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ABSTRACT

Falls are prevalent among older adults and people with lower-limb amputation of all ages. Because
falls can lead to injury and loss of quality of life, there are several proposed ways to reduce fall risk.
One recommendation is to identify those who are most likely to fall and provide targeted physical
therapy, but existing methods for identifying fall risk have been unable to reliably predict who will
fall. Another way to reduce falls is to assist the individual using a wearable robotic device, such
as an exoskeleton or prosthesis, when stumbles occur. However, because there is uncertainty in
predictions of how the human will respond, wearable robots are unable to safely assist with trip
recovery.

To accurately identify who may become unstable during motion, this dissertation presents Sta-
bility Basins, which characterize individual dynamic stability during the Sit-to-Stand motion. Sta-
bility Basins, formed using a dynamic model with a model for the individual’s control strategy,
encompass all stable model states at each point during the motion. In this document, Stability
Basins are validated using data from an 11-subject experiment where subjects were pulled by
motor-driven cables as they stood up from a chair. The Stability Basins’ accurate characterization
of stability during motion shows promise for identifying fall risk.

Another way to predict human response to perturbation (e.g., a push or trip) is to find an individ-
ual’s underlying objective during motion and use it to inform predictions. Given the assumption
that humans are optimizing some cost such as metabolic energy during motion, inverse optimal

control finds the underlying objective function corresponding to observed data. This dissertation
presents results from applying an inverse optimal control formulation to the 11-subject Sit-to-Stand
dataset. Results suggest that subjects place priority on the position and velocity of their center of
mass rather than input torques during both perturbed and unperturbed Sit-to-Stand, and that the
underlying cost function can be used to effectively simulate perturbation response.

Accurate and quick predictions of trip recovery during walking are necessary for planning safe
trip-recovery motion in wearable robots. A 16-subject experiment was conducted where subjects
were tripped via tethers attached to their feet while walking on a treadmill. In this document,
three different models (Gaussian process regression, neural network, and dynamic model) were
trained on the trip-recovery data and evaluated for prediction accuracy and computation time. The
Gaussian process regression models outperformed the other two in both criteria, highlighting their
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potential for use in wearable robot trip-recovery planning.
Despite the success of the Gaussian process regression models, predictions of human motion

will never be perfectly accurate. To safely plan motion for trip recovery, wearable robots must ac-
count for prediction uncertainty. This dissertation presents a framework for planning trip-recovery
motion in a robotic knee-ankle prosthesis after a trip occurs that accounts for a set of predicted
human behavior. The framework solves an optimization problem to ensure that the foot is placed
close to a desired location at the end of the step while avoiding unsafe foot scuffs before touch-
down. The approach is demonstrated in simulation using data from the 16-subject trip experiment.

In the final chapter, this dissertation argues that robotics researchers should conduct technology

assessments to address factors that may influence the real-world adoption of a technology, and
presents preliminary results from a technology assessment of robotic lower-limb prostheses. To-
gether, the frameworks, tools, and technology assessment included in this dissertation advance the
practical and safe use of autonomy to reduce falls and fall-related injuries.
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CHAPTER 1

Introduction

An estimated 1 in 3 adults over age 65 fall each year, with 20-30% of these falls resulting in
moderate to severe injuries [1]. Approximately one third of people who experience falls develop a
fear of falling and begin to avoid activities [2], which leads to functional decline, social isolation,
and decreased quality of life [3]. Additionally, falls are costly for the healthcare system; in 2015,
medical bills for falls exceeded $50 billion in the United States, with Medicare and Medicaid
covering 75% [1]. Common risk factors for older adults include lower body weakness; difficulty
walking and balancing (sometimes due to medication); vision problems; and hazards such as clutter
or uneven steps [4].

People with lower-limb loss1 constitute another group with increased risk of falling. There are
an estimated 830,000 to 1 million people with lower-limb loss in the United States [5]. The major-
ity use passive lower-limb prostheses, and exhibit instances of falling comparable to older adults
over 85 [6, 7]. Younger individuals with lower-limb amputation report falling at higher rates than
other age groups, likely because they engage in riskier activities. These falls do not always lead to
injury, but when older amputees’ fall and injury data are included, the rates of fall-related injury
for amputees is higher than that of older adults [8]. Across all ages, increased risk of falling can
also lead to decreased confidence during everyday household tasks or community ambulation [9].
The causes of falls in community-dwelling amputees are understudied, but researchers postulate
that the causes are similar to older adults [9].

In both older adult and amputee groups, fall prevention measures have not been overwhelmingly
successful. One challenge is identifying who is most at risk of falling and in what situations they
will become unstable. Clinicians use outcome measures such as Timed Up and Go or the Berg
Balance Scale to assess fall risk in both groups [10, 11, 9]. These assessments struggle to identify
individuals most at risk of falling [12, 13, 14]. The Timed Up and Go test, for example, reduces
fall risk to one number. While the simplicity of this metric has advantages for clinicians who must

1In this document, I use both person-first language (“person with limb loss/amputation”) and
identity-first language (“amputee”) as suggested by the American Psychological Association; see
https://www.apa.org/pi/disability/resources/choosing-words.

1
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see multiple patients per day, it may also neglect valuable information about how the individual
accomplishes everyday tasks (i.e., their motor control strategy).

After identifying at-risk individuals, fall prevention training might not be enough to signifi-
cantly reduce the incidence of falls. Fall prevention measures for older adults span a broad range of
interventions, including strength and balance training; home interventions such as anti-slip shoes;
reviewing and adjusting medications; and surgery to improve vision [15]. Of these, exercise train-
ing and home interventions have the best success in reducing falls. Two studies have implemented
fall-prevention exercise programs for lower-limb amputees with promising results [16, 17]. How-
ever, clinicians may not have the time to facilitate the consistent exercise training needed to effec-
tively prevent falls. One study suggests that the maximum fall reduction rate to be achieved by fall
prevention measures is 30-40% [18].

Clemens et al. urge readers to explore other efforts to mitigate fall-related injury besides the
fall prevention measures above [9]. One such example is fall arrest training, which teaches indi-
viduals to land falls in safer ways. Another suggestion is using wearable robots (exoskeletons and
prostheses) that can assist with stumble recovery [19]. Despite their potential to provide assistance
via an external power source, wearable robots also add safety and comfort challenges due to the
powerful torques they can produce. These devices must include features to avoid disrupting motion
or leading to injuries if torques are applied at the wrong time [20]. Including such safety features is
difficult because the robotic device must first predict how the human will respond during a stumble,
then choose appropriate behavior in real-time. Because predictions will never be perfect, a planner
that accounts for uncertainty would further increase safety.

This dissertation presents methods for characterizing stability during motion, predicting how
humans respond to perturbations during motion, and planning wearable robotic behavior to assist
with disturbances. Although external perturbations are not the sole cause of falls in older adults
and amputees, I focus on unexpected disturbances such as pushes or trips during motion. My work
analyzes data from perturbative Sit-to-Stand and level-ground walking experiments, as difficulty
maintaining balance during these tasks has been correlated with falls in older adults, and both are
crucial for maintaining independence [21].

The technological methods presented in this dissertation aim to prevent falls and assist with
fall recovery. As with all new technologies, it is important to consider the social and policy im-
plications of the frameworks proposed in this document. Although we often view standardized
technologies as the objectively “best” design, they are in fact a product of social, political, and
economic forces [22]. Scholars in Science and Technology Studies have introduced technology

assessments for anticipating and addressing the societal impacts of a new technology. Conducting
such assessments early in a technology’s development can prompt actors to think critically about
design choices, pilot studies, regulations, and marketing. Despite technology assessments’ promise
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to improve technology adoption rates and facilitate trust among lay people, they are typically con-
ducted by an outside party and largely ignored by the developers themselves. In the last chapter of
this document, I provide an overview of technology assessment methods in the context of robotic
lower-limb prostheses and present preliminary findings from my own assessment.

1.1 Research Overview

This document proposes solutions to the challenges of preventing falls, demonstrated on the Sit-
to-Stand and walking tasks, through five specific aims.

Specific Aim 1: Quantifying Stability During Sit-To-Stand. None of the established outcome
measures for fall prediction have been shown to reliably predict falling, likely because a person’s
stability depends on their chosen control strategy and varies throughout a given dynamic task. In
Ch. 3, I present a quantitative metric for time-varying stability during the Sit-to-Stand motion.
This framework, called the Stability Basin, uses individualized dynamic models to determine the
basin of attraction for successful Sit-To-Stand motion. Using a dataset where people were pulled
forwards and backwards by cable pulls in the sagittal plane while standing up from a chair, I
confirm that the Stability Basins can accurately predict when someone will become unstable. This
work is published in [23].

Specific Aim 2: Investigating Optimality in Perturbation Response During Sit-To-Stand.
Many researchers have hypothesized that humans and animals behave in a way that is optimal with
respect to some criteria, such as energy cost or balance [24]. Knowing the cost function minimized
by a human during motion can be useful for predicting responses to unexpected disturbances.
Inverse optimal control uses data and a dynamic model to solve for an underlying cost function
that is minimized. In Ch. 4, I implement an inverse optimal control formulation with Sit-to-Stand
data to solve for individualized cost functions that subjects minimized during motion. I then use
the cost functions to generate Sit-to-Stand trajectories and compare them to ground truth data. I
found that all 11 subjects prioritized the same model states during perturbed and unperturbed Sit-
to-Stand, although with variation in relative weighting between these states. The inverse optimal
control formulation implemented here generated slightly more accurate predictions of perturbation
response than an LQR controller that generated feedback about the nominal trajectory. This work
was presented at Dynamic Walking 2019.

Specific Aim 3: Predicting Trip Response During Walking. Humans typically exhibit three
types of recovery strategies when tripped during walking: Elevating, where the foot clears the
obstacle and the heel strikes further ahead; delayed lowering, where the foot initially elevates,
then lands backwards with the toe striking first; and lowering, where the foot immediately lowers
behind the body with the toe striking first [25]. Within each of these three strategies, large variation
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exists. Predicting the human response to these strategies can help assistive robotic devices choose
recovery behavior that will work with the human’s chosen recovery strategy. In Ch. 5, I focus on
predicting swing hip behavior: flexion-extension angle, anterior-posterior position, and height. I
conducted a 16-subject experiment that introduced trips via tethers attached to subjects’ feet while
they walked on a treadmill. I then fit three types of models to the perturbed swing hip data in
each strategy and evaluate the models for prediction accuracy and computation time. This work is
published in [26].

Specific Aim 4: Planning Trip-Recovery Trajectories for Robotic Lower-Limb Prostheses.
Because trips can occur at any point during gait, there is no predefined trip-recovery reference
behavior for a robotic lower-limb prosthesis. Online optimization shows promise for planning
prosthesis behavior after a trip in real-time, but existing methods are unable to account for the
uncertainty in the human reaction [27]. In Ch. 6, I present a trip-recovery planning framework for
wearable robotic lower-limb devices, specifically focusing on robotic knee-ankle prostheses. The
framework conducts online optimization of knee and ankle trajectories during and after trips that
account for predicted sets of human trip-recovery behavior, utilizing the model predictions from
Specific Aim 3. As mentioned before, the prosthesis must work with the human’s chosen recovery
strategy to avoid applying dangerous torques while the human is trying to recover from a trip. I first
incorporate the prediction uncertainty to obtain sets of predicted swing hip behavior, then select
knee and ankle reference trajectories for the robot that are safe for all swing hip behaviors in the
predicted set.

Specific Aim 5: Towards a Technology Assessment for Robotic Lower-Limb Prostheses.
Robotic lower-limb prostheses are a relatively new technology, with most development restricted
to the research setting. As these devices begin to enter commercial settings and prompt regula-
tions and standards to be set for their performance, it is important for robotic prosthesis developers
to consider what has informed their designs, how regulations and standards are set, and who is
involved in the design and regulatory process. In Ch. 7, I provide a background about robotic
lower-limb prostheses for a non-technical audience, then summarize several existing technology
assessment methods and propose how they could be applied to robotic prosthesis technology. Fi-
nally, I present preliminary results for my chosen technology assessment and reflect on how my
findings can influence future research in the field.

1.2 Notation

The following list describes notation that will be used throughout this document:

• Lowercase letters denote points, variables, and functions.
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• Vectors are denoted as [x1, · · · , xn]
⊤ or (x1, · · · , xn)

⊤.

• Uppercase letters denote sets and matrices.

• Rn denotes the n-dimensional set of real numbers.

• The unit circle is S1.

• The set of 3× 3 rotation matrices is SO(3).

• Let A×B denote the Cartesian product of sets A and B.

• A state x has first and second time derivatives ẋ and ẍ, respectively.

1.3 Concepts

This section details concepts that will appear throughout the document. Specific Aims 1 and 4
utilize reachability analysis for prediction and planning of human motion. Just as we can inte-
grate a system’s dynamics from an initial condition to simulate a trajectory, reachability analysis
approximates the set of states that can be attained by the system from an initial set. The forwards

reachable set, used in Specific Aim 4, is the set of all states that can be attained by the system
starting from the initial set. The backwards reachable set, used in Specific Aim 1, is the set of all
states that can can arrive at some final set.

Because many set representations (e.g., level sets, polytopes, ellipsoids) are inefficient, reach-
ability analysis is often time-consuming and restricted to lower-dimensional systems. However,
zonotopes are a mathematical object that can be used to efficiently over-approximate reachable
sets. First, let U, V ⊂ Rn. The Minkowski sum is defined as:

U ⊕ V = {u+ v | u ∈ U, v ∈ V }. (1.1)

A zonotope Z is a convex polytope that is closed under linear maps and Minkowski sums [28].
It describes the set of points that can be reached by a center, c ∈ Rn, and linear combination of
generators, g(1), ..., g(p) ∈ Rn. The coefficient β(i) on each generator lies in [−1, 1]:

Z =

{
y ∈ Rn

∣∣∣ y = c+

p∑
i=1

β(i)g(i), −1 ≤ β(i) ≤ 1

}
. (1.2)

In this document, we may also use the following shorthand notation:

Z = (c, ⟨g1, ..., gp⟩). (1.3)
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More information about zonotopes is provided in Appx. A.
To compute reachable sets with zonotopes in Ch. 3, we use an open-source reachability toolbox

called CORA [29, 30]. CORA represents reachable sets by using one zonotope at each finite time
step (subintervals of a time interval [0, T ] of length ∆t). Let t act as an index, so that Z(t) is the
zonotope representing the reachable set over the time step containing t. Briefly, CORA works
by linearizing the dynamics at each time step about the center of Z(t), and obtaining Z(t+∆t) by
multiplying Z(t) by an overapproximation of the matrix exponential over that time step. It then
expands Z(t+∆t) to account for the effects of inputs and linearization error.
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CHAPTER 2

Human Subject Experiments

The research in this document utilizes data collected from two human subject perturbative ex-
periments conducted at the University of Michigan. This chapter describes each experiment for
reference throughout the document. Please note that both datasets are publicly available:

• Cable pulls and foot shifts during Sit-to-Stand: https://doi.org/10.7302/mhjr-k798

• Trips during level-ground treadmill walking: https://doi.org/10.7302/pvhg-q324

2.1 Cable Pulls and Foot Shifts during Sit-to-Stand

We conducted the Sit-to-Stand (STS) experiment primarily to investigate the effect of disturbances
on individuals’ stability. Therefore, the experiment introduced two different types of perturbations
to nominal Sit-to-Stand motion. The first, shifting the feet forward or backwards from the subject’s
natural foot placement, acted as a perturbation to an individual’s preferred initial condition. If the
feet were shifted too far forward, the subject could be unable to generate enough momentum to
successfully stand up with their natural strategy and need to sit back down. If the feet were shifted
too close, the subject could need to step forward with one foot during the Sit-to-Stand motion to
adjust their base of support. The second type of perturbation, sagittal-plane cable pulls applied to
the subject’s approximate midsection, elicited similar sitting/forward step responses. Both of these
compensatory movements are considered failures of the subject’s natural control strategy [31].

This experiment collected 948 trials from 11 participants: three female and eight male; ages
18-32; mean (standard deviation) height 1.70 (0.12) m; mean (standard deviation) body mass 65.4
(10.2) kg. The breakdown of trial type was 163 nominal, 194 foot-shifted, and 591 cable pull trials.
Each subject gave their informed written consent, and had no physical or balance disorders which
could affect their ability to perform Sit-to-Stand. The experimental protocol was approved by
the University of Michigan Health Sciences and Behavioral Sciences Institutional Review Board,
eResearch ID: HUM00020554.
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Subjects began in a seated position on a stool with their arms crossed. The height of the stool
was adjusted so that the subject’s thighs were parallel to the ground. Subjects practiced standing
up from the stool and were asked to find a comfortable foot position, which was then demarcated
with a line of tape.

Subjects were instructed to perform three different Sit-to-Stand control strategies: their natural
strategy, a Momentum-Transfer strategy, and a Quasi-Static strategy as done by Shia et al. [32].
Researchers have identified the Quasi-Static and Momentum-Transfer strategies as either end of
a continuum of Sit-to-Stand strategies [33]. The Quasi-Static strategy involves shifting the feet
closer to the chair and the hips forward, then standing up so that the center of mass remains inside
the base of support. The Momentum-Transfer strategy involves shifting the feet further out from
the chair, then using the forward momentum of the center of mass to propel the individual to
standing. Hughes et al. found both of these strategies exhibited by older adult subjects [33], while
younger adults tend to use the momentum transfer strategy [34]. Subjects watched a demonstration
of each strategy, and then practiced each strategy a minimum of 10 times prior to data collection.

The following set of treatments were applied to each Sit-to-Stand strategy, illustrated in Fig.
2.1:

• Nominal trials: Subjects stood five times from a comfortable foot position using the specified
control strategy.

• Foot-shift trials: Subjects varied their foot placement in 0.05-m (2-inch) increments in the
anterior-posterior direction from their original position. The increments were demarcated by
taped lines on the ground. Subjects stood up once at each increment, moving their feet back-
wards until their heels left the ground, and then forward until a strategy shift was observed.
We noticed that subjects at extreme anterior foot positions attempted to stand up by lunging
forward into a squatting position, and excluded these trials from our dataset because they
represented a shift in strategy from the subject’s nominal behavior.

• Cable pull perturbations: Subjects returned their feet to their original position. A cable
system was attached to the subject’s waist and connected to two high-torque motors. These
motor driven cables applied impulses to the subject as they rose. The cable pulls were
restricted to the anterior-posterior direction, and were applied either forward or backwards
with variable timing and force. Specifically, three peak force levels – low, medium, and
high – were calibrated to each subject. The low force level was designed to rarely induce
stepping or sitting during Sit-to-Stand, while the high force level was designed to induce
stepping or sitting approximately half of the time. Six trials were taken at each force level
for each Sit-to-Stand strategy, with three pulling forwards and three pulling backwards, in
random order.
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Nominal trials

Foot-shift trials

Cable-pull trials

Figure 2.1: Example of each type of Sit-To-Stand trial.

A 10-camera PhaseSpace motion capture system collected kinematic observations of 36 mark-
ers at 480 Hz. C-Motion’s Visual3D biomechanics software was used to fit body segment models
to each subject’s data [35]. MATLAB was used for all subsequent analyses [36]. A 6th-order
Butterworth filter with a cut-off frequency of 2 Hz was used to filter joint position trajectories.

For each natural and Momentum-Transfer STS trial, we determined the start and end of the trial
through the following steps:

1. Manually segment each trial, starting several seconds before STS was initiated and ending
several seconds after the subject reached standing.

2. Create an average nominal trial by aligning all of a subject’s nominal trials by their peak
horizontal center of mass (COM) velocity, then computing the mean.

3. Choose the start time of the average nominal trajectory based on when the horizontal accel-
eration exceeds 20% of its max. Choose the end time as when the vertical COM position
first exceeds 99% of its max.

4. Nondimensionalize the segmented, average trial in time, described below.
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The foot-shift and cable-pull trials were segmented to align with the average nominal trial’s peak
COM accelerations. The Quasi-Static trials were segmented using a separate segmentation proce-
dure because they lacked a distinct peak in their horizontal COM accelerations. More detail about
the segmentation process can be found in Appendix B of [23].

Each STS trial was also nondimensionalized in time. Let τ ∈ [0, T ] ∈ R denote a time drawn
from an interval during a segmented STS trial and x̃ : [0, T ] → X ⊂ Rn and ũ : [0, T ] × X →
U ⊂ Rm be a state and input trajectory, respectively, of a chosen STS model with n states and m

inputs. Then, the dynamics of this model are given by

˙̃x(τ) = f
(
x̃(τ), ũ(τ, x̃(τ))

)
. (2.1)

To make accurate comparisons across trials, we normalize each state trajectory x̃ by the trial’s
length, so that each trajectory occurs over the interval [0, 1], which we refer to as 0 to 100 %STS.
We introduce a unitless time variable t, related to τ by t = τ

T
. This dimensionless variable allows

us to introduce a normalized state trajectory x : [0, 1] → X , where

x(t) = x̃(T · t). (2.2)

We scale accelerations and forces in (2.1) by a factor of T 2 following similar logic.

2.2 Trips during Level-Ground Treadmill Walking

This experiment aimed to study human responses to trips during level-ground treadmill walking.
Instead of using physical obstacles to create trips, we used tethers attached to the subject’s feet
and routed to the back of the treadmill through a custom braking device, shown in Fig. 2.2. The
braking device was activated during the swing phase to interrupt the forward motion of the foot,
thus inducing a trip-like perturbation. In each tether trip perturbation, the brake was applied for
either 150, 250, or 350 ms, decided randomly during the experiment. These three trip durations
were used in [25] to emulate different lengths of foot contact with an obstacle, either when during
initial impact or when the foot gets caught and cannot immediately overcome an obstacle. Shirota
et al. found that this technique resulted in a similar responses to trips as those from physical
obstacles [25].

One advantage of the tethers is that the subjects are unable to anticipate the trip while main-
taining their normal field of view. In experiments where obstacles are released onto the treadmill,
subjects often wear special goggles to limit their lower field of view [37, 38]. Although this strat-
egy discourages subjects from anticipating the obstacles, restricting the lower field of view may
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introduce other balance and mobility challenges.

tethers

brakes

load cells

Figure 2.2: Trip experiment setup, including tethers attached to each foot, brakes applied at short
intervals, and load cells to measure the tether force.

We collected data from 16 participants: Eight female and eight male; ages 18-29; mean (stan-
dard deviation) height 1.77 (0.10) m; mean (standard deviation) body mass 69.6 (12.6) kg. Each
subject gave their informed written consent, and had no physical or balance disorders which could
affect their ability to walk on a treadmill. The experimental protocol was approved by the Univer-
sity of Michigan Health Sciences and Behavioral Sciences Institutional Review Board, eResearch
ID: HUM00195042.

Subjects were fit with a harness in case of falls, then the tethers were attached to each foot. The
subjects selected their desired level-ground treadmill (Bertec) walking speed in a warm-up that
started at 1 m/s. After one minute, subjects could request to increase or decrease the speed in 0.2
m/s increments. The mean (standard deviation) chosen walking speed was 1.14 (0.16) m/s. Then,
the perturbed trials commenced. In total, the experiment consisted of 100 20-second walking trials,
divided into 4 sessions of 25 trials each. A custom targeting algorithm measured force plate values
from the instrumented treadmill in real-time, estimating whether each leg was in stance or swing.
The trips were randomized by the following variables:

• leg side (right or left),

• percentage of swing phase (10-80%),

• percentage of time into each 20-second trial (5-15 seconds), and
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• duration of tether brake (150, 250, or 350 ms) to simulate varying contact duration with an
obstacle.

Note, due to latencies in the signals sent from the computer to the tripping device and our measures
to correct for them, we observed trips outside of the 10-80% swing phase range. A minimum of
10 seconds between each trip allowed time for the subject to recover, and 15 random trials did
not include trips. We observed that subjects’ kinematics returned to baseline behavior (by a visual
analysis of lower-limb kinematics; example provided in Fig. 2.3) after 2-3 steps, indicating that
the 10-second minimum break between trips gave subjects adequate time for recovery. However,
quantifying baseline levels in future work could help to further verify this experimental choice.
Load cells measured the force in each tether throughout the experiment, and a 26-camera Vicon
motion capture system collected kinematic observations of 16 markers at 100 Hz. We applied a
Woltring filter and fit lower-body segment models to each subject’s data using Nexus Plug-in Gait
[39], and we used MATLAB for all subsequent analyses [36]. A 6th-order Butterworth filter with
a cut-off frequency of 6 Hz was used to filter joint position trajectories.

We analyzed these experimental data during the swing phase only, i.e. between toe-off and
heel-strike events. We determined each gait event using force plate readings with a threshold of 30
N for the stance phase. In Ch. 5, we analyze the trip-recovery trajectories using a normalized and
shifted time variable that aligns peak heel height. In Ch. 6, we use a phase variable to describe the
progression of gait, which is more amenable to real-time planning and control in robotic prostheses.
We refer to either normalized time or phase as t ∈ [0, 1] ⊂ R in their respective chapters.

Previous research by Shirota et al. investigated the effect of trip onset, brake duration, leg side,
and the interaction between brake duration and onset in a similar trip-recovery experiment [25].
The authors found that leg side did not significantly influence strategy selection in the experiment
subjects. In this document, we therefore combine the swing phase trajectories for the left and right
foot into one dataset. Future work should conduct a similar multinomial logistic regression to
verify that leg side did not influence strategy selection in our own experiment. This analysis could
also include time into the experiment as another independent variable, to investigate if strategy
selection changed over time.

Humans typically pick one of three strategies to recover from trips, shown in Fig. 2.5:

1. Elevating: The subject’s swing leg elevates over the obstacle, and the swing heel contacts
the ground in front of the obstacle.

2. Delayed Lowering: The subject’s swing leg initially elevates, then lowers behind the obsta-
cle. The swing toe contacts the ground behind the obstacle.

3. Lowering: The subject’s swing leg immediately lowers behind the obstacle, with the swing
toe contacting the ground first.
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(a)

(b)

(c)

(d)

(e)

Trip onset

Figure 2.3: This figure shows the (a) tripped heel, (b) contralateral swing heel, (c) tripped hip,
(d) tripped knee, and (e) tripped ankle trajectories after a trip for one subject in our dataset. We
observe changes in the kinematic trajectories immediately after trip onset, indicated by the vertical
dashed line, and a return to baseline levels after 2-3 steps.

The trip-recovery data in this document was sorted into the three strategies by hand. To sort the
trip-recovery strategies, we analyzed the anterior-posterior position and height of the swing heel
compared to average nominal level-ground walking trajectories. We also looked at the swing leg
configuration throughout the tripped swing phase. Sometimes, the trips did not induce a noticeable
recovery, due to signal latency or the tether temporarily becoming displaced from between the
brake pads. In this case, the recoveries were labeled as “incomplete arrest” as in [25] and were not
analyzed. Examples of the sorting criteria are shown for elevating, delayed lowering, lowering,

13



and “incomplete arrest” strategies in Fig. 2.4
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(d) “Incomplete Arrest”
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Figure 2.4: We analyzed the swing heel anterior-posterior position, swing heel height, and swing
leg configuration throughout the tripped step to sort the trip recoveries by hand. The horizontal
axis in all plots is a variable that represents progression through the swing phase, described in Ch.
6. We label (a) as an elevating strategy because the swing heel elevates (above average nominal
behavior) after the trip occurs, with the heel striking in front of the body; (b) as a delayed lowering
strategy because the swing heel initially elevates, then lowers behind the body with the toe striking
the ground first; (c) as a lowering strategy because the swing heel immediately lowers behind the
body after a trip with the toe striking the ground first; and (d) as an “incomplete arrest” because
there is little difference from average nominal behavior.

In this document, we analyze over 900 trip trials across 16 subjects. Chs. 5 and 6 use slightly
different total numbers because we re-sorted some trials for robotic prosthesis planning, and each
chapter lists the number and breakdown across strategies.
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Figure 2.5: The three trip-recovery strategies with corresponding swing heel trajectories from one
subject (Subject ID 1) in our dataset. The horizontal axis is a variable that represents progression
through the swing phase, described in Ch. 6. (a) A depiction of the swing leg during each strategy,
adapted from Shirota et al. 2014. (b) A sample of anterior-posterior (AP) swing heel positions rel-
ative to the stance foot during each type of recovery compared to nominal (level-ground walking)
data. Note that the swing heel reaches close to the same final position as nominal during the ele-
vating strategy, whereas the swing heel travels backwards in the anterior-posterior position during
the delayed lowering and lowering strategies. (c) A sample of swing heel heights during each type
of recovery compared to nominal data. Note that the swing heel reaches ground level during the
elevating trials, but does not reach the ground level during delayed lowering and lowering trials
(aside from one instance). During the latter two recovery strategies, the swing toe typically strikes
the ground first, so the heel stays above the ground.
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CHAPTER 3

Specific Aim 1: Quantifying Stability During
Sit-To-Stand

This work is published [23]:

Holmes Patrick D., Danforth Shannon M., Fu Xiao-Yu, Moore Talia Y., and Vasudevan
Ram 2020. Characterizing the limits of human stability during motion: perturbative
experiment validates a model-based approach for the Sit-to-Stand task. Royal Society

Open Science.

and has been modified for this document.

3.1 Introduction

Falls are the leading cause of injury in people over 75 years old, resulting in reduced quality
of life, increased healthcare costs, and accident-related death [40, 41, 42]. If at-risk individuals
can be identified prior to injury, the likelihood of falling can be significantly reduced through
intervention such as physical therapy [43, 44]. Fall risk generally results from instability arising
from neuromuscular deficiencies or external perturbations. Clinical assessments for identifying
individuals who would benefit from preventative care are currently limited to questionnaires [45,
46] and non-perturbative motor assessments [10, 11, 47]. Self-reported information often has low
reliability [48, 49], and current clinical motor performance tests have low fall-prediction rates,
especially for active older adults [13, 50, 51, 14]. For widespread use, stability assessments must
combine predictive power with minimal experimental and computation time.

Because older adults are more likely to fall while in motion [52], several studies suggest that
quantifying dynamic stability may help identify biomechanical deficiencies associated with an
increased risk of falling [53, 54, 55, 56]. Thus, a number of model-based methods have been
developed to assess stability during walking [56]. Among these, variability measures [57] and
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the maximum Lyapunov exponent [58] ranked highest overall in validity. However, these metrics
only characterize a subject’s ability to recover from small perturbations. Currently, it is unclear
whether the most useful estimates of stability are provided by measuring an individual’s ability to
recover from small perturbations or by computing the largest possible perturbation that they can
withstand without failure of a control strategy [56]. Unfortunately, these methods cannot yet be
fully compared because a verified technique for computing the maximum perturbation from which
a subject can recover does not exist. Additionally, the best-performing model-based methods are
limited to periodic motion.

Stability during non-rhythmic motion is also of interest, especially because difficulty with ape-
riodic tasks such as Sit-to-Stand (STS) is strongly correlated with falls in older adults [21], and
because these tasks are necessary for maintaining independence and quality of life . The motion
of a person’s center of mass (COM) during STS can be modelled as an inverted pendulum, which
requires an appropriate amount of angular momentum at seatoff to successfully complete the task
[59]. Drawing from this idea, metrics of stability for STS are generally based on an individual’s
initial COM velocity or acceleration [60, 61, 62]. However, a stability metric that considers data
only at the onset of movement disregards valuable information about the control strategy used by
the individual. In fact, human control strategies for STS lie on a spectrum ranging from Quasi-
Static, in which little momentum is used and the body position is statically stable throughout the
motion, to Momentum-Transfer, which is statically unstable and extensively uses momentum to
achieve standing [33].

To account for the dynamic differences in STS motions under distinct control strategies, Shia
et. al introduced the Stability Basin, computed using individualized pendulum models of STS with
linear-quadratic regulator (LQR) controllers [32]. For this pendulum model, the Stability Basin at
a given time is equal to the set of pendulum states that are able to successfully achieve standing
under the specified controller. Though this Stability Basin under an LQR controller successfully
distinguishes between less and more stable STS strategies, its ability to accurately identify the set
of states that can arrive at standing without failure of a given control strategy is unverified.

To test whether the Stability Basin can accurately estimate an individual’s stability for a par-
ticular task, perturbations must be introduced in a way that causes the states of the individualized
dynamic model to exit the stable region. By stability, we mean the set of body configurations
through time from which a subject can successfully stand up without switching from their cho-
sen control strategy to stepping or sitting. An accurate prediction of instability corresponds to an
experimentally observed failure of the individual’s control strategy.

Here we use a perturbative STS experiment with 11 subjects, described in Ch. 2, Sec. 2.1, to
validate stability predictions generated by the Stability Basin method. We use a dynamic model,
presented in Sec. 3.2.2, and subject-specific controllers to form individualized Stability Basins,
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Figure 3.1: An illustrative overview of Stability Basins for Sit-to-Stand. The Stability Basin rep-
resents the set of model states through time that will successfully arrive at a target set for a given
individual and Sit-to-Stand strategy. Trajectories of the model are illustrated, where the times that
perturbations are applied are denoted by the dashed lines. Trajectories that exit the Stability Basin
are predicted to lead to stepping or sitting.

detailed in Sec. 3.2.4. Then, we test whether each subject’s Stability Basin can accurately predict
the failure of a control strategy to recover from the cable pull, described in Sec. 3.2.5. We consider
common failure modes, such as a step or sit, to be observed failures of a STS control strategy [31].
In contrast to prior work that assumed that humans use LQR control during Sit-to-Stand while
constructing the Stability Basin, we use a data-driven method to create bounds on the control
input for a particular subject and control strategy, described in Sec. 3.2.3. Across all subjects and
control strategies, the proposed method correctly predicts unsuccessful trials over 90% of the time,
and correctly identifies successful trials over 95% of the time in a leave-one-out assessment. When
compared to three other methods of assessing Sit-to-Stand stability, the proposed method out-
performed each alternative. This perturbative validation experiment demonstrates that the Stability
Basin method is accurate and reliable, showing promise for integration into current healthcare
infrastructure.
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3.2 Methods

The goal of this work is to characterize stability during Sit-to-Stand. We hypothesize that Stabil-
ity Basins can accurately represent stability. The Stability Basin can be understood intuitively as
follows. Given a dynamical model of Sit-to-Stand, kinematic observations of a subject performing
Sit-to-Stand can be used to form trajectories of the model. The Stability Basin defines a boundary
between “successful” and “unsuccessful” trajectories of the model, where “unsuccessful” implies
the subject will have to take a step or sit back down. The Stability Basin is introduced pictorially
in Fig. 3.1, with a formal definition and computational details given in Sec. 3.2.4. An accurate
Stability Basin should predict when a subject’s Sit-to-Stand motion will be successful or unsuc-
cessful based on model trajectories alone. To test the accuracy of Stability Basins, we performed a
perturbative Sit-to-Stand experiment (Ch. 2, Sec. 2.1), occasionally inducing subjects to step or sit
back down, and then compared Stability Basin predictions to experimentally observed outcomes.

This section describes our framework for computing and testing the accuracy of Stability
Basins. We use kinematic observations of a subject performing a perturbative Sit-to-Stand ex-
periment, described in Ch. 2, Sec. 2.1. Individualized biomechanical models of Sit-to-Stand are
constructed for each subject (Sec. 3.2.2), and three controller models are detailed in Sec. 3.2.3.
Our proposed controller, which uses strategy-specific input bounds, reflects the distinct range of
inputs required for each control strategy [63]. After computing the Stability Basins (Sec. 3.2.4)
for each controller model, we test whether the individual and strategy-specific Stability Basins
correctly predict when a subject steps or sits down in response to perturbation, and when they
are successful (Sec. 3.2.5). Finally, we perform a comparison to a naive method for estimating
stability (Sec. 3.2.4.3).

