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ABSTRACT

Horizontal Gene Transfer (HGT) is a powerful force shaping microbial evolution [1]. This constant
process by which genes are acquired into and excised from bacterial genomes enables an enormous
capacity for rapid phenotypic evolution [2]. HGT enables the dissemination of clinically important
genes, including antibiotic resistance genes, genes mediating virulence, environmental persistence
genes, and metabolic genes. Acquisition of these genes potentiates phenotypic evolution in several
important contexts: increasing the capacity for transmission, enhancing the ability for infection,
limiting the efficacy of antibiotic therapies, and facilitating the metabolism of new substrates.
Methods to characterize the pathways by which these genes spread through bacterial populations
are critical for understanding the evolution of these phenotypes and their implications for public
health [3]. In this dissertation, I develop a novel computational approach to generate core gene
alignments for large numbers of bacterial genomes and implement two methods to characterize
HGT events from bacterial whole-genome sequences. I then apply these methods to understand
the dissemination of antimicrobial resistance genes and the evolution of carbohydrate utilization
phenotypes in the microbiome.

First, we developed cognac (Core Gene Alignment Concatenation), an open-source R pack-
age for generating concatenated, core gene alignments for microbial genomes. cognac rapidly
identifies shared phylogenetic marker genes, creates gene alignments, and concatenates them into
a single alignment for downstream phylogenetic analysis. We demonstrate that this method can
efficiently handle extremely large whole-genome sequencing datasets of diverse bacterial lineages.

Second, we sought to trace the spread of the KPC gene, a carbapenemase conferring broad-
spectrum resistance to commonly used antibiotics for treating infections caused by Enterobac-
terales. Using comprehensive collections of clinical isolates from regional healthcare networks in
three US states, we quantify the role of importation, clonal dissemination, and HGT on the total
burden of KPC in these regions. To identify HGT events, we implemented a novel marker gene-
based approach that enabled us to track KPC plasmid transfer using short-read data and identify
HGT events occurring between circulating strains in the same region. Using this approach, we
show that while the horizontal transfer of KPC frequently occurs in all three states, the strains and
species involved and the overall contribution to the regional burden of KPC-carrying organisms
differ substantially across the three states.

xi



Third, we investigated the role of HGT in common members of the human gut microbiome.
We developed a novel method to identify ancestral HGT loci by identifying core genes with sig-
nificantly greater than expected divergence from the assigned species and greater similarity to the
putative donor species. We then characterized HGT loci with conserved synteny and collinearity
between donor and recipient species that have enabled pan-genome expansion and evolution of new
phenotypes. This approach illustrates that HGT is common between two closely related species of
Bacteroides, with many loci exhibiting evidence of HGT. These data, in conjunction with molecu-
lar data, provide insight into the breadth and complexity of metabolism in the microbiome and the
underlying genomic events that enable the evolution of complex phenotypes.

In summary, this body of work establishes computational tools with broad application in com-
putational genomics and genomic epidemiology: enabling phylogenetic analysis of large genomic
datasets, identifying recent plasmid-mediated transfer occurring within and across regional health-
care networks, and identification of ancestral HGT loci carried on the chromosome mediating the
development of complex phenotypes in the microbiome.
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CHAPTER 1

Introduction

1.1 Motivation

HGT enables bacteria to adapt to environmental challenges rapidly. Understanding the mecha-
nistic basis for these processes has important implications for human health. HGT is crucial to
understanding the processes shaping microbial community structure and function in commensal
microbes and understanding the driving forces shaping genome evolution in pathogenic microbes
concerning antibiotic resistance and virulence [4, 2]. Understanding the mechanisms of HGT is
especially critical for antibiotic resistance. Antibiotic resistance is a major threat to public health:
in the United States, an estimated 2.8 million antibiotic-resistant infections result in an estimated
35,000 deaths annually [5]. The spread of antibiotic resistance genes in microbial communities
amplifies the abundance of antibiotic-resistant isolates [6]. The spread of antibiotic resistance
heightens the risk that resistance genes will be introduced into pathogenic lineages, resulting in
limited treatment options in the event of infection [7]. This dissertation provides a framework for
phylogenetic analysis of large whole-genome sequencing datasets and novel approaches to iden-
tify HGT in bacterial whole-genome sequencing data. I then apply these methods to track the
regional spread of antibiotic resistance plasmids in pathogenic isolates and to examine genomic
events underlying metabolic phenotypes in commensal microbes.

1.2 Mechanisms of HGT

Not only do bacterial genomes evolve via point mutations, but also via HGT: the exchange of
genetic material between bacterial cells. First described in the 1940s, HGT has since gained
widespread recognition for its importance in shaping microbial genome evolution [8]. Many bac-
terial genomes are highly mosaic, and considerable fractions of the genome are the product of
multiple, independent HGT events [9]. Horizontal gene transfer typically happens via three main
mechanisms: transformation, transduction, and conjugation, which all contribute to the evolution
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of bacterial populations. All three of these mechanisms work in concert to generate the mosaic
nature of bacterial genomes and are all shared across diverse lineages of bacteria [10]. While most
of these HGT events are thought to be neutral or deleterious, there is the potential for selective
advantage and propagation within phylogenetically diverse bacterial populations.

1.2.1 HGT via Natural Transformation

Transformation is the process by which free DNA is bound at the cell surface, taken up into the
cytoplasm, and recombined into the host genome [10]. The ability for natural transformation is
widely distributed across the tree of life and represents a strategy for both nutrient acquisition, and
genetic diversification [11]. This process involves the expression of distinct sets of genes required
for natural competence and can result in the translocation of both chromosomal and plasmid DNA
[10]. Typically, genes mediating natural competence are expressed in response to specific environ-
mental conditions: cellular stress, changes in growth conditions, or starvation. Once DNA uptake
occurs, recombination into the host genome is mediated by sequence similarity [12]. The recom-
bination rate decreases substantially as sequence similarity in the donor sequence, and the host
genome diverges, resulting in higher rates of recombination in closely related organisms [12, 10].

1.2.2 HGT via Transduction

Transduction is the DNA transfer between a donor and recipient cell via a bacteriophage interme-
diate [13]. HGT can occur via this process when host DNA is packaged into the bacteriophage
capsid in place of or in addition to the bacteriophage genome. Upon release of the bacterio-
phage particles from an infected cell and infection of a subsequent cell occurs, incorporation of the
phage-associated bacterial DNA into the chromosome of the newly infected cell can occur [10].
Bacteriophages are the most abundant organisms on the planet and are major contributors to ge-
netic diversity in bacterial genomes [14]. Transduction has been shown to be a dominant source of
genetic variation within strains of E. coli in microbial communities, generating genetic diversity at
much higher rates relative to that of point mutations, illustrating the potential for rapid evolution
via transduction in the microbiome [15].

1.2.3 HGT via Conjugation

Conjugative transfer is a mechanism of HGT in which a pore formation occurs between two cells,
and DNA is transported through the pore from donor to recipient [9]. Whole chromosomes have
the potential to be transferred via this mechanism; however, this process is rare due to the lengthy
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time required to transfer this quantity of DNA. Although, large genome transfer events have been
observed in clinically relevant bacteria, potentially contributing to epidemic success [16].

Conjugative transfer systems are frequently associated with plasmids [17]. Because of their
relatively small size, plasmids are readily transferred via this mechanism [9]. Many plasmids
are self-transmissible, encoding the conjugative machinery necessary for transferring the plasmid
between cells [18]. Once a plasmid is transferred between distinct cells, the conjugative machinery
can then be expressed, and the plasmid can be further propagated. Fitness costs associated with
plasmid carriage have been documented; however, this cost can be ameliorated by coevolution of
the plasmid and host, resulting in stable relationships [19, 20].

Integrative Conjugal Elements (ICEs) constitute a second class of self-transmissible mobile
genetic element [21]. ICEs exist in two states: integrated into the host’s chromosome; and a
conjugative state, whereby the element is existed from the chromosome to be further propagated
to a new host [22]. ICEs carry genes for diverse functions, contributing to genome diversification
within species and distributing genes across large phylogenetic distances [23, 22].

1.3 Methods to Detect Horizontal Gene Transfer in Bacterial
Genomes

There are several common methods for inferring HGT in microbial genomes. First, phylogenetic
approaches take common sequences and construct a phylogeny that can then be compared with
the phylogeny of the corresponding genomes [24, 25]. HGT is then inferred by incongruencies
between the two trees. Next, there are composition-based approaches that use the compositional
structure of sequences to infer different origins [26]. These sequence signatures include: codon
usage bias, differences in GC content, or differences in dinucleotide frequencies [27, 28, 29, 30].
This method is limited because the donor sequence and the recipient genome must be significantly
divergent to exhibit measurable differences. Finally, an efficient and commonly used heuristic for
examining HGT is comparing high identity sequences shared between distantly related organisms
[31]. For example, identifying genes with >99% sequence similarity shared between shared genes
with < 97.5% similarity in the 16S gene sequence. This approach is limited, as it can only de-
tect HGT between distinct genera. Because HGT is more likely to occur between closely related
organisms, this approach is likely unable to detect a majority of HGT events [32].

HGT of plasmids, in particular, has been notoriously difficult to characterize: plasmids are
highly recombinant, contain a multitude of gene cassettes that are not highly conserved, often
have multiple incompatibility groups, and fusion plasmids resulting from the union of two dis-
tinct plasmids into a single molecule have been observed [33]. There has been enormous effort
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expended on sequencing of bacterial genomes by both short-read sequencing technology (reads
typically ranging between 75-300 base-pairs) and increasingly by long-read sequencing technol-
ogy (with average read lengths of 20,000-50,000 base-pairs) [34]. Short-read sequencing data
resolves plasmids poorly due to the high prevalence of repetitive sequences [35]. Assemblies gen-
erated by this sequencing technology result in highly fragmented plasmid assemblies, frequently
contaminated with chromosomal sequences. Several previous studies of HGT in the healthcare
environment have relied on long-read sequencing of a collection of isolates or a subset of isolates
to define plasmids and then characterize plasmid content in larger sets of short-read sequenced iso-
lates [36, 37, 38, 39, 40]. This can be accomplished by mapping reads to these reference plasmids
or using blast to compare sequence similarity and coverage. However, even with known plasmid
sequences, the recombinogenic nature of plasmids makes it challenging to determine if an HGT
event took place or represents a shared, conserved ancestral sequence [41]. Especially in the ab-
sence of long-read sequencing data and a known plasmid sequence, there are few options for iden-
tifying and characterizing plasmids in short-read data. Because short-read sequencing technology
is, to this day, the most frequently used platform for microbial genome sequencing and comprises
the overwhelming majority of isolates sequenced historically, these data present an underutilized
resource for studying the epidemiology and evolution of plasmids.

1.4 Classes of β-lactam Resistance Phenotypes and Genotypes

The discovery of antibiotics revolutionized medicine; however, the rise of Antimicrobial Resistant
(AMR) threatens these therapies’ utility in clinical practice. AMR has important implications
for individuals who suffer from these infections due to the associated increase in morbidity and
mortality and for society due to the substantial economic cost to the healthcare system. Of perhaps
greatest concern are the gram-negative enteric bacteria from the order Enterobacterales, for which
there is a dearth of novel antibiotics under development to treat resistant infections effectively [5].
Members of Enterobacterales are the causative agent of various infections, including pneumonia,
urinary tract infections, bloodstream infections, and intra-abdominal infections [42]. β-lactamases,
enzymes with hydrolytic activity against antibiotics containing a β-lactam structural unit, primarily
drive antibiotic resistance in Enterobacterales [43]. These enzymes convey resistance to antibiotics
such as penicillins, cephalosporins, cephamycins, monobactams, and carbapenems. These agents
prevent peptidoglycan synthesis by inhibiting penicillin-binding proteins, which results in lytic cell
death. Additionally, these organisms frequently carry resistance determinants to other classes of
antibiotics, complicating treatment [42].

With each generation of β-lactam antibiotic synthesized, the emergence of resistance has
rapidly developed [44]. Carbapenems represent a last line of defense for treating infections
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caused by Enterobacterales [42]. Until recently, carbapenem-resistant Enterobacterales (CRE)
were rarely observed; however, the widespread dissemination of carbapenemase genes — namely
KPC — has increased the prevalence of these organisms. Historically, CRE has most frequently
been associated with the healthcare setting, whereby patients requiring long-term care, antibiotic
therapy, use of indwelling devices, and the presence of comorbidities have been associated with
risk of infection [45, 46]. Recently, there has been an increasing prevalence of these organisms in
the community due to highly transmissible AMR strains [46].

1.4.1 Chromosomal and Plasmid-spread AmpC

The AmpC β-lactamase was first identified in 1940 [47]. Several species of Enterobacterales

carry this enzyme on the chromosome. Initial reports of CRE in the 1990s were attributed to the
overproduction of AmpC β-lactamases in conjunction with porin mutations [48, 49]. Outer mem-
brane porins, such as OmpK36 in K. pneumoniae, facilitate the transport of substrates, including
β-lactam antibiotics across the outer membrane into the periplasm [50]. Mutations resulting in
loss of function of these genes result in a less permeable cell membrane [50, 51]. The AmpC
carbapenem resistance phenotype depends on two genetic factors: mutations resulting in overex-
pression of the AmpC gene and mutations in porin genes [50]. In this genetic context, the rate at
which carbapenems are transported into the periplasm is sufficiently low that AmpC can effectively
confer resistance — despite the low hydrolytic activity for these substrates [50].

While historically AmpC was most frequently observed on the chromosome, related alleles of
this gene, closely related to the chromosomal variants, have been transposed onto plasmids [52].
These genes are associated with various mobile genetic elements and have been observed in many
phylogenetic backgrounds [50]. Similar to chromosomal AmpC mediated carbapenem resistance,
porin deficiency and the presence of AmpC are responsible for the resistance phenotype. Typically,
these infections are still treatable with cefepime [53].

1.4.2 Extended-spectrum β-lactamases

Extended-spectrum β-lactamases (ESBL)s are enzymes that hydrolyze β-lactam antibiotics, in-
cluding penicillins, broad-spectrum cephalosporins, and monobactams, and lack activity against
cephamycins and carbapenems [54, 55]. The most frequently observed ESBLs are SHV and TEM
types, which have been frequently observed in Enterobacterales but are most commonly asso-
ciated with E. coli or K. pneumoniae [56]. In K. pneumoniae, SHV-type ESBLs are the most
commonly observed on the chromosome, and in E. coli, ESBLs are most frequently carried on
plasmids. While SHV and TEM are the most frequently observed ESBLs, there are currently over
12 different families of ESBLs with hundreds of variants of these enzymes observed [57].
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Extended-spectrum β-lactam antibiotics were first used clinically in western Europe in the
1980s, and this is also where ESBL-producing organisms were first detected [54]. First detected
in Germany in 1983, these genes were then rapidly detected in the United States and Europe
[58, 59, 60]. Many outbreaks of ESBL-producing organisms have been described on every con-
tinent involving diverse species: most frequently E. coli or K. pneumoniae, but also species of
Enterobacter, Citrobacter, and Pseudomonas, among others. [54].

Currently, carbapenems are the preferred agents to treat infections caused by ESBL producing
Enterobacterales [54]. For example, imipenem, ertapenem, or faropenem have been shown to
be effective at treating these infections [54]. As the prevalence of ESBL-producers increases,
carbapenems are more frequently relied upon to treat these infections, which in turn provides a
selective pressure for the evolution of carbapenem resistance [42]. ESBL-producing organisms
can also exhibit the carbapenem-resistant phenotype by a similar mechanism to AmpC mediated
carbapenem resistance: overproduction of an ESBL and membrane mutations to outer membrane
porins [61].

1.4.3 Carbapenemases

Carbapenemases are the most frequently observed mechanism of carbapenem resistance, and the
prevalence of these enzymes is increasing [46]. The first carbapenemases identified were species-
specific and chromosomally encoded [62]. Carbapenemases were first identified in gram-positive
bacilli; however, plasmid-encoded carbapenemases were identified in Enterobacterales in the
1980s. In the 1990s, several plasmid-encoded carbapenemases emerged in multiple species of
gram-negatives. Since then, many carbapenemases have been disseminated widely, with exam-
ples including the Klebsiella pneumoniae carbapenemase KPC, New Delhi Metallo-β-lactamases
(NDM), Verona Integrin-encoded Metallo-β-lactamase (VIM), Imipenemase (IMP), and OXA-48-
like carbapenemases [62, 46]. Plasmid-encoded carbapenemases have reframed the problem of
carbapenem resistance. What was once a problem of clonal dissemination of specific lineages
is now a problem of several carbapenemases, which are readily disseminated throughout diverse
bacterial species [62]. Some of these carbapenemase-producing organisms also produce AmpC or
ESBLs, complicating treatment [42].

KPC is the most frequently observed carbapenemase in the United States and is widely spread
across Europe [61]. KPC is particularly notable for the ability to mobilize into diverse lineages
[2]. KPC was first identified in North Carolina in 1996 and, in the following years, was associated
with outbreaks across the globe [32]. KPC is typically plasmid-associated and has been observed
in the context of diverse plasmids [63]. Many of these plasmids have a broad host range, enabling
the spread of KPC into diverse bacterial populations.

6



1.5 HGT in Beneficial Microbes

Just as HGT is a powerful force shaping the evolution of pathogenic microbes for antibiotic resis-
tance and virulence, so too is HGT a driving force shaping the evolution of commensal microbes in
the human microbiota [64, 65]. The human microbiome represents a complex ecosystem composed
of microorganisms representing different kingdoms, which profoundly impact human physiology
and disease [66]. Genome diversification is an essential adaptive strategy for many species, il-
lustrated by the substantial variability in pan-genomes of gut commensals [2]. By enabling rapid
phenotypic evolution, HGT can profoundly impact the structure and function of microbial com-
munities. However, not all possible pathways of gene exchange are equally probable, and many
factors govern the HGT network, including the phylogenetic distance between the donor and re-
cipient strains, the environmental niche occupied, and the cellular function of the genes involved
[3].

Large-scale analysis of genes identified as being horizontally transferred showed significant
enrichment for specific gene functions [67, 64, 31]. In genes showing evidence of HGT, there
is significant enrichment for functions related to metabolism and translation [67, 31]. HGT of
these metabolic genes may enable adaptation to selective pressures related to diet, providing a
competitive advantage for nutrient acquisition [67, 64]. In commensal microbes, HGT of antibiotic
resistance genes has also been observed [31, 68]. Large plasmids can facilitate the simultaneous
transfer of multiple antibiotic resistance genes, and additionally, genes enhancing pathogenicity
may also be carried on these plasmids [68]. HGT of these genes into commensal lineages has the
potential to generate novel multidrug resistance strains with enhanced potential for virulence [69].

HGT preferentially occurs among organisms that are closely related phylogenetically [70, 31].
Genetic factors shared between closely related organisms concerning the requisite molecular ma-
chinery for expression and maintenance of recently transferred genes, and a greater degree of
sequence homology that promotes recombination into the recipient genome likely facilitate trans-
fer [71, 72]. Although it is less common, HGT over vast phylogenetic distances has been ob-
served [70, 73, 31]. For example, genomic analysis of Methanobrevibacter smithii, a common
methanogenic archaeon found in the human gut, illustrated that 15% of the coding sequences in
the genome were predicted to be of bacterial origin [73].

Organisms sharing an environmental niche are more likely to engage in HGT, and therefore
specific mobile genetic elements are exchanged between organisms that share a similar environ-
ment [71, 64]. In an analysis of thousands of whole genome sequences, HGT between organisms
isolated from humans was shown to be 25 times higher than organisms isolated from non-human
sources [71]. Furthermore, this effect was amplified among organisms sharing the same body site,
illustrating that specific molecular traits define ecological niches in the microbiome. Although less
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common, HGT between organisms that occupy very different environments has been known to
occur. For example, members of the phylum Bacteroidetes have been observed carrying enzymes
that degrade polysaccharides found in algae [74]. Phylogenetic analysis of these genes revealed
that the likely source of these genes was HGT from seaweed-associated marine bacteria. Strains
of Bacteroidetes carrying these enzymes are common in Japanese populations where seaweed is
a common component of the diet and are notably absent in North American populations. This
analysis illustrates that specific metabolic functions can disseminate to diverse isolates via HGT
and spread broadly in human populations in response to selective pressures.

1.6 HGT of Antibiotic Resistance Genes

HGT of Antibiotic Resistance Genes (ARG) can occur via all three mechanisms described above.
Environmental strains of the human pathogen E. coli have been shown to be naturally compe-
tent and capable of uptake of ARGs from the environment [75]. Additionally, phage are com-
mon sources of ARGs in the environment [76]. The prevalence of bacteriophage carrying ARGs
has been shown to increase significantly in response to antibiotic treatment [77]. Finally, large
conjugative plasmids and ICEs often harbor ARGs conveying resistance to multiple classes of an-
tibiotics [19]. In addition to antibiotics, these elements frequently carry resistance to heavy metals
and disinfectants, enabling survival in the hospital environment [20]. These plasmids and ICEs can
spread rapidly within microbial communities in the human gut in both commensal and pathogenic
isolates [32, 21].

While the evolution of antibiotic resistance can happen spontaneously in bacterial populations
via spontaneous mutations, resistance to multiple antibiotics in a single bacterial lineage would
take significant time to evolve via this mechanism [78]. HGT enables multiple ARGs conveying
resistance to multiple classes of antibiotics to simultaneously be spread in bacterial populations,
in place of the slow process of acquiring independent resistance mutations [7]. Therefore, under-
standing the HGT of ARGs is critical for addressing the problem of antibiotic resistance.

