appropriate channels.

Compared to ROS, LCM also provides some useful

tools (logging, replaying, and inspecting traffic) to help

with debugging during development as well as help inspect

and analyze the simulation during testing. As a pure data

passing tool, LCM provides great flexibility for further

development of different features by users. However, as a

Fig. 3 Message exchange via multicast user datagram protocol

(UDP) in lightweight communication and marshaling (LCM)

123

Int J Disaster Risk Sci 623

robotics tool, it inevitably lacks the specific features ded-

icated to simulation, such as time management and QoS

policies. Moreover, due to reasons similar to ROS, it does

not scale well.

Compared to the approaches in the last section,

approaches from the robotics community include a ready-

to-use library and provide well-documented instructions,

which make them easier to use for skilled programmers.

The main problem with these methods is the lack of a

systemic way to deal with scalability issues. It is the users’

responsibility to make sure that the connections among

different simulators and time management for each simu-

lator are set up correctly by adding corresponding code to

the simulators. This mixture of code for connection and

simulator functionality makes it hard to manage the sim-

ulators when their numbers greatly increase and thus limits

these approaches to small or medium-scale problems.

3 Limitations

Based on the review in Sect. 2, in this section, three main

limitations are recognized from the perspective of user

experience when trying to create a complex coupling dis-

tributed simulation conveniently and efficiently from

scratch in the fields related to natural hazards.

3.1 Lack of Easy-to-Use and Standard Solutions

Among the standards and standard-based solutions, both

DIS and TENA have to use pre-defined sets of messages,

which is not flexible for information exchange between

different natural hazard simulators (as explained in the

wind-building example in Sect. 2.1.1). Moreover, they can

only build real-time simulations that run in wall-clock

time. This makes the simulation of a recovery process, a

typical simulator involved in a disaster-related simulation,

very prolonged and inefficient.

Compared with DIS and TENA, HLA and DDS are

more suitable for disaster simulations. As standards, they

levy many requirements on the design of API, and some

implementations have been designed by following such

specifications. However, it is still difficult for a novice to

rapidly build a functional simulation and, for experienced

users, non-trivial to achieve desired simulation perfor-

mance. On one side, with the aim of allowing an interop-

erability level of integration across areas in distributed

simulations by defining common data types and specifying

APIs, they have become formidably long standards that are

quite hard to follow and adhere to. Therefore, it is common

that some implementations just follow and support part of

the API specifications and it is necessary for users to be

aware of the deviations from the standards in addition to a

basic understanding of HLA or DDS concepts.

While HLA and DDS include the detailed requirement

for API, they do not specify exactly what algorithms need

to be used and how the API function should be imple-

mented, which leaves the flexibility to API implementers.

This flexibility for the implementers leads to diverse API

implementations with different vendor-specific features

and advantages, and it is important for users to be able to

choose the appropriate implementations to achieve their

custom simulation performance goals. In practice, achiev-

ing custom simulation performance goals requires the users

to know about different implementations and the differ-

ences between them, since these differences are generally

non-trivial and experience from one implementation cannot

be directly applied to another.

Unlike tools built on standards, ROS (and LCM) can be

thought of as a standalone tool providing much less, but

necessary, APIs for data sharing, which is particularly well

suited to users who need to quickly build up a small-scale

application-specific simulation and distribute it over a

network. While this approach provides a flexible and

convenient way of constructing simulations, the issue for

this category of tools is that different simulators have to

agree on the structure of the shared message due to lack of

standardization, even though it is not difficult to come up

with simple specifications on the data structure for appli-

cation-specific problems.

3.2 Lack of Scalability and Extensibility

for Building Large-Scale Simulations

Generally, standards do not specify the scale of simulation

that an API needs to and should support, and in theory,

users can try to connect as many simulators as they want in

one simulation. However, in practice, the scalability of the

standard-based methods is greatly impacted by the detailed

API implementations, and the practical performance can

vary greatly as the size of the simulation changes. When

the simulation scale is small, such as a simulation of

interdependencies between natural hazards with several

buildings, peer-to-peer communication is preferred since

mediator-based communication would need one extra

message copy for each subscriber of a message and thus

need more bandwidth and result in more latency.

As the simulation scale increases to the middle scale,

such as a city-scale simulation of natural hazard interde-

pendency, mediator-based communication becomes

preferable. The reason is that the overhead resulting from

additional message copies becomes less important com-

pared to the total message routing time, and mediator-

based communication also provides other benefits such as

123

624 Xu et al. Distributed Simulation Platforms for Natural Hazards Engineering

monitoring of individual simulators and more flexible

central time management.

However, when the scale increases to a large scale (for

example, state level) the performance bottleneck of the

simulation is usually the power of the processor where the

mediator runs since the mediator has to route a great

number of different types of messages and conduct corre-

sponding time management for a large number of simula-

tors. Therefore, it generally needs additional algorithms to

distribute the work of the mediator over multiple proces-

sors, which increases the complexity of the simulation.

Since both the standard-based tools and standalone tools

reviewed above use a fixed message delivery method, it is

difficult for them to always obtain the best performance for

different simulation scales.