3.2.1 Classifying trials as successful/unsuccessful

Two clear instances of a subject’s chosen control strategy (natural, Momentum-Transfer, or Quasi-
Static) failing during Sit-to-Stand are taking a step and sitting back down. We refer to the trials in
which these occurred as steps and sits, and collectively label them unsuccessful. At times, we will
also refer to these trials as failures.

For step trials, the instance of failure is defined as the time when the subject moves the toes of
either foot more than 0.0762 m (3 inches) in the anterior-posterior direction from its starting point,
as measured by motion capture markers placed on the subject’s foot. Although previous studies
measured ground reaction forces to identify the onset of steps [31], the distance threshold was used
here to utilize motion capture data. For sit failures, the failure instance is defined as the time when
both horizontal and vertical velocities of the COM become negative, i.e. the COM begins to move
back towards the seat. If a subject both stepped and sat down, failure is defined as the earlier of the
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two.
All foot-shift trials were considered successful. Subjects attempting the extreme anterior and

posterior foot positions were either unable to initiate the Sit-to-Stand movement, or violated the
parameters of acceptable trials stated in Ch. 2, Sec. 2.1. In either case, these trials were not
included in the dataset.

If no step or sit is detected, the trial is considered successful. In this work, ‘successful trials’
refers to nominal trials, foot-shift trials, and successful perturbed trials. Note, this scheme classifies
trials in which subjects rocked far onto their heels or toes to maintain balance as successful, so long
as no step or sit occurred.

3.2.2 Dynamic modeling

Let τ ∈ [0, T ] ⊂ R denote a time drawn from a time interval. Without loss of generality, we assume
each Sit-to-Stand trial starts at time τ = 0. We use a Telescoping Inverted Pendulum Model (TIPM,
Fig. 3.2) to model each subject’s COM motion in the sagittal plane during each Sit-to-Stand trial
[64]. This model is capable of describing the sizable displacements of a subject’s COM in the
horizontal and vertical directions that occur during Sit-to-Stand. The TIPM consists of a point
mass of mass m ∈ R representing the subject’s COM. Individualized TIPMs are constructed for
each subject by setting m as the subject’s mass.

We define the origin as the initial position of the ball of the subject’s foot. Specifically, the ori-
gin is defined as the mean initial position of motion capture markers attached to the metatarsopha-
langeal joints of the subject’s left and right feet, as estimated by Visual3D. We let the subscript (·)x
denote a quantity in the anterior-posterior direction, and the subscript (·)y denote a quantity in the
vertical direction. At each time τ ∈ [0, T ], we denote the following quantities of the TIPM as:

• Positions: r̃x(τ), r̃y(τ) ∈ R

• Velocities: ṽx(τ), ṽy(τ) ∈ R

• Accelerations: ãx(τ), ãy(τ) ∈ R

• Inputs: ũx(τ), ũy(τ) ∈ R

• Cable-pull forces: d̃x(τ), d̃y(τ) ∈ R

Let x̃ : [0, T ] → X ⊂ R4 be a state trajectory, so that x̃(τ) ∈ X is the model’s state at time
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Start of STS

Success

Failure: Step

Figure 3.2: Subjects began from a seated position with their arms crossed against their chests. The
subject’s COM is illustrated by filled circles. Cable-pulls applied to the subject sometimes caused
them to step or sit; otherwise, the trial was considered to be successful.

τ ∈ [0, T ]:

x̃(τ) =


r̃x(τ)

ṽx(τ)

r̃y(τ)

ṽy(τ)

 . (3.1)

Let ũ : [0, T ]×X → U ⊂ R2 be an input trajectory, so that ũ(τ, x̃(τ)) is the input at that time and
state:

ũ(τ, x̃(τ)) =

[
ũx(τ, x̃(τ))

ũy(τ, x̃(τ))

]
. (3.2)
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The time derivative of x̃(τ) at time τ , denoted ˙̃x(τ), can be written as:

˙̃x(τ) =


ṽx(τ)

1
m

(
ũx(τ, x̃(τ)) + d̃x(τ)

)
ṽy(τ)

1
m

(
ũy(τ, x̃(τ)) + d̃y(τ)

)
− g

 , (3.3)

where g is the gravitational acceleration 9.81m/s2.
The time that it takes to complete Sit-to-Stand varies from trial to trial. To make accurate

comparisons across trials, we normalize each TIPM state trajectory x̃ by the trial’s length, so that
each trajectory occurs over the interval [0, 1], described in Ch. 2, Sec. 2.1. This normalization
introduces a unitless time variable t and a normalized state trajectory x : [0, 1] → X . For the rest
of this chapter, we only consider normalized trajectories, unless explicitly stated. Let rx, ry, vx and
vy refer to normalized position and velocity trajectories, and let ax, ay, ux, uy, dx and dy refer to
normalized acceleration and force trajectories.

3.2.3 Controller Model

The Stability Basin computation, detailed in Sec. 3.2.4, requires a model for the TIPM controller.
In this subsection, we describe and compare two existing controller models as well as our proposed
controller model. All three controller models are used to compute Stability Basins that are com-
pared during the validation phase described in Sec. 3.2.5.3. Before we describe these controller
models in mathematical detail, we briefly describe their qualitative properties. The controllers are
compared and contrasted in Fig. 3.3.

The controller models estimate the control input u(t, x(t)) at a given time t and state x(t).
In many previous studies, researchers have modelled human controllers as an open-loop “feed-
forward” component plus a closed-loop linear “feedback” component [65, 66, 32], thus finding a
single controller that best models the data. Following this paradigm, we develop an LQR controller
model and a traditional feedforward plus feedback controller model (FF+FB). The main differences
between these controllers are the specifics of their construction, detailed in Sec. 3.2.3.2 and Sec.
3.2.3.3. The LQR controller model is constructed by solving an optimal control problem to provide
feedback about an average nominal trajectory, while the FF+FB controller model is constructed via
linear regression. Both of these controller models return a single input at a given time and state.

Because the form of the controller employed by humans is unknown, it is difficult to assert with
confidence that a single controller adequately captures human behavior. We propose that a more
robust controller model may return a set of possible inputs rather than a single input at a given time
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and a state. One way to achieve this is to bound the possible inputs at each time and state, and
assume that the human could use any input within these bounds. We refer to this controller model
as the Input Bounds controller.

The Input Bounds represent the range of time-varying inputs that are expected under a given Sit-
to-Stand strategy. For example, consider a subject’s natural Sit-to-Stand strategy. At the beginning
of the motion, we expect the subject to apply a large positive horizontal input to propel themselves
forwards, while applying little positive vertical input. Halfway through the motion, the subject
may apply a negative horizontal input to slow their forward velocity, as well as a large positive
vertical input to rise towards standing. Therefore, the expected inputs applied by the subject are
time-dependent. Moreover, because there is some variability in the way the subject performs Sit-
to-Stand from trial to trial, we expect the inputs to fall within some range of values. The Input
Bounds controller captures this variability by developing time-dependent upper and lower bounds
on the allowable inputs.

Biomechanical constraints, such as ground reaction force limits or joint torque limits, constrain
the maximum inputs that a subject can apply during Sit-to-Stand under any strategy. We want to
be clear that the Input Bounds do not represent the range of all inputs that are biomechanically
feasible, but rather the subset of inputs that represent the range expected under a given strategy.
For example, consider a scenario in which a person begins standing up using their natural Sit-to-
Stand strategy, but then stops halfway and remains in a crouched position. Certainly, the person
can achieve this performance without violating biomechanical constraints. However, the person
will have deviated from their natural Sit-to-Stand strategy, in which they normally stand all the
way up. Accordingly, the input that they applied would have exited the Input Bounds we have
developed for their natural strategy at the time that they decided to remain in a crouched position.
For this reason, we develop the Input Bounds from observations of Sit-to-Stand rather than from
biomechanical constraints.

3.2.3.1 Generating training data

Modelling human motion requires the LQR, FF+FB, and Input Bounds controller models to be
estimated from observed data. In this work, we use kinematic observations of successful trials (i.e.
nominal, foot-shift, and successful perturbed trials) to generate a dataset on which to train each
control model. Note that the dataset on which each controller model is trained is identical. We fit
the LQR, FF+FB, and Input Bounds controllers separately for each subject’s natural, Momentum-
Transfer, and Quasi-Static control strategies.

Given a strategy, we first compute the inputs for each successful trial within that strategy via
inverse dynamics using (3.3) [67, Chapter 5]. Let xi(t) and ui(t) denote the state and input at time
t for the ith successful trial computed via inverse dynamics, and let S denote the set of successful
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Nominal and Foot-Shift Trials

Successful Perturbed Trials

average nominal trajectory

Input BoundsFF+FBLQR

Figure 3.3: These figures show how we construct the controller models from data. The process is
shown for ux, and is identical for uy. In Fig. 3.3(a), ux evolves as a function of time t and state
x, which has been depicted as a single dimension for this illustration. The grey lines represent the
input trajectories of nominal and foot-shift trials, while the blue lines represent the input trajectories
of perturbed successful trials. Note that we have not plotted the portions of the successful perturbed
trajectories when the perturbations were active, because these segments are not used to train the
controller models. An arbitrary time t = 0.25 is illustrated by the black outline in Fig. 3.3(a). The
observed inputs from nominal, foot-shift, and perturbed successful trials at that time are plotted
as points in Fig. 3.3(b - d). Figure 3.3(b) shows that the LQR controller utilizes linear feedback
about a nominal trajectory. Because the LQR controller is generated by minimizing a cost function
specified by the matrices Q and R, its feedback matrix does not necessarily coincide with a line of
best fit. Figure 3.3(c) illustrates that the FF+FB controller is given by a line of best fit. Figure 3.3(d)
shows how the upper and lower bounds ulb

x (t, x(t)) and uub
x (t, x(t)) are parallel linear functions of

state that encompass all of the successful inputs.

trials within a given strategy. Given a time t, we will frequently use the notation∑
i∈S

(u(t, xi(t))− ui(t))
2 (3.4)

which means “the squared error of the estimated control input u(t, xi(t)) from each observed con-
trol input ui(t), summed over all successful trials within a given strategy.”

Because many successful trials within a Sit-to-Stand strategy involved cable-pull perturbations,
we make the following remark:

Remark 3.2.1. When computing ui(t) via inverse dynamics for successful perturbed trials, we
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discard the portion of the trajectory during which the perturbation was active. This is possible

because the perturbations were time-synchronized with the motion capture data.

3.2.3.2 LQR controller

Shia et al. proposed to model Sit-to-Stand using an LQR controller about a nominal Sit-to-Stand
trajectory [32]. To build this controller, we first form a single average nominal trajectory x̄ for each
of a subject’s Sit-to-Stand control strategies by taking the mean of the five nominal Sit-to-Stand
trajectories. We generate an open loop controller, uol : [0, 1] → U ⊂ R2, for each average nominal
trajectory via inverse dynamics. Then, we use LQR to design a linear feedback controller about the
average nominal trajectory. We specify the quadratic cost function for LQR by a state weighting
matrix Q ∈ R4×4 and input weighting matrix R ∈ R2×2, which are used to generate the feedback
matrix K(t) ∈ R2×4. [68, Chapter 16] At a given time and state, the input from the LQR controller
can then be written as:

u(t, x(t)) = uol(t)−K(t)(x(t)− x̄(t)) (3.5)

We choose the Q and R that produces a controller that most closely fits the observed data. To
do so, we wrap the choice of Q and R inside an optimization procedure that seeks to minimize
the error between the LQR controller model and the observed control inputs over the time horizon
[0, 1]:

min
Q,R

∑
i∈S

∫ 1

0

(u(t, xi(t))− ui(t))
2 dt (3.6)

As in (3.4), S represents the set of observed successful trials within a Sit-to-Stand strategy, and
xi(t) and ui(t) correspond to the observed states and input of the ith trial at time t. The integral is
approximated using 200 time steps. We specify the space over which Q is optimized:

Q ∈ {M ∈ R4×4|Mi,j = 0 ∀i ̸= j, M1,1 = 1, M2,2 ∈ [0.1, 100], M3,3 ∈ [0.1, 100], M4,4 ∈ [0.1, 100]}
(3.7)

and the space over which R is optimized:

R ∈ {M ∈ R2×2|Mi,j = 0 ∀i ̸= j, M1,1 ∈ [1e−5, 1e−2], M2,2 ∈ [1e−6, 1e−1]} (3.8)

Q and R are constant diagonal matrices, where the spaces over each which is optimized were
chosen to restrict the relative costs of states versus inputs, the relative costs between states, and the
relative costs between inputs. In particular, no state can cost more than 100 times any other state,
no input can cost more than 10 times another input, and the relative scale between states and inputs
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was chosen based on the expected magnitudes of states and inputs.

3.2.3.3 FF + FB controller

We also test the efficacy of a traditional feedforward plus feedback controller. Let the input
u(t, x(t)) at some time t and state x(t) be described by the state feedback matrix K(t) ∈ R2×4 and
a feedforward component ff(t):

u(t, x(t)) = ff(t)−K(t)x(t) (3.9)

To generate K(t) and ff(t) from data, we use linear least squares to solve the following program:

min
ff(t),K(t)

∑
i∈S

(u(t, xi(t))− ui(t))
2 (3.10)

As in (3.4), S represents the set of observed successful trials within a Sit-to-Stand strategy, and
xi(t) and ui(t) correspond to the observed states and input of the ith trial at time t.

3.2.3.4 Input Bounds controller

The proposed Input Bounds controller differs from both the LQR and FF+FB controllers by return-
ing a set of inputs at a given time and state, rather than a single point. To define the Input Bounds
controller, we develop bounds on the TIPM control input. We denote a lower bound on the control
input as ulb, and an upper bound on the control input as uub. Note that

ulb ≤ u ≤ uub (3.11)

where the inequality is taken element-wise.
We present this approach more formally in the following definition:

Definition 3.2.1. For the Input Bounds controller, we model the inputs u to the TIPM as a bounded

component plus a linear feedback component, where the bounded component is drawn from a

bounded set. Specifically, given time t and state x(t), we define the bounds in (3.11) as

ulb(t, x(t)) = blb(t)−K(t)x(t) (3.12)

uub(t, x(t)) = bub(t)−K(t)x(t) (3.13)

where blb(t) and bub(t) ∈ R2 are lower and upper bounds on the bounded component, and K(t) ∈
R2×4 is a matrix of linear feedback gains.
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We generate the parameters of the Input Bounds controller blb, bub, and K from data by solving
a constrained linear least squares problem:

min
blb(t),bub(t),K(t)

∑
i∈S

(
ulb(t, xi(t))− ui(t)

)2
+
(
uub(t, xi(t))− ui(t)

)2
(3.14)

s.t. ulb(t, xi(t)) ≤ ui(t) ∀i ∈ S,

uub(t, xi(t)) ≥ ui(t) ∀i ∈ S

where the inequalities are understood element-wise. This is a quadratic program, which can be
solved rapidly and efficiently.

In summary, at each instance in time, we compute the range of control inputs of a certain form
that can be applied while explaining the data we observed, thereby modelling a range of inputs a
human may use to recover from perturbation. Our method of Stability Basin computation, detailed
in Sec. 3.2.4.2, is flexible to this type of controller specification, and in particular, we verify that
this approach is not too conservative in Sec. 3.3. In effect, the Input Bounds controller model
allows us to compute Stability Basins with a set of hypothetical controllers, instead of just one.

3.2.4 Computing Stability Basins

Three elements are required to form the Stability Basin for each of an individual’s Sit-to-Stand
control strategies:

1. The TIPM dynamics (3.3).

2. A controller model for the TIPM (e.g. (3.5), (3.9), (3.11)).

3. A target set, XT , that encapsulates all model states observed to lead to successful standing.

Given these elements, we define the Stability Basin as follows:

Definition 3.2.2. The Stability Basin ⊂ [0, 1] × X is a subset of times (0 - 100%STS) and model

states from which a trajectory of the model obeying the dynamics (3.3) and controller model will

arrive at the target set XT .

In the rest of this subsection, we explain how we compute the target set XT from data. Then,
we use this object in conjunction with a controller from Sec. 3.2.3 to generate the Stability Basins.

3.2.4.1 Generating the target set

The goal of the Sit-to-Stand motion is to arrive at a standing configuration. We define the target
set XT as a set that encompasses the states at time t = 1 observed to lead to successful standing.
Note, the target set XT does not represent quiet standing itself, which we consider a distinct task.
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Figure 3.4: This figure illustrates how XT (the target set) is formed from data for a given subject
and strategy. The states (rx and vx) at 100% STS of each observed successful trial within a strategy
are illustrated as blue dots. An example XT represented by the shaded blue zonotope contains all
of the states observed to lead to standing. The zonotope is parameterized by its center c and
generator vectors g(1) and g(2). This example depicts a 2-dimensional XT , but in reality they are
4-dimensional and encompass both horizontal and vertical components of the state space.

We define XT ⊂ X as a zonotope (Ch. 1, Sec. 1.3 and Appx. A) that encompasses the final
states (i.e., the states at t = 1) of all successful trials observed for a given Sit-to-Stand strategy.
Specifically, XT is a zonotope with 4 generators computed from the final states as proposed by
Stursberg [69, Section 3], where each generator is expanded by 5% to avoid observed states lying
on the edge of the set. The target set generation process is depicted in Fig. 3.4.

3.2.4.2 Computing Stability Basins via reachability analysis

The reader may notice that the Stability Basin (Defn. 3.2.2) is defined as a set of states through
time that satisfy some dynamics specified by an ordinary differential equation (ODE). Recalling
the concepts introduced in Ch. 1, Sec, 1.3, the Stability Basin is a backwards reachable set: The
set of states through time that arrive at the final target set XT . To compute the Stability Basins, we
use an open-source reachability toolbox called CORA [29, 30], introduced in Ch. 1, Sec, 1.3.

CORA represents the Stability Basin as a zonotope at each of a finite collection of time steps,
which are subintervals of the interval [0, 1] of length ∆t. Each Stability Basin was formed using a
time step ∆t of 0.005 (i.e., 0.5%STS), so that 200 zonotopes represent the Stability Basin over the
interval [0, 1]. Although CORA chooses the exact number of generators to use for each zonotope,
we set the maximum number of generators as 800.

Generally, CORA expects the inputs to the system to be functions of time, allowing the feed-
forward inputs and gain matrices for the LQR and FF+FB controllers to be specified at each time
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step. However, CORA also allows the input to the system at each time step to be drawn from a
set, allowing us to use the Input Bounds controller model and let the control input be defined as
in (3.12) and (3.13). CORA in this case assumes the input at a given time and state can take any
value within the Input Bounds to create the Stability Basin. Because the Stability Basin is the set
of states through time that arrive at the final target set XT , it can be computed as a backwards
reachable set. In practice, this means we treat XT as an initial set, and use CORA to flow the set
backwards in time under the negative of the dynamics (3.3) and the controller model.

Stability Basins were generated for each controller described in Sec. 3.2.3 on a laptop com-
puter with a 2.7 GHz Intel Core i7 processor. Stability Basins computed using the Input Bounds
controller take 0.76± 0.014 seconds to compute.

3.2.4.3 Naive method for computing Stability Basins

Stability can also be estimated from observed perturbed trials by simply drawing a volume around
the state trajectories of the observed successful trials. This method does not utilize reachability or
a controller model, and relies on state trajectories alone. Here, we apply this method by generating
a 4-dimensional zonotope at each time step that encloses all of the observed successful states. This
is the same procedure that we employ to generate the target set XT (described in Sec. 3.2.4.2 and
illustrated in Fig. 3.4) applied at each instance in time over the course of the motion.

3.2.5 Evaluating Stability Basin accuracy

We hypothesize that the Stability Basins can predict when a subject must depart from their control
strategy in response to perturbation to avoid falling. Previously in Sec. 3.2.1, we defined the failure
of a control strategy as stepping or sitting back down and explained how we determine the onset
of stepping or sitting. We now use the Stability Basins to predict whether or not a strategy failure
will occur by checking if a Sit-to-Stand trajectory exits the Stability Basin at any point. Finally, we
detail the evaluation procedure we used to test the accuracy of the Stability Basins’ predictions.

3.2.5.1 Defining onset of failure

To test the predictive power of the Stability Basins, we first identify the onset of failure (as previ-
ously described in Sec. 3.2.1) during a Sit-to-Stand movement. We denote tf ∈ [0, 1] as the time of
failure onset, and will test whether the Stability Basins predict failure prior to that time. Because
we are using a procedure based on an average nominal trial for aligning and segmenting trials (de-
tailed in Appendix B of [23]), it is possible for the onset of stepping or sitting to occur after the
trial end time t = 1. The end times chosen by the segmentation procedure do not necessarily imply
that the subject has reached standing, but are just a means to achieve a consistent segmentation of
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Figure 3.5: This figure illustrates how to check if a point is inside or outside of a zonotope. An
example zonotope (shaded grey) is parameterized by its center c and generator vectors g(1) and
g(2). A test point p is contained within the zonotope because the maximum absolute value of the
coefficients on g(1) and g(2) is less than or equal to 1. Another test point q lies outside of the
zonotope because the maximum absolute value of the coefficients on g(1) and g(2) is greater than 1.

the data. We consider a trial with a step or sit occurring later than the trial’s end to be unsuccessful,
and set tf = 1 in this case.

3.2.5.2 Checking trajectories

Given an observed trajectory xi from a Sit-to-Stand trial, we use a linear program to determine
whether that trajectory lies inside the Stability Basin at each time step. Recall that each zonotope
Z(t) representing the Stability Basin is parameterized by its center c(t) ∈ R4 and generator matrix
G(t) ∈ R4×p. At each time t, we represent the state xi(t) as a linear combination of the gener-
ator matrix’s columns, and use a linear program to find the representation that has the smallest
maximum coefficient β(t)

max ∈ R:

min
β
(t)
max∈R,β(t)∈Rp

β(t)
max (3.15)

s.t. G(t)β(t) = xi(t)− c(t),

|β(t)| ≤ β(t)
max

where the absolute value and inequalities are applied element-wise. If β(t)
max is less than or equal to

1, the point xi(t) is inside the Stability Basin at that time step, depicted in Fig. 3.5.
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3.2.5.3 Evaluation procedure

The Stability Basins are used to predict the success or failure of every trial within each Sit-to-
Stand strategy (natural, Momentum-Transfer, and Quasi-Static). The accuracy of each Stability
Basin is then tested by comparing its predictions to the experimentally observed outcomes of each
Sit-to-Stand trial.

Given the state trajectory xi observed for a Sit-to-Stand trial, the linear programs described in
(3.15) are used to predict success/failure. If a state trajectory xi remains inside the Stability Basin
at each time step, the trial is predicted to be successful. If xi exits the Stability Basin at any time
step, the trial is predicted to fail. To ensure that the Stability Basins’ predictions are made fairly,
we make the following restrictions:

1. For cable pull trials, the prediction uses only the portion of the Stability Basin after the onset
of perturbation.

2. For trials in which failure was observed, the prediction uses only the portion of the Stability
Basin before failure occurred (i.e., t ≤ tf as in Sec. 3.2.5.1).

We evaulate the Stability Basins formed using the LQR, FF+FB, and Input Bounds controllers,
as well as the naive method in Sec. 3.2.4.3. We perform separate types of evaluation for successful
trials versus unsuccessful trials. For successful trials, we employ a leave-one-out procedure to
avoid training and testing on the same data. After forming the target set, we leave one successful
trial out of the controller (LQR, FF+FB, Input Bounds) training data in Sec. 3.2.3.1. For the
naive method, one successful trial is left out of the zonotope generation at each time step. We then
construct a Stability Basin using each controller/method to test the trial that was left out. We repeat
this procedure until all successful trials have been tested.

For unsuccessful trials, we compute a single Stability Basin for each controller model/method,
formed using all observed successful trials. We use this single Stability Basin to predict the out-
come of each unsuccessful trial within a given strategy. An outline of the validation procedure is
provided in Fig. 3.6.

To be clear, we do not follow a leave-one-out procedure when generating the target set XT

from data. As displayed in Fig. 3.4, the target set generation is similar to taking the convex
hull of a set of 4-dimensional points. If we follow a leave-one-out procedure when generating
the target set, then the points on the boundary of the original set will likely be on the outside
of the new set when they are left out. This would mean that many successful trials whose final
states lie on the edge of the original target set necessarily exit the Stability Basins, and therefore
are automatically misclassified when following this leave-one-out procedure. For these reasons,
this procedure would serve to validate the robustness of the target set generation, rather than the
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Step 4. Check that the left-out 
   trial remains in the basin. 

Step 1. Form standing set with all nominal, foot-shift, and successful perturbed trials (Fig. 4).

Step 2. Train controller (or naive method) with all nominal, foot-shift, and successful 
   perturbed trials (Fig. 3).

Step 3. Form Stability Basin with standing set and controller, if applicable.

Step 4. Check that the unsuccessful trial exits the basin before the step/sit occurs.  

Step 1. Form standing set with all nominal, foot-shift, and successful perturbed trials (Fig. 4).

Step 2. Train controller (or naive method) with all nominal, foot-shift, and successful 
   perturbed trials except one (Fig. 3).

Step 3. Form Stability Basin with standing set 
   and controller, if applicable. 

Sit Trial
Step Trial

Successful Perturbed Trial

For each subject, strategy (Natural, Momentum Transfer, Quasi-Static), and 
controller/method (Input Bounds, FF+FB, LQR, Naive):

(a) Nominal, foot-shift, and successful perturbed trials

(b) Unsuccessful trials

Figure 3.6: An outline of the Stability Basin validation with examples provided by the computed
Stability Basin for subject ID 1’s natural strategy under the Input Bounds controller. The horizontal
projection of the Stability Basin is represented as the region encapsulated by the light grey borders.
The projection of the target set XT is shown as the dark grey region on the right side of each plot.
The state trajectories of all of subject ID 1’s successful natural strategy trials except one are used
to construct the Stability Basin on which the left-out trial is tested, as shown in Fig. 3.6(a). Then
all of subject ID 1’s successful natural strategy trials are used to construct the Stability Basin on
which the unsuccessful trials are tested, as shown in Fig. 3.6(b). State trajectories of a step and a
sit exit the basin before the onset of failure. As detailed in Sec. 3.2.1, we define step initiation as
the time when the toes of either foot move more than 0.0762 m (3 inches) in the anterior-posterior
direction, and sit initiation as the time at which both vx and vy become negative.

32



Momentum-Transfer

Natural

Quasi-Static

Figure 3.7: This figure shows example nominal unnormalized horizontal acceleration trajectories
for each Sit-to-Stand strategy for subject ID 8.

Stability Basins themselves. However, collecting a larger number of samples should decrease the
effect of missing data on the target set generation.

3.3 Results

The subjects performed Sit-to-Stand trajectories with similar maximum and minimum accelera-
tions for each control strategy as the (different) subjects examined by Shia et al. [32]. Even though
subjects were allowed to determine the speed with which each Sit-to-Stand was performed, each
subject’s natural, Momentum-Transfer, and Quasi-Static Sit-to-Stand strategies showed distinct
kinematic characteristics, depicted in Fig. 3.7. In particular, the maximum and minimum horizon-
tal accelerations of the COM for the Momentum-Transfer ([-2.1, 2.2] m/s2) and Quasi-Static ([-0.8,
0.6] m/s2) strategies were significantly different from each other as well as from the natural strat-
egy ([-1.3, 1.5] m/s2), depicted in Fig. 3.8, with p-values < 0.001 when comparing the successful
trials within any two strategies. While the duration of natural and Momentum-Transfer trials were
similar (average times of 1.25s and 1.13s), Quasi-Static trials lasted longer (average 2.23s), due
in part to the low observed COM accelerations. The Stability Basin shape and volume are highly
dependent on the kinematic and temporal characteristics corresponding to the strategy selected, as
in previous work [32].
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Figure 3.8: Maximum (Fig. 3.8(a)) and minimum (Fig. 3.8(b)) horizontal accelerations are signif-
icantly different between Sit-to-Stand strategies, with p < 0.001 when comparing the maximums
or minimums of any two strategies under a two-sample t-test. Only successful trials are used in
this analysis. For each strategy, each small circle represents data from a single Sit-to-Stand trial.
The central mark within the box plot indicates the median horizontal acceleration. The bottom and
top edges of the box indicate the the 25th and 75th percentiles, respectively. The whiskers extend
to the most extreme horizontal accelerations not considered outliers, and the outliers are plotted
individually as small circles with an ‘x’ through them.

When using the Momentum-Transfer strategy during the foot-shift trials, subjects were able to
stand with their feet further forward (max. 0.199± 0.0699 m) than when using Quasi-Static (max.
0.0417± 0.0307 m).

Cable pull perturbations during Sit-to-Stand frequently induced a step or sit to avoid falling.
Out of 591 cable pull trials, we observed failure in 198, or 33.5%. Specifically, we observed 42
steps and 29 sits for the natural strategy, 40 steps and 19 sits for Momentum-Transfer, and 39 steps
and 29 sits for Quasi-Static. Fewer sits were observed for the Momentum-Transfer strategy than in
both the natural and Quasi-Static strategies, likely due to the larger forward momentum at seatoff
for the Momentum-Transfer strategy. The results are summarized in Tab. 3.1.

Table 3.1: Statistics collected from the perturbative sit-to-stand experiment are aggregated across
subjects and summarized below. Note that the onset of failure (Step %STS and Sit %STS) often
occurred after the defined trial end (t = 1), which is discussed in Sec. 3.2.5.1. Supplementary
material that reports these statistics for individual subjects is available online.

Sit-to-Stand Strategy Total Cable Pull Steps Sits Trial Time (s) Pert. Onset (%STS) Step (%STS) Sit (%STS)
Natural 326 197 42 29 1.25± 0.23 0.50± 0.10 1.07± 0.21 0.96± 0.15

Momentum-Transfer 322 198 40 19 1.13± 0.21 0.47± 0.11 1.14± 0.33 0.99± 0.15

Quasi-Static 300 196 39 29 2.23± 0.89 0.51± 0.17 0.95± 0.21 0.85± 0.20
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To assess the accuracy of each Stability Basin, we compared the predictions to the experimental
observation for each trial according to the procedure described in Sec. 3.2.5.3. The aggregate
prediction rates of the Stability Basins formed using the Input Bounds controller for each Sit-
to-Stand strategy across subjects are given in Tab. 3.2. Across Sit-to-Stand strategies, nominal,
foot-shift, and successful perturbed trials (Fig. 3.6(a)) remain inside the basin 95.73% of the time.
Of the failure trials, 90.91% of steps are predicted prior to onset, while 92.21% of sits are predicted
prior to onset (Fig. 3.6(b)). Using the visual trends in Tab. 3.3, we observed no consistent effect
of perturbation force on the predictive power of the method.

Table 3.2: The accuracy of the Stability Basins generated using the Input Bounds controller model
are reported below. This table reports a tally of the correct predictions for each Sit-to-Stand strategy
and trial type across subjects.

Sit-to-Stand Strategy Successful Trials Step Trials Sit Trials
Natural 248/255 – 97.25% 41/42 – 97.62% 27/29 – 93.10%

Momentum-Transfer 257/263 – 97.72% 33/40 – 82.50% 17/19 – 84.75%
Quasi-Static 213/232 – 91.81% 36/39 – 92.31% 27/29 – 93.10%
Combined 718/750 – 95.73% 110/121 – 90.91% 71/77 – 92.21%

Table 3.3: The accuracy of Stability Basins generated using the Input Bounds controller model are
reported for cable pull trials at three different force levels of the applied perturbation. The results
are aggregated across subjects and the three tested Sit-to-Stand control strategies.

Cable Pull Force Level Successful Trials Step Trials Sit Trials
Low 170/176 – 96.59% 15/15 – 100% 4/5 – 80.00%

Medium 125/132 – 94.70% 34/38 – 89.47% 24/27 – 88.89%
High 80/85 – 94.12% 61/68 – 89.71% 43/45 – 95.56%

Overall, the Input Bounds Stability Basins’ failure predictions are over 90% accurate; only 17
out of 198 unsuccessful trials are incorrectly predicted to be successful. To understand these false
successes, we measured the maximum Euclidean distance of each unsuccessful trajectory to its
nearest successful trajectory. The false successes are 34.24% closer to their nearest successful
trajectories than are the true failure trajectories. Additionally, the onset of failure with respect to
the onset of perturbation for false successes averaged 9.47% earlier than in the true failures. Note
that it is plausible that individuals switched control strategies for some subset of the trials (e.g.,
from Quasi-Static to natural), which could affect the accuracy of the strategy-specific Stability
Basins. Because we only characterize trials that are sits or steps as failures, it is possible that an
individual switched strategies to successfully stand but would not have reached standing with their
original strategy.
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Table 3.4: The accuracy of the Stability Basins formed using the Input Bounds controller model
were compared to Stability Basins formed using other methods. The results of the comparison
are reported below, and are aggregated across subjects and sit-to-stand strategies. Supplementary
material that reports these results for individual subjects and sit-to-stand strategies is available
online.

Basin Type Successful Trials Step/Sit Trials False Successful Predictions False Step/Sit Predictions
LQR 92/750 – 12.27% 197/198 – 99.49% 1/93 – 1.08% 658/855 – 76.96%

FF+FB 351/750 – 46.80% 195/198 – 98.48% 3/354 – 0.85% 399/594 – 67.17%
Input Bounds 718/750 – 95.73% 181/198 – 91.41% 17/735 – 2.31% 32/213 – 15.02%

naive 125/750 – 16.67% 195/198 – 98.48% 3/128 – 2.34% 625/820 – 76.21%

We compared the accuracy of Stability Basins computed using the Input Bounds controller to
Stability Basins formed using other methods (Tab. 3.4). The Stability Basins formed using all
three controllers as well as the naive method for Subject ID 1’s natural Sit-to-Stand strategy are
shown in Fig. 3.9.

Stability Basins formed using the LQR controller proposed in previous work [32] correctly
predict 12.27% of successful trials. Stability Basins formed using a traditional FF+FB controller
correctly predict the outcome of 46.80% of successful trials. Finally, a naive method for estimating
stability yields an accuracy of 16.67% for successful trials. Though each of the LQR, FF+FB, and
naive methods yield nearly 100% prediction accuracy for trials where failure occurred, the low
successful trial prediction rates mean that few trials remain within each Stability Basin, implying
a severe underapproximation of the true stable region. We also give the false successful prediction
and false failure prediction rates of each method in Tab. 3.4, and display these rates for each
strategy in Fig. 3.10. Each of the LQR, FF+FB, and naive approaches for computing Stability
Basins has a high false failure prediction rate, further showing that each underestimates the size of
the true stable region.

Because the LQR, FF+FB, and naive methods all appear to underestimate the true stable region,
we tested the accuracy of the Stability Basins generated by these methods when they are dilated by
5%. This was accomplished by multiplying each of their Stability Basins’ zonotope generators by
1.05, as in the target set generation. The classification rates for these methods do improve, though
not substantially. As seen in Table 3.5, the successful trial classification rate rises around 3% for
the LQR controller, around 6% for the FF+FB controller, and around 5% for the naive method. To
determine what would happen if we extended this analysis further, we also evaluated the Stability
Basins when the basins are dilated by 25%. This further improves the successful trial classification
rate of the LQR, FF+FB, and naive methods. However, at this dilation level, the FF+FB has a
similar unsuccessful trial classification rate as the Input Bounds controller (89.41% compared to
91.41%), but a 41% higher false step/sit prediction rate (56.83% compared to 15.02%). To be
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Figure 3.9: The Stability Basins formed for Subject ID 1’s natural Sit-to-Stand strategy using
the LQR controller model (Fig. 3.9(a)), FF+FB controller model (Fig. 3.9(b)), Input Bounds
controller model (Fig. 3.9(c)), and the naive method (Fig. 3.9(d)) are shown. The horizontal and
vertical projections of the Stability Basins are represented as the regions encapsulated by the light
grey borders, where black outlines are used to emphasize the changes in shape of cross-sections
over time. The projection of the target set XT is shown as the dark grey region on the right side of
each plot.
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Figure 3.10: This figure compares the predictive accuracy of the SBs formed using the Input
Bounds controller to three other methods. Results are presented for each Sit-to-Stand strategy,
aggregated across subjects. The Input Bounds controller’s predictions for both successes and fail-
ures are near the ground truth, while the three other methods predict many more failures than were
experimentally observed.

clear, we do not dilate the Stability Basins for our proposed controller model, the Input Bounds
controller.