1.7 Epidemic Lineages of Antibiotic-Resistant Pathogens

Many multi-drug resistant pathogenic lineages have disseminated globally and are classified as a
critical threat to public health by the Centers for Disease Control (CDC) [5]. By sequential acquisi-
tion of resistance to multiple antibiotic classes, some clonal lineages have become resistant to all or
nearly all available antibiotics [63]. Many of these lineages have demonstrated substantial capacity
for transmission and additionally may spread the resistance genes they carry throughout bacterial
populations [79]. The most commonly observed species with epidemic potential are Escherichia
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coli and Klebsiella pneumoniae; however, species belonging to Enterobacter, Citrobacter, Serratia,
and other genera are endemic to certain locations [80, 79, 81, 82, 83, 84].

E. coli is the cause of many infections, including urinary tract infections and bloodstream in-
fections. In the early 1990s and 2000s, strains of E. coli producing ESBLs began to emerge.
Most commonly, these strains harbored plasmid-born CTX-M enzymes. Molecular epidemiologi-
cal analysis of isolates revealed multiple outbreaks across the UK, Canada, and the United States of
the ST131 clonal lineage of E. coli, which all carried CTX-M-15 [82, 85]. Additionally, this strain
is frequently resistant to fluoroquinolones due to chromosomal mutations in the gyrA and parC
genes [85]. ST131 strains are commonly contracted in both the community and healthcare setting
[82]. This clonal lineage accounts for a substantial proportion of bloodstream infections, whereby
23% of infection isolates collected in a three-year-long survey in San Francisco were identified as
ST131 [86]. Most ST131 isolates are ESBL producers; however, many carbapenemase-producing
isolates have been observed carrying several carbapenemases, including KPC, TEM, and NDM
[85, 87, 88, 89].

Many lineages of multi-drug resistant K. pneumoniae have disseminated globally [90]. K. pneu-

moniae is notable for the ability to maintain multiple plasmids, which can carry many antibiotic
resistance determinants [62, 7]. Many antibiotic resistance genes were first observed in K. pneu-

moniae, including the carbapenemase genes: KPC, OXA-48, and NDM, which were subsequently
observed in other pathogens, [91]. In the United States, the expansion of carbapenemase-producing
Enterobacterales was mainly driven by a single strain: Klebsiella pneumoniae ST258 [82]. ST258
has been disseminated globally and documented as the cause of a multitude of outbreaks across
multiple continents [45]. This lineage is strongly associated with KPC and is frequently multidrug-
resistant. KPC-producing K. pneumoniae is associated with high mortality rates estimated to be
40%, with higher rates reported in oncology patients [92].

While less frequently observed, there are several documented outbreaks of clonal lineages of
carbapenemase-producing Enterobacter. KPC carrying Enterobacter cloacae ST171 was attributed
as the cause of outbreaks in multiple states, including Minnesota, Michigan, North Dakota, Penn-
sylvania, and New York; and E. cloacae ST114 in North Carolina [93, 94, 95, 96, 97]. These
outbreaks illustrate the risks of the spread of KPC into diverse bacterial lineages and adverse im-
pacts on patient populations.

1.8 Dissertation Outline

This dissertation involves the implementation of methods for the analysis of large whole-genome
sequencing datasets and the identification of HGT in bacterial genomes. In chapter two, I define an
R package capable of generating alignments for phylogenetic analysis of extremely large whole-
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genome sequencing datasets. This software is applied to generate alignments for the projects in
chapters three and four. In chapter three, I quantify the role of importation, transmission, and hor-
izontal transfer of the KPC gene and associated plasmids across regional healthcare networks in
three distinct US states. HGT events are identified using a novel phylogenetic approach to char-
acterize the dissemination of KPC plasmids from short-read sequencing data. In chapter four, I
implement a second approach to identify HGT occurring on the chromosome mediated by recom-
bination in core genes. I also discuss how these genomic events shape phenotypes in two species
of Bacteroides. In chapter five, I discuss the implications of these findings and future directions.
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CHAPTER 2

cognac: Rapid Generation of Concatenated Gene
Alignments for Phylogenetic Inference from Large,

Bacterial Whole-genome Sequencing Datasets

2.1 Preamble

This chapter defines a novel method for generating concatenated gene alignments capable of ap-
plication to large and diverse datasets of microbial whole-genome sequences. We published this
work in BMC Bioinformatics: Crawford, R. D., & Snitkin, E. S. (2021). cognac: rapid generation
of concatenated gene alignments for phylogenetic inference from large, bacterial whole-genome
sequencing datasets. BMC bioinformatics, 22(1), 1-10.

2.2 Introduction

Phylogenetic analysis is becoming an increasingly integral aspect of biological research with ap-
plications in population genetics, molecular biology, structural biology, and epidemiology [98].
Generating a quality multiple sequence alignment Multiple sequence alignment (MSA) is funda-
mental to robust phylogenetic inference. MSA is a foundational tool in many disciplines of biol-
ogy, which aims to capture the relationships between residues of related biological sequences and
therefore facilitate insights into the evolutionary or structural relationships between the sequences
in the alignment.

The first analysis incorporating genetic sequences to understand the evolutionary history of an
organism was a sample of 11 Drosophila melanogaster Adh alleles in 1983 [99]. Since then, there
has been a growing interest in using gene sequences to estimate the evolutionary relationships be-
tween organisms. However, it was quickly observed that individual gene trees are often inaccurate
estimations of the species tree [100]. These incongruencies can arise from errors while building
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the tree or from biological processes such as incomplete lineage sorting, hidden paralogy, and
horizontal gene transfer [101].

One approach for mitigating the incongruence between gene and species trees is the analysis
of multiple genes at multiple loci concatenated into a supergene to generate more precise phylo-
genies [102, 103, 104, 105, 106]. This approach better leverages the large quantity of available
data using multiple genes to substantially increase the number of variant sites and minimize the
stochastic errors that may be associated with the limited information contained in a single gene
[107]. This approach to infer the species tree has also been shown to be accurate under a range of
simulated conditions, in spite of the biological processes, which might pose a challenge to accurate
phylogenetic inference [108, 109].

Prior selection of a gene or set of genes for a given species is a commonly used strategy for
selecting phylogenetic marker genes. The most commonly used marker gene for bacteria for phy-
logenetic analysis is the 16S rRNA gene [110]. This gene is ubiquitous in bacteria and archaea with
highly conserved and variable regions, which makes it a useful marker for estimating the evolu-
tionary relationships between prokaryotes. However, as a catalytic RNA, this gene evolves slowly
relative to protein-coding genes, often resulting in few variant positions within a species [111]. Cu-
rated methods for selecting marker genes, such as multi-locus sequence typing, expand the number
of marker genes for a given species and have led to improved resolution within a species [112].
However, this approach remains limited in that only a small number of curated genes are selected
for a specific species, limiting its application to understudied organisms. Recently this concept
has been expanded to include 400 marker genes commonly present in bacteria and archaea con-
catenated into a supergene for phylogenetic analysis of prokaryotes [113]. While these tools have
many useful applications, relying on a limited number of predefined genes may limit the number of
phylogenetically informative markers contained in a given dataset, which is important in situations
where maximizing variation to distinguish closely related isolates is required.

In this work, we present cognac (core gene alignment concatenation), a novel data-driven
method and rapid algorithm for identifying phylogenetic marker genes from whole-genome se-
quences and generating concatenated gene alignments, which scales to extremely large datasets
of greater than 11,000 bacterial genomes. Our approach is robust when handling data sets with
extremely diverse genomes and is capable of creating an alignment with large numbers of variants
for phylogenetic inference.

2.3 Implementation

The inputs to cognac are fasta files and genome annotations in gff format, which can be obtained
via commonly used programs such as, RAST, Prokka, or Prodigal 2.1 [114, 115, 116]. First, the
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Figure 2.1: Overview of the cognac algorithm. Whole-genome sequences and gene annotations are
input, and the coding sequences are extracted and translated to return the amino acid sequences.
The amino acid sequences are clustered to identify orthologous genes, and the single copy core
genes are extracted from the dataset. For each core gene, unique alleles are identified and aligned,
and the alignment is parsed to represent the aligned sequence for the full dataset. Alignments are
then concatenated and are ready for downstream analysis

sequences corresponding to the coding genes are extracted using the coordinates provided in the gff
file, and the nucleotide sequence for each gene is translated. To identify phylogenetic marker genes,
CD-HIT is then used to cluster the amino acid sequences into clusters of orthologous genes (COGs)
by their sequence similarity and length [117]. By default, COGs are defined at a minimum of 70%
amino acid identity, and the alignment coverage for the longer sequence is 80% at minimum.

The CD-HIT output file is then parsed, and marker genes within the dataset are selected for
inclusion in the alignment [117]. By default cognac identifies core genes to a given set of genomes;
however, the selection criteria are customizable to allow for flexibility when creating alignments
for various applications. The default selection criteria for selecting marker genes are: 1) present
in 99% of genomes, 2) present in a single copy in 99.5% of genomes, and 3) ensuring that there
is at least one variant position in the gene sequence. Allowing some degree of missingness allows
for assembly errors that may arise in large datasets. We also allow the user to input a minimum
number of genes to be included, and a minimum fraction of genes that are allowed to be missing,
as genomes that don’t share a sufficient number of phylogenetic markers may be problematic for
some types of phylogenetic analysis and/or be indicative of problematic samples.

Once the marker genes are identified, the individual gene alignments of the amino acid se-
quences for each gene are generated with MAFFT [118]. Prior to alignment, redundant sequences
of each gene are identified, and only the unique alleles are input to MAFFT. In particular, for each
gene identified by CD-HIT, we first look for exact string matches within each gene cluster and
select the representative unique alleles. The unique alleles are input to MAFFT, and the amino
acid alignment is generated. The output gene alignment is then parsed, replicating the aligned
sequence corresponding to each duplicated allele, generating the alignment for the entire set of
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alleles. Because MSA is computationally intensive, minimizing the number of sequences to align
helps to reduce the associated computational overhead, leading to significantly reduced memory
consumption and run-time.

Finally, the individual genes are concatenated into a single alignment to be used in downstream
analysis. The alignment can then be input to commonly used programs for generating phylogenetic
trees, such as RaXML or FastTree, to create a maximum likelihood Maximum Likelihood (ML)
tree or approximate ML tree, respectively. We have included the ability to directly generate a
neighbor-joining tree within the R package, to allow users to create a tree easily. cognac is well
suited to generating alignments for extremely large datasets, and in these instances, the compu-
tational workload for ML based methods may be prohibitive, and therefore creating a neighbor-
joining tree may present a good option. Neighbor-joining trees are a distance-based method that
requires a much less computational overhead relative to ML based methods. While ML methods
are likely to produce better results, the increased speed may be desirable for situations where a
high degree of precision is not required.

Additionally, several optional outputs may be generated. We provide the functionality to gen-
erate a nucleotide alignment by mapping the corresponding codons to the amino acid alignment.
We use gap placement in the amino acid alignment to position the corresponding codons from the
nucleotide sequence of each gene, generating a codon-aware nucleotide alignment. This has the
added benefit of increasing the number of variant positions in the alignment, which are a prod-
uct of synonymous substitutions. This is potentially useful for applications where maximizing
variation is key. We also provide functionality for parsing the alignments, including eliminating
gap positions, removing non-variant positions, partitioning the alignment into the individual gene
alignments, removing low-quality alignment positions, and creating distance matrices.

cognac was developed for R version 4.0.2. C++ code was integrated via the Rcpp package
(version 1.0.3) and was written using the C++11 standard [119]. Multithreading is enabled in the
C++ code via RcppParallel, which provides wrapper classes for R objects used by Intel Threading
Building Blocks parallel computing library. Multithreading for R functions was enabled via the
future.apply package (version 1.3.0). Functions for analysis of phylogenetic trees were enabled
via the APE R package (version 5.3). [120].

2.4 Results

To demonstrate the utility of our tool, we created genus-level core gene alignments for 27,529
genomes from eight clinically relevant species of bacteria (Table 2.1). The number of genomes
included from each genera had a wide range from 24 for Pluralibacter to 11,639 for Escherichia.
cognac was run, requiring that at least 1000 genes that qualify as core genes included in the align-
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Genus Number of genomes Total number of coding sequences Number of core genes Alignment length (amino acid residues) Run time (min) Memory usage (GB)
Citrobacter 262 1,356,975 1864 590,749 14.78 3.4

Enterobacter 1947 9,575,752 1671 551,522 105.81 37.39
Escherichia 11,639 61,042,774 1353 387,857 693.38 223.81
Klebsiella 9879 55,944,623 1957 631,196 980.95 184.86

Pluralibacter 24 131,798 1919 611,547 2.88 1.21
Proteus 207 806,518 1081 305,078 4.94 2.41

Pseudomonas 3051 19,509,251 1065 313,694 95.42 47.83
Serratia 520 2,673,835 1109 327,628 14.1 6.84

Table 2.1: Description of dataset and run statistics for the analysis in this study

Figure 2.2: cognac is able to maintain reasonable run time even for very large datasets. All runs
include: generating the amino acid alignment, mapping back to the nucleotide sequence, creating
a distance matrix, and neighbor-joining tree. (A) For each genus, the run time was plotted against
the number of genomes included in the analysis. (B) The composition of the run time by step

ment and genomes missing greater than 1% of core genes were removed. This was an extensive
data set with the potential for inaccurate species assignment or assemblies to be of poor quality, en-
suring that these genomes do not limit the number of core genes included. Additionally, for our test
runs, we included the optional steps to generate the nucleotide alignment, create a pairwise single
nucleotide variant distance matrix from the nucleotide alignment, and generate a neighbor-joining
tree.

All runs finished in less than a day, and ranged from three minutes to 16 h and 21 min (Table
2.1). Run-time grew linearly as the number of genomes increased (Figure 2.2A). For all runs,
with the exception of Pseudomonas, generating the MAFFT alignments was the largest portion
of the total run-time (Figure 2.2B). The CD-HIT step was the highest fraction of runtime for
Pseudomonas due to the larger genome size and the large degree of pan-genome diversity observed
for this genus (Table 2.1).
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To assess the magnitude of the reduction in the number of sequences that were aligned by se-
lecting only the unique alleles of each gene, which is related to increased computational efficiency,
we calculated the number of unique alleles per core gene as a fraction of the number of genomes
(Table 2.1, Fig. 3a). We observed a strong inverse relationship between the number of genomes
included and the number of unique alleles identified within the dataset (Fig. 2.3b). As a fraction
of the number of genomes, Klebsiella had the lowest range of unique alleles with 0.02% (n=2) to
6.07% (n=600), with a median of 1.13% (n=112). Pluralibacter had the fewest genomes and had
the highest proportion of unique alleles, with a maximum value of 79.9% unique alleles (n=19).
This substantially decreases the number of sequences that need to be aligned, enabling cognac

to scale to very large datasets. Because organisms are related genealogically, sequences in the
genome are not independent, sharing a common ancestor. Therefore adding additional genomes
does not necessarily expand the number of unique alleles for any genes, and all of the sequences
may be represented by a substantially reduced subset of the number of samples.

We then wanted to analyze the effect of converting the amino acid alignments to nucleotide
alignments with respect to amplifying the sequence diversity. The raw number of pairwise substi-
tutions was calculated between all genomes from both the amino acid alignment and nucleotide
normalized to the alignment length (Fig. 4). This greatly expanded the quantity of genetic vari-
ation contained in the alignment, although to different degrees for different datasets. This may
reflect non-biological processes. For example, different data sets may have more diversity due to
non-random sampling of the diversity within each genus. Additionally, the magnitude of the phy-
logenetic distances between isolates may not be uniform within different taxonomic assignments.
However, biological factors may also play a role in the observed genetic distances. For example,
the lowest amount of diversity was observed in Pseudomonas. The published mutation rate for E.
coli is 2.5 times higher than that of P. aeruginosa, suggesting that the differences in diversity may
be a function of the mutation rate in these organisms [121].

Because identifying core genes is central to cognac performing effectively, we tested the ability
of our approach to rely on the input gene annotations and CD-HIT for clustering to identify a set
of core genes accurately. We used the Panaroo pipeline to define gene content and benchmark the
cognac algorithm. Panaroo has been proposed as a more rigorous approach for identifying gene
families in prokaryotic genomes [122]. First, CD-HIT clusters genes by sequence identity, then
a graph-based algorithm that identifies gene families by comparing the genomic context across
the input genomes to more accurately identify genes related by vertical descent. This pipeline
accounts for many common errors in genome annotation arising from multiple sources: errors
in the assembly, fragmentation of the genomic sequence across multiple contigs, contamination,
and the diversity within gene families. To compare the ability of cognac’s default algorithm to
identify core genes with that of the Panaroo pipeline, we used a real-world dataset of Klebsiella
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Figure 2.3: The fraction of unique alleles per gene is inversely proportional to the number of
genomes in the dataset. (A) The distribution of unique alleles per core gene included in the align-
ment as a fraction of the number of genomes. (B) The relationship between the number of genomes
and the median fraction of unique alleles for each gene
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Figure 2.4: Mapping back to the nucleotide sequence of core gene alignments expands the num-
ber of variants for phylogenetic analysis. Pairwise distance matrices were constructed with the
raw number of substitutions of the amino acid and nucleotide alignments. Histograms show the
distribution of substitutions per position in the alignment. Lighter colors represent the amino acid
distances, and darker colors represent the nucleotide distances
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pneumoniae genomes collected from University Hospital in Ann Arbor, Michigan. This dataset
constitutes a representative sampling of the species diversity in Klebsiella pneumoniae, containing
95 unique sequence types representing infection and colonization isolates.

We ran cognac and Panaroo with the default parameters. In total, cognac’s CD-HIT command
identified 3472 core genes. Of these core genes, 3332 exist as single copies in all input genomes
and would be included in the output alignment. Panaroo identified 3808 core genes, and 3249
correspond to single-copy genes. There was a significant overlap between the two sets of core
genes, with 2989 genes classified as core and single-copy genes by both methods. Two genes
were classified as core by cognac and not by Panaroo. For each gene, the pairwise identity was
calculated from the corresponding MAFFT alignment. Comparison of the genetic distances for
these genes revealed that these genes were high identity: a minimum pairwise sequence identity
of 97% and 96%, respectively, was observed. Panaroo defines orthologues by gene neighborhood,
and these genes were transposed into a different locus in a subset of genomes and were classified
into different gene clusters by Panaroo. However, given the high identity of these genes, it is likely
that these genes are indeed a core orthologous group. Core genes classified by Panaroo and not
cognac were primarily due to differences in sequence length. cognac uses a threshold of 80%;
however, Panaroo uses no such restriction. In 282 cases (82.9%), Panaroo identified clusters with
genes that differed in length by more than 80%. The median length differential between the longest
and shortest sequence in these clusters was 30.7% as a fraction of the longer sequence, with a range
of 4.32-79.8%. In the remaining 58 cases, gene clusters were erroneously split between multiple
clusters by CD-HIT.

Three hundred thirty-eight genes were classified as multi-copy by Panaroo and single copy by
cognac. In 336 cases, the differences in length above the 80% threshold could explain why at least
one allele was not classified into the same cluster by CD-HIT. The percent difference as a fraction
of the longer sequence ranged from 4.63-79.7%, with a median of 50.3%. In the remaining two
cases, genes classified into a single cluster by Panaroo were divided into two separate clusters by
CD-HIT separately, both of which were core genes.

The run-time for the cognac’s marker gene detection, including running CD-HIT and parsing
the results, was 2.65 minutes. The total run-time for Panaroo was 186.3 minutes. In this case, there
are 336 additional core genes, corresponding to an increase of 9.68%. However, while Panaroo
could identify a higher number of core genes, this came at the cost of a 70.3% increase in run-time.
This analysis supports cognac’s ability to rapidly identify a majority of core genes. Still, some
sacrifice is made regarding speed in terms of missing a subset of core genes that more rigorous
approaches may identify.
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2.5 Discussion

We present a method to rapidly identify over 1000 marker genes and generate concatenated gene
alignments that is capable of handling diverse bacterial genomes. Recently, we used this method
to generate a core genome alignment and maximum likelihood tree for 52 genomes in the fam-
ily Bacteroidetes, illustrating the utility of this tool to create gene trees over large phylogenetic
distances [123]. Importantly, phylogenetically informative marker genes are selected using a data-
driven approach, without any knowledge of the input genomes a priori, which allows for flexible
selection of marker genes that are tailored to any input dataset.

Our approach relies fundamentally on amino acid sequence comparisons. Translation provides
a natural compression algorithm, which has several advantages. First, the amino acid sequences
have a third of the length of the corresponding nucleotide sequence. Because the length of the
input sequences is a major contributor to the computational complexity of MSA, this reduction
in length significantly improves performance and scalability [124, 125]. Additionally, amino acid
sequences have a higher degree of conservation relative to nucleotide sequences [126]. This en-
ables us to leverage redundancy in the codon code to identify orthologous genes and generate more
accurate alignments. This enables a more robust and rapid approach for identifying and aligning
orthologous genes, especially when applied to phylogenetically diverse datasets.