For extensibility, DIS and TENA are seriously limited

since they can only use fixed sets of messages. Other

standard-based tools such as HLA and DDS support cus-

tom messages, which make them convenient for extending

the information shared between different simulators. For

standalone tools, new information to be shared has to be

defined as new messages or added to the old message

definitions, and the created or modified message definitions

have to be recompiled to make sure they can be recognized

by different simulators. This process almost always

includes modification of the relevant simulators to make

sure they can send and receive the pre-compiled messages.

This process is not convenient and sometimes even difficult

for experienced users.

3.3 Inability to Rapidly Build and Integrate

Application-Specific Simulators

The most important goals of standards and standard-based

tools are to improve reusability and interoperability and

make simulators usable across fields. The benefits are

significant when users have easy access to many choices of

simulators that have been developed by people from dif-

ferent fields for different purposes. However, in practice,

these benefits are limited for two reasons. First, it is still

challenging to integrate simulators developed by others

without any knowledge of them, even if they are compat-

ible with the same standard. Such knowledge includes

simulator time resolution, simulator mode (time-driven,

event-driven, or hybrid), and time management option,

which users may have to modify to make the simulators

work correctly. Therefore, simulators’ reusability and

interoperability are mainly achieved in some relevant

simulations that are developed by the same group of people

who developed the simulators.

The second reason is that the complexity of utilizing the

simulation tools to develop reusable and interoperable

simulators limits the number of available simulators.

Skilled simulation engineers are good at achieving

reusability and interoperability of simulators when they are

given functional simulators from different domains. How-

ever, it is usually difficult for them to develop simulators

from scratch without enough domain knowledge. Instead, it

is the people with good domain knowledge that are more

suitable to develop domain-specific simulators for specific

applications. However, the complexity of standard-based

simulation solutions creates a non-trivial gap between

domain knowledge and a simulator compatible with the

same simulation solutions.

It is also difficult to rapidly get started with building a

functional simulation for domain expertise with limited

simulation background. Users need to at least have some

knowledge of the standard, the usage of the API imple-

mentation they have selected, and some programming

skills to configure and compile the standard-based tool on

their custom computers, which entails a steep learning

curve. In this regard, standalone tools are also inappropri-

ate. For these tools, time management has to be imple-

mented additionally and it is difficult to separate message

exchanging code and simulator code for scalability (do-

main users may care more about scalability than simulation

efficiency). These are all challenging to achieve for users

without much programming experience.

4 Recommendations

This section aims to improve the recognized limitations as

listed in Sect. 3 with two improvement recommendations.

In a simulation involving multiple analysis models, it is

usually natural and straightforward to implement a simu-

lator as a separate module that interacts with other modules

and implement a sub-simulator as a separate component

that interacts with other components within the same

simulator. For example, in a simulation of interactions

between sequential earthquakes and corresponding recov-

ery processes, it is natural to define a seismic simulator

separately to model the earthquake and its impact on the

infrastructure in the environment, and a recovery simulator

to model the recovery effort and how infrastructure func-

tionalities are recovered. The seismic simulator can include

several sub-simulators that work together to complete its

tasks, such as a sub-simulator to model the effect of the

earthquake on the ground surface and other sub-simulators

to model how such effects further interact with and damage

buildings, transportation systems, and other infrastructure.

Similarly, the recovery simulator can include a group of

sub-simulators to model how the recovery process evolves

with the interaction among resources such as first respon-

ders, equipment and material, recovery strategy, and as-is

recovery status. There can be any number of simulators and

123

Int J Disaster Risk Sci 625

sub-simulators, and interaction frequency between them

depends on the simulation resolution. Correspondingly a

varying number of messages need to be delivered and

exchanged. Considering such changes in simulation scale

and complexity and the limitations discussed in Sect. 3, a

recommended data passing platform is proposed for sim-

ulation problems in hazards engineering, which is depicted

in Fig. 4. The system design is proposed to take respective

advantages of a standard-based method and a standalone

tool (such as HLA and LCM).

In the design, two main improvements are made to

ensure its benefits. First, in order to make it easy to develop

and convenient to extend a distributed simulation, a mes-

sage wrapper is developed to receive and send out infor-

mation for simulator functions. In this way, simulators can

be developed with only domain knowledge and, if neces-

sary, some knowledge of the settings controlling the reso-

lution of the simulation. The implementation of a message

wrapper can be looked at as an improvement upon a

standalone tool.

Second, in order to improve scalability, an improvement

is made in which mediator-based communication and peer-

to-peer communication are jointly used to exchange mes-

sages between simulators and sub-simulators via message

wrappers. A simulation platform based on a single com-

munication approach does not adapt well with the scaling

of the simulation in terms of efficiency and time manage-

ment as discussed previously. The mediator-based com-

munication between simulators allows for convenient time

management and error recovery, and the peer-to-peer

communication between sub-simulators can help reduce

the load of the mediator and make the solution adapt well

with simulation scale. This improvement can be looked

upon as an improvement on a standard-based tool such as

the RTI of HLA.

Even though the design is driven by distributing com-

putation across multiple computing devices with limited

processing power, it can also benefit from existing cyber-

infrastructure. For example, DesignSafe cyberinfrastruc-

ture provides convenient cloud-based tools to access data

deports and high-performance computing (HPC) (Rathje

et al. 2017; Pinelli et al. 2020; Rathje et al. 2020). In this

case, simulator (or sub-simulator) functions can run on

HPC to utilize its computation ability and message wrap-

pers can run on a local device to handle data exchange

including retrieving data from cloud or other simulators,

feeding data to its associated simulator functions, retrieving

simulated results, and providing data to other simulators.