Table 3.5: The accuracy of the Stability Basins for each method are compared when dilating the
LQR, FF+FB, and naive Stability Basins. The results are aggregated across subjects and STS
strategies.

Basin Type Successful Trials Step/Sit Trials False Successful Pred. False Step/Sit Pred.
Input Bounds 718/750 – 95.73% 181/198 – 91.41% 17/735 – 2.31% 32/213 – 15.02%

LQR (no dilation) 92/750 – 12.27% 197/198 – 99.49% 1/93 – 1.08% 658/855 – 76.96%
FF+FB (no dilation) 351/750 – 46.80% 195/198 – 98.48% 3/354 – 0.85% 399/594 – 67.17%
naive (no dilation) 125/750 – 16.67% 195/198 – 98.48% 3/128 – 2.34% 625/820 – 76.21%
LQR (5% dilation) 113/750 – 15.07% 194/198 – 97.98% 4/117 – 3.42% 637/831 – 76.65%

FF+FB (5% dilation) 390/750 – 52.00% 192/198 – 96.97% 6/396 – 1.52% 360/552 – 65.22%
naive (5% dilation) 159/750 – 21.20% 195/198 – 98.48% 3/162 – 1.85% 591/786 – 75.19%
LQR (25% dilation) 160/750 – 21.33% 188/198 – 94.95% 10/170 – 5.88% 590/778 – 75.84%

FF+FB (25% dilation) 517/750 – 68.93% 177/198 – 89.39% 21/538 – 3.90% 233/410 – 56.83%
naive (25% dilation) 292/750 – 38.93% 189/198 – 95.45% 9/301 – 2.99% 458/647 – 70.79%

This implies that the Input Bounds controller still yields the most accurate estimate of stability.
The Input Bounds controller maintains a high accuracy for successful trials, while minimizing
incorrect step and sit predictions. It requires no dilation to achieve this performance. The higher
false step/sit prediction rates for the LQR and FF+FB controllers despite dilation indicates that the
shape of the Stability Basin constructed using the Input Bounds controller is a better approximation
of the true stable region.

3.4 Discussion

In theory, stability can be directly characterized by perturbing a subject in an infinite number
of ways and drawing a volume around the observed successful trials. Because this approach is
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practically infeasible, several model-based metrics have been developed for assessing dynamic
stability. Many, such as Floquet Multipliers and Lyapunov Exponents, are limited to analyzing
small perturbations during periodic motion. Only a few metrics assess the largest perturbations that
can be withstood during motion [56], or the stability of aperiodic motion. In this area, Fujimoto and
Chou [70] constructed estimates of the stable region for Sit-to-Stand at a single time based on the
extrapolated center of mass concept. We build on these methods by leveraging novel data-driven
controller models and reachability analysis to estimate stability over the course of the Sit-to-Stand
motion. By performing a perturbative experiment, we demonstrate that our Stability Basin-based
approach accurately predicts stability across a diverse set of body morphologies, perturbations, and
Sit-to-Stand control strategies.

Our data-driven controller models consist of a feedforward (“predictive”) and a linear feedback
(“reactive”) component. Although there is evidence that humans employ feedforward and feedback
terms for control [65], the exact form of these controllers remains unclear. Linear feedback applied
about the COM has been sufficient to explain observed walking [71] and standing [72] behavior.
However, we found the LQR controller model proposed by Shia et al. [32] as well as the classical
FF+FB controller model had poor prediction rates for successful trials, implying that they both
underestimate the true stable region of movement. In contrast, our Input Bounds controller model
draws from a set of bounded inputs, plus a linear feedback term, that encapsulates inputs from
observed successful trials, resulting in improved performance over models that return a single
input.

The poor prediction rates of the LQR and FF+FB controller models for successful trials may be
explained by considering the inputs that cause trajectories to exit the Stability Basin. A trajectory’s
input not following a given controller model is not a sufficient condition for the trajectory to exit
the Stability Basin generated for that controller model. However, it is a necessary condition: if a
trajectory exits the Stability Basin, then the trajectory’s input must not have exactly followed the
controller model at some point. Therefore, the accuracy of the Stability Basins strongly depends
on how well each controller model fits the observed data. As can be seen in Fig. 3.3, the Input
Bounds controller accounts for a wider range of inputs than the LQR and FF+FB controllers, and
is able to encapsulate the variability present in the observed data. This in turn creates a Stability
Basin which better matches the size and shape of the true stable region. This improvement in the
accuracy of stability estimation is an important step towards clinical deployment. When applying
the Stability Basin method to other Sit-to-Stand datasets in future work, one important question is
how many successful trials are needed to appropriately estimate an individual’s Stability Basin. To
investigate this question, we could compare Stability Basin accuracy between several cases where
different samples of trials have been removed from the dataset described in this paper.

In addition to increased accuracy, the computationally-tractable, individualized, and time-
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varying aspects of the Stability Basin approach make it well suited for widespread deployment
and integration with existing clinical methods. The rapid and automated computation of Stability
Basins from kinematics alone minimizes the temporal and financial investment in performing this
analysis, especially if coupled with computer vision techniques for pose estimation from digital
cameras [73]. This can enable longitudinal studies examining how stability changes over time,
and whether a smaller Stability Basin is correlated with fall risk, to be performed both accurately
and cheaply. Although we make use of perturbative data for computing Stability Basins here, one
advantage of our proposed method is that it only relies on data from successful trials, and does not
require a subject to be perturbed to failure. Thus, the Stability Basin method shows promise for
characterizing the stability of subjects already at a high risk of falling or injury, such as elderly or
rehabilitating subjects.

The TIPM and Input Bounds models are computed for each individual, enabling examination of
a wide range of body morphologies and Sit-to-Stand control strategies. Stability throughout the du-
ration of a task can be studied by measuring the size and location of cross-sections of the Stability
Basin at particular times. For example, cross-sections of the Stability Basin that examine COM po-
sition at seat-off reveal the viable starting postures for each control strategy [32, 70]. In particular,
Quasi-Static Stability Basins were previously shown to include COM positions near one’s feet at
seat-off, whereas Momentum-Transfer Stability Basins can extend much further. We propose that
in longitudinal studies with periodic data collection, sudden changes in Stability Basin volume
overall or in a portion of the movement can indicate how injury or age contribute to instability. By
combining the Stability Basin approach with other clinical techniques, such as electromyography,
clinicians can identify muscles associated with unstable portions of motion to target preventative
and rehabilitative care. Such detailed analyses can provide deeper insight into the mechanisms
underlying motor control. Lastly, although Stability Basins have been shown to better distinguish
between more and less stable Sit-to-Stand control strategies than the Region of Stability, future
work could compare the Stability Basins to another time-varying stability metric such as the ex-
trapolated center of mass [59].

Our approach can also be used in real time to inform controller design for wearable robotic
devices because it provides time-varying boundaries on the region inside which an individual is
stable. Determining the state at which a robotic system is unable to recover from a perturbation is
key to designing dynamically stable controllers [74, 75, 76]. If a prosthetic device or exoskeleton
detects that its user has exited the Stability Basin and become unstable, it can adapt its control
scheme to aid in recovery. One interesting area for future work is to characterize the timing of
Stability Basin predictions so the wearable robot could have knowledge of when the step or sit
would be initiated. Furthermore, just as current tuning of controllers for prosthetic devices and
exoskeletons focuses on minimizing metabolic cost, [77, 78], wearable robotic controllers can be
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optimized to increase stability by maximizing the volume of the Stability Basins for the combined
robot-human system. Thus, the high time-varying accuracy and low investment in computation
demonstrate that the Stability Basin approach has the potential to increase access of personalized
preventative and rehabilitative mobility care and inform the design of robotic systems for stable
movement.
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CHAPTER 4

Specific Aim 2: Investigating Optimality in
Perturbation Response During Sit-To-Stand

This work has been submitted as an extended abstract and presentation:

Danforth Shannon M., Holmes Patrick D., and Vasudevan Ram 2019. Inverse optimal
control with Sit-To-Stand data. Dynamic Walking, Canmore, Canada.

and has been modified for this document.

4.1 Introduction

A common assumption is that humans and animals behave optimally during motion by minimizing
some cost, such as metabolic energy [24]. Many claims about underlying optimality criteria in-
volve (1) selecting a dynamic model for the task, (2) hand-picking a cost function to produce input
trajectories for a model in an optimal control problem, and (3) simulating model states and compar-
ing the results to human data [79, 80]. However, there is no way to confirm this hand-picked cost
is the objective function minimized by the subject unless an exhaustive (and impossible) search of
every possible cost function is investigated. Inverse optimal control (IOC) aims to extract a cost
function from a set of observed state and input trajectories. IOC has been implemented in various
forms for a range of human motions, including manipulation tasks [81], seated posture [82], and
walking [83]. In this work, we apply IOC to the Sit-to-Stand (STS) motion, previously unstudied
in IOC.

Our use of IOC with perturbed Sit-to-Stand data has two motivations. First, the structure of
the underlying objective may be useful in studying human motor control. For example, the cost
functions could be related to physical quantities or exhibit patterns across subjects and conditions
(perturbed versus unperturbed). Second, the cost functions from IOC can help predict human
response to perturbation. The recovered cost functions can be used in an optimal control problem
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with a dynamic model to generate a control input trajectory for simulation. We can then compare
the simulated model states to test data.

In this chapter, we implement an IOC formulation developed by [84] using data from the 11-
subject STS experiment described in Ch. 2. We model the STS motion as an inverted pendulum
model with a torque applied at the base, and approximate the cost functions using polynomials
(degree 2, 4, and 6) of the model states and input. We compare the resulting objective functions
between subjects and perturbed conditions, which suggest that optimality criteria is similar in both
cases. Next, we use the objective functions to generate control inputs for the pendulum model and
simulate left-out STS trials to investigate this method’s ability to produce accurate predictions of
perturbation response during STS. We compare the simulation results to using an LQR controller
model and find that the IOC formulation produces more accurate results.

4.2 Polynomial Inverse Optimal Control

This section describes the IOC formulation and implementation we used on the STS dataset, devel-
oped by [84]. We first provide a general overview of the IOC problem. Let our system dynamics
be given by

ẋ(t) = f(x(t), u(t)) (4.1)

with state and control constraints x(t) ∈ X , u(t) ∈ U , and t ∈ [0, t]. We also have a set of
observed trajectories

(
x(t;x0), u(t;x0)

)
(4.2)

parameterized by t ∈ [0, t] and initial condition x0 ∈ X . The goal of IOC is to find a function
(called a lagrangian in [84])

l : X × U → R (4.3)
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such that all trajectories in
(
x(t;x0), u(t;x0)

)
are optimal trajectories for the direct optimal control

problem:

v(t, z) = min
u

∫ T

t

l(x(s), u(s))ds

s.t. ẋ(s) = f(x(s), u(s)),

x(s) ∈ X, u(s) ∈ U, s ∈ [t, T ],

x(t) = z,

x(T ) ∈ XT .

(4.4)

The function v(t, z) is called a value function, which provides the value of the objective function
at a solution.

The main challenge of IOC lies in uncovering the lagrangian function l. Many methods solve
for the lagrangian by iteratively picking a candidate function and solving (4.4) until a local min-
imum is found [83, 85]. To exploit the problem structure, Pauwels et al. instead use explicit
analytical optimality conditions for the direct optimal control problem, drawing from Hamilton-
Jacobi-Bellman (HJB) theory [84]. The authors picked HJB theory for three main reasons: the HJB
optimality equation provides a criterion to express optimality for the database trajectories in (4.2);
the HJB condition can guide the choice of search space for candidate lagrangians; and relaxing the
HJB optimality equation makes the problem amenable to considering polynomial lagrangians and
value functions. To further understand these advantages, we first define a linear operator that acts
on lagrangians and value functions:

L : (l, v) → l +
δv

δt
+

δv

δx

T

f. (4.5)

We can use the L operator to define a sufficient condition for optimality in the direct optimal
control problem:

Proposition 4.2.1 (Pauwels et al.). Suppose we have observed state and control trajectories(
x0(s), u0(s)

)
, with s ∈ [t, T ], such that

ẋ0(s) = f(x0(s), u0(s)),

x0(s) ∈ X, u0(s) ∈ U, s ∈ [t, T ],

x0(t) = z,

x0(T ) ∈ XT .

(4.6)

Suppose there exists a continuous lagrangian l0 and continuously differentiable value function v0
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such that
L(l0, v0)(s, x, u) ≥ 0,∀(s, x, u) ∈ [t, T ]×X × U,

v0(T, x) = 0,∀x ∈ XT ,

L(l0, v0)(s, x0(s), u0(s)) = 0,∀s ∈ [t, T ].

(4.7)

Then the state and control trajectories
(
x0(s), u0(s)

)
, for s ∈ [t, T ], are optimal solutions of the

direct optimal control problem.

Thus, the HJB optimality equation can incorporate the observed trajectories into an analytical
criterion. The proof is provided in [84].

The IOC problem is based on a weakening of Proposition 4.2.1, therefore allowing for approx-
imate solutions.

Proposition 4.2.2 (Pauwels et al.). Let observed state and control trajectories
(
x0(s), u0(s)

)
, with

s ∈ [t, T ], satisfy (4.6). Suppose that there exist a real ϵ, continuous lagrangian l0, and continu-

ously differentiable value function v0 such that

L(l0, v0)(s, x, u) ≥ 0,∀(s, x, u) ∈ [t, T ]×X × U,

v0(T, x) = 0,∀x ∈ XT ,∫ T

t

L(l, v)(s, x0, (s), u0(s))ds ≤ ϵ.

(4.8)

Then, the input trajectory
(
x0(s), u0(s)

)
, for s ∈ [t, T ], is ϵ-optimal for the direct optimal control

problem.

With the certificate of ϵ-optimality, this proposition can be extended to multiple trajectories. The
proof is provided in [84].

Lastly, the authors present a practical implementation by considering polynomial l and v can-
didates, polynomial dynamics, and assuming the observed state and input trajectories are indexed
by a finite set, i.e. {(ti, xi, ui)}i=1,...,n:

min
l,v,ϵ

ϵ+ λ||l||1

s.t. L(l, v)(t, x, u) ≥ 0,∀(t, x, u) ∈ [0, T ]×X × U,

v(T, x) = 0,∀x ∈ XT ,

1

n

n∑
i=1

L(l, v)(ti, xi, ui) ≤ ϵ,

A(L(l, v)) = 1.

(4.9)
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In this implementation, λ is a nonnegative regularization parameter and || · ||1 is the ℓ1 norm of a
polynomial. The last constraint aims to mitigate trivial solutions (i.e., l and v with coefficients of
zero) by applying any linear functional A to L(l, v). This implementation is amenable to semidef-
inite programming. Polynomials are used because they can effectively represent general functions
like l and v, and there is open-source software to solve semidefinte programs by approximating all
functions as polynomials [86]. Because the polynomial lagrangian is a function of the model states,
we can look at relative weights on each monomial to gain insights about which combinations of
model states and inputs are prioritized during Sit-to-Stand.

4.3 Methods

4.3.1 Inverted Pendulum Model

In this chapter, we use data from a perturbative Sit-To-Stand experiment described in Ch. 2, Sec.
2.1. We fit individualized inverted pendulum models (IPMs) to each subject’s data. This model
consists of a point mass m located at a fixed distance L from the origin. We defined the origin
as the initial position of the ball of the subject’s foot. Individualized IPMs were constructed for
each subject by setting m as the subject’s mass and L as the average distance from the origin to the
subject’s center of mass (COM) across all trials. Fig. 4.1 depicts the pendulum model states and
input.

The trials were aligned and nondimensionalized in time as described in Ch. 2, Sec. 2.1, with
unitless time variable t. Therefore, each Sit-to-Stand trial starts at t = 0 and lies within [0, 1]. At
each point t in a trial, the model quantities are:

• Pendulum angle from vertical, θ(t) ∈ R

• Pendulum angular velocity from vertical, θ̇(t) ∈ R

• Torque input applied to pendulum base, ũ(t) ∈ R.

Let x : [0, 1] → X ⊂ R2 be a state trajectory, so that x(t) ∈ X is the model’s state at time
t ∈ [0, 1]:

x(t) =

[
θ(t)

θ̇(t)

]
=

[
x1(t)

x2(t)

]
. (4.10)

The unitless time derivative of x(t) at time t, denoted ẋ(t), is written as:

ẋ(t) =

[
x2(t)

g
L
sin(x1(t)) +

1
mL2 ũ(t)

]
, (4.11)
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Figure 4.1: The inverted pendulum model used to model STS for inverse optimal control. The
input u is a torque applied to the pendulum base.

where g is the gravitational acceleration 9.81 m/s2. Because the IOC formulation in (4.9) requires
polynomial dynamics, we use a Taylor series expansion of sin(x1(t)) of degree 9, centered at zero.
Our polynomial dynamics are given by:

ẋ(t) =

 x2(t)
g
L

(
x1(t) +

1
3!
x1(t)

3 + ...+ 1
9!
x1(t)

9
)
+ 1

mL2 ũ(t)

 . (4.12)

For the remainder of this chapter, we define our control input as u(t) = 1
mL2 ũ(t).

4.3.2 Training the Lagrangians

We implement the IOC formulation in (4.9) using the polynomial system dynamics in (4.12), a
polynomial value function v of degree 8, a polynomial lagrangian l of degree 2, 4, or 6, and
a regularization term λ of 1 × 10−5. The polynomial coefficients of l and v are constrained to
[−1, 1]. We formulate the semidefinite program in the spotless toolbox [86] and solve it using
MOSEK [87].

Recall that the STS experiment had three types of trials: nominal, forwards/backwards foot-
shifted, and forwards/backwards cable pulls. The subjects also performed the experiment us-
ing three different strategies (natural, momentum transfer, and quasi-static); this work only uses
data from the natural strategy. For this chapter, we refer to nominal and foot-shifted trials as
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“unperturbed” and cable-pull trials as “perturbed.” We create perturbed and unperturbed sub-
sets from the data to investigate the underlying cost functions. These training datasets form the
{(ti, xi, ui)}i=1,...,n in (4.9). When we train using perturbed data, we only include the portion of
the trial before the perturbation started and after the perturbation ended. We exclude the por-
tion during the perturbation because the external cable pulls affected the observed angles, angular
velocities, and torques outside of the subject’s control, which would in turn affect the resulting
lagrangian.

Because polynomials of higher degree can grow large if the states or inputs have magnitude
greater than 1, we scale the angle, angular velocity, and control input to be within [−1, 1]. We
first pick a scaling value for the angular position and velocity. Denote the scaled angular position
and velocity as x1,scaled and x2,scaled, respectively. We then find the scaled input associated with
those trajectories, denoted as uscaled. We iterate the process until uscaled ∈ [−1, 1], because the
input typically has the largest magnitude. Because we deal exclusively with scaled values for the
remainder of this chapter, we will refer to scaled states and inputs as x(t) and u(t), respectively.

As noted in Sec. 4.1, this study aimed to compare cost functions between subjects and condi-
tions (perturbed and unperturbed). We are also interested in learning whether IOC can effectively
simulate subjects’ response to perturbation during STS. If cost functions found from unperturbed
data can effectively simulate perturbed responses, then the real-world applicability of this method
could be increased, because perturbing subjects can be dangerous and time-consuming. We there-
fore use two separate training datasets, perturbed and unperturbed, for each subject. For each
training subset and each subject, we compute one lagrangian formed from all data in the training
subset (perturbed or unperturbed), which is used to analyze the characteristics of each subject’s
objectives. We also use the unperturbed lagrangian to simulate each subject’s perturbed STS tri-
als. For the perturbed lagrangian, to avoid training and testing on the same data, we also compute
leave-one-out perturbed lagrangians formed from all data in the perturbed subset except one, which
is left out for testing in simulation.

4.3.3 Testing the Lagrangians

Before detailing the tests conducted for each lagrangian found in Sec. 4.3.2, we first describe how
to obtain simulation results given a lagrangian l found by IOC. Note that we have all of the pieces
of the direct optimal control problem in (4.4) to solve for an optimal control input trajectory u(t)

for t ∈ [0, 1]. We define the target set XT as

XT = {x(1) | x1(1), x2(1) ∈ [−1, 1]}. (4.13)
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In other words, the target set XT is equal to the scaled space X , and thus does not constrain
solutions to end at a reasonable standing state. For simulating perturbed trials, we are interested in
predicting the response to the cable pull. Let tp,end ∈ [0, 1] denote the time a perturbation ended
for an example trial. Then, we define the initial condition for this trial simulation as x(tp,end).

We solve (4.4) using a method for nonlinear optimal control synthesis that formulates a se-
quence of semidefinite programs with polynomial cost and dynamics [88]. Once the optimal
control trajectory is recovered, we simulate the test trial from its initial condition using MAT-
LAB’s ode45. For any simulation evaluation, we calculate the root mean square error E between
the simulated states and input (x̂(t) and û(t)) and observed states and input (x(t) and u(t)) for
t ∈ [tp,end, 1]. The error values are normalized by the total range of observed state or input values
in that trial.

We first analyze the similarities in lagrangians between subjects and condition (perturbed and
unperturbed). Treating the set of polynomial coefficients in the lagrangians as vectors, we normal-
ize each to have a unit norm. We then use a Euclidean distance metric to measure the distance d

between subjects’ sets of coefficients. We compute the same distance metric between each sub-
ject’s perturbed and unperturbed coefficients.

Next, to investigate whether unperturbed data can produce accurate predictions of perturbed
STS trials, we use each subject’s unperturbed lagrangians to simulate that subject’s perturbed trials.
We compute the normalized root mean square error E between simulated and ground truth data
for each trial’s states and input. Finally, for each subject, we use the leave-one-out perturbed
lagrangians to simulate the left-out perturbed trial.

4.3.4 Comparison to LQR Controller

For comparison to the control inputs produced by IOC cost functions, we train LQR controllers
using the perturbed data from each subject. LQR controllers have previously been used to model
Sit-to-Stand motion [32, 23]. As in Ch. 3, we model input for this comparison as an LQR con-
troller about a nominal Sit-to-Stand trajectory. We follow the same procedure for fitting the LQR
controller as detailed in Ch. 3, Sec. 3.2.3.2, but for the simplified pendulum model in this chapter.
We first form the average nominal angle and angular velocity trajectory, denoted as x̄, for each of a
subject’s STS control strategies by taking the mean of the five nominal trials. We use this nominal
trajectory to generate an open loop controller uol : [0, 1] → U ⊂ R via inverse dynamics. In this
chapter, our state weighting matrix is Q ∈ R2×2 and input weighting matrix is R ∈ R1×1. These
two matrices are used to generate the feedback matrix K(t) ∈ R1×2 [68, Chapter 16]. At a given
time and state, the input from the LQR controller can then be written as:

u(t, x(t)) = uol(t)−K(t)(x(t)− x̄(t)) (4.14)
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Degree 2 Degree 4 Degree 6
Unperturbed 0.25 0.13 0.18

Perturbed 0.30 0.19 0.21

Table 4.1: Maximum Euclidean distance between any two subjects’ set of coefficients with unit
norm, reported for unperturbed and perturbed lagrangians of degrees 2, 4, and 6. The maximum
possible d between any two unit norm vectors is 2.

We choose the Q and R that produce a controller that most closely fits the observed perturbed data,
solving the same optimization procedure described in Ch. 3. To avoid training and testing on the
same data, we train and test the LQR controllers in a leave-one-out fashion.

4.4 Results

In this section, observed state and input trajectories are denoted as x(t) and u(t), respectively, and
simulated state and input trajectories are denoted as ˆx(t) and ˆu(t), respectively, for t ∈ [0, 1]. The
Euclidean distance d is computed between sets of coefficients treated as vectors. The normalized
root mean square error, E, is computed between simulated and observed states and inputs.

Fig. 4.2 shows the coefficients of each subject’s degree-2 and -4 cost function plotted for each
monomial of u, x1, and x2. The unperturbed lagrangian coefficients are plotted in Fig. 4.2(a)-(b),
and the perturbed lagrangian coefficients are plotted in Fig. 4.2(c)-(d). Using visual trends in Fig.
4.2, we see that all 11 subjects have higher-magnitude weights on the same monomials; this trend
holds for lagrangians of degree 6. For degree 2 lagrangians, the high weights were on x2

1 (the
squared angular position) and x1x2 (the multiplied angular position and velocity); all monomials
that contained the input u had weights closer to zero. Recall that to compare the coefficients
across subjects, we treated the set of polynomial coefficients in the lagrangians as vectors, then
normalized each to have a unit norm. The maximum d between any two subjects’ sets of unit-
normalized coefficients are reported for each data subset and lagrangian degree in Tab. 4.1. For
comparison, the maximum possible d between any two unit norm vectors is 2.

Fig. 4.3 compares the mean coefficients for perturbed and unperturbed lagrangians (degree 2
and 4) across all trials. The maximum d between any one subject’s perturbed and unperturbed
lagrangian coefficients was 0.29, 0.25, and 0.29 for degree 2, 4, and 6 lagrangians, respectively.

In the first case, we simulated responses to perturbed trials using each subject’s unperturbed
lagrangian. The mean E-values between angular positions x̂1(t) and x1(t), averaged across all
subjects and trials, were 0.058, 0.12, and 0.16 for lagrangians of degree 2, 4, and 6, respectively.
Mean E for angular velocity and input trajectories are summarized in Tab. 4.2 in the first row, and
an example of simulation results is shown in Fig. 4.4(a).
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Figure 4.2: Weights on all monomials of the best fitting (a) unperturbed degree 2, (b) unperturbed
degree 4, (c) perturbed degree 2, and (d) perturbed degree 4 lagrangian for each subject’s data,
normalized to have unit norm.

In the second case, we simulated responses to perturbed trials using each subject’s leave-one-
out lagrangians. The E-values between angular positions x̂1(t) and x1(t), averaged across all
subjects and trials, were 0.053, 0.16, and 0.15 for lagrangians of degree 2, 4, and 6, respectively.
Normalized error for angular velocity and input is listed in Tab. 4.2 in the second row, and an
example of simulation results is shown in Fig. 4.4(b).

We compared the IOC simulation results to an LQR controller that provided feedback about an
average nominal trajectory. An example of simulation results using this controller is shown in Fig.
4.4(c). Results are summarized in Tab. 4.2 in the third row.

4.5 Discussion

The purpose of this study was to investigate optimality in STS using an inverse optimal control for-
mulation. We divided the STS dataset into unperturbed and perturbed subsets, which produced la-
grangians from unperturbed and perturbed data. We first analyzed similarities in these lagrangians
between subjects and perturbed conditions. Next, we tested the lagrangians’ ability to simulate
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Figure 4.3: Weights on all monomials of the best fitting lagrangian for unperturbed (light green)
and perturbed (light orange), averaged across all subjects. The coefficient weights have been nor-
malized and are shown here for (a) degree 2 and (b) degree 4 lagrangians.

Case l degree x1 mean (stdev) x2 mean (stdev) u mean (stdev)

Trained on unperturbed
2 0.058 (0.031) 0.15 (0.046) 0.13 (0.036)
4 0.12 (0.062) 0.37 (0.16) 0.17 (0.051)
6 0.16 (0.10) 0.47 (0.21) 0.21 (0.051)

Trained on perturbed (leave-one-out)
2 0.053 (0.029) 0.16 (0.045) 0.15 (0.035)
4 0.14 (0.076) 0.39 (0.15) 0.19 (0.048)
6 0.14 (0.070) 0.39 (0.13) 0.21 (0.039)

LQR controller N/A 0.064 (0.054) 0.17 (0.091) 0.11 (0.033)

Table 4.2: Normalized root mean square error E for the training and testing cases described in Sec.
4.3. The mean (standard deviation) is computed across all subjects and trials. For each case, the
row corresponding to the degree with the minimum error is highlighted in gray.

subjects’ responses to perturbations. We compared the simulation results to those produced by
using an LQR controller about a nominal STS trajectory.

For all three degrees of lagrangians trained on unperturbed data, we see visual trends in the
relative magnitude of coefficients on each monomial across all 11 subjects and between perturbed
and unperturbed datasets. We used a Euclidean distance metric to quantify the differences in
subjects’ lagrangian coefficients, but future work should use a statistical analysis to provide more
insight into what differences between lagrangian coefficients is meaningful. The visual trends in
coefficient values can still tell us about subject objectives during Sit-to-Stand, however. In degree
2 lagrangians, for example, subjects’ highest weights were on squared angular position and the
multiplication of angular position and velocity, with near-zero weights on any monomial containing
the input torque. This result suggests that subjects do not care about minimizing joint torque during
Sit-to-Stand and instead may place priority on their COM position and velocity regardless of the
required magnitude. Notably, the coefficients were close to zero for the monomial representing
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Figure 4.4: The unperturbed lagrangians, perturbed lagraigians, and LQR controller were tested on
perturbed data. This figure shows an example simulation result for Subject ID 6 during a forwards
cable-pull trial. The ground truth scaled angular positions (green), angular velocities (purple), and
inputs (blue) are pictured in the solid line, with the bold segment indicating the time when the cable
pull perturbation was active. (a) and (b) show the simulation results for lagrangians of degree 2, 4,
and 6 for comparison. (c) shows the simulation result for the LQR controller.

mechanical work of the pendulum (ux2), indicating that minimizing energy cost is not a priority
during Sit-to-Stand.

Closely analyzing the variation of coefficients in each monomial between subjects and perturbed
cases could also tell us more about small differences in behavior. For example, we see in Fig.
4.3(a) that subjects had, on average, a higher priority on the squared angular position and a lower
priority on the combination of position and velocity for perturbed cases compared to unperturbed.
This indicates that the objective to reach standing (i.e., minimizing the squared angle relative to
vertical) is paramount after a perturbation, and velocity is not as much of a priority as it was during
unperturbed motion. Future work should look at whether statistically significant differences in
coefficient values produce differences in simulated behavior.

When lagrangians from unperturbed data were used to simulate perturbed response, the degree
2 lagrangian produced the lowest normalized root mean square error. Future work should perform
a statistical analysis to investigate if the differences in prediction accuracy are statistically signifi-
cant. Higher-degree lagrangians likely overfit to unperturbed data, thus performing poorly on the
perturbed dataset. Visually (Fig. 4.4(a) provides an example), we observed that the simulated an-
gular positions for degrees 4 and 6 often veered negative (i.e., the pendulum model leaned too far
forward at the end of the task). Looking at the control inputs in Fig. 4.4(a), we see that the IOC
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inputs are predominantly negative while the ground truth input is positive immediately after the
perturbation. The subject applied a positive input to slow themselves down after a forwards cable
pull, but the IOC formulation produced a negative or near-zero input at this time (depending on the
lagrangian degree), causing the simulation to overshoot standing. The negative or near-zero input
at this percentage of STS may be more typical during an unperturbed trial, where subjects do not
have to apply as much compensatory torque to slow themselves down.

When the IOC training and testing was conducted with perturbed trials, the simulation error
was around the same as that produced by the unperturbed lagrangians. As with the unperturbed la-
grangians, degree 2 performed best, with degrees 4 and 6 consistently overshooting (see Fig. 4.4(b)
for an example). The mean angular velocity error slightly improved compared to unperturbed sim-
ulations in degree 2 and 6, but was larger for degree 4. It is surprising that lagrangians trained
on perturbed data did not perform better than unperturbed lagrangians in simulation. However, as
shown in Fig. 4.3, the unperturbed and perturbed lagrangians were quite similar.

The LQR controller trained on perturbed data demonstrated similar mean simulation accuracy
to the IOC cases, though slightly lower. A closer look at Tab. 4.2 reveals relatively large standard
deviations in angles and angular velocity errors compared to the best-performing lagrangians. Be-
cause the LQR controller used feedback about an average nominal trajectory, it likely performed
well in cases where subjects’ perturbation-recovery behavior resembled nominal behavior, and
poorly when subjects deviated from nominal behavior during recovery.

The coefficient values may also be influenced by the formulation requirements. The coefficient
weights in Fig. 4.2(b) and (d) are larger for higher-degree monomials, but this phenomenon may
have resulted from scaling the states and inputs. High-degree monomials of state and input values
that have been scaled to [0, 1] would produce relatively small values in the objective function,
so perhaps the IOC formulation exploited the scaling when determining these coefficient values.
Future studies could investigate the relative weights in a different implementation that does not
require scaling.

The inverted pendulum model used in this chapter only included angular position and velocity
of the COM and a torque applied at the pendulum base, which is most similar to ankle kinematics
and torque in the Sit-to-Stand motion. However, torques at the hip and knee are also important
in Sit-to-Stand [89, 90]. Including these joints in our model would enable us to investigate the
relative weights in the lagrangian between hip, knee, and ankle angles and torques. It would also
provide another opportunity to validate the model by comparing the results to previous biomechan-
ical analyses. We restricted this formulation to the simple pendulum model because semidefinite
optimization programs become computationally difficult or impossible to solve as the dimension
increases. Advances in computational resources and optimization software may enable us to im-
plement this IOC formulation on a three-link pendulum model in future work.
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In this chapter, we applied inverse optimal control to STS data. The lagrangians of degree 2,
trained on either perturbed or unperturbed data, were able to simulate responses to perturbations
with lower mean error than an LQR controller model. The results of this study suggest that the sub-
jects in our study prioritize COM position and velocity rather than torques during Sit-To-Stand, and
this objective remains similar between unperturbed and perturbed standing. Future work should in-
vestigate the use of different IOC formulations and dynamic models to evaluate consistency across
formulations; uncover physical meanings in cost functions; and further investigate optimality in
responses to perturbation during STS.
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CHAPTER 5

Specific Aim 3: Predicting Human Trip Response
During Walking

This work is published [26]:

Danforth Shannon M., Liu Xinyi, Ward Martin J., Holmes Patrick D., and Vasudevan
Ram 2022. Predicting Sagittal-Plane Swing Hip Kinematics in Response to Trips.
IEEE Robotics and Automation Letters.

and has been modified for this document.

5.1 Introduction

Wearable lower-limb robotic devices, such as exoskeletons or prostheses, offer advantages for
people with mobility limitations by supplying positive work to joints [91, 92]. Control options for
these devices typically focus on common tasks (e.g., walking on level ground), because baseline
kinematics for these tasks are well-known [93]. If an unexpected event such as a trip occurs
during walking, controllers struggle to effectively assist with recovery because it is unclear how
the human will respond. We therefore need accurate predictions of human kinematics during these
unexpected events. As illustrated in Fig. 5.1, this chapter focuses on predicting sagittal-plane
swing hip response during and after trips.