When performing computationally intensive procedures, amino acid sequences have many ad-
vantages; however, nucleotide alignments may be preferable for some applications. To address
this, we provide the optional functionality to map the corresponding codons back to the amino
acid alignment to return the nucleotide alignment. This can substantially increase the sequence
variation contained in the alignment, which may be useful for applications where it is important to
distinguish between closely related isolates. Additionally, we leverage the information contained
in the amino acid sequences to produce a codon-aware alignment. This allows for greater accu-
racy in the placement of functional residues within the gene sequence and reduces the potential for
misalignment of codons that may occur when aligning nucleotide sequences.

An important feature of our algorithm is that it relies only on annotated whole-genome assem-
blies, which provides several advantages over commonly used techniques of aligning raw sequenc-
ing reads to a reference genome. First, with respect to the size of the files, assemblies are a small
fraction of the files containing the raw sequencing data. Second, cognac does not require selection
of a reference genome. Different choices of reference genome have been shown to have large in-
fluences on the quality of the output alignment, potentially amplifying the frequency of mapping
errors [127]. Additionally, the mapping accuracy is severely compromised when considering di-
verse datasets, even within a species. This limits the application of this method to diverse datasets.
Finally, since our approach relies on assemblies, this enables us to analyze genomes sequenced on
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different platforms, allowing for increased sample size. For this study, we used only high-quality
assemblies. Low-quality assemblies may be missing substantial numbers of genes, limiting the
number of core genes identified for a given dataset, especially for small numbers of genomes.

Other assembly-based methods for estimating the genomic distance between genomes use di-
mensionality reduction techniques such as k-mers or the MinHash algorithm to estimate the dis-
tance between genomes [128, 129]. These methods have the advantage that they can leverage
non-coding regions as a source of additional variation; however, the natural structure of the data is
lost. Our method not only allows for an estimation of the genetic distances between isolates but
also produces an alignment that can be used in downstream applications. This has the potential to
leverage the alignment to identify recombinogenic genes and has the potential for use in gaining
biological insights into molecular evolution.

Our algorithm was able to scale to extremely large datasets. For a data set of 11,639 Escherichia

genomes, we were able to generate a neighbor-joining tree from a nucleotide concatenated gene
alignment in less than 17 h. This is accomplished by reducing the computational overhead of MSA
in two ways: (1) translating the sequences, effectively reducing their length, and (2) reducing the
number of sequences by only aligning unique alleles. For extremely large datasets, this results in
an approximately 99% reduction in the number of sequences that need to be aligned, allowing for
great improvements in scalability, and allowing for application to extremely large datasets.

2.6 Conclusions

In summary, cognac is a robust, rapid method for generating concatenated gene alignments that
scales to extremely large datasets. Our method uses a data-driven approach for the identification
of phylogenetic markers, which are efficiently aligned and concatenated into a single alignment
for downstream phylogenetic analysis. The pipeline is open source and freely available as an R
package. We expect our tool will be generally useful for many different types of analysis and will
enable evolutionary insights in a broad range of applications.

2.7 Availability of Data and Materials

Genomes for this study were downloaded from the Pathosystems Resource Integration Cen-
ter (PATRIC) [130], and are available from https://www.patricbrc.org/. All available genomes
from the genera of interest available as of 06/01/2020 that were isolated from humans and
met the criteria for good quality were downloaded from the PATRIC FTP server. Quality
was assessed for completeness, contamination, coarse consistency, and fine consistency via
the CheckM algorithm within the PATRIC genome annotation service [131, 132]. Additional
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genomes used in this study were collected as part of a longitudinal study of carbapenem-
resistant organisms and are available from RefSeq under BioProject PRJNA603790, and PR-
JNA690239 [133]. All genome annotations were generated with RAST [114]. cognac source
code is available at https://github.com/rdcrawford/cognac. Scripts used in benchmarking are avail-
able at https://github.com/rdcrawford/cognac paper. Additionally, a docker image is available at
https://hub.docker.com/repository/docker/rdcrawford/cognac.
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CHAPTER 3

A Comparative Analysis of Regional Horizontal
Gene Transfer Across Three Distinct US States

3.1 Introduction

CRE represents a critical antibiotic resistance threat due to their high rates of multi-drug resis-
tance, ability to transmit effectively in healthcare settings, and their association with high rates of
morbidity and mortality in infected patients [5]. While there are epidemic strains of CRE that dom-
inate in certain regions, overall CRE is extremely diverse with respect to both species and strains
[134, 135, 136, 71]. This diversity has been driven by the frequent horizontal transfer of carbapen-
emase enzymes within and between Enterobacterales species, with commonly observed species of
CRE including Klebsiella pneumoniae, Escherichia coli, Citrobacter freundii, and Enterobacter

cloacae [63]. Moreover, for each of these species, many strains are commonly observed in health-
care settings, with new prominent strains constantly emerging [137, 36]. Thus, preventing CRE
infections requires not just preventing the clonal spread of known CRE threats but also detecting
the emergence and spread of new CRE strains with epidemic potential. Critical to containing new
strains of CRE is an improved understanding of the pathways by which mobile elements harbor-
ing carbapenemase enzymes are spread, and the factors determining whether a strain acquiring a
carbapenemase will go on to propagate within a healthcare facility and across a region.

Whole-genome sequencing has proved transformative for our ability to track the transmission
pathways of antibiotic-resistant organisms [138]. However, progress in tracking the transfer of
carbapenemases, and other ARGs, has lagged behind due to technical challenges associated with
characterizing the mobile elements carrying them [35]. While ARGs are most often carried on
plasmids, an individual ARG can be present in many different plasmid contexts, and plasmids can
harbor a variable set of different ARGs [6]. Making things even more complex is that even within
lineages stably associated with carbapenemases, the associated transposon can jump into different
strain-associated plasmids [33]. This lack of stability of ARGs in the context of the plasmids that
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disseminate them can make it challenging to deduce their pathways of transfer between differ-
ent strains and species. Thus, past studies tracking the specific pathways of ARGs transfer have
been largely restricted to transfer events within patients or hospitals, where the transfer is caught
in action, or to cases where the transfer is to a recipient lineage that is typically not associated
with the ARGs [37]. However, most transfer events likely occur in the gut of asymptomatically
colonized patients, thereby not being directly detected, and multiple transfer events into individual
lineages are likely commonplace [139, 3]. Thus, effectively monitoring the emergence and spread
of resistance threats more comprehensively will require new genomic analysis strategies.

In this study, we sought to trace the importation, transmission, and horizontal transfer of the
KPC gene across regional healthcare networks in three US states by performing genomic analysis
on comprehensive collections of regional KPC-harboring CRE strains. To enable this, we devel-
oped a novel marker gene-based approach that enabled us to track KPC plasmid transfer using
short read sequencing data and identify transfer events occurring between circulating strains in the
same region. Using this approach, we show that while the horizontal transfer of KPC frequently
occurs in all three states, the strains and species involved, as well as the overall contribution to
regional CRE burden, differ substantially across the three states.

3.2 Results

3.2.1 Using Phylogenetically Informed Marker Genes to Monitor the Pres-
ence of Plasmids

We developed a novel phylogenetic approach to track the spread of KPC among different CRE
species and strains across three US states. While plasmids harboring KPC, and other ARGs, can
be highly variable in gene content, we hypothesized that there may be defined sets of core plasmid
genes that can serve as a reliable marker of plasmid presence and thereby be used to track plasmid
transfer into different bacterial lineages. To identify these marker genes, we extracted genes from
328 complete KPC plasmids and identified clusters of genes that were gained and lost across the
phylogeny of 1823 Enterobacterales genomes in a highly correlated manner. To test the accuracy of
our approach to identifying genes that travel together, we used a set of publicly available complete
genomes and evaluated whether genes grouped into marker gene clusters were found to co-occur
on the same plasmids (Figure 3.1A). In total, the precision was very high, with 96.6% of cluster
genes located on the same contig in complete genomes (Figure S3). Across all marker gene clusters
predicted to be present in complete genomes, 84.0% of clusters had 100% precision (Figure S3A).
Thus, the identified clusters of genes were reliable markers for the presence of a plasmid.
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Figure 3.1: Description of genomic data used in this study. Counts of the isolates included with
respect to: (A) source of collection from the three EIP collection states and public sources, (B)
species, (C) KPC status, and (D) sequence type. (E) Approximate maximum likelihood tree of
core genes shared across the isolates included in the analysis, rooted at the midpoint.

3.2.2 Identifying Marker Gene Sets Linked to the Gain and Loss of the KPC
gene

While all of the genes in this analysis had been observed on a KPC-carrying plasmid previously,
plasmids differ with respect to the strength of their association with KPC (Figure S3E). To focus
our analysis on gene clusters which are reliable markers of KPC transfer, we only included clusters
with enrichment in KPC co-transitions (i.e., KPC gain/loss occurring on the same branch of the
phylogeny and in the same direction as cluster gain/loss (Figure S4)). This resulted in 35 marker
gene clusters with a strong association with KPC; 92.28% of the KPC+ isolates from the current
study were assigned at least one cluster, with a median of two clusters assigned per genome (Figure
3.2B). The presence of multiple clusters could reflect plasmid fusion or strains harboring multiple
plasmids associated with KPC and transposon-mediated hopping between them.

Next, we examined the functions of genes assigned to the KPC-associated gene clusters to un-
derstand what makes them good markers (Figure S5). While most genes lacked annotation, most
of the annotated genes assigned to clusters were assigned to essential plasmid functions, including
conjugation and DNA processing enzymes. In contrast, these marker gene clusters rarely included
plasmid cargo, such as AMR genes. This functional analysis supports our approach, having iden-
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Figure 3.2: Distribution of KPC associated gene clusters in the EIP genomes. (A) Description
of the algorithm to identify gene clusters to serve as markers of KPC plasmid presence. First, a
gene presence-absence matrix and a phylogenetic tree are input. Ancestral state reconstruction is
then used to define gene transition edges. Next, the correlation coefficient for each pair of genes is
calculated by their presence and absence on each transition edge. Finally, hierarchical clustering
is used to define gene clusters. (B) Heatmap indicates gene clusters’ presence and absence across
the entire EIP dataset. Rows are sorted by the midpoint-rooted approximate likelihood tree, and
columns are sorted with hierarchical clustering. (C) Counts of each gene cluster are stratified by
state, with colors indicating species assignment. (D) Counts of each gene cluster are stratified by
state, with colors indicating sequence type assignment.
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tified a set of conserved plasmid backbone genes whose presence can be used to monitor plasmid
transfer.

3.2.3 KPC-associated Plasmid Marker Genes are Widely Disseminated
Across Geography and Phylogeny

Having identified gene markers of KPC plasmids in our isolate collection, we next sought to de-
scribe their spread across species, strains, and states. A majority of marker gene clusters were
identified in CRE genomes from all three states, illustrating the widespread transmissibility of
these healthcare-associated lineages and the plasmids they carry. While gene clusters differed with
respect to the strength of association between different species and strains, 92.9% of the KPC-
associated gene clusters were observed inK. pneumoniae at least once (Figure 3.2C). This finding
is consistent with the ability ofK. pneumoniae to acquire and maintain diverse plasmids 1, and
supports its hypothesized role as a key trafficker of antibiotic resistance 1. WithinK. pneumoniae,
we observed that certain clonal groups harbored much of the cluster diversity, with clonal group
(CG) 258, in particular, is associated with 71.4% of marker gene clusters (Figure 3.2D). Thus, de-
spite a largely stable relationship between CG258 and KPC, different plasmids are inconsistently
associated with KPC, which is consistent with previous work which has shown frequent shuffling
of plasmids harboring KPC in CG258 [36].

In contrast to the diversity of clusters associated with CG258, there are other examples where a
set of KPC-associated gene clusters appear stably associated with a lineage. For example, Enter-

obacter cloacae ST171 was stably associated with three clusters, and in the few cases of cluster
loss, there was no evidence of onward transmission. However, while these clusters were stably
associated with ST171, these clusters do not appear restricted to a particular genetic background,
as the individual gene clusters are observed across many other Enterobacter and Klebsiella STs
(Figure 3.2).

3.2.4 Horizontal Transfer of KPC-associated Gene Clusters is Frequent
Within Regions, but Imported Clusters Spread More Widely

We next sought to differentiate between KPC-associated gene cluster acquisitions which occurred
within a state, representing recent HGT, and those that occurred outside of a given state, indicat-
ing importation from another location. To this end, we leveraged a large collection of contextual
genomes from other regions and performed ancestral reconstruction to estimate where in the lin-
eage importation events occurred. We then identified which of the KPC-associated gene cluster
acquisitions occurred prior to importation into a given state (Figure 3.3A). Of all gene cluster ac-
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Figure 3.3: Characterization of gene cluster acquisition events across the input dataset. (A) Counts
of the classification of cluster acquisition events for KPC-associated gene clusters: HGT events
first observed in a state and importation events where a lineage was associated with a cluster
before being observed in a given state. The prevalence of KPC-associated gene clusters across the
strains observed in this study characterized as: (B) HGT and (C) importation events, respectively.
(D) Shannon diversity index of the HGT acquisition edges stratified by state and HGT, importation
status of the cluster acquisition event.

quisitions that were observed, most of them corresponded to HGT events within the state (n =
248), with fewer events occurring prior to importation (n = 106). However, despite intra-state
HGT events being more common, historic events propagated more widely, as evidenced by the
prevalence of clusters originating from importation (n = 807) being higher than the prevalence of
clusters originating from intra-state HGT (n = 452) (Figure 3.3B). This observation is consistent
with imported strains that are already stably associated with KPC being more apt to spread across
regional healthcare networks. A Wilcoxon rank sum test confirmed that significantly more isolates
arose from importation relative to HGT clusters (p = 6.291e-09).

Although overall imported KPC-associated clusters spread more widely than those acquired
within states, we next explored whether there were differences in the extent of dissemination after
importation vs. acquisition across states, species, and STs. Consistent with the overall trends, we
found that in MN and CT, imported clusters spread more widely than those derived from local
HGT events (Figure 3.4A, p = 2.52x10-7 and 3.46x10-4, respectively). In both states, this trend
was driven by large clonal expansions traced back to imported CG258 isolates, as compared to
singleton observations for many local HGT events in non-clonal lineages. In addition to the larger
clonal expansions associated with imported clusters, they also tended to spread to multiple facilities
more than locally acquired clusters, supporting both their stability and propensity for healthcare
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Figure 3.4: Analysis of the propagation of KPC plasmid genes. (A) Counts of isolates observed
after HGT or acquisition events by state and importation status. Wilcoxon rank sum test p-values
the significance between the distribution of counts with respect to HGT and importation isolates in
each state. (B) Fraction of KPC-associated gene cluster acquisitions which are observed in more
than one facility stratified by state and HGT, importation status of the cluster acquisition event.
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transmission (Figure 3.4B).

3.2.5 Nucleotide Identity of KPC-associated Cluster Sequences is Corre-
lated With the Site of Isolation

While most KPC plasmid-associated gene clusters were observed across all three states, we hy-
pothesized that if we are truly detecting recent HGT occurring between isolates within each region
that the sequence variation within these genes would be reflective of the proximity at which isolates
were sampled. To test this hypothesis, we first considered all isolates, regardless of whether they
represent local HGT, and asked whether cluster genes tend to be more similar within a state versus
between states. Indeed, supporting the local proliferation of KPC plasmid-associated gene clus-
ters via transmission and HGT, we observe significantly higher nucleotide identity among cluster
genes within a state than between states (Figure S6A). Next, we focused on high-confidence cases
of local HGT. We hypothesized that if HGT was indeed local and recent, HGT recipients should
have a high cluster sequence identity to a putative donor strain within the same state. To this end,
we subset down to HGT singletons, defined as isolates derived from HGT within a given state, but
for which it was the only isolate observed descending from that cluster acquisition event (i.e., iso-
late count in Figure 3.4 of one). Supporting our detection of local HGT, we observed significantly
greater nucleotide identity between gene clusters from HGT singletons and gene clusters in other
isolates within a state than those collected outside the state (Figure 3.5A).

Having observed that local HGT events are discernable at the level of gene cluster nucleotide
identity, we next sought to evaluate whether, within a state, we could detect signatures of HGT
within individual healthcare facilities. Indeed, KPC-associated gene clusters from HGT singletons
have significantly higher nucleotide identity than gene clusters from other isolates from the same
healthcare facility as compared to other facilities from the same state (Figure 3.5B). Taken together,
these results corroborate our hypothesis that our approach is detecting recent HGT events and that
using marker gene clusters provides sufficient resolution to provide insight into the locations of
putative HGT events.

3.2.6 Monitoring of KPC-associated Gene Clusters Enables Tracking
Clonal Dissemination and HGT Within and Between Healthcare Fa-
cilities and Regions

Having found that genetic variation within KPC-associated gene clusters can enable tracking
within and between states, we next examined in detail the transfer and clonal spread of the cluster
with the highest number of HGT events. This cluster was observed in all three states and in a vari-
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Figure 3.5: Alignment distance distribution of HGT isolates within and between sources of iso-
lation. Concatenated gene alignments for all gene clusters were generated individually, and the
pairwise alignment substitution distance was calculated for HGT singletons, isolates which were
the only observed as the only isolate with an identified cluster acquisition as these were the most
likely set of HGT recipient isolates. Distance distributions were then compared for isolates col-
lected (A) within and outside each state and (B) within a facility and outside of the facility, within
the same state. Wilcoxon rank sum test p-values are shown.

ety of species and ST contexts (Figure 3.6). To facilitate deeper insights into transfer patterns, we
compared the core-genome phylogeny with the phylogeny constructed from plasmid-cluster genes
(Figure 3.6). Examining the co-phylogeny plots for these two trees shows clear patterns of HGT
in different strain backgrounds, as evidenced by the independent acquisition of the gene cluster
numerous times (Figure 3.6A). Moreover, there is a clear geographic partitioning of HGT events,
whereby isolates from MN and TN form distinct clusters on the gene cluster phylogeny, with these
local plasmid gene clusters entering different species and strain backgrounds within the respective
regions. In MN, this gene cluster was observed primarily in CG258, with multiple local trans-
fer events, primarily into less prevalent Klebsiella and Enterobacter STs. In contrast, in TN, this
plasmid gene cluster is far more widely dispersed, having been transferred to ST307 Klebsiella,
ST110 Enterobacter, as well as several less prevalent STs of Klebsiella, Enterobacter, E. coli and
Citrobacter.

Lastly, to provide more regional context to the transfer of this plasmid gene cluster, we exam-
ined its presence across healthcare facilities in MN and TN over time (Figure 3.6D). In MN, this
cluster was first identified in CG258 in 2012, with many isolates appearing in multiple facilities af-
ter a single importation event. Subsequently, beginning in 2015, several HGT events were observed
intoK. pneumoniae andE. cloacae isolates observed across several facilities. In TN, importation
events of this cluster were observed in E. cloacae ST171, E. cloacae ST114, andK. pneumoniae
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Figure 3.6: Analysis of a gene cluster propagation across MN and TN. (A) co-phylo plot showing
the approximate maximum likelihood trees for the core gene alignment (left) and the plasmid gene
tree (right). Edges are colored by strain in both trees, and the lines connecting tips of the trees are
colored by the state of isolation (B) concatenated gene tree for the plasmid genes showing the edge
lengths. (C) Counts of species (top) and sequence types (bottom) are predicted to have the gene
cluster. (D) Timeline of acquisition events with time on the x-axis and facility on the y-axis. The
size of the points is proportional to the number of isolates and colored by species. Inner circles
indicate HGT or importation into facilities.

ST307, with dissemination across multiple facilities. In total, we observed 21 HGT events for
this cluster occurring in TN facilities, with 71% of these HGT isolates having overlapping facility
exposure with at least one importation isolate.

3.3 Disscussion

Public health departments are increasingly embracing genomic surveillance to track emerging
threats. To effectively use these data to track not just clonal spread but also dissemination of
mobile elements will require novel genomic analysis strategies to overcome the complex evolu-
tionary trajectories of plasmids harboring cargo of interest. In this work, we defined a new method
for identifying marker genes for tracking the spread of KPC plasmids by exploiting the correlated
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movement of plasmid genes with each other and with KPC. Applying this approach to comprehen-
sive collections of KPC-carrying isolates from three US states, we were able to track KPC-carrying
plasmids as they spread across large geographic distances, were transferred into local bacterial
populations, and spread across regional healthcare facilities.

Several previous studies of HGT in hospital isolates characterized HGT events occurring in a
single hospital [140, 37, 38, 141]. This study adds to previous work by quantifying the degree
to which various strains propagate after an initial HGT event, thereby enabling comparisons of
the dynamics of HGT across diverse geographic locations. Additionally, many studies of HGT
in hospitalized patients have focused on HGT between different genera [37, 71, 31]. The method
we have developed here has the advantage that it can be used to identify HGT events that occur
between closely related isolates, potentially even within the same sequence type. This is espe-
cially beneficial because HGT has been shown to happen at increasing rates between isolates that
are more closely related phylogenetically [71]. Therefore only focusing on HGT within the same
genera would miss a substantial number of HGT events. Another advantage is that by relying on
annotated assemblies, we can incorporate genome sequences generated by different sequencing
technologies: incorporating long-read and short-read sequencing data in the same analysis. There-
fore we can leverage more of the available data to address questions regarding the evolution and
phylogeography of bacterial pathogens.