The design provides the flexibility, such that users can

implement message wrapper and simulator functions with

the programming languages and APIs supported by the

cyberinfrastructure. The following sections discuss the

design of the message wrapper and the data passing

between such message wrappers in detail.

4.1 Proposed Design of a Message Wrapper

LCM was previously used as the data passing platform in

our previous simulation of wind-building interaction (Lin

et al. 2018, 2019). Here we standardize such a simulation

for general coupling analyses in hazards engineering and

propose an LCM-based disturbed coupling analysis

framework for distributed analyses. As shown in Fig. 5,

simulation developers only need to follow a couple of fixed

steps to create a complex coupling analysis involving

multiple analysis simulators. With the benefit of LCM,

Fig. 4 A recommended design

of a data passing system for

simulations in hazards

engineering

123

626 Xu et al. Distributed Simulation Platforms for Natural Hazards Engineering

different simulators can be developed with different lan-

guages and run on different operating systems listed in

Sect. 2.2.2. In this framework, different simulators can be

developed separately and connected with LCM-based

message passing. In each simulator, it first initializes LCM

and subscribes to the message channels from which it can

get the messages that the simulator depends on. Light-

weight Communication and Marshalling can help receive

the available messages from the subscribed channels, and

the current simulator needs to decide if a received message

is one that is currently expected.

There are two things to check—message type and

expected timestep—for this type of message. After all the

expected messages are received, this simulator will con-

tinue for one timestep, update simulator results, update

expected timestep for each expected type of message, and

update the current timestep in the simulator. After getting

new simulator results, the simulator will immediately

publish it with the current timestep value. It should be

noted that a simulator still needs to keep publishing sim-

ulator results even in situations where failure is encoun-

tered in the process of checking if a message is an expected

message or if all the expected messages are received. The

reason is that the messages are live data on the channels,

and the same message needs to be sent repeatedly in order

to make sure the message can be received by the simulators

that need it to proceed. Different simulators can be

developed separately by following the same steps and then

they will automatically work together to make up a com-

plete distributed analysis. Compared with standards and

standard-based solutions, this framework is more flexible

and more convenient to quickly create a small-scale anal-

ysis with domain knowledge.

In addition, as shown in our work in Lin et al. (2018)

and Lin et al. (2019), even though simulators and sub-

simulators were not differentiated from each other and all

the separate components were implemented as separate

simulators, LCM still worked efficiently to pass messages

between different simulators benefiting from the fact that it

uses UDP multicast as its transport and does not use a

mediator to route the messages or broker connections

between models. This LCM-based model communication

scales well with the number of the involved models and is

also extensible. However, the code dealing with receiving

and sending messages was implemented together with the

simulator functions, and thus it requires simulator

Fig. 5 A lightweight communication and marshalling (LCM)-based distributed coupling analysis framework

123

Int J Disaster Risk Sci 627

developers to know basic usage of LCM. Moreover, this

coding work becomes more complex and error-prone as the

number of simulators increases and the interaction between

simulators becomes complex. This drawback further limits

scalability and extensibility in practice and makes it only

suitable for relatively small-scale analyses.

Ideally, simulator developers should not be required to

have deep knowledge about the distributed analysis plat-

form being used. Instead, they should be able to focus their

attention on developing simulators in their domains and

specifying how they want their simulators to communicate

with each other. In order to achieve this benefit, a message

wrapper design is proposed to work together with the

simulator functions and receive and send messages from

and to the channels for them. The term ‘‘channel’’ is

inherited from LCM and is used to illustrate the new

concept design of a message wrapper. As shown in Fig. 6,

the proposed message wrapper acts as a bridge connecting

message channels and a simulator function. It subscribes to

the channels from which the simulator function gets input

data, decodes messages when required messages are

received, calls the simulator function to update the outputs

of the simulator, encodes output messages, and publishes

them to the specified channels.

Figure 7 shows the procedures of developing a simulator

with a message wrapper. This general design can work with

any standalone data passing tools such as LCM, ROS, or

other custom data passing platforms. For convenience,

LCM is used as an example here to show the detailed

implementation of the files in Fig 7. Simulator developers

first need to prepare two files: a simulator configuration file

and a message definition file. The simulator configuration

file includes all the settings about the simulator, including

simulator name, the channels this simulator needs to sub-

scribe to, the channels it needs to publish on, time step

relationship between the current simulator and the mes-

sages it depends on, the simulator’s dependency on his-

torical data, and whether the simulator needs to publish

initial data for other simulators to start working.

The message definition file includes the name of the

variables in each message and the corresponding data

types. It should be noted that even though LCM can decode

the message and its variable types automatically, these

variables need to be stored as local variables in the wrapper

and thus the variable types still have to be provided in the

message definition file. In the case of LCM, it is straight-

forward to prepare these two files by drawing a commu-

nication network and referring to the LCM message

definitions. When these two files are ready, a simulator

function prototype generator (Fig. 7) is used to generate the

function prototype of the simulator function.

This function prototype generator is implemented in a

simple way that all the variables included in the input

messages are listed as input arguments, all the variables in

the output messages are listed as return values, and the

simulator name is used as the function name. Therefore,

only the information about simulator name, channels to

subscribe to, and channels to publish on in the simulator

configuration file are used to generate the function proto-

type. Then simulator developers need to complete the

created simulator function with only domain knowledge.