When tripped, humans typically exhibit one of three recovery strategies: Elevating, where the
swing foot clears the obstacle and the heel strikes in front of the body; delayed lowering, where the
swing foot initially elevates, then lowers behind the body with the toe contacting the ground first;
and lowering, where the swing foot immediately lowers behind the body with the toe contacting
the ground first [25]. These strategies have been studied most often in able-bodied subjects, but
have also been observed in studies with lower-limb amputees [19]. Each of the trip-recovery
strategies is accompanied by distinct swing hip kinematics, which are of interest if the controller
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(relative to stance heel)
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Figure 5.1: In this chapter, we develop and compare predictions of sagittal-plane swing hip kine-
matics after a trip occurs. The three hip states of interest (height, anterior-posterior position, and
flexion-extension angle) are shown in blue to the left. On the right, the stick figures show an ex-
ample of one subject’s trip-recovery response from our experiment. Note that the knee location is
determined by the hip flexion-extension angle and thus is plotted in addition to the hip positions.
The black line shows the ground truth hip and knee locations, and the pink line shows the predicted
response from our Gaussian process regression model.

aims to avoid toe scuffs or place the swing foot in a location that ensures stability at the end of the
step. Furthermore, if the controller is planning trip-recovery behavior in real-time as in [27], the
predictions must be generated before the human responds. Human perturbation reaction time is
influenced by many factors, including psychological and neurological limitations [94], but studies
have shown stretch reflex responses around 40 ms and voluntary responses around 160 ms [95].

Human trip reactions are difficult to model due to the trip’s unpredictability and the variability
in the human reaction. Trips can occur throughout the swing phase, and human recoveries can
differ based on the perturbation onset and duration [25]. Eveld et al. developed an algorithm for
predicting which of the three strategies a human will use after tripping [96], but even within a given
recovery strategy, large variation in human kinematics exists. No models have been developed to
predict trip-recovery kinematics after a specific strategy is identified. Thatte et al. used a Gaussian
process regression (GPR) model conditioned on previously measured points to predict swing hip
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height and angle in response to “hip drop” perturbations [27]. Because the predictions were not the
main focus of their paper, the authors did not provide information on training the model or report
the model’s prediction accuracy. The authors trained separate GPR models for each hip state, but
training one multi-output model could increase accuracy by accounting for correlation between
states.

Two other classes of models have been used for predictions of human kinematics. Neural net-
works are often used to estimate current kinematic variable values given measurements of different
variables [97], but a recent study used neural networks to predict future lower-limb kinematics dur-
ing different walking speeds [98]. The second common models are dynamic models that generate
kinematic perturbation-recovery behavior. For example, a pendulum model with linear feedback
has been shown to accurately estimate foot placement after a lateral perturbation [99]. Another
study induced simulated trips in a sagittal-plane dynamic model and simulated its response using
limit cycle optimization methods [100]. These studies, while highlighting the potential of various
models for kinematic predictions, do not compare prediction accuracy between model classes or
generate the strategy-specific trip-recovery predictions of interest.

In this chapter, we evaluate hip response predictions using data from an able-bodied trip ex-
periment with 16 subjects, described in Sec. 5.2. Given Eveld et al.’s previous work in predicting
strategy selection [96], this work assumes knowledge of the subject’s trip-recovery strategy and
focuses on predicting strategy-specific kinematics. First, we implement multi-output GPR models
with conditional predictions of trip-recovery swing hip response variables (Sec. 5.3). We compare
the GPR models to nonlinear autoregressive exogenous (NARX) neural networks and pendulum
models with a moving base (Sec. 5.4 and 5.5, respectively). Recognizing the need for both safety
and low computation time, we evaluate all prediction methods for both simulation accuracy and
online prediction time. We also evaluate each model’s ability to generalize predictions across sub-
jects, which would increase the prediction method’s real-world applicability. Out of all simulation
methods and training cases, the subject-specific GPR models exhibited the highest simulation ac-
curacy and the lowest computation time. MATLAB code with examples for training each model is
available at https://github.com/roahmlab/swing hip trip prediction.

5.2 Trip-Recovery Experiment and Dataset

This chapter uses the 16-subject trip-recovery dataset described in Ch. 2, Sec. 2.2. Recall from
Ch. 2, Sec. 2.2 that we analyzed these experimental data during the swing phase only, i.e. between
toe-off and heel-strike events. In this chapter, we form a shifted normalized time by first aligning
all of a subject’s swing phase trajectories by peak heel height. After shifting the trials so the peaks
align, we find the minimum and maximum shifted time across all trials for one strategy, then use
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the values to normalize time. We define the normalized swing time separately for each recovery
strategy. In this chapter, we analyze 963 total trips across the 16 subjects: 433 elevating, 310
delayed lowering, and 220 lowering. The higher number of elevating trials is likely due to the
targeting algorithm, which elicited more trips earlier in the swing phase.

Each recovery strategy was associated with distinct hip motion, shown for one subject in Fig.
5.2. The trip-recovery trials’ difference from nominal level-ground walking varies by response
variable and recovery strategy. For example, lowering trials most closely resemble nominal motion,
while both elevating and delayed lowering trials exhibit more divergence. Within each strategy and
response variable, the variation between trip-recovery trajectories also differs. The elevating and
delayed lowering hip angles, for example, show a relatively large amount of variation between
trials, while the lowering hip angles appear more uniform.
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Figure 5.2: Hip flexion-extension angle, height, and anterior-posterior (AP) position relative to the
stance foot, plotted for the elevating, delayed lowering, and lowering strategies in orange, green,
and purple, respectively. The thick black lines show the average nominal hip states. These data are
from one subject in our dataset.
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5.3 Gaussian Process Regression Model

Given a set of noisy observations of a dependent variable, evaluated at certain values of an indepen-
dent variable x, our prediction problem aims to find the best estimate of the dependent variable at
a new value, x∗. Rather than assuming the underlying function is linear or another specific model,
Gaussian process regression (GPR) assumes the observations can be represented as a sample from
a multivariate Gaussian distribution. Note, we can always imagine a dataset with m observations
to be a single point in Rm drawn from an m-variate Gaussian distribution [101]. GPR models also
provide uncertainty bounds on predictions.

For our predictions, we compute a separate multi-output GPR model for each recovery strategy,
with outputs of hip flexion-extension angle, height, and AP position, described in Sec. 5.3.1.
The GPR models are formed using a training dataset containing multiple trials for each recovery
strategy. We then test trials that are excluded from the training dataset. For each test trial, we
condition the trip-recovery prediction on its pre-trip values, described in Sec. 5.3.2. The training
and testing procedure is described in Sec. 5.6.

5.3.1 Multi-Output GPR Distribution

Each observation in our training dataset (note, the dataset contains multiple trip trials) can be
thought of as related to an underlying function f through a Gaussian noise model:

yi = f(xi) + ϵi, i = 1, . . . , n, (5.1)

where xi ∈ [0, 1] ⊂ R is the argument to f and can be thought of as normalized time in our
formulation, yi ∈ R3 is the output variable given by the hip flexion-extension angle, height, and
AP position, and n is the number of points in the training dataset. The noise term ϵi ∈ R3 is a zero
mean Gaussian distribution. We denote the covariance matrix of ϵi as S.

Let k(xi, xj) denote the covariance function, which relates one input value xi to another xj . We
use the rational quadratic kernel, a common covariance function for GPR models [102, Chapter 4],
given by

k (xi, xj) =

(
1 +

||xi − xj||2
2αl2

)−α

, (5.2)

where || · ||2 denotes the ℓ2-norm, α is the scale mixture parameter, and l is the length scale of the
kernel. Parameters α and l are estimated separately for each recovery strategy. Sec. 5.3.2 describes
the procedure for estimating α and l.

We calculate the covariance matrix K by evaluating (5.2) at all possible combinations of xi for
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i ∈ {1, . . . , n}:

K =


k (x1, x1) k (x1, x2) · · · k (x1, xn)

k (x2, x1) k (x2, x2) · · · k (x2, xn)
...

... . . . ...

k (xn, x1) k (xn, x2) · · · k (xn, xn)

 . (5.3)

Recall that we aim to predict hip response values at a test input x∗. We therefore compute (5.2)
between x∗ and each observation xi for i = 1, ..., n:

K∗ =
[
k(x∗, x1) k(x∗, x2) · · · k(x∗, xn)

]T
, (5.4)

and the covariance between x∗ and x∗:

K∗∗ = k(x∗, x∗). (5.5)

In a single-output GPR model, we would now have our data represented as Gaussian distribu-
tion with covariance matrix K. The mean and variance of this distribution evaluated at test input
x∗ would form the best estimate of the output. A multi-output GPR model adds an additional
challenge, because our response vector y =

[
yT
1 , . . . ,y

T
n

]T is itself a Gaussian with zero mean
and covariance matrix C ∈ R3n×3n. Let the entry Cpq

ij be the covariance between the pth and qth

response variable of vectors yi and yj , for each p, q ∈ {1, 2, 3} and for each i, j ∈ {1, 2, . . . , n}.
Recalling the three-dimensional noise term ϵi in (5.1), each entry of C has two components: one
corresponding to the cross-response covariance Ccross, and one corresponding to the covariance of
the noise term, Cnoise.

Calculating C requires the estimation of significantly more hyper-parameters. Two assumptions
are made to simplify the multi-output formulation [103]:

1. Within a cross-response pair indexed by (p, q), the covariance function is formulated as a
scalar-valued covariance matrix k(xi, xj) scaled by a cross-response weight Bpq. The cross-
response covariance is therefore be written as [Ccross]

pq
ij = Bpqk(xi, xj). The Bpq entries

construct a symmetric matrix B, representing the pairwise covariance between different re-
sponse variables.

2. The noise covariance matrix S is assumed to be diagonal, because the covariances be-
tween responses have already been captured in the Ccross component. We therefore define
[Cnoise]

pq
ij = δpqδijSij , where δ indicates a Kronecker delta.
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With these assumptions, the covariance matrix C is:

C =


B11K+ S11In B12K B13K

B21K B22K+ S22In B23K

B31K B32K B33K+ S33In

 , (5.6)

where In is the n× n identity matrix. We can also write C as

C = B⊗K+ S⊗ In, (5.7)

where ⊗ denotes the Kronecker product. Note that if S,B and K are all positive definite, then
so is C, because both the Kronecker product and the summation on two positive definite matrices
maintain positive definiteness.

Because B is symmetric, constructing B only requires the six elements from the upper trian-
gle. Adding the three diagonal elements of S, the multi-output formulation adds nine estimation
parameters to the training process.

Our training dataset takes the form y =
[
yT
1 ,y

T
2 , . . . ,y

T
n

]T for n data points, and we aim to
predict the response y∗ at a test input x∗. The probability of a certain prediction for y∗ follows a
Gaussian distribution. Evaluating (5.4) and (5.5), we find the distribution’s mean and covariance
at x∗:

µ∗ = CT
∗C

−1y

Σ∗ = B⊗K∗∗ + S−CT
∗C

−1C∗,
(5.8)

where C∗ = B⊗K∗. The best estimate for y∗ and its associated uncertainty are given by µ∗ and
Σ∗. In our implementation, we evaluate the mean predictions and their covariance at m evenly-
spaced values of x∗ from 0 to 1, generating a 3m× 1 mean vector:

µ =
[
µT

1 ,µ
T
2 , . . . ,µ

T
m

]T
. (5.9)

The associated covariance matrix Σ has size 3m× 3m.

5.3.2 Conditional Prediction

The mean values in (5.9), computed from a training dataset, provide a prediction of hip responses
at discretized points in normalized time. Given a test trip trial, we can use µ to predict the hip
response values after the trip onset. However, µ does not account for the pre-trip points of a test
trial, and therefore does not generate a continuous prediction from pre-trip points. To improve
prediction accuracy, we condition the GPR prediction on pre-trip points in the test trial.
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Our test trial begins and ends at normalized time values x1 and x2, not necessarily spanning the
entire normalized swing time range. To ensure the test trial is the same size as µ, we re-sample the
test trial, and pad with NaN values if x1 does not equal 0 and/or x2 does not equal 1, to obtain a
3m× 1 test trajectory yt =

[
yT
t,1,y

T
t,2, ...,y

T
t,m

]T .
For a given test trial, we denote the index of trip occurrence as itrip ∈ {1, . . . ,m}. We then

divide yt into completed (pre-trip) and future (trip-recovery) trajectories:

yt,c =
[
yT
t,1,y

T
t,2, . . . ,y

T
t,itrip

]T
yt,f =

[
yT
t,itrip+1,y

T
t,itrip+2, . . . ,y

T
t,m

]T
,

(5.10)

where subscript c indicates completed and f indicates future. We likewise partition the GPR mean
and covariance into completed and future parts:

µ =

[
µc

µf

]
, Σ =

[
Σcc Σcf

Σfc Σff

]
. (5.11)

Then, our predicted future (trip-recovery) hip states and the prediction’s uncertainty are given by
the conditional mean and covariance:

µ̂ = µf +ΣfcΣ
−1
cc (yc − µc)

Σ̂ = Σff −ΣfcΣ
−1
cc Σcf .

(5.12)

The prediction covariance can be used to form a confidence interval. As the number of conditional
points grows, the inverse term in (5.12) takes longer to compute. In practice, to enable real-time
predictions, we use at most 15 conditional normalized time points in our predictions.

For each recovery strategy, our multi-output GPR has 11 parameters to train: Parameters α

and l from (5.2) and the nine parameters from the multi-output formulation. During training, we
select parameters that minimize the root mean square error (RMSE) between the ground truth
trip response and the conditioned GPR prediction across all response variables and training trials.
One can solve this optimization problem using a nonlinear programming solver like MATLAB’s
fmincon. Although the training process may be time-consuming, the resulting GPR model can
be saved and loaded for real-time conditional prediction.

5.4 NARX Model

For comparison to the GPR model in Sec. 5.3, we develop nonlinear autoregressive exogenous
(NARX) models to predict hip response kinematics. Neural network methods, such as recurrent
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Figure 5.3: Diagram of the (a) open-loop configuration and (b) closed-loop configuration of the
NARX model, where TDL stands for time delay layer.

neural networks (RNNs) and autoregressive networks (ARs), have been popular options for fore-
casting time series with unknown underlying functions [98]. It has been shown that any RNN
network can be equivalent to a NARX neural network with a similar neuron transfer function
[104]. Because NARX models exhibit computational advantages in training compared to RNNs,
we use NARX models in this work.

We fit separate multi-output NARX models for each recovery strategy. We form the models
using a training dataset and then test the models on trials that are excluded from training. Because
the NARX model requires sequential time-series data for training, we concatenate the training
trials into one time series. When combining the normalized time values from each trial into one
vector, we add an offset to each subsequent trial, i.e., the first training trial’s normalized time points
lie in [0, 1], the second trial’s normalized time points lie in [1, 2], and so on. For the hip response
variables, we likewise concatenate the trajectories from each training trial into one time series (with
no offset). Our concatenated dataset with n points has normalized time values xi ⊂ R, i = 1, ..., n.
The 3× n response variable training data takes the form y = [y1,y2, ...,yn], with each yi ∈ R3.

The NARX model fits a function f that relates each entry of the time series, yi, with previous
values, yi,prev, and exogenous input, xi,ex:

yi = f (yi,prev, xi,ex) + εi, (5.13)

where εi is an error term. At the ith step, we specify the exogenous input to be the previous
normalized time value, i.e. xi,ex = xi−1, and use N previous response values, i.e. yi,prev =

[yi−N ,yi−N+1, ...,yi−1].
We train the NARX networks using MATLAB’s narxnet. As shown in Fig. 5.3, there are

two configurations, open-loop and closed-loop. When training each network, we use the open-
loop configuration. At each index i of our training dataset, we input the delayed ground truth
response yi,prev and the exogenous input xi,ex. The inputs first pass through a fully-connected layer
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of perceptrons, also depicted in Fig. 5.3, which apply the sigmoid operation to yield intermediate
outputs. For the jth perceptron, the intermediate output oj at step i is given by

oj = σ
(
(wj

x)
Txi,ex + (wj

y)
Tyi,prev + bj

)
, (5.14)

where σ is the sigmoid function, xi,ex = [xi,ex, xi,ex, xi,ex]
T , bj ∈ R3 is the bias for the jth percep-

tron, and wj
x ∈ R3 and wj

y ∈ R3×N are the weights for the jth perceptron [105]. The intermediate
outputs are then passed through the output linear perceptron, yielding a prediction ŷi. The NARX
network selects the bias and weights for each perceptron that minimize the RMSE between the true
output yi and predicted output ŷi, for i ∈ {1, . . . , n}.

For a test trial with m data points, we denote the normalized time and response as xt =

[xt,1, xt,2, . . . , xt,m] and yt = [yt,1,yt,2, . . . ,yt,m], respectively. Because we predict future val-
ues in the time series with the NARX model, the xt vector is offset so that it occurs immediately
after the concatenated training data. As in Sec. 5.3.2, the test trial has trip onset index itrip and
can be divided into completed and future partitions. We use the completed portion of the trial,
yt,c = [yt,1,yt,2, . . . ,yt,itrip ], to inform post-trip predictions.

We use the closed-loop configuration, shown in Fig. 5.3(b), to generate predictions of the test
trial for multiple future steps. The optimized bias and weight parameters from the training process
are used in the closed-loop model. To predict a future post-trip value yt,i where i > itrip, the
closed loop configuration uses previous predicted values, ŷt,i,prev = [ŷt,i−N , ŷt,i−N+1, . . . , ŷt,i−1],
as input. However, for the first N points after the trip occurs, there are not yet enough predicted
values to form N previous inputs. Therefore, to predict the first post-trip point yt,itrip+1, we use
N previous points of yt,c; to predict yt,itrip+2, we use ŷt,itrip+1 and N − 1 previous points of yt,c;
and so on. We set the feedback delay N to be 15 normalized time steps, the same as the number of
conditional points used for the GPR model.

5.5 Pendulum Model with Moving Base

To describe the dynamics of the swing hip variables, we use a pendulum model with a moving
base, shown in Fig. 5.4. Although we focus on kinematics in this work, dynamic models have
been used to effectively predict kinematic variables in previous research [99, 100]. A dynamic
model could also prove useful if predictions of hip forces/torques are needed in a wearable robot’s
control scheme.

Our pendulum model consists of a mass m1 at the hip joint location, which can translate in the
horizontal and vertical direction, connected to a pendulum of length l and mass m2. The mass m1

consists of the estimated torso, arms, and head, and the mass m2 consists of the estimated swing
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Figure 5.4: Our model for predicting hip kinematics has a floating base located at the hip joint and
a pendulum representing the swing leg. The model has horizontal and vertical forces and a torque
applied at the hip.

leg mass. The pendulum length l is the estimated swing thigh length. Masses and lengths were
estimated using average distributions from anthropometric data [106, Chapter 4]. Because m1 is
considerably larger than m2, our model neglects the effect of the pendulum motion on the moving
base. The model’s origin is the location of the stance heel.

For this section, we define the normalized time as x ∈ [0, 1] ⊂ R. At each point x, our model
has anterior-posterior hip position yAP (x), hip height yH(x), and hip flexion-extension angle θ(x).
The linear and angular velocities (with respect to normalized time) are denoted as ẏAP (x), ẏH(x),
and θ̇(x). Let y(x) = [yAP (x) ẏAP (x) yH(x) ẏH(x) θ(x) θ̇(x)]

T denote the state vector. The
model has three inputs: a horizontal force uAP (x,y(x)) acting on m1, a vertical force uH(x,y(x))

acting on m1, and a torque uθ(x,y(x)) applied to the pendulum. The acceleration of the horizontal
hip position is given by ÿAP (x) = 1

m1
uAP (x,y(x)) and the vertical hip acceleration is given by

ÿH(x) =
1
m1

uH(x,y(x))− g, where g is the gravitational acceleration 9.81m/s2. The hip flexion-
extension angular acceleration is given as

θ̈(x) =− 1

l
cos(θ(x))ÿAP (x)−

1

l
sin(θ(x))ÿH(x) + ...

− g

l
sin(θ(x)) +

1

m2l2
uθ(x,y(x)).

(5.15)

We produce six first-order differential equations for the system using these accelerations.
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Drawing from work that used pendulum models with linear feedback to accurately predict
perturbation-response kinematics [99], our model’s control law consists of linear feedback gains to
position and velocity error from each recovery strategy’s mean kinematics. One can solve for these
feedback gains by using a nonlinear optimization procedure. As in Sec. 5.3.2, we use MATLAB’s
fmincon to solve for feedback gains on position and velocity that minimize the RMSE between
simulated and ground truth training trials.

5.6 Training and Testing the Models

Because we aim to test the significance of mean prediction errors across models, we select our
training and testing datasets in accordance with the Combined 5 × 2 cv F Test framework [107].
This test has been shown to have higher power and lower false positives than previous statistical
tests for comparing model performance. The training and testing process for each model is as
follows:

1. Split each dataset into 50% testing, 50% training.

2. Fit the model using the training dataset.

3. For each test trial, use the trained model to simulate the trip-recovery hip states.

4. Compute the RMSE between predicted and ground truth trip-recovery trajectories. Normal-
ize the RMSE for each response variable by the total range of response variable values in
the test trial. Average these normalized RMSE (NRMSE) values across all three response
variables.

5. Swap training and testing datasets; repeat steps 2)-4).

6. Repeat steps 1)-5) for five iterations.

For any two models, we compute an approximate f statistic to investigate whether the difference
in NRMSE is statistically significant [107]. For the Combined 5 × 2 cv F Test, we conclude that
the difference in mean NRMSE values between two models is statistically significant with 95%
confidence if f > 4.74.

Individualized, data-driven models can produce accurate predictions of perturbation response,
e.g. [23], but they necessitate collecting experimental (and often perturbative) data. Such exper-
iments are infeasible for widespread use. We therefore conduct the Combined 5 × 2 cv F Test
for both subject-specific and generalized cases. For the subject-specific case, we did not train and
test models for strategies where subjects exhibited fewer than five trials (Subject 005 and 015’s
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lowering trials and Subject 002’s elevating trials). For the generalized case, we first normalize the
hip heights and AP positions by subject leg length, then train and test the models using all subjects’
data combined.

5.7 Results
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Figure 5.5: Visualization of summary statistics for the (a) subject-specific and (b) generalized
models. The central black line indicates the median NRMSE for each model; the bottom and top
edges of each box are the 25th and 75th percentiles, respectively; the dashed whiskers extend to
the limits of the data not considered outliers; and the outliers (determined using the interquartile
range) are plotted individually as plus signs. The y-axis is a logarithmic scale due to the extreme
magnitude of outliers.

Fig. 5.5(a) and (b) show box plots of the subject-specific and generalized model results, re-
spectively. Due to the extreme values from the NARX model which often generated unstable
predictions, we removed the outliers from all models for all following results and analyses. Ta-
ble 5.1 presents the mean and standard deviation of NRMSE values for each strategy, model, and
case across all subjects. In each strategy’s column, the minimum NRMSE is highlighted for both
subject-specific (darker shade) and generalized (lighter shade) models. Example prediction results
for each method, plotted for one subject’s delayed lowering trial, are shown in Fig. 5.6. Tab. 5.2
shows f statistics computed between each model within the subject-specific and generalized cases
and their corresponding p-values.

The mean computation time to generate conditional GPR predictions, NARX predictions, and
dynamic model predictions was 2.67 ms, 8.81 ms, and 25.1 ms, respectively, on a computer with
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Table 5.1: Average NRMSE for all three prediction methods, with lowest subject-specific and
generalized errors highlighted for each strategy.

Prediction Method Case
Elevating Delayed Lowering Lowering

mean (stdev) mean (stdev) mean (stdev)

GPR Model
Subject-Specific 0.110 (0.0333) 0.119 (0.0522) 0.0567 (0.0266)

Generalized 0.151 (0.0500) 0.160 (0.0630) 0.0879 (0.0362)

NARX Model
Subject-Specific 0.660 (0.482) 0.500 (0.360) 0.320 (0.333)

Generalized 0.262 (0.119) 0.321 (0.171) 0.141 (0.124)

Pendulum Model
Subject-Specific 0.241 (0.0618) 0.285 (0.0792) 0.277 (0.0782)

Generalized 0.254 (0.108) 0.262 (0.135) 0.264 (0.147)

Table 5.2: Approximate f statistic between models, with * indicating statistical significance, and
corresponding p-values.

Models Case
f (p)

Elev.
f (p)

Del. Low.
f (p)

Lower.

GPR and
NARX

Subj.-Spec.
63.7*

(<0.001)
82.6*

(<0.001)
29.1*

(<0.001)

Gen.
10.4*

(0.009)
7.98*
(0.02)

4.08
(0.07)

GPR and
Pendulum

Subj.-Spec.
275*

(<0.001)
83.5*

(<0.001)
531*

(<0.001)

Gen.
17.4*

(0.003)
82.6*

(<0.001)
167*

(<0.001)

NARX and
Pendulum

Subj.-Spec.
45.6*

(<0.001)
18.4*

(0.002)
1.43
(0.4)

Gen.
2.70
(0.1)

2.04
(0.2)

15.0*
(0.004)
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Figure 5.6: An example of simulation results for one delayed lowering trial using the subject-
specific (a) GPR, (b) NARX, and (c) pendulum models. The GPR model prediction in (a) includes
a 95% confidence interval. The entire ground truth trial is shown in the black line, with the trip
onset indicated by the arrow. The NRMSE for this trial, averaged across each response variable,
is provided for each prediction method. The black dots represent the information provided to each
model: 15 conditional points in (a); 15 feedback delay points in (b), and one initial condition for
simulation in (c).

a 3.5 GHz Intel Core i7 processor. For the GPR models, we checked whether the 95% confidence
bounds, shown in Fig. 5.6(a), encompassed each ground truth trajectory. The percentages of
trials that remained inside the confidence bounds, reported for each case (generalized and subject-
specific), strategy, and response variable, are listed in Tab. 5.3.

Table 5.3: Percent of ground truth trials that remain inside the 95% confidence bounds for the GPR
model.

Case Strategy Angle Height AP Position

Subject-Specific

Elevating 73.9 100.0 60.8
Delayed Lowering 71.4 100.0 90.4

Lowering 92.7 100.0 98.3
Total 77.3 100.0 75.1

Generalized

Elevating 51.2 96.7 75.2
Delayed Lowering 47.4 98.8 52.6

Lowering 79.9 100.0 84.5
Total 56.5 98.2 67.9
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5.8 Discussion and Conclusion

Predicting human trip-recovery kinematics can help wearable lower-limb robots choose appropri-
ate coordinating behavior. Previous studies that investigate predictive models for human kinemat-
ics report results for only one class of model [99]; use simulated trip data instead of human subject
experimental data [100]; or use unperturbed data, where less variation is likely present [98]. This
chapter investigates three modeling methods to predict swing hip kinematics in experimental trip
data from 16 subjects. We restricted predictions to the sagittal plane, but we expect the models
could be extended to include other hip motions (abduction-adduction, interior exterior rotation) in
future work.

The subject-specific GPR produced the lowest mean error for each strategy out of all modeling
methods. Across all strategies, we found that its NRMSE was statistically significant from that
of the other two subject-specific models. The generalized GPR models produced the lowest mean
NRMSE across generalized models, which was statistically significant from the NARX and pendu-
lum models in all cases but one. Furthermore, the GPR model’s lower computation time is useful
for real-time trip-recovery control in wearable robots.

By analyzing visual trends in Tab. 5.1, we see that predictions had the highest accuracy in
lowering strategies compared to elevating and delayed lowering. Looking at Fig. 5.2, we see that
the lowering strategy trials for Subject ID 1 have less variation across all three response variables,
which could explain the higher prediction accuracy. However, a statistical analysis should be
conducted to confirm that the differences in error are statistically significant and to quantify the
variation in hip kinematic data across all subjects and strategies.

The GPR model’s confidence bounds offer another advantage over the other prediction methods.
Most ground truth trajectories remained within the 95% confidence bounds, though more often in
the subject-specific case. By visual trends in Tab. 5.3, we see that the percentages are lower for
certain cases, strategies, and response variables (the lowest being the delayed lowering angle for
generalized models). Future work will investigate the discrepancies between response variables
and strategies.

The subject-specific NARX models frequently generated unstable predictions, especially for
trips that occurred earlier in the swing phase. We speculate that the considerably large error in ele-
vating and delayed lowering trials is a result of overfitting the network to relatively small datasets.
Notably, the generalized NARX models’ mean NRMSE decreased by approximately 50% from
the subject-specific, likely due to larger training datasets.

The dynamic pendulum model produced higher mean NRMSE than the GPR model, with differ-
ences in NRMSE statistically significant from GPR in both subject-specific and generalized cases.
We found that of the three response variables, the hip height contributed most to this high mean
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NRMSE. Because the dynamic model applied feedback to mean kinematics, the high error could
be explained by the relatively large variation in subjects’ trip-recovery hip height trajectories. An-
other possible cause of higher prediction error is the dynamic model’s use of average distributions
for the mass and length of the torso and thigh. Because trip-recovery strategy may be influenced by
anthropometry and our subjects’ true mass and length distributions were likely not average, future
work should examine the influence of these parameter values on prediction accuracy. One way
to investigate this effect is to modify m1, m2, and l and see if prediction accuracy is statistically
significant for different parameter values.

In this chapter, we compared relative prediction accuracy three types of predictive models.
However, when using these predictions in wearable robot control, we are also interested in the re-
quired bounds on absolute prediction error values. In other words, what is the maximum allowable
error in swing hip predictions that can still ensure successful trip recovery, user comfort, or safety?
Peng et al. have recently explored human perception of exoskeleton actuation timing by quantify-
ing the Just Noticeable Difference (JND): the actuation timing value that is actually perceivable by
the subject [108]. A similar experiment could look at JND values for prostheses or exoskeletons
during trip recovery that use a range of predicted hip states with varying accuracy.

Our results show the multi-output GPR model’s promise for producing accurate predictions
of kinematic responses to trips with low computation time and quantified prediction uncertainty.
The generalized GPR models exhibited similar simulation accuracy to the subject-specific case,
increasing the modeling method’s real-time applicability. Although our experiment included only
able-bodied subjects, individuals with lower-limb amputation have exhibited similar trip-recovery
strategies in experiments [19]. In future work, we will investigate the similarities in swing hip
kinematics during trip recoveries for those with and without lower-limb amputation. Furthermore,
swing hip behavior would likely change based on how the prosthesis behaves during a trip. For ex-
ample, hip kinematics may differ depending on whether a passive or robotic lower-limb prosthesis
is in use. One way to address this challenge is to use wearable sensors, such as inertial measure-
ment units, to collect swing hip kinematics during trips and continually update model predictions
based on observed reactions.
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CHAPTER 6

Specific Aim 4: Planning Trip-Recovery Trajectories
for Robotic Lower-Limb Prostheses

A preliminary version of this work is available as a preprint [109]:

Danforth Shannon M., Holmes Patrick D., and Vasudevan Ram 2020. Trip Recovery
in Lower-Limb Prostheses using Reachable Sets of Predicted Human Motion. arXiv.

and has been modified for this document.

6.1 Introduction

In 2005, an estimated 623,000 people were living with major lower-limb loss in the United States,
with the number predicted to double by 2050 [5]. Most of these individuals use passive lower-
limb prostheses, with instances of falling comparable to older adults over 85 [6, 7]. Powered
lower-limb prostheses have the potential to lower metabolic cost and improve gait symmetry [110],
and recent developments in their control allow them to assist users while walking up slopes, as-
cending/descending stairs, and walking backwards [111, 112, 113]. However, despite having the
potential to assist users during stumbles, most powered prostheses do not include trip-recovery
capabilities. Equipping powered prostheses with trip-recovery features could lead to fewer falls
and increased balance confidence in lower-limb prosthesis users.

Before discussing why stumble-recovery control is difficult in prostheses, it is useful to un-
derstand their general control framework. During locomotion, robotic lower-limb prostheses use
various sensor modalities, detailed by [114], in conjunction with a high-level controller to estimate
the human’s intent. Common high-level controllers include activity mode detection [93, 115], di-
rect volitional control [116, 117, 118, 119], or a combination of both [113]. A mid-level controller
then converts this estimated intent into a desired trajectory for a low-level controller to track [114].

Two challenges contribute to the difficulty of designing effective stumble-recovery controllers
within this hierarchical control framework. The first is reliably detecting the stumble itself. In
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Figure 6.1: The framework developed in this chapter plans trajectories for a knee prosthesis during
and after a stumble that ensure successful recoveries for a set of predicted human behavior. The
kinematic model used in this work contains human and prosthesis subsystems, constructed from
experimental data. This figure shows reachable sets for the model, which depend on both human
and prosthesis behavior, after a toe catch perturbation. The gray shapes at the hip and knee repre-
sent the range of joint locations from the subject’s predicted swing hip response. The light orange
and light purple shapes at the foot represent the set of prosthesis heel and toe locations for a range
of parameterized prosthesis behavior. Our framework selects one heel and toe parameter in an
optimization program, which produce the darker orange and purple subsets. The optimization pro-
gram aims to (1) avoid toe scuffs and (2) ensure the heel strike location lands as close as possible
to a target set representing desired foot contact location, shown by the green lines (in the callout),
for each time step where ground contact is possible.
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stumble experiments, humans have exhibited responses with latencies under 100 ms [37, 120].
Researchers have shown that accelerometers mounted on the prosthesis can detect stumbles within
this short time span, although false positives are common [121, 122]. The second challenge lies in
choosing a recovery behavior for the prosthesis once the stumble has been detected. Difficulties
in this area arise from the presence of uncertainty in estimates of human intent and the inability of
existing mid-level controllers to generate trajectories for stumble recovery in real-time.

As a human trips and tries to recover, any uncertainty in the controller’s estimate of the human
intent or current state could increase fall risk by producing unexpected torques [114]. This un-
certainty is present in controllers that rely on training data and are at risk of misclassifying intent
[123, 124, 125] as well as controllers that use an estimated human state to prescribe joint torques.
Two widely-used prosthetic control methods that fall into the latter category are virtual constraint
control [126, 119, 113] and finite-state control [111, 112, 124, 127, 128]. Both methods express
prosthetic target trajectories and torques as functions of gait phase instead of time, allowing for
generalization across tasks, speeds, and users. However, all of these control schemes prescribe
prosthesis behavior based on a single (most likely) estimate of human behavior, which could prove
disastrous when this estimate is wrong.

In addition to estimation uncertainty, the variability in the human’s trip response makes it diffi-
cult for mid-level controllers to generate trajectories that contribute to a successful stumble recov-
ery. Humans typically respond to trips using three main strategies: elevating, delayed lowering,
and lowering, described in Sec. 6.2. The choice of trip recovery strategy has been shown to
vary based on the perturbation onset and duration [25], and further variation exists in kinematic
trajectories within each strategy. Most often, controllers do not include a “trip” classification or
strategy [114], and instead may enter a zero-torque mode to let the user recover on their own [129].
One promising strategy is to take the person’s current state as an initial condition and run an op-
timization problem, solving for a trajectory that gives them the best chance at recovering. Such a
method would have an advantage to tracking a nominal trajectory because the result would be cre-
ated online in response to a specific perturbation. Recent work has proposed a quadratic program
for planning recoveries [27] to a “hip drop” perturbation in the swing phase, but the optimization
program did not consider trips and generates knee and ankle trajectories for only the most likely
human behavior.

A more robust approach would account for uncertainty by designing a controller that is suitable
across a range of possible human behaviors. Such a controller could account for estimation uncer-
tainty as well as the variation in human stumble recoveries. However, the high-dimensional, non-
linear, hybrid nature of the human-prosthesis system makes set-based online optimization methods
difficult. With these challenges in mind, we present a method for planning a prosthesis recovery
strategy online that accounts for a range of human behavior. We draw this idea from Reachability-
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based Trajectory Design (RTD), which uses reachable sets within a trajectory-planning framework
to guarantee collision-free operation of autonomous robots [130]. Recently, RTD was applied to a
7-DOF robotic manipulator (ARMTD), composing reachable sets of each joint in a local coordi-
nate frame into a reachable set of the robot in the global workspace [131].