For gene clusters classified as HGT and importation, the magnitude of onward spread was sig-
nificantly different. The total burden of KPC was largely attributable to the importation of strains
already harboring KPC, which proliferated at higher rates relative to strains acquiring clusters
within a region. Imported strains were mainly K. pneumoniae, but not exclusively. The fact that
we were able to match these imported lineages with outside isolates of the same strain also car-
rying the same plasmid suggests a stable relationship between these strains and the plasmids they
carry, evidenced by transmission across large geographic distances. This suggests that these strains
are well adapted to the hospital environment and able to proliferate at higher rates relative to other
strains. Klebsiella pneumoniae CG258, in particular, was observed with a notable diversity of plas-
mid gene clusters and carried them over large distances, which has been documented previously
[39]. Recent HGT isolates may not have the same ability for transmission and are outcompeted,
potentially due in part to the fitness costs associated with plasmid carriage. In contrast, laboratory
studies have shown that Klebsiella pneumoniae can maintain large conjugative AMR plasmids
with minimal fitness cost [19]. In contrast, E. coli isolates were shown to have significant fitness
costs attributed to the conjugative machinery present on these plasmids, which was deleted as these
strains were propagated in culture, alleviating the fitness cost of the plasmid. This may present a
mechanism by which Klebsiella pneumoniae provides a vessel facilitating plasmid evolution via
recombination and rearrangement, which can then be spread to isolates.
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In TN, we noted a greater diversity of strains in which HGT was observed, as well as wider
dissemination subsequent to HGT. In contrast, in CT and MN we observed wider dissemination of
imported KPC harboring strains. The reasons for these differences are unclear. Variation in HGT
and transmission may be due to differences in the underlying patient populations, prevalence of an-
tibiotic usage, practices with respect to patient transfer, or differences in infection control practices.
Unfortunately, data on these metrics are unavailable, so we are unable to access this directly. TN
is notable for having higher antibiotic prescribing rates with 1046 prescriptions per 1000 residents
in contrast to MN and CT, which have 447 and 778 prescriptions per 1000 residents, respectively
[142]. Higher rates of antibiotic prescriptions may create a commensurate selective pressure to
acquire ARGs within circulating bacterial populations creating a diverse pool of AMR isolates,
which compete with the clonal lineages also circulating in the region. While only three states are
represented in this analysis, this raises an intriguing possibility for future research to analyze the
association between antibiotic prescribing and HGT of ARGs within bacterial populations.

This study has several limitations. First, while we have assembled a large, diverse dataset of
isolates to characterize gene cluster importation and HGT events, our approach relying on previous
collections of public isolates is far from a representative sample of the bacterial populations circu-
lating in the healthcare system. Therefore we may overstate the number of HGT events observed
within a given state because we can only identify the first observed instance of a plasmid and strain
pair as HGT. Additionally, this dataset is biased in that it disproportionately contains infection
isolates, as opposed to surveillance isolates. This may cause undersampling of lineages carrying
KPC which are capable of colonization and disseminating KPC plasmids but have a low potential
for virulence. Previous work has shown that infection isolates represent the tip of the iceberg, and
therefore we are likely missing some transmission events [45]. Additionally, we do not attempt
to differentiate between multiple HGT events in a given strain. This may overstate the number of
propagation events, which are, in reality, numerous independent HGT events. Our method using
hierarchical clustering assigns a gene to a single cluster. While this is useful for identifying specific
markers of a plasmid, some gene cassettes may be components of multiple diverse plasmids and
therefore do not appear strongly correlated to any given set of plasmid genes. This limits the frac-
tion of total plasmid genes assigned to any given cluster, dividing a plasmid into multiple clusters.
We only analyzed genes that were found on previously sequenced KPC plasmids. This limits our
ability to identify new plasmids, which may function to shuttle KPC through bacterial populations.
This method could be extended in the future to include all genes within a given dataset; however,
the diversity of isolates, plasmids, and regions made this intractable for our analysis. Finally, the
non-overlapping intervals of isolate collection do not provide a uniform snapshot of the prevalence
of CRE during the study. Also, differences in the duration of isolate collection may limit the ability
to compare across the different regions. The extended duration of collection and greater quantity of
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isolates in MN may provide a better representation of the circulating bacterial populations relative
to TN and CT. These differences in the time of collection and quantity of genomic data available
may limit the accuracy of statistics and limit the number of propagation events observed in the
states with shorter collection periods.

In conclusion, this analysis represents the first comparative analysis of HGT across multiple
statewide healthcare networks. We have shown that in a majority of cases K. pneumoniae CG258
are imported into a region and introduce the KPC plasmids they carry into diverse lineages of
Enterobacterales not previously associated with KPC. This was observed with multiple strains
within K. pneumoniae CG258 and multiple plasmids. We showed that while strains representing
predicted recent KPC acquisitions within a state were less prevalent, these newly carbapenem-
resistant strains have the potential to cause infections. In several cases, clonal isolates with the
same KPC-plasmid genes suggest the possibility of a single HGT event and subsequent transmis-
sion, resulting in multiple antibiotic-resistant infections.

While K. pneumoniae was the first species with epidemic potential observed with KPC; this was
not the only strain capable of disseminating KPC across geographic regions. E. cloacae ST114 and
E. cloacae ST171 were both observed importing KPC plasmids across multiple states, illustrating
the importance of genomic surveillance in characterizing emerging threats. Understanding the epi-
demiology and evolution of antibiotic resistance requires not only the challenging task of tracking
transmission networks of bacterial pathogens in patient populations but also tracking the transmis-
sion of plasmids within bacterial populations, adding enormous complexity. This work provides
a framework for leveraging large datasets of bacterial genome sequences to characterize KPC-
carrying plasmids and track their introduction into diverse bacterial populations, which enhances
the potential for virulence with severe consequences for public health.

3.4 Materials and Methods

Whole genome sequences were obtained for isolates collected as part of the Emerging Infections
Program (EIP) as described previously: confirmed carbapenem-resistant KPC+ isolates were col-
lected in three geographically diverse states: Connecticut (CT), Minnesota (MN), and Tennessee
(TN) [143]. Briefly, CT isolates were collected across the entire state from 2017-2018. MN iso-
lates were collected from 2021-2018. TN isolates were collected from 2016-2017 from all counties
except for counties in the Memphis-Delta and Northeast Tennessee region due to high healthcare
utilization rates by residents from states other than Tennessee.

Public Enterobacerales genomes used for this study were downloaded from PATRIC as of
04/23/2021 [144]. Additionally, assemblies from PRJNA603790, PRJNA690239, PRJNA401340,
and PRJNA415194 were also included for a total of 74,367 assemblies. All genomes were anno-
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tated using RAST [114]. Redundant assemblies from previous CDC studies were excluded from
the analysis (PRJNA292901, PRJNA292904, PRJNA288601, and PRJNA272863).

Concatenated gene alignments for the core genes of the full data-set of Enterobacteriaceae as-
semblies, and the EIP isolates and their matched nearest KPC+/KPC- neighbors, and complete
KPC+ genomes were generated with cognac (v1.0) [145]. FastTree was used to generate approx-
imate maximum likelihood trees for the core gene alignment of the EIP isolates, their matched
neighbors, and the complete KPC+ genomes [146].

To define gene content, CD-HIT (v4.7) was used to cluster genes by amino acid sequence
similarity [117]. Then for each gene cluster, the corresponding nucleotide sequences of each gene
were extracted and aligned with MAFFT (v7.310) [118]. Nucleotide alignments were then parsed
to identify gene clusters with at least 99% identity over the aligned sequence or fewer than two
substitutions. If an allele met these criteria for more than one gene cluster, it was assigned to the
cluster that minimized the number of substitutions.

To identify genetic markers of KPC plasmids, we implemented an approach to reconstruct the
ancestral states of each gene across the phylogeny, and define HGT events by the acquisition of sets
of genes that are correlated in their patterns of acquisition and deletion across multiple, independent
branches of the phylogenetic tree. To this aim, we employed maximum parsimony ancestral state
reconstruction to estimate the ancestral character states of each gene. This algorithm identifies
the minimum number of character state changes necessary to explain the distribution of character
states at the tips of the tree and has a long history of use in evolutionary biology [147, 148]. For
each gene, we then identified all the transition edges: the edges on the tree where there was a
change in absence or presence, representing the period in which a gene was acquired or deleted.
Ancestral reconstruction was performed by inputting the fastTree of the concatenated, core-gene
alignment and a binary gene presence in the absence of each plasmid gene observed more than
once. For each gene, the binary vector representing gene presence and absence was input to the
MPR function in APE to estimate the presence of a gene at each node [120].

The MPR results were parsed to identify the sets of genes that were acquired or deleted on each
edge, respectively. A gene transition event by gene matrix was created for each set of transitions
with at least two genes. Pearson’s correlation coefficient for the genes across multiple transition
edges was calculated using the stats package [149]. The gene correlations were then converted
to the true euclidean distance, and agglomerative hierarchical clustering was performed using the
“agnes” function from the cluster package (v2.1.2). To define the cluster transition edges, we iden-
tified all edges where at least 50% of the genes were present for each cluster. Cluster acquisition
edges were then defined as the last edge, proximal to the root with at least 50% of the cluster genes.
Cluster deletion edges were defined as any edge descending from an acquisition edge, with fewer
than 50% of cluster genes. Genomes that maintained at least 50% of genes from the acquisition

36



edge to the corresponding tip were classified as positive for a cluster. Many KPC-associated gene
clusters exhibited highly correlated patterns of presence and absence across the EIP genomes. Be-
cause these clusters likely represented components of the same plasmid, we then merged clusters
that were 90% similar with respect to the genomes they were present in, ensuring that all merged
clusters were always acquired on the same edge for a final total of 65 gene clusters most relevant
to our analysis.

For each set of genes corresponding to a KPC-associated gene cluster, the corresponding nu-
cleotide alignments from cluster-positive genomes were concatenated, and FastTree was used to
generate approximate maximum likelihood trees [146]. MPR was also performed by location and
strain to classify each edge of the tree.

All code generated for this study is available at https://github.com/rdcrawford. All analyses
were performed using R version 4.1.1 20. Plots and manipulation of phylogenetic trees was per-
formed using the Ape (v5.5) and phytools (v1.0-1) packages [120, 150]. Multithreading was en-
abled via the future.apply package (v1.0). Heatmaps were generated with pheatmap (v1.0.12).
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CHAPTER 4

Phenotypic and Genomic Diversification in Complex
Carbohydrate-Degrading Human Gut Bacteria

4.1 Preamble

This work represents a collaboration exploring the breadth and complexity of carbohydrate
metabolism in the microbiome and the genomic events that shape these behaviors. I performed
the genomic analysis of horizontal gene transfer: I developed and applied the method for identifi-
cation of HGT loci involving core genes, made the phylogenetic tree, performed BLAST analysis,
and I presented these results in figures 4.6, 4.7, and supplemental figure B7. My coauthors con-
ducted the remainder of the analysis. We published this work in mSystems: Pudlo, N. A., Urs, K.,
Crawford, R., Pirani, A., Atherly, T., Jimenez, R., ... & Martens, E. C. (2022). Phenotypic and
Genomic Diversification in Complex Carbohydrate-Degrading Human Gut Bacteria. mSystems,
7(1), e00947-21.

4.2 Introduction

Microbial communities in the distal intestines of humans and other mammals play critical roles in
the digestion of dietary polysaccharides [151, 152, 153]. Unlike proteins, lipids, and simple sug-
ars, which can be assimilated in the small intestine, the vast majority of nonstarch polysaccharides
(fibers) transit undegraded to the distal gut due to a lack of requisite enzymes encoded in the hu-
man genome [74]. Microbial transformation of dietary fiber polysaccharides into host-absorbable
organic and short-chain fatty acids is a beneficial process that unlocks otherwise unusable calo-
ries from our diet [154], shapes the composition and behavior of the gut microbial community
[155, 156, 157], provides preferred nutrients directly to the colonic epithelium [158, 159, 160],
and shapes the development of immune cell populations [161, 162].

The abundance of dietary fiber in the mammalian diet and the substantial chemical diversity
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within this class of molecules provide a prominent selective pressure that drives genome evolution
and diversification within symbiotic bacterial populations. The genomes of individual human gut
bacteria frequently encode dozens to hundreds more polysaccharide-degrading enzymes than hu-
mans secrete into the gastrointestinal tract, reflecting gut microbial adaptations to degrade dietary
fibers [153, 74]. As examples, the genomes of a few well-studied Gram-negative Bacteroides (Bac-

teroides thetaiotaomicron, Bacteroides ovatus, and Bacteroides cellulosilyticus) encode between
250 and over 400 CAZymes that collectively equip them to target nearly all commonly available di-
etary polysaccharides [163, 164, 165]. However, none of these three species is by itself capable of
degrading all available polysaccharides, a conclusion that was supported by early phenotypic sur-
veys of cultured human gut bacteria that encompassed species from other phyla [166]. These find-
ings suggest that individual microbes fill multiple, specific carbohydrate degradation niches and
that a diverse community is required to ensure degradation of the entire repertoire of dietary fibers.
Given that hundreds of different microbial species typically coexist in an individual over long time
periods [167], it is important to understand how many different polysaccharide metabolism path-
ways are present within the individual microbial species that compose a community and how these
traits are represented across strains and species. If some species possess very similar phenotypic
abilities, they may be functional surrogates or compete for similar niches and therefore seldom co-
occur. Members of the Bacteroidetes phylum are often among the most numerous bacteria in the
human colonic microbiota, with members of the genus Bacteroides often prominent in individuals
from industrialized countries [167, 168, 169]. These bacteria are well appreciated for their abilities
to degrade a broad range of polysaccharides [163, 164, 165, 170, 171] and modify disease states
in a bacterial species-specific fashion [172, 173, 174]. In this study, we empirically measured the
abilities of members of 29 different Bacteroidales species to grow on a custom panel of carbohy-
drates that span the diversity of plant, animal, and microbial polysaccharides. Our results reveal a
wide range of metabolic breadth between different species, indicating that some have evolved to
be carbohydrate generalists, while others have become metabolically specialized to target just one
or a few nutrients. A pangenome analysis of several related strains provides insight into the evo-
lutionary events that shape carbohydrate utilization among these important symbionts and reveals
a dizzying mosaic of heterogeneity at the level of discrete gene clusters mediating polysaccha-
ride metabolism. Based on the analysis of several variable loci, we provide evidence to support
a mechanism of lateral gene transfer that may account for this mosaic architecture. Our results
provide a glimpse into the metabolic breadth and diversity of an important group of human gut
bacteria toward polysaccharide metabolism. Given the large amount of genomic and metagenomic
sequence information that has been generated from the human microbiome, phenotypic studies
such as the one presented here represent important next steps in deciphering the functionality of
these organisms in their native gut habitat.
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4.3 Results

Phenotypes are the ultimate measures of biological function. However, large-scale phenotypic
analyses are still uncommon in surveys of the human gut microbiome, which have instead relied
on sequence-based approaches to infer function, often with substantial uncertainty. This lack of
phenotypic information is due partly to a lack of high-density (e.g., strain level) culture represen-
tation for the dominant taxa combined with a lack of defined growth conditions to measure the
behavior of these organisms. With the resurgence of gut microbial culturing, both of these gaps
have begun to close [175, 176, 177, 178], revealing an urgent need for scalable platforms to define
the actual behavior of these organisms. To address this gap, we assembled a collection of human
and animal gut Bacteroidetes and constructed a custom anaerobic phenotyping platform centered
around carbohydrate metabolism, a key function that symbiotic gut microorganisms contribute to
mammalian digestion [74]. This array consists of 45 different carbohydrates (30 polysaccharides
and 15 monosaccharides) that span the repertoire of common sugars and linkages present in dietary
plants and meat, as well as host mucosal secretions and some rare nutrients consumed in regional
populations or as food additives (see Figure B1 in the supplemental material for a summary of
polysaccharide structures).

The carbohydrate utilization abilities of 354 different human and animal Bacteroidetes strains
were measured by individually inoculating each into this custom growth array and automatically
monitoring anaerobic growth every 10 to 20min for 4 days (see Materials and Methods). Based
on the 16S rRNA gene sequence for each strain, this collection encompasses 29 different species
based on the requirement that each strain possesses at least 98% 16S rRNA gene identity to a
named type strain in a given species (Table S1a) (note that all but three strains, which were all
related to each other and to Bacteroides uniformis, met this criterion). The resulting 31,860 in-
dividual growth curves were first inspected manually and then subjected to automated analysis to
quantify total growth and growth rate parameters for each substrate (see Materials and Methods).
A normalization scheme was employed to compensate for general growth differences in the two
differently defined medium formulations employed (see Table S1a for a full list of strains assayed
and all raw and normalized growth measurements; see Figure B2 in the supplemental material for
an analysis of replicates).

4.3.1 Members of the Same Species Possess Similar Carbohydrate Utiliza-
tion Profiles

Growth results are summarized in Figure 4.1 and 4.2 and Figure B3 in the supplemental material.
Whether considered from the perspective of how many species degrade a particular polysaccharide
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Figure 4.1: (A) The number of species out of 29 tested that degrade each polysaccharide is listed
in order of decreasing degradation frequency from left to right. Since not all strains within a given
species necessarily have the metabolic potential to utilize each polysaccharide, colors illustrate
the percentage of strains within each degrading species that possess the indicated ability. (B) The
number of polysaccharides that a given species degrades is shown in decreasing order. The number
of strains tested for each species is listed in parentheses, and colors represent the percentage of
strains in each indicated species that degrade each glycan counted toward the total.

(Figure 4.1A) or how many individual polysaccharides are targeted by members of a particular
species (Figure 4.1B), there was substantial variability in carbohydrate utilization among the or-
ganisms surveyed (range, 1 to 28 polysaccharides degraded per strain; mean, 15.6). Some polysac-
charides like soluble starch/glycogen were degraded by a majority of the species tested, and yet
others like the edible seaweed polysaccharides carrageenan and porphyran were used by just one
or two strains.

Given the diversity in observed carbohydrate utilization phenotypes, we wished to address if
closely related strains display similar abilities or instead if strains of the same species have di-
verged from one another. To assist in visualizing the overall trends in carbohydrate utilization
across this phylum, we performed unsupervised clustering of the strains based on their carbo-
hydrate utilization profiles. While many species are not deeply represented by multiple strains,
clustering based on a combination of normalized growth and rate measurements largely grouped
strains of the same species together (Figure 4.2), and as expected, this clustering was driven mostly
by polysaccharide utilization abilities (see Figure B4 in the supplemental material).

Our data reveal that strains belonging to several individual species possess more similar
polysaccharide-degrading abilities to each other than their more distant relatives, a finding that
has importance for interpreting or predicting function based on community sequencing data. As
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Figure 4.2: Species are clustered by glycan utilization phenotype based on normalized total growth
level (Figure B4B). The magnitude of growth is indicated by the heatmap scale at the bottom
right. Columns at the left indicate the source (human or animal) and time period of isolation.
The cladogram at the far left shows the results of unsupervised clustering of the data based on the
normalized growth data shown. The species designations at the right are the results of 16S rRNA
gene sequencing (>98% identity to the species type strain was used to assign species). The region
containing mucin specialists B. massiliensis and B. intestinihominis is indicated but marked with
an asterisk because the 4 strains in these 2 species are not clustered perfectly in this region. All raw
and normalized growth and rate data for individual strains may be found in Table S1. See Figure
B3 for an expanded heatmap with monosaccharide data and individual strain names labeled. All
processed growth curves are available as source data.
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examples, all 56 strains of B. fragilis clustered together, reflecting their generally restricted abil-
ities to utilize forms of soluble starch/glycogen, inulin, and mucus O-glycans. Likewise, all 36
strains of B. uniformis, a species with a broader metabolic capacity that includes digestion of plant
cell wall hemicelluloses, were also grouped together into a single branch. The inclusivity of these
groupings was generally independent of the time period when strains were isolated or whether
they were isolated from humans or other mammals (Figure 4.2). Another important feature of
the observed species clustering is that the grouping does not mirror the overall phylogeny of the
gut Bacteroidetes. Rather, phylogenetically separated species often group adjacent to one another
based on similarities in carbohydrate metabolism (e.g., B. ovatus/B. xylanisolvens and B. cellulosi-

lyticus, and B. vulgatus/B. dorei and B. fragilis) (see Figure 4.3A for a phylogenetic tree based on
conserved housekeeping genes) [179, 180]. It is interesting to directly compare B. fragilis and B.

vulgatus/B. dorei, which are two groups with deep strain representation (Figure 4.2). Despite being
phylogenetically more distant, members of these two species possess similar abilities to degrade
starch and related molecules (glycogen and pullulan), inulin, and mucin O-glycans. The major
distinguishing feature between these groups is the presence of some pectin utilization, which is
often weak, among strains of B. vulgatus/B. dorei. Indeed, acquisition of growth abilities that are
unique with respect to species with an otherwise similar potential may be one way that species
avoid direct competition for the same niches.

Some polysaccharides, especially those present in the cell walls of dietary plants, occur in the
same physical context and presumably traverse the gut together, potentially exerting selective pres-
sure for bacteria to use them simultaneously. To test for the co-occurrence of different polysaccha-
ride utilization abilities within the 354 individual strains, we calculated the pairwise correlations
between the utilization of any two polysaccharides by the same strain (see Figure B5 in the supple-
mental material). This test might reveal tendencies to coutilize different polysaccharides that are
chemically different (positive correlation) or avoid using substrates from incompatible niches (neg-
ative correlation), if they exist. The presence of two different soluble starches (potato and maize
amylopectin) and two starch-like glycans (glycogen and pullulan) provides an internal control since
they are essentially identical in their sugar and linkage chemistry but vary in the proportion and
placement of branches as well as polymer length, crystallinity, and solubility (Figure B1). These
four molecules are utilized through a single degradation/transport system in the type strain of B.

thetaiotaomicron, which was included in our study [181]. As expected, the abilities to use these
four polysaccharides were among the strongest positive correlations (between 44% and 75%); al-
though, there was not a perfect correlation suggesting that some finer adaptation may exist even
for different structural forms of a chemically similar molecule.