After completing the simulator function, the message

wrapper can be run to handle message exchange when it

works with the same simulator configuration file, the same

Fig. 6 The concept of a message wrapper

123

628 Xu et al. Distributed Simulation Platforms for Natural Hazards Engineering

message definition file, and the completed simulator

function.

Figure 8 shows how a message wrapper computes output

messages based on the input messages and publishes the

output messages on the specified channels. This process is

very similar to those in the simulators depicted in Lin et al.

(2019), the only difference is that the simulator function

and the code for message exchange are now completely

separated with the proposed message wrapper. Therefore,

domain users just need a little effort to develop a simulator

since all they need to know is the domain knowledge to

complete the simulator function and the relationship

between different simulators. Besides, in the process of

completing the simulator function, it is flexible for users to

use any useful software and/or hardware to facilitate sim-

ulator development and/or accelerate the simulation.

Our previous work (Lin et al. 2018; Lin et al. 2019; Lin

and El-Tawil 2020) showed the effectiveness of the pro-

posed coupling analysis. Here, in order to further verify the

design of the message wrapper, the wrapper-enhanced

framework is used to replicate the active control algorithm

introduced in Reinhorn et al. (1987) and restated in Fig. 9.

The components in Fig. 9 are then formalized as three

simulators in Fig. 10, where P tð Þ represents the force

Fig. 7 The procedures for

developing a simulator with a

message wrapper

Fig. 8 An example

implementation of the message

wrapper for lightweight

communication and marshalling

(LCM)

123

Int J Disaster Risk Sci 629

caused by a wind excitation. D tð Þ, V tð Þ, and A tð Þ represent
structure displacement, velocity, and acceleration at time t

respectively and together compose response vector U tð Þ,
and F tð Þ is the active control force at time t. Wind exci-

tation can be generated with different models, and here we

adopted the model we used in Lin et al. (2019). For

structure dynamics, one single building with stiffness K is

assumed, and response Uiþ1 was found as follows from

response Ui and time interval Dt for this single degree of

freedom (SDOF) system.

Uiþ1 ¼
Diþ1

Viþ1

Aiþ1

2
4

3
5 ¼

1

a1
a0

2
4

3
5K�1Fiþ1 þ QUi

¼

1
2

Dt
4

Dt2

2
664

3
775K�1Fiþ1 þ

1 0 0

0 �1 0

0
�4

Dt
�1

2
64

3
75Ui

In this equation, the second column of Q can be written

as:

Q ¼
Q12

Q22

Q32

2
4

3
5 ¼

0

�1
�4

Dt

2
64

3
75

For the adaptive control function, acceleration was

selected to be controlled with the following control strategy

proposed in Reinhorn et al. (1987),

Fi ¼
M

Dt
Alim � Aiþ1j j

Q32

where M is the mass of the building, and Alim is the

acceleration magnitude to be limited. Two analysis results

with and without active control are shown in Fig. 11 and

Fig. 12.

It can be observed that with active control, acceleration

was successfully limited to the range of [- 1.5, ?1.5] m/s2,

and the displacement and the velocity responses were

impacted correspondingly. The results demonstrated that

the framework and the wrapper help discover the interde-

pendency between the structure dynamics model and the

adaptive control model. With domain knowledge from

wind engineering and structural engineering, this dis-

tributed analysis model can be constructed conveniently by

following the fixed steps introduced in this section without

knowing how to use LCM to exchange messages.

However, it should be noted that even though the mes-

sage wrapper can be used as an extension to any data

passing platform and help improve the scalability and

extensibility in terms of implementation, current widely

used mediator-based data passing platforms generally suf-

fer from scalability problems in message communication.

For those that adapt well with the simulation scale, such as

LCM, they still lack the necessary time management and

error-recovery mechanism for robust simulation. This

challenge leads to the second proposed improvement that

Fig. 9 The active control algorithm introduced in Reinhorn et al. (1987)

Fig. 10 Distributed analysis design of an active control algorithm

123

630 Xu et al. Distributed Simulation Platforms for Natural Hazards Engineering

Fig. 11 Analysis results

without active control

Fig. 12 Analysis results with

active control of acceleration

123

Int J Disaster Risk Sci 631

jointly uses peer-to-peer and mediator-based

communication.

4.2 Hybrid Data Passing Between Message

Wrappers

As shown in the recommended design in Fig. 4, peer-to-

peer communication is adopted to handle communication

between different sub-simulators in each simulator and the

simulator itself via message wrappers. This local commu-

nication generally needs more frequent and more extensive

message exchange as compared to the simulator-simulator

communication and is suggested to be implemented with

UDP multicast that was also the transport utilized in LCM.

The benefit to this approach is that there are no additional

copies of messages that otherwise would increase linearly

with the number of subscribers and result in a large over-

head if the number of subscribers is large. Moreover, even

though LCM was originally designed for real-time robotic

applications, based on previous experience (Lin et al. 2018;

Lin et al. 2019), it was shown to work efficiently in time-

step based simulation. However, mediator-based commu-

nication between simulators is suggested to be imple-

mented with TCP transport that provides reliable and

ordered information delivery.