In this work, we apply a similar reachability-based approach to a kinematic model of a human
with a transfemoral, unilateral amputation and a robotic knee prosthesis. We use trip data from 16
able-bodied subjects (Sec. 6.2), adding a prosthetic knee and ankle to the swing leg in simulation.
Offline, we fit predictive models of human swing hip behavior (Sec. 6.5.1). Online after a trip
occurs, we condition the model on pre-trip trajectories to generate a prediction of the human trip
response. We use the confidence bounds to form reachable sets: an estimate of all points the
swing hip states can reach during trip recovery (Sec. 6.5.1). We compute similar reachable sets
for the prosthesis knee and ankle for a set of trajectory parameters, which describe a wide range
of parameterized prosthesis kinematic behavior. Because the prosthesis’ position depends on the
human’s motion, the prosthesis reachable subsets are combined with the human reachable subsets
online. We then solve a real-time optimization problem to select trajectory parameters for the
prosthetic knee and ankle (corresponding to a knee and ankle recovery trajectory) that ensures
successful trip recovery for the set of predicted human responses (Sec. 6.5.4). An overview of
the framework can be found in Fig. 6.1. We compare this framework using real-world data in
simulation to the prosthesis’ nominal impedance-based controller (Sec. 6.6), and find our proposed
framework greatly reduces incidences of foot scuffs and is able to place the foot closer to the
desired location at the end of the step.

6.2 Trip Experiment and Recovery Strategies

We conducted a 16-subject trip experiment modeled after an experiment conducted by Shirota
et al. [25], described in Ch. 2, Sec. 2.2. The experimental setup is shown in Fig. 2.2 in Ch.
2. Several studies have shown that when tripped, humans typically use one of three strategies to
recover [132, 95, 25, 96]:

1. Elevating, where the swing foot clears the obstacle and the heel strikes in front of the body,

2. Delayed lowering, where the swing foot initially elevates, then lowers behind the body with
the toe contacting the ground first, and

3. Lowering, where the swing foot immediately lowers behind the body with the toe contacting
the ground first.
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In this chapter, we analyze 430 elevating, 304 delayed lowering, and 223 lowering trips across
the 16 subjects, for 957 trips total. We sorted the trip data into the three strategies by hand, and
data from left and right swing legs were combined into one dataset. The heel height and anterior-
posterior position for these strategies is plotted in Fig. 2.5 in Ch. 2. Note that each strategy
diverges from the average nominal foot behavior, suggesting that a nominal lower-limb robotic
prosthesis controller would be unable to assist with a successful trip recovery.

6.3 Preliminaries

This section introduces the preliminary components of our trip-recovery planning framework: the
planning model, phasing variable, and planning strategy.

6.3.1 Planning Model

This chapter uses a 2D model in the sagittal plane to analyze the swing leg motion, although the
framework can generalize to three dimensions. Because we focus on trip recovery during the same
step as the trip occurrence and when the prosthesis is in swing, our model is in single support, with
the intact limb in stance and the prosthesis in swing. The prosthetic leg is attached to the human
thigh, and is composed of a powered knee and ankle joint.

6.3.1.1 Kinematic Model for Proposed Framework

We model the prosthetic leg as a kinematic chain with two revolute joints, which rotate about
the same flexion-extension (mediolateral) axis. This kinematic model is illustrated in Fig. 6.2(a).
We treat the kinematic tree as composed of a human subsystem (the intact hip and upper thigh)
and prosthesis subsystem (the prosthetic upper thigh, knee, and lower leg). Note that because our
trip experiment collected data from able-bodied subjects, we create these human and prosthesis
subsystems in simulation.

We define an inertial reference frame with a coordinate system attached to the ground plane
and located at the intact limb’s stance heel position, which we assume to be constant during the
opposite limb’s swing phase. Let the coordinates (y, z)⊤ ∈ R2 denote the anterior-posterior and
vertical components of positions in this coordinate frame, respectively. To be clear, the y-direction
is forward and the z-direction is up (in a 3D frame, x would point in the mediolateral direction,
specifically to the right so that the frame is right-handed, but our model is restricted to the sagittal
plane). We assume that the ground plane is flat and z = 0 for all points on the ground.

The movement of the prosthesis in the inertial reference frame is largely determined by the
movement of the thigh to which the prosthesis is attached. We treat the thigh as a rigid link
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(a) (b)

Figure 6.2: The planning model considered in this chapter consists of a transfemoral amputee
(black links) and robotic prosthesis (blue links). Part (a) depicts the kinematic model used in our
proposed framework. To compare to an impedance-based controller, we use a dynamic model,
which includes the link masses and inertias and joint inputs shown in (b).

attached to the amputee’s hip, which is described by three coordinates. We let qh ∈ R2 × S1 be the
configuration of the thigh, with

qh =


qy

qz

q1

 (6.1)

where (qy, qz)
⊤ ∈ R2 describe the 2D position of the hip and q1 ∈ S1 is an angle describing the

flexion/extension of the hip. Next, let qp ∈ S2 represent the two flexion-extension prosthetic joint
angles:

qp =

[
q2

q3

]
(6.2)

where q2 is the knee angle and q3 is the ankle angle. Finally, let q = (qh, qp)
⊤ ∈ R2 × S3 =

Q be the full configuration of the planning model with configuration space Q. Let Qh denote
the configuration space of the hip configuration, and Qp denote the configuration space of the
prosthesis. Let W denote the workspace, i.e. the set of all points reachable by any point on the
prosthetic leg in any configuration. We also define lth as the length of the thigh segment, lsk as the
length of the prosthetic shank segment, lhl as the length from the ankle to the heel, and ltoe as the
length from the ankle to the toe. We assume a constant angular offset θheel between the two links
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comprising the foot, as can be seen in Fig. 6.2(a). When we write link lengths in braces (i.e. {lth}),
we mean the point {(lth, 0)⊤} (i.e. the vector of length lth pointing from the hip to knee in a local
y-z coordinate frame).

In our trip-recovery planning framework, we are primarily concerned with position trajectories
of the prosthetic heel and toe through the workspace. These positions depend on all the con-
figuration variables defined above, as well as the lengths of the links of the kinematic tree. We
therefore define the forward occupancy maps of the heel and toe, which define the volume in space
occupied by the heel and toe for given values of q. We compute these maps by “stacking” the
motion of the prosthetic leg on top of the human hip. The forward occupancy maps of the heel
FOheel : Q → P(W ) and FOtoe : Q → P(W ), where P denotes the power set, are given by:

FOheel(q) =

{[
qy

qz

]}
⊕R1(q1){lth} ⊕

2∏
j=1

Ri(qi){lsk} ⊕
3∏

j=1

Ri(qi)R(θheel){lhl} (6.3)

FOtoe(q) =

{[
qy

qz

]}
⊕R1(q1){lth} ⊕

2∏
j=1

Ri(qi){lsk} ⊕
3∏

j=1

Ri(qi){ltoe}. (6.4)

The notation
∏2

j=1 Ri is understood as R1R2, and Rj(qj) ∈ SO(3) is a rotation matrix correspond-
ing to a rotation by qj about the flexion-extension axis. The notation ⊕ is a Minkowski sum, where
U ⊕ V = {u+ v | u ∈ U, v ∈ V } for U, V ⊂ Rn. Similarly, R(θheel) is a constant rotation matrix
representing the offset between the ankle angle and the heel link. Although the maps FOheel and
FOtoe yield single points for a given configuration q ∈ Q, we have written them using set notation
because later we overapproximate these maps using sets.

We may also want to project these forward occupancy maps onto the ground plane, because we
specify constraints in terms of heel or toe strike locations on the ground. We therefore project these
forward occupancy maps onto the ground plane and vertical axis. Although we overapproximate
FOheel and FOtoe using sets later in this chapter, we abuse notation and let πy : R2 → R project
points onto the y-axis and πz : R2 → R project points onto the vertical axis. Then, the position of
the swing heel in the anterior-posterior direction is πy(FOheel(q)), and the height of the swing heel
is πz(FOheel(q)).

6.3.1.2 Dynamic Model for Impedance-Based Control Comparison

As mentioned in Sec. 6.1, we compare our proposed planning framework to a nominal impedance-
based controller. Because impedance-based control generates desired torques for prosthetic joints,
we use a dynamic swing leg model for this controller, shown in Fig. 6.2(b). For each subject in
our dataset, we use subject-specific mass and inertia for the human subsystem (estimated using
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average distributions from anthropometric data) [106, Ch. 4], then use the dimensions and mass of
the University of Michigan Open-Source Leg for the prosthesis subsystem [133]. The thigh, shank,
and foot links of the dynamic model have masses mth, msk, and mft, respectively, and inertias Ith,
Isk, and Ift. Using these quantities, the model’s dynamics at a given point in time are represented
by the standard manipulator equations:

M(q)q̈ + C(q, q̇)q̇ +G(q) = T, (6.5)

where M(q) is the inertia matrix, C(q, q̇)q̇ are the Coriolis and centrifugal terms, G(q) are forces
due to gravity, and the model’s inputs are T = (Ty, Tz, T1, T2, T3)

⊤. In simulation, we use inverse
dynamics to solve for the inputs to the human subsystem Ty, Tz and T1 which generate the observed
kinematics qh and q̇h of the hip. The prosthetic leg generates the knee and ankle torques T2 and T3.
We compare two controllers for the prosthetic leg in subsequent sections. We note that there are
no ground reaction forces present in the model because we only simulate the leg during the swing
phase.

Simulating these dynamics produces trajectories of the knee and ankle angles q2 and q3 based
on the torques that are applied to the model. We can use these prosthesis angles to calculate FOheel

and FOtoe as in (6.3) and (6.4).

6.3.2 Phase Variable

In our planning framework, we use a phase variable rather than time to describe the evolution
of system trajectories. Phase variables allow joint angles, angular velocities, and torques to be
expressed as a function of gait phase, which can better generalize across walking speeds and sub-
jects compared to time. In this chapter, we use a phase variable to align groups of swing phase
trajectories for creating trip-recovery libraries in Sec. 6.4.1; fitting predictive models in Sec. 6.4.2;
computing reachable sets in Sec. 6.5.2; and developing the nominal controller for comparison in
Sec. 6.6.

In robotic lower-limb prostheses, the phase variable can be measured via wearable sensors
during gait and used to prescribe corresponding prosthesis behavior in real-time [113]. These
phase variables must be monotonically increasing or decreasing through the segment of interest.
Previous research has used the thigh angle as a phase variable for walking gait, but trip-recovery
adds an additional challenge. In delayed lowering and lowering strategies, for example, subjects
initially move the thigh forward during swing phase, but then reverse the swing leg’s direction and
place the swing foot behind the body after the trip occurs.

We found that the anterior-posterior (AP) position of the pelvis relative to the AP position of the
stance foot followed more consistent patterns across trip-recovery strategies than the swing thigh
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angle. Note that the pelvis is not included in the swing leg model in Sec. 6.3.1. For this section,
we denote the relative AP pelvis position as ypel. We begin measuring ypel values as soon as the
swing phase is detected:

Assumption 6.3.1. The prosthesis immediately detects the onset of swing phase, and the rela-

tive AP pelvis position ypel is measured at n evenly spaced time points (determined by the sensor

sampling rate) until touchdown.

Despite improvements from the swing thigh angle, ypel does not monotonically increase
throughout the swing phase. During the swing phase, ypel typically first increases monotonically,
then decreases monotonically. We denote the phase variable as t, and define the first phase point
t1 as the observed ypel at toe-off. For a given measurement index i ∈ {2, ..., n}, we ensure ti is
not decreasing from the previous measured point by adding the absolute difference between the
current AP pelvis position ypel,i and the previous value, ypel,i−1. Then, we define the phase variable
ti as:

ti =

ypel,i, if i = 1

ypel,i−1 + |ypel,i − ypel,i−1|, otherwise
(6.6)

We normalize each ti to be in [0, 1] using the minimum and maximum observed phase values
across nominal and tripped trials. In this chapter, we use subject-specific bounds for normalization,
but it is also possible to use generalized bounds formed from the entire trip-recovery dataset.

6.3.3 Planning Strategy

During unperturbed walking, there are several nominal controllers (e.g., volitional [113] or finite-
state control [127]) that a powered prosthesis may use to prevent falls. However, when a person
trips, a different prosthesis response may be necessary to keep the user from falling. The goal of
our trip-recovery framework is to quickly design recovery trajectories in response to perturbation
that lead to a successful recovery.

We define the phase at which swing foot contact occurs:

Definition 6.3.2. Swing foot contact occurs at tf ∈ [0, 1]. Specifically, tf is the first t ∈ [0, 1] such

that πz(FOheel(q(t)) ≤ 0 or πz(FOtoe(q(t)) ≤ 0.

Recall that πz(FOheel(q(t)) and πz(FOtoe(q(t)) give the vertical position of the swing heel and toe at
configuration q(t), respectively, so tf is the first time that the swing heel or toe breaks the ground
plane.

In unperturbed walking, heel strike signals a transition to the next double support phase. How-
ever, for the delayed lowering and lowering trip recovery strategies, it is often the swing toe that
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first makes contact with the ground. Therefore we more generally say that a transition to double
support occurs when either the heel or toe strikes the ground.

Our framework only considers swing phase trajectories from the instance a stumble is detected
until tf :

Assumption 6.3.3. The trip begins at ttrip ∈ [0, 1] and is immediately detected, and the initial state

of the prosthesis is known, i.e. qp(ttrip) = qp0 and q̇p(ttrip) = q̇p0. After the phase tf ∈ [0, 1] when

foot contact and a transition to double support occurs, the prosthesis’ nominal controller resumes

control.

We include immediate trip detection in our assumption given previous trip-detection work by other
researchers [121, 122]. Furthermore, we plan strategy-specific trip-recovery trajectories:

Assumption 6.3.4. At trip onset, we immediately know which strategy (elevating, delayed lower-

ing, or lowering) that the individual will use to recover.

We justify this assumption given Eveld et al.’s high accuracy in predicting trip-recovery strategy
selection [96].

After a stumble occurs, we immediately apply our proposed framework to plan trip-recovery
trajectories for the knee-ankle prosthesis. If the optimization returns a feasible solution, the pros-
thesis tracks this desired trajectory for t ∈ [ttrip, tf ]. Otherwise, if no safe trajectory can be found
in the current planning iteration, the prosthesis continues to follow the nominal trajectory.

Because the exact instance of touchdown tf is unknown due to uncertainty in the human trip
response, our trip-recovery framework must generate prosthesis trajectories for a time horizon that
includes all possible tf values. Elevating trials can last until t = 1, but delayed lowering and
lowering trials end much earlier in the normalized swing phase. Likewise, trials often start after
t = 0. To avoid planning prosthesis trajectories for phase ranges where we have no observed data
available, we set a strategy-specific initial and final phase bound for planning. Let s ∈ {1, 2, 3}
index the strategies (elevating, delayed lowering, and lowering, respectively). Then we define tslb
as the minimum observed phase value in strategy s and tsub as the maximum observed phase value
in strategy s. Note that tslb was determined from pre-trip phase points, so ttrip ≥ tslb for all trials. In
our framework, once strategy s is detected, we plan a trajectory for t ∈ [ttrip, t

s
ub], then execute the

plan until foot contact occurs, i.e. when t ∈ [ttrip, tf ].

6.4 Offline Computations

This section describes the offline computations in our framework. For each component, we first
introduce the theory and then describe our specific implementation for this chapter.
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6.4.1 Parameterized Trip-Recovery Libraries

Data from able-bodied subjects are often used to describe desired prosthesis motion. For example,
Rezazadeh et al.’s level-ground walking controller uses average able-bodied knee and ankle angles
from [106] as a reference trajectory for the prosthesis to track [113]. Likewise, we use data from
our able-bodied trip experiment to create trip-recovery libraries: a collection of knee and ankle
angle trajectories that the prosthesis can choose from online to ensure a successful trip recovery.
We parameterize the trip-recovery library to make the planning framework amenable to real-time
computation. Each trajectory in the library is represented by a trajectory parameter that describes
the evolution of the prosthesis’ generalized coordinates over time.

6.4.1.1 Theory

We define trajectory parameters as follows:

Definition 6.4.1. Let K ⊂ Rnk be a compact set of nk trajectory parameters, where each k ∈ K

maps to a desired trajectory of the generalized coordinates qp : [0, 1] → Qp. Let qp(t; k) be the

prosthesis configuration at phase t ∈ [0, 1] parameterized by k ∈ K. q̇p(·; k) is a continuous

function with respect to phase.

As an example parameterization, we may choose k = (k2, k3) ∈ K ⊂ R2 to parameterize
a desired mapping from step height to trajectories of the knee and ankle joints. The goal of our
framework is to select a trajectory parameter k ∈ K that yields trajectories of the prosthetic joints
which lead to successful trip recovery across a range of predictions of human motion.

These parameterized trajectories are kinematic, not dynamic:

Assumption 6.4.2. The prosthesis is capable of perfectly tracking the trajectories specified by the

trajectory parameterization.

Because the prosthesis is in swing, its motors only have to move its own mass when tracking
these trajectories. In Sec. 6.5.2, we ensure commanded trajectories start with the correct initial
post-perturbation positions. This makes tracking the trajectories easier, as there is no initial error
between the desired and actual positions of the robotic leg.

6.4.1.2 Implementation

Recall that we described three distinct trip recovery strategies in Sec. 6.2. Let s ∈ {1, 2, 3} index
the strategies, and let sr refer to the r-th observed trial within that strategy. Let qsr2 (t) and qs

r

3 (t)

be the observed knee and ankle joint angles at phase t observed for a specific trial. We fit a library
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of parameterized trip recoveries to these observed trials. Specifically, fit polynomial functions of t
and k to the joint angle trajectories observed in each recovery strategy.

First, we compute a mean angle trajectory for each of the observed strategies for the knee and
ankle joints. We refer to these as qs2,mean and qs3,mean. As a result, we define

qs2(t; k) = qs2,mean(t) + a0 + a1k2 + a2k
2
2 + a3k

3
2 + a4t+ a5tk2 + a6tk

2
2 + a7t

2 + a8t
2k2 + a9t

3

(6.7)

qs3(t; k) = qs3,mean(t) + b0 + b1k2 + b2k
2
2 + b3k

3
2 + b4t+ b5tk2 + b6tk

2
2 + b7t

2 + b8t
2k2 + b9t

3

(6.8)

where we use linear regression to solve for the coefficients a0, . . . , a9, b0, . . . , b9 that minimize the
difference from a strategy’s observed trials in the least-squares sense. In other words, we find the
coefficients which minimize the squared difference between qs2(t; k) and qs3(t; k) and each observed
qs

r

2 (t) and qs
r

3 (t) for r = 1, ...nr
s. To employ linear regression to fit these coefficients, we assign the

values of k2 and k3 based on the observed trajectories. For a given trial, we assign the k2 and k3

values based on the amplitude of the knee and ankle angles at 50% of the strategy’s phase range,
0.5(tsub + tslb).

WLOG, we normalize k2 and k3 so that k2 ∈ [−1, 1], k3 ∈ [−1, 1]. To be clear, k = (k2, k3)

and therefore K = [−1, 1]× [−1, 1]. The angle q1 corresponds to the individual’s intact hip angle
and is not parameterized by k.

These polynomials are fit separately to each sth observed trip recovery strategy. We fit the
polynomials in [tslb, t

s
ub] for the sth trip recovery strategy. In this chapter, we fit subject-specific

trip-recovery libraries, but generalized libraries are also possible due to similarities in knee and
ankle trajectories across subjects.

Because not all trials last the same length, we observed unnatural jumps in the computed knee
and ankle mean trajectories near tslb and tsub. Therefore, we extrapolate each observed trip trial
to span [tslb, t

s
ub] with the constant initial or final observed value before taking the mean knee and

ankle angles. When fitting the polynomials, we remove the extrapolated values from each trial
and replace them with the computed mean at each phase point. In other words, we assume that
trajectories that started later than tslb or ended earlier than tsub converge to the mean at tslb and tsub.
Example knee and ankle trajectory parameterizations are displayed in Fig. 6.3.

Some trip trials in our dataset did not follow the ground contact patterns described by previous
researchers. For example, we observed trip-recovery trajectories where subjects elevated their
swing foot and moved their swing leg forward, but then contacted the ground with the ball or toe
of their swing foot rather than the heel. In these trials, the knee and ankle angles follow different
patterns than the typical trajectories observed during each strategy. Because we aim to have the
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Figure 6.3: This figure shows example observed knee and ankle trajectories and parameterized
knee and ankle trajectories for Subject ID 1. In (a) and (c), the observed ankle velocity trajectories
are plotted for each trip recovery strategy. A k-value in [−1, 1] is assigned to each trajectory based
on its amplitude at 50% of swing phase. In (b) and (d), the parameterization of ankle velocity
trajectories q3(t; k) is shown. The mean trajectories qs2,mean(t) and qs3,mean(t) are shown in black,
and the gradient from dark to light is created by varying the value of k2 or k3 from −1 to 1. We
note that in each of these plots, the phase t ∈ [0, 1] has been scaled the same for each strategy,
highlighting differences in phase duration between each strategy.
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prosthesis always contact the ground with the heel during elevating and the toe during delayed
lowering and lowering, we remove the trials with the opposite foot contact when training the trip-
recovery libraries.

6.4.2 Training Predictive Models of Swing Hip Kinematics

The human’s swing hip motion affects the location of the prosthetic heel and toe as described in
(6.3) and (6.4). Because it is impossible to perfectly predict human behavior, we want to choose
a desired trajectory of the prosthesis (represented by k ∈ K, as in (6.7) and (6.8)) that is robust
to a range of plausible human trip-recovery responses. This section describes our approach for
obtaining this predicted range of human behavior.

6.4.2.1 Theory

In our model of the swing leg, the human response is composed of the states in qh: hip height,
AP position, and flexion-extension angle. As in Assum. 6.3.3, we assume the state of the human
subsystem at trip onset is known:

Assumption 6.4.3. The initial state of the human is known, i.e. qh(ttrip) = qh0 and q̇h(ttrip) = q̇h0.

We then generate a prediction of qh states for t ∈ [ttrip, t
s
ub], where tsub is the upper phase bound

for strategy s ∈ {1, 2, 3}. To obtain a range of predicted qh states, our framework necessitates a
model that generates a confidence interval or buffer around the most likely value of each state at
each t. These models can be trained offline, then used online given a specific qh0 and ttrip (Sec.
6.5.1).

6.4.2.2 Implementation

We fit multi-output Gaussian process regression (GPR) models to the states in qh. In previous work,
we found that GPR models produce higher prediction accuracy and lower online computation time
compared to a neural network and dynamic model (Ch. 5 and [26]). Because we know the trip-
recovery strategy that the individual will select (Assum. 6.3.4), we fit separate GPR models to
each strategy. We train subject-specific GPR models for this chapter. In Ch. 5, we found that
generalized GPR models (fit to multiple subjects’ data) produced predictions with lower accuracy
than subject-specific models. Improving the generalized model accuracy in future work can help
increase the real-world applicability of our proposed framework.

The phase variable and system states in our trip-recovery dataset are measured at the Vicon
motion capture system’s sampling rate (Sec. 6.2), producing a strategy-specific training dataset
of n points for fitting each GPR model. For the ith measurement (i = 1, . . . , n), let ti denote
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the measured phase and qh,i denote the measured swing hip states. GPR models represent the
relationship between each input ti and output qh,i by a Gaussian noise model. For a particular
strategy s ∈ {1, 2, 3} and at a point of interest t∗ ∈ [tslb, t

s
ub], the model produces a 3 × 1 mean

µ∗, representing the model’s mean prediction of the states in qh at t = t∗, and a 3 × 3 covariance
matrix Σ∗. Evaluating the model’s mean and covariance at m evenly spaced values of t∗ from tslb to
tsub gives us a 3m× 1 mean prediction vector µ =

[
µT
1 , µ

T
2 , . . . , µ

T
m

]T and its associated 3m× 3m

covariance Σ. The details for constructing and training the multi-output Gaussian noise model are
described in Ch. 5.

6.4.3 Target Sets

The goal of our framework is to plan safe trip-recovery trajectories. To characterize “safe recov-
eries” from a trip, we create target sets which represent states at swing foot touchdown that are
known to lead to successful trip recovery. To ensure that the prosthesis behavior aligns with the
human’s intent, the prosthesis foot placement at the end of the step should also depend on some or
all of the human subsystem states. The definition of a successful trip recovery could be formed in
many ways, for example, using formal definitions of walking stability such as those described by
[56]. In this paper, we examine combinations of human subsystem states and swing foot positions
at touchdown.

6.4.3.1 Theory

Definition 6.4.4. A target set XT is a set composed of a subset of human subsystem states qh,XT
,

their velocities q̇h,XT
, and swing heel/toe positions on the ground plane at the time of foot contact

that lead to successful trip recovery. The target sets may differ for each trip recovery strategy.

Its formulation in terms of heel or toe positions depends on which portion of the foot first makes

contact with the ground under that strategy. Recall that in our formulation, the foot contact phase

value is tf and the y swing heel/toe position for a given configuration q(t) is πy(FOheel(q(t))) or

πy(FOtoe(q(t))). If, at the time of foot contact tf ,
qh,XT

(tf )

q̇h,XT
(tf )

πy(FOheel(q(tf )))

 ∈ XT or


qh,XT

(tf )

q̇h,XT
(tf )

πy(FOtoe(q(tf )))

 ∈ XT (6.9)

the trip recovery is considered successful.
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6.4.3.2 Implementation

Similar to previous work on the construction of target sets for the Sit-To-Stand motion [23], we
build target sets from data observed to lead to successful walking following a trip (i.e., observed
trips where subjects did not lose balance, fall, or undergo a second trip following the trip). Recent
work has shown that the position of the swing foot at heel strike following perturbation is predicted
well by a linear map of center of mass positions and velocities [99]. Because we collected only
lower-body data in our trip experiment, we use the swing hip instead of the center of mass. We
select the hip anterior-posterior position and velocity as our subsystem of human states to include
in the target set, i.e. qh,XT

= qy and q̇h,XT
= q̇y.

To form the target set over observed qh,XT
, q̇h,XT

, and foot contact positions, we use zonotopes,
geometric objects that can efficiently represent sets (introduced in Ch. 1, Sec. 1.3). A zonotope
Z is a convex polytope that is closed under linear maps and Minkowski sums [28]. It describes
the set of points that can be reached by a center, c ∈ Rn, and linear combination of generators,
g1, ..., gng ∈ Rn. The coefficient βi on each generator lies in [−1, 1]:

Z =

{
y ∈ Rn

∣∣∣ y = c+

ng∑
i=1

βigi, −1 ≤ βi ≤ 1

}
. (6.10)

Each XT is formed using zonotopes with 3 generators each, which encompass all anterior-posterior
hip positions and velocities and foot contact locations observed to lead to successful walking. This
mirrors the method found in [23] for generating zonotopes from sets of points. We fit separate
target sets for each subject and strategy, and enlarge each one by 20% to add a buffer to states
lying on the edge of the computed volume. Target sets computed for Subject ID 1 are displayed in
Fig. 6.4.

6.5 Online Computations

When a trip occurs, we assume that the trip is immediately detected and the individual’s chosen
recovery strategy is known, as stated in Assums. 6.3.3 and 6.3.4. We then execute a series of
online computations. First, we generate reachable sets of the predicted human hip states: the
set of all states that can be attained by the system starting from the initial set. We then compute
parameterized reachable sets of prosthesis knee and ankle angles and combine the human and
prosthesis sets to obtain reachable sets for the prosthesis heel and toe. We formulate cost and
constraints with these heel/toe reachable sets, and solve an optimization problem to select k ∈ K

to ensure a successful trip recovery. As in Sec. 6.4, we first introduce the theory for each step, then
describe our implementation.
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Figure 6.4: This figure shows the target sets XT computed from Subject ID 1’s data. The orange,
green, and purple points represent the hip positions and velocities and foot strike locations at
the end of each trial for elevating, delayed lowering, and lowering, respectively. The volumes
encompassing each set of points are the zonotope target sets. Note that the target sets are defined
over heel positions for the elevating strategy and over toe positions for the delayed lowering and
lowering strategies. The target sets found for each strategy occupy distinct regions. As expected
for the elevating strategy, XT is characterized by more forward progression of the heel and hip
positions, and a higher hip velocity. For the delayed lowering strategy, XT occupies a region of
low forward progression of the toe and hip positions, and negative hip velocities. The lowering
strategy’s target set lies between these two.
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6.5.1 Conditional Predictions and Reachable Sets of Human Hip States

6.5.1.1 Theory

In Sec. 6.4.2, we fit predictive models of the states in qh. Online, after a trip occurs, the model must
generate a prediction informed by the human’s pre-trip configuration. Such a prediction could be
simulated from an initial condition in the case of a dynamic model; pre-trip feedback points for a
neural network; or conditional points for a probabilistic method:

Assumption 6.5.1. In addition to knowing the human’s exact state at the time of the trip (Assum.

6.4.3), we have access to all previous observed qh points in the current swing phase trajectory.

We generate the prediction of qh states from [ttrip, t
s
ub], where s ∈ {1, 2, 3} indicates a specific

recovery strategy.
As mentioned in Sec. 6.5.1, we also need a measure of prediction uncertainty when generating

the online predictions. Let µ̂y(t) − Cy(t) and µ̂y(t) + Cy(t) denote the lower and upper bounds
of prediction uncertainty for the anterior-posterior hip position at t, where Cy(t) represents half
the width of the confidence interval. Likewise, let subscripts Cz(t), Cẏ(t), and C1(t) indicate
similar confidences for the hip height, anterior-posterior velocity, and angle, respectively. The
online predictions of qy and their associated prediction uncertainties form the reachable set of hip
y translations for t ∈ [ttrip, t

s
ub]:

Jy(t) =

{
y ∈ R | y = qy(t), y ∈ [µ̂y(t)− Cy(t), µ̂y(t) + Cy(t)]

}
. (6.11)

Likewise, we define the reachable set of hip z translations for t ∈ [ttrip, t
s
ub] as

Jz(t) =

{
z ∈ R | z = qz(t), z ∈ [µ̂z(t)− Cz(t), µ̂z(t) + Cz(t)]

}
. (6.12)

Because we also use predictions of q̇y to define a successful recovery (Sec. 6.4.3), we define
reachable sets of hip anterior-posterior velocity values for t ∈ [ttrip, t

s
ub] (Note, these can be formed

by differentiating the predicted qy trajectory):

Jẏ(t) =

{
ẏ ∈ R | ẏ = q̇y(t), ẏ ∈ [µ̂ẏ(t)− Cẏ(t), µ̂ẏ(t) + Cẏ(t)]

}
. (6.13)

The prediction and uncertainty of q1 produces a reachable set of hip flexion-extension angles
for t ∈ [ttrip, t

s
ub], which we define as follows.

J1(t) =

{
p ∈ R | p = q1(t), p ∈ [µ̂1(t)− C1(t), µ̂1(t) + C1(t)]

}
. (6.14)
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6.5.1.2 Implementation

At trip onset, we generate conditional predictions using the GPR models in Sec. 6.4.2. Recall
that we sampled the mean and covariance for strategy s’s GPR model at m evenly spaced phase
points from [tslb, t

s
ub]. The trip trial does not necessarily start at t = tslb or end at t = tsub. When

the trip occurs at ttrip, we find itrip, the index of the m phase points that most closely corresponds
to ttrip. We re-sample the trip trial’s pre-trip points, and pad with NaNs at the beginning if needed,
so that the trial has itrip evenly spaced points that align with the GPR model’s sampled mean
µ and covariance Σ. We denote this re-sampled pre-trip trajectory as qh,c, where the c stands
for completed. Likewise, we define the GPR model’s mean prediction for the completed points:

µc =
[
µT
1 , µ

T
2 , . . . , µ

T
itrip

]T
. The n remaining points in the GPR model’s mean prediction are labeled

as future points: µf =
[
µT
itrip+1, µ

T
itrip+2, . . . , µ

T
m

]T
. We also partition the covariance matrix Σ into

completed and future parts:

Σ =

[
Σcc Σcf

Σfc Σff

]
. (6.15)

We use the completed and future portions of µ and Σ to obtain a conditional prediction µ̂ and its
uncertainty Σ̂:

µ̂ = µf + ΣfcΣ
−1
cc (qh,c − µc)

Σ̂ = Σff − ΣfcΣ
−1
cc Σcf .

(6.16)

We separate the multi-output mean into n-dimensional vectors µ̂y, µ̂z, and µ̂1 for the hip anterior-
posterior position, height, and angle. To obtain the hip anterior-posterior velocity prediction, we
numerically differentiate µ̂y to produce µ̂ẏ. We form the confidence interval for each variable using
the prediction covariance.

We use a 60% confidence interval to compute the qh reachable sets in this chapter to avoid
making the heel and toe reachable sets too large, but a higher confidence interval is possible if
a more conservative planner is desired. We do not include confidence bounds on the velocity
prediction (i.e., Jẏ is a trajectory rather than a set), but our framework allows for uncertainty in
this prediction as well.

We overapproximate the hip reachable sets using zonotopes, introduced in Sec. 6.4.3. However,
we represent these zonotopes as polynomial zonotopes, which are a more complex and expres-
sive set representation amenable to the computations we utilize in the next section. Polynomial
zonotopes are similar to zonotopes except that each generator may be multiplied by a product of
indeterminates. We provide a more detailed overview of polynomial zonotopes in Appx. A.4.

Briefly, a polynomial zonotope ⟨P ⟩ is defined by generators gi ∈ Rn, an indeterminate vector
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x ∈ [−1, 1]nx , and ng exponents αi ∈ Nnx

⟨P ⟩ = {z ∈ Rn | z =

ng∑
i=0

gix
αi , x ∈ [−1, 1]nx} (6.17)

where the exponentiation is applied elementwise. Comparing (6.17) with the zonotope definition
(6.10), we see that the set definitions are similar except that polynomial zonotope generators may
be multiplied by exponentiated indeterminates.

Throughout this section, we will use the following notation for polynomial zonotopes. We let
the bracket notation ⟨·⟩ denote a polynomial zonotope. We write ⟨P ⟩ = PZ(gi, αi, x) to say ⟨P ⟩
is a polynomial zonotope created from generators gi, exponents αi, and indeterminate vector x.
Note that by letting α0 = 0 (a vector of all zeros), the corresponding generator g0 functions like a
zonotope center.

We represent Jy, Jz, Jẏ, and J1 using one polynomial zonotope per time interval, denoted
as ⟨qy⟩i, ⟨qz⟩i, ⟨q̇y⟩i, and ⟨q1⟩i for a given phase index i. Each of these is comprised of a center and
a single generator with a single indeterminate. At each discretized phase step i ∈ {1, . . . , n}, the
polynomial zonotope center g0 is given by the mean conditional prediction at that phase value, and
the generator value is the conditional prediction’s 60% confidence interval: We write

⟨qy⟩i = µ̂y + Cyxy (6.18)

⟨qz⟩i = µ̂z + Czxz (6.19)

⟨q1⟩i = µ̂1 + C1x1 (6.20)

⟨qẏ⟩i = µ̂ẏ + Cẏxẏ, (6.21)

where the indeterminates xy, xz, x1 and xẏ are each contained in [−1, 1]. Lastly, we let ⟨qyz⟩i =
⟨qx⟩i × ⟨qy⟩i.