We also observed positive correlations in the ability of bacteria to simultaneously utilize
polysaccharides within two different groups of plant cell wall polysaccharides (pectins and hemi-
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Figure 4.3: Host mucin O-glycan metabolism within the Bacteroides. (A) A phylogenetic tree
based on housekeeping genes that compares mucin O-glycan utilization across species. The di-
ameter of the black circles represents the number of strains tested within each species (sample
depth), whereas the size of the overlaid red circle corresponds to the number of strains exhibiting
O-glycan metabolism. Note that some species have either full or no penetrance of this phenotypic
trait and yet others like B. ovatus/B. xylanisolvens have more extensive variability among strains.
(B) Strains of B. ovatus (blue) and B. xylanisolvens (green) that show variable growth abilities
on mucin O-glycan (n=2 growth assays per bar, error bars are range between values). Gray his-
togram bars are total growth controls on an aggregate of the monosaccharides that all strains of
these two species grow on (Table S1) and are provided as a reference for overall growth ability on
a non O-glycan substrate. Data from two established O-glycan degraders, namely, B. massiliensis
and B. thetaiotaomicron, are also shown for reference. Species with black arrows were used for
pangenome analyses to compare genetic traits associated with mucin O-glycan metabolism. We
performed RNA-seq on three strains included in this pangenome analysis (black boxes) that were
positive for O-glycan utilization and an additional strain, namely, B. ovatus NLAE-zl-H59 (red
arrow, box), to see if there were unique genes/PULs present in strains that have the ability to grow
on mucin O-glycans.
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celluloses), as well as animal tissue glycosaminoglycans (Figure B5, green boxes highlight the
3 separate groups containing substrates with positive correlations within that group, although a
weaker correlation can be observed across groups). These correlations occurred despite the fact
that the polysaccharides within each of these groups often possess different structures but might
co-occur in plant material or digested animal tissue. In the case of the hemicelluloses, there was
even some apparent separation based on dicotyledonous versus monocotyledonous sources. The
predominantly dicot hemicelluloses (Figure 4.2, blue labels) and monocot hemicelluloses (Fig-
ure 4.2, green labels) show some exclusivity with respect to the bacteria that utilize them. Many
B. ovatus/B. xylanisolvens strains lack the ability to utilize the three dicot hemicelluloses (GalM,
GlcM, and XyG), whereas the ability to degrade those from monocots (OSX, WAX, and BBG) is
distributed more evenly. B. uniformis has a partially opposite pattern, preferring substrates from
dicots, while only degrading one of the two major monocot structures (BBG) and poorly degrad-
ing the two xylans tested (OSX and WAX). Similar observations were also made for pectins and
GAGs and could reflect adaptations to simultaneously harvest different nutrients from digesta par-
ticles derived from dicot plant cell walls or animal tissue ingested in a carnivorous diet. Finally,
there was a positive correlation between the utilization of α-mannan and dextran, two microbial
polysaccharides that are not known to occur together in foods or other sources of these polysac-
charides (Figure B5).

4.3.2 Specialization for Mucus O-linked Glycans

The most noteworthy correlation between polysaccharide utilization traits was observed between
the utilization of host-produced mucin O-glycans and many of the other polysaccharides tested.
Growth on a total of 19/30 polysaccharides showed negative correlations with the ability to uti-
lize O-glycans, with the strongest negative correlations being between O-glycans and the seven
different hemicelluloses (Figure B5). This negative correlation is observed easily by comparing
the rightmost column in Figure 4.2 (O-glycan utilization) with the respective columns for hemicel-
lulose degradation. Because this trend was observed across several species, it suggests that there
could be a more general exclusive relationship between the two niches associated with foraging on
mucus and hemicellulose. This idea is further supported by experiments described below, which
suggest that isolates of B. ovatus and B. xylanisolvens, both adept hemicellulose consumers, are
in the process of losing the ability to degrade O-glycans, relative to an ancestor that contained
multiple gene clusters involved in the metabolism of these structures.

Interestingly, the mucin O-glycan mixture was the only substrate for which we observed ab-
solute metabolic specialization among the substrates tested. A single, and only available strain
of Barnesiella intestinihominis exhibited the ability to exclusively utilize mucin O-glycans, along
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with a subset of the sugars that are contained in these structures (Figure 4.2; Table S1a). Three
strains of Bacteroides massiliensis exhibited similar behavior with very strong growth on mucin
O-glycans and only weak growth on soluble starches and a few other polysaccharides (Figure 4.2;
Table S1a). These three B. massiliensis strains were also restricted in the repertoire of simple
sugars with which they could metabolize; this list is limited to those found in mucin and other
host glycans (galactose, N-acetylgalactosamine, N-acetylglucosamine, N-acetylneuraminic acid,
and L-fucose; weak fructose utilization by one strain was the only exception). Members of these
two species are represented poorly in culture collections and remain lightly studied. However, their
specific adaptations for host mucin glycans may render them important members of the microbiota,
potentially thriving at the interface between the gut lumen and host tissue and relying exclusively
on the host to be sustained. The continuous supply of mucin in vivo could explain why some
species have become specialized for it as a nutrient, whereas dietary fiber degraders may need to
be more generalist since the substrates available to them change with the host’s meals.

4.3.3 Pangenome Reconstruction Reveals Extensive Genetic Diversification
Among Related Bacteroides Members

With a view of the carbohydrate utilization traits present in our gut Bacteroidetes collection,
we next sought to determine if certain variable traits were being gained or lost within strains
of certain species and if available genomes provide insight into the mechanisms driving ge-
nomic adaptations to particular nutrients. Connections between polysaccharide utilization phe-
notypes and the underlying genes involved have been explored systematically for a few Bac-

teroides species (B. thetaiotaomicron,B. ovatus, and B. cellulosilyticus) with partial analyses in
others [155, 165, 170, 171, 182, 183, 184, 185]. These studies have revealed that, in essentially
all cases, the ability to degrade a particular polysaccharide is conferred by one or more clusters
of coexpressed genes termed Polysaccharide-Utilization Locus (PUL)s) [186]. PULs share defin-
ing features, such as genes encoding homologs of outer membrane TonB-dependent transporters
(SusC-like), surface glycan-binding proteins (SGBPs; or SusD- and SusE/F-like), usually an asso-
ciated sensor/transcriptional regulator, and one or more degradative CAZymes (glycoside hydro-
lase [GH], polysaccharide lyase [PL], and carbohydrate esterase [CE]), as well as other enzymes
like sulfatases or proteases. Since the presence of one or more cognate PULs is required to utilize
a given polysaccharide and these genes typically exhibit large increases in gene expression in re-
sponse to their growth substrate, we rationalized that we could focus on traits that were variable
in closely related strains and locate the associated PULs by transcriptomic analysis to gain insight
into the basis of their acquisition or loss.

To test this hypothesis, we focused on members of two closely related species, B. ovatus and
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B. xylanisolvens, for which there is noticeable interstrain variation in their ability to use mucin
O-glycans (Figure 4.2 and 3). The investigation of these two species also benefits from substan-
tial culture depth and many strains with available sequences. The O-glycans attached to mucins
represent a diverse family of over one hundred different structures [187], albeit with common link-
age patterns (Figure B1). Correspondingly, the ability to utilize these glycans is a complex trait,
involving the simultaneous expression of at least 6 to 13 different O-glycan-inducible PULs in B.

thetaiotaomicron, B. massiliensis, B. fragilis, and Bacteroides caccae [155, 170, 183]. Among
the B. ovatus and B. xylanisolvens strains that surpassed the threshold for growth on O-glycans,
there was a continuous gradient of growth abilities, which could be attributed to variations in PUL
content and therefore gradations in the ability of the strains to access the many different structures
in the complex O-glycan mixture (Figure 4.3B). One hypothesis to explain this observation is that
some B. ovatus and B. xylanisolvens strains have gained the ability to utilize O-glycans relative to
an ancestor that lacked this phenotype. If so, the PULs they express during O-glycan degradation
might be unique to their genomes and may indicate HGT, as has been the case for the acquisition
of phenotypes such as porphyran, agarose, and gamma-carrageenan utilization in gut Bacteroides,
which are all components of integrative conjugative elements or mobilizable plasmids [179, 188].
An alternative hypothesis is that some B. ovatus and B. xylanisolvens strains are in the process of
losing this ability from a common ancestor. If so, the genomes of nondegraders may still contain
some PULs that are homologous to those present in more proficient O-glycan-degrading strains,
but these strains may have lost a key step(s) that has eroded their ability to express this phenotype.

To distinguish these hypotheses, we selected seven strains (black arrows in Figure 4.3B) that
vary in their ability to degrade O-glycans and for which genome sequences exist. Note that three
strains that degrade O-glycans were chosen initially because they were among the strongest de-
graders in our data set with sequenced genomes when we initiated these experiments. We later
identified strains with better O-glycan growth abilities and address one of these (strain H59) sep-
arately below. Four of the selected strains were B. ovatus (two positive and two negative for
O-glycan degradation); three strains were B. xylanisolvens (one weakly positive and two negative
for O-glycan degradation). One of these strains (B. xylanisolvens XB1A) has a finished circular
genome and was used as a scaffold to align the remaining six draft genome sequences, with man-
ual curation (see Materials and Methods), resulting in a nearly contiguous pangenome sequence
that captures the spatial arrangement of homologous and variable genes that are present in these
seven strains (see Table S2a in the supplemental material) (see https://www.ericmartenslab.org/ for
downloadable physical maps of the pangenome).

An analysis of the B. ovatus/B. xylanisolvens pangenome revealed remarkable variability in
gene content among just the seven strains used. A total of 12,960 different genes were delineated
based on at least 90% identity in their translated amino acid sequence (Table S2a). Remarkably,
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only 2,264 (17.5%) of these genes were shared among all 7 strains. The largest proportion of genes
(7,244, 55.9%) was present only in 1 of the 7 strains. Separating two major classes of core PUL
functions, SusC/D homologs and degradative CAZymes (GH, PL, and CE), revealed that these
key components of Bacteroidetes polysaccharide metabolism were also represented heavily in the
“accessory gene” pool that is not common to all strains (Figure 4.4A).

Through informatics-based and manual annotation of gene clusters containing typical PUL
functions, we delineated between 180 and 236 different PULs in the reconstructed pangenome
(ambiguity is caused by many PULs occurring adjacent to each other; although in many cases
separation of adjacent PULs according to individual genomes allowed us to make more precise de-
lineations) (Table S2b). A direct comparison of the O-glycan-degrading and nondegrading strains
revealed that there was a substantial number of genes (3,351) that were unique to the 3 O-glycan
degrading strains, including genes belonging to 51 PULs (Figure 4.4B). However, such a distri-
bution in gene content might be expected given the overall large proportion of noncore genes in
these seven strains, and there was correspondingly no indication that all three O-glycan-degrading
strains shared overlapping PULs with each other; no PULs were common to all three O-glycan de-
graders, and only five PULs were shared by any two strains (Figure 4.4C). Considering that there
are 51 total PULs that are unique to the mucin-degrading strains, if these strains have gained the
ability to degrade O-glycans from an ancestral lineage that lacked this ability, it likely occurred by
the acquisition of separate gene clusters. To more directly distinguish between the two hypotheses
given above, we performed transcriptional profiling on all three O-glycan-degrading strains to de-
termine if the PUL genes that they express during O-glycan degradation are indeed unique to these
strains.

Compared with reference growth in minimal medium containing glucose (MM-glucose), the B.

xylanisolvens D22, B. ovatus 3-1-23, and B. ovatus D2 strains activated the expression of 196, 227,
and 359 total genes more than 10-fold, and these gene lists included components of 14, 19, and 42
different PULs, respectively (see Table S3a to c in the supplemental material). As expected from
studies in other Bacteroides, these PULs were scattered throughout the genome (see Figure B6 in
the supplemental material), suggesting that they are regulated autonomously in response to glycan
cues present in the O-glycan mixture. Strikingly, the majority of PULs that contained O-glycan-
activated genes (63/75, 84%) were not unique to the O-glycan-degrading strains (Table S3a to c;
Figure B6). Moreover, in each of the three strains analyzed, the most highly upregulated PULs
were also often shared with non-mucin-degrading strains. These observations lend support to the
hypothesis that strains of B. ovatus and B. xylanisolvens are in the process of losing the ability to
utilize O-glycans relative to a common ancestor that possessed a more expansive gene repertoire
to successfully access these nutrients. However, we cannot rule out that individual nondegrading
strains are separately acquiring PULs that are associated with mucin degradation and retaining
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them without the full benefit that presumably occurs with the ability to fully execute this growth
phenotype. This latter idea is consistent with interspecies PUL exchange observations elaborated
below.

Finally, because we subsequently identified a B. ovatus strain (NLAE-zl-H59, red arrow in
Figure 4.3B) with a substantially higher ability to use O-glycans relative to the strains used for
pangenome construction, we performed an additional transcriptome sequencing (RNA-seq) anal-
ysis on this strain. Compared with a glucose reference, this strain activated 373 total genes in
response to O-glycans, including genes from 30 different PULs (Table S3d). Among these PULS,
26 activated PULs were also present in 1 of the 7 strains in our pangenome and 24 were homol-
ogous to PULs in strains that did not degrade O-glycans. However, this strain did activate the
expression of genes within four PULs that were completely unique to its genome compared with
the seven strains used for pangenome reconstruction, suggesting that it could possess additional
genes that augment its ability to grow on mucin O-glycans. This increased PUL expression could
be responsible for the enhanced growth of the H59 strain on O-glycans, especially if genes included
within these unique PULs are responsible for key metabolic steps required for efficient O-glycan
utilization.

4.3.4 Evidence That Intergenomic Recombination Has Driven Bacteroides
Pangenome Evolution

Similar to other bacteria, we observed that many accessory genes in the B. ovatus and B. xylanisol-

vens pangenome are located in contiguous clusters or “islands,” often involving PULs or capsular
polysaccharide synthesis gene cluster (Table S2a). In contrast to previously identified Bacteroides

PULs that have more obviously been subjects of lateral transfer [179, 188, 189] and are associated
with Integrative and conjugative element (ICE)s), most of the variable genomic regions that we
identified were not associated with functions indicative of mobile DNA. Instead, these regions are
often located precisely in between one or more core genes (i.e., those common to all seven strains;
herein referred to as “genomic nodes”) that flank each side of the variable gene segment (Figure
4.5A and B).

Several intergenomic transfer mechanisms might account for the observed mosaic structure of
the B. ovatus-B. xylanisolvens pangenome. The first is the movement of genes into a recipient
genome by conjugation of mobile ICEs. While such events would be expected to leave behind
residual genes involved in mobilization and transfer, which were not observed, these DNA vehi-
cles are known to target a subset of core genes, such as tRNAs [189], and may have undergone
subsequent genomic deletion events that eliminated the mobile DNA. Two other known mecha-
nisms of bacterial HGT are natural competence and phage transduction, of which neither has been

49



Figure 4.4: Distribution of all genes as well as core polysaccharide utilization functions in the B.
ovatus/B. xylanisolvens pangenome. (A) Left, shows the number of core genes (i.e., those present
in all 7 strains used for pangenome construction) compared with genes present in 2 to 7 of the
individual strains. Right, shows the same distribution of genes assigned to PULs or particular
degradative CAZyme families (GH, PL, and CE) (see Tables S2 and S3 for more detailed assign-
ments). (B) The distribution of genes between mucin-degrading (n=3) and nondegrading (n=4)
strains used to construct the pangenome. Top numbers indicate total genes, while numbers in
parentheses indicate the number of PULs (not individual PUL genes) in each category. (C) Dis-
tribution of the genes that are unique to the three mucin-degrading strains within each genome.
Genes/PULs are numbered as described for panel B. Note that no PULs are shared by all three
strains.
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Figure 4.5: Pangenome diversification in B. ovatus and B. xylanisolvens. (A) A higher-resolution
view of a region of the B. ovatus and B. xylanisolvens pangenome shows the variable presence
of at least 6 different PULs occurring between 3 genomic nodes (nodes 33 to 35 in this quarter
of the total pangenome). Segment 2 of the physical pangenome map was selected because the
first segment was initiated with numerous small contigs and this segment contained previously
validated genes for xyloglucan metabolism [190]. Node genes are colored red; while susC-like
and susD-like genes are colored purple and orange, respectively; and glycoside hydrolase genes
in light blue. GH family numbers are given below select PULs starting from the top to indicate
potential specificity, and new numbers are only added going down the schematic if the family
assignments are different, indicating a different PUL. A well-studied B. ovatus PUL for xyloglucan
degradation [190] is shown in the center and occurs variably between two nodes and also has
variable gene content. The two bottom genomes are from different species, namely, Bacteroides
finegoldii (Bfin) and Bacteroides fragilis (Bfra) and show less complex genome architecture with
the Bacteroides fragilis region possessing no PULs. (B) A broader view of the genome region in
panel A, showing that the same mosaic pattern is common across the pangenome. Only PULs are
illustrated, although many other genes were also variable in these regions. The numbers at the
bottom delineate the presence of 35 different core gene nodes (as in panel A, some nodes contain
multiple core genes) in this section of the genome, and the presence of homologous or unique PULs
is illustrated according to the color code at right (see Figure B6 for high-resolution physical maps
of the pangenome with PUL annotations). Note that in some cases up to five different PULs were
located at one location.(C) A schematic showing the proposed mechanism of genome exchange
based on previous studies ([191, 192, 193]) and observations presented here. Genomic ICEs that
are either partially active (excision deficient but capable of initiating DNA strand breakage and
conjugation) or activated in trans by the presence of an exogenous conjugative transposon initiate
genome mobilization from a donor into a recipient. If sufficient homology between node genes
exists in the recipient, homologous recombination between two nodes can replace a section of the
recipient with a segment from the donor. Note that genomic regions are shown as linear fragments
for simplicity but would be circular.
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observed in members of Bacteroidetes.
A final potential mechanism is the direct conjugation of the chromosome from a donor bac-

terium into a related recipient, followed by subsequent homologous recombination between flank-
ing nodes to add or delete intervening DNA in the recipient genome (Figure 4.5C). This mechanism
is conceptually similar to high-frequency recombination (Hfr) transfer in Escherichia coli and has
already been described for B. thetaiotaomicron and B. fragilis. The mechanism involves chromo-
somal ICE that may have lost their ability to circularize from the genome and instead act as transfer
initiation points to conjugate a donor genome into a recipient, sometimes in response to the activity
of other ICE or conjugative transposons sometimes in response to the activity [191, 192, 193]. If
such a mechanism was active more broadly in HGT between Bacteroides, we would expect that
some of the core/node genes involved would reflect sequence identities that were more similar to
the donor bacterium from which they originated and this difference would be detectable more eas-
ily if the transfer was between members of different species like B. ovatus and B. xylanisolvens.
Moreover, such transfer events could result either in the introduction of new genes into the recipi-
ent or elimination of genes depending on the genetic content in between recombination nodes from
the donor chromosome.

To test this hypothesis, we took a bioinformatics approach aimed at first identifying high-
confidence examples of interspecies recombination involving core genes and then assessed whether
those genes were associated with the cotransfer of adjacent or intervening accessory genes (Figure
4.6A). We collected a data set of 33 B. ovatus and B. xylanisolvens genomes, which represent a
subsample of the isolates for which we generated phenotypic data. We identified a set of 1,384
core genes—expectedly smaller than the core genome of the 7 strains used above due to additional
strains being added—that are present as a single copy in all members of both species. To identify
cases of putative interspecies HGT via homologous recombination at core genes, we searched for
instances in which a core gene sequence from either species was more similar to the correspond-
ing gene in the other species. We calculated the median distance of each strain-specific core gene
to all other alleles of that core gene in strains belonging to both species (Figure 4.6B, blue and
red boxes indicate the core genes that are more similar to alleles in the other species). Among
these candidate HGT genes/loci, we then investigated if any of these putative transfer events have
resulted in pangenome diversification by searching for the presence of any accessory gene(s) that
was observed only adjacent to a core gene with evidence of HGT.

In total, we identified 29 different loci at which the exchange of core genes appeared to have
occurred and adjacent accessory genes were identified, including 7 that appeared to involve the
transfer of PULs (Figure 4.7A, see Figure B8 in the supplemental material). Similar numbers of
potentially transferred loci were identified for each species (16 loci in B. xylanisolvens and 13
loci in B. ovatus). Among the candidate HGT events, variable numbers of accessory genes were
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Figure 4.6: (A) Schematic of the workflow to identify putative HGT core genes, which is described
as follows: align genes and build corresponding trees for each core gene, determine the median
substitution distances for each allele of a core gene in a given strain to both species, and identify
loci with an identical conserved structure between isolates of opposite species. (B) Plot of median
distances for all core genes identified in the 33 genomes analyzed. The boxes show the regions
containing genes for which the median distance was >0.1 to the assigned species for a given strain
and <=0.1 for the opposite species to which a strain is assigned. These genes were determined to
be high-confidence examples of core/node genes that had been replaced by an allele from the other
species.
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found within the loci ranging from 1 to 13 genes (Figure 4.7A, Figure B8). More genes (57 total)
appeared to be transferred into B. ovatus than into B. xylanisolvens (36 total).