For the two types of communication, different mar-

shaling methods can be chosen according to the tradeoff

between transmission efficiency and marshaling cost. The

message wrapper of a simulator can be designed to decode

the marshaled messages from its sub-simulators and mar-

shal them in a different way and communicate them via the

mediator. Generally, in order to simplify the platform

design, the same message marshaling format would be

shared between the two ways of communication with LCM

marshaling being a good example. With the benefit of UDP

multicast in LCM, the lcm-spy tool can be used to inspect

traffic without additional cost. A similar traffic inspection

tool can be developed for communication between local

sub-simulators. However, for the inspection of communi-

cation between simulators, the inspection tool needs to be

implemented as a separate simulator that subscribes to all

the channels and thus adds additional inspection cost.

For a platform only based on mediator-based commu-

nication, the load of the mediator increases with the

number of messages that need to be delivered at any time

and is usually the bottleneck of a large-scale simulation.

With the proposed hybrid communication, this issue can be

greatly improved since all the sub-simulators will be han-

dled by peer-to-peer communication that does not need the

mediator and can be implemented efficiently. In addition,

the mediator in the proposed solution is no different from

the mediator in an RTI for HLA and can easily take

advantage of the time management methods in HLA. The

platform can be also integrated with some error recovery

mechanism by using a certain number of historical mes-

sages from the simulators kept in the mediator. In this

regard, the hybrid communication design jointly uses the

ideas of LCM and HLA and capitalizes on their respective

advantages.

5 Discussion and Conclusion

Distributed simulation platforms are essential to implement

coupling simulations and identify deep interdependencies

among different simulators. This article provides a sys-

tematic review of existing platforms for natural hazard

simulation, identifies the limitations in the existing solu-

tions for hazard simulations, and proposes some recom-

mendations on improving the design of data passing tools

for coupling simulations. This survey study offers a refer-

ence for researchers in hazards engineering when selecting

distributed simulation platforms and data passing tools.

Moreover, this article serves as a guiding document

towards developing a general-purpose distributed simula-

tion platform for natural hazard applications by identifying

the current limitations and providing feasible recommen-

dations for future studies.

Acknowledgments The authors gratefully acknowledge the financial

support for this research received from the United States National

Science Foundation (NSF) via Grants ACI #1638186 and CBET

#1804321. Any opinions and findings presented in this article are

those of the authors and do not necessarily represent those of the NSF.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

References

AIR Worldwide. 2020. AIR hurricane model for the United States.
https://www.air-worldwide.com/siteassets/Publications/Bro

chures/documents/AIR-Hurricane-Model-for-the-United-States-

Brochure. Accessed 20 Apr 2021.

ARA (Applied Research Associates). 2021. HurLoss hurricane
catastrophe model. https://www.ara.com/hurloss/. Accessed 20

Apr 2021.

Arguello, L., and J. Miró. 2000. Distributed interactive simulation for

space projects. ESA Bulletin 102: 125–130.

123

632 Xu et al. Distributed Simulation Platforms for Natural Hazards Engineering

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.air-worldwide.com/siteassets/Publications/Brochures/documents/AIR-Hurricane-Model-for-the-United-States-Brochure
https://www.air-worldwide.com/siteassets/Publications/Brochures/documents/AIR-Hurricane-Model-for-the-United-States-Brochure
https://www.air-worldwide.com/siteassets/Publications/Brochures/documents/AIR-Hurricane-Model-for-the-United-States-Brochure
https://www.ara.com/hurloss/

Azar, E., and C.C. Menassa. 2010. A conceptual framework to energy

estimation in buildings using agent based modeling. In Pro-
ceedings of the Winter Simulation Conference 2019: Simulation
for Risk Management, 8–11 December 2019, Baltimore, MD,

USA.

Barrett, C., R. Beckman, K. Channakeshava, F. Huang, V.S.A.

Kumar, A. Marathe, M.V. Marathe, and G. Pei. 2010. Cascading

failures in multiple infrastructures: From transportation to

communication network. Paper presented at the 2010 5th
International Conference on Critical Infrastructure (CRIS),
20–22 September 2010, Beijing, China.

Behner, H., and B. Lofstrand. 2017. The new HLA certification

process in NATO. Paper presented at the Symposium on M&S
Technologies and Standards for Enabling Alliance Interoper-
ability and Pervasive M&S Applications, 19–20 October 2017,

Lisbon, Portugal.

Bunea, G., F. Leon, and G.M. Atanasiu. 2016. Postdisaster evacuation

scenarios using multiagent system. Journal of Computing in
Civil Engineering 30(6): Article 05016002.

Calytrix Technologies. 2018. Portico. http://porticoproject.org.

Accessed 23 Dec 2018.

Chen, S.-C., M. Chen, N. Zhao, S. Hamid, K. Chatterjee, and M.

Armella. 2009. Florida public hurricane loss model: Research in

multi-disciplinary system integration assisting government pol-

icy making. Government Information Quarterly 26(2): 285–294.
Cozby, R. 1998. Foundation initiative 2010. Army Test and

Evaluation Command, Aberdeen Proving Ground, MD, USA.

D.S. Committee. 2012. IEEE standard for distributed interactive

simulation – Application protocols. IEEE Standard 1278.1–
2012. Piscataway, NJ: IEEE Standards Association.