6.5.2 Parameterized Reachable Sets of the Prosthesis Heel and Toe

Equipped with reachable sets of predicted hip motion, we now describe our method for using the
trip-recovery libraries computed in Sec. 6.4.1 to compose reachable sets of the prosthetic knee and
ankle joint motion that are parameterized by k ∈ K. We then combine the hip, knee, and ankle
reachable sets to create reachable sets of the heel and toe through the workspace. To be clear, the
heel and toe reachable sets are a function of both the hip predictions (and their uncertainty) and
the trajectory parameters k ∈ K. The following subsections will rely on these reachable sets to
enforce a ground clearance constraint and desired foot placement objective.
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6.5.2.1 Theory

As in Sec. 6.5.1, we compute reachable sets of the prosthetic joint angles. Unlike the hip reach-
able sets, the prosthetic reachable sets are parameterized by the prosthetic joint angle trajectories
described in Sec. 6.4.1. Recall that the prosthetic knee and ankle angles are described by q2 and
q3. The reachable set for trajectory parameter k ∈ K and time t ∈ [ttrip, tf,max(k)] of q2 and q3 are
defined as:

Jj(t; k) =

{
p ∈ R2 | s.t. qj as in Def. 6.4.1, p = q̃i + qj(t; k)

}
(6.22)

where j = 2, 3 and q̃i = qj(ttrip; k)−qj,0 is the offset of the desired trajectory from the actual initial
configuration qj,0 at the time of the trip.

With definitions of each joint’s reachable sets, we can now define the heel reachable set in the
workspace as:

Lheel(t; k) =

{
X ⊂ P(W )

∣∣∣∣ X = FOheel(q(t; k)),

q(t; k) = (qy(t), qz(t), q1(t), q2(t; k), q3(t; k))
⊤,

qy(t) ∈ Jy(t), qz(t) ∈ Jz(t), q1(t) ∈ J1(t),

qj(t; k) ∈ Jj(t; k) ∀j ∈ {2, 3}
}
,

(6.23)

where Lheel : [ttrip, t
s
ub] ×K → P(W ) and tsub is the upper phase bound for strategy s ∈ {1, 2, 3}

corresponding to elevating, delayed lowering, and lowering, respectively. The toe reachable set
Ltoe(t; k) is similarly defined using FOtoe(q(t; k)).

6.5.2.2 Implementation

As in Sec. 6.5.1, we represent Jj for j = 2, 3 using one polynomial zonotope per time interval.
We create these polynomial zonotopes using polynomial zonotope arithmetic, which is detailed
in Appx. A.4. First, we create polynomial zonotopes representing each time interval. Let ⟨T ⟩i
correspond to the i-th time interval (i ∈ {1, . . . , n}) given by [(i − 1)∆t, i∆t], where ⟨T ⟩i =
(i+(i−1))

2
∆t + ∆t

2
xt, and the indeterminate xt ∈ [−1, 1]. Next, we define ⟨Kj⟩ which represents

trajectory parameters Kj = [0, 1] as ⟨Kj⟩ = 0.5 + 0.5xkj , with indeterminate xkj ∈ [−1, 1].
With these definitions, we are able to plug in ⟨T ⟩i and ⟨Kj⟩i in place of t and k to the desired
trajectories given in (6.7) and (6.8). Then, we add the initial condition offset q̃i to account for a
possible mismatch between the initial prosthesis configuration and the parameterized trajectory.
This yields a sequence of polynomial zonotope versions of the trajectories ⟨q2⟩i and ⟨q3⟩i which
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are guaranteed to overapproximate (6.22).
These polynomial zonotopes depend on both time and the trajectory parameter k ∈ K. One

essential property of polynomial zonotopes is that one can obtain a subset by plugging in particular
values to a polynomial zonotope’s indeterminates. We call this process “slicing”. Let k∗ denote
a particular value of k in [−1, 1]2. Note that k∗ ∈ [−1, 1]2 corresponds directly to values of
xk ∈ [−1, 1]2. We say that

slice(⟨P ⟩, xk, k∗) = {z ∈ ⟨P ⟩i|z =

ng∑
i=0

gix
αi , xk = k∗}. (6.24)

For brevity, we frequently use the notation

⟨P ; k⟩ = slice(⟨P ⟩, xk, k∗). (6.25)

This operation is useful because it allows us to compute subsets of reachable sets correspond-
ing to particular choices of trajectory parameters. For example, the set ⟨q; k⟩i where j ∈ {2, 3}
overapproximates the subset of reachable joint angles for the the i-th phase interval. We construct
reachable sets of the motion of the heel and toe from these joint reachable sets, which are also
sliceable by the trajectory parameters.

It is important that we overapproximate Lheel(t; k) and Ltoe(t; k) to guarantee the avoidance of
foot scuffs for the entire set of predicted human motion. We have formed polynomial zonotopes
which overapproximate Jy(t; k), Jz(t; k) and Jj(t; k) for j = 1, 2, 3, but now we use these
sets to overapproximate the forward occupancy maps FOheel and FOtoe. As seen in (6.3) and (6.4),
these maps are formulated in terms of rotation matrices built from the cosine and sine of each
rotational joint. Polynomial zonotopes offer a means to overapproximate these analytic functions
using overapproximative Taylor expansions, detailed in Appx. A.4. We utilize this to generate
polynomial zonotopes which overapproximate cos(⟨qj⟩i) and sin(⟨qj⟩i) for j ∈ {1, 2, 3}. Then,
we combine these into polynomial zonotope versions of rotation matrices ⟨Ri⟩i. We note that this
operation preserves sliceability.

Once these rotation matrix polynomial zonotopes for all rotational joints have been formed,
we compute their products to overapproximate the forward occupancy maps FOheel and FOtoe at
each time step. Here, we use the polynomial zonotopes Vheel(t) and Vtoe(t) to overapproximate
Lheel(t;K) and Ltoe(t;K). Recalling that lth, lsk, lhl and ltoe define the necessary lengths of our
kinematic model, we may treat these as polynomial zonotopes with a center and no generators.
Then, we compute Vheel(t) and Vtoe(t) by multiplying the polynomial zonotopes ⟨Rj⟩i by these
lengths in the order that they appear within the forward occupancy maps FOheel and FOtoe. These
polynomial zonotopes are then shifted by the set of possible hip positions given by ⟨qyz⟩i by taking
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a Minkowski sum:

Vheel(t) = ⟨qyz⟩i ⊕ ⟨R1⟩ilth ⊕
2∏

j=1

⟨Rj⟩ilsk ⊕
3∏

j=1

⟨Rj⟩iR(θheel)lhl (6.26)

Vtoe(t) = ⟨qyz⟩i ⊕ ⟨R1⟩ilth ⊕
2∏

j=1

⟨Rj⟩ilsk ⊕
3∏

j=1

⟨Rj⟩iltoe. (6.27)

Upon close inspection, these equations are identical to the forward occupancy equations found
in (6.3) and (6.4), where we have replaced all rotation matrices with polynomial zonotopes and
replaced the hip position with a set of possible positions. An example of the computed Vheel(t) and
Vtoe(t) are displayed in Fig. 6.5(a).

6.5.3 Cost and Constraints for Optimization

6.5.3.1 Theory

The goal of this work is to plan and execute prosthesis trajectories that robustly respond to trips.
Importantly, we want to choose trajectory parameters k which lead to successful recovery across
a range of plausible human trajectories. We formulate this as an optimization problem with a
cost corresponding to foot placement and a constraint corresponding to undesired foot scuffs. The
objective minimizes the distance between the reachable set of the swing heel/toe at touchdown
corresponding to k and the target set XT . The constraint prevents the prosthetic heel/toe from
catching on the ground during swing. To be clear about the strategy-dependent role of the heel
and toe in this placement cost and clearance constraint, we let Lplacement(t; k) = Lheel(t; k) and
Lclearance(t; k) = Ltoe(t; k) for the elevating strategy, and let Lplacement(t; k) = Ltoe(t; k) and
Lclearance(t; k) = Lheel(t; k) for the delayed lowering and lowering strategies.

Because the foot contact time tf depends on both the reachable sets and choice of trajectory
parameters, we let tf,max(k) be the last possible contact time for a given choice of trajectory param-
eters. As described in Sec. 6.4.3, we represent the target set using the swing hip AP position and
velocity along with the foot AP position. We want to represent the set of “good” foot placement
positions, which are valid for all reachable hip AP positions and velocities:

Xin(t) = {x ∈ R | (y(t), ẏ(t), x) ∈ XT∀y(t) ∈ Jy(t), ẏ(t) ∈ Jẏ(t)}. (6.28)

We then define the subset of anterior-posterior positions of Lplacement(t; k) that lie outside of the
target set at any phase value where ground contact is possible and the associated phase values as
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Elevating Delayed Lowering Lowering

(a)

(b)

Figure 6.5: This figure shows computed reachable sets for the human-prosthesis subsystem. The
elevating trial is from Subject ID 8, the delayed lowering from Subject ID 1, and the lowering
from Subject ID 10. The stick figures show the subjects’ ground truth trip-recovery behavior. The
reachable sets are plotted for every seven phase steps, which cause the gaps at the beginning when
the leg swings forward quickly. Part (a) shows the reachable sets computed before the cost and
constraints are formed for optimization. The human subsystem’s reachable sets are plotted in gray.
Note that because the human’s hip flexion-extension angle influences the position of the knee, the
knee position reachable sets are also plotted in gray. The heel and toe reachable sets Vheel(t) and
Vtoe(t), computed in Sec. 6.5.2, are shown in light orange and light purple, respectively. They
describe all possible locations of the heel and toe throughout swing phase given the predicted
sets of human motion and the range of parameterized prosthesis behavior. Part (b) shows the
optimization results for each trial (Secs. 6.5.3 and 6.5.4). The dark orange and purple sets represent
the possible heel and toe locations for a choice of k ∈ K and the entire set of predicted human
trip-recovery behavior. The optimization picks k ∈ K to avoid undesired foot scuffs (toe scuffs
for elevating trials, heel scuffs for delayed lowering and lowering) and to minimize the distance
outside the target sets (shown as the green intervals) any time ground contact is possible (heel for
elevating, toe for delayed lowering and lowering).
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Xout(t; k):

Xout(t; k) =
{
x ∈ πy(X) | X = Lplacement(t; k), πz(X)

⋂
{0} ≠ ∅, x ̸∈ Xin(t)

}
, (6.29)

where the last condition implies a foot placement x is not valid for all reachable hip AP positions
and velocities. Then, we define the objective function as the sum of Xout values:

fplacement(k) =

∫ tf,max(k)

ttrip

∫
Xout(t;k)

dxdt. (6.30)

For the constraint, given Lclearance, let Ku be the set of unsafe trajectory parameters for the
prosthesis which is defined as follows.

Ku =
{
k ∈ K | t ∈ [ttrip, tf,max(k)], X = Lclearance(t; k), ∃z ∈ πz(X) s.t. z ≤ 0

}
. (6.31)

In short, Ku says that a trajectory parameter k is unsafe if the clearance reachable set can intersect
the ground at any time prior to contact by the desired portion of the foot.

6.5.3.2 Implementation

We form the cost fplacement and overapproximate Ku using a constraint function hclearance. In the cost
and constraint, we consider slices of Vheel(t) and Vtoe(t) for i ∈ {1, . . . , n} corresponding to partic-
ular choices of k (See Sec. 6.5.2 for the definition of slicing). As before, we let Vplacement(t) =

Vheel(t) and Vclearance(t) = Vtoe(t) for the elevating strategy, and let Vplacement(t) = Vtoe(t) and
Vclearance(t) = Vheel(t) for the delayed lowering and lowering strategies.

First, we discuss evaluating the objective function for desired foot placement. We want to
ensure that whenever the foot can make contact before the ground (up until the maximum phase tsub

for strategy s), the distance between the foot placement location and the target set XT (Def. 6.4.4)
is minimized. This means that although we do not know exactly when the heel or toe will make
contact with the ground, we can enforce its appropriate placement, as described by XT .

For any k ∈ K, slicing Vplacement(t) by k returns the subset Vplacement, slc(t) ⊂ R3. We can find the
lowest point in this subset by projecting it onto the z-axis, then taking the infimum of the result.
We define a function hz,min : {1, ..., n} ×K → R:

hz,min(i, k) = inf(πz(Vplacement, slc(t))) (6.32)

where inf is defined in the Appx. A.4 (A.26). Notice that hz,min(i, k) > 0 for a given i and
k implies that the sliced Vplacement, slc(t) is completely above ground. Therefore, contact with the
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ground is possible for a given i and k whenever hz,min(i, k) ≤ 0. At a given phase index i, the
reachable hip AP positions and velocities determine the subset of XT under consideration, which
limits possible foot placement positions as represented by Xin(t) in (6.28). We define the set Vin(i):

Vin(i) =

{
x ∈ R | (y, ẏ, x) ∈ XT , ∀y ∈ ⟨qy⟩i, ẏ ∈ ⟨qẏ⟩i

}
, (6.33)

which can be computed using set difference operations on polytopes. As in (6.29), we want to
describe the set of undesirable reachable foot placement positions, which we then use to formulate
our cost function. We do not know exactly where the foot will be placed, due to the overapprox-
imative method for constructing reachable sets. To achieve a successful recovery, we want all

possible foot placement positions to be close to the target set whenever ground contact is possible.
To implement this, we consider the set of points that can contact the ground but lie outside Vin(i):

Vout(i, k) =

{
x ∈ R | x ∈ πy(Vplacement, slc(t)), (6.34)

hz,min(i, k) ≤ 0,

x /∈ Vin(i)

}
. (6.35)

As in (6.30), we wish to approximate
∫
Vout(i;k)

, which measures the size of the set of unsafe foot
positions. The set πy(Vplacement, slc(t)) can be overapproximated by a 1-D interval, and we represent
Vin(i) as a 1-D interval. When hz,min(i, k) ≤ 0, we let

∫
Vout(i;k)dx

be the size of πy(Vplacement, slc(t))

which does not overlap Vin(i). For an interval I ⊂ IR, let

σ(I) = sup(I)− inf(I), (6.36)

where σ : IR → R measures the range of an interval, and the sup and inf operations are
introduced in (A.4) and (A.3) for intervals. Ideally, the possible foot placements πy(Vplacement, slc(t))

should be completely contained in Vin(i), in which Vout(i; k) is empty. Similarly, if hz,min(i, k) > 0,
ground contact is impossible and Vout(i; k) is empty. However, when hz,min(i, k) ≤ 0, we measure
the size of the set lying outside the target set as:∫

Vout(i;k)

dx =σ(πy(Vplacement, slc(t)))− σ(πy(Vplacement, slc(t))
⋂

Vin(i)). (6.37)

We then define fplacement as the sum of maximum distances over all i, for i ∈ {l, . . . ,m} ⊂
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{1, . . . , n}, where ground contact is possible:

fplacement(k) =
m∑
i=l

(

∫
Vout(i;k)

dx). (6.38)

Recall that in delayed lowering and lowering trials, the toe contacts the ground at the end of the
step. However, if the trip occurs early in the swing phase, the toe can be near the ground at the start
of the trip as well, causing hz,min(i, k) ≤ 0. To ensure that we are not trying to have the toe in XT

at the beginning of the swing phase, we do not enforce the cost for the first 30% of the planning
phase, i.e. for any i < 3n. We chose 30% because we observed that subjects’ computed reachable
sets had cleared the ground by this percentage of swing phase.

For the heel/toe clearance constraint, we describe our representation of Kclearance, which identi-
fies trajectory parameters which may cause unwanted collision between the foot and the ground.
We define a similar function for the clearance height, hz,clearance,min : {1, ..., n} ×K → R

hz,clearance,min(i, k) = πz(inf(Vclearance, slc(t))). (6.39)

where hz,clearance,min(i, k) ≤ 0 for a given i and k implies that the sliced Vclearance(t) may intersect
with the ground. Therefore, letting

hclearance(i, k) = −hz,clearance,min(i, k) (6.40)

and setting the condition hclearance(i, k) < 0, we can ensure that the sliced Vclearance(t) never inter-
sects with the ground.

Lemma 6.5.2. If k ∈ Kclearance, then there exists t ≤ tf,max(k) such that hclearance(i, k) ≥ 0.

Recall that for elevating trials, we want to avoid toe scuffs for the entire step. If the trip occurs
early enough in the swing phase where the toe is still on or near the ground at the beginning of the
step, the constraint can return infeasible when in reality, toe contact is acceptable. We therefore do
not enforce the foot scuff constraint for the first 30% of the planning phase, i.e. for any i < 3n.

6.5.4 Real-Time Optimization

6.5.4.1 Theory

We solve for the optimal trajectory parameter k as

kopt = argmink∈K
{
fplacement(k) | k ̸∈ Ku

}
. (6.41)
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Note that the cost function could be modified to include other user-specified objectives, such as
minimizing the distance from a desired trajectory or the work done by the prosthesis. Unfortu-
nately, the optimization (6.41) may not be feasible if every trajectory parameter is unsafe, i.e.
K = Ku. In this case, the avoidance of foot scuffs can not be ensured, and our framework defaults
to using the nominal trajectory in this case as described in Sec. 6.3.3.

Assuming the problem (6.41) was feasible and an optimal trajectory parameter has been identi-
fied, the control input for the prosthetic knee at time t is given by a tracking controller

up(t) = G1

(
qp(t)− qp,des(t; k)

)
+G2

(
q̇p(t)− q̇p,des(t; k)

)
, (6.42)

where G1 and G2 are user specified feedback gains, and we emphasize that the trajectory parame-
ters produce desired joint trajectories to be tracked by the feedback controller.

6.5.4.2 Implementation

We implement (6.41) as a nonlinear program:

kopt = argmin
k∈K

fplacement(k)

s.t. hclearance(i, k) < 0 ∀ i ∈ {1, . . . , n}.
(6.43)

The plan lasts for the phase horizon [ttrip, t
s
ub] for strategy s ∈ {1, 2, 3} corresponding to elevating,

delayed lowering, and lowering, respectively. As detailed in Sec. 6.3.3, the nominal prosthesis
controller is assumed to resume control upon contact with the ground. Our proposed framework
correctly accounts for the initial position of the prosthetic leg at the time of the trip, and utilizes
reachable sets of both human and prosthetic subsystems to form the cost and constraint. If no
safe trajectory can be found, our framework defaults to using the nominal controller. Example
optimization results for each strategy are shown in Fig. 6.5(b).

6.6 Evaluation

6.6.1 Evaluating the Proposed Planning Framework

If the optimization problem in Sec. 6.5.4 is feasible, our framework produces k2 and k3 that
correspond to knee and ankle angle trajectories, respectively, from [ttrip, t

s
ub] for strategy s. These

k-values avoid foot scuffs (toe scuffs for elevating, heel scuffs for delayed lowering and lowering)
for the entire set of predicted hip motion, and aim to minimize the distance between the horizontal
foot location (heel for elevating, toe for delayed lowering and lowering) and the target set at any
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phase point where foot contact is possible. However, the reachable sets of qh are predictions
of human hip motion, so they may not actually encompass the human’s trip-recovery swing hip
behavior. Recall that the human’s trip-recovery response lasts until tf < tsub. We evaluate the
framework’s performance by computing FOheel and FOtoe using the ground truth hip motion for
qh and the planning framework’s q2 and q3 from [ttrip, tf ]. To be clear, we evaluate trip-recovery
planner using ground truth hip states from our able-bodied experiment described in Sec. 6.2 and
simulated prosthesis knee and ankle states:

Assumption 6.6.1. The prosthesis motion does not affect the human hip motion after a trip.

This assumption is reasonable because in many trips, the recovery time is short enough that
humans may not have time to react to prosthesis behavior.

In the simulated trip recovery, we first check if the foot (toe for elevating, heel for delayed
lowering and lowering) scuffs the ground at any point from [ttrip, tf ]. Next, we look at the part
of the foot where contact is desired at touchdown (heel strike for elevating, toe strike for delayed
lowering and lowering). Because the prosthesis behavior is likely different from the human’s
ground truth trip-recovery knee/ankle behavior, the phase value at touchdown is different from tf .
Let tf,sim denote the phase value at which the simulated heel/toe crosses the ground plane. We
first find the ground truth hip states qh(tf,sim) and evaluate XT at these states to produce a range of
desired heel/toe strike locations. Next, we compare the anterior-posterior heel/toe strike location
to the range of target set values. If the heel/toe strike lies inside the target set, we set the distance
to the target set, dXT

, to zero. Otherwise, we set dXT
as the distance from the heel/toe strike point

to the closest target set bound.
In our evaluation, we observed some trials where the foot (heel for elevating, toe for delayed

lowering) came close to the ground at the end of the step, but did not contact the ground during
t ∈ [ttrip, tf,sim]. We would expect in this case that the human would continue moving the swing
hip until touchdown occurs, but in our simulation, we only have human trip-recovery data from
[ttrip, tf ]. We therefore compute the desired foot placement at tf and evaluate dXT

using the swing
heel/toe’s horizontal position at t = tf . In other trials, we were unable to evaluate a target set
because the qh(tf,sim) states were outside of the bounds formed by the target set zonotope. This
problem typically occurred when the foot contacted the ground much earlier than observed in any
ground truth trials. For these cases, we found the first instance where the target set was defined for
the trial, and evaluated the target set distance using this desired foot contact range.

6.6.2 Comparison to Impedance-Based Control

Without a trip-recovery controller, the prosthesis is likely to continue using its nominal level-
ground walking controller after a trip occurs. We therefore compare our proposed trip-recovery
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framework to a nominal impedance-based controller. In this control scheme, we divide the swing
phase t ∈ [0, 1] into nm = 4 modes for each joint j ∈ {2, 3}. Each mode i ∈ {1, ..., nm} has a
phase interval τ ij = [ti0,j, t

i
f,j] of length (tif,j − ti0,j). Note that t10 = 0, tnm

f = 1, and ti0 = ti−1
f for

i = 2, . . . , nm. In each mode, we model the prosthetic joint j for j ∈ {2, 3} as a spring-damper
system with stiffness λi

j ∈ R+, damping coefficient αi
j ∈ R+, and equilibrium angle θieq,j ∈ R.

Given prosthetic joint angular position and angular velocity qj, q̇j(t) at phase value t ∈ τ ij , the
desired joint torque for joint j in mode i is expressed as

T i
des,j(t) = −λi

j(qj(t)− θieq,j)− αi
j q̇j(t). (6.44)

To determine λi
j , α

i
j , and θieq,j , we first compute a reference average nominal torque profile T i

ref,j :

τ ij → R via inverse dynamics. We define nominal swing phase steps as those that are three or more
steps past the tripped step, and compute average nominal trajectories of the knee and ankle angles
for t ∈ [0, 1] for each subject. Next, we adopt the dynamic model described in Sec. 6.3.1 on this
averaged nominal trajectory. Using the Recursive Newton-Euler algorithm, we solve the sequence
T i
ref,j on each mode interval τ ij . We allow the mode intervals to be distinct for each joint j, but

keep the same mode number nm for both joints (i.e. τ 1j , . . . , τ
nm
j ), with each τ ij = [ti0,j, t

i
f,j] for

joint j and mode i ∈ {1, . . . , nm}. Next, for each joint j, we solve for the intervals τ 1j , . . . , τ
nm
j

and the λi
j , α

i
j , and θieq,j of each mode that minimize the sum of the squared error between T i

des,j

and T i
ref,j . We formulate the problem as a bilevel optimization program:

min
τ1j ,...,τ

nm
j

nm∑
i=1

δij

s.t. δij = min
λi
j∈R+,θieq,j∈R+,αi

j∈R
{SSE(T i

ref,j, T
i
des,j)}

ti0,j, t
j
f,i ∈ [0, 1], i = 1, . . . , nm

t10,j = 0,

tnm
f,j = 1,

ti0,j = ti−1
f,j , i = 2, . . . , nm

ti0,j < tif,j, i = 1, . . . , nm

(6.45)

where SSE calculates the integral of the squared difference of the two input functions on [ti0,j, t
i
f,j].

Notice that the above optimization program includes an outer optimization problem and a inner
optimization problem. The outer optimization problem tries to find the best division of modes
[τ i1, τ

i
2, ...τ

i
nm

] that minimizes the cost function, while the inner optimization tries to find the
best system parameters for each mode. The inner optimization problem is a constrained linear

102



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Phase

-0.05

0

0.05

0.1

0.15

0.2

Average Nominal Torque

Desired Torque

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.03

-0.02

-0.01

0

0.01

0.02

0.03

Average Nominal Torque

Desired Torque

T
o

rq
u

e
(k

g
·m

2
/s

2
)

T
o

rq
u

e
(k

g
·m

2
/s

2
)

Phase

Knee Torque

Ankle Torque

9% 25% 64%

16% 53% 71%

τ1

τ2
τ3

τ4

τ1

τ2

τ3

τ4

Figure 6.6: This figure shows example knee and ankle torques calculated from an average nominal
trajectory Tref via inverse dynamics (black solid curve), and the desired knee and ankle torques
produced by the nominal impedance-based controller Tdes (black dashed curve) for Subject ID 1.
The number of modes is set to nm = 4 in this case. Note that for the knee and ankle torque profiles,
we use different mode divisions and parameters, as shown in (a) where the divisions are set at 9%,
25% and 64%, and in (b) where the divisions are set at 16%, 53% and 71%.

least-squares problem, so we use MATLAB’s lsqlin function to solve the optimal parameters
λi
j, θ

i
eq,j, α

i
j . Plugging in the inner loop optimal parameters, we solve the outer loop minimization

problem with a genetic algorithm, using MATLAB’s ga function. Fig. 6.6 shows average nominal
torque Tref and the desired torque Tdes for Subject ID 1.

Given initial states q0,j and q̇0,j at t = ttrip, we simulate prosthesis motion iteratively by first
obtaining the desired torque from (6.44) and then applying it in the dynamic model in Sec. 6.3.1
to obtain the joint’s angular position and velocity at the following phase value. Once the nominal
prosthesis knee and ankle angles are found for t ∈ [ttrip, tf ], we simulate the prosthetic joint motion
with the human’s ground truth hip trip-recovery behavior. We the conduct the same evaluation steps
using the subject’s ground truth hip trajectories and the nominal knee and ankle angle trajectories.
In Sec. 6.3.3, we stated that if our framework fails to produce a feasible solution, the prosthesis
defaults to its nominal controller. To avoid comparing the nominal controller to itself, we only run
the evaluation for trials where our framework returns a feasible solution.
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6.7 Results

The evaluation results are reported for each subject in Tab. 6.1. Fig. 6.7 shows comparisons of
subjects’ ground truth trip-recovery behavior, the proposed framework’s result, and the impedance-
based result for three examples.

Currently, our framework’s planning time is on the order of seconds, which is much too long
for planning a trip recovery. However, the long planning times result from a recent change in
computing reachable sets. This new computation method helps reduce conservatism, ensuring the
reachable sets of the heel and toe are not overapproximated by too large a buffer. If the reachable
sets are too large, the method returns infeasible solutions more often. Although the computational
changes improved feasibility, we are still in the process of reducing computation time. Past ver-
sions of our method implemented on a simulated trip dataset had a mean planning time of 94 ms
when a feasible trajectory was found [109].

6.8 Discussion

Prosthetic trip-recovery controllers could help people with lower-limb amputations perform ev-
eryday tasks with more confidence. However, the uncertainty in estimating human behavior has
made designing these controllers difficult. In this chapter, we present a method for planning trip-
recovery trajectories online while explicitly accounting for a range of predicted human responses.
Our framework constructs reachable sets of the prosthetic heel and toe that depend on both the hu-
man and prosthesis subsystems, then selects trajectory parameters for the prosthetic knee and ankle
online to ensure that the entire system recovers successfully. To our knowledge, this work repre-
sents the first prosthetic controller framework that can plan trajectories online while accounting for
a range of possible human behaviors.

Our proposed framework returned a feasible solution to the optimization program in Sec. 6.5.4
for 87.2% of trials across all 16 subjects. Looking at Tab. 6.1, we see that many subjects have
feasibility rates above 95%, but the subject-wide average is brought down by some with lower
rates, such as Subject ID 4. In investigating these low feasibility rates for some subjects, we
observed that the low feasibility is often specific to one strategy (e.g., delayed lowering). In those
cases, the subject’s trip-recovery library for that specific strategy likely does not provide a large
enough range of knee or ankle angles to lead to feasible solutions. We aim to generate feasible
trip-recovery solutions as often as possible to avoid defaulting to the nominal impedance-based
controller during a trip, so future work will investigate and address problems with the trip-recovery
libraries for these subjects.

For the 834 trials where a feasible solution was returned, our proposed framework outperformed
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Table 6.1: Results for our proposed framework compared to nominal impedance-based control.

Subject ID Method Feasible Undesired Foot
Scuffs

Mean dXT
(cm)

0
Proposed 41/41 - 100.0% 0/41 - 0.0% 0.7

Impedance-Based N/A 25/41 - 61.0% 7.4

1
Proposed 75/77 - 97.4% 0/75 - 0.0% 2.6

Impedance-Based N/A 34/75 - 45.3 3.5

2
Proposed 29/39 - 74.4% 2/29 - 6.9% 1.4

Impedance-Based N/A 20/29 - 69.0% 11.9

3
Proposed 40/57 - 70.2% 1/40 - 2.5% 1.8

Impedance-Based N/A 24/40 - 60.0% 10.0

4
Proposed 26/42 - 62.0% 0/26 - 0.0% 1.2

Impedance-Based N/A 18/26 - 69.2% 11.5

5
Proposed 53/53 - 100.0% 0/53 - 0.0% 2.1

Impedance-Based N/A 7/53 - 13.2% 2.4

6
Proposed 65/76 - 85.5% 0/65 - 0.0% 9.1

Impedance-Based N/A 11/65 - 16.9% 4.9

7
Proposed 32/43 - 74.4% 1/32 - 3.1% 12.8

Impedance-Based N/A 17/32 - 53.1% 14.4

8
Proposed 70/73 - 95.9% 1/70 - 1.4% 1.4

Impedance-Based N/A 41/70 - 58.6% 8.8

9
Proposed 58/73 - 79.5% 0/58 - 0.0% 4.6

Impedance-Based N/A 8/58 - 13.8% 14.3

10
Proposed 64/72 - 88.9% 0/64 - 0.0% 0.6

Impedance-Based N/A 33/64 - 51.6% 8.9

11
Proposed 54/75 - 72.0% 0/54 - 0.0% 2.6

Impedance-Based N/A 33/54 - 61.1% 4.5

12
Proposed 68/71 - 95.8% 0/68 - 0.0% 0.8

Impedance-Based N/A 28/68 - 41.1% 6.7

13
Proposed 51/54 - 94.4% 0/51 - 0.0% 12.1

Impedance-Based N/A 28/51 - 54.9% 21.0

14
Proposed 61/63 - 96.8% 0/61 - 0.0% 1.6

Impedance-Based N/A 16/61 - 26.2% 7.6

15
Proposed 47/48 - 97.9% 1/47 - 2.1% 1.9

Impedance-Based N/A 24/47 - 51.1% 1.9

Total
Proposed 834/957 - 87.2% 6/834 - 0.7% 3.4

Impedance-Based N/A 367/834 - 44.0% 8.2
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Proposed Framework Impedance-Based Control

(a) Elevating

(b) Delayed Lowering

(c) Lowering

Subject’s Ground Truth

Toe scuff

Heel scuff

Heel scuff

Figure 6.7: This figure shows results for three sample trials. Row (a) shows an elevating trial from
Subject ID 8. The first column depicts the subject’s observed trip-recovery behavior. The second
column shows the optimization result from our proposed framework, evaluated using the subject’s
ground truth hip motion as described in Sec. 6.6. At the phase point where the heel contacts
the ground, we determine the desired range of heel strike locations using the hip’s AP position
and velocity. The desired range is pictured as the green interval below the ground. Note that our
proposed framework successfully places the heel in this range. In the third column, we see that
the impedance-based controller also places the heel in the desired heel strike range, but that the toe
scuffs the ground along the way. Rows (b) and (c) depict delayed lowering and lowering trials for
Subject IDs 1 and 10, respectively. Note that for these two strategies, we aim to avoid heel scuffs
and to place the toe in the desired range at the end of the step. In the middle column, our proposed
framework shows the toe contacting the ground within the green range for both delayed lowering
and lowering. In both (b) and (c), the impedance-based controller scuffs the heel on the ground,
and the toe AP position lies outside the desired range.
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nominal impedance-based control in avoiding unsafe foot scuffs and placing the swing foot in a
desired location at touchdown. The low percentage of foot scuffs (0.7%) that occurred in our
planning framework highlights the effective performance of two aspects. First, the GPR models
produced accurate predictions of human swing hip behavior. The six trials where foot scuffs did
occur resulted from the swing hip motion exiting the 60% confidence bounds. Increasing the con-
fidence interval could reduce the foot scuff percentage further; however, it would also cause larger
heel and toe reachable sets, which may return more infeasible trials. Second, the parameterized
trip-recovery libraries provided an effective range of knee and ankle trajectories that could avoid
foot scuffs for the predicted set of hip behavior.

Of the feasible trials, our framework placed the foot closer on average to the target set com-
pared to impedance-based control. However, for some subjects, especially Subject IDs 7 and 13,
the mean distance from the target set is relatively large (over 12 cm). Because we are solving a
nonlinear optimization problem, it is possible that the solver reached a local minimum that pro-
duced a high distance from the target set in these cases. Additionally, these subjects’ trip-recovery
libraries could have been unable to produce knee and ankle trajectories that could get closer to the
target set, and tuning the libraries could address the issue.

In this work, we implemented the framework using swing hip data from able-bodied subjects
attached to a robotic knee-ankle prosthesis in simulation. Despite the promise of this framework
for planning safe trip recoveries online, several challenges must be addressed for the framework’s
successful implementation on prosthesis hardware. The assumptions made in this chapter are
based on successfully implemented studies by other research groups (e.g., stumble detection work
by [121, 122] and trip-recovery strategy selection work by [96]), but have not been tested with
our trip dataset or implemented on our own hardware. Our predictions of swing hip responses
are informed by data from able-bodied subjects, and we assume that the human swing hip motion
remains unchanged throughout the swing phase regardless of prosthesis behavior. Although people
with lower-limb amputation have displayed similar trip-recovery strategies to able-bodied subjects
[19], the swing hip motion may be different. Furthermore, distinct prosthesis trip recovery behavior
(e.g., the joint angles produced by nominal control compared to online optimization) could elicit
different responses from individuals, especially for trips at the beginning of the swing phase when
there is more time to react and plan. One way to address this challenge is to collect swing hip
data while the trip-recovery framework is in use and continually re-train the GPR models with
observed data. The current framework also assumes that our implemented target sets in Sec. 6.4.3
are sufficient for the system’s successful trip recovery. However, the proposed framework can
include other notions of target sets, informed by human stumble experiments or physics-based
definitions of dynamic stability.

The theoretical trip-recovery planning framework presented here can generalize to walking
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models with different dimensions, parameters and dynamics. The method could be applied to
other types of trips or slips, regardless of whether the prosthesis is in stance or swing. Our opti-
mization objective only considered the placement of the swing foot at the end of the tripped step,
but the cost could also include goals such as minimizing the work done by the prosthesis. Our
future work will generalize the framework in each of these areas with the goal of incorporating this
framework into prosthetic hardware. The simulated prosthesis results with human trip-recovery
data represent a promising step in developing prosthesis controllers that can increase confidence
and safety by working alongside a human to recover from trips.
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CHAPTER 7

Specific Aim 5: Towards a Technology Assessment
for Robotic-Limb Prostheses

This work was completed as coursework and independent research in the University of Michigan

Ford School of Public Policy’s Science, Technology, and Public Policy certificate program, advised

by Prof. Shobita Parthasarathy. It is written for a non-technical audience.

7.1 Introduction

An estimated one million people were living with lower-limb loss in the United States in 2005, and
this number is expected to more than double by 2050 [5]. The most common cause of limb loss is
vascular disease (e.g., diabetes or peripheral arterial disease), but other causes include congenital
limb difference, traumatic injury, and cancer [134, 135]. The projected increase in limb loss reflects
the growing prevalence of dysvascular disease in the United States [5, 136].