Finally, we determined if any of the identified HGT events could explain differential phenotypes
measured by our high-throughput growth assay by modifyingdddd the complement of PULs in
individual genomes. As a specific example, we focused on a PUL that was associated previously
with β-mannan degradation [170, 194] that was among our candidate loci with evidence of transfer
from a B. xylanisolvens ancestor into two B. ovatus strains. The presence of this PUL (PUL-
A in Figure 4.7A and B) was observed in all strains with the ability to grow on the β-mannan
galactomannan (GalM), including two strains of B. ovatus (ATCC 8483 and CL02T12C04) for
which the flanking node regions were more similar to B. xylanisolvens. We showed previously that
the deletion of this PUL from B. ovatus ATCC 8483 eliminated growth on GalM and glucomannan
(GluM) [194], suggesting that it was both acquired from a B. xylanisolvens strain and conferred
growth on these two β-mannans. However, the presence of this PUL was not correlated perfectly
with growth on GalM, and several strains that lacked PUL-A still exhibited robust growth. Thus,
we searched for other PULs that harbor GH26 family enzymes and determined that all of the other
strains that grow on GalM, but lack PUL-A, harbor another candidate GalM PUL (PUL-B, Figure
4.7B) at a different genomic location and some strains possess both (Figure 4.7A). Gene expression
analysis by quantitative PCR (qPCR) revealed that PUL-B was expressed highly in strains that
lacked PUL-A during growth in GalM (Figure 4.7C) and every strain that grew robustly on GalM
had at least one of these two PULs. While we had previously shown that PUL-A was required
for GlcM growth in B. ovatus ATCC 8483, there were a number of other strains (red “+” symbols
in Figure 4.7A) that displayed a weaker ability to grow only on GlcM, while lacking both of the
GalM-associated PULs, suggesting the presence of additional PULs that confer the ability to grow
on variant β-mannans. Such a presence of multiple nonorthologous PULs that confer the same
or similar functions, and some which may be moving between genomes of related species by the
putative HGT mechanisms noted above, complicates the process of understanding the genotype-
phenotype relationships in human gut Bacteroidetes but will need to be resolved to make better
functional predictions from sequence-based data.

4.4 Discussion

In this study, we leveraged a scalable, high-throughput quantitative growth platform to characterize
the phenotypic abilities that are present in a sample of hundreds of Bacteroidetes strains from the
human and animal gut. Our anaerobic screening technique is directly applicable to other bacterial
phyla from the human gut and other environments. Moreover, it can be adapted to include new
polysaccharides or to focus on different nutrient utilization or chemical resistance phenotypes.
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Figure 4.7: Evidence that a PUL for β-mannan metabolism has been laterally transferred into B.
ovatus. (A) A region of the B. ovatus/B. xylanisolvens pangenome that contains a PUL involved in
galactomannan (GalM) and glucomannan (GluM) degradation. This PUL is present in six strains
of B. xylanisolvens and two strains of B. ovatus, and in the latter cases, flanking node genes exhibit
signatures of being derived from HGT with a B. xylanisolvens donor (the yellow box highlights a
potential recombination region). The columns at the left indicate the growth of each strain on GalM
or GluM. The ability to grow on GalM is correlated fully with the presence of one of two different
PULs, or both, that are transcriptionally activated during growth on this substrate (23). Notably,
some strains (red “+”) are able to grow weakly on GluM but do not possess either of the identified
PULs, suggesting that additional, partially orthologous PULs exist that confer the ability to use
only GluM. (B) Schematics of PUL-A and PUL-B associated with GalM and GlcM utilization.
In B. ovatus ATCC 8384, elimination of PUL-A eliminates both of these growth abilities. (C)
Expression analysis by qPCR of two sentinel genes from PUL-B inB. ovatus strain D2 that lacks
PUL-A but still exhibits robust growth on GalM.
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The current study, in concert with future applications of phenotypic screening, will help close the
gap between our largely sequence-based view of the human gut microbiota and the functions that
its members provide. However, instances like the ones investigated here for mucin glycan and β-
mannan utilization by Bacteroidetesserve as a warning that the presence or absence of genes that
are associated experimentally with a particular function do not always indicate that the phenotype is
expressed or not. Pangenome reconstruction for B. ovatus and B. xylanisolvens revealed extensive
variability between strains of these closely related species, which is not unexpected for bacteria
that engage in HGT. However, the lack of mobile DNA signatures for the majority of accessory
genes and evidence of intergenomic recombination between species at core genes provide new
insight into what may be a prominent mechanism of genome diversification in members of this
phylum. The previously described intergenomic transfer mechanisms in B. thetaiotaomicron and
B. fragilis required the presence of active or inactive ICEs, highlighting the potential roles for these
mobile elements in not just shaping genomes directly but also indirectly through their ability to
catalyze the exchange of broader genomic segments. In B. thetaiotaomicron, genome transfer was
determined to initiate at genomically integrated ICEs of which there are four in the type strain of B.

thetaiotaomicron (VPI-5482). They have not been shown to be fully functional for circularization
and mobilization. However, the introduction and activation of an additional, excision-proficient
conjugative transposon (either cTnDOT or cTnERL) [191], which shares common features with the
genomic ICEs, catalyzed the expression of genes in the genomic ICEs and transfer of parts of the
genome in a manner that requires recA and homologous DNA to be present in the recipient [191].
An additional study in B. fragilis showed that conjugation from a strain with multiple genomic
ICEs, with one or more presumably retaining transfer activity, results in the transfer of up to 435
Kb of chromosome into a recipient that initiates near genomic ICEs, with individual transfer events
being of variable size. The latter observation suggests that intergenomic recombination could then
occur at different homologous regions (i.e., the core gene nodes observed in the pangenome), which
could depend on the amount of genomic DNA transferred and the length/homology of available
recombination sites. Given that the number of ICEs in individual genomes is variable and their
ability to be activated by functional conjugative transposons that are circulating in the ecosystem
may also vary, it will be interesting to determine in future work if there are hot spots for genome
transfer or if certain strains/species are dominant genome donors that could play a disproportionate
role.

The phenotypic similarity between members of the same species (e.g., B. ovatus and B. xy-

lanisolvens) and the large amount of gene diversity, including genes involved in carbohydrate
metabolism, present a paradox and raise the question of why the genome diversification observed
in strains of B. ovatus and B. xylanisolvens has not pushed members of these species to behave
more differently and cluster based on phenotype with members of other species. One answer may
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be the apparent exclusion of some traits, such as mucin O-glycan/hemicellulose metabolism, which
may limit the fitness advantage associated with acquiring new phenotypes. A second emerges from
the proposed genome-exchange mechanism for which we offer new bioinformatics support. Since
this intergenomic exchange relies on homologous recombination, its frequency should decrease
between genomes that are more divergent. Thus, this strategy may be one mechanism through
which only closely related bacteria can share traits that are advantageous with other close rela-
tives. The presence of nonorthologous PULs that confer the same function (e.g., GluM and GalM
utilization), of which some appear to be subjected to HGT, further complicates interpretations of
genotype-to-phenotype relationships in these bacteria. Based on the prevalence data, it seems that
PUL-A is a GalMan utilization system that is more prevalent in, and perhaps also originated in, B.

xylanisolvens, and it is also capable of transfer to B. ovatus. PUL-B is more prevalent in B. ovatus

and may have origins in that species, at least with respect to B. xylanisolvens where it has so far not
been observed. Notably, the genome transfer mechanism proposed here does not account for how
new genes can be incorporated between conserved nodes. Rather, this variability must pre-exist
among different strains and therefore be created by different inter- and intragenomic diversification
mechanisms. Nevertheless, the data that we report here underscore the notion that individual gut
symbiont genomes are not just highly variable but also dynamically so.

4.5 Materials and Methods

4.5.1 Bacterial Strains and Growth Conditions.

A total of 354 human and animal gut Bacteroidetes were included in this study. A complete list is
provided in Table S1b, along with species designation based on 16S rRNA gene sequencing and
associated metadata. Abigail Salyers (University of Illinois, Urbana-Champagne) kindly provided
many of the strains, and 2 large portions of this collection were isolated over several decades, as
follows: 99 strains with “WH” designations were collected from fecal samples of healthy human
volunteers as part of the Woods Hole Summer Course on Microbial Diversity in the late 1990s, and
95 additional strains with “VPI” designations were collected from human samples at the Virginia
Polytechnic Institute in the 1960s to 1970s. Species classifications were made based on alignment
of a minimum of 734 bp of 16S rRNA gene sequence to a database containing the type strains
of >29 named human gut Bacteroidetes species using the classify.seqs command with Bayesian
settings in the program mothur [195]; assignment for each strain was also checked manually by
BLAST [196]. Isolates with at least 98% 16 rRNA gene sequence identity to the type strain of
a named species were labeled with that species designation. This classification strategy included
all except for 3 of the 354 strains examined, which ranged between 96.6% and 96.7% sequence
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identity to the B. uniformis ATCC type strains, and based on sequential isolate numbers might be
clones from the same individual (see WH15, WH16, and WH17 entries in Table S1a). Because
of the small number of strains that did not satisfy our 98 % cutoff, we grouped these unclassified
strains with their nearest relative and labeled them as more divergent in Table S1a; although, in
most cases, the carbohydrate phenotypes of these strains were very similar to other members of the
B. uniformis group. All strains were grown routinely in an anaerobic chamber (Coy Lab Products,
Grass Lake, MI) at 37°C under an atmosphere of 5% H2, 5% CO2, and 90% N2 on brain heart
infusion (BHI; Beckton Dickinson) agar that included 10% defibrinated horse blood (Colorado
Serum Co.) and gentamicin (200 microg/mL). A single colony was picked into either tryptone-
yeast extract-glucose (TYG) media [197] or modified chopped-meat carbohydrate broth (Table
S1b) and then subcultured into a minimal medium (MM) formulation that contained a mixture
of monosaccharides, vitamins, nucleotides, amino acids, and trace minerals (Table S1b provides
components and a complete recipe).

4.5.2 Carbohydrate Growth Array Setup and Data Collection

Two different minimal medium formulations were used in the carbohydrate growth arrays (Table
S1a lists the formulation used for each isolate). The simpler of the two formulations (medium 1)
was identical to the above MM, except that no carbohydrates were included and the medium was
prepared at a 2× concentration. The second minimal medium formulation (medium 2) was identical
to medium 1 but included beef extract (0.5% [wt/vol] final concentration) as an additional supple-
ment. We initially attempted to cultivate all of the species tested using only medium 1 but deter-
mined that beef extract was specifically required to allow the growth of some species, especially
Parabacteroides spp., Barnesiella intestinihominis, Odoribacter splanchnicus, and the branch of
Bacteroides that includes Bacteroides plebeius and B. massiliensis. Growth in the absence of an
added carbohydrate source was generally not observed or very low, except with Parabacteroides

that were often able to grow to a low level on the added 0.5% beef extract. The corresponding
negative-control wells for each strain assayed were averaged, and this value was subtracted from
the total growth calculation of the corresponding to strain on other carbohydrates tested (all raw
growth curves are provided as source data). Despite several attempts to supplement minimal media
with different components or employ more stringent anaerobic methods, we were unable to culti-
vate several common Bacteroidetes genera/species (Prevotella spp., Paraprevotella spp., Alistipes

spp., and Bacteroides coprocola and Bacteroides coprophilus) in these two MM formulations and
therefore did not include them in this study. All of these isolates grew readily in rich medium, sug-
gesting that they have specific nutritional requirements that were not met in the MM formulations
used.
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Carbohydrate growth arrays were run as described previously [170] using a list of carbohydrates
(see reference 23 for a complete list with supplier information) that were present in duplicate,
nonadjacent wells of a 96-well plate; 2 additional wells contained no carbohydrate and served
as negative controls. Each MM was prepared as a 2× concentrated stock without carbohydrates
(MM-no carb). An aliquot of each strain was taken from a MM-monosaccharides culture (grown
for 16 to 20 h) and was centrifuged to pellet cells. Bacteria were resuspended in the same volume
of 2× MM-no carb and then centrifuged again prior to suspension in a volume of 2× MM-no carb
that was equal to the original volume. These washed bacterial cells were then inoculated at a 1:50
ratio into 2× MM-no carb, and the suspension was added in equal volume (100microL/well) to the
96 wells of the carbohydrate growth array. Each well of the carbohydrate growth array contained
100microL of 2× carbohydrate stock (10 to 20 mg/mL); thus, when diluted 2-fold, it resulted in 1×
MM containing a unique carbohydrate and a bacterial inoculum that was identical to other wells.
Growth arrays were monitored at kinetic intervals of 10 to 20 minutes using a microplate stacking
device and coupled absorbance reader (Biotek Instruments, Winooski, VT), and data were recorded
for 4 d (variable kinetic interval times reflect variations in the number of microtiter plates present
in a given batch).

4.5.3 Carbohydrate Growth Array Data Processing.

Growth data were processed according to the following workflow: (i) data for each strain were
exported from Gen5 software (Biotek Instruments, Winooski, VT) into Microsoft Excel and a
previously described automated script was employed to call the points at which growth began
(min) and ended (max) [170], (ii) each file was checked manually to validate that appropriate
calls were made and the min and max values edited if needed (generally, only due to obvious
baselining artifacts or erroneously high calls caused by temporary bubbles or precipitation); (iii)
“total growth” (A600 max - A600 min) and “growth rate” [(A600 max - A600 min)/(t max - t
min)] were calculated for each strain on each substrate (A600 is the absorbance value at 600 nm
that corresponds to each min and max point; t is the corresponding time values in minutes; when
necessary, the growth level associated with the average negative-control growth was subtracted
from the total growth value), and (iv) individual cultures in which total growth was <= 0.1 were
scored as “no growth” and their A600 values converted to 0. Only assays in which both replicates
showed an increase in A600 of >=0.1 were considered growth; if the 2 replicate assays were
discordant (one positive, one negative), then both values were converted to 0.

To normalize the results for each strain, the substrate(s) that provided maximum total growth
and growth rate values were determined, and they were set to 1.0. All other growth values for a
given strain were normalized to this maximum value, providing a range of values between 0 and
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1.0. We next normalized growth ability across individual substrates using the previously normal-
ized values for each individual strain; the strain with the maximum total growth and growth rate
values were identified (many of these were already set to 1.0). Then, the corresponding values for
each other species on that particular substrate were calculated as a fraction of the maximum value
for that substrate, yielding a range of values between 0 and 1.0 for each substrate. These values
were used to create the heat map shown in Figure 4.2 and Figure B3, and all raw and normalized
values are provided in Table S1a.

4.5.4 Data Clustering and Statistics.

Heatmaps and corresponding dendrograms were generated using the “heatmap” function in the
“stats” package of R (version 3.4.0) which employs unsupervised hierarchical clustering (com-
plete linkage method) to group similar carbohydrate growth profiles. Pearson correlation was used
to calculate the co-occurrence of the ability to grow on each pair of different substrates. The nor-
malized growth value for each substrate was compared with the corresponding growth values on
all other substrates using the Pearson correlation test in R, and these values are displayed in the
Pearson correlation plot in Figure B5.

4.5.5 Pangenome Reconstruction for B. ovatus and B. xylanisolvens Strains.

Since one of the seven strains used for pangenome reconstruction (B. xylanisolvens XB1A) was
assembled into a single circular chromosome, we used this genome as a scaffold for the con-
tigs representing the remaining six strains. Contigs from the six unfinished strains were aligned
against the XB1A genome using a combination of Mauve (49), to align and orient larger contigs,
and reciprocal best BLAST-hit analysis using ≥ 90% amino acid identity to identify likely ho-
mologs, to provide finer resolution. Contigs from draft genome assemblies or B. xylanisolvens

XB1A were broken as needed to accommodate the inclusion of unique accessory genes but only
in circumstances where genes on both sides of the break could be aligned to homologs in one or
more genomes with a contig that spanned that breakpoint. After constructing a preliminary as-
sembly, we analyzed the size distribution of putative homologous open reading frames (ORFs) as
a measure of assembly accuracy and to identify variations in genetic organization that might be
attributable to real genetic differences such as frame shifts, which would result in two homolo-
gous gene calls of smaller size in the genome containing the frameshift. Any variation in >50%
of homologous ORF size was inspected manually using the “orthologous neighborhood viewer,
by best BLAST hit” function in the U.S. Dept. of Energy Integrated Microbial Genomes (IMG)
website. Introduced contig breaks are documented in Table S2a. GenVision software (DNAstar,
Madison, WI) was used to visualize and label selected functions in the pangenome assembly and
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also display RNA-seq data as a function of shared and unique PULs. Downloadable physical maps
of the reconstructed pangenome are provided online at https://www.ericmartenslab.org/people.

4.5.6 RNA-seq analysis

For RNA-seq, B. xylanisolvens and B. ovatus cells were grown to mid-exponential phase on either
purified mucin O-linked glycans (purified in-house from Sigma type III porcine gastric mucin) or
glucose as a reference as previously described[170]. Total RNA was extracted using an RNeasy
kit (Qiagen) and treated with Turbo DNase I (Ambion), and mRNA was enriched using the bac-
terial Ribo-Zero rRNA removal kit (Epicentre). Residual mRNA was converted to sequencing
libraries using TruSeq barcoded adaptors (Illumina) and sequenced at the University of Michigan
Sequencing Core in an Illumina HiSeq instrument with 24 samples multiplexed per lane. Barcoded
data were demultiplexed and analyzed using the Arraystar software package with Qseq (DNAstar).
All RNA-seq data are available publicly from the National Institutes of Health Gene Expression
Omnibus Database under accession numbers GSM4714867 to GSM4714890.

4.5.7 Core Gene Determination and Detection of HGT Events Between B.
Ovatus and B. Xylanisolvens Strains

The core gene alignment was generated with cognac [145]. The alignment was then parti-
tioned into the individual component genes, and approximate maximum likelihood gene trees
were generated with FastTree [128]. Cophylogenetic distances were calculated with ape [198].
A distance threshold of greater than 0.1 to the same species and less than 0.1 to the oppo-
site species was used to identify alleles bearing signatures of HGT. All analyses were per-
formed in R (version 3.6.3) [149]. All code developed for this project are available online at
https://github.com/rdcrawford/bacteroides hgt.
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CHAPTER 5

Conclusions

5.1 Concluding Remarks

The vast quantity of bacterial whole-genome sequencing data presents enormous opportunities to
address basic and translational research questions. The number of microbial genome sequences
is growing exponentially; more than 1.2 million bacterial genomes are publicly available in Gen-
Bank for the scientific community to access [199]. These data collectively represent an enormous
potential to understand the dynamics of microbial genome evolution, provide a better understand-
ing of the genetic determinants of virulence, the transmission of pathogenic isolates across large
geographic distances, and genome structure and function in commensal microbes and pathogenic
isolates alike. Seizing the opportunity presented by these data to answer these important scien-
tific questions will require bioinformatics tools capable of analyzing massive datasets to extract
valuable insights.

This dissertation provides a methodological framework to leverage large bacterial whole-
genome sequencing datasets to facilitate the study of bacterial genome evolution. We also illustrate
the utility of these computational tools with applications to the analysis of HGT in two important
contexts: dissemination of antibiotic resistance genes across regional healthcare networks and
HGT resulting in expansion of the pan-genome in commensal members of the human microbiome.
By developing these methods and providing these proof-of-principal analyses, this dissertation pro-
vides a framework facilitating future research in bacterial genomics and the genomic epidemiology
of infectious disease.

5.1.1 Large-scale Phylogenetic Analysis

Methods

Chapter Two describes our R package cognac, a tool for generating concatenated gene alignments
for phylogenetic analysis of bacterial whole-genome sequencing data. We illustrate that cognac can
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efficiently generate alignments for extremely large genomic datasets. Unlike other tools capable of
handling large numbers of genomes, cognac has the benefit of generating an alignment that can be
used in downstream phylogenetic analysis to gain insights into molecular evolution, and not only
an estimate of genetic distance, as in alternative approaches [200, 128].

Results and Implications

We illustrate the utility of cognac on several datasets of varying compositions representing diverse
genre of Enterobacteriaceae. Despite the large numbers and diversity of genomes in the input
datasets, cognac was able to identify shared phylogenetic marker genes for these data and effi-
ciently generate an alignment that can be used for downstream phylogenetic analysis. Generating
the individual gene alignments with only the representative unique alleles in the input dataset was
highly effective for reducing the computational overhead associated with multiple sequence align-
ment of large numbers of sequences. Additionally, we incorporated multithreading at multiple
steps, further enhancing speed. These design features enable the application of this algorithm to
large genomic datasets while maintaining a high degree of efficiency.

This dissertation also describes use cases for this software illustrating its utility for genomic
analysis in two contexts. Chapter Four describes a method leveraging cognac alignments to iden-
tify recombinogenic core genes. These shared genes may facilitate recombination of these HGT
sequences, enabling pan-genome expansion and phenotypic evolution in Bacteroides. We show
that these chromosomal HGT events result in the mosaic architecture observed in these species,
identifying many resulting from HGT between two closely related species. In Chapter Three,
we further illustrate that this tool can generate alignments for enormous datasets: applying this
software to a dataset of over 72,000 microbial whole-genome sequences from the family Enter-

obactiacae. Additionally, in our previous work we have illustrated the utility of cognac for diverse
applications, including: highly clonal datasets of Klebsiella pneumoniae carrying the NDM car-
bapenemase and highly diverse isolates from the order Bacteroidales [123, 201].