Dahmann, J.S., F. Kuhl, and R. Weatherly. 1998. Standards for

simulation: As simple as possible but not simpler the high level

architecture for simulation. Simulation 71(6): 378–387.

Dai, K., W. Zhao, H. Zhang, G. Shi, and Y. Zhang. 2011. TENA

based implementation technology for virtual test. Journal of
System Simulation. https://doi.org/10.1016/j.cageo.2010.07.006.

DIS Steering Committee. 1998. IEEE standard for distributed

interactive simulation – Application protocols. IEEE Standard
1278.1a–1998. Piscataway, NJ: IEEE Standards Association.

Dong, S., and V.R. Kamat. 2010. Robust mobile computing

framework for visualization of simulated processes in augmented

reality. In Proceedings of the winter simulation conference, 5–8
Decemebr 2010, Baltimore, MD, USA.

Eusgeld, I., and C. Nan. 2009. Creating a simulation environment for

critical infrastructure interdependencies study. Paper presented

at the IEEE international conference on industrial engineering
and engineering management (IEEM), 8–11 December 2009,

Hong Kong, China.

Eusgeld, I., C. Nan, and S. Dietz. 2011. ‘‘System-of-systems’’

approach for interdependent critical infrastructures. Reliability
Engineering & System Safety 96(6): 679–686.

Fiedrich, F. 2006. An HLA-based multiagent system for optimized

resource allocation after strong earthquakes. In Proceedings of
the 38th conference on winter simulation, December 2006,

Monterey, CA, USA.

Ginting, B.M., and R.-P. Mundani. 2019. Parallel flood simulations

for wet-dry problems using dynamic load balancing concept.

Journal of Computing in Civil Engineering 33(3): Article

04019013.

Grogan, P.T., and O.L. De Weck. 2015. Infrastructure system

simulation interoperability using the high-level architecture.

IEEE Systems Journal 12(1): 103–114.
HLA Working Group. 2000. IEEE standard for modeling and

simulation (M&S) high level architecture (HLA) – Framework

and rules. IEEE Standard 1516–2000. Piscataway, NJ: IEEE

Standards Association.

HLA Working Group. 2010. IEEE standard for modeling and

simulation (M&S) high level architecture (HLA) – Framework

and rules. IEEE Standard 1516–2010 (Revision of IEEE
Standard 1516–2000). Piscataway, NJ: IEEE Standards

Association.

Hollenbach, J.W. 2009. Inconsistency, neglect, and confusion: A

historical review of DoD distributed simulation architecture

policies. In Proceedings of the spring simulation interoperability
workshop, 23–27 March 2009, San Diego, CA, USA.

Hori, M. 2011. Introduction to computational earthquake engineer-
ing. Hackensack, NJ: World Scientific.

Hori, M., and T. Ichimura. 2008. Current state of integrated

earthquake simulation for earthquake hazard and disaster.

Journal of Seismology 12(2): 307–321.

Huang, A.S., E. Olson, and D.C. Moore. 2010. LCM: Lightweight

communications and marshalling. Paper presented at the IEEE/
RSJ international conference on intelligent robots and systems
(IROS), 18–22 October 2010 Taipei.

Hwang, S., R. Starbuck, S. Lee, M. Choi, S. Lee, and M. Park. 2016.

High level architecture (HLA) compliant distributed simulation

platform for disaster preparedness and response in facility

management. In Proceedings of the winter simulation confer-
ence, 11–14 December 2016, Washington, DC, USA.

IoTivity. 2018. IoTivity. https://www.iotivity.org. Accessed 18 Dec

2018.

Jain, S., and C. McLean. 2003. Simulation for emergency response: A

framework for modeling and simulation for emergency response.

In Proceedings of the 35th conference on winter simulation:
Driving innovation, December 2003, New Orleans, LA, USA.

Kamat, V.R., and J.C. Martinez. 2002. Comparison of simulation-

driven construction operations visualization and 4D CAD. In

Proceedings of the Winter Simulation Conference, 8–11 Decem-

ber 2002, San Diego, CA, USA.

Karen Clark & Company. 2020. RiskInsight� open loss modeling
platform. https://www.karenclarkandco.com/riskinsight/. Acces-

sed 21 Apr 2021.

Kerber, S., and J.A. Milke. 2007. Using FDS to simulate smoke layer

interface height in a simple atrium. Fire Technology 43(1):

45–75.

Koliou, M., J.W. van de Lindt, T.P. McAllister, B.R. Ellingwood, M.

Dillard, and H. Cutler. 2017. State of the research in community

resilience: Progress and challenges. Sustainable and Resilient
Infrastructure. https://doi.org/10.1080/23789689.2017.1418547.

Lazarov, B., G. Kirov, P. Zlateva, and D. Velev. 2015. Network-

centric operations for crisis management due to natural disasters.

International Journal of Innovation, Management and Technol-
ogy 6(4): Article 252.

Lin, S.-Y., and S. El-Tawil. 2020. Time-dependent resilience

assessment of seismic damage and restoration of interdependent

lifeline systems. Journal of Infrastructure Systems 26(1): Article
04019040.

Lin, S.-Y., W.-C. Chuang, L. Xu, S. El-Tawil, S.M.J. Spence, V.R.

Kamat, C.C. Menassa, and J. McCormick. 2019. Framework for

modeling interdependent effects in natural disasters: Application

to wind engineering. Journal of Structural Engineering 145(5):

Article 04019025.