To maintain mobility, lower-limb amputees typically use a prosthesis and/or a wheelchair [137].
The decision of whether to use a prosthesis and the duration of daily prosthesis use depend on a
number of factors such as age, gender, fitness level, amputation level, and satisfaction with pros-
thesis fit [138, 139]. Researchers have attempted to estimate percentages of prosthesis use among
amputees, but obtaining sample populations that vary across factors is challenging. Generally,
studies indicate a high percentage of prosthesis use, but with low overall satisfaction [140].

Many research groups across the academic, public, and private sectors focus on the design and
control of robotic prostheses, which can more closely mimic the capabilities of a human joint
than prostheses used by the participants in the surveys above. However, these devices are far from
widespread adoption; most are not FDA approved [20]. As researchers continue to advance robotic
prostheses in laboratories, they must think critically about the technology’s impact on those with
lower-limb loss to ensure its effective translation to the real world.
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7.2 Background

7.2.1 Some key terms and concepts

A typical way to evaluate a lower-limb prosthesis is by studying its effect on an individual’s walk-
ing gait. The gait cycle, shown in Fig. 7.1, describes one leg’s transition from the stance phase,
where weight is put on the leg, to the swing phase, where the leg lifts off the ground. To accom-
plish each stride in the gait cycle, a human’s muscles produce joint torques, or rotational forces
about the hip, knee, and ankle.
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Figure 7.1: The gait cycle follows one leg through the stance and swing phases. Image adapted
from T. Stöckel et al. 2015.

Lower-limb amputation’s impact on mobility, cost, and health varies based on the characteristics
of the limb amputation. A transfemoral amputation crosses the femur, above the knee, while
a transtibial amputation crosses the tibia, below the knee [141]. Hip disarticulation refers to
amputations where the femur is removed at the hip socket. A unilateral amputation refers to
amputation on one leg, and bilateral amputations are on both legs. We refer to non-amputated
joints and limbs as intact. The residual limb is the part of the leg remaining after limb loss, and
the socket fits around the residual limb and attaches to the prosthesis. Typically, a liner holds the
socket to the residual limb and provides extra comfort and protection.

In the United States, Medicare has established a system, adopted by many private insurers,
called K-levels to determine eligibility for lower-limb prosthesis coverage [142]. The system
ranges from K-0 to K-4, with K-0 indicating that the individual does not have the ability to am-
bulate safely with a prosthesis and K-4 indicating that the individual’s ambulation skills exceed
average. A prosthetist, physical therapist, or physician assigns a patient’s K-level using one of
several established outcome measures.
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7.2.2 Three types of lower-limb prostheses

Many people with lower-limb loss use passive prostheses. A typical passive knee-ankle prosthesis
includes a spring on the ankle joint and a damper (think of what slows down a swinging screen
door) on the knee joint. Passive joints do not rotate on their own; to use this device, individuals
must swing their residual limb forward to cause the lower leg to advance. The damper at the knee
provides resistance as the lower leg swings forward, and the spring at the ankle provides push-off
assistance as the leg leaves the ground [20]. Constant-friction knees, the simplest option, offer the
same damping resistance throughout the gait cycle. More sophisticated models vary the resistance
using mechanical components or compressed fluid to store and return energy [143].

Because passive devices cannot supply external power to the knee or ankle joint, individuals
compensate by adjusting the behavior of their intact joints and limbs. For example, unilateral
amputees often spend a longer time on their intact limb than their amputated limb in the stance
phase [144]. This compensation strategy increases the forces exerted on the intact knee and hip,
which leads to joint pain and osteoarthritis after years of repetitive use. Other common outcomes
from compensation include back pain; osteoporosis in the residual limb due to decreased loading
on the bones; and higher energy expenditure while walking.

passive microprocessor-controlled robotic

Figure 7.2: An example of each prosthesis type. Image adapted from Ossur Total Knee, Ossur
Rheo Knee, and Ossur Power Knee images.

Established in the late 1990s, microprocessor-controlled prostheses advance passive designs by
actively modulating the amount of damping resistance provided by the knee. These devices have an
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internal computer (microprocessor) that monitors the individual’s gait cycle via force sensors and
adjusts fluid resistance accordingly using hydraulics or pneumatics [145]. Many microprocessor-
controlled prostheses are commercially available, including the Ottobock C-Leg and Ossur Rheo
Knee [146, 147]. Studies generally indicate improved function and user satisfaction with these
devices compared to passive prostheses [110, 148].

Robotic prostheses are designed to mimic the human neuromuscular system more closely than
their predecessors. These devices have some sort of actuation (electric, pneumatic or hydraulic) at
each joint and a wide variety of sensors to determine quantities such as joint angle, angular speed,
and torque [20]. Just as with microprocessor-controlled prostheses, sensors allow the prosthesis
to monitor the gait cycle and adjust accordingly, but robotic prostheses’ motors enable a wider
range of joint motion and do not require the user to supply the energy. Fig. 7.2 shows examples of
commercially available passive, microprocessor-controlled, and robotic knees.

Only two robotic lower-limb prostheses are commercially available in the United States: the
Ossur Power Knee and the Ottobock Empower ankle/foot [149, 150]. Because these devices span
only one joint, they are categorized as Class I (low risk) medical devices in the United States Food
and Drug Administration (FDA). Robotic knee-ankle prostheses, however, fall into the Class II
(moderate to higher risk) category because they require coordination between two electronically
connected joints [151]. To achieve Class II approval, medical devices must meet special require-
ments pertaining to labeling, guidance documents, and performance standards [152]. The FDA
has not established such performance standards for lower-limb robotic prostheses, likely due to the
absence of an analogous technology for comparison. Recent establishment of robotic lower-limb
exoskeleton standards may speed up the process [153].

7.3 Why a technology assessment?

The researchers who develop robotic prostheses are eager to improve daily life for people with
lower-limb loss. Their resulting prostheses, which utilize lightweight power sources, a wide vari-
ety of sensors, and artificial intelligence, have the potential to provide an unprecedented level of
mobility assistance. Less often acknowledged, however, are these devices’ unanticipated impacts.
A recent podcast episode describes Britt Young, a woman with upper-limb loss, receiving an tech-
nologically advanced prosthetic hand: “At first, Britt was floored by her new bionic arm. . . [but]
quickly realized this high-tech piece of machinery wasn’t all that it was hyped up to be.” The
robotic hand was heavy, prone to overheating, and uncomfortable [154].

Because robotic lower-limb prostheses are largely in the development phase, now is a good time
to carefully consider their potential impacts and barriers to widespread adoption. Conducting such
a review is known as a technology assessment in Science and Technology Studies. Technology
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assessments aim to “...provide an explicit mechanism for observing, critiquing, and influencing
social values as they become embedded in innovations” [155]. Britt’s bionic arm, for example,
reflected the engineers’ values of bionic technology and sophisticated robotic controllers, but failed
to incorporate her values of comfort and functionality.

Researchers who work in laboratories that are disconnected from the amputee population they
intend to assist can use this technology assessment to adjust the scope of their work or dedicate
time and funding to mitigate a potential concern. A technology assessment of robotic prostheses
can also benefit policymakers by, for example, recommending focus areas for FDA performance
standards or identifying issues with current health insurance policies.

7.4 Current technology assessment methods

Technology assessment (TA) is a term first established by the United States Congress in the 1960s
when assessing the impacts of technologies such as supersonic transport and genetic screening
[156]. The U.S. Office of Technology Assessment (OTA) further standardized TAs during its ex-
istence through 1995. In these early TAs, scholars in Science and Technology Studies (STS) and
experts in the technology being studied exclusively conducted the assessments. Their main goal
was to provide advice to policy makers [157]. The OTA inspired many European governments to
establish TA networks and institutions, such as the European Parliamentary Technology Assess-
ment Network [156].

Since their establishment, TAs have evolved to include broader considerations and participants.
Established TA categories include:

• Expert TA, a general term for TAs conducted by STS and technical experts,

• Participatory TA (pTA), a term for TAs that systematically include participants outside of the
expert community, such as lay citizens, individual stakeholders, or representatives of civil
society organizations [158],

• Constructive TA (CTA), which aims to influence the design stage of new technologies rather
than regulatory practices [159],

• Discursive TA, which explores the language surrounding an innovation [160], and

• Health TA (HTA), a general term for TAs specifically pertaining to efficacy, safety, and cost
of medical treatments, biomedical devices, and pharmaceuticals [161].

These categories may overlap for a given assessment. For example, NASA conducted a pTA
to gauge lay citizen opinions about different ways to collect asteroid material [162]. This TA
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was participatory due to its inclusion of lay people in the assessment process, but could also be
considered constructive because it aimed to influence NASA mission design choices. Furthermore,
many studies conduct assessments of new technologies without explicitly labeling them as TAs;
such assessments may align with one or more of the above descriptions.

In this section, I introduce several methods for assessing technology, including some of the cat-
egories above. When evaluating the benefits and drawbacks of applying each assessment method
to robotic lower-limb prosthesis technology, I ask the following questions:

• What might I learn from implementing this method? Each type of TA may reveal different
societal outcomes based on its participants and content. A TA that centers on societal impacts
of robotic lower-limb prostheses could focus on health and safety risks to amputees, barriers
to widespread adoption, or ethical implications. Other TAs may consider alternatives to
robotic lower-limb prostheses, such as increasing accessibility in the built environment.

• Who would be represented in the assessment? TA methods vary widely in the assessor’s
stakeholder involvement and level of expertise. A focus group for robotic lower-limb pros-
theses, for example, may specifically recruit lower-limb amputees and/or prosthetists to par-
ticipate, but exclude roboticists who are aware of the most pressing technical barriers. On the
other hand, both expert TA and participatory TA methods may not specifically recruit people
with lower-limb loss, and risk conducting an assessment that ignores a major stakeholder.

• What does this method enable us to do? The information gained from a given TA method
will influence in what space (academic, political) and at what point in the technology’s de-
velopment one can intervene to address negative consequences.

• Does this method ignore concerns about access to robotic lower-limb prostheses? There
are several barriers to accessing technologically advanced lower-limb robotic prostheses,
detailed in Sec. 7.5.1. Some assessment methods may begin with the assumption that every-
one with a lower-limb amputation can access these devices, while others may include these
barriers as a focus of the analysis.

7.4.1 Delphi

Delphi is a form of expert TA, originally developed in the 1950s by the RAND Corporation for
the U.S. Air Force to predict the effects of future warfare [163]. Since then, public, private, and
government sectors have used Delphi to gain information from a group of experts about any topic
where there is imprecise or incomplete information, such as medical research or cybersecurity. A
Delphi study is conducted by asking experts several rounds of questions. The participants submit
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their answers anonymously and receive information and feedback from previous rounds to refine
their answers. Possible aims of a Delphi study when applied to research or policy include arriv-
ing at a consensus; determining a range of possible responses or strategies; exposing underlying
assumptions or values that lead to differing opinions; or educating the participants about related
aspects outside of their field [164].

Applied to robotic lower-limb prostheses, a Delphi study could produce a consensus among
anonymous experts about a chosen topic in the field. For example, experts could answer questions
about the evaluation criteria for FDA approval of robotic knee-ankle prostheses; how to design
devices for more effective clinical translation; or whether they should be focusing their research
on lower-cost devices instead. In addition to technical experts (roboticists and biomechanists),
the Delphi study should include clinical experts (physical therapists, occupational therapists, and
prosthetists) to ensure that concerns about usability and activities of daily living are not ignored.
The anonymity of the Delphi study could enable more candid responses than these experts would
typically divulge in seminar talks or academic papers. Concerns about access could be central to
the study or ignored, depending on the topic of discussion.

7.4.2 Participatory TAs

The pTA category broadly includes any TA with non-expert participants, but this section will focus
on TAs conducted by lay people with no definitive position on the topic of discussion. Including
publics1 in a TA can foster greater trust of researchers and policy makers; clarify citizens’ con-
cerns and values with respect to a given technology; and gain insight by including non-traditional
knowledge and skills in the conversation [165, 166].

Citizens’ juries, also called citizens’ panels, were concurrently established in the U.S. and Ger-
many in the 1970s and have spread to many other countries, including Australia, India, the UK,
and Brazil [167]. These juries typically consist of 12-20 lay citizens that meet over the course of
several days to deliberate on a particular issue. The participants are given detailed background in-
formation and often meet with a panel of experts to ask questions. Then, after small- and full-group
discussion and brainstorming, the panel releases a report that contains its recommendations [165].
Consensus conferences are similar to citizen panels but are typically smaller (10-15 participants)
and place greater emphasis on the points of agreement between participants [168].

The Expert and Citizen Assessment of Science and Technology (ECAST) network, established
in 2011, has developed a scalable and generalizable framework for conducting lay citizen TAs
[169]. In this ECAST pTA method, 80-100 members of the public participate in a day-long work-
shop to deliberate a specific technology. The facilitators provide participants with background

1The plural term “publics” highlights that citizens have diverse identities and perspectives, in contrast to “the
general public.”
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material on the technology being discussed, then divide them into small groups of 6-8 people to
complete a series of activities. Each group provides written rationale for their decision or opinion,
and ECAST members analyze qualitative and quantitative data to determine citizens’ values and
viewpoints.

A pTA could cover a range of topics about robotic lower-limb prostheses, but some areas of
interest might involve lay people’s impressions of accessibility or prosthesis use cases. Would
society welcome extensive infrastructure projects to make the built environment more accessible?
Should we focus research funding on developing high-tech robotic prostheses, or improving low-
cost passive devices? Just as with the Delphi method, concerns about access to robotic lower-limb
prostheses may be ignored or discussed in-depth, depending on the topic choice.

7.4.3 Focus groups: “Publics-in-Particular”

Unlike the pTA methods above, which involve deliberation among the “public-in-general,” focus
groups recruit “publics-in-particular,” or certain groups of publics most likely to use, prescribe, or
assist with a new technology [170]. One example of TA focus groups, conducted to determine at-
titudes and beliefs regarding treatment of sickle cell disease via somatic genome editing, consisted
of patients, parents, and physicians [171]. The groups’ conversations revealed patients’ motivators
for and deterrents to participating in clinical trials; the information needed for patients and parents
to make informed decisions about healthcare; and advice to the gene-editing research community
on how to meaningfully engage with stakeholders. Other “publics-in-particular” assessments may
not establish formal focus group sessions, but rely on other methods (e.g., fieldwork interviews
spanning multiple years) for identifying and framing stakeholder values [172].

A focus group about lower-limb robotic prostheses should include people with lower-limb am-
putation, immediate family members and/or caretakers if applicable, and prosthetists, who pre-
scribe and fit prostheses for patients. Ideally, the focus group could address concerns about access
to robotic lower-limb devices by recruiting amputees with diverse financial status, K-level, and
body type. A focus group may ask specific questions about robotic prosthesis adoption, including
whether an amputee would be interested in using a robotic device at all; whether a prosthetist was
willing to prescribe, tune, and troubleshoot the devices; and what information amputees, family
members, and caretakers need to make informed decisions about prosthesis innovations.

7.4.4 Scenario planning

Scenario planning TAs acknowledge the uncertainty surrounding a new technology by envision-
ing multiple futures resulting from its interaction with society. Modern scenario planning exer-
cises emerged in the U.S. and France following World War II, helping governments and mili-
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taries develop policy and allocate research funding [173]. In the 1970s, companies such as the
Royal Dutch/Shell group began to develop scenarios for strategic business planning [174]. STS
researchers have since used scenario planning to assess potential outcomes of new technologies
such as biomedical devices, nanotechnology, and ecological research [175, 176].

The most common type of scenario planning workshop uses a matrix approach, where partic-
ipants identify two dimensions of uncertainty and then develop four mutually exclusive scenarios
[177]. For example, a group at Arizona State University developed four scenarios about a house-
hold device for measuring biosignatures, using the axes of “responsibility for health” (e.g., control
and interpretation of health data) and “value to society” [178]. Workshop participants have tra-
ditionally been technical experts and strategists, but recently STS scholars have pushed for “par-
ticipatory scenario planning,” which includes non-expert stakeholders or publics in the scenario
development [179].

A scenario planning exercise about robotic lower-limb prostheses could explore uncertainties
with existence and embodiment: What does it mean to wear a “cyborg” limb, and how does pros-
thesis embodiment and user satisfaction change as the devices interface with humans in more
advanced ways? In addition to technical experts, this scenario planning exercise should recruit
people with lower-limb amputation. Issues of access to robotic prostheses may or may not be
considered, depending on the dimensions identified at the workshop.

7.4.5 Analogical case studies

One can gain insights into the public reception of an innovation by considering previous technolo-
gies that are similar in ethical/social implications or intended function. When analyzing previous
technologies, important considerations include who has responded to the innovation; whether the
response was positive or negative; and through what avenues these responses were communicated
[155]. These patterns of social responses can point out issues that technical researchers may not
have considered and help generate policy recommendations, such as a moratorium on the technol-
ogy or development of mandatory performance standards.

Recently, researchers at the University of Michigan studied the potential impacts of facial recog-
nition technology in schools using an analogical case comparison approach [180]. By considering
technologies similar in function (e.g., CCTV) and moral significance (e.g., biobanks), the analysis
uncovered several potential negative impacts of facial recognition in schools, including the ampli-
fication of racial bias, normalization of surveillance, and stricter enforcement of social norms.

An analogical case study applied to robotic lower-limb prostheses may consider devices that
have a similar aim of increasing mobility (wheelchairs, exoskeletons, orthoses); devices that have
similar social implications (data monitoring in activity trackers); and other wearable medical de-
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vices (insulin pumps or cochlear implants). The cases for consideration would be chosen by STS
and technical experts, and the resulting analysis could identify policy directions in cyber security
of wearable devices, insurance coverage, or criteria for FDA approval.

7.4.6 Discursive TA

Discourse analysis is the study of language and conversations (written, verbal, sign language)
to reveal insights about the relationship between individuals and society [181]. Discursive TAs
investigate the language surrounding new technologies, such as how a novel innovation is presented
to stakeholders or interactions between experts and lay people, to gauge implications for the wider
society. This approach is prominent in healthcare, where researchers have analyzed language in
videotaped interviews and historical documents to study physician-patient interaction in primary
care practices [182]. Discursive TAs have been conducted in the biomedical field as well, for
example, to study patient reactions to new pharmaceutical developments [183].

Discursive TA researchers turn a critical lens towards the reported outcomes of participatory
TAs, pointing out that conversation among lay people is likely facilitated by a technical or STS
expert. The resulting lay citizen attitudes and beliefs are then widely viewed as true citizen val-
ues when they are instead a product of a social process. Additionally, pTA participants may be
considering hypothetical situations, thus engaging with a new technology in unfamiliar terms that
seem disconnected from their own daily life. Discursive TAs, therefore, aim to study participants’
language and conversation “in its own right” by taking the interactional setting into account [183].

The language surrounding an innovation can “...shape the assumptions about what is real, what
is possible, and what is desirable for a social group” [22]. Once a technology is standardized, any
uncertainties in its design are generally forgotten. However, discursive strategies can expose “the
loose ends and forgotten controversies which are hidden beneath an apparent consensus” [184].
Applied to robotic lower-limb prostheses, a discursive TA could ask what narratives are produced
by robotic prosthesis developers, how they reflect the underlying values present in the design, and
how developers’ shared vision of robotic prostheses has become standardized over time.

7.4.7 Proposed assessment for robotic lower-limb prostheses

I propose conducting a discursive TA to study how robotic lower-limb prosthesis developers imag-
ine the future of robotic prostheses; what narratives they produce or disregard to support their
values; and how these narratives have been co-produced with standardized assessments for eval-
uating prosthesis performance. For this study, I plan to first analyze documents from academic
studies, blog posts, and advocacy groups to gain a picture of the main concerns for robotic lower-
limb prosthesis technology. Next, I will analyze documents and videos produced by (or with, in

118



the case of media interviews) lower-limb robotic prosthesis developers, sampling material from
both the academic and commercial sectors. Selecting academic labs that have received a rela-
tively high amount of citations and media attention and prosthesis companies that are top sellers of
technologically-advanced prostheses will ensure I am analyzing the narratives most likely to shape
society’s shared visions.

In this study, I will look for these established discourses, identify new discourses, and iden-
tify disregarded or ignored discourses in the language surrounding robotic lower-limb prostheses.
Emerson et al. present a coding strategy for analyzing themes in written material [185]: First, I will
use an “open coding” process to identify “...as many ideas and themes as time allows” in the ma-
terial. After selecting main themes, I will re-analyze each text in a “focused coding” stage, which
involves “...further delineating subthemes and subtopics” and connecting data between research
groups, intended audience, and sectors. Lastly, I will investigate how these discourses have been
co-produced with standards and regulations. For example, are standardized assessments influenc-
ing what language is used to describe and market a new prosthesis design? Is the language further
enforcing the criteria used for evaluating prosthesis performance? My final report will include
both a summary of findings and recommendations for robotic lower-limb prosthesis researchers
regarding their narratives and evaluations.

7.5 Preliminary Results

To focus the scope of my technology assessment, I first present my findings of evaluation criteria
that have already been identified by academic studies, clinician experience, and the perspectives
of people with lower-limb loss. These sources commonly highlight issues with safety, comfort,
cost, accessibility, and clinical translation. Next, I present preliminary results from my discourse
analysis of the narratives and standards surrounding robotic prostheses.

7.5.1 Existing concerns about robotic lower-limb prostheses

Safety: Safe operation is a major concern for robotic prostheses because the powerful motors can
act independently of the human’s motion. A robotic prosthesis relies on its sensors to detect the
user’s intent and produce the corresponding joint torques, but its sensing and prediction capabilities
are far from infallible [20]. Applying the wrong torque to the knee or ankle joint could cause
serious injury, especially during high-risk tasks such as stair descent or hiking.

Microprocessor-controlled knees have fewer safety concerns because they do not supply an ex-
ternal energy source. In fact, studies have shown that microprocessor-controlled knees reduce fall
risk compared to passive prostheses [186]. However, microprocessor-controlled prosthesis com-
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panies note that gait-disrupting malfunctions can still occur, such as loss of hydraulic/pneumatic
resistance, locking up, or irregular side-to-side motion [187].

User comfort: Comfort is another important factor in the decision to adopt a new technol-
ogy. Many K-2 (in laboratory settings; see accessibility concerns below) and K-3 amputees prefer
microprocessor-controlled prostheses over passive devices [188, 189], but the responses to tech-
nologically advanced prostheses are not, of course, universal across lower-limb amputees. In one
study where participants used a robotic ankle in daily life for two weeks, some reported that the
device felt more natural and made walking easier while others noted it made walking harder, added
to phantom limb pain, and was heavy, noisy, and “too controlling” [91].

Another comfort concern, socket pain, is present across passive, microprocessor-controlled,
and robotic devices. One physical therapist writes: “Despite today’s high-tech equipment, we still
have some really low-tech problems,” describing the heat rash, blisters, and painful ingrown hairs
that result from liner and socket use on the residual limb [190]. An alternative to socket use is
osseointegration, a surgical procedure to implant a metal anchor directly into the residual limb for
prosthesis attachment [191]. Although this procedure addresses the painful socket effects, it also
requires a surgery with long recovery time and increased infection risk.

Aside from physical comfort, the device’s appearance has implications for amputee comfort in
social situations. As robotic prostheses add more sensors and torque-producing abilities, they tend
to get larger and more “bionic,” resembling the robotic limbs in superhero movies. Britt Young
notes: “It seems like...if you’re missing a limb, then you need to have a cyborg arm” [154], so many
people with limb differences opt for the high-tech option to conform to peoples’ expectations.
However, some amputees prefer simpler prostheses that offer cosmetic similarity to an intact limb
rather than functional benefits.

The notion of prosthesis embodiment, or how people think of their prosthesis in relation to
themselves (e.g., a part of their body versus a separate tool), is related to comfort and may af-
fect prosthesis adoption rates. In a study about prosthesis embodiment in upper-limb devices,
researchers found that embodiment may be a function of regular prosthesis wear rather then pros-
thesis design [192]. Research about lower-limb prosthesis embodiment found that embodiment
can depend on many factors, such as amputation level, residual limb pain, visual appearance of the
prosthesis, and mobility level [193]. Confirming these findings with further studies and incorpo-
rating these factors into the prosthesis design and fitting process could increase adoption rates.

Prosthesis cost and insurance coverage: Cost is a significant and complicated obstacle for
individuals looking to upgrade their device. The out-of-pocket costs of a prosthesis vary along
several axes: insurance providers’ contracts with prosthetists offices to determine device pricing;
the premium and deductible associated with the patient’s insurance provider; and the amputee’s
existing health status, smoking status, and K-level [194].

120



If an amputee is looking to buy a $40,000 microprocessor-controlled knee with private insur-
ance, a Premier (high-premium, low-deductible) Blue Cross Blue Shield plan would still require
an out-of-pocket payment of $3,500 [194]. Some more affordable plans, such as those provided
by Aetna, may only supply $2,000 per year for this type of medical equipment, leaving the patient
with a $38,000 bill. Medicare Plan B would cover 80% of the bill, which still leaves $8,000. These
coverage numbers2 are for a non-smoking K-4 amputee, but the coverage may decrease or disap-
pear completely as K-level decreases due to health issues or age. Prices for the two commercially
available robotic lower-limb prostheses are not readily available online, but they are likely higher
than microprocessor-controlled devices due to the addition of motors.

Despite what the high costs suggest, amputees do not purchase prostheses for life. Prosthesis
sockets are typically replaced every 2-4 years [195], and microprocessor-controlled knees are most
often replaced every 3-5 years [187]. The average lifespan of a robotic prosthesis has not yet been
established due to their limited commercial use, but the sophisticated sensor array and motors will
likely need frequent maintenance. Insurance providers are supposed to cover a replacement pros-
thesis if the device cannot perform its intended function, but the process is rarely straightforward.
The Amputee Coalition warns its readers that they may have to spend days on the phone with
insurance companies and encourages amputees to “be [their] own advocate” [137].

Accessibility: Advanced prostheses are inaccessible due to stringent body weight and fitness
requirements. Microprocessor-controlled and robotic prostheses have weight limits that exclude
people on either end of the operating range [196], and Medicare (and many private insurers) will
not cover a microprocessor-controlled knee for patients under level K-3 [148]. These restrictions
are concerning because clinicians utilize a wide variety of assessments to measure K-level, many
of which are subjective. In a 2016 study, 67% of surveyed prosthetists did not believe that K-level
could accurately capture a patient’s rehabilitation potential [197]. Furthermore, K-2 subjects have
demonstrated preference for microprocessor-controlled knees in laboratory studies and clinical
trials [188, 148].

Clinical translation: Because lower-limb prosthesis technologies are increasing in sophistica-
tion, difficulties arise when they move to a clinical setting. Robotic prostheses have a multitude
of parameters (e.g., magnitude and timing of assistive joint torque) that must be adjusted based on
user preference and observed gait benefits. This tuning process can take hours, which is unreal-
istic for busy clinicians [119]. In addition to time, the tuning process involves expertise; robotic
prostheses are complex electrical and mechanical systems with which most clinicians have little
experience [20].

These concerns highlight the need for a systematic evaluation of robotic lower-limb prostheses’
societal consequences. Such an assessment could help researchers mitigate the negative impacts of

2Note that these numbers are from a 2012 analysis of prosthesis costs in Connecticut.
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robotic prostheses; provide regulation and legislation directions for policy makers; and facilitate
awareness and deliberation among the lay public [198].

7.5.2 Analysis of discursive themes and standardized assessments

In disability studies, STS scholars have already identified several discourses surrounding assistive
technologies. Ingunn Moser and John Law study how technologies articulate “personhood” in peo-
ple with disabilities, viewing a person’s ability not as a “naturalized able body” but rather in the
context of their relationships with other humans and objects [199]. They explore this concept in a
case study of an assistive device called the Rolltalk, a wheelchair with features such as communica-
tion via speech synthesis, remote control of home appliances, and rearview cameras. The Rolltalk
developers aim to “normalize” people with disabilities through use of the device, while the users
themselves aim to be counted as “normal” by embracing socially accepted features of personhood.
However, Rolltalk “...tends to constitute [forms of personhood] in specific ways, while allowing
others to escape.” The specific tasks that Rolltalk enables reflect the designers’ values.

In another work, Moser explores four discourses that provide definitions of “human” and “nor-
mal” [200]. She uses descriptions from everyday life of a man named Olav to illustrate how each
of four discourses constructs Olav, his abilities, and his disabilities. The rehabilitation discourse
views differences from the “ideal human” as needing to be corrected using technology; the pros-

thetics discourse normalizes the prosthesis itself; the actor-network discourse defines ability and
disability based on the individual’s entire human and technological network; and the cyborg dis-
course views the combination of human and technology as a single entity rather than a network.
These discourses may overlap or contradict each other in the language surrounding a design.

Standard-setters in healthcare and biomedical fields produce benchmarks and regulations along-
side the discourses surrounding technology. Despite the objective connotation that accompanies
any health standard, Coreen McGuire notes that “...the thresholds of normalcy that we rely on for
classification of health are more fluid than we might imagine” [201]. McGuire’s analysis of health
measurement technology in Britain found that the people selected to define standards represent
“easily recognizable groups” that reflect discrimination and bias. For example, designers of the
1920s artificial ear for testing telephone sound quality used data from ten “normal” males to tune
the device; consequently, those with even a small amount of hearing loss had difficulty understand-
ing telephone conversation. The shared vision of “normal” defined who could successfully use a
telephone.

Rehabilitation discourse: My preliminary research analyzed documents from four academic
research groups in the United States and two companies (Ossur and Ottobock) that sell robotic
lower-limb prostheses in the United States. To narrow the scope of my preliminary analysis, I
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selected academic professors that focus on prosthesis hardware design: Prof. Elliott Rouse at Uni-
versity of Michigan; Prof. Hugh Herr at Massachusetts Institute of Technology; Prof. Thomas
Sugar at Arizona State University; and Prof. Michael Goldfarb at Vanderbilt University. Future
work should add research groups that focus on prosthesis sensing and control to this analysis, as
these factors also incorporate design narratives and influence user adoption. I analyzed two aca-
demic articles and two documents for a lay audience (e.g., university news article, TED Talk) for
each academic research group. For the two companies, I analyzed the text on the sales page for the
Ossur Power Knee and Ottobock Empower; the corresponding regulatory compliance documents
if they were available (I could not find them on Ottobock’s website); the study summaries available
for each device; and transcripts from one promotional video of each device.

In preliminary research, I have found examples of Moser’s rehabilitation discourse in all doc-
uments analyzed. The documents I analyzed include a notion of “normal” human movement, and
in most cases, an aim to rehabilitate amputees back to this definition:

In this paper, we first review the biomechanics of a normal human ankle in walking,
and then use this biomechanical study to motivate the prosthetic design [202].

This language conveys the goal of “rehabilitating” a lower-limb amputee’s ankle to mimic a “nor-
mal human ankle.” Likewise, Ossur markets their powered (robotic) knee using language such
as:

Power is fundamental to the biomechanical systems that move us. If you’re living with
limb loss or limb difference, that power is a missing ingredient. Restoring it can be
transformational [149].

This marketing material presents normal biomechanical function as that which is created by human
muscles, and reflects the vision of restoring that same power to prostheses.

Academic articles presenting designs of robotic lower-limb prostheses provide tables with de-
sign specifications determined from able-bodied characteristics, including maximum range of mo-
tion, degrees of freedom, peak torque, and peak velocity. One robotic ankle prosthesis mimics
ankle torques from a 75-kg (165-lb) person with a walking speed of 1.25 m/s [202]. The paper
from which the ankle torque data were drawn does not specify subject gender (10 able-bodied
subjects, aged 23-29 years, mean 64 kg mass). The design specifications for one robotic knee
prosthesis use a dataset with a near-even amount of male and female subjects and larger age range
(20 able-bodied subjects, aged 22-72 years, mean 68.5 kg mass, 9 males and 11 females) [133].
Both articles describe problems with current amputee walking and propose their robotic prostheses
as means to mitigate these issues.
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The documents geared towards a lay audience (e.g., news articles) do not provide quantified
specifications for the “normal” human; instead, they compare outcomes to pre-amputation or able-
bodied functionality. A 2021 article about a robotic knee prosthesis, for example, notes its “...po-
tential to provide the power and natural gait of a human leg” [203]. In a 2014 TED Talk, Hugh
Herr describes his lab’s work to “study how humans with normal physiologies stand, walk and
run,” which provides design motivation for bionic joints [204]. However, Herr’s TED talk is unique
in the documents I analyzed because it also explores additional themes besides the rehabilitation
narrative. For example, Herr proposes altering the built environment and technology:

A person can never be broken. Our built environment, our technologies, are broken and
disabled. We the people need not accept our limitations, but can transcend disability
through technological innovation [204].

We also see Moser’s cyborg theme in Herr’s talk, where the notion of bionic integration is presented
positively:

We’re beginning the age in which machines attached to our bodies will make us
stronger and faster and more efficient [204].

Standards for assessing prosthesis designs: The rehabilitation theme also appears in the types
of assessments used to evaluate prosthesis designs. For example, researchers developed a controller
for a robotic knee-ankle prosthesis to assist with stair ascent. To evaluate the controller, they
recorded biomechanical data (knee and ankle angles, angular velocities, torques) of three amputees
as they used the prosthesis to walk up stairs, and compared the results to average “healthy” (able-
bodied) biomechanical data [205].

As noted in Sec. 7.2.2, the FDA has not yet established criteria for approving Class II robotic
lower-limb prostheses. I have found that developers’ assessments of lower-limb prostheses reflect
this lack of standardization. Research groups define different tasks (Sit-to-Stand, walking up an
incline, stair ascent) for evaluation, and typically hand-pick human datasets to define “normal”
human body characteristics for evaluation.

In contrast to lower-limb prostheses, assessments have been standardized across academic,
commercial, and regulatory sectors for upper-limb robotic prostheses, which have a longer his-
tory of development and commercialization [206, 207, 208]. One such standardized assessment
is the Box and Blocks Test, which was introduced by clinicians to evaluate human motor per-
formance and was subsequently validated in the academic community [209, 210, 211]. The test
involves moving small blocks between two compartments of a box using one hand, illustrating a
collective vision of how a human or prosthetic hand should function. In 2014, the FDA defined
this assessment as part of the criteria to evaluate robotic prostheses for commercial use [208]. De-
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velopers wishing to commercialize their prosthesis therefore prioritize this assessment during the
design stage.

The Box and Blocks Test assesses the performance of a one-handed task. However, for unilat-
eral upper-limb amputees, one-handed tasks could be performed with the intact limb. Britt Young
argues that people with unilateral upper-limb loss need upper-limb prostheses that can assist with
two-handed tasks:

[Promotional] videos never show prosthesis users doing two-handed tasks. Instead,
they do things most of them would only ever undertake with their other fleshy hand,
like write or drink water...they forget to ask if these hands are actually useful [212].

Young’s concern highlights the need for technology assessments in both the design and standard-
ization phases to avoid this disconnect between assessment criteria and user needs.

The “rehabilitation” theme I identified in my preliminary research does not address the com-
mon concerns I described in Sec. 7.5.1. This mismatch between design criteria and stakeholder
needs indicates the lack of human-centered design in robotics work. Human-centered design aims
to improve human well-being and user satisfaction through applying concepts from human factors,
ergonomics, and usability studies to the design of a technology [213]. Incorporating (or requiring)
human-centered design techniques in lower-limb prosthesis development could help align stake-
holder concerns and design objectives.