In summary, we present a broadly applicable software package with an easy-to-use interface in
R, which is useful for a wide range of applications in computational genomics.

5.1.2 HGT of KPC in Clinical Isolates

Methods

In Chapter Three, we present an analysis of the transmission of KPC plasmids across regional
healthcare networks in three US states. This study represents the first large-scale analysis of HGT
across different geographic regions. To make this analysis possible, we implemented a novel
phylogenetic method to facilitate the identification of core plasmid genes, effectively serving as
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markers of KPC plasmid presence. Previous work has shown that stable marker genes of plasmid
presence can be used to characterize KPC plasmids; however, identification of plasmid marker
genes is nontrivial [202]. This method enables a generalized, data-driven approach to identify
plasmid marker genes, which we illustrate can be used to track the spread of diverse KPC plasmids
as they are transmitted through bacterial populations. These plasmids facilitate the introduction
of KPC into novel genetic contexts, including lineages that are not strongly associated with KPC
but maintain KPC plasmids, express carbapenem-resistant phenotype, and are capable of causing
multiple independent infections.

Results and Implications

Our phylogenetic approach for identifying plasmid transmission enabled us to estimate the point
in time where plasmid transmission occurred in different lineages across the phylogenetic tree. We
use this information to classify isolates: whether there is evidence of importation, a stable associa-
tion of a linage and plasmid before introduction into a state, and recent HGT events likely occurring
within a given region. While most KPC carrying isolates within a given state represent imported
lineages with prior association with KPC, we identified a substantial proportion of infection iso-
lates that likely recently acquired KPC. Occasionally, these recent HGT lineages exhibit evidence
of transmission to other patients. For example, Enterobacter cloacae ST171 in MN revealed ev-
idence of HGT of KPC plasmids within the region. These strains maintained a long-term, stable
relationship with the plasmids they carry. These KPC-carrying clonal lineages then spread broadly
through the healthcare network to many different facilities in the state. These results highlight
the importance of genomic surveillance to monitor the prevalence of antibiotic-resistant clonal lin-
eages as they spread throughout the healthcare network. Furthermore, this highlights the potential
for plasmids to spread from high-risk clonal lineages into diverse bacterial populations, which can
cause antibiotic-resistant infections.

5.1.3 Phenotypic Adaptaion via HGT in the Microbiome

Methods

Chapter Four presents an analysis of phenotypic and genotypic diversification in Bacteroides

species with microbiological and genomic data. Phenotypic data revealed substantial diversity in
carbohydrate utilization phenotypes. Frequently carbohydrate utilization profiles were conserved
within specific species or closely related species indicating that these species have evolved to oc-
cupy a specific metabolic niche. However, this was not always the case, whereby closely related
species exhibited highly varied carbohydrate utilization profiles. In particular, we examined two
closely related species, Bacteroides ovatus and Bacteroides xylanisolvens. By comparing the gene
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distance distributions between alleles belonging to each species respectfully, we could identify core
genes, which were highly divergent from the alleles of the same species, and had a high degree of
similarity to alleles isolated from the opposite species. Detailed examination of the loci containing
these putative HGT genes yielded several instances where there were multiple core genes with
similar patterns of variation at the same locus. Additionally, we identified accessory genes with
conserved synteny and colinearity at these HGT loci representing pan-genome expansion events.
This analysis revealed many loci that exhibit evidence of HGT between these two species and
identified instances of these events that enabled new metabolic phenotypes.

Results and Implications

These data provide an exploration of the phenotypic capacity of microbes and the genomic events
underlying polysaccharide utilization by members of the human microbiota. Our simple method
for identifying HGT loci by comparing distance distributions in core genes identified many loci
which had been exchanged by two closely related species of Bacteroides. Specifically, we identi-
fied a polysaccharide utilization locus for β-mannan utilization, which was common in B. xylani-

solvens and present in a subset of B. ovatus. In B. ovatus these accessory genes were only present
in instances where there was evidence of HGT in the core genes flanking these genes. Molecular
characterization of growth on Bacteroides.Specifically, we identified a polysaccharide utilization
locus for β-mannans and revealed that these genes mediated robust growth on this substrate. Bac-

teroides, including the species represented in this study, represent fundamental members of the
microbiota. Frequently, these strains can have acute beneficial effects on human physiology and
fill fundamental roles in the metabolism of a broad range of substrates, including the polysaccha-
rides discussed here. Understanding the underlying genomic events that shape the structure and
function of the microbiota will further enhance our understanding of the functional composition of
healthy microbial communities and how this interfaces with the host to improve human health.

5.2 Future Directions

This dissertation led to the development of three open-source methods for the study of bacterial
genomics. The cognac package is a resource with diverse applications in bacterial genomics and
has been used in various contexts in computational genomics and the genomic epidemiology of
infectious disease. Next, the method for the identification of genes that serve as specific markers
of plasmid presence could be applied to diverse questions in the area of plasmid biology and
bacterial genome evolution in many different contexts. Finally, the method for identifying core
genes has broad application to many species and can be further used to study the composite nature
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of bacterial genomes. Wholistically, these methods represent tools that can be used directly by the
genomics community to address many important questions and represent stepping-stones that can
be further built upon to extend their utility further. In the following sections, I describe further
improvements that could be made to these methods and potential future applications.

5.2.1 Chapter Two: Future Directions For cognac

As demonstrated in chapter 2, cognac can generate alignments for large sets of bacterial genomes,
with customizable parameters for extensions in diverse applications. Herein, we describe future
applications for cognac and potential expansions of this package to enhance its utility.

Just as cognac was able to be applied to gain insights into large datasets of bacterial whole-
genome sequences, this could further be applied to other domains of the tree of life. While there
are many methods available for generating alignments, cognac represents a rapid method for gen-
erating alignments with demonstrated ability to handle enormous datasets. This can be applied in
many applications better to understand the structure of datasets of whole-genome sequences before
subsequent analyses. For example, this could be used to divide an input dataset into appropriate
subsets for traditional read-mapping-based genome alignment. Additionally, complete genomes
could be included in the cognac alignment step to identify an optimal reference genome for a given
set of genomes. Additionally, finding an optimal out-group for phylogenetic analysis is non-trivial,
and cognac could be used to identify an optimal out-group based on distance metrics in the core
genes.

While cognac was only tested on bacterial genomes, future applications of these methods could
be in the phylogenetic analysis of other types of microbial genome sequences. The benefits of
cognac for studying phylogenetically diverse bacteria could apply to studying fungi, viruses, and
organelles. For example, fungi are prominent members of the human microbiome; however, they
remain relatively understudied relative to their bacterial counterparts [203]. This method could
potentially be applied to sets of diverse fungal genomes, especially in instances where there is
an absence of a known reference genome appropriate for the analysis. Additionally, this could
be used to study diverse human viruses or bacteriophages, which share a common ancestor but
differ in their gene content, as has been applied previously [204, 205]. Additionally, genomic
sequences of organelles, such as plastids or mitochondria, are appropriate for analysis with cognac.
Concatenated gene alignments are common in the plastid literature, and cognac could be applied
to sets of plastid genomes as well [206]. Future work could illustrate the utility of cognac for other
types of microbial genomes to study microbial evolution and genomic epidemiology.

A limitation of cognac is that there is currently no built-in functionality for masking recom-
binogenic genes, which are readily available within the package. Recombination has been shown
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to influence the topology of phylogenetic trees, and therefore masking recombination would have
the potential to produce trees with greater accuracy [207]. Statistical approaches for identifying
recombination, such as those implemented in Gubbins, or, machine learning methods for outlier
detection, such as Isolation Forest, are promising strategies for identifying recombination in future
work [208].

5.2.2 Chapter Three: Future Directions for Tracing the Spread of Antibiotic
Resistance in Bacterial Populations

The methods outlined in Chapter Three demonstrated the ability to identify modules of plasmid
genes with stable relationships that can be used to track strains and their ARG-carrying plasmids
as they are transmitted vertically and horizontally. We demonstrated the ability of the phylogenetic
methods implemented here to capture plasmid acquisitions within closely related isolates, even of
the same sequence type with sufficient context.

Future work using this method could delve deeper into the mechanisms governing the stabil-
ity of plasmids and the bacterial lineages that carry them. Plasmids have associated fitness costs
that are strain-dependent [6]. These methods could be applied to studying plasmid evolution and
potentially identifying the specific features of plasmids that enhance transmissibility. In turn, a
stable association with the plasmids requires an amenable host, and future work could address fac-
tors that predict a plasmid’s stability in bacterial lineages. Future research could employ bacterial
genome-wide association studies between strains and plasmids to identify host factors associated
with plasmid presence and genetic factors representing co-evolution between chromosomes and
plasmids that foster a stable relationship. An understanding of these factors would enhance the
capacity to survey for plasmids and strain/plasmid associations that pose a serious risk to public
health.

Public health departments increasingly use whole-genome sequencing to identify emerging
threats and inform infection control practices [138]. Tools for gaining insights from this inflow
of data are urgently needed for use by clinicians and public health professionals. While most epi-
demiological investigations focus on the transmission of clonal lineages in healthcare networks,
this work illustrates the substantial burden of infections caused by isolates that have only recently
acquired KPC. This work highlights the threat of highly transmissible plasmids. Dissemination
of these plasmids has the potential to enhance pathogenicity and antibiotic resistance resulting
in untreatable infections. Lessons learned from this dissertation can be applied to inform strate-
gies to track the transmission of isolates and identify the dissemination of antibiotic resistance or
virulence-enhancing genes as they are disseminated through bacterial populations.

Another application of this method is better understanding the distribution of mobile elements
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across an input dataset. Frequently, researchers will select a subset of isolates that were sequenced
with short-read sequencing technologies for long-read sequencing, which provides insights into the
genomic structure [39, 37]. This approach could be used to provide a first pass at characterizing
plasmid sequences from short-read sequencing data and then performing long-read sequencing to
confirm these results and gain a better understanding of plasmid structure.

5.2.3 Chapter Four: Future Directions for Understanding Phenotypic and
Genomic Diversification in the Microbiome

The results presented in Chapter Four present methodologies to understand the phenotypic func-
tion of diverse microorganisms. A better understanding of how microbes collectively function to
interface with human physiology and modify disease states are of great clinical interest. A fun-
damental understanding of the metabolic capacity of these microbes and their role in microbial
communities can better inform strategies to manipulate microbial communities for the benefit of
patients.

The method for detecting HGT loci in core genes could also be expanded further. In this work,
we used a distance threshold, which was only capable of detecting HGT core genes that were
greatly divergent from the other members of that species. Future work could implement more
sophisticated statistical approaches to more accurately model the observed vs. expected variation
within genes and provide a more accurate estimate of which genes result from HGT. Another
addition to this method would be incorporating multi-species comparisons within the gene distance
distributions. In our analysis, we only included two closely related species, an oversimplification
of the HGT network that shapes the genome evolution in these isolates. The method outlined
here could enable large-scale analysis investigating the natural history of genomes of interest to
facilitate the identification of these events in a systematic way. Previous research into the genomic
composition of pathogenic isolates has shown that K. pneumonaie ST258 is a hybrid generated by
HGT of 1.1 megabase pair stretch of the ST442 genome into an ST11 genetic background [16].
The application of our method for analysis of genetic variation on the chromosome could address
these questions about the genomic landscape shaping the evolution in these instances. Further work
could use this framework to compare the distribution of gene distances across multiple species or
strains. These analyses could identify which genes are commonly transferred, which genes are
well maintained, which strains exchange genes frequently, and infer the functions within a shared
niche within this HGT network. Large-scale analysis of this type could be used to determine the
origins of HGT sequences in the genomes and provide insight into the genomic events underlying
the evolution of bacterial lineages in diverse contexts.
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5.3 Conclusions