Lin, S.-Y., L. Xu, W.-C. Chuang, S. El-Tawil, S.M.J. Spence, V.R.

Kamat, C.C. Menassa, and J. McCormick. 2018. Modeling

interactions in community resilience. Paper presented at the

Structures Conference, 19–21 April 2018, Fort Worth, TX, USA.

Liu, K., X. Shen, N.D. Georganas, A. El Saddik, and A. Boukerche.

2007. SimSITE: The HLA/RTI based emergency preparedness

and response training simulation. In Proceedings of the inter-
national symposium on distributed simulation and real-time
applications, 22–24 October 2007, Chania, Greece.

123

Int J Disaster Risk Sci 633

http://porticoproject.org
https://doi.org/10.1016/j.cageo.2010.07.006
https://www.iotivity.org
https://www.karenclarkandco.com/riskinsight/
https://doi.org/10.1080/23789689.2017.1418547

MÄK Technologies. 2018. MÄK high performance RTI. http://www.
mak.com/products/link/mak-rti. Accessed 23 Dec 2018.

Mandiak, M., P. Shah, Y. Kim, and T. Kesavadas. 2005. Development

of an integrated GUI framework for post-disaster data fusion

visualization. Paper presented at the international conference on
information fusion, 25–28 July 2005, Philadelphia, PA, USA.

McGregor, D., D. Brutzman, and J. Grant. 2008. Open-DIS: An open

source implementation of the DIS protocol for C?? and Java.

Paper presented at the simulation interoperability workshop
(SIW) of simulation interoperability standards organization
(SISO), 15–19 September 2008, Orlando, FL, USA, Paper No.

08F-SIW-051.

Miles, S.B., and S.E. Chang. 2006. Modeling community recovery

from earthquakes. Earthquake Spectra 22(2): 439–458.

Miller, D.C., and J.A. Thorpe. 1995. SIMNET: The advent of

simulator networking. Proceedings of the IEEE 83(8):

1114–1123.

Mitsova, D. 2018. Integrative interdisciplinary approaches to critical

infrastructure interdependency analysis. Risk Analysis. https://
doi.org/10.1111/risa.13129.

Nan, C., and I. Eusgeld. 2011. Adopting HLA standard for

interdependency study. Reliability Engineering & System Safety
96(1): 149–159.

NIST (National Institute of Standards and Technology). 2016a.

Community resilience planning guide for buildings and infras-

tructure systems, Vol. I. National Institute of Standards and

Technology, Gaithersburg, MD, USA.

NIST (National Institute of Standards and Technology). 2016b.

Community resilience planning guide for buildings and infras-

tructure systems, Vol. II. National Institute of Standards and

Technology, Gaithersburg, MD, USA.

NRC (National Research Council). 2011. Grand challenges in
earthquake engineering research: A community workshop
report. Washington, DC: National Academies Press.

NRC (National Research Council). 2011. National earthquake
resilience: Research, implementation, and outreach. Washing-

ton, DC: National Academies Press.

OMG (Object Management Group). 2004. Data Distribution Service

(DDS), Version 1.0. https://www.omg.org/spec/DDS/1.0/About-

DDS/. Accessed 19 Dec 2018.

OMG (Object Management Group). 2015. Data Distribution Service

(DDS), Version 1.4. https://www.omg.org/spec/DDS/1.4.

Accessed 19 Dec 2018.

OMG (Object Management Group). 2018. Open DDS. http://opendds.
org/. Accessed 19 Dec 2018.

ONERA. 2018. CERTI. http://savannah.nongnu.org/projects/certi/.

Accessed 23 Dec 2018.

Pinelli, J.-P., M. Esteva, E.M. Rathje, D. Roueche, S.J. Brandenberg,

G. Mosqueda, J. Padgett, and F. Haan. 2020. Disaster risk

management through the DesignSafe cyberinfrastructure. Inter-
national Journal of Disaster Risk Science 11(6): 719–734.

Pitch Technologies. 2018. Pitch pRTI. http://pitchtechnologies.com/

products/prti/. Accessed 23 Dec 2018.

Powell, E.T., and J.R. Noseworthy. 2012. The test and training

enabling architecture (TENA). In Engineering principles of
combat modeling and distributed simulation, ed. A. Tolk,

449–479. Hoboken, NJ: John Wiley & Sons.

Rathje, E.M., C. Dawson, J.E. Padgett, J.-P. Pinelli, D. Stanzione, A.

Adair, P. Arduino, S.J. Brandenberg, et al. 2017. DesignSafe:

New cyberinfrastructure for natural hazards engineering. Natural
Hazards Review 18(3): Article 06017001.

Rathje, E.M., C. Dawson, J.E. Padgett, J.-P. Pinelli, D. Stanzione, P.

Arduino, S.J. Brandenberg, T. Cockerill, et al. 2020. Enhancing

research in natural hazards engineering through the DesignSafe

cyberinfrastructure. Frontiers in Built Environment 6: Article

213.

Ray, P.P., M. Mukherjee, and L. Shu. 2017. Internet of things for

disaster management: State-of-the-art and prospects. IEEE
Access 5: 18818–18835.

Real-time Innovations. 2018. RTI connext DDS professional 2014.
https://www.rti.com/products/connext-dds-professional. Acces-

sed 19 Dec 2018.