7.6 Discussion

Robotic lower-limb prostheses are still largely in the research and development phase. In this
chapter, I introduce several technology assessment methods and argue that it is critical to ana-
lyze the discourse, standards, and regulations surrounding robotic lower-limb prostheses before
they become widely commercialized. My preliminary results have identified the “rehabilitation”
discourse to be common in text about robotic lower-limb prostheses, while the main concerns
highlighted by stakeholders of safety, comfort, cost, accessibility, and clinical translation are typi-
cally not addressed. If the rejection rate of upper-limb robotic prostheses (which have widespread
commercial availability) is to be avoided for lower-limb robotic prostheses, we must consider al-
ternative discourses and standards in our research. My study of lower-limb prosthesis standards
coincides with the FDA’s recent standardized performance criteria for another type of lower-limb
wearable robot: the exoskeleton [153]. This timing enables me to map how FDA regulations con-
verge with narratives and assessments from the development sectors in my future work. As Moser
notes, identifying these narratives and standards does not mean the technologies are fixed in place,
but instead prompts “...possibilities for action, interruption, [and] interference” [200].
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My own research in motion planning for robotic lower-limb prostheses reflects the rehabilitation
narrative. In Ch. 6, I train trip-recovery libraries using data from an experiment with able-bodied
subjects. The preliminary results of my technology assessment prompt me to acknowledge that
able-bodied trip recovery behavior may not be effective and comfortable for lower-limb amputees.
My future work with the trip-recovery framework will explore other methods for forming the
libraries, ideally using a range of trip-recovery behavior desired by the prosthesis user rather than
able-bodied subject data.

Despite the prevalence of the rehabilitation narrative in the documents that I have examined,
there are some examples of existing research that specifically addresses the concerns in Sec. 7.5.1.
For example, Amos Winter’s group focuses on designing passive prosthetic knees that offer high
performance and low cost [214]. To address problems with clinical translation and tuning time
for robotic lower-limb prostheses, Robert Gregg’s group has developed tools for generalizing hu-
man kinematics across a range of inclines and walking speeds, which can help minimize tuning
time [215]. Regarding user comfort, Deanna Gates’ group has surveyed individuals with upper-
limb amputation regarding their attitudes towards novel prosthetic control techniques [216]. To
ensure effective translation of robotic lower-limb prostheses, more research in these areas should
be encouraged by funding sources.

Testimonials from people with upper-limb loss have shown us that the underlying values sur-
rounding a design can influence user satisfaction and adoption rates [154]. Because narratives
about collective technological futures “...play a critical role in framing what technology is made
and why” [217], examining the discourse used by robotic prosthesis developers to create and en-
force shared visions of the future can identify the underlying values embedded in robotic prosthesis
design. My discursive TA will enable developers (including myself) to better communicate their
innovations to prospective users; identify design characteristics and evaluation methods to enhance
or change; and influence the regulations and standards used to approve a device for commercial
use.
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CHAPTER 8

Conclusion and Future Directions

Falls are common and dangerous for older adults and people with lower-limb amputation. Existing
efforts to mitigate fall risk have been unsuccessful due to the difficulty of identifying those likely
to fall and the challenges of safely planning the perturbation-recovery behavior of assistive robots.
This dissertation made several contributions to human prediction and wearable robot motion plan-
ning for fall prevention. In this chapter, I provide a summary of the contributions described in this
dissertation, as well as future research directions for each.

8.1 Discussion of Contributions

Chapter 2, Open-Source Datasets This dissertation includes two perturbative datasets that are
publicly available. In the Sit-to-Stand experiment, subjects stood up from a chair while being
pulled either forwards or backwards by motor-driven cables. This 11-subject experiment can be
used by future researchers to investigate control strategies during center-of-mass perturbations.
In the second experiment, subjects were tripped by tethers attached to their feet while walking
on a treadmill. This is, to our knowledge, the largest dataset of tripped walking described in the
literature and the only open-source trip dataset. Future researchers can use these data to learn more
about able-bodied trip recoveries during walking. This dissertation analyzes data from the swing
leg immediately after the trip until touchdown, but the gait patterns in subsequent steps following
a trip are also of interest for human motor control and wearable lower-limb robot behavior.

Chapter 3, Characterizing Stability during Sit-to-Stand This dissertation describes a method
for quantifying time-varying, individualized stability during the Sit-to-Stand motion, validated on
the 11-subject Sit-to-Stand experiment. In Ch. 3, we use observed kinematic data to construct
dynamic and controller models for each subject. We compute Stability Basins by approximating
the set of model states that can successfully reach standing under the controller model. We show
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that Stability Basins accurately predict (1) a subject’s instability (i.e., stepping or sitting) before
the step or sit is initiated and (2) a subject’s successful completion of the Sit-to-Stand task.

Chapter 4, Inverse Optimal Control This chapter presents an implementation of an inverse
optimal control formulation developed by [84] with perturbative Sit-to-Stand data. It is a com-
mon assumption that humans behave optimally during motion. Uncovering the objective during a
specific task could provide insights for human motor control and generate accurate predictions of
perturbation recovery. We modeled each subject’s Sit-to-Stand motion using an inverted pendu-
lum with a torque applied to the base, and solved for a cost function of model states and control
input that was minimized by the observed data. We found that across 11 subjects, inverse optimal
control produced the highest weights on the center of mass angular position and velocity, with
lower weights on the input torque. This visual trend was similar when trained on perturbed or
unperturbed data, though relative weights between position and velocity changed. When we used
these functions to generate pendulum control input trajectories using an optimal control formula-
tion, the resulting simulated pendulum states performed with higher accuracy compared to an LQR
controller model.

Chapter 5, Predicting Kinematic Responses to Trips In this chapter, we investigated three dif-
ferent models for predicting swing hip kinematics after a trip. We selected three response variables
for prediction: Swing hip height, anterior-posterior position, and flexion-extension angle. Accurate
predictions of these variables are crucial for determining correct knee and ankle trajectories (e.g.,
torques or angles) in a wearable lower-limb robot such that the system avoids unsafe foot scuffs
and places the swing foot in a desirable location at touchdown. We found that of the Gaussian
process regression, neural network, and dynamic models used in this chapter, the Gaussian process
regression models produced predictions with the highest accuracy and lowest computation time.
Furthermore, Gaussian process regression models trained on generalized data produced similar
prediction accuracy to the individualized models, which is useful for real-world implementation.

Chapter 6, Fall Prevention via Prosthetic Trip Recovery This chapter introduces a trip-
recovery planning framework for a powered prosthesis in the swing phase. After a trip is detected,
the framework uses the swing hip predictions and uncertainty from Ch. 5 to generate a reachable
set of predicted human behavior. Next, the framework chooses prosthesis knee and ankle trajec-
tories that minimize a foot placement objective and satisfy a constraint to avoid foot scuffs for the
entire set of predicted human motion. The framework is therefore able to incorporate set-based
predictions of human motion and guarantees safety across sets of potential trajectories, instead of
the single most likely one. The results, which displayed minimal foot scuffs and higher foot place-

128



ment accuracy compared to a nominal impedance-based controller, show promise for preventing
falls with robotic lower-limb prostheses.

Chapter 7, Technology Assessment for Robotic Lower-Limb Prostheses Robotic lower-limb
prostheses are a relatively new technology that have not yet reached widespread use. Therefore,
identifying potential barriers to this technology’s real-world implementation will enable us as
robotic prosthesis developers to change our research and policy objectives. This chapter presents
an overview of technology assessments: systematic methods for evaluating a new technology’s po-
litical, social, and/or economic impact introduced by scholars in Science and Technology Studies.
I present a research plan and preliminary results from a discourse analysis that focuses on the lan-
guage and standards surrounding robotic lower-limb prostheses. The preliminary results indicate
that the common narratives produced by prosthesis developers aim to “rehabilitate” amputees to
a specific idea of “normal.” The rehabilitation narrative is not aligned with common stakeholder
concerns of safety, comfort, cost, accessibility, and clinical translation. This discovery indicates
several future directions that prosthesis researchers should explore.

8.2 Future Directions

The future directions for each chapter are motivated by the technology assessment in Ch. 7. They
aim to address the challenges of real-world viability and user acceptance in each of the tools
presented in this dissertation. Increasing real-world applicability in each of the chapters in this
document involves conducting further validation studies; reducing assumptions; changing methods
with stakeholder concerns in mind; and implementing robotic motion planning on hardware.

8.2.1 Stability Basins

The Stability Basin results in Ch. 3 are demonstrated for able-bodied young subjects. The valida-
tion in this dissertation confirmed that Stability Basins can accurately predict when a subject will
become unstable (i.e., step or sit); however, they have not yet been shown to be a reliable predictor
of fall risk.

To investigate Stability Basins’ effectiveness in identifying those at risk of falling, I propose a
longitudinal study with older adults. The study’s hypothesis is that the volume of an individual’s
Stability Basin is an indicator of fall risk. We will compute Stability Basins for 100 adults aged 85
or older and retain contact with the subjects over a five-year period. The subjects will be instructed
to alert the study team of any falls and in what circumstances the falls occurred. After five years, we
will compare the Stability Basins between fallers and non-fallers, analyzing Stability Basin volume
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and shape. A significant difference in mean volume between the two groups would indicate the
Stability Basins’ promise for identifying fall risk. To mitigate falls, physical therapists could then
provide targeted training to maximize patients’ Stability Basin volume.

Several challenges must be addressed in the current Stability Basin framework before conduct-
ing a large-scale longitudinal study with older adults. The method for computing Stability Basins
in Ch. 3 trains individual controller models using successful perturbed trials, i.e. trials where
subjects were pulled either forwards or backwards by a motor-driven cable and reached standing
without taking a step or sitting back down. However, applying such perturbations to adults aged
85 and older is a safety hazard, and perturbative experiments with a large subject population are
time consuming.

Instead, we must develop a way to construct individual controller models using observed un-
perturbed data from subjects’ daily lives. One option is to use cameras and a 3D pose estimation
algorithm to record Sit-to-Stand joint motion in a home or clinical setting, and build individualized
controller models using these data. The variation present in daily Sit-to-Stand (e.g., standing up
from the couch or dinner table) could provide a similar range of input bounds as used in Ch. 3.
Previous work has shown promise of using cameras and a 3D pose estimation algorithm to estimate
loads during rehabilitation activities [218]. However, collecting such video data over an extended
period of time poses security and privacy risks for subjects. If camera-based estimation is used to
build individualized controllers, researchers must make every effort to ensure the data security and
informed consent of participants.

The second challenge for the proposed longitudinal study involves clinical translation, because
a successful study of fall risk in older adults needs an effective clinical partnership. We must de-
velop the tools and training to ensure that busy clinicians can compute Stability Basins for study
participants with minimal time and technological barriers. Addressing this challenge requires con-
sidering how to most easily incorporate Stability Basin research into a clinical schedule and de-
signing open-source and intuitive software to run the computations.

8.2.2 Inverse Optimal Control

The primary aim of applying inverse optimal control to human motion datasets is to discover
the underlying objectives during motion. In Ch. 4, we found polynomial objective functions
of a pendulum model’s states and input. Using the model’s states and input, we connected the
polynomial functions to physical meanings (a higher priority on center of mass kinematics than
input torques). However, the scaling of states and inputs required by the polynomial formulation
may have influenced some coefficient values. Overfitting may have also been a problem, especially
for higher-degree lagrangians, because the Sit-to-Stand dataset described in Ch. 2 does not have
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many observations per subject. Because Sit-to-Stand requires torques at the ankle, hip, and knee,
future work should utilize computational resources to scale the inverted pendulum model to a three-
link model, and compare the relative weights on each joint to existing biomechanical analyses of
Sit-to-Stand.

Many other studies investigate humans’ optimization of metabolic cost during walking, so ap-
plying the inverse optimal control formulation in [84] (or a different formulation) to a walking
dataset may produce more interesting or intuitive results. Although we focused on studying tripped
steps in this dissertation, the 16-subject walking experiment described in Ch. 2 includes nominal
walking data for each subject. By nature of the task (it is less time consuming to record steps on a
treadmill than the same number of Sit-to-Stand trials), we have more nominal and tripped step tri-
als to train models with than for the Sit-to-Stand dataset. In future work, we will implement inverse
optimal control with nominal walking data to investigate whether the results confirm findings from
other studies about optimality in human walking. Then, we will compare the underlying nominal
cost functions to those found with tripped steps to see if objective functions differ significantly
during nominal walking and trip-recovery.

8.2.3 Trip-Recovery Prediction

This dissertation presented a method for predicting swing hip kinematics (height, anterior-posterior
position, and flexion-extension angle) in the sagittal plane in the same step following a trip. We re-
stricted our analysis to the sagittal plane and to the tripped swing phase because those hip response
trajectories were needed for our trip-recovery planning framework in Ch. 6. However, we must
address three challenges to effectively assist with perturbation recovery during walking in the real
world. First, our work assumed that the human’s chosen trip-recovery strategy (elevating, delayed
lowering, or lowering) was known and trained strategy-specific models. We made this assumption
given previous work that predicted strategy selection [96], but the strategy prediction algorithm
was tested on a different trip dataset than our own. Our first task will be to verify that this algo-
rithm generates accurate and quick predictions of strategy selection in our 16-subject trip dataset.
If the strategy prediction algorithm proves inaccurate, we must either modify it to generalize to our
dataset or generate predictive models of swing hip kinematics that are not strategy-specific.

Second, trips and trip recoveries may not be restricted to the sagittal plane. Humans may place
their foot laterally or cross their swing foot over the midline when recovering from a trip, which
would be associated with distinct lateral hip motion. Wearable robots should be aware of lateral
hip motion predictions when planning joint behavior. Such predictions would be especially useful
if the robotic ankle joint can provide actuation along the interior-exterior or abduction-adduction
axes.
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Third, this dissertation focuses on prediction during the same swing phase as the trip occurrence,
but humans exhibit trip-recovery behavior different from nominal walking for several steps after a
trip. A wearable robot should therefore predict human trip response for several steps after a trip.
Future work will investigate how many steps subjects typically take when returning to nominal
walking after a trip, and fit models to these multi-step data.

8.2.4 Trip-Recovery Planning in Robotic Lower-Limb Prostheses

Our proposed framework for planning trip recoveries in robotic knee-ankle prostheses is tested
using able-bodied swing hip data from our 16-subject trip experiment and simulated prosthesis
knee and ankle motion. The trip-recovery libraries and target sets are also trained using able-bodied
data. Several challenges must be addressed to ensure the prosthesis trip-recovery framework is
effective and comfortable for amputees.

First, swing hip trip-recovery behavior is likely different between able-bodied and amputee
subjects. Shirota et al. tripped amputee subjects via retractable tethers and found that individu-
als exhibit similar trip-recovery strategies to those observed in able-bodied subjects [19], but the
associated hip response variable trajectories for each strategy may be different. Furthermore, the
subjects in Shirota’s experiment were wearing passive prostheses, and swing hip behavior may
change if a powered prosthesis is used. Even if recording trip-recovery data can produce accu-
rate predictive models of human trip-recovery behavior, it would be impossible to conduct such an
experiment with every prosthesis user. The challenge for future work is to generate accurate pre-
dictions of swing hip trip-recovery kinematics for people with lower-limb amputations. Because
trip-recovery kinematics may evolve as an individual becomes accustomed to the trip-recovery
controller, an online system that continually adds observed trip recoveries to the Gaussian process
model training set may be a reasonable solution.

Second, the proposed framework selects prosthesis behavior from a parameterized library of
knee and ankle trajectories that are formed using able-bodied data, and aims to place the foot close
to a target set formed by able-bodied data. As noted in Ch. 7, although prosthesis developers
often use able-bodied data as a standard for prosthesis performance, these trajectories may not be
desirable or safe for trip recovery by an amputee. In future work, we will investigate ways to form
the trip-recovery libraries and target sets using input from lower-limb amputees.

Third, the planning framework assumes that the human’s swing hip motion remains unchanged
throughout the tripped swing phase regardless of prosthesis knee and ankle behavior. This as-
sumption may be reasonable for trips that occur at the end of the swing phase, where the human
has little time to re-plan swing hip behavior. However, for trips that occur at the beginning of the
swing phase, individuals typically have around 500 ms until touchdown, and prosthesis behavior
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could affect the swing hip behavior. We propose adding re-planning to the trip-recovery frame-
work. At trip onset, the prosthesis would generate and execute a plan that avoids foot scuffs and
ensures correct ground placement; measure the human swing hip behavior while the plan is exe-
cuted, update the Gaussian process regression model with new measured conditional points; and
generate a new plan given the updated hip motion. This iterative planning would continue until
touchdown occurs.

Fourth, as noted in Sec. 8.2.3 for the swing hip predictions, the trip-recovery planner must
be extended to multiple steps after trip occurrence. The theoretical framework presented in Ch.
6 remains unchanged for planning other steps, but different data would be used for training the
predictive models, trip-recovery libraries, and target sets.

Finally, a number of assumptions must be addressed for hardware implementation. We currently
assume the trip is immediately detected; the current and previous states of the human are known
at trip onset; and the human’s chosen strategy is known. Each of these assumptions must be
implemented on prosthetic hardware for the framework to be effective. Previous work in each of
these areas provides a guide for our own implementation [121, 122, 219, 96], but ensuring their
reliable use on prosthesis hardware will be challenging.

While each of these challenges are being addressed, we will also work to generalize the frame-
work to different tasks. For example, the trips studied in this dissertation were induced by tethers,
but in reality, trips often occur from physical obstacles of varying heights and depths that the swing
leg must avoid while recovering. If the prosthesis has access to vision information, we can add an-
other constraint to avoid foot scuffs on the obstacle. Vision information could also be used to plan
multi-step walking if an obstacle is detected ahead. In these cases, the framework could build
human predictions, parameterized libraries, target sets, and costs/constraints using different sets of
human data.

8.2.5 Technology Assessment for Robotic Lower-Limb Prostheses

The technology assessment presented in Ch. 7 is a starting point for re-shaping the narratives
and standards surrounding lower-limb prostheses. However, to complete this qualitative work, I
must analyze enough sources to reach saturation, where “...sufficient and redundant information
for all aspects of the phenomenon under research has been gathered” [220]. One way to achieve
saturation is through triangulation: using multiple methods and sources to confirm findings.

In my future work, I will gather hundreds of documents about robotic lower-limb prostheses
from academia, industry, and regulatory and standard-setting organizations (e.g., FDA, ANSI).
Document analysis will center the published narratives that shape our societal view of prosthe-
ses; explore what subject groups, measurements, tasks, and constraints are present in standards;
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and investigate how actors justify the use of such standards for evaluation. I will supplement the
document analysis with interviews with members of the academic, commercial, and regulatory
settings. Interviews will help uncover the assumptions that underlie these narratives and provide
an opportunity for triangulation.

For comparison, I will conduct a similar analysis for robotic upper-limb prostheses. Both
upper- and lower-limb prosthesis technologies aim to replace a missing limb, but a closer look
reveals differences in intended function, development timeline, adoption rates, and commercial-
ization [221, 222]. Because upper-limb prostheses are commercially established and more data
likely exists about their pricing, challenges, and regulations, comparing findings between the two
technologies may help convince researchers and policymakers of the importance of addressing
concerns.

8.3 Concluding Remarks

The research presented in this dissertation aims to prevent falls through predicting human response
to perturbation and planning safe recovery motion in wearable lower-limb robots. Ch. 2 described
two open-source human datasets that can be used to study perturbation response during Sit-to-
Stand and walking. In Chs. 3 and 4, we characterize stability and investigate underlying optimality
during center-of-mass perturbations during Sit-to-Stand. Chs. 5 and 6 present methods for predict-
ing human responses to trips during walking and using the predictions to plan safe trip-recovery
behavior in lower-limb prostheses. Lastly, Ch. 7 describes technology assessments that engi-
neering researchers can apply to their own fields and presents preliminary results from my own
assessment of robotic lower-limb prostheses.

Each framework and tool presented here shows promise for increasing safety in the real world,
but is in an early stage of implementation. This chapter describes future to increase the real-
world applicability of the content in each chapter. Importantly, the future work is informed by my
analysis of the anticipated political, social, and economic impacts of assistive technology discussed
in Ch. 7. By removing assumptions, developing methods to involve potential users in the design
process, and thinking critically about clinical translation, the research presented in this dissertation
can increase the safety, comfort, and effectiveness of technologies for reducing fall risk.

134



APPENDIX A

Intervals, Zonotopes, and Polynomial Zonotopes

A.1 Notation

The n-dimensional real numbers are Rn, natural numbers N, the unit circle is S1, and the set of 3×3

orthonormal matrices is SO(3). Upper case letters represent sets (or matrices), while lowercase
letters represent vectors or scalars. Subscripts either index elements of a vector or elements of a
set, depending on context. For a matrix A, we use A⊤ to denote its transpose. Vectors are denoted
as (x1, ..., xn) unless the shape is critical to understanding, in which case we write [x1, ..., xn]

⊤.
Let U , V ⊂ Rn. For a point u ∈ U , {u} ⊂ U is the set containing only u. The power set of U is
P(U). The Minkowski sum is U ⊕ V = {u + v | u ∈ U, v ∈ V }. The set-based cross product is
defined as U ⊗ V = {u× v | u ∈ U, v ∈ V }. Let W ⊂ Rn×n be a set of square matrices. Then,
set-based multiplication is defined as WV = {Av, | A ∈ W, v ∈ V }. For vectors a, b ∈ R3, the
cross product a× b can be expressed as a×b, where

a× =


0 −a3 a2

a3 0 −a1

−a2 a1 0

 . (A.1)

Let 0 and 1 denote matrices of zeros and ones of appropriate size, and In be the n × n identity
matrix.

A.2 Intervals

Various set representations are used throughout this dissertation. The most fundamental set repre-
sentation we use is the interval.
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An n-dimensional interval is a set of real numbers

[x] = {y ∈ Rn | xi ≤ yi ≤ xi, ∀i = 1, . . . , n}. (A.2)

For succinctness, we sometimes denote an interval [x] by [x, x], where x and x are the infimum and
supremum, respectively, of [x]. Let the operations inf and sup return the infimum and supremum
of an interval:

inf([x]) = x (A.3)

sup([x]) = x. (A.4)

The Minkowski sum and difference of [x] and [y] are given by

[x]⊕ [y] = [x+ y, x+ y], (A.5)

[x]⊖ [y] = [x− y, x− y]. (A.6)

The product of [x] and [y] is

[x][y] = [min(xy, xy, xy, xy),max(xy, xy, xy, xy)]. (A.7)

Given a scalar interval [a] or interval matrix [Y ] multplied by an interval matrix [X], the element
in the ith row and j th column of the product is

([a][X])ij = [a][X]ij, (A.8)

([X][Y ])ij =
n⊕

k=1

([X]ik[Y ]kj), (A.9)

where n is the number of columns of [X] and number of rows of [Y ]. Lastly, given two interval
vectors [x] and [y] ∈ IR3, their cross product is

[x]⊗ [y] = [x]×[y], (A.10)

where [x]× is the skew-symmetric matrix representation of [x] as in (A.1)
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A.3 Zonotopes

Next, we introduce zonotopes, which are more expressive than intervals. A zonotope Z ⊂ Rn is a
convex, centrally-symmetric polytope defined by a center g0 ∈ Rn and generators gi ∈ Rn:

Z = {z ∈ Rn | z = g0 +

ng∑
i=1

giβi, βi ∈ [−1, 1]} (A.11)

where there are ng ∈ N generators.

Lemma A.3.1. A zonotope can be overapproximated by an interval.

Proof. Consider Z ⊂ Rn with center c and ng generators gi. Then,

Z ⊆ [g0 −
ng∑
i=1

|gi|, g0 +
ng∑
i=1

|gi|] (A.12)

■

Zonotopes are closed under Minkowski sum. Given Z1 ⊂ Rn with center g0 and p generators
gi with indeterminates βi, and Z2 ⊂ Rn with center h0 and q generators hj with indeterminates λj:

Z1 ⊕ Z2 = {z ∈ Rn | z = z1 + z2, z1 ∈ Z1, z2 ∈ Z2} (A.13)

Z1 ⊕ Z2 = {z ∈ Rn | z = (g0 + h0) +

ng∑
i=1

giβi +

q∑
j=1

hjλj,

...βi ∈ [−1, 1], λj ∈ [−1, 1]}. (A.14)

A matrix zonotope M ⊂ Rn×m is a zonotope whose center G0 ∈ Rn×m and generators Gi are
matrices:

M =

{
A ∈ Rn×m | A = G0 +

ng∑
i=1

Giβi

}
. (A.15)

Note that a matrix zonotope M and zonotope Z of appropriate sizes can be multiplied together.
Let M have p generators Gi with indeterminates βi, and Z have q generators hj with indetermintes
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λj .. Then,

M ⊙ Z = {z ∈ Rn | z = Ay, A ∈ M, y ∈ Z} (A.16)

M ⊙ Z =

{
z ∈ Rn | z = G0g0 +

q∑
j=1

G0gjλj +

ng∑
i=1

Gig0βi+

+

ng∑
i=1

q∑
j=1

Gigjβiλj, βi ∈ [−1, 1], λj ∈ [−1, 1]

}
. (A.17)

However, the result is no longer a zonotope due to the products of indeterminates βiλj . This
motivates the need for a more complex set representation called polynomial zonotopes [223].

A.4 Polynomial Zonotopes

For a thorough introduction of polynomial zonotopes, we refer the interested reader to work by
Kochdumper and Althoff [223]. We present an overview of the necessary definitions and operations
here.

To ease the introduction of polynomial zonotopes, we first express zonotopes in a slightly dif-
ferent notation. Let the zonotope Z have center g0, ng generators gi, and indeterminates βi. We
introduce an indeterminate vector x ∈ [−1, 1]ng . The elements of x correspond to the indetermi-
nates βi. Next, we introduce the exponents αi ∈ Nng . Letting α1 = [1, 0, ..., 0], α2 = [0, 1, 0, ..., 0],
..., αng = [0, 0, ..., 0, 1], we note that xα1 = x1, ... , xαng = xng where the exponentiation is applied
element-wise. Then, letting the center g0 be associated with the exponent α0 = [0, 0, ..., 0] we may
write the zonotope Z as

Z = {z ∈ Rn | z =

ng∑
i=0

gix
αi , x ∈ [−1, 1]ng}. (A.18)

Here, we have written Z as the set of points produced by the polynomial p(x) =
∑ng

i=0 gix
αi

over the domain x ∈ [−1, 1]ng . We have our first polynomial zonotope, a set representation which
includes zonotopes as a subset. Though in (A.18) we defined a zonotope where each αi has only
one nonzero element, more generally polynomial zonotopes may employ exponents αi ∈ Nng

which are arbitrary. We refer to xαi as a monomial, and a term gix
αi is produced by multiplying

a monomial by the associated generator gi. A polynomial zonotope ⟨P ⟩ ⊂ Rn is given by its
coefficients, exponents, and indeterminates. We write ⟨P ⟩ = PZ(gi, αi, x). Later in the text, we
distinguish between “dependent” and “independent” terms:

Definition A.4.1. Let αi have only one nonzero element (the k-th element). If the k-th element is
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zero for all αj, j ̸= i then the term gix
αi is independent. This implies that the term depends only on

k-th indeterminate xk, and that this indeterminate does not appear anywhere else. A term which

does not meet these criteria is dependent.

The Minkowski Sum of two polynomial zonotopes ⟨P1⟩ ⊂ Rn = PZ(gi, αi, x) and ⟨P2⟩ ⊂
Rn = PZ(hj, βj, y) follows polynomial addition:

⟨P1⟩ ⊕ ⟨P2⟩ = {z ∈ Rn | z = p1 + p2, p1 ∈ ⟨P1⟩, p2 ∈ ⟨P2⟩} (A.19)

⟨P1⟩ ⊕ ⟨P2⟩ = {z ∈ Rn | z =

ng∑
i=0

gix
αi +

q∑
j=0

hjy
βj}. (A.20)

Similarly, we may write the matrix product of two polynomial zonotopes ⟨P1⟩ and ⟨P2⟩ when
the sizes are compatible, i.e. elements in ⟨P1⟩ have the same number of columns as elements of
⟨P2⟩ have rows. Letting ⟨P1⟩ ⊂ Rn×m and ⟨P2⟩ ⊂ Rm×k, we obtain ⟨P1⟩⟨P2⟩ ⊂ Rn×k:

⟨P1⟩⟨P2⟩ = {z ∈ Rn×k | z = p1p2, p1 ∈ ⟨P1⟩, p2 ∈ ⟨P2⟩} (A.21)

⟨P1⟩⟨P2⟩ = {z ∈ Rn×k | z =

ng∑
i=0

gi(

q∑
j=0

hjy
βj)xαi}. (A.22)

Furthermore, if ⟨P1⟩ ⊂ R3 and ⟨P2⟩ ⊂ R3, we implement a set-based cross product as matrix
multiplication. We create ⟨P1⟩x ⊂ R3×3 as

⟨P1⟩x = {A ∈ R3×3 | A =

ng∑
i=0


0 −gi,3 gi,2

gi,3 0 −gi,1

−gi,2 gi,1 0

xαi} (A.23)

where ai,j refers to the j-th element of ai. Then, the set-based cross product ⟨P1⟩ ⊗ ⟨P2⟩ =

⟨P1⟩x⟨P2⟩ is well-defined.
We briefly note that the addition, multiplication and cross product of a polynomial zonotope

with a constant vector or matrix is well-defined if the constant is appropriately sized. In this case,
one constructs a polynomial zonotope with that constant vector or matrix as the center g0 and no
other generators, and applies the definitions above.

Both set addition and multiplication can be complicated by the fact that ⟨P1⟩ and ⟨P2⟩ may
share indeterminates. That is, the k-th element of x and the l-th element of y represent the same
indeterminate. Therefore, it can be beneficial to bring both polynomial zonotopes to a common

representation before performing these operations. Letting x̃ = x
⋃
y, we may redefine the poly-

nomial zonotopes ⟨P1⟩ = ⟨gi, α̃i, x̃⟩ and ⟨P2⟩ = ⟨hi, β̃i, x̃⟩ where α̃i and β̃j exponentiate the
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appropriate elements of x̃.
One desirable property of polynomial zonotopes is the ability to obtain subsets by plugging in

values of known indeterminates. For example, let’s say a polynomial zonotope ⟨P ⟩ represented a
set of possible positions of a robot arm operating near an obstacle. It would be beneficial to know
whether a particular choice of ⟨P ⟩’s indeterminates yields a subset of positions that could collide
with the obstacle. To this end, we introduce the operation of “slicing” a polynomial zonotope
⟨P ⟩ = PZ(gi, αi, x) by evaluating an element of the indeterminate x. Given an indeterminate xs

and a value σ ∈ [−1, 1], slicing yields a subset of ⟨P ⟩ by plugging σ into the specified element xs:

slice(⟨P ⟩, xs, σ) ⊂ ⟨P ⟩ = {z ∈ ⟨P ⟩ | z =

ng∑
i=0

gix
αi , xs = σ}. (A.24)

In this document, we require a means to bound the elements of a polynomial zonotope. It
is possible to efficiently generate these upper and lower bounds on the values of a polynomial
zonotope through overapproximation. We define the sup and inf operations which return these
upper and lower bounds, respectively, by taking the absolute values of generators. For ⟨P ⟩ ⊆ Rn,
these return

sup(⟨P ⟩) = g0 +

ng∑
i=1

|gi| , (A.25)

inf(⟨P ⟩) = g0 −
ng∑
i=1

|gi| . (A.26)

Note that for any z ∈ ⟨P ⟩, sup(⟨P ⟩) ≥ z and inf(⟨P ⟩) ≤ z, where the inequalities are taken
element-wise. These bounds may not be tight because possible dependencies between indetermi-
nates are not accounted for, but they are quick to compute.

The operations defined above (multiplication in particular) increases the number of generators
required to represent a polynomial zonotope. In practice, successively applying these operations
can become computationally intractable as the memory required to represent a polynomial zono-
tope increases. To combat this computational burden, it is possible to generate overapproximations
of polynomial zonotopes using fewer generators by reducing a polynomial zonotope. If a polyno-
mial zonotope ⟨P ⟩ ⊂ Rn has ng terms, but a maximum of q terms are desired, excess terms can be
overapproximated by an interval:

reduce(⟨P ⟩, q) =
{
z ∈ Rn | z =

q−n∑
i=0

gix
αi +

n∑
j=1

[−bj, bj]

}
(A.27)

where bj is a vector of zeros except for the j th element which is equal to
∑ng

i=q−n+1 |(gi)j|. Notice
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that reduce(⟨P ⟩, q) always overapproximates ⟨P ⟩, i.e. ⟨P ⟩ ⊆ reduce(⟨P ⟩, q) [223, Prop. 16].
One can reorder the terms of the polynomial zonotope such that only certain desirable terms are
replaced by intervals, e.g. to produce a tighter overapproximation. The output of reduce may be
represented as a polynomial zonotope.

Though we have defined several basic operations like addition and multiplication above, it may
be desirable to use polynomial zonotopes as inputs to more complicated functions. In fact, one can
overapproximate any analytic function evaluated over a polynomial zonotope using a Taylor ex-
pansion, which itself can be represented as a polynomial zonotope. Consider the analytic function
f : R → R (e.g. cos(·), sin(·)) and polynomial zonotope ⟨P1⟩ = PZ(gi, αi, x), with each gi ∈ R.
Then,

f(⟨P1⟩) = {y ∈ R | y = f(z), z ∈ ⟨P1⟩}. (A.28)

We generate a polynomial zonotope ⟨P2⟩ such that f(⟨P1⟩) ⊆ ⟨P2⟩ using a Taylor expansion of
degree d ∈ N, where the error incurred from the finite approximation is overapproximated using a
Lagrange remainder. The method follows the Taylor expansion found in the reachability algorithm
in [223], which builds on previous work on conservative polynomialization found in [224]. Recall
that the Taylor expansion about a point c ∈ R is

f(z) =
∞∑
n=0

f (n)(c)

n!
(z − c)n. (A.29)

Note that the error incurred by a finite Taylor expansion can be bounded using the Lagrange re-
mainder R:

|f(z)−
d∑

n=0

f (n)(c)

n!
(z − c)n| ≤ R, (A.30)

where R is given by

R =
M |z − c|d+1

(d+ 1)!
, M = max

δ
(|fd+1(δ)|), δ ∈ [c, z]. (A.31)

For a polynomial zonotope, the infinite dimensional Taylor expansion is given by

f(⟨P1⟩) =
∞∑
n=0

f (n)(c)

n!
(⟨P1⟩ − c)n (A.32)

In practice, only a finite Taylor expansion of degree d ∈ N can be computed. Letting c = g0
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Table A1: Operations with polynomial zonotopes may either be computed exactly or in an overap-
proximative fashion.

Operation Exact (x) or Overapproximative (o)
⊕ (Minkowski Sum) x
⊙ (Set Multiplication) x
⊗ (Set Cross Product) x

slice x
sup/inf o
reduce o
cos/sin o

(the center of ⟨P1⟩), and noting that (z − c) = (
∑ng

i=1 gix
αi) for z ∈ ⟨P1⟩, we write

⟨P2⟩ := {z ∈ R | z =
d∑

n=0

(
f (n)(g0)

n!
(

ng∑
i=1

gix
αi)n

)
+ [R]} (A.33)

and the Lagrange remainder [R] can be computed using interval arithmetic as

[R] =
[M ][⟨P1⟩]d
(d+ 1)!

, [M ] = f (d+1)([⟨P1⟩]) (A.34)

where [⟨P1⟩] is an overapproximation of ⟨P1⟩ by an interval that can be computed using the sup
(A.25) and inf (A.26) operations. Note that ⟨P2⟩ can be expressed as a polynomial zonotope
because all terms in the summation are polynomials of x, and an interval can be included using an
independent generator.
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