The work presented in this dissertation was motivated by the goal of understanding the dynamics of
bacterial genome evolution via HGT. Understanding the HGT in the context of antibiotic resistance
is especially critical because of the tremendous associated costs for affected patient populations.
Each chapter implements a new method for studying bacterial genomes and applying these meth-
ods to study bacterial genome evolution in multiple contexts: evolution of antibiotic resistance
in pathogenic microbes and metabolic phenotypes in commensal microbes. Future development
and application of the work presented here will facilitate future research into bacterial genome
evolution and an understanding of the consequences for human health.
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Figure A.1: Correlations between KPC plasmid genes. Gene correlation matrix for the 7596 KPC
plasmid genes. Matrix is sorted by the hierarchical clustering results. Row and column annotation
show the resulting gene clusters.
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Figure A.2: Distribution of gene clusters present in EIP genomes across the entire dataset. Rows
are sorted by the midpoint-rooted approximate maximum likelihood tree base off of the concate-
nated, core gene alignment. Columns are sorted by hierarchical clustering.
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Figure A.3: Assessment of gene cluster distribution in the complete genomes. (A) Precision of
each gene cluster calculated from using the complete genomes true positives are those present on
the molecule containing the most cluster genes and false positives are genes present on another
contig. (B) Average number of false positives per cluster. (C) The number of complete genomes
each cluster is present in to evaluate precision. (D) number of EIP genomes each cluster is present
in. (E) Counts of molecule types on which the identified clusters are present.
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Figure A.4: Identification of gene clusters significantly associated with KPC status. (A) Count
of clusters predicted to appear which appear never, variably, or always on edges where KPC was
also predicted to be present. (B) Histogram showing the distribution of the total counts of the total
number of gene cluster, KPC co-transitions generated from permuting cluster acquisition edges
across one million permutations. The observed number of KPC cluster co-transitions shown in red.
(C) P-values from individual clusters. Clusters which are significant after bonferroni correction are
highlighted in red.
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Figure A.5: Annotations assigned to KPC associated cluster genes. Counts of the annotations
assigned by RAST with functions assigned to the selected classes of plasmid genes.
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Figure A.6: Plasmid gene distance distributions for concatenated gene alignments for all isolates
by (A) state and (B) facility
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Figure B.1: Schematics of the polysaccharides used in this study with sugar composition and
linkages schematized according to the “Symbol nomenclature for glycans” standard format and
based on the symbol key provided at the right. Linkages are labeled as α or β, and the number
provided represents the carbon position in the recipient sugar. The carbon in the donor sugar is
carbon-1 in all cases except N-acetyl neuraminic acid and is not shown. Note that pectic galactan
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can have variable structures based on the plant source. Abbreviations for several polysaccharides
are provided in parentheses and used throughout the text and figures.
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Figure B.2: Correlation of replicate growth and rate measurements. Two replicate measurements
were made for each of the two parameters recorded, namely, total growth (A) and growth rate (B),
for each species on each carbohydrate substrate. Data points are color coded based on whether
the two replicates exhibited variation between 0% and 5% (black), 5% and 10% (blue), 10% and
20% (green), ¿20% (orange), or growth in one assay and no growth in the other (red). (C) A linear
function was fitted (with red points omitted) to calculate an r2 value for the data set associated with
the utilization of each individual substrate. Measurements on some substrates were more variable
than on others due, at least in part, to the tendency of these substrates to partially precipitate or
retrograde during growth, which yielded variable levels of background absorbance.
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B_thetaiotaomicron (NLAE_zl_H23)
B_thetaiotaomicron (VPI BT7853)
B_thetaiotaomicron (VPI 3443)
B_thetaiotaomicron (23685)
B_thetaiotaomicron (23722)
B_thetaiotaomicron (NLAE_zl_P750)
B_thetaiotaomicron (NLAE_zl_P737)
B_thetaiotaomicron (NLAE_zl_P696)
B_thetaiotaomicron (NLAE_zl_C516)
B_thetaiotaomicron (VPI BF6436_5)
B_thetaiotaomicron (VPI 5482)
B_thetaiotaomicron (1_1_14)
B_thetaiotaomicron (VPI 0940_1)
B_massiliensis (A03)
B_stercoris (VPI C51_6)
B_vulgatus (4_3_17 FAA)
B_vulgatus (WH18)
B_vulgatus (WH19)
Barn_intesinihominis (DSM 21032)
O_splanchnicus (DSM 20712)
B_massiliensis (DSM 17679)
B_massiliensis (JCM 12982)
B_fragilis (YCH46)
B_fragilis (NCTC 9343)
B_fragilis (CL07T12C05)
B_fragilis (VPI 2553)
B_fragilis (VPI 5383)
B_fragilis (WH706)
B_fragilis (VPI 1582)
B_fragilis (VPI BF8371)
B_fragilis (VPI 2393)
B_fragilis (VPI 29765)
B_fragilis   
B_fragilis (WH718)
B_fragilis (VPI BF8928)
B_fragilis (WAL8916)
B_fragilis (VPI BF638R)
B_fragilis (VPI 499)
B_fragilis (WAL8762)
B_fragilis (VPI 3392)
B_fragilis (VPI 4361)
B_fragilis (CL03T00C08)
B_fragilis (3_2_5)
B_fragilis (VPI BF7397)
B_fragilis (VPI BF119)
B_fragilis (VPI 3277)
B_fragilis (WH605)
B_fragilis (WH705)
B_fragilis (WAL8790)
B_fragilis (WAL8774)
B_fragilis (VPI BF8223)
B_fragilis (VPI BF7639)
B_fragilis (VPI BF7567)
B_fragilis (VPI BF_ERL)
B_fragilis (VPI BF_CEST)
B_fragilis (BPI BF_AK87)
B_fragilis (VPI BF_V479)
B_fragilis (VPI A11_24B)
B_fragilis (VPI 4517)
B_fragilis (VPI 4509B)
B_fragilis (VPI 4225)
B_fragilis (VPI 4117)
B_fragilis (VPI 4076)
B_fragilis (VPI 2627_J2)
B_fragilis (VPI 2556I)
B_fragilis (VPI 2552)
B_fragilis (VPI 2343)
B_fragilis (VPI 2044)
B_fragilis (VPI 1522)
B_fragilis (VPI 12256)
B_fragilis (CL07T00C01)
B_fragilis (CL05T12C13)
B_fragilis (CL05T00C42)
B_fragilis (CL03T12C07)
B_fragilis (3_1_12)
B_fragilis (2_1_56 FAA)
B_fragilis (WH707)
B_fragilis (WH709)
B_clarus (DSM 22519)
B_stercoris (ATCC 43183)
B_plebeius (DSM 17135)
B_caccae (VPI C10_2)
B_caccae (CL03T12C61)
B_caccae (VPI 3452A)
B_caccae (VPI C14_3)
B_caccae (WH110)
B_caccae (WH719)
B_caccae (WAL8714)
B_caccae (ATCC 43185)
B_caccae (VPI T1_1)
B_caccae (VPI C7_8)
B_caccae (VPI 8608)
B_caccae (VPI B6_11)
P_merdae (T4_1)
P_merdae (ATCC 43184)
P_johnsonii (JCM 3406)
P_gordonii (DSM 23371)
P_goldsteinii (DSM 19448)
P_goldsteinii (dnLKV18)
P_distasonis (WAL8975)
P_distasonis (VPI 56A_56)
P_distasonis (2_1_33B)
P_distasonis (VPI C18_7)
P_distasonis (WAL9063)
P_merdae (VPI BD6944)
P_distasonis (VPI C14_2)
P_distasonis (VPI T3_25)
P_distasonis (ATCC 8503)
P_distasonis (VPI B1_20)
P_distasonis (WH517)
P_distasonis (VPI BD6803)
P_distasonis (VPI C30_45)
B_vulgatus (ATCC 8482)
P_distasonis (VPI BD6781)
B_fluxus (DSM 22534)
B_nordii (WAL7935)
B_nordii (WAL7936)
B_nordii (CL02T12C05)
B_nordii (WH103)
B_vulgatus (WH715)
B_dorei (CL02T12C06)
B_dorei (CL02T00C15)
B_vulgatus (WH108)
B_vulgatus (WH202)
B_vulgatus (WH7)
B_vulgatus (WH8)
B_vulgatus (dnLKV7)
B_vulgatus (WH119)
B_vulgatus (VPI 4496.2)
B_vulgatus (VPI BV8526)
B_vulgatus (VPI 4506)
B_vulgatus (VPI 4025)
B_vulgatus (WH13)
B_vulgatus (WH109)
B_dorei (DSM 17855)
B_vulgatus (VPI 4245)
B_vulgatus (RJ213)
B_dorei (WH607)
B_vulgatus (CL09T03C04)
B_vulgatus (VPI C1_13)
B_vulgatus (VPI 5710)
B_dorei (WH303)
B_dorei (WH104)
B_vulgatus (WH6)
B_dorei (3_1_33 FAA)
B_dorei (CL03T12C01)
B_vulgatus (WH716)
B_vulgatus (3_1_40A)
B_vulgatus (274_104)
B_dorei (VPI 2277)
B_vulgatus (WH515)
B_vulgatus (WH14)
B_vulgatus (PC510)
B_vulgatus (WH5)
B_vulgatus (WH9AB)
B_dorei (WH106)
B_dorei (WH26)
B_dorei (VPI 6598B)
B_dorei (WH512)
B_vulgatus (RJ2H1)
B_dorei (9_1_42 FAA)
B_vulgatus (WH516)
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D_mossii (DSM 22836)
B_uniformis (CL03T12C37)
B_uniformis (CL03T00C23)
B_uniformis (WH712)
B_uniformis (VPI 60_50)
B_uniformis (WH11)
B_uniformis (WH714)
B_uniformis (WH4)
B_uniformis (WH704)
B_uniformis (VPI 52)
B_uniformis (WH16)
B_uniformis (WH15)
B_uniformis (WH17)
B_uniformis (WH505)
B_uniformis (dnLKV2) 
B_uniformis (WH506)
B_uniformis (WH215)
B_uniformis (WH23)
B_uniformis (WH504)
B_uniformis (ATCC 8492)
B_uniformis (WH204)
B_uniformis (WH203)
B_uniformis (WH205)
B_uniformis (WH511)
B_uniformis (WH703)
B_uniformis (WH20)
B_uniformis (WH207)
B_uniformis (VPI S5A_14)
B_uniformis (WH717)
B_uniformis (WH701)
B_uniformis (WH710)
B_uniformis (WH12)
B_uniformis (WH10)
B_uniformis (2_2_43B)
B_uniformis (R3_39)
B_uniformis (VPI C20_25)
B_xylanisolvens (WH301)
B_xylanisolvens (CL03T12C04)
B_xylanisolvens (WH210)
B_xylanisolvens (NLAE_zl_C29)
B_xylanisolvens (NLAE_zl_G406)
B_Salyersiae (CL02T12C01)
B_Salyersiae (VPI 2828)
B_Salyersiae (WAL7960)
B_Salyersiae (DSM 18765)
B_Salyersiae (WAL9166)
B_eggerthii (VPI S1A_52)
B_eggerthii (1_2_48 FAA)
B_eggerthii (DSM 20697)
B_stercoris (VPI B5_21)
B_stercoris (VPI C8_9)
B_stercoris (WH102)
B_stercoris (WH24)
B_stercoris (WH22)
B_thetaiotaomicron (WH510)
B_ovatus (WH713)
P_distasonis (VPI C19_17)
P_distasonis (3_1_19)
P_distasonis (VPI 4243)
D_gadei_ATCC (BAA_286)
B_ovatus (VPI B4_11)
B_ovatus (WH514)
B_intestinalis (DSM 17393)
B_oleiciplenus (DSM 22535)
B_cellulosilyticus (CL02T12C19)
B_cellulosilyticus (WH101)
B_cellulosilyticus (WH401)
B_cellulosilyticus (WH402)
B_cellulosilyticus (WH206)
B_cellulosilyticus (WH2)
B_cellulosilyticus (DSM 14838)
B_cellulosilyticus (WH1)
B_cellulosilyticus (WH403)
B_cellulosilyticus (WH405)
B_xylanisolvens (VPI Bov7991)
B_xylanisolvens (NLAE_zl_H194)
B_xylanisolvens (XB1A)
B_xylanisolvens (WH304)
B_xylanisolvens (WH307)
B_xylanisolvens (WH305)
B_xylanisolvens (WH302)
B_xylanisolvens (2_2_4)
B_ovatus (VPI 4104)
B_ovatus (VPI 3049)
B_ovatus (NLAE_zl_H304)
B_ovatus (NLAE_zl_H366)
B_ovatus (NLAE_zl_H361)
B_ovatus (WAL7922)
B_ovatus (NLAE_zl_C34)
B_ovatus (NLAE_zl_C11)
B_xylanisolvens (3_1_13)
B_xylanisolvens (NLAE_zl_C233)
B_xylanisolvens (NLAE_zl_C178)
B_xylanisolvens (NLAE_zl_C315)
B_xylanisolvens (NLAE_zl_C257)
B_xylanisolvens (NLAE_zl_C182)
B_xylanisolvens (NLAE_zl_C339)
B_xylanisolvens (NLAE_zl_G310)
B_xylanisolvens (WH404)
B_xylanisolvens (WH213)
B_xylanisolvens (WH209)
B_xylanisolvens (WH212)
B_xylanisolvens (NLAE_zl_G109)
B_xylanisolvens (1_1_30)
B_xylanisolvens (NLAE_zl_G346)
B_xylanisolvens (NLAE_zl_G39)
B_xylanisolvens (NLAE_zl_G421)
B_xylanisolvens (NLAE_zl_G44)
B_xylanisolvens (NLAE_zl_G37)
B_xylanisolvens (D22)
B_uniformis (4_1_36)
B_xylanisolvens (NLAE_zl_H40)
B_xylanisolvens (NLAE_zl_H465)
B_xylanisolvens (2_1_22)
B_xylanisolvens (D1)
B_ovatus (CL02T12C04)
B_ovatus (CL03T12C18)
B_ovatus (WH702)
B_ovatus (WH711)
B_ovatus (3_8_47 FAA)
B_ovatus (NLAE_zl_H163)
B_ovatus (VPI C16_22)
B_ovatus (WH211)
B_ovatus (WH208)
B_xylanisolvens (NLAE_zl_P736)
B_xylanisolvens (NLAE_zl_P732)
B_xylanisolvens (NLAE_zl_P727)
B_xylanisolvens (NLAE_zl_P225)
B_xylanisolvens (NLAE_zl_P218)
B_xylanisolvens (NLAE_zl_P352)
B_xylanisolvens (NLAE_zl_P718)
B_xylanisolvens (NLAE_zl_P349)
B_ovatus (ATCC 8483)
B_ovatus (VPI 38)
B_ovatus (WH606)
B_ovatus (WH601)
B_ovatus (WH604)
B_ovatus (VPI C1_45)
B_ovatus (D2)
B_ovatus (NLAE_zl_H251)
B_ovatus (WH214)
B_ovatus (NLAE_zl_H73)
B_ovatus (NLAE_zl_H59)
B_ovatus (VPI 8653)
B_ovatus (3_1_23)
B_ovatus (VPI 435)
B_thetaiotaomicron (WH507)
B_thetaiotaomicron (WH25)
B_finegoldii (CL09T03C10)
B_finegoldii (DSM 17565)
B_finegoldii (WH508)
B_thetaiotaomicron (WH3)
B_thetaiotaomicron (WH502)
B_thetaiotaomicron (VPI 3164)
B_thetaiotaomicron (WH503)
B_thetaiotaomicron (WH501)
B_thetaiotaomicron (NLAE_zl_C15)
B_thetaiotaomicron (MAJ 27)
B_thetaiotaomicron (MAJ 26)
B_thetaiotaomicron (WH21)
B_thetaiotaomicron (WAL8736)
B_thetaiotaomicron (NLAE_zl_G303)
B_thetaiotaomicron (NLAE_zl_G234)
B_thetaiotaomicron (NLAE_zl_G288)
B_thetaiotaomicron (NLAE_zl_G493)
B_thetaiotaomicron (NLAE_zl_H463)
B_thetaiotaomicron (NLAE_zl_P393)
B_thetaiotaomicron (NLAE_zl_H486)
B_thetaiotaomicron (NLAE_zl_C425)
B_thetaiotaomicron (VPI BT_DOT2)
B_thetaiotaomicron (NLAE_zl_G295)
B_thetaiotaomicron (VPI 2808B)
B_thetaiotaomicron (VPI C11_15)
B_thetaiotaomicron (dnLKV9)
B_thetaiotaomicron (NLAE_zl_C523)
B_thetaiotaomicron (NLAE_zl_H492)
B_thetaiotaomicron (NLAE_zl_C504)
B_thetaiotaomicron (NLAE_zl_H353)
B_thetaiotaomicron (VPI BT8702)
B_thetaiotaomicron (VPI 3731)
B_thetaiotaomicron (ATCC 29471)
B_thetaiotaomicron (VPI 0633_1)
B_thetaiotaomicron (1_1_6)
B_thetaiotaomicron (VPI 7330)
B_thetaiotaomicron (WH509)
B_thetaiotaomicron (NLAE_zl_H39)
B_thetaiotaomicron (NLAE_zl_H207)
B_thetaiotaomicron (VPI 11984)
B_thetaiotaomicron (WAL8669)
B_thetaiotaomicron (VPI J19_343)
B_thetaiotaomicron (WAL8713)
B_thetaiotaomicron (NLAE_zl_P32)
B_thetaiotaomicron (NLAE_zl_P699)
B_thetaiotaomicron (NLAE_zl_H23)
B_thetaiotaomicron (VPI BT7853)
B_thetaiotaomicron (VPI 3443)
B_thetaiotaomicron (23685)
B_thetaiotaomicron (23722)
B_thetaiotaomicron (NLAE_zl_P750)
B_thetaiotaomicron (NLAE_zl_P737)
B_thetaiotaomicron (NLAE_zl_P696)
B_thetaiotaomicron (NLAE_zl_C516)
B_thetaiotaomicron (VPI BF6436_5)
B_thetaiotaomicron (VPI 5482)
B_thetaiotaomicron (1_1_14)
B_thetaiotaomicron (VPI 0940_1)
B_massiliensis (A03)
B_stercoris (VPI C51_6)
B_vulgatus (4_3_17 FAA)
B_vulgatus (WH18)
B_vulgatus (WH19)
Barn_intesinihominis (DSM 21032)
O_splanchnicus (DSM 20712)
B_massiliensis (DSM 17679)
B_massiliensis (JCM 12982)
B_fragilis (YCH46)
B_fragilis (NCTC 9343)
B_fragilis (CL07T12C05)
B_fragilis (VPI 2553)
B_fragilis (VPI 5383)
B_fragilis (WH706)
B_fragilis (VPI 1582)
B_fragilis (VPI BF8371)
B_fragilis (VPI 2393)
B_fragilis (VPI 29765)
B_fragilis   
B_fragilis (WH718)
B_fragilis (VPI BF8928)
B_fragilis (WAL8916)
B_fragilis (VPI BF638R)
B_fragilis (VPI 499)
B_fragilis (WAL8762)
B_fragilis (VPI 3392)
B_fragilis (VPI 4361)
B_fragilis (CL03T00C08)
B_fragilis (3_2_5)
B_fragilis (VPI BF7397)
B_fragilis (VPI BF119)
B_fragilis (VPI 3277)
B_fragilis (WH605)
B_fragilis (WH705)
B_fragilis (WAL8790)
B_fragilis (WAL8774)
B_fragilis (VPI BF8223)
B_fragilis (VPI BF7639)
B_fragilis (VPI BF7567)
B_fragilis (VPI BF_ERL)
B_fragilis (VPI BF_CEST)
B_fragilis (BPI BF_AK87)
B_fragilis (VPI BF_V479)
B_fragilis (VPI A11_24B)
B_fragilis (VPI 4517)
B_fragilis (VPI 4509B)
B_fragilis (VPI 4225)
B_fragilis (VPI 4117)
B_fragilis (VPI 4076)
B_fragilis (VPI 2627_J2)
B_fragilis (VPI 2556I)
B_fragilis (VPI 2552)
B_fragilis (VPI 2343)
B_fragilis (VPI 2044)
B_fragilis (VPI 1522)
B_fragilis (VPI 12256)
B_fragilis (CL07T00C01)
B_fragilis (CL05T12C13)
B_fragilis (CL05T00C42)
B_fragilis (CL03T12C07)
B_fragilis (3_1_12)
B_fragilis (2_1_56 FAA)
B_fragilis (WH707)
B_fragilis (WH709)
B_clarus (DSM 22519)
B_stercoris (ATCC 43183)
B_plebeius (DSM 17135)
B_caccae (VPI C10_2)
B_caccae (CL03T12C61)
B_caccae (VPI 3452A)
B_caccae (VPI C14_3)
B_caccae (WH110)
B_caccae (WH719)
B_caccae (WAL8714)
B_caccae (ATCC 43185)
B_caccae (VPI T1_1)
B_caccae (VPI C7_8)
B_caccae (VPI 8608)
B_caccae (VPI B6_11)
P_merdae (T4_1)
P_merdae (ATCC 43184)
P_johnsonii (JCM 3406)
P_gordonii (DSM 23371)
P_goldsteinii (DSM 19448)
P_goldsteinii (dnLKV18)
P_distasonis (WAL8975)
P_distasonis (VPI 56A_56)
P_distasonis (2_1_33B)
P_distasonis (VPI C18_7)
P_distasonis (WAL9063)
P_merdae (VPI BD6944)
P_distasonis (VPI C14_2)
P_distasonis (VPI T3_25)
P_distasonis (ATCC 8503)
P_distasonis (VPI B1_20)
P_distasonis (WH517)
P_distasonis (VPI BD6803)
P_distasonis (VPI C30_45)
B_vulgatus (ATCC 8482)
P_distasonis (VPI BD6781)
B_fluxus (DSM 22534)
B_nordii (WAL7935)
B_nordii (WAL7936)
B_nordii (CL02T12C05)
B_nordii (WH103)
B_vulgatus (WH715)
B_dorei (CL02T12C06)
B_dorei (CL02T00C15)
B_vulgatus (WH108)
B_vulgatus (WH202)
B_vulgatus (WH7)
B_vulgatus (WH8)
B_vulgatus (dnLKV7)
B_vulgatus (WH119)
B_vulgatus (VPI 4496.2)
B_vulgatus (VPI BV8526)
B_vulgatus (VPI 4506)
B_vulgatus (VPI 4025)
B_vulgatus (WH13)
B_vulgatus (WH109)
B_dorei (DSM 17855)
B_vulgatus (VPI 4245)
B_vulgatus (RJ213)
B_dorei (WH607)
B_vulgatus (CL09T03C04)
B_vulgatus (VPI C1_13)
B_vulgatus (VPI 5710)
B_dorei (WH303)
B_dorei (WH104)
B_vulgatus (WH6)
B_dorei (3_1_33 FAA)
B_dorei (CL03T12C01)
B_vulgatus (WH716)
B_vulgatus (3_1_40A)
B_vulgatus (274_104)
B_dorei (VPI 2277)
B_vulgatus (WH515)
B_vulgatus (WH14)
B_vulgatus (PC510)
B_vulgatus (WH5)
B_vulgatus (WH9AB)
B_dorei (WH106)
B_dorei (WH26)
B_dorei (VPI 6598B)
B_dorei (WH512)
B_vulgatus (RJ2H1)
B_dorei (9_1_42 FAA)
B_vulgatus (WH516)

*B. massiliensis &
Ba. intestinihominis

Figure B.3: Heatmap identical to the one shown in Fig. 2 main text, except that monosaccharide
growth data are included. Strain names are also noted at the far right side of each panel (best
viewed in electronic PDF form with magnification), and animal strains are labeled in red font.
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B. Normalized data 

C. Unnormalized (raw) or binary (growth/no growth) data 

0.0

0.2

0.4

0.6

0.8

1.0
G

ro
w

th
/N

o 
G

ro
w

th
 (M

+P
)

G
ro

w
th

/N
o 

G
ro

w
th

 (M
 O

nl
y)

G
ro

w
th

/N
o 

G
ro

w
th

 (P
 O

nl
y)

Ra
w

 R
at

e 
(M

+P
)

Ra
w

 R
at

e 
(P

 O
nl

y)

Ra
w

 R
at

e 
(M

 O
nl

y)

Ra
w

 G
ro

w
th

 (M
+P

)

Ra
w

 G
ro

w
th

 (P
 O

nl
y)

Ra
w

 G
ro

w
th

 (M
 O

nl
y)

C
lu

st
er

in
g 

sc
or

e

A. Example of Cluster scoring scheme

B. thetaiotaomicron
B. thetaiotaomicron
B. thetaiotaomicron
B. thetaiotaomicron
B. thetaiotaomicron
B. thetaiotaomicron
B. thetaiotaomicron
B. thetaiotaomicron
other
other
other
other
other
other
other
other
other
other
other
other

other

Perfect grouping: 8 B. thetaiotaomicron strains / 
8 taxa on minimum branch = 1
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Figure B.4: Scheme for evaluating which aspects of growth phenotype data are most influential.
A) Clustering strains that belong to the same species using hypothetical B. thetaiotaomicron data
as an illustrative example. A quantitative index was used in which the number of strains tested
is divided by the minimum number of branches needed to encompass all of the strains for that
species, with a perfect score being “1” (e.g., eight B. theta strains divided by the minimum of eight
branches needed to encompass all strains in the top example). (B) Actual clustering index data for
the raw and normalized growth and rate data gathered for 354 different Bacteroidetes strains. M
and P stand for “monosaccharide” and “polysaccharide” growth, respectively. One of the two most
optimal conditions, which incorporates normalized growth data on polysaccharides only, was used
to construct Figure 4.2 and Figure B3
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Figure S5

Figure B.5: Pearson correlation plot to determine if individual growth abilities co-occur in the
same strains. For each substrate pair, the values shown indicate the positive or negative correlation
value that both substrates will be used by any of the strains among the 354 surveyed. Positive or
negative correlations that are ≥ 0.40 are shown in the colors indicated.
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Figure B.6: Circular pangenome illustration and corresponding transcriptomic-based analysis of
PULs that are activated during growth on O-glycans in strains B. xylanisolvens D22, B. ovatus
3 1 23, and B. ovatus D2.
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Supplemental Figure 7. Bacteroides LGT Loci

1

Figure B.7: Individual maps of high-confidence intergenomic exchange events between B. ovatus
and B. xylanisolvens strains. The method for the identification of these loci was the same as the
method described in the text for the example in Figgure 4.6C. Examples involving PULs are shown
first, and examples showing non-PUL genes are shown second.
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[70] Jan-Hendrik Hehemann, Gaëlle Correc, Tristan Barbeyron, William Helbert, Mirjam
Czjzek, and Gurvan Michel. Transfer of carbohydrate-active enzymes from marine bac-
teria to japanese gut microbiota. Nature, 464(7290):908–912, 2010.

[71] Chris S. Smillie, Mark B. Smith, Jonathan Friedman, Otto X. Cordero, Lawrence A. David,
and Eric J. Alm. Ecology drives a global network of gene exchange connecting the hu-
man microbiome. Nature, 480(7376):241–244, 2011. Number: 7376 Publisher: Nature
Publishing Group.

[72] Mislav Acman, Lucy van Dorp, Joanne M Santini, and Francois Balloux. Large-scale net-
work analysis captures biological features of bacterial plasmids. Nature communications,
11(1):1–11, 2020.

[73] Mor N Lurie-Weinberger, Michael Peeri, and Uri Gophna. Contribution of lateral gene
transfer to the gene repertoire of a gut-adapted methanogen. Genomics, 99(1):52–58, 2012.

[74] Abdessamad El Kaoutari, Fabrice Armougom, Jeffrey I Gordon, Didier Raoult, and Bernard
Henrissat. The abundance and variety of carbohydrate-active enzymes in the human gut
microbiota. Nature Reviews Microbiology, 11(7):497–504, 2013.

[75] Francesco Riva, Valentina Riva, Ester M. Eckert, Noemi Colinas, Andrea Di Cesare, Sara
Borin, Francesca Mapelli, and Elena Crotti. An environmental escherichia coli strain is
naturally competent to acquire exogenous DNA. Frontiers in Microbiology, 11, 2020.
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[204] Soo Jen Low, Mária Džunková, Pierre-Alain Chaumeil, Donovan H. Parks, and Philip
Hugenholtz. Evaluation of a concatenated protein phylogeny for classification of tailed
double-stranded DNA viruses belonging to the order caudovirales. Nature Microbiology,
4(8):1306–1315, 2019. Number: 8 Publisher: Nature Publishing Group.

[205] Etienne P. de Villiers, Carmina Gallardo, Marisa Arias, Melissa da Silva, Chris Upton,
Raquel Martin, and Richard P. Bishop. Phylogenomic analysis of 11 complete african swine
fever virus genome sequences. Virology, 400(1):128–136, 2010.

[206] Matthew A. Gitzendanner, Pamela S. Soltis, Gane K.-S. Wong, Brad R. Ruhfel, and
Douglas E. Soltis. Plastid phylogenomic analysis of green plants: A billion years of
evolutionary history. American Journal of Botany, 105(3):291–301, 2018. eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/ajb2.1048.

[207] Mikkel H Schierup and Jotun Hein. Consequences of recombination on traditional phylo-
genetic analysis. Genetics, 156(2):879–891, 2000.

[208] Nicholas J. Croucher, Andrew J. Page, Thomas R. Connor, Aidan J. Delaney, Jacqueline A.
Keane, Stephen D. Bentley, Julian Parkhill, and Simon R. Harris. Rapid phylogenetic anal-
ysis of large samples of recombinant bacterial whole genome sequences using gubbins.
Nucleic Acids Research, 43(3):e15, 2015.

103


	Dedication
	Acknowledgments
	Table of Contents
	List of Figures
	List of Appendices
	List of Acronyms
	Abstract
	Introduction
	Motivation
	Mechanisms of HGT
	Methods to Detect Horizontal Gene Transfer in Bacterial Genomes
	Classes of -lactam Resistance Phenotypes and Genotypes
	HGT in Beneficial Microbes
	HGT of Antibiotic Resistance Genes
	Epidemic Lineages of Antibiotic-Resistant Pathogens
	Dissertation Outline

	cognac: Rapid Generation of Concatenated Gene Alignments for Phylogenetic Inference from Large, Bacterial Whole-genome Sequencing Datasets
	Preamble
	Introduction
	Implementation
	Results
	Discussion
	Conclusions
	Availability of Data and Materials

	A Comparative Analysis of Regional Horizontal Gene Transfer Across Three Distinct US States 
	Introduction
	Results
	Disscussion
	Materials and Methods

	Phenotypic and Genomic Diversification in Complex Carbohydrate-Degrading Human Gut Bacteria
	Preamble
	Introduction
	Results
	Discussion
	Materials and Methods

	Conclusions
	Concluding Remarks
	Future Directions
	Conclusions

	Appendices
	Supporting Information for Chapter 3
	Supporting Information for Chapter 4
	Bibliography