Reinhorn, A.M., G.D. Manolis, and C.Y. Wen. 1987. Active control

of inelastic structures. Journal of Engineering Mechanics
113(3): 315–333.

Ren, A., C. Chen, J. Shi, and L. Zou. 2007. Application of virtual

reality technology to evacuation simulation in fire disaster. In

Proceedings of the International conference on computer
graphics & virtual reality (CGVR), 25–28 June 2007, Las

Vegas, NV, USA.

Risk Management Solutions. 2007. RMSTM U.S. hurricane model.
https://www.sbafla.com/method/Portals/Methodology/ModelSub

missions/2006/2006_RMS06Standards_06_20_07.pdf. Accessed

20 Apr 2021.

ROS.org. 2018. ROS-introduction. http://wiki.ros.org/ROS/Introduc

tion. Accessed 9 Dec 2018.

Sahin, A., R. Sisman, A. Askan, and M. Hori. 2016. Development of

integrated earthquake simulation system for Istanbul. Earth,
Planets and Space 68(1): Article 115.

Team Oasis. 2021. Oasis loss modelling framework. https://oasislmf.

org/. Accessed 21 Apr 2021.

Thomas, A., C.C. Menassa, and V.R. Kamat. 2017. Lightweight and

adaptive building simulation (LABS) framework for integrated

building energy and thermal comfort analysis. Building Simula-
tion – An International Journal 10: 1023–1044.

VT MAK. 2018. VR-Link. https://www.mak.com/products/link/vr-

link#vr-link-supports-dis. Accessed 18 Dec 2018

Wang, Y., C. Chen, J. Wang, and R. Baldick. 2015. Research on

resilience of power systems under natural disasters – A review.

IEEE Transactions on Power Systems 31(2): 1604–1613.
Xie, H., N.N. Weerasekara, and R.R.A. Issa. 2016. Improved system

for modeling and simulating stadium evacuation plans. Journal
of Computing in Civil Engineering 31(3): Article 04016065.

Xiong, C., X. Lu, H. Guan, and Z. Xu. 2016. A nonlinear

computational model for regional seismic simulation of tall

buildings. Bulletin of Earthquake Engineering 14(4):

1047–1069.

Xu, L., C. Feng, V.R. Kamat, and C.C. Menassa. 2019. An occupancy

grid mapping enhanced visual SLAM for real-time locating

applications in indoor GPS-denied environments. Automation in
Construction 104: 230–245.

Xu, L., V.R. Kamat, and C.C. Menassa. 2018. Automatic extraction of

1D barcodes from video scans for drone-assisted inventory

management in warehousing applications. International Journal
of Logistics Research and Applications 21(3): 243–258.

Yong, Y., and Y. Jin. 2000. Marine simulator and distributed

interactive simulation technology. Computer Simulation 17(6):

66–68.

Zobel, R.N., P. Tandayya, and H. Duerrast. 2006. Modelling and

simulation of the impact of tsunami waves at beaches and

coastlines for disaster reduction in Thailand. International
Journal of Simulation 7(4–5): 40–50.

123

634 Xu et al. Distributed Simulation Platforms for Natural Hazards Engineering

http://www.mak.com/products/link/mak-rti
http://www.mak.com/products/link/mak-rti
https://doi.org/10.1111/risa.13129
https://doi.org/10.1111/risa.13129
https://www.omg.org/spec/DDS/1.0/About-DDS/
https://www.omg.org/spec/DDS/1.0/About-DDS/
https://www.omg.org/spec/DDS/1.4
http://opendds.org/
http://opendds.org/
http://savannah.nongnu.org/projects/certi/
http://pitchtechnologies.com/products/prti/
http://pitchtechnologies.com/products/prti/
https://www.rti.com/products/connext-dds-professional
https://www.sbafla.com/method/Portals/Methodology/ModelSubmissions/2006/2006_RMS06Standards_06_20_07.pdf
https://www.sbafla.com/method/Portals/Methodology/ModelSubmissions/2006/2006_RMS06Standards_06_20_07.pdf
http://wiki.ros.org/ROS/Introduction
http://wiki.ros.org/ROS/Introduction
https://oasislmf.org/
https://oasislmf.org/
https://www.mak.com/products/link/vr-link#vr-link-supports-dis
https://www.mak.com/products/link/vr-link#vr-link-supports-dis

	Distributed Simulation Platforms and Data Passing Tools for Natural Hazards Engineering: Reviews, Limitations, and Recommendations
	Abstract
	Introduction
	Existing Distributed Simulation Platforms
	Standards and Standard-Based Solutions
	Distributed Interactive Simulation (DIS)
	High Level Architecture (HLA)
	Test and Training Enabling Architecture (TENA)
	Data Distribution Service (DDS)

	Standalone Tools
	Robot Operation System (ROS)
	Lightweight Communication and Marshaling (LCM)

	Limitations
	Lack of Easy-to-Use and Standard Solutions
	Lack of Scalability and Extensibility for Building Large-Scale Simulations
	Inability to Rapidly Build and Integrate Application-Specific Simulators

	Recommendations
	Proposed Design of a Message Wrapper
	Hybrid Data Passing Between Message Wrappers

	Discussion and Conclusion
	Acknowledgments
	References